diff options
-rw-r--r-- | src/ChangeLog | 11 | ||||
-rw-r--r-- | src/algebra/Makefile.in | 13 | ||||
-rw-r--r-- | src/algebra/exposed.lsp.pamphlet | 1 | ||||
-rw-r--r-- | src/algebra/string.spad.pamphlet | 275 | ||||
-rw-r--r-- | src/interp/g-opt.boot | 55 | ||||
-rw-r--r-- | src/share/algebra/browse.daase | 2718 | ||||
-rw-r--r-- | src/share/algebra/category.daase | 4621 | ||||
-rw-r--r-- | src/share/algebra/compress.daase | 10 | ||||
-rw-r--r-- | src/share/algebra/interp.daase | 8553 | ||||
-rw-r--r-- | src/share/algebra/operation.daase | 21198 |
10 files changed, 18735 insertions, 18720 deletions
diff --git a/src/ChangeLog b/src/ChangeLog index 67856a15..af7b76a7 100644 --- a/src/ChangeLog +++ b/src/ChangeLog @@ -1,5 +1,16 @@ 2011-09-09 Gabriel Dos Reis <gdr@cs.tamu.edu> + * interp/g-opt.boot (optIadd): Remork. + (optIsub): Likewise. + (optIdec): New. + * algebra/string.spad.pamphlet (IndexedString): Fold definition + into String. Remove. + (Character): Tidy. + (CharacterClass): Likewise. + * algebra/exposed.lsp.pamphlet: Do not expose ISTRING. + +2011-09-09 Gabriel Dos Reis <gdr@cs.tamu.edu> + * algebra/syntax.spad.pamphlet (Identifier): Remove CoercibleTo Symbol and CoercibleTo String properties. * algebra/symbol.spad.pamphlet (Symbol): Make RetractableTo Identifier. diff --git a/src/algebra/Makefile.in b/src/algebra/Makefile.in index dab60382..e2d6afe9 100644 --- a/src/algebra/Makefile.in +++ b/src/algebra/Makefile.in @@ -127,7 +127,7 @@ oa_strap_0_sources = \ oa_strap_1_sources = $(oa_strap_0_sources) \ SRAGG ALAGG TBAGG KDAGG OPERCAT MATCAT ARR2CAT FFIELDC \ - SAOS ILIST ISTRING IBITS SEX FLOAT CCLASS REF UNISEG SEG VOID \ + SAOS ILIST IBITS SEX FLOAT CCLASS REF UNISEG SEG VOID \ ALIST SEX PATRES PATTERN BOP ARITY NONE IDENT SET FARRAY IFARRAY \ ANY SEXOF MATRIX IARRAY1 @@ -306,7 +306,6 @@ strap-0/LIST.$(FASLEXT): strap-0/LSAGG.$(FASLEXT) strap-0/PRIMARR.$(FASLEXT): strap-0/A1AGG.$(FASLEXT) strap-0/VECTOR.$(FASLEXT): strap-0/VECTCAT.$(FASLEXT) strap-0/CHAR.$(FASLEXT): strap-0/FSAGG.$(FASLEXT) -strap-0/STRING.$(FASLEXT): strap-0/SRAGG.$(FASLEXT) strap-0/STREAM.$(FASLEXT): strap-0/LZSTAGG.$(FASLEXT) strap-0/SUP.$(FASLEXT): strap-0/UPOLYC.$(FASLEXT) strap-0/FRAC.$(FASLEXT): strap-0/QFCAT.$(FASLEXT) @@ -454,8 +453,7 @@ strap-1/DIOPS.$(FASLEXT): strap-1/BGAGG.$(FASLEXT) strap-1/INT.$(FASLEXT) \ strap-1/CLAGG.$(FASLEXT) strap-1/CHAR.$(FASLEXT) strap-1/DIAGG.$(FASLEXT): strap-1/DIOPS.$(FASLEXT) strap-1/FSAGG.$(FASLEXT): strap-1/DIAGG.$(FASLEXT) strap-1/INS.$(FASLEXT) -strap-1/STRING.$(FASLEXT): strap-1/SRAGG.$(FASLEXT) strap-1/CHAR.$(FASLEXT) \ - strap-1/ISTRING.$(FASLEXT) +strap-1/STRING.$(FASLEXT): strap-1/SRAGG.$(FASLEXT) strap-1/CHAR.$(FASLEXT) strap-1/INT.$(FASLEXT): strap-1/STRING.$(FASLEXT) strap-1/ORDRING.$(FASLEXT) \ strap-1/MATRIX.$(FASLEXT) strap-1/PI.$(FASLEXT): strap-1/NNI.$(FASLEXT) @@ -480,9 +478,8 @@ strap-2/NNI.$(FASLEXT): strap-2/INT.$(FASLEXT) strap-2/PI.$(FASLEXT): strap-2/NNI.$(FASLEXT) strap-2/BOOLEAN.$(FASLEXT): strap-2/SINT.$(FASLEXT) strap-2/MAYBE.$(FASLEXT): strap-2/BOOLEAN.$(FASLEXT) -strap-2/ISTRING.$(FASLEXT): strap-2/INT.$(FASLEXT) strap-2/CHAR.$(FASLEXT): strap-2/PI.$(FASLEXT) -strap-2/STRING.$(FASLEXT): strap-2/CHAR.$(FASLEXT) strap-2/ISTRING.$(FASLEXT) +strap-2/STRING.$(FASLEXT): strap-2/CHAR.$(FASLEXT) strap-2/INT.$(FASLEXT) strap-2/LIST.$(FASLEXT): strap-2/ILIST.$(FASLEXT) strap-2/STRING.$(FASLEXT) strap-2/PRIMARR.$(FASLEXT): strap-2/INT.$(FASLEXT) strap-2/IARRAY1.$(FASLEXT): strap-2/PRIMARR.$(FASLEXT) @@ -789,8 +786,6 @@ $(OUT)/A1AGG.$(FASLEXT): $(OUT)/SETCAT.$(FASLEXT) $(OUT)/BOOLE-.$(FASLEXT) \ $(OUT)/FLAGG.$(FASLEXT) $(OUT)/LOGIC-.$(FASLEXT) \ $(OUT)/ORDTYPE-.$(FASLEXT) $(OUT)/SRAGG.$(FASLEXT): $(OUT)/A1AGG.$(FASLEXT) -$(OUT)/ISTRING.$(FASLEXT): $(OUT)/SRAGG.$(FASLEXT) \ - $(OUT)/DIFFSPC-.$(FASLEXT) $(OUT)/DIFFDOM-.$(FASLEXT) $(OUT)/STAGG.$(FASLEXT): $(OUT)/URAGG.$(FASLEXT) $(OUT)/LNAGG.$(FASLEXT) $(OUT)/LNAGG.$(FASLEXT): $(OUT)/SEGCAT.$(FASLEXT) $(OUT)/SEGCAT.$(FASLEXT): $(OUT)/KRCFROM.$(FASLEXT) @@ -898,7 +893,7 @@ axiom_algebra_layer_0 = \ FSAGG FSAGG- STAGG STAGG- CLAGG CLAGG- \ RCAGG RCAGG- SETAGG SETAGG- HOAGG HOAGG- \ TBAGG TBAGG- KDAGG KDAGG- DIAGG DIAGG- \ - DIOPS DIOPS- STRING ISTRING ILIST \ + DIOPS DIOPS- STRING ILIST \ LIST DIFFDOM DIFFDOM- DIFFSPC DIFFSPC- DIFFMOD \ LINEXP PATMAB REAL CHARZ LOGIC LOGIC- \ RTVALUE SYSPTR PDDOM PDDOM- PDSPC PDSPC- \ diff --git a/src/algebra/exposed.lsp.pamphlet b/src/algebra/exposed.lsp.pamphlet index 97cdea86..355586b8 100644 --- a/src/algebra/exposed.lsp.pamphlet +++ b/src/algebra/exposed.lsp.pamphlet @@ -940,7 +940,6 @@ (|IndexedList| . ILIST) (|IndexedMatrix| . IMATRIX) (|IndexedOneDimensionalArray| . IARRAY1) - (|IndexedString| . ISTRING) (|IndexedTwoDimensionalArray| . IARRAY2) (|IndexedVector| . IVECTOR) (|InnerAlgFactor| . IALGFACT) diff --git a/src/algebra/string.spad.pamphlet b/src/algebra/string.spad.pamphlet index f977ac10..16d128be 100644 --- a/src/algebra/string.spad.pamphlet +++ b/src/algebra/string.spad.pamphlet @@ -99,6 +99,8 @@ Character: OrderedFinite() with import %cdown: % -> % from Foreign Builtin import %c2i: % -> NNI from Foreign Builtin import %i2c: NNI -> % from Foreign Builtin + import %iinc: NNI -> PositiveInteger from Foreign Builtin + import %idec: PositiveInteger -> NNI from Foreign Builtin import %ccst: String -> % from Foreign Builtin import %s2c: String -> % from Foreign Builtin import %c2s: % -> String from Foreign Builtin @@ -110,8 +112,8 @@ Character: OrderedFinite() with a <= b == %cle(a,b) a >= b == %cge(a,b) size() == %ccstmax - index n == char((n - 1)::NNI) - lookup c == (1 + ord c)::PositiveInteger + index n == char %idec n + lookup c == %iinc ord c char(n: NNI) == %i2c n ord c == %c2i c random() == char(random(size())$NNI) @@ -197,6 +199,9 @@ CharacterClass: Join(SetCategory, ConvertibleTo String, ++ \spadfunFrom{alphanumeric?}{Character} is true. == add + import %iinc: Integer -> Integer from Foreign Builtin + import %idec: Integer -> Integer from Foreign Builtin + Rep := IndexedBits(0) N := size()$Character @@ -220,7 +225,7 @@ CharacterClass: Join(SetCategory, ConvertibleTo String, convert(cl):String == construct(convert(cl)@List(Character)) convert(cl:%):List(Character) == - [char(i) for i in 0..N-1 | cl.i] + [char(i) for i in 0..%idec N | cl.i] charClass(s: String) == cl := new(N, false) @@ -235,7 +240,7 @@ CharacterClass: Join(SetCategory, ConvertibleTo String, coerce(cl):OutputForm == (convert(cl)@String)::OutputForm -- Stuff to make a legal SetAggregate view - # a == (n := 0; for i in 0..N-1 | a.i repeat n := n+1; n) + # a == (n := 0; for i in 0..%idec N | a.i repeat n := %iinc n; n) empty():% == charClass [] brace():% == charClass [] @@ -243,188 +248,205 @@ CharacterClass: Join(SetCategory, ConvertibleTo String, remove!(c: Character, a:%) == (a(ord c) := false; a) inspect(a) == - for i in 0..N-1 | a.i repeat + for i in 0..%idec N | a.i repeat return char i error "Cannot take a character from an empty class." extract!(a) == - for i in 0..N-1 | a.i repeat + for i in 0..%idec N | a.i repeat a.i := false return char i error "Cannot take a character from an empty class." map(f, a) == b := new(N, false) - for i in 0..N-1 | a.i repeat b(ord f char i) := true + for i in 0..%idec N | a.i repeat b(ord f char i) := true b temp: % := new(N, false)$Rep map!(f, a) == fill!(temp, false) - for i in 0..N-1 | a.i repeat temp(ord f char i) := true + for i in 0..%idec N | a.i repeat temp(ord f char i) := true copyInto!(a, temp, 0) parts a == - [char i for i in 0..N-1 | a.i] + [char i for i in 0..%idec N | a.i] @ -\section{domain ISTRING IndexedString} -<<domain ISTRING IndexedString>>= -)abbrev domain ISTRING IndexedString -++ Authors: Stephen Watt, Michael Monagan, Manuel Bronstein 1986 .. 1991 --- The following Lisp dependencies are divided into two groups --- Those that are required --- MAKE-FULL-CVEC --- Those that can are included for efficiency only --- SUBSTRING STRPOS RPLACSTR + +\section{domain STRING String} +<<domain STRING String>>= +)abbrev domain STRING String ++ Description: -++ This domain implements low-level strings - -IndexedString(mn:Integer): Export == Implementation where - B ==> Boolean - C ==> Character - I ==> Integer - N ==> NonNegativeInteger - U ==> UniversalSegment Integer - - Export == StringAggregate() - Implementation == add - import %strlength: % -> N from Foreign Builtin - import %streq: (%,%) -> Boolean from Foreign Builtin - import %strlt: (%,%) -> Boolean from Foreign Builtin - import %ceq: (Character, Character) -> Boolean from Foreign Builtin - import %schar: (%,I) -> Character from Foreign Builtin - import %strconc: (%,%) -> % from Foreign Builtin - import %strcopy: % -> % from Foreign Builtin - import %strstc: (%,Integer,Character) -> Void from Foreign Builtin +++ This is the domain of character strings. +++ Authors: Stephen Watt, Michael Monagan, Manuel Bronstein 1986 .. 1991 + +String(): Public == Private where + Public == StringAggregate with + string: Integer -> % + ++ \spad{string i} returns the decimal representation of + ++ \spad{i} in a string + string: DoubleFloat -> % + ++ \spad{string f} returns the decimal representation of + ++ \spad{f} in a string + string: Identifier -> % + ++ \spad{string id} is the string representation of the + ++ identifier \spad{id} + Private == add + macro B == Boolean + macro C == Character + macro I == Integer + macro N == NonNegativeInteger + macro U == UniversalSegment Integer + + import %icst0: N from Foreign Builtin + import %icst1: N from Foreign Builtin + import %i2s: I -> % from Foreign Builtin + import %iinc: I -> I from Foreign Builtin + import %idec: I -> I from Foreign Builtin + import %f2s: DoubleFloat -> % from Foreign Builtin + import %sname: Identifier -> % from Foreign Builtin + import %strlength: % -> N from Foreign Builtin + import %streq: (%,%) -> B from Foreign Builtin + import %strlt: (%,%) -> B from Foreign Builtin + import %ceq: (C, C) -> B from Foreign Builtin + import %schar: (%,I) -> C from Foreign Builtin + import %strconc: (%,%) -> % from Foreign Builtin + import %strcopy: % -> % from Foreign Builtin + import %strstc: (%,I,C) -> Void from Foreign Builtin import %hash : % -> SingleInteger from Foreign Builtin + string(n: I) == %i2s n + string(f: DoubleFloat) == %f2s f + string(id: Identifier) == %sname id + c: Character cc: CharacterClass -- new n == makeString(n, space$C)$Lisp new(n, c) == makeString(n, c)$Lisp empty() == makeString(0@I)$Lisp - empty?(s) == %strlength s = 0 + empty?(s) == zero? %strlength s #s == %strlength s s = t == %streq(s,t) s < t == %strlt(s,t) concat(s:%,t:%) == %strconc(s,t) copy s == %strcopy s - insert(s:%, t:%, i:I) == concat(concat(s(mn..i-1), t), s(i..)) + insert(s:%, t:%, i:I) == concat(concat(s(1..%idec i), t), s(i..)) coerce(s:%):OutputForm == outputForm(s pretend String) - minIndex s == mn + minIndex s == %icst1 upperCase! s == map!(upperCase, s) lowerCase! s == map!(lowerCase, s) - latex s == concat("\mbox{``", concat(s pretend String, "''}")) + latex s == + concat("\mbox{``", concat(s pretend String, "''}")) replace(s, sg, t) == - l := lo(sg) - mn + l := %idec lo(sg) m := #s n := #t - h:I := if hasHi sg then hi(sg) - mn else maxIndex s - mn - negative? l or h >= m or h < l-1 => error "index out of range" - r := new((m-(h-l+1)+n)::N, space$C) - k: NonNegativeInteger := 0 - for i in 0..l-1 repeat + h:I := if hasHi sg then %idec hi(sg) else %idec maxIndex s + negative? l or h >= m or h < %idec l => error "index out of range" + r := new((m-%iinc(h-l)+n)::N, space$C) + k: NonNegativeInteger := %icst0 + for i in %icst0..%idec l repeat %strstc(r, k, %schar(s, i)) - k := k + 1 - for i in 0..n-1 repeat + k := %iinc(k) : N + for i in %icst0..%idec n repeat %strstc(r, k, %schar(t, i)) - k := k + 1 - for i in h+1..m-1 repeat + k := %iinc(k) : N + for i in %iinc h..%idec m repeat %strstc(r, k, %schar(s, i)) - k := k + 1 + k := %iinc(k) : N r setelt(s:%, i:I, c:C) == - i < mn or i > maxIndex(s) => error "index out of range" - %strstc(s, i - mn, c) + i < 1 or i > maxIndex(s) => error "index out of range" + %strstc(s, %idec i, c) c substring?(part, whole, startpos) == np:I := %strlength part nw:I := %strlength whole - negative?(startpos := startpos - mn) => error "index out of bounds" + negative?(startpos := %idec startpos) => error "index out of bounds" np > nw - startpos => false - for ip in 0..np-1 for iw in startpos.. repeat + for ip in %icst0..%idec np for iw in startpos.. repeat not %ceq(%schar(part, ip), %schar(whole, iw)) => return false true position(s:%, t:%, startpos:I) == - negative?(startpos := startpos - mn) => error "index out of bounds" - startpos >= %strlength t => mn - 1 + negative?(startpos := %idec startpos) => error "index out of bounds" + startpos >= %strlength t => %icst0 r:I := STRPOS(s, t, startpos, NIL$Lisp)$Lisp - %peq(r, NIL$Lisp)$Foreign(Builtin) => mn - 1 - r + mn + %peq(r, NIL$Lisp)$Foreign(Builtin) => %icst0 + %iinc r position(c: Character, t: %, startpos: I) == - negative?(startpos := startpos - mn) => error "index out of bounds" - startpos >= %strlength t => mn - 1 - for r in startpos..%strlength t - 1 repeat - if %ceq(%schar(t, r), c) then return r + mn - mn - 1 + negative?(startpos := %idec startpos) => error "index out of bounds" + startpos >= %strlength t => %icst0 + for r in startpos..%idec %strlength t repeat + if %ceq(%schar(t, r), c) then return %iinc r + %icst0 position(cc: CharacterClass, t: %, startpos: I) == - negative?(startpos := startpos - mn) => error "index out of bounds" - startpos >= %strlength t => mn - 1 - for r in startpos..%strlength t - 1 repeat - if member?(%schar(t,r), cc) then return r + mn - mn - 1 + negative?(startpos := %idec startpos) => error "index out of bounds" + startpos >= %strlength t => %icst0 + for r in startpos..%idec %strlength t repeat + if member?(%schar(t,r), cc) then return %iinc r + %icst0 suffix?(s, t) == (m := maxIndex s) > (n := maxIndex t) => false - substring?(s, t, mn + n - m) + substring?(s, t, %iinc(n - m)) split(s, c) == n := maxIndex s - i := mn - while i <= n and s.i = c repeat i := i + 1 + i := %icst1 + while i <= n and s.i = c repeat i := %iinc i l := empty()$List(%) j:Integer -- j is conditionally intialized - while i <= n and (j := position(c, s, i)) >= mn repeat - l := concat(s(i..j-1), l) + while i <= n and (j := position(c, s, i)) >= %icst1 repeat + l := concat(s(i..%idec j), l) i := j - while i <= n and s.i = c repeat i := i + 1 + while i <= n and s.i = c repeat i := %iinc i if i <= n then l := concat(s(i..n), l) reverse! l split(s, cc) == n := maxIndex s - i := mn - while i <= n and member?(s.i,cc) repeat i := i + 1 + i := %icst1 + while i <= n and member?(s.i,cc) repeat i := %iinc i l := empty()$List(%) j:Integer -- j is conditionally intialized - while i <= n and (j := position(cc, s, i)) >= mn repeat - l := concat(s(i..j-1), l) + while i <= n and (j := position(cc, s, i)) >= 1 repeat + l := concat(s(i..%idec j), l) i := j - while i <= n and member?(s.i,cc) repeat i := i + 1 + while i <= n and member?(s.i,cc) repeat i := %iinc i if i <= n then l := concat(s(i..n), l) reverse! l leftTrim(s, c) == n := maxIndex s - i := mn - while i <= n and s.i = c repeat i := i + 1 + i := %icst1 + while i <= n and s.i = c repeat i := %iinc i s(i..n) leftTrim(s, cc) == n := maxIndex s - i := mn - while i <= n and member?(s.i,cc) repeat i := i + 1 + i := %icst1 + while i <= n and member?(s.i,cc) repeat i := %iinc i s(i..n) rightTrim(s, c) == j := maxIndex s - while j >= mn and s.j = c repeat j := j - 1 + while j >= 1 and s.j = c repeat j := %idec j s(minIndex(s)..j) rightTrim(s, cc) == j := maxIndex s - while j >= mn and member?(s.j, cc) repeat j := j - 1 + while j >= %icst1 and member?(s.j, cc) repeat j := %idec j s(minIndex(s)..j) concat l == t := new(+/[#s for s in l], space$C) - i := mn + i := %icst1 for s in l repeat copyInto!(t, s, i) i := i + #s @@ -433,91 +455,51 @@ IndexedString(mn:Integer): Export == Implementation where copyInto!(y, x, s) == m := #x n := #y - s := s - mn + s := %idec s negative? s or s+m > n => error "index out of range" - RPLACSTR(y, s, m, x, 0, m)$Lisp + RPLACSTR(y, s, m, x, %icst0, m)$Lisp y elt(s:%, i:I) == - i < mn or i > maxIndex(s) => error "index out of range" - %schar(s, i - mn) + i < %icst1 or i > maxIndex(s) => error "index out of range" + %schar(s, %idec i) elt(s:%, sg:U) == - l := lo(sg) - mn - h := if hasHi sg then hi(sg) - mn else maxIndex s - mn + l := %idec lo(sg) + h := if hasHi sg then %idec hi(sg) else %idec maxIndex s negative? l or h >= #s => error "index out of bound" - SUBSTRING(s, l, max(0, h-l+1))$Lisp + SUBSTRING(s, l, max(%icst0, %iinc(h-l)))$Lisp hash s == %hash s - match(pattern,target,wildcard) == stringMatch(pattern,target,CHARACTER(wildcard)$Lisp)$Lisp + match(pattern,target,wildcard) == + stringMatch(pattern,target,CHARACTER(wildcard)$Lisp)$Lisp -@ - -Up to [[patch--40]] this read - -\begin{verbatim} - match(pattern,target,wildcard) == stringMatch(pattern,target,wildcard)$Lisp -\end{verbatim} - -which did not work (Issue~\#97), since [[wildcard]] is an Axiom-[[Character]], -not a Lisp-[[Character]]. The operation [[CHARACTER]] from [[Lisp]] performs -the coercion. - -<<domain ISTRING IndexedString>>= match?(pattern, target, dontcare) == n := maxIndex pattern p := position(dontcare, pattern, m := minIndex pattern)::N - p = m-1 => pattern = target - (p ~= m) and not prefix?(pattern(m..p-1), target) => false + p = %idec m => pattern = target + (p ~= m) and not prefix?(pattern(m..%idec p), target) => false i := p -- index into target - q := position(dontcare, pattern, p + 1)::N - while q ~= m-1 repeat - s := pattern(p+1..q-1) + q := position(dontcare, pattern, %iinc p)::N + while q ~= %idec m repeat + s := pattern(%iinc p..%idec q) i := position(s, target, i)::N - i = m-1 => return false + i = %idec m => return false i := i + #s p := q - q := position(dontcare, pattern, q + 1)::N - (p ~= n) and not suffix?(pattern(p+1..n), target) => false + q := position(dontcare, pattern, %iinc q)::N + (p ~= n) and not suffix?(pattern(%iinc p..n), target) => false true @ -\section{domain STRING String} -<<domain STRING String>>= -)abbrev domain STRING String -++ Description: -++ This is the domain of character strings. -MINSTRINGINDEX ==> 1 -- as of 3/14/90. - -String(): Public == Private where - Public == StringAggregate with - string: Integer -> % - ++ \spad{string i} returns the decimal representation of - ++ \spad{i} in a string - string: DoubleFloat -> % - ++ \spad{string f} returns the decimal representation of - ++ \spad{f} in a string - string: Identifier -> % - ++ \spad{string id} is the string representation of the - ++ identifier \spad{id} - Private == IndexedString(MINSTRINGINDEX) add - import %i2s: Integer -> % from Foreign Builtin - import %f2s: DoubleFloat -> % from Foreign Builtin - import %sname: Identifier -> % from Foreign Builtin - string(n: Integer) == %i2s n - string(f: DoubleFloat) == %f2s f - string(id: Identifier) == %sname id - -@ - \section{License} <<license>>= --Copyright (c) 1991-2002, The Numerical ALgorithms Group Ltd. --All rights reserved. --- Copyright (C) 2007-2010, Gabriel Dos Reis. +-- Copyright (C) 2007-2011, Gabriel Dos Reis. -- All rights reserved. -- --Redistribution and use in source and binary forms, with or without @@ -553,7 +535,6 @@ String(): Public == Private where <<domain CHAR Character>> <<domain CCLASS CharacterClass>> -<<domain ISTRING IndexedString>> <<domain STRING String>> @ \eject diff --git a/src/interp/g-opt.boot b/src/interp/g-opt.boot index f7dfa3f2..709e7b41 100644 --- a/src/interp/g-opt.boot +++ b/src/interp/g-opt.boot @@ -406,7 +406,7 @@ $VMsideEffectFreeOperators == %beq %blt %ble %bgt %bge %bitand %bitior %bitxor %bitnot %bcompl %ilength %ibit %icst0 %icst1 %icstmin %icstmax %imul %iadd %isub %igcd %ilcm %ipow %imin %imax %ieven? %iodd? %iinc - %irem %iquo %idivide %idec %irandom + %idec %irem %iquo %idivide %idec %irandom %feq %flt %fle %fgt %fge %fmul %fadd %fsub %fexp %fmin %fmax %float? %fpowi %fdiv %fneg %i2f %fminval %fmaxval %fbase %fprec %ftrunc %fsqrt %fpowf %flog %flog2 %flog10 %fmanexp %fNaN? @@ -742,11 +742,24 @@ optBge ['%bge,a,b] == optIadd(x is ['%iadd,a,b]) == integer? a and integer? b => a + b - integer? a and a = 0 => b - integer? b and b = 0 => a + integer? a => + a = 0 => b + b is [op,b1,b2] and op in '(%iadd %isub) => + integer? b1 => simplifyVMForm [op,['%iadd,a,b1],b2] + integer? b2 => simplifyVMForm ['%iadd,b1,[op,a,b2]] + x + x + integer? b => + b = 0 => a + a is [op,a1,a2] and op in '('%iadd %isub) => + integer? a1 => simplifyVMForm [op,['%iadd,a1,b],a2] + integer? a2 => simplifyVMForm ['%iadd,a1,[op,b,a2]] + x + x x optIinc(x is ['%iinc,a]) == + integer? a => a + 1 a is [op,b,c] and op in '(%isub %iadd) => integer? b => simplifyVMForm [op,[op,b,1],c] integer? c => simplifyVMForm [op,b,[op,c,1]] @@ -755,8 +768,40 @@ optIinc(x is ['%iinc,a]) == optIsub(x is ['%isub,a,b]) == integer? a and integer? b => a - b - integer? a and a = 0 => ['%ineg,b] - integer? b and b = 0 => a + integer? a => + a = 0 => ['%ineg,b] + b is ['%iadd,b1,b2] => + integer? b1 => simplifyVMForm ['%isub,['%isub,a,b1],b2] + integer? b2 => simplifyVMForm ['%isub,['%isub,a,b2],b1] + x + b is ['%isub,b1,b2] => + integer? b1 => simplifyVMForm ['%iadd,['%isub,a,b1],b2] + integer? b2 => simplifyVMForm ['%isub,['%iadd,a,b2],b1] + x + x + integer? b => + b = 0 => a + a is ['%iadd,a1,a2] => + integer? a1 => simplifyVMForm ['%iadd,['%isub,a1,b],a2] + integer? a2 => simplifyVMForm ['%iadd,a1,['%isub,a2,b]] + x + a is ['%isub,a1,a2] => + integer? a1 => simplifyVMForm ['%isub,['%isub,a1,b],a2] + integer? a2 => simplifyVMForm ['%isub,a1,['%iadd,a2,b]] + x + x + x + +optIdec(x is ['%idec,a]) == + integer? a => a - 1 + a is ['%iadd,b,c] => + integer? b => simplifyVMForm ['%iadd,['%isub,b,1],c] + integer? c => simplifyVMForm ['%iadd,b,['%isub,c,1]] + x + a is ['%isub,b,c] => + integer? b => simplifyVMForm ['%isub,['%isub,b,1],c] + integer? c => simplifyVMForm ['%isub,b,['%iadd,c,1]] + x x optImul(x is ['%imul,a,b]) == diff --git a/src/share/algebra/browse.daase b/src/share/algebra/browse.daase index 79d968d3..ad6dab06 100644 --- a/src/share/algebra/browse.daase +++ b/src/share/algebra/browse.daase @@ -1,12 +1,12 @@ -(2277006 . 3524522243) +(2275976 . 3524556579) (-18 A S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) NIL NIL (-19 S) ((|constructor| (NIL "One-dimensional-array aggregates serves as models for one-dimensional arrays. Categorically,{} these aggregates are finite linear aggregates with the \\spadatt{shallowlyMutable} property,{} that is,{} any component of the array may be changed without affecting the identity of the overall array. Array data structures are typically represented by a fixed area in storage and therefore cannot efficiently grow or shrink on demand as can list structures (see however \\spadtype{FlexibleArray} for a data structure which is a cross between a list and an array). Iteration over,{} and access to,{} elements of arrays is extremely fast (and often can be optimized to open-code). Insertion and deletion however is generally slow since an entirely new data structure must be created for the result."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL (-20 S) ((|constructor| (NIL "The class of abelian groups,{} \\spadignore{i.e.} additive monoids where each element has an additive inverse. \\blankline")) (- (($ $ $) "\\spad{x-y} is the difference of \\spad{x} and \\spad{y} \\spadignore{i.e.} \\spad{x + (-y)}.") (($ $) "\\spad{-x} is the additive inverse of \\spad{x}"))) @@ -38,7 +38,7 @@ NIL NIL (-27) ((|constructor| (NIL "Model for algebraically closed fields.")) (|zerosOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. Otherwise they are implicit algebraic quantities. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|zeroOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity which displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}; if possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity.") (($ (|Polynomial| $)) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. If possible,{} \\spad{y} is expressed in terms of radicals. Otherwise it is an implicit algebraic quantity. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootsOf| (((|List| $) (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) (|Polynomial| $)) "\\spad{rootsOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ (|SparseUnivariatePolynomial| $) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ (|SparseUnivariatePolynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}.") (($ (|Polynomial| $)) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-28 S R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) @@ -46,7 +46,7 @@ NIL NIL (-29 R) ((|constructor| (NIL "Model for algebraically closed function spaces.")) (|zerosOf| (((|List| $) $ (|Symbol|)) "\\spad{zerosOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible,{} and otherwise as implicit algebraic quantities which display as \\spad{'yi}. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{zerosOf(p)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}. The \\spad{yi}'s are expressed in radicals if possible. The returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable.")) (|zeroOf| (($ $ (|Symbol|)) "\\spad{zeroOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity which displays as \\spad{'y}.") (($ $) "\\spad{zeroOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. The value \\spad{y} is expressed in terms of radicals if possible,{}and otherwise as an implicit algebraic quantity. Error: if \\spad{p} has more than one variable.")) (|rootsOf| (((|List| $) $ (|Symbol|)) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; The returned roots display as \\spad{'y1},{}...,{}\\spad{'yn}. Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values.") (((|List| $) $) "\\spad{rootsOf(p, y)} returns \\spad{[y1,...,yn]} such that \\spad{p(yi) = 0}; Note: the returned symbols \\spad{y1},{}...,{}yn are bound in the interpreter to respective root values. Error: if \\spad{p} has more than one variable \\spad{y}.")) (|rootOf| (($ $ (|Symbol|)) "\\spad{rootOf(p,y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}.") (($ $) "\\spad{rootOf(p)} returns \\spad{y} such that \\spad{p(y) = 0}. Error: if \\spad{p} has more than one variable \\spad{y}."))) -((-4422 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4418 . T) (-4423 . T) (-4417 . T)) +((-4421 . T) (-4419 . T) (-4418 . T) ((-4426 "*") . T) (-4417 . T) (-4422 . T) (-4416 . T)) NIL (-30) ((|constructor| (NIL "\\indented{1}{Plot a NON-SINGULAR plane algebraic curve \\spad{p}(\\spad{x},{}\\spad{y}) = 0.} Author: Clifton \\spad{J}. Williamson Date Created: Fall 1988 Date Last Updated: 27 April 1990 Keywords: algebraic curve,{} non-singular,{} plot Examples: References:")) (|refine| (($ $ (|DoubleFloat|)) "\\spad{refine(p,x)} \\undocumented{}")) (|makeSketch| (($ (|Polynomial| (|Integer|)) (|Symbol|) (|Symbol|) (|Segment| (|Fraction| (|Integer|))) (|Segment| (|Fraction| (|Integer|)))) "\\spad{makeSketch(p,x,y,a..b,c..d)} creates an ACPLOT of the curve \\spad{p = 0} in the region {\\em a <= x <= b, c <= y <= d}. More specifically,{} 'makeSketch' plots a non-singular algebraic curve \\spad{p = 0} in an rectangular region {\\em xMin <= x <= xMax},{} {\\em yMin <= y <= yMax}. The user inputs \\spad{makeSketch(p,x,y,xMin..xMax,yMin..yMax)}. Here \\spad{p} is a polynomial in the variables \\spad{x} and \\spad{y} with integer coefficients (\\spad{p} belongs to the domain \\spad{Polynomial Integer}). The case where \\spad{p} is a polynomial in only one of the variables is allowed. The variables \\spad{x} and \\spad{y} are input to specify the the coordinate axes. The horizontal axis is the \\spad{x}-axis and the vertical axis is the \\spad{y}-axis. The rational numbers xMin,{}...,{}yMax specify the boundaries of the region in which the curve is to be plotted."))) @@ -56,14 +56,14 @@ NIL ((|constructor| (NIL "This domain represents the syntax for an add-expression.")) (|body| (((|SpadAst|) $) "base(\\spad{d}) returns the actual body of the add-domain expression `d'.")) (|base| (((|SpadAst|) $) "\\spad{base(d)} returns the base domain(\\spad{s}) of the add-domain expression."))) NIL NIL -(-32 R -3495) +(-32 R -3494) ((|constructor| (NIL "This package provides algebraic functions over an integral domain.")) (|iroot| ((|#2| |#1| (|Integer|)) "\\spad{iroot(p, n)} should be a non-exported function.")) (|definingPolynomial| ((|#2| |#2|) "\\spad{definingPolynomial(f)} returns the defining polynomial of \\spad{f} as an element of \\spad{F}. Error: if \\spad{f} is not a kernel.")) (|minPoly| (((|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{minPoly(k)} returns the defining polynomial of \\spad{k}.")) (** ((|#2| |#2| (|Fraction| (|Integer|))) "\\spad{x ** q} is \\spad{x} raised to the rational power \\spad{q}.")) (|droot| (((|OutputForm|) (|List| |#2|)) "\\spad{droot(l)} should be a non-exported function.")) (|inrootof| ((|#2| (|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{inrootof(p, x)} should be a non-exported function.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}. Error: if \\spad{op} is not an algebraic operator,{} that is,{} an \\spad{n}th root or implicit algebraic operator.")) (|rootOf| ((|#2| (|SparseUnivariatePolynomial| |#2|) (|Symbol|)) "\\spad{rootOf(p, y)} returns \\spad{y} such that \\spad{p(y) = 0}. The object returned displays as \\spad{'y}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) +((|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-33 S) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL -((|HasAttribute| |#1| (QUOTE -4425))) +((|HasAttribute| |#1| (QUOTE -4424))) (-34) ((|constructor| (NIL "The notion of aggregate serves to model any data structure aggregate,{} designating any collection of objects,{} with heterogenous or homogeneous members,{} with a finite or infinite number of members,{} explicitly or implicitly represented. An aggregate can in principle represent everything from a string of characters to abstract sets such as \"the set of \\spad{x} satisfying relation {\\em r(x)}\" An attribute \\spadatt{finiteAggregate} is used to assert that a domain has a finite number of elements.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# u} returns the number of items in \\spad{u}.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) (|empty?| (((|Boolean|) $) "\\spad{empty?(u)} tests if \\spad{u} has 0 elements.")) (|empty| (($) "\\spad{empty()}\\$\\spad{D} creates an aggregate of type \\spad{D} with 0 elements. Note: The {\\em \\$D} can be dropped if understood by context,{} \\spadignore{e.g.} \\axiom{u: \\spad{D} := empty()}.")) (|copy| (($ $) "\\spad{copy(u)} returns a top-level (non-recursive) copy of \\spad{u}. Note: for collections,{} \\axiom{copy(\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u}]}.")) (|eq?| (((|Boolean|) $ $) "\\spad{eq?(u,v)} tests if \\spad{u} and \\spad{v} are same objects."))) NIL @@ -74,7 +74,7 @@ NIL NIL (-36 |Key| |Entry|) ((|constructor| (NIL "An association list is a list of key entry pairs which may be viewed as a table. It is a poor mans version of a table: searching for a key is a linear operation.")) (|assoc| (((|Union| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)) "failed") |#1| $) "\\spad{assoc(k,u)} returns the element \\spad{x} in association list \\spad{u} stored with key \\spad{k},{} or \"failed\" if \\spad{u} has no key \\spad{k}."))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL (-37 S R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) @@ -82,20 +82,20 @@ NIL NIL (-38 R) ((|constructor| (NIL "The category of associative algebras (modules which are themselves rings). \\blankline"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL (-39 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in \\spadtype{AlgebraicNumber}.")) (|doublyTransitive?| (((|Boolean|) |#1|) "\\spad{doublyTransitive?(p)} is \\spad{true} if \\spad{p} is irreducible over over the field \\spad{K} generated by its coefficients,{} and if \\spad{p(X) / (X - a)} is irreducible over \\spad{K(a)} where \\spad{p(a) = 0}.")) (|split| (((|Factored| |#1|) |#1|) "\\spad{split(p)} returns a prime factorisation of \\spad{p} over its splitting field.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p} over the field generated by its coefficients.") (((|Factored| |#1|) |#1| (|List| (|AlgebraicNumber|))) "\\spad{factor(p, [a1,...,an])} returns a prime factorisation of \\spad{p} over the field generated by its coefficients and \\spad{a1},{}...,{}an."))) NIL NIL -(-40 -3495 UP UPUP -3013) +(-40 -3494 UP UPUP -3012) ((|constructor| (NIL "Function field defined by \\spad{f}(\\spad{x},{} \\spad{y}) = 0.")) (|knownInfBasis| (((|Void|) (|NonNegativeInteger|)) "\\spad{knownInfBasis(n)} \\undocumented{}"))) -((-4418 |has| (-419 |#2|) (-376)) (-4423 |has| (-419 |#2|) (-376)) (-4417 |has| (-419 |#2|) (-376)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-3957 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -919) (QUOTE (-1198)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-3957 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198)))))) -(-41 R -3495) +((-4417 |has| (-419 |#2|) (-376)) (-4422 |has| (-419 |#2|) (-376)) (-4416 |has| (-419 |#2|) (-376)) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-3956 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -918) (QUOTE (-1197)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -657) (QUOTE (-558)))) (-3956 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197)))))) +(-41 R -3494) ((|constructor| (NIL "AlgebraicManipulations provides functions to simplify and expand expressions involving algebraic operators.")) (|rootKerSimp| ((|#2| (|BasicOperator|) |#2| (|NonNegativeInteger|)) "\\spad{rootKerSimp(op,f,n)} should be local but conditional.")) (|rootSimp| ((|#2| |#2|) "\\spad{rootSimp(f)} transforms every radical of the form \\spad{(a * b**(q*n+r))**(1/n)} appearing in \\spad{f} into \\spad{b**q * (a * b**r)**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{b}.")) (|rootProduct| ((|#2| |#2|) "\\spad{rootProduct(f)} combines every product of the form \\spad{(a**(1/n))**m * (a**(1/s))**t} into a single power of a root of \\spad{a},{} and transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form.")) (|rootPower| ((|#2| |#2|) "\\spad{rootPower(f)} transforms every radical power of the form \\spad{(a**(1/n))**m} into a simpler form if \\spad{m} and \\spad{n} have a common factor.")) (|ratPoly| (((|SparseUnivariatePolynomial| |#2|) |#2|) "\\spad{ratPoly(f)} returns a polynomial \\spad{p} such that \\spad{p} has no algebraic coefficients,{} and \\spad{p(f) = 0}.")) (|ratDenom| ((|#2| |#2| (|List| (|Kernel| |#2|))) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic from the denominators in \\spad{f}.") ((|#2| |#2| (|List| |#2|)) "\\spad{ratDenom(f, [a1,...,an])} removes the \\spad{ai}'s which are algebraic kernels from the denominators in \\spad{f}.") ((|#2| |#2| |#2|) "\\spad{ratDenom(f, a)} removes \\spad{a} from the denominators in \\spad{f} if \\spad{a} is an algebraic kernel.") ((|#2| |#2|) "\\spad{ratDenom(f)} rationalizes the denominators appearing in \\spad{f} by moving all the algebraic quantities into the numerators.")) (|rootSplit| ((|#2| |#2|) "\\spad{rootSplit(f)} transforms every radical of the form \\spad{(a/b)**(1/n)} appearing in \\spad{f} into \\spad{a**(1/n) / b**(1/n)}. This transformation is not in general valid for all complex numbers \\spad{a} and \\spad{b}.")) (|coerce| (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(x)} \\undocumented")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(x)} \\undocumented")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(x)} \\undocumented"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -433) (|devaluate| |#1|))))) +((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -433) (|devaluate| |#1|))))) (-42 OV E P) ((|constructor| (NIL "This package factors multivariate polynomials over the domain of \\spadtype{AlgebraicNumber} by allowing the user to specify a list of algebraic numbers generating the particular extension to factor over.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#3|)) (|SparseUnivariatePolynomial| |#3|) (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}. \\spad{p} is presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#3|) |#3| (|List| (|AlgebraicNumber|))) "\\spad{factor(p,lan)} factors the polynomial \\spad{p} over the extension generated by the algebraic numbers given by the list \\spad{lan}."))) NIL @@ -106,31 +106,31 @@ NIL ((|HasCategory| |#1| (QUOTE (-319)))) (-44 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGivenByStructuralConstants implements finite rank algebras over a commutative ring,{} given by the structural constants \\spad{gamma} with respect to a fixed basis \\spad{[a1,..,an]},{} where \\spad{gamma} is an \\spad{n}-vector of \\spad{n} by \\spad{n} matrices \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{ai * aj = gammaij1 * a1 + ... + gammaijn * an}. The symbols for the fixed basis have to be given as a list of symbols.")) (|coerce| (($ (|Vector| |#1|)) "\\spad{coerce(v)} converts a vector to a member of the algebra by forming a linear combination with the basis element. Note: the vector is assumed to have length equal to the dimension of the algebra."))) -((-4422 |has| |#1| (-569)) (-4420 . T) (-4419 . T)) +((-4421 |has| |#1| (-569)) (-4419 . T) (-4418 . T)) ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-45 |Key| |Entry|) ((|constructor| (NIL "\\spadtype{AssociationList} implements association lists. These may be viewed as lists of pairs where the first part is a key and the second is the stored value. For example,{} the key might be a string with a persons employee identification number and the value might be a record with personnel data."))) -((-4425 . T) (-4426 . T)) -((-3957 (-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-861)))) (-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-861))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))))) +((-4424 . T) (-4425 . T)) +((-3956 (-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-860)))) (-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-860))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-860))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))))) (-46 S R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#2|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#2| $ |#3|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#2| |#3|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#3| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) NIL ((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (-47 R E) ((|constructor| (NIL "Abelian monoid ring elements (not necessarily of finite support) of this ring are of the form formal SUM (r_i * e_i) where the r_i are coefficents and the e_i,{} elements of the ordered abelian monoid,{} are thought of as exponents or monomials. The monomials commute with each other,{} and with the coefficients (which themselves may or may not be commutative). See \\spadtype{FiniteAbelianMonoidRing} for the case of finite support a useful common model for polynomials and power series. Conceptually at least,{} only the non-zero terms are ever operated on.")) (/ (($ $ |#1|) "\\spad{p/c} divides \\spad{p} by the coefficient \\spad{c}.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(p,e)} extracts the coefficient of the monomial with exponent \\spad{e} from polynomial \\spad{p},{} or returns zero if exponent is not present.")) (|reductum| (($ $) "\\spad{reductum(u)} returns \\spad{u} minus its leading monomial returns zero if handed the zero element.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,e)} makes a term from a coefficient \\spad{r} and an exponent \\spad{e}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(p)} tests if \\spad{p} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|degree| ((|#2| $) "\\spad{degree(p)} returns the maximum of the exponents of the terms of \\spad{p}.")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(p)} returns the monomial of \\spad{p} with the highest degree.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the coefficient highest degree term of \\spad{p}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-48) ((|constructor| (NIL "Algebraic closure of the rational numbers,{} with mathematical =")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (|%list| (QUOTE -1059) (QUOTE (-558))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (|%list| (QUOTE -1058) (QUOTE (-558))))) (-49) ((|constructor| (NIL "This domain implements anonymous functions")) (|body| (((|Syntax|) $) "\\spad{body(f)} returns the body of the unnamed function `f'.")) (|parameters| (((|List| (|Identifier|)) $) "\\spad{parameters(f)} returns the list of parameters bound by `f'."))) NIL NIL (-50 R |lVar|) ((|constructor| (NIL "The domain of antisymmetric polynomials.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,p)} changes each coefficient of \\spad{p} by the application of \\spad{f}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the homogeneous degree of \\spad{p}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(p)} tests if \\spad{p} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{p}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(p)} tests if all of the terms of \\spad{p} have the same degree.")) (|exp| (($ (|List| (|Integer|))) "\\spad{exp([i1,...in])} returns \\spad{u_1\\^{i_1} ... u_n\\^{i_n}}")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th multiplicative generator,{} a basis term.")) (|coefficient| ((|#1| $ $) "\\spad{coefficient(p,u)} returns the coefficient of the term in \\spad{p} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise. Error: if the second argument \\spad{u} is not a basis element.")) (|reductum| (($ $) "\\spad{reductum(p)},{} where \\spad{p} is an antisymmetric polynomial,{} returns \\spad{p} minus the leading term of \\spad{p} if \\spad{p} has at least two terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(p)} returns the leading basis term of antisymmetric polynomial \\spad{p}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(p)} returns the leading coefficient of antisymmetric polynomial \\spad{p}."))) -((-4422 . T)) +((-4421 . T)) NIL (-51) ((|constructor| (NIL "\\spadtype{Any} implements a type that packages up objects and their types in objects of \\spadtype{Any}. Roughly speaking that means that if \\spad{s : S} then when converted to \\spadtype{Any},{} the new object will include both the original object and its type. This is a way of converting arbitrary objects into a single type without losing any of the original information. Any object can be converted to one of \\spadtype{Any}. The original object can be recovered by `is-case' pattern matching as exemplified here and \\spad{AnyFunctions1}.")) (|obj| (((|None|) $) "\\spad{obj(a)} essentially returns the original object that was converted to \\spadtype{Any} except that the type is forced to be \\spadtype{None}.")) (|dom| (((|SExpression|) $) "\\spad{dom(a)} returns a \\spadgloss{LISP} form of the type of the original object that was converted to \\spadtype{Any}.")) (|any| (($ (|SExpression|) (|None|)) "\\spad{any(type,object)} is a technical function for creating an \\spad{object} of \\spadtype{Any}. Arugment \\spad{type} is a \\spadgloss{LISP} form for the \\spad{type} of \\spad{object}."))) @@ -144,7 +144,7 @@ NIL ((|constructor| (NIL "\\spad{ApplyUnivariateSkewPolynomial} (internal) allows univariate skew polynomials to be applied to appropriate modules.")) (|apply| ((|#2| |#3| (|Mapping| |#2| |#2|) |#2|) "\\spad{apply(p, f, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = f(m)}. \\spad{f} must be an \\spad{R}-pseudo linear map on \\spad{M}."))) NIL NIL -(-54 |Base| R -3495) +(-54 |Base| R -3494) ((|constructor| (NIL "This package apply rewrite rules to expressions,{} calling the pattern matcher.")) (|localUnquote| ((|#3| |#3| (|List| (|Symbol|))) "\\spad{localUnquote(f,ls)} is a local function.")) (|applyRules| ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3| (|PositiveInteger|)) "\\spad{applyRules([r1,...,rn], expr, n)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} a most \\spad{n} times.") ((|#3| (|List| (|RewriteRule| |#1| |#2| |#3|)) |#3|) "\\spad{applyRules([r1,...,rn], expr)} applies the rules \\spad{r1},{}...,{}rn to \\spad{f} an unlimited number of times,{} \\spadignore{i.e.} until none of \\spad{r1},{}...,{}rn is applicable to the expression."))) NIL NIL @@ -158,77 +158,77 @@ NIL NIL (-57 R |Row| |Col|) ((|constructor| (NIL "\\indented{1}{TwoDimensionalArrayCategory is a general array category which} allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and columns returned as objects of type Col. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,a)} assign \\spad{a(i,j)} to \\spad{f(a(i,j))} for all \\spad{i, j}")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $ |#1|) "\\spad{map(f,a,b,r)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} when both \\spad{a(i,j)} and \\spad{b(i,j)} exist; else \\spad{c(i,j) = f(r, b(i,j))} when \\spad{a(i,j)} does not exist; else \\spad{c(i,j) = f(a(i,j),r)} when \\spad{b(i,j)} does not exist; otherwise \\spad{c(i,j) = f(r,r)}.") (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i, j}") (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = f(a(i,j))} for all \\spad{i, j}")) (|setColumn!| (($ $ (|Integer|) |#3|) "\\spad{setColumn!(m,j,v)} sets to \\spad{j}th column of \\spad{m} to \\spad{v}")) (|setRow!| (($ $ (|Integer|) |#2|) "\\spad{setRow!(m,i,v)} sets to \\spad{i}th row of \\spad{m} to \\spad{v}")) (|qsetelt!| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{qsetelt!(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} NO error check to determine if indices are in proper ranges")) (|setelt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{setelt(m,i,j,r)} sets the element in the \\spad{i}th row and \\spad{j}th column of \\spad{m} to \\spad{r} error check to determine if indices are in proper ranges")) (|parts| (((|List| |#1|) $) "\\spad{parts(m)} returns a list of the elements of \\spad{m} in row major order")) (|column| ((|#3| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of \\spad{m} error check to determine if index is in proper ranges")) (|row| ((|#2| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of \\spad{m} error check to determine if index is in proper ranges")) (|qelt| ((|#1| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} NO error check to determine if indices are in proper ranges")) (|elt| ((|#1| $ (|Integer|) (|Integer|) |#1|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise") ((|#1| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the array \\spad{m} error check to determine if indices are in proper ranges")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the array \\spad{m}")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the array \\spad{m}")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the array \\spad{m}")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the array \\spad{m}")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the array \\spad{m}")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the array \\spad{m}")) (|fill!| (($ $ |#1|) "\\spad{fill!(m,r)} fills \\spad{m} with \\spad{r}'s")) (|new| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{new(m,n,r)} is an \\spad{m}-by-\\spad{n} array all of whose entries are \\spad{r}")) (|finiteAggregate| ((|attribute|) "two-dimensional arrays are finite")) (|shallowlyMutable| ((|attribute|) "one may destructively alter arrays"))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL (-58 S) ((|constructor| (NIL "This is the domain of 1-based one dimensional arrays")) (|oneDimensionalArray| (($ (|NonNegativeInteger|) |#1|) "\\spad{oneDimensionalArray(n,s)} creates an array from \\spad{n} copies of element \\spad{s}") (($ (|List| |#1|)) "\\spad{oneDimensionalArray(l)} creates an array from a list of elements \\spad{l}"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-59 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on one-dimensional arrays} with unary and binary functions involving different underlying types")) (|map| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1|) (|OneDimensionalArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of one-dimensional array \\spad{a} resulting in a new one-dimensional array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the one-dimensional array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|OneDimensionalArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|OneDimensionalArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of one-dimensional array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL (-60 R) ((|constructor| (NIL "\\indented{1}{A TwoDimensionalArray is a two dimensional array with} 1-based indexing for both rows and columns.")) (|shallowlyMutable| ((|attribute|) "One may destructively alter TwoDimensionalArray's."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-61 -3970) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-61 -3969) ((|constructor| (NIL "\\spadtype{Asp1} produces Fortran for Type 1 ASPs,{} needed for various NAG routines. Type 1 ASPs take a univariate expression (in the symbol \\spad{X}) and turn it into a Fortran Function like the following:\\begin{verbatim} DOUBLE PRECISION FUNCTION F(X) DOUBLE PRECISION X F=DSIN(X) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-62 -3970) +(-62 -3969) ((|constructor| (NIL "\\spadtype{ASP10} produces Fortran for Type 10 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. This ASP computes the values of a set of functions,{} for example:\\begin{verbatim} SUBROUTINE COEFFN(P,Q,DQDL,X,ELAM,JINT) DOUBLE PRECISION ELAM,P,Q,X,DQDL INTEGER JINT P=1.0D0 Q=((-1.0D0*X**3)+ELAM*X*X-2.0D0)/(X*X) DQDL=1.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-63 -3970) +(-63 -3969) ((|constructor| (NIL "\\spadtype{Asp12} produces Fortran for Type 12 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package} etc.,{} for example:\\begin{verbatim} SUBROUTINE MONIT (MAXIT,IFLAG,ELAM,FINFO) DOUBLE PRECISION ELAM,FINFO(15) INTEGER MAXIT,IFLAG IF(MAXIT.EQ.-1)THEN PRINT*,\"Output from Monit\" ENDIF PRINT*,MAXIT,IFLAG,ELAM,(FINFO(I),I=1,4) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP12}."))) NIL NIL -(-64 -3970) +(-64 -3969) ((|constructor| (NIL "\\spadtype{Asp19} produces Fortran for Type 19 ASPs,{} evaluating a set of functions and their jacobian at a given point,{} for example:\\begin{verbatim} SUBROUTINE LSFUN2(M,N,XC,FVECC,FJACC,LJC) DOUBLE PRECISION FVECC(M),FJACC(LJC,N),XC(N) INTEGER M,N,LJC INTEGER I,J DO 25003 I=1,LJC DO 25004 J=1,N FJACC(I,J)=0.0D025004 CONTINUE25003 CONTINUE FVECC(1)=((XC(1)-0.14D0)*XC(3)+(15.0D0*XC(1)-2.1D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-0.18D0)*XC(3)+(7.0D0*XC(1)-1.26D0)*XC(2)+1.0D0)/( &XC(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-0.22D0)*XC(3)+(4.333333333333333D0*XC(1)-0.953333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-0.25D0)*XC(3)+(3.0D0*XC(1)-0.75D0)*XC(2)+1.0D0)/( &XC(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-0.29D0)*XC(3)+(2.2D0*XC(1)-0.6379999999999999D0)* &XC(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-0.32D0)*XC(3)+(1.666666666666667D0*XC(1)-0.533333 &3333333333D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-0.35D0)*XC(3)+(1.285714285714286D0*XC(1)-0.45D0)* &XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-0.39D0)*XC(3)+(XC(1)-0.39D0)*XC(2)+1.0D0)/(XC(3)+ &XC(2)) FVECC(9)=((XC(1)-0.37D0)*XC(3)+(XC(1)-0.37D0)*XC(2)+1.285714285714 &286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-0.58D0)*XC(3)+(XC(1)-0.58D0)*XC(2)+1.66666666666 &6667D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-0.73D0)*XC(3)+(XC(1)-0.73D0)*XC(2)+2.2D0)/(XC(3) &+XC(2)) FVECC(12)=((XC(1)-0.96D0)*XC(3)+(XC(1)-0.96D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) FJACC(1,1)=1.0D0 FJACC(1,2)=-15.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(1,3)=-1.0D0/(XC(3)**2+30.0D0*XC(2)*XC(3)+225.0D0*XC(2)**2) FJACC(2,1)=1.0D0 FJACC(2,2)=-7.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(2,3)=-1.0D0/(XC(3)**2+14.0D0*XC(2)*XC(3)+49.0D0*XC(2)**2) FJACC(3,1)=1.0D0 FJACC(3,2)=((-0.1110223024625157D-15*XC(3))-4.333333333333333D0)/( &XC(3)**2+8.666666666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2) &**2) FJACC(3,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+8.666666 &666666666D0*XC(2)*XC(3)+18.77777777777778D0*XC(2)**2) FJACC(4,1)=1.0D0 FJACC(4,2)=-3.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(4,3)=-1.0D0/(XC(3)**2+6.0D0*XC(2)*XC(3)+9.0D0*XC(2)**2) FJACC(5,1)=1.0D0 FJACC(5,2)=((-0.1110223024625157D-15*XC(3))-2.2D0)/(XC(3)**2+4.399 &999999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(5,3)=(0.1110223024625157D-15*XC(2)-1.0D0)/(XC(3)**2+4.399999 &999999999D0*XC(2)*XC(3)+4.839999999999998D0*XC(2)**2) FJACC(6,1)=1.0D0 FJACC(6,2)=((-0.2220446049250313D-15*XC(3))-1.666666666666667D0)/( &XC(3)**2+3.333333333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2) &**2) FJACC(6,3)=(0.2220446049250313D-15*XC(2)-1.0D0)/(XC(3)**2+3.333333 &333333333D0*XC(2)*XC(3)+2.777777777777777D0*XC(2)**2) FJACC(7,1)=1.0D0 FJACC(7,2)=((-0.5551115123125783D-16*XC(3))-1.285714285714286D0)/( &XC(3)**2+2.571428571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2) &**2) FJACC(7,3)=(0.5551115123125783D-16*XC(2)-1.0D0)/(XC(3)**2+2.571428 &571428571D0*XC(2)*XC(3)+1.653061224489796D0*XC(2)**2) FJACC(8,1)=1.0D0 FJACC(8,2)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(8,3)=-1.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(9,1)=1.0D0 FJACC(9,2)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(9,3)=-1.285714285714286D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)* &*2) FJACC(10,1)=1.0D0 FJACC(10,2)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(10,3)=-1.666666666666667D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(11,1)=1.0D0 FJACC(11,2)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(11,3)=-2.2D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,1)=1.0D0 FJACC(12,2)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(12,3)=-3.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(13,1)=1.0D0 FJACC(13,2)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(13,3)=-4.333333333333333D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2) &**2) FJACC(14,1)=1.0D0 FJACC(14,2)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(14,3)=-7.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,1)=1.0D0 FJACC(15,2)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) FJACC(15,3)=-15.0D0/(XC(3)**2+2.0D0*XC(2)*XC(3)+XC(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-65 -3970) +(-65 -3969) ((|constructor| (NIL "\\spadtype{Asp20} produces Fortran for Type 20 ASPs,{} for example:\\begin{verbatim} SUBROUTINE QPHESS(N,NROWH,NCOLH,JTHCOL,HESS,X,HX) DOUBLE PRECISION HX(N),X(N),HESS(NROWH,NCOLH) INTEGER JTHCOL,N,NROWH,NCOLH HX(1)=2.0D0*X(1) HX(2)=2.0D0*X(2) HX(3)=2.0D0*X(4)+2.0D0*X(3) HX(4)=2.0D0*X(4)+2.0D0*X(3) HX(5)=2.0D0*X(5) HX(6)=(-2.0D0*X(7))+(-2.0D0*X(6)) HX(7)=(-2.0D0*X(7))+(-2.0D0*X(6)) RETURN END\\end{verbatim}"))) NIL NIL -(-66 -3970) +(-66 -3969) ((|constructor| (NIL "\\spadtype{Asp24} produces Fortran for Type 24 ASPs which evaluate a multivariate function at a point (needed for NAG routine \\axiomOpFrom{e04jaf}{e04Package}),{} for example:\\begin{verbatim} SUBROUTINE FUNCT1(N,XC,FC) DOUBLE PRECISION FC,XC(N) INTEGER N FC=10.0D0*XC(4)**4+(-40.0D0*XC(1)*XC(4)**3)+(60.0D0*XC(1)**2+5 &.0D0)*XC(4)**2+((-10.0D0*XC(3))+(-40.0D0*XC(1)**3))*XC(4)+16.0D0*X &C(3)**4+(-32.0D0*XC(2)*XC(3)**3)+(24.0D0*XC(2)**2+5.0D0)*XC(3)**2+ &(-8.0D0*XC(2)**3*XC(3))+XC(2)**4+100.0D0*XC(2)**2+20.0D0*XC(1)*XC( &2)+10.0D0*XC(1)**4+XC(1)**2 RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-67 -3970) +(-67 -3969) ((|constructor| (NIL "\\spadtype{Asp27} produces Fortran for Type 27 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package} ,{}for example:\\begin{verbatim} FUNCTION DOT(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION W(N),Z(N),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOT=(W(16)+(-0.5D0*W(15)))*Z(16)+((-0.5D0*W(16))+W(15)+(-0.5D0*W(1 &4)))*Z(15)+((-0.5D0*W(15))+W(14)+(-0.5D0*W(13)))*Z(14)+((-0.5D0*W( &14))+W(13)+(-0.5D0*W(12)))*Z(13)+((-0.5D0*W(13))+W(12)+(-0.5D0*W(1 &1)))*Z(12)+((-0.5D0*W(12))+W(11)+(-0.5D0*W(10)))*Z(11)+((-0.5D0*W( &11))+W(10)+(-0.5D0*W(9)))*Z(10)+((-0.5D0*W(10))+W(9)+(-0.5D0*W(8)) &)*Z(9)+((-0.5D0*W(9))+W(8)+(-0.5D0*W(7)))*Z(8)+((-0.5D0*W(8))+W(7) &+(-0.5D0*W(6)))*Z(7)+((-0.5D0*W(7))+W(6)+(-0.5D0*W(5)))*Z(6)+((-0. &5D0*W(6))+W(5)+(-0.5D0*W(4)))*Z(5)+((-0.5D0*W(5))+W(4)+(-0.5D0*W(3 &)))*Z(4)+((-0.5D0*W(4))+W(3)+(-0.5D0*W(2)))*Z(3)+((-0.5D0*W(3))+W( &2)+(-0.5D0*W(1)))*Z(2)+((-0.5D0*W(2))+W(1))*Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-68 -3970) +(-68 -3969) ((|constructor| (NIL "\\spadtype{Asp28} produces Fortran for Type 28 ASPs,{} used in NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE IMAGE(IFLAG,N,Z,W,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION Z(N),W(N),IWORK(LRWORK),RWORK(LRWORK) INTEGER N,LIWORK,IFLAG,LRWORK W(1)=0.01707454969713436D0*Z(16)+0.001747395874954051D0*Z(15)+0.00 &2106973900813502D0*Z(14)+0.002957434991769087D0*Z(13)+(-0.00700554 &0882865317D0*Z(12))+(-0.01219194009813166D0*Z(11))+0.0037230647365 &3087D0*Z(10)+0.04932374658377151D0*Z(9)+(-0.03586220812223305D0*Z( &8))+(-0.04723268012114625D0*Z(7))+(-0.02434652144032987D0*Z(6))+0. &2264766947290192D0*Z(5)+(-0.1385343580686922D0*Z(4))+(-0.116530050 &8238904D0*Z(3))+(-0.2803531651057233D0*Z(2))+1.019463911841327D0*Z &(1) W(2)=0.0227345011107737D0*Z(16)+0.008812321197398072D0*Z(15)+0.010 &94012210519586D0*Z(14)+(-0.01764072463999744D0*Z(13))+(-0.01357136 &72105995D0*Z(12))+0.00157466157362272D0*Z(11)+0.05258889186338282D &0*Z(10)+(-0.01981532388243379D0*Z(9))+(-0.06095390688679697D0*Z(8) &)+(-0.04153119955569051D0*Z(7))+0.2176561076571465D0*Z(6)+(-0.0532 &5555586632358D0*Z(5))+(-0.1688977368984641D0*Z(4))+(-0.32440166056 &67343D0*Z(3))+0.9128222941872173D0*Z(2)+(-0.2419652703415429D0*Z(1 &)) W(3)=0.03371198197190302D0*Z(16)+0.02021603150122265D0*Z(15)+(-0.0 &06607305534689702D0*Z(14))+(-0.03032392238968179D0*Z(13))+0.002033 &305231024948D0*Z(12)+0.05375944956767728D0*Z(11)+(-0.0163213312502 &9967D0*Z(10))+(-0.05483186562035512D0*Z(9))+(-0.04901428822579872D &0*Z(8))+0.2091097927887612D0*Z(7)+(-0.05760560341383113D0*Z(6))+(- &0.1236679206156403D0*Z(5))+(-0.3523683853026259D0*Z(4))+0.88929961 &32269974D0*Z(3)+(-0.2995429545781457D0*Z(2))+(-0.02986582812574917 &D0*Z(1)) W(4)=0.05141563713660119D0*Z(16)+0.005239165960779299D0*Z(15)+(-0. &01623427735779699D0*Z(14))+(-0.01965809746040371D0*Z(13))+0.054688 &97337339577D0*Z(12)+(-0.014224695935687D0*Z(11))+(-0.0505181779315 &6355D0*Z(10))+(-0.04353074206076491D0*Z(9))+0.2012230497530726D0*Z &(8)+(-0.06630874514535952D0*Z(7))+(-0.1280829963720053D0*Z(6))+(-0 &.305169742604165D0*Z(5))+0.8600427128450191D0*Z(4)+(-0.32415033802 &68184D0*Z(3))+(-0.09033531980693314D0*Z(2))+0.09089205517109111D0* &Z(1) W(5)=0.04556369767776375D0*Z(16)+(-0.001822737697581869D0*Z(15))+( &-0.002512226501941856D0*Z(14))+0.02947046460707379D0*Z(13)+(-0.014 &45079632086177D0*Z(12))+(-0.05034242196614937D0*Z(11))+(-0.0376966 &3291725935D0*Z(10))+0.2171103102175198D0*Z(9)+(-0.0824949256021352 &4D0*Z(8))+(-0.1473995209288945D0*Z(7))+(-0.315042193418466D0*Z(6)) &+0.9591623347824002D0*Z(5)+(-0.3852396953763045D0*Z(4))+(-0.141718 &5427288274D0*Z(3))+(-0.03423495461011043D0*Z(2))+0.319820917706851 &6D0*Z(1) W(6)=0.04015147277405744D0*Z(16)+0.01328585741341559D0*Z(15)+0.048 &26082005465965D0*Z(14)+(-0.04319641116207706D0*Z(13))+(-0.04931323 &319055762D0*Z(12))+(-0.03526886317505474D0*Z(11))+0.22295383396730 &01D0*Z(10)+(-0.07375317649315155D0*Z(9))+(-0.1589391311991561D0*Z( &8))+(-0.328001910890377D0*Z(7))+0.952576555482747D0*Z(6)+(-0.31583 &09975786731D0*Z(5))+(-0.1846882042225383D0*Z(4))+(-0.0703762046700 &4427D0*Z(3))+0.2311852964327382D0*Z(2)+0.04254083491825025D0*Z(1) W(7)=0.06069778964023718D0*Z(16)+0.06681263884671322D0*Z(15)+(-0.0 &2113506688615768D0*Z(14))+(-0.083996867458326D0*Z(13))+(-0.0329843 &8523869648D0*Z(12))+0.2276878326327734D0*Z(11)+(-0.067356038933017 &95D0*Z(10))+(-0.1559813965382218D0*Z(9))+(-0.3363262957694705D0*Z( &8))+0.9442791158560948D0*Z(7)+(-0.3199955249404657D0*Z(6))+(-0.136 &2463839920727D0*Z(5))+(-0.1006185171570586D0*Z(4))+0.2057504515015 &423D0*Z(3)+(-0.02065879269286707D0*Z(2))+0.03160990266745513D0*Z(1 &) W(8)=0.126386868896738D0*Z(16)+0.002563370039476418D0*Z(15)+(-0.05 &581757739455641D0*Z(14))+(-0.07777893205900685D0*Z(13))+0.23117338 &45834199D0*Z(12)+(-0.06031581134427592D0*Z(11))+(-0.14805474755869 &52D0*Z(10))+(-0.3364014128402243D0*Z(9))+0.9364014128402244D0*Z(8) &+(-0.3269452524413048D0*Z(7))+(-0.1396841886557241D0*Z(6))+(-0.056 &1733845834199D0*Z(5))+0.1777789320590069D0*Z(4)+(-0.04418242260544 &359D0*Z(3))+(-0.02756337003947642D0*Z(2))+0.07361313110326199D0*Z( &1) W(9)=0.07361313110326199D0*Z(16)+(-0.02756337003947642D0*Z(15))+(- &0.04418242260544359D0*Z(14))+0.1777789320590069D0*Z(13)+(-0.056173 &3845834199D0*Z(12))+(-0.1396841886557241D0*Z(11))+(-0.326945252441 &3048D0*Z(10))+0.9364014128402244D0*Z(9)+(-0.3364014128402243D0*Z(8 &))+(-0.1480547475586952D0*Z(7))+(-0.06031581134427592D0*Z(6))+0.23 &11733845834199D0*Z(5)+(-0.07777893205900685D0*Z(4))+(-0.0558175773 &9455641D0*Z(3))+0.002563370039476418D0*Z(2)+0.126386868896738D0*Z( &1) W(10)=0.03160990266745513D0*Z(16)+(-0.02065879269286707D0*Z(15))+0 &.2057504515015423D0*Z(14)+(-0.1006185171570586D0*Z(13))+(-0.136246 &3839920727D0*Z(12))+(-0.3199955249404657D0*Z(11))+0.94427911585609 &48D0*Z(10)+(-0.3363262957694705D0*Z(9))+(-0.1559813965382218D0*Z(8 &))+(-0.06735603893301795D0*Z(7))+0.2276878326327734D0*Z(6)+(-0.032 &98438523869648D0*Z(5))+(-0.083996867458326D0*Z(4))+(-0.02113506688 &615768D0*Z(3))+0.06681263884671322D0*Z(2)+0.06069778964023718D0*Z( &1) W(11)=0.04254083491825025D0*Z(16)+0.2311852964327382D0*Z(15)+(-0.0 &7037620467004427D0*Z(14))+(-0.1846882042225383D0*Z(13))+(-0.315830 &9975786731D0*Z(12))+0.952576555482747D0*Z(11)+(-0.328001910890377D &0*Z(10))+(-0.1589391311991561D0*Z(9))+(-0.07375317649315155D0*Z(8) &)+0.2229538339673001D0*Z(7)+(-0.03526886317505474D0*Z(6))+(-0.0493 &1323319055762D0*Z(5))+(-0.04319641116207706D0*Z(4))+0.048260820054 &65965D0*Z(3)+0.01328585741341559D0*Z(2)+0.04015147277405744D0*Z(1) W(12)=0.3198209177068516D0*Z(16)+(-0.03423495461011043D0*Z(15))+(- &0.1417185427288274D0*Z(14))+(-0.3852396953763045D0*Z(13))+0.959162 &3347824002D0*Z(12)+(-0.315042193418466D0*Z(11))+(-0.14739952092889 &45D0*Z(10))+(-0.08249492560213524D0*Z(9))+0.2171103102175198D0*Z(8 &)+(-0.03769663291725935D0*Z(7))+(-0.05034242196614937D0*Z(6))+(-0. &01445079632086177D0*Z(5))+0.02947046460707379D0*Z(4)+(-0.002512226 &501941856D0*Z(3))+(-0.001822737697581869D0*Z(2))+0.045563697677763 &75D0*Z(1) W(13)=0.09089205517109111D0*Z(16)+(-0.09033531980693314D0*Z(15))+( &-0.3241503380268184D0*Z(14))+0.8600427128450191D0*Z(13)+(-0.305169 &742604165D0*Z(12))+(-0.1280829963720053D0*Z(11))+(-0.0663087451453 &5952D0*Z(10))+0.2012230497530726D0*Z(9)+(-0.04353074206076491D0*Z( &8))+(-0.05051817793156355D0*Z(7))+(-0.014224695935687D0*Z(6))+0.05 &468897337339577D0*Z(5)+(-0.01965809746040371D0*Z(4))+(-0.016234277 &35779699D0*Z(3))+0.005239165960779299D0*Z(2)+0.05141563713660119D0 &*Z(1) W(14)=(-0.02986582812574917D0*Z(16))+(-0.2995429545781457D0*Z(15)) &+0.8892996132269974D0*Z(14)+(-0.3523683853026259D0*Z(13))+(-0.1236 &679206156403D0*Z(12))+(-0.05760560341383113D0*Z(11))+0.20910979278 &87612D0*Z(10)+(-0.04901428822579872D0*Z(9))+(-0.05483186562035512D &0*Z(8))+(-0.01632133125029967D0*Z(7))+0.05375944956767728D0*Z(6)+0 &.002033305231024948D0*Z(5)+(-0.03032392238968179D0*Z(4))+(-0.00660 &7305534689702D0*Z(3))+0.02021603150122265D0*Z(2)+0.033711981971903 &02D0*Z(1) W(15)=(-0.2419652703415429D0*Z(16))+0.9128222941872173D0*Z(15)+(-0 &.3244016605667343D0*Z(14))+(-0.1688977368984641D0*Z(13))+(-0.05325 &555586632358D0*Z(12))+0.2176561076571465D0*Z(11)+(-0.0415311995556 &9051D0*Z(10))+(-0.06095390688679697D0*Z(9))+(-0.01981532388243379D &0*Z(8))+0.05258889186338282D0*Z(7)+0.00157466157362272D0*Z(6)+(-0. &0135713672105995D0*Z(5))+(-0.01764072463999744D0*Z(4))+0.010940122 &10519586D0*Z(3)+0.008812321197398072D0*Z(2)+0.0227345011107737D0*Z &(1) W(16)=1.019463911841327D0*Z(16)+(-0.2803531651057233D0*Z(15))+(-0. &1165300508238904D0*Z(14))+(-0.1385343580686922D0*Z(13))+0.22647669 &47290192D0*Z(12)+(-0.02434652144032987D0*Z(11))+(-0.04723268012114 &625D0*Z(10))+(-0.03586220812223305D0*Z(9))+0.04932374658377151D0*Z &(8)+0.00372306473653087D0*Z(7)+(-0.01219194009813166D0*Z(6))+(-0.0 &07005540882865317D0*Z(5))+0.002957434991769087D0*Z(4)+0.0021069739 &00813502D0*Z(3)+0.001747395874954051D0*Z(2)+0.01707454969713436D0* &Z(1) RETURN END\\end{verbatim}"))) NIL NIL -(-69 -3970) +(-69 -3969) ((|constructor| (NIL "\\spadtype{Asp29} produces Fortran for Type 29 ASPs,{} needed for NAG routine \\axiomOpFrom{f02fjf}{f02Package},{} for example:\\begin{verbatim} SUBROUTINE MONIT(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) DOUBLE PRECISION D(K),F(K) INTEGER K,NEXTIT,NEVALS,NVECS,ISTATE CALL F02FJZ(ISTATE,NEXTIT,NEVALS,NEVECS,K,F,D) RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP29}."))) NIL NIL -(-70 -3970) +(-70 -3969) ((|constructor| (NIL "\\spadtype{Asp30} produces Fortran for Type 30 ASPs,{} needed for NAG routine \\axiomOpFrom{f04qaf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE APROD(MODE,M,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION X(N),Y(M),RWORK(LRWORK) INTEGER M,N,LIWORK,IFAIL,LRWORK,IWORK(LIWORK),MODE DOUBLE PRECISION A(5,5) EXTERNAL F06PAF A(1,1)=1.0D0 A(1,2)=0.0D0 A(1,3)=0.0D0 A(1,4)=-1.0D0 A(1,5)=0.0D0 A(2,1)=0.0D0 A(2,2)=1.0D0 A(2,3)=0.0D0 A(2,4)=0.0D0 A(2,5)=-1.0D0 A(3,1)=0.0D0 A(3,2)=0.0D0 A(3,3)=1.0D0 A(3,4)=-1.0D0 A(3,5)=0.0D0 A(4,1)=-1.0D0 A(4,2)=0.0D0 A(4,3)=-1.0D0 A(4,4)=4.0D0 A(4,5)=-1.0D0 A(5,1)=0.0D0 A(5,2)=-1.0D0 A(5,3)=0.0D0 A(5,4)=-1.0D0 A(5,5)=4.0D0 IF(MODE.EQ.1)THEN CALL F06PAF('N',M,N,1.0D0,A,M,X,1,1.0D0,Y,1) ELSEIF(MODE.EQ.2)THEN CALL F06PAF('T',M,N,1.0D0,A,M,Y,1,1.0D0,X,1) ENDIF RETURN END\\end{verbatim}"))) NIL NIL -(-71 -3970) +(-71 -3969) ((|constructor| (NIL "\\spadtype{Asp31} produces Fortran for Type 31 ASPs,{} needed for NAG routine \\axiomOpFrom{d02ejf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE PEDERV(X,Y,PW) DOUBLE PRECISION X,Y(*) DOUBLE PRECISION PW(3,3) PW(1,1)=-0.03999999999999999D0 PW(1,2)=10000.0D0*Y(3) PW(1,3)=10000.0D0*Y(2) PW(2,1)=0.03999999999999999D0 PW(2,2)=(-10000.0D0*Y(3))+(-60000000.0D0*Y(2)) PW(2,3)=-10000.0D0*Y(2) PW(3,1)=0.0D0 PW(3,2)=60000000.0D0*Y(2) PW(3,3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-72 -3970) +(-72 -3969) ((|constructor| (NIL "\\spadtype{Asp33} produces Fortran for Type 33 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package}. The code is a dummy ASP:\\begin{verbatim} SUBROUTINE REPORT(X,V,JINT) DOUBLE PRECISION V(3),X INTEGER JINT RETURN END\\end{verbatim}")) (|outputAsFortran| (((|Void|)) "\\spad{outputAsFortran()} generates the default code for \\spadtype{ASP33}."))) NIL NIL -(-73 -3970) +(-73 -3969) ((|constructor| (NIL "\\spadtype{Asp34} produces Fortran for Type 34 ASPs,{} needed for NAG routine \\axiomOpFrom{f04mbf}{f04Package},{} for example:\\begin{verbatim} SUBROUTINE MSOLVE(IFLAG,N,X,Y,RWORK,LRWORK,IWORK,LIWORK) DOUBLE PRECISION RWORK(LRWORK),X(N),Y(N) INTEGER I,J,N,LIWORK,IFLAG,LRWORK,IWORK(LIWORK) DOUBLE PRECISION W1(3),W2(3),MS(3,3) IFLAG=-1 MS(1,1)=2.0D0 MS(1,2)=1.0D0 MS(1,3)=0.0D0 MS(2,1)=1.0D0 MS(2,2)=2.0D0 MS(2,3)=1.0D0 MS(3,1)=0.0D0 MS(3,2)=1.0D0 MS(3,3)=2.0D0 CALL F04ASF(MS,N,X,N,Y,W1,W2,IFLAG) IFLAG=-IFLAG RETURN END\\end{verbatim}"))) NIL NIL -(-74 -3970) +(-74 -3969) ((|constructor| (NIL "\\spadtype{Asp35} produces Fortran for Type 35 ASPs,{} needed for NAG routines \\axiomOpFrom{c05pbf}{c05Package},{} \\axiomOpFrom{c05pcf}{c05Package},{} for example:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,FJAC,LDFJAC,IFLAG) DOUBLE PRECISION X(N),FVEC(N),FJAC(LDFJAC,N) INTEGER LDFJAC,N,IFLAG IF(IFLAG.EQ.1)THEN FVEC(1)=(-1.0D0*X(2))+X(1) FVEC(2)=(-1.0D0*X(3))+2.0D0*X(2) FVEC(3)=3.0D0*X(3) ELSEIF(IFLAG.EQ.2)THEN FJAC(1,1)=1.0D0 FJAC(1,2)=-1.0D0 FJAC(1,3)=0.0D0 FJAC(2,1)=0.0D0 FJAC(2,2)=2.0D0 FJAC(2,3)=-1.0D0 FJAC(3,1)=0.0D0 FJAC(3,2)=0.0D0 FJAC(3,3)=3.0D0 ENDIF END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-75 -3970) +(-75 -3969) ((|constructor| (NIL "\\spadtype{Asp4} produces Fortran for Type 4 ASPs,{} which take an expression in \\spad{X}(1) .. \\spad{X}(NDIM) and produce a real function of the form:\\begin{verbatim} DOUBLE PRECISION FUNCTION FUNCTN(NDIM,X) DOUBLE PRECISION X(NDIM) INTEGER NDIM FUNCTN=(4.0D0*X(1)*X(3)**2*DEXP(2.0D0*X(1)*X(3)))/(X(4)**2+(2.0D0* &X(2)+2.0D0)*X(4)+X(2)**2+2.0D0*X(2)+1.0D0) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -240,51 +240,51 @@ NIL ((|constructor| (NIL "\\spadtype{Asp42} produces Fortran for Type 42 ASPs,{} needed for NAG routines \\axiomOpFrom{d02raf}{d02Package} and \\axiomOpFrom{d02saf}{d02Package} in particular. These ASPs are in fact three Fortran routines which return a vector of functions,{} and their derivatives wrt \\spad{Y}(\\spad{i}) and also a continuation parameter EPS,{} for example:\\begin{verbatim} SUBROUTINE G(EPS,YA,YB,BC,N) DOUBLE PRECISION EPS,YA(N),YB(N),BC(N) INTEGER N BC(1)=YA(1) BC(2)=YA(2) BC(3)=YB(2)-1.0D0 RETURN END SUBROUTINE JACOBG(EPS,YA,YB,AJ,BJ,N) DOUBLE PRECISION EPS,YA(N),AJ(N,N),BJ(N,N),YB(N) INTEGER N AJ(1,1)=1.0D0 AJ(1,2)=0.0D0 AJ(1,3)=0.0D0 AJ(2,1)=0.0D0 AJ(2,2)=1.0D0 AJ(2,3)=0.0D0 AJ(3,1)=0.0D0 AJ(3,2)=0.0D0 AJ(3,3)=0.0D0 BJ(1,1)=0.0D0 BJ(1,2)=0.0D0 BJ(1,3)=0.0D0 BJ(2,1)=0.0D0 BJ(2,2)=0.0D0 BJ(2,3)=0.0D0 BJ(3,1)=0.0D0 BJ(3,2)=1.0D0 BJ(3,3)=0.0D0 RETURN END SUBROUTINE JACGEP(EPS,YA,YB,BCEP,N) DOUBLE PRECISION EPS,YA(N),YB(N),BCEP(N) INTEGER N BCEP(1)=0.0D0 BCEP(2)=0.0D0 BCEP(3)=0.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE EPS)) (|construct| (QUOTE YA) (QUOTE YB)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-78 -3970) +(-78 -3969) ((|constructor| (NIL "\\spadtype{Asp49} produces Fortran for Type 49 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package},{} \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE OBJFUN(MODE,N,X,OBJF,OBJGRD,NSTATE,IUSER,USER) DOUBLE PRECISION X(N),OBJF,OBJGRD(N),USER(*) INTEGER N,IUSER(*),MODE,NSTATE OBJF=X(4)*X(9)+((-1.0D0*X(5))+X(3))*X(8)+((-1.0D0*X(3))+X(1))*X(7) &+(-1.0D0*X(2)*X(6)) OBJGRD(1)=X(7) OBJGRD(2)=-1.0D0*X(6) OBJGRD(3)=X(8)+(-1.0D0*X(7)) OBJGRD(4)=X(9) OBJGRD(5)=-1.0D0*X(8) OBJGRD(6)=-1.0D0*X(2) OBJGRD(7)=(-1.0D0*X(3))+X(1) OBJGRD(8)=(-1.0D0*X(5))+X(3) OBJGRD(9)=X(4) RETURN END\\end{verbatim}")) (|coerce| (($ (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL -(-79 -3970) +(-79 -3969) ((|constructor| (NIL "\\spadtype{Asp50} produces Fortran for Type 50 ASPs,{} needed for NAG routine \\axiomOpFrom{e04fdf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE LSFUN1(M,N,XC,FVECC) DOUBLE PRECISION FVECC(M),XC(N) INTEGER I,M,N FVECC(1)=((XC(1)-2.4D0)*XC(3)+(15.0D0*XC(1)-36.0D0)*XC(2)+1.0D0)/( &XC(3)+15.0D0*XC(2)) FVECC(2)=((XC(1)-2.8D0)*XC(3)+(7.0D0*XC(1)-19.6D0)*XC(2)+1.0D0)/(X &C(3)+7.0D0*XC(2)) FVECC(3)=((XC(1)-3.2D0)*XC(3)+(4.333333333333333D0*XC(1)-13.866666 &66666667D0)*XC(2)+1.0D0)/(XC(3)+4.333333333333333D0*XC(2)) FVECC(4)=((XC(1)-3.5D0)*XC(3)+(3.0D0*XC(1)-10.5D0)*XC(2)+1.0D0)/(X &C(3)+3.0D0*XC(2)) FVECC(5)=((XC(1)-3.9D0)*XC(3)+(2.2D0*XC(1)-8.579999999999998D0)*XC &(2)+1.0D0)/(XC(3)+2.2D0*XC(2)) FVECC(6)=((XC(1)-4.199999999999999D0)*XC(3)+(1.666666666666667D0*X &C(1)-7.0D0)*XC(2)+1.0D0)/(XC(3)+1.666666666666667D0*XC(2)) FVECC(7)=((XC(1)-4.5D0)*XC(3)+(1.285714285714286D0*XC(1)-5.7857142 &85714286D0)*XC(2)+1.0D0)/(XC(3)+1.285714285714286D0*XC(2)) FVECC(8)=((XC(1)-4.899999999999999D0)*XC(3)+(XC(1)-4.8999999999999 &99D0)*XC(2)+1.0D0)/(XC(3)+XC(2)) FVECC(9)=((XC(1)-4.699999999999999D0)*XC(3)+(XC(1)-4.6999999999999 &99D0)*XC(2)+1.285714285714286D0)/(XC(3)+XC(2)) FVECC(10)=((XC(1)-6.8D0)*XC(3)+(XC(1)-6.8D0)*XC(2)+1.6666666666666 &67D0)/(XC(3)+XC(2)) FVECC(11)=((XC(1)-8.299999999999999D0)*XC(3)+(XC(1)-8.299999999999 &999D0)*XC(2)+2.2D0)/(XC(3)+XC(2)) FVECC(12)=((XC(1)-10.6D0)*XC(3)+(XC(1)-10.6D0)*XC(2)+3.0D0)/(XC(3) &+XC(2)) FVECC(13)=((XC(1)-1.34D0)*XC(3)+(XC(1)-1.34D0)*XC(2)+4.33333333333 &3333D0)/(XC(3)+XC(2)) FVECC(14)=((XC(1)-2.1D0)*XC(3)+(XC(1)-2.1D0)*XC(2)+7.0D0)/(XC(3)+X &C(2)) FVECC(15)=((XC(1)-4.39D0)*XC(3)+(XC(1)-4.39D0)*XC(2)+15.0D0)/(XC(3 &)+XC(2)) END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE XC)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-80 -3970) +(-80 -3969) ((|constructor| (NIL "\\spadtype{Asp55} produces Fortran for Type 55 ASPs,{} needed for NAG routines \\axiomOpFrom{e04dgf}{e04Package} and \\axiomOpFrom{e04ucf}{e04Package},{} for example:\\begin{verbatim} SUBROUTINE CONFUN(MODE,NCNLN,N,NROWJ,NEEDC,X,C,CJAC,NSTATE,IUSER &,USER) DOUBLE PRECISION C(NCNLN),X(N),CJAC(NROWJ,N),USER(*) INTEGER N,IUSER(*),NEEDC(NCNLN),NROWJ,MODE,NCNLN,NSTATE IF(NEEDC(1).GT.0)THEN C(1)=X(6)**2+X(1)**2 CJAC(1,1)=2.0D0*X(1) CJAC(1,2)=0.0D0 CJAC(1,3)=0.0D0 CJAC(1,4)=0.0D0 CJAC(1,5)=0.0D0 CJAC(1,6)=2.0D0*X(6) ENDIF IF(NEEDC(2).GT.0)THEN C(2)=X(2)**2+(-2.0D0*X(1)*X(2))+X(1)**2 CJAC(2,1)=(-2.0D0*X(2))+2.0D0*X(1) CJAC(2,2)=2.0D0*X(2)+(-2.0D0*X(1)) CJAC(2,3)=0.0D0 CJAC(2,4)=0.0D0 CJAC(2,5)=0.0D0 CJAC(2,6)=0.0D0 ENDIF IF(NEEDC(3).GT.0)THEN C(3)=X(3)**2+(-2.0D0*X(1)*X(3))+X(2)**2+X(1)**2 CJAC(3,1)=(-2.0D0*X(3))+2.0D0*X(1) CJAC(3,2)=2.0D0*X(2) CJAC(3,3)=2.0D0*X(3)+(-2.0D0*X(1)) CJAC(3,4)=0.0D0 CJAC(3,5)=0.0D0 CJAC(3,6)=0.0D0 ENDIF RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct|) (|construct| (QUOTE X)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-81 -3970) +(-81 -3969) ((|constructor| (NIL "\\spadtype{Asp6} produces Fortran for Type 6 ASPs,{} needed for NAG routines \\axiomOpFrom{c05nbf}{c05Package},{} \\axiomOpFrom{c05ncf}{c05Package}. These represent vectors of functions of \\spad{X}(\\spad{i}) and look like:\\begin{verbatim} SUBROUTINE FCN(N,X,FVEC,IFLAG) DOUBLE PRECISION X(N),FVEC(N) INTEGER N,IFLAG FVEC(1)=(-2.0D0*X(2))+(-2.0D0*X(1)**2)+3.0D0*X(1)+1.0D0 FVEC(2)=(-2.0D0*X(3))+(-2.0D0*X(2)**2)+3.0D0*X(2)+(-1.0D0*X(1))+1. &0D0 FVEC(3)=(-2.0D0*X(4))+(-2.0D0*X(3)**2)+3.0D0*X(3)+(-1.0D0*X(2))+1. &0D0 FVEC(4)=(-2.0D0*X(5))+(-2.0D0*X(4)**2)+3.0D0*X(4)+(-1.0D0*X(3))+1. &0D0 FVEC(5)=(-2.0D0*X(6))+(-2.0D0*X(5)**2)+3.0D0*X(5)+(-1.0D0*X(4))+1. &0D0 FVEC(6)=(-2.0D0*X(7))+(-2.0D0*X(6)**2)+3.0D0*X(6)+(-1.0D0*X(5))+1. &0D0 FVEC(7)=(-2.0D0*X(8))+(-2.0D0*X(7)**2)+3.0D0*X(7)+(-1.0D0*X(6))+1. &0D0 FVEC(8)=(-2.0D0*X(9))+(-2.0D0*X(8)**2)+3.0D0*X(8)+(-1.0D0*X(7))+1. &0D0 FVEC(9)=(-2.0D0*X(9)**2)+3.0D0*X(9)+(-1.0D0*X(8))+1.0D0 RETURN END\\end{verbatim}"))) NIL NIL -(-82 -3970) +(-82 -3969) ((|constructor| (NIL "\\spadtype{Asp7} produces Fortran for Type 7 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bbf}{d02Package},{} \\axiomOpFrom{d02gaf}{d02Package}. These represent a vector of functions of the scalar \\spad{X} and the array \\spad{Z},{} and look like:\\begin{verbatim} SUBROUTINE FCN(X,Z,F) DOUBLE PRECISION F(*),X,Z(*) F(1)=DTAN(Z(3)) F(2)=((-0.03199999999999999D0*DCOS(Z(3))*DTAN(Z(3)))+(-0.02D0*Z(2) &**2))/(Z(2)*DCOS(Z(3))) F(3)=-0.03199999999999999D0/(X*Z(2)**2) RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-83 -3970) +(-83 -3969) ((|constructor| (NIL "\\spadtype{Asp73} produces Fortran for Type 73 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE PDEF(X,Y,ALPHA,BETA,GAMMA,DELTA,EPSOLN,PHI,PSI) DOUBLE PRECISION ALPHA,EPSOLN,PHI,X,Y,BETA,DELTA,GAMMA,PSI ALPHA=DSIN(X) BETA=Y GAMMA=X*Y DELTA=DCOS(X)*DSIN(Y) EPSOLN=Y+X PHI=X PSI=Y RETURN END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-84 -3970) +(-84 -3969) ((|constructor| (NIL "\\spadtype{Asp74} produces Fortran for Type 74 ASPs,{} needed for NAG routine \\axiomOpFrom{d03eef}{d03Package},{} for example:\\begin{verbatim} SUBROUTINE BNDY(X,Y,A,B,C,IBND) DOUBLE PRECISION A,B,C,X,Y INTEGER IBND IF(IBND.EQ.0)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(X) ELSEIF(IBND.EQ.1)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.2)THEN A=1.0D0 B=0.0D0 C=DSIN(X)*DSIN(Y) ELSEIF(IBND.EQ.3)THEN A=0.0D0 B=1.0D0 C=-1.0D0*DSIN(Y) ENDIF END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X) (QUOTE Y)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-85 -3970) +(-85 -3969) ((|constructor| (NIL "\\spadtype{Asp77} produces Fortran for Type 77 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNF(X,F) DOUBLE PRECISION X DOUBLE PRECISION F(2,2) F(1,1)=0.0D0 F(1,2)=1.0D0 F(2,1)=0.0D0 F(2,2)=-10.0D0 RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-86 -3970) +(-86 -3969) ((|constructor| (NIL "\\spadtype{Asp78} produces Fortran for Type 78 ASPs,{} needed for NAG routine \\axiomOpFrom{d02gbf}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE FCNG(X,G) DOUBLE PRECISION G(*),X G(1)=0.0D0 G(2)=0.0D0 END\\end{verbatim}")) (|coerce| (($ (|Vector| (|FortranExpression| (|construct| (QUOTE X)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-87 -3970) +(-87 -3969) ((|constructor| (NIL "\\spadtype{Asp8} produces Fortran for Type 8 ASPs,{} needed for NAG routine \\axiomOpFrom{d02bbf}{d02Package}. This ASP prints intermediate values of the computed solution of an ODE and might look like:\\begin{verbatim} SUBROUTINE OUTPUT(XSOL,Y,COUNT,M,N,RESULT,FORWRD) DOUBLE PRECISION Y(N),RESULT(M,N),XSOL INTEGER M,N,COUNT LOGICAL FORWRD DOUBLE PRECISION X02ALF,POINTS(8) EXTERNAL X02ALF INTEGER I POINTS(1)=1.0D0 POINTS(2)=2.0D0 POINTS(3)=3.0D0 POINTS(4)=4.0D0 POINTS(5)=5.0D0 POINTS(6)=6.0D0 POINTS(7)=7.0D0 POINTS(8)=8.0D0 COUNT=COUNT+1 DO 25001 I=1,N RESULT(COUNT,I)=Y(I)25001 CONTINUE IF(COUNT.EQ.M)THEN IF(FORWRD)THEN XSOL=X02ALF() ELSE XSOL=-X02ALF() ENDIF ELSE XSOL=POINTS(COUNT) ENDIF END\\end{verbatim}"))) NIL NIL -(-88 -3970) +(-88 -3969) ((|constructor| (NIL "\\spadtype{Asp80} produces Fortran for Type 80 ASPs,{} needed for NAG routine \\axiomOpFrom{d02kef}{d02Package},{} for example:\\begin{verbatim} SUBROUTINE BDYVAL(XL,XR,ELAM,YL,YR) DOUBLE PRECISION ELAM,XL,YL(3),XR,YR(3) YL(1)=XL YL(2)=2.0D0 YR(1)=1.0D0 YR(2)=-1.0D0*DSQRT(XR+(-1.0D0*ELAM)) RETURN END\\end{verbatim}")) (|coerce| (($ (|Matrix| (|FortranExpression| (|construct| (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (|construct|) (|MachineFloat|)))) "\\spad{coerce(f)} takes objects from the appropriate instantiation of \\spadtype{FortranExpression} and turns them into an ASP."))) NIL NIL -(-89 -3970) +(-89 -3969) ((|constructor| (NIL "\\spadtype{Asp9} produces Fortran for Type 9 ASPs,{} needed for NAG routines \\axiomOpFrom{d02bhf}{d02Package},{} \\axiomOpFrom{d02cjf}{d02Package},{} \\axiomOpFrom{d02ejf}{d02Package}. These ASPs represent a function of a scalar \\spad{X} and a vector \\spad{Y},{} for example:\\begin{verbatim} DOUBLE PRECISION FUNCTION G(X,Y) DOUBLE PRECISION X,Y(*) G=X+Y(1) RETURN END\\end{verbatim} If the user provides a constant value for \\spad{G},{} then extra information is added via COMMON blocks used by certain routines. This specifies that the value returned by \\spad{G} in this case is to be ignored.")) (|coerce| (($ (|FortranExpression| (|construct| (QUOTE X)) (|construct| (QUOTE Y)) (|MachineFloat|))) "\\spad{coerce(f)} takes an object from the appropriate instantiation of \\spadtype{FortranExpression} and turns it into an ASP."))) NIL NIL @@ -294,8 +294,8 @@ NIL ((|HasCategory| |#1| (QUOTE (-376)))) (-91 S) ((|constructor| (NIL "A stack represented as a flexible array.")) (|arrayStack| (($ (|List| |#1|)) "\\spad{arrayStack([x,y,...,z])} creates an array stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-92 S) ((|constructor| (NIL "This is the category of Spad abstract syntax trees."))) NIL @@ -318,15 +318,15 @@ NIL NIL (-97) ((|constructor| (NIL "\\axiomType{AttributeButtons} implements a database and associated adjustment mechanisms for a set of attributes. \\blankline For ODEs these attributes are \"stiffness\",{} \"stability\" (\\spadignore{i.e.} how much affect the cosine or sine component of the solution has on the stability of the result),{} \"accuracy\" and \"expense\" (\\spadignore{i.e.} how expensive is the evaluation of the ODE). All these have bearing on the cost of calculating the solution given that reducing the step-length to achieve greater accuracy requires considerable number of evaluations and calculations. \\blankline The effect of each of these attributes can be altered by increasing or decreasing the button value. \\blankline For Integration there is a button for increasing and decreasing the preset number of function evaluations for each method. This is automatically used by ANNA when a method fails due to insufficient workspace or where the limit of function evaluations has been reached before the required accuracy is achieved. \\blankline")) (|setButtonValue| (((|Float|) (|String|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}routineName,{}\\spad{n})} sets the value of the button of attribute \\spad{attributeName} to routine \\spad{routineName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|Float|)) "\\axiom{setButtonValue(attributeName,{}\\spad{n})} sets the value of all buttons of attribute \\spad{attributeName} to \\spad{n}. \\spad{n} must be in the range [0..1]. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|setAttributeButtonStep| (((|Float|) (|Float|)) "\\axiom{setAttributeButtonStep(\\spad{n})} sets the value of the steps for increasing and decreasing the button values. \\axiom{\\spad{n}} must be greater than 0 and less than 1. The preset value is 0.5.")) (|resetAttributeButtons| (((|Void|)) "\\axiom{resetAttributeButtons()} resets the Attribute buttons to a neutral level.")) (|getButtonValue| (((|Float|) (|String|) (|String|)) "\\axiom{getButtonValue(routineName,{}attributeName)} returns the current value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|decrease| (((|Float|) (|String|)) "\\axiom{decrease(attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{decrease(routineName,{}attributeName)} decreases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".")) (|increase| (((|Float|) (|String|)) "\\axiom{increase(attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with all routines. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\".") (((|Float|) (|String|) (|String|)) "\\axiom{increase(routineName,{}attributeName)} increases the value for the effect of the attribute \\axiom{attributeName} with routine \\axiom{routineName}. \\blankline \\axiom{attributeName} should be one of the values \"stiffness\",{} \"stability\",{} \"accuracy\",{} \"expense\" or \"functionEvaluations\"."))) -((-4425 . T)) +((-4424 . T)) NIL (-98) ((|constructor| (NIL "This category exports the attributes in the AXIOM Library")) (|canonical| ((|attribute|) "\\spad{canonical} is \\spad{true} if and only if distinct elements have distinct data structures. For example,{} a domain of mathematical objects which has the \\spad{canonical} attribute means that two objects are mathematically equal if and only if their data structures are equal.")) (|multiplicativeValuation| ((|attribute|) "\\spad{multiplicativeValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)*euclideanSize(b)}.")) (|additiveValuation| ((|attribute|) "\\spad{additiveValuation} implies \\spad{euclideanSize(a*b)=euclideanSize(a)+euclideanSize(b)}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} is \\spad{true} if all of its ideals are finitely generated.")) (|central| ((|attribute|) "\\spad{central} is \\spad{true} if,{} given an algebra over a ring \\spad{R},{} the image of \\spad{R} is the center of the algebra,{} \\spadignore{i.e.} the set of members of the algebra which commute with all others is precisely the image of \\spad{R} in the algebra.")) (|partiallyOrderedSet| ((|attribute|) "\\spad{partiallyOrderedSet} is \\spad{true} if a set with \\spadop{<} which is transitive,{} but \\spad{not(a < b or a = b)} does not necessarily imply \\spad{b<a}.")) (|arbitraryPrecision| ((|attribute|) "\\spad{arbitraryPrecision} means the user can set the precision for subsequent calculations.")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalsClosed} is \\spad{true} if \\spad{unitCanonical(a)*unitCanonical(b) = unitCanonical(a*b)}.")) (|canonicalUnitNormal| ((|attribute|) "\\spad{canonicalUnitNormal} is \\spad{true} if we can choose a canonical representative for each class of associate elements,{} that is \\spad{associates?(a,b)} returns \\spad{true} if and only if \\spad{unitCanonical(a) = unitCanonical(b)}.")) (|noZeroDivisors| ((|attribute|) "\\spad{noZeroDivisors} is \\spad{true} if \\spad{x * y \\~~= 0} implies both \\spad{x} and \\spad{y} are non-zero.")) (|rightUnitary| ((|attribute|) "\\spad{rightUnitary} is \\spad{true} if \\spad{x * 1 = x} for all \\spad{x}.")) (|leftUnitary| ((|attribute|) "\\spad{leftUnitary} is \\spad{true} if \\spad{1 * x = x} for all \\spad{x}.")) (|unitsKnown| ((|attribute|) "\\spad{unitsKnown} is \\spad{true} if a monoid (a multiplicative semigroup with a 1) has \\spad{unitsKnown} means that the operation \\spadfun{recip} can only return \"failed\" if its argument is not a unit.")) (|shallowlyMutable| ((|attribute|) "\\spad{shallowlyMutable} is \\spad{true} if its values have immediate components that are updateable (mutable). Note: the properties of any component domain are irrevelant to the \\spad{shallowlyMutable} proper.")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} is \\spad{true} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative.")) (|finiteAggregate| ((|attribute|) "\\spad{finiteAggregate} is \\spad{true} if it is an aggregate with a finite number of elements."))) -((-4425 . T) ((-4427 "*") . T) (-4426 . T) (-4422 . T) (-4420 . T) (-4419 . T) (-4418 . T) (-4423 . T) (-4417 . T) (-4416 . T) (-4415 . T) (-4414 . T) (-4413 . T) (-4421 . T) (-4424 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4412 . T)) +((-4424 . T) ((-4426 "*") . T) (-4425 . T) (-4421 . T) (-4419 . T) (-4418 . T) (-4417 . T) (-4422 . T) (-4416 . T) (-4415 . T) (-4414 . T) (-4413 . T) (-4412 . T) (-4420 . T) (-4423 . T) (|NullSquare| . T) (|JacobiIdentity| . T) (-4411 . T)) NIL (-99 R) ((|constructor| (NIL "Automorphism \\spad{R} is the multiplicative group of automorphisms of \\spad{R}.")) (|morphism| (($ (|Mapping| |#1| |#1| (|Integer|))) "\\spad{morphism(f)} returns the morphism given by \\spad{f^n(x) = f(x,n)}.") (($ (|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|)) "\\spad{morphism(f, g)} returns the invertible morphism given by \\spad{f},{} where \\spad{g} is the inverse of \\spad{f}..") (($ (|Mapping| |#1| |#1|)) "\\spad{morphism(f)} returns the non-invertible morphism given by \\spad{f}."))) -((-4422 . T)) +((-4421 . T)) NIL (-100 R UP) ((|constructor| (NIL "This package provides balanced factorisations of polynomials.")) (|balancedFactorisation| (((|Factored| |#2|) |#2| (|List| |#2|)) "\\spad{balancedFactorisation(a, [b1,...,bn])} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{[b1,...,bm]}.") (((|Factored| |#2|) |#2| |#2|) "\\spad{balancedFactorisation(a, b)} returns a factorisation \\spad{a = p1^e1 ... pm^em} such that each \\spad{pi} is balanced with respect to \\spad{b}."))) @@ -342,15 +342,15 @@ NIL NIL (-103 S) ((|constructor| (NIL "\\spadtype{BalancedBinaryTree(S)} is the domain of balanced binary trees (bbtree). A balanced binary tree of \\spad{2**k} leaves,{} for some \\spad{k > 0},{} is symmetric,{} that is,{} the left and right subtree of each interior node have identical shape. In general,{} the left and right subtree of a given node can differ by at most leaf node.")) (|mapDown!| (($ $ |#1| (|Mapping| (|List| |#1|) |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. Let \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t}. The root value \\spad{x} of \\spad{t} is replaced by \\spad{p}. Then \\spad{f}(value \\spad{l},{} value \\spad{r},{} \\spad{p}),{} where \\spad{l} and \\spad{r} denote the left and right subtrees of \\spad{t},{} is evaluated producing two values pl and pr. Then \\spad{mapDown!(l,pl,f)} and \\spad{mapDown!(l,pr,f)} are evaluated.") (($ $ |#1| (|Mapping| |#1| |#1| |#1|)) "\\spad{mapDown!(t,p,f)} returns \\spad{t} after traversing \\spad{t} in \"preorder\" (node then left then right) fashion replacing the successive interior nodes as follows. The root value \\spad{x} is replaced by \\spad{q} := \\spad{f}(\\spad{p},{}\\spad{x}). The mapDown!(\\spad{l},{}\\spad{q},{}\\spad{f}) and mapDown!(\\spad{r},{}\\spad{q},{}\\spad{f}) are evaluated for the left and right subtrees \\spad{l} and \\spad{r} of \\spad{t}.")) (|mapUp!| (($ $ $ (|Mapping| |#1| |#1| |#1| |#1| |#1|)) "\\spad{mapUp!(t,t1,f)} traverses \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r},{}\\spad{l1},{}\\spad{r1}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes. Values \\spad{l1} and \\spad{r1} are values at the corresponding nodes of a balanced binary tree \\spad{t1},{} of identical shape at \\spad{t}.") ((|#1| $ (|Mapping| |#1| |#1| |#1|)) "\\spad{mapUp!(t,f)} traverses balanced binary tree \\spad{t} in an \"endorder\" (left then right then node) fashion returning \\spad{t} with the value at each successive interior node of \\spad{t} replaced by \\spad{f}(\\spad{l},{}\\spad{r}) where \\spad{l} and \\spad{r} are the values at the immediate left and right nodes.")) (|setleaves!| (($ $ (|List| |#1|)) "\\spad{setleaves!(t, ls)} sets the leaves of \\spad{t} in left-to-right order to the elements of ls.")) (|balancedBinaryTree| (($ (|NonNegativeInteger|) |#1|) "\\spad{balancedBinaryTree(n, s)} creates a balanced binary tree with \\spad{n} nodes each with value \\spad{s}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-104 R UP M |Row| |Col|) ((|constructor| (NIL "\\spadtype{BezoutMatrix} contains functions for computing resultants and discriminants using Bezout matrices.")) (|bezoutDiscriminant| ((|#1| |#2|) "\\spad{bezoutDiscriminant(p)} computes the discriminant of a polynomial \\spad{p} by computing the determinant of a Bezout matrix.")) (|bezoutResultant| ((|#1| |#2| |#2|) "\\spad{bezoutResultant(p,q)} computes the resultant of the two polynomials \\spad{p} and \\spad{q} by computing the determinant of a Bezout matrix.")) (|bezoutMatrix| ((|#3| |#2| |#2|) "\\spad{bezoutMatrix(p,q)} returns the Bezout matrix for the two polynomials \\spad{p} and \\spad{q}.")) (|sylvesterMatrix| ((|#3| |#2| |#2|) "\\spad{sylvesterMatrix(p,q)} returns the Sylvester matrix for the two polynomials \\spad{p} and \\spad{q}."))) NIL -((|HasAttribute| |#1| (QUOTE (-4427 "*")))) +((|HasAttribute| |#1| (QUOTE (-4426 "*")))) (-105) ((|bfEntry| (((|Record| (|:| |zeros| (|Stream| (|DoubleFloat|))) (|:| |ones| (|Stream| (|DoubleFloat|))) (|:| |singularities| (|Stream| (|DoubleFloat|)))) (|Symbol|)) "\\spad{bfEntry(k)} returns the entry in the \\axiomType{BasicFunctions} table corresponding to \\spad{k}")) (|bfKeys| (((|List| (|Symbol|))) "\\spad{bfKeys()} returns the names of each function in the \\axiomType{BasicFunctions} table"))) -((-4425 . T)) +((-4424 . T)) NIL (-106 A S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#2| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#2| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#2| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#2|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) @@ -358,23 +358,23 @@ NIL NIL (-107 S) ((|constructor| (NIL "A bag aggregate is an aggregate for which one can insert and extract objects,{} and where the order in which objects are inserted determines the order of extraction. Examples of bags are stacks,{} queues,{} and dequeues.")) (|inspect| ((|#1| $) "\\spad{inspect(u)} returns an (random) element from a bag.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,u)} inserts item \\spad{x} into bag \\spad{u}.")) (|extract!| ((|#1| $) "\\spad{extract!(u)} destructively removes a (random) item from bag \\spad{u}.")) (|bag| (($ (|List| |#1|)) "\\spad{bag([x,y,...,z])} creates a bag with elements \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.")) (|shallowlyMutable| ((|attribute|) "shallowlyMutable means that elements of bags may be destructively changed."))) -((-4426 . T)) +((-4425 . T)) NIL (-108) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating binary expansions.")) (|binary| (($ (|Fraction| (|Integer|))) "\\spad{binary(r)} converts a rational number to a binary expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(b)} returns the fractional part of a binary expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-558) (QUOTE (-929))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1041))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861))) (-3957 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861)))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1173))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1198)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (|HasCategory| (-558) (QUOTE (-147))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-558) (QUOTE (-928))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1040))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860))) (-3956 (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860)))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1172))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1197)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -657) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (|HasCategory| (-558) (QUOTE (-147))))) (-109) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Binding' is a name asosciated with a collection of properties.")) (|binding| (($ (|Identifier|) (|List| (|Property|))) "\\spad{binding(n,props)} constructs a binding with name `n' and property list `props'.")) (|properties| (((|List| (|Property|)) $) "\\spad{properties(b)} returns the properties associated with binding \\spad{b}.")) (|name| (((|Identifier|) $) "\\spad{name(b)} returns the name of binding \\spad{b}"))) NIL NIL (-110) ((|constructor| (NIL "\\spadtype{Bits} provides logical functions for Indexed Bits.")) (|bits| (($ (|NonNegativeInteger|) (|Boolean|)) "\\spad{bits(n,b)} creates bits with \\spad{n} values of \\spad{b}"))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1122))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-861))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| (-114) (QUOTE (-1122))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-114) (QUOTE (-102)))) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| (-114) (QUOTE (-1121))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-860))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| (-114) (QUOTE (-1121))) (|HasCategory| (-114) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-114) (QUOTE (-102)))) (-111 R S) ((|constructor| (NIL "A \\spadtype{BiModule} is both a left and right module with respect to potentially different rings. \\blankline")) (|rightUnitary| ((|attribute|) "\\spad{x * 1 = x}")) (|leftUnitary| ((|attribute|) "\\spad{1 * x = x}"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL (-112 S) ((|constructor| (NIL "This is the category of Boolean logic structures.")) (|or| (($ $ $) "\\spad{x or y} returns the disjunction of \\spad{x} and \\spad{y}.")) (|and| (($ $ $) "\\spad{x and y} returns the conjunction of \\spad{x} and \\spad{y}.")) (|not| (($ $) "\\spad{not x} returns the complement or negation of \\spad{x}."))) @@ -396,22 +396,22 @@ NIL ((|constructor| (NIL "This package exports functions to set some commonly used properties of operators,{} including properties which contain functions.")) (|constantOpIfCan| (((|Union| |#1| "failed") (|BasicOperator|)) "\\spad{constantOpIfCan(op)} returns \\spad{a} if \\spad{op} is the constant nullary operator always returning \\spad{a},{} \"failed\" otherwise.")) (|constantOperator| (((|BasicOperator|) |#1|) "\\spad{constantOperator(a)} returns a nullary operator op such that \\spad{op()} always evaluate to \\spad{a}.")) (|derivative| (((|Union| (|List| (|Mapping| |#1| (|List| |#1|))) "failed") (|BasicOperator|)) "\\spad{derivative(op)} returns the value of the \"\\%diff\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{derivative(op, foo)} attaches foo as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{f},{} then applying a derivation \\spad{D} to \\spad{op}(a) returns \\spad{f(a) * D(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|List| (|Mapping| |#1| (|List| |#1|)))) "\\spad{derivative(op, [foo1,...,foon])} attaches [\\spad{foo1},{}...,{}foon] as the \"\\%diff\" property of \\spad{op}. If \\spad{op} has an \"\\%diff\" property \\spad{[f1,...,fn]} then applying a derivation \\spad{D} to \\spad{op(a1,...,an)} returns \\spad{f1(a1,...,an) * D(a1) + ... + fn(a1,...,an) * D(an)}.")) (|evaluate| (((|Union| (|Mapping| |#1| (|List| |#1|)) "failed") (|BasicOperator|)) "\\spad{evaluate(op)} returns the value of the \"\\%eval\" property of \\spad{op} if it has one,{} and \"failed\" otherwise.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| |#1|)) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to a returns the result of \\spad{f(a)}. Argument \\spad{op} must be unary.") (((|BasicOperator|) (|BasicOperator|) (|Mapping| |#1| (|List| |#1|))) "\\spad{evaluate(op, foo)} attaches foo as the \"\\%eval\" property of \\spad{op}. If \\spad{op} has an \"\\%eval\" property \\spad{f},{} then applying \\spad{op} to \\spad{(a1,...,an)} returns the result of \\spad{f(a1,...,an)}.") (((|Union| |#1| "failed") (|BasicOperator|) (|List| |#1|)) "\\spad{evaluate(op, [a1,...,an])} checks if \\spad{op} has an \"\\%eval\" property \\spad{f}. If it has,{} then \\spad{f(a1,...,an)} is returned,{} and \"failed\" otherwise."))) NIL NIL -(-117 -3495 UP) +(-117 -3494 UP) ((|constructor| (NIL "\\spadtype{BoundIntegerRoots} provides functions to find lower bounds on the integer roots of a polynomial.")) (|integerBound| (((|Integer|) |#2|) "\\spad{integerBound(p)} returns a lower bound on the negative integer roots of \\spad{p},{} and 0 if \\spad{p} has no negative integer roots."))) NIL NIL (-118 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-119 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in -(\\spad{p} - 1)\\spad{/2},{}...,{}(\\spad{p} - 1)\\spad{/2}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-118 |#1|) (QUOTE (-929))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-118 |#1|) (QUOTE (-1041))) (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-861))) (-3957 (|HasCategory| (-118 |#1|) (QUOTE (-842))) (|HasCategory| (-118 |#1|) (QUOTE (-861)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-1173))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-929)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-118 |#1|) (QUOTE (-928))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-149))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-118 |#1|) (QUOTE (-1040))) (|HasCategory| (-118 |#1|) (QUOTE (-841))) (|HasCategory| (-118 |#1|) (QUOTE (-860))) (-3956 (|HasCategory| (-118 |#1|) (QUOTE (-841))) (|HasCategory| (-118 |#1|) (QUOTE (-860)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-1172))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| (-118 |#1|) (QUOTE (-239))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-118 |#1|) (QUOTE (-240))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -118) (|devaluate| |#1|)) (|%list| (QUOTE -118) (|devaluate| |#1|)))) (|HasCategory| (-118 |#1|) (QUOTE (-319))) (|HasCategory| (-118 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-118 |#1|) (QUOTE (-928)))) (|HasCategory| (-118 |#1|) (QUOTE (-147))))) (-120 A S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) +((|HasAttribute| |#1| (QUOTE -4425))) (-121 S) ((|constructor| (NIL "A binary-recursive aggregate has 0,{} 1 or 2 children and serves as a model for a binary tree or a doubly-linked aggregate structure")) (|setright!| (($ $ $) "\\spad{setright!(a,x)} sets the right child of \\spad{t} to be \\spad{x}.")) (|setleft!| (($ $ $) "\\spad{setleft!(a,b)} sets the left child of \\axiom{a} to be \\spad{b}.")) (|setelt| (($ $ "right" $) "\\spad{setelt(a,\"right\",b)} (also written \\axiom{\\spad{b} . right := \\spad{b}}) is equivalent to \\axiom{setright!(a,{}\\spad{b})}.") (($ $ "left" $) "\\spad{setelt(a,\"left\",b)} (also written \\axiom{a . left := \\spad{b}}) is equivalent to \\axiom{setleft!(a,{}\\spad{b})}.")) (|right| (($ $) "\\spad{right(a)} returns the right child.")) (|elt| (($ $ "right") "\\spad{elt(a,\"right\")} (also written: \\axiom{a . right}) is equivalent to \\axiom{right(a)}.") (($ $ "left") "\\spad{elt(u,\"left\")} (also written: \\axiom{a . left}) is equivalent to \\axiom{left(a)}.")) (|left| (($ $) "\\spad{left(u)} returns the left child."))) NIL @@ -422,15 +422,15 @@ NIL NIL (-123 S) ((|constructor| (NIL "BinarySearchTree(\\spad{S}) is the domain of a binary trees where elements are ordered across the tree. A binary search tree is either empty or has a value which is an \\spad{S},{} and a right and left which are both BinaryTree(\\spad{S}) Elements are ordered across the tree.")) (|split| (((|Record| (|:| |less| $) (|:| |greater| $)) |#1| $) "\\spad{split(x,b)} splits binary tree \\spad{b} into two trees,{} one with elements greater than \\spad{x},{} the other with elements less than \\spad{x}.")) (|insertRoot!| (($ |#1| $) "\\spad{insertRoot!(x,b)} inserts element \\spad{x} as a root of binary search tree \\spad{b}.")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary search tree \\spad{b}.")) (|binarySearchTree| (($ (|List| |#1|)) "\\spad{binarySearchTree(l)} \\undocumented"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-124 S) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) NIL NIL (-125) ((|constructor| (NIL "The bit aggregate category models aggregates representing large quantities of Boolean data.")) (|xor| (($ $ $) "\\spad{xor(a,b)} returns the logical {\\em exclusive-or} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nor| (($ $ $) "\\spad{nor(a,b)} returns the logical {\\em nor} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}.")) (|nand| (($ $ $) "\\spad{nand(a,b)} returns the logical {\\em nand} of bit aggregates \\axiom{a} and \\axiom{\\spad{b}}."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL (-126 A S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#2| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) @@ -438,24 +438,24 @@ NIL NIL (-127 S) ((|constructor| (NIL "\\spadtype{BinaryTreeCategory(S)} is the category of binary trees: a tree which is either empty or else is a \\spadfun{node} consisting of a value and a \\spadfun{left} and \\spadfun{right},{} both binary trees.")) (|node| (($ $ |#1| $) "\\spad{node(left,v,right)} creates a binary tree with value \\spad{v},{} a binary tree \\spad{left},{} and a binary tree \\spad{right}.")) (|finiteAggregate| ((|attribute|) "Binary trees have a finite number of components")) (|shallowlyMutable| ((|attribute|) "Binary trees have updateable components"))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL (-128 S) ((|constructor| (NIL "\\spadtype{BinaryTournament(S)} is the domain of binary trees where elements are ordered down the tree. A binary search tree is either empty or is a node containing a \\spadfun{value} of type \\spad{S},{} and a \\spadfun{right} and a \\spadfun{left} which are both \\spadtype{BinaryTree(S)}")) (|insert!| (($ |#1| $) "\\spad{insert!(x,b)} inserts element \\spad{x} as leaves into binary tournament \\spad{b}.")) (|binaryTournament| (($ (|List| |#1|)) "\\spad{binaryTournament(ls)} creates a binary tournament with the elements of \\spad{ls} as values at the nodes."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-129 S) ((|constructor| (NIL "\\spadtype{BinaryTree(S)} is the domain of all binary trees. A binary tree over \\spad{S} is either empty or has a \\spadfun{value} which is an \\spad{S} and a \\spadfun{right} and \\spadfun{left} which are both binary trees.")) (|binaryTree| (($ $ |#1| $) "\\spad{binaryTree(l,v,r)} creates a binary tree with value \\spad{v} with left subtree \\spad{l} and right subtree \\spad{r}.") (($ |#1|) "\\spad{binaryTree(v)} is an non-empty binary tree with value \\spad{v},{} and left and right empty."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-130) ((|constructor| (NIL "Byte is the datatype of 8-bit sized unsigned integer values.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "bitor(\\spad{x},{}\\spad{y}) returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'.")) (|byte| (($ (|NonNegativeInteger|)) "\\spad{byte(x)} injects the unsigned integer value `v' into the Byte algebra. `v' must be non-negative and less than 256."))) NIL NIL (-131) ((|constructor| (NIL "ByteBuffer provides datatype for buffers of bytes. This domain differs from PrimitiveArray Byte in that it is not as rigid as PrimitiveArray Byte. That is,{} the typical use of ByteBuffer is to pre-allocate a vector of Byte of some capacity `n'. The array can then store up to `n' bytes. The actual interesting bytes count (the length of the buffer) is therefore different from the capacity. The length is no more than the capacity,{} but it can be set dynamically as needed. This functionality is used for example when reading bytes from input/output devices where we use buffers to transfer data in and out of the system. Note: a value of type ByteBuffer is 0-based indexed,{} as opposed \\indented{6}{Vector,{} but not unlike PrimitiveArray Byte.}")) (|finiteAggregate| ((|attribute|) "A ByteBuffer object is a finite aggregate")) (|setLength!| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{setLength!(buf,n)} sets the number of active bytes in the `buf'. Error if `n' is more than the capacity.")) (|capacity| (((|NonNegativeInteger|) $) "\\spad{capacity(buf)} returns the pre-allocated maximum size of `buf'.")) (|byteBuffer| (($ (|NonNegativeInteger|)) "\\spad{byteBuffer(n)} creates a buffer of capacity \\spad{n},{} and length 0."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-3957 (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| (-130) (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1122)))) (|HasCategory| (-130) (QUOTE (-861))) (-3957 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1122))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-3956 (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130))))) (|HasCategory| (-130) (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| (-130) (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-130) (QUOTE (-860))) (-3956 (|HasCategory| (-130) (QUOTE (-102))) (|HasCategory| (-130) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-130) (QUOTE (-102))) (-12 (|HasCategory| (-130) (QUOTE (-1121))) (|HasCategory| (-130) (|%list| (QUOTE -321) (QUOTE (-130)))))) (-132) ((|constructor| (NIL "This datatype describes byte order of machine values stored memory.")) (|unknownEndian| (($) "\\spad{unknownEndian} for none of the above.")) (|bigEndian| (($) "\\spad{bigEndian} describes big endian host")) (|littleEndian| (($) "\\spad{littleEndian} describes little endian host"))) NIL @@ -474,13 +474,13 @@ NIL NIL (-136) ((|constructor| (NIL "Members of the domain CardinalNumber are values indicating the cardinality of sets,{} both finite and infinite. Arithmetic operations are defined on cardinal numbers as follows. \\blankline If \\spad{x = \\#X} and \\spad{y = \\#Y} then \\indented{2}{\\spad{x+y\\space{2}= \\#(X+Y)}\\space{3}\\tab{30}disjoint union} \\indented{2}{\\spad{x-y\\space{2}= \\#(X-Y)}\\space{3}\\tab{30}relative complement} \\indented{2}{\\spad{x*y\\space{2}= \\#(X*Y)}\\space{3}\\tab{30}cartesian product} \\indented{2}{\\spad{x**y = \\#(X**Y)}\\space{2}\\tab{30}\\spad{X**Y = \\{g| g:Y->X\\}}} \\blankline The non-negative integers have a natural construction as cardinals \\indented{2}{\\spad{0 = \\#\\{\\}},{} \\spad{1 = \\{0\\}},{} \\spad{2 = \\{0, 1\\}},{} ...,{} \\spad{n = \\{i| 0 <= i < n\\}}.} \\blankline That \\spad{0} acts as a zero for the multiplication of cardinals is equivalent to the axiom of choice. \\blankline The generalized continuum hypothesis asserts \\center{\\spad{2**Aleph i = Aleph(i+1)}} and is independent of the axioms of set theory [Goedel 1940]. \\blankline Three commonly encountered cardinal numbers are \\indented{3}{\\spad{a = \\#Z}\\space{7}\\tab{30}countable infinity} \\indented{3}{\\spad{c = \\#R}\\space{7}\\tab{30}the continuum} \\indented{3}{\\spad{f = \\#\\{g| g:[0,1]->R\\}}} \\blankline In this domain,{} these values are obtained using \\indented{3}{\\spad{a := Aleph 0},{} \\spad{c := 2**a},{} \\spad{f := 2**c}.} \\blankline")) (|generalizedContinuumHypothesisAssumed| (((|Boolean|) (|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed(bool)} is used to dictate whether the hypothesis is to be assumed.")) (|generalizedContinuumHypothesisAssumed?| (((|Boolean|)) "\\spad{generalizedContinuumHypothesisAssumed?()} tests if the hypothesis is currently assumed.")) (|countable?| (((|Boolean|) $) "\\spad{countable?(\\spad{a})} determines whether \\spad{a} is a countable cardinal,{} \\spadignore{i.e.} an integer or \\spad{Aleph 0}.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(\\spad{a})} determines whether \\spad{a} is a finite cardinal,{} \\spadignore{i.e.} an integer.")) (|Aleph| (($ (|NonNegativeInteger|)) "\\spad{Aleph(n)} provides the named (infinite) cardinal number.")) (** (($ $ $) "\\spad{x**y} returns \\spad{\\#(X**Y)} where \\spad{X**Y} is defined \\indented{1}{as \\spad{\\{g| g:Y->X\\}}.}")) (- (((|Union| $ "failed") $ $) "\\spad{x - y} returns an element \\spad{z} such that \\spad{z+y=x} or \"failed\" if no such element exists.")) (|commutative| ((|attribute| "*") "a domain \\spad{D} has \\spad{commutative(\"*\")} if it has an operation \\spad{\"*\": (D,D) -> D} which is commutative."))) -(((-4427 "*") . T)) +(((-4426 "*") . T)) NIL -(-137 |minix| -3020 R) +(-137 |minix| -3019 R) ((|constructor| (NIL "CartesianTensor(minix,{}dim,{}\\spad{R}) provides Cartesian tensors with components belonging to a commutative ring \\spad{R}. These tensors can have any number of indices. Each index takes values from \\spad{minix} to \\spad{minix + dim - 1}.")) (|sample| (($) "\\spad{sample()} returns an object of type \\%.")) (|unravel| (($ (|List| |#3|)) "\\spad{unravel(t)} produces a tensor from a list of components such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|ravel| (((|List| |#3|) $) "\\spad{ravel(t)} produces a list of components from a tensor such that \\indented{2}{\\spad{unravel(ravel(t)) = t}.}")) (|leviCivitaSymbol| (($) "\\spad{leviCivitaSymbol()} is the rank \\spad{dim} tensor defined by \\spad{leviCivitaSymbol()(i1,...idim) = +1/0/-1} if \\spad{i1,...,idim} is an even/is nota /is an odd permutation of \\spad{minix,...,minix+dim-1}.")) (|kroneckerDelta| (($) "\\spad{kroneckerDelta()} is the rank 2 tensor defined by \\indented{3}{\\spad{kroneckerDelta()(i,j)}} \\indented{6}{\\spad{= 1\\space{2}if i = j}} \\indented{6}{\\spad{= 0 if\\space{2}i \\~= j}}")) (|reindex| (($ $ (|List| (|Integer|))) "\\spad{reindex(t,[i1,...,idim])} permutes the indices of \\spad{t}. For example,{} if \\spad{r = reindex(t, [4,1,2,3])} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank for tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,i,j,k)}.}")) (|transpose| (($ $ (|Integer|) (|Integer|)) "\\spad{transpose(t,i,j)} exchanges the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices of \\spad{t}. For example,{} if \\spad{r = transpose(t,2,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(i,k,j,l)}.}") (($ $) "\\spad{transpose(t)} exchanges the first and last indices of \\spad{t}. For example,{} if \\spad{r = transpose(t)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = t(l,j,k,i)}.}")) (|contract| (($ $ (|Integer|) (|Integer|)) "\\spad{contract(t,i,j)} is the contraction of tensor \\spad{t} which sums along the \\spad{i}\\spad{-}th and \\spad{j}\\spad{-}th indices. For example,{} if \\spad{r = contract(t,1,3)} for a rank 4 tensor \\spad{t},{} then \\spad{r} is the rank 2 \\spad{(= 4 - 2)} tensor given by \\indented{4}{\\spad{r(i,j) = sum(h=1..dim,t(h,i,h,j))}.}") (($ $ (|Integer|) $ (|Integer|)) "\\spad{contract(t,i,s,j)} is the inner product of tenors \\spad{s} and \\spad{t} which sums along the \\spad{k1}\\spad{-}th index of \\spad{t} and the \\spad{k2}\\spad{-}th index of \\spad{s}. For example,{} if \\spad{r = contract(s,2,t,1)} for rank 3 tensors rank 3 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is the rank 4 \\spad{(= 3 + 3 - 2)} tensor given by \\indented{4}{\\spad{r(i,j,k,l) = sum(h=1..dim,s(i,h,j)*t(h,k,l))}.}")) (* (($ $ $) "\\spad{s*t} is the inner product of the tensors \\spad{s} and \\spad{t} which contracts the last index of \\spad{s} with the first index of \\spad{t},{} \\spadignore{i.e.} \\indented{4}{\\spad{t*s = contract(t,rank t, s, 1)}} \\indented{4}{\\spad{t*s = sum(k=1..N, t[i1,..,iN,k]*s[k,j1,..,jM])}} This is compatible with the use of \\spad{M*v} to denote the matrix-vector inner product.")) (|product| (($ $ $) "\\spad{product(s,t)} is the outer product of the tensors \\spad{s} and \\spad{t}. For example,{} if \\spad{r = product(s,t)} for rank 2 tensors \\spad{s} and \\spad{t},{} then \\spad{r} is a rank 4 tensor given by \\indented{4}{\\spad{r(i,j,k,l) = s(i,j)*t(k,l)}.}")) (|elt| ((|#3| $ (|List| (|Integer|))) "\\spad{elt(t,[i1,...,iN])} gives a component of a rank \\spad{N} tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k,l)} gives a component of a rank 4 tensor.") ((|#3| $ (|Integer|) (|Integer|) (|Integer|)) "\\spad{elt(t,i,j,k)} gives a component of a rank 3 tensor.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(t,i,j)} gives a component of a rank 2 tensor.") ((|#3| $) "\\spad{elt(t)} gives the component of a rank 0 tensor.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(t)} returns the tensorial rank of \\spad{t} (that is,{} the number of indices). This is the same as the graded module degree.")) (|coerce| (($ (|List| $)) "\\spad{coerce([t_1,...,t_dim])} allows tensors to be constructed using lists.") (($ (|List| |#3|)) "\\spad{coerce([r_1,...,r_dim])} allows tensors to be constructed using lists.") (($ (|SquareMatrix| |#2| |#3|)) "\\spad{coerce(m)} views a matrix as a rank 2 tensor.") (($ (|DirectProduct| |#2| |#3|)) "\\spad{coerce(v)} views a vector as a rank 1 tensor."))) NIL NIL -(-138 |minix| -3020 S T$) +(-138 |minix| -3019 S T$) ((|constructor| (NIL "This package provides functions to enable conversion of tensors given conversion of the components.")) (|map| (((|CartesianTensor| |#1| |#2| |#4|) (|Mapping| |#4| |#3|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{map(f,ts)} does a componentwise conversion of the tensor \\spad{ts} to a tensor with components of type \\spad{T}.")) (|reshape| (((|CartesianTensor| |#1| |#2| |#4|) (|List| |#4|) (|CartesianTensor| |#1| |#2| |#3|)) "\\spad{reshape(lt,ts)} organizes the list of components \\spad{lt} into a tensor with the same shape as \\spad{ts}."))) NIL NIL @@ -502,8 +502,8 @@ NIL NIL (-143) ((|constructor| (NIL "This domain allows classes of characters to be defined and manipulated efficiently.")) (|alphanumeric| (($) "\\spad{alphanumeric()} returns the class of all characters for which \\spadfunFrom{alphanumeric?}{Character} is \\spad{true}.")) (|alphabetic| (($) "\\spad{alphabetic()} returns the class of all characters for which \\spadfunFrom{alphabetic?}{Character} is \\spad{true}.")) (|lowerCase| (($) "\\spad{lowerCase()} returns the class of all characters for which \\spadfunFrom{lowerCase?}{Character} is \\spad{true}.")) (|upperCase| (($) "\\spad{upperCase()} returns the class of all characters for which \\spadfunFrom{upperCase?}{Character} is \\spad{true}.")) (|hexDigit| (($) "\\spad{hexDigit()} returns the class of all characters for which \\spadfunFrom{hexDigit?}{Character} is \\spad{true}.")) (|digit| (($) "\\spad{digit()} returns the class of all characters for which \\spadfunFrom{digit?}{Character} is \\spad{true}.")) (|charClass| (($ (|List| (|Character|))) "\\spad{charClass(l)} creates a character class which contains exactly the characters given in the list \\spad{l}.") (($ (|String|)) "\\spad{charClass(s)} creates a character class which contains exactly the characters given in the string \\spad{s}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) -((-3957 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +((-4424 . T) (-4414 . T) (-4425 . T)) +((-3956 (-12 (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-146) (QUOTE (-381))) (|HasCategory| (-146) (QUOTE (-860))) (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-144 R Q A) ((|constructor| (NIL "CommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL @@ -518,7 +518,7 @@ NIL NIL (-147) ((|constructor| (NIL "Rings of Characteristic Non Zero")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(x)} returns the \\spad{p}th root of \\spad{x} where \\spad{p} is the characteristic of the ring."))) -((-4422 . T)) +((-4421 . T)) NIL (-148 R) ((|constructor| (NIL "This package provides a characteristicPolynomial function for any matrix over a commutative ring.")) (|characteristicPolynomial| ((|#1| (|Matrix| |#1|) |#1|) "\\spad{characteristicPolynomial(m,r)} computes the characteristic polynomial of the matrix \\spad{m} evaluated at the point \\spad{r}. In particular,{} if \\spad{r} is the polynomial 'x,{} then it returns the characteristic polynomial expressed as a polynomial in 'x."))) @@ -526,9 +526,9 @@ NIL NIL (-149) ((|constructor| (NIL "Rings of Characteristic Zero."))) -((-4422 . T)) +((-4421 . T)) NIL -(-150 -3495 UP UPUP) +(-150 -3494 UP UPUP) ((|constructor| (NIL "Tools to send a point to infinity on an algebraic curve.")) (|chvar| (((|Record| (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) |#3| |#3|) "\\spad{chvar(f(x,y), p(x,y))} returns \\spad{[g(z,t), q(z,t), c1(z), c2(z), n]} such that under the change of variable \\spad{x = c1(z)},{} \\spad{y = t * c2(z)},{} one gets \\spad{f(x,y) = g(z,t)}. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{z} and \\spad{t} is \\spad{q(z, t) = 0}.")) (|eval| ((|#3| |#3| (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{eval(p(x,y), f(x), g(x))} returns \\spad{p(f(x), y * g(x))}.")) (|goodPoint| ((|#1| |#3| |#3|) "\\spad{goodPoint(p, q)} returns an integer a such that a is neither a pole of \\spad{p(x,y)} nor a branch point of \\spad{q(x,y) = 0}.")) (|rootPoly| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| (|Fraction| |#2|)) (|:| |radicand| |#2|)) (|Fraction| |#2|) (|NonNegativeInteger|)) "\\spad{rootPoly(g, n)} returns \\spad{[m, c, P]} such that \\spad{c * g ** (1/n) = P ** (1/m)} thus if \\spad{y**n = g},{} then \\spad{z**m = P} where \\spad{z = c * y}.")) (|radPoly| (((|Union| (|Record| (|:| |radicand| (|Fraction| |#2|)) (|:| |deg| (|NonNegativeInteger|))) "failed") |#3|) "\\spad{radPoly(p(x, y))} returns \\spad{[c(x), n]} if \\spad{p} is of the form \\spad{y**n - c(x)},{} \"failed\" otherwise.")) (|mkIntegral| (((|Record| (|:| |coef| (|Fraction| |#2|)) (|:| |poly| |#3|)) |#3|) "\\spad{mkIntegral(p(x,y))} returns \\spad{[c(x), q(x,z)]} such that \\spad{z = c * y} is integral. The algebraic relation between \\spad{x} and \\spad{y} is \\spad{p(x, y) = 0}. The algebraic relation between \\spad{x} and \\spad{z} is \\spad{q(x, z) = 0}."))) NIL NIL @@ -539,14 +539,14 @@ NIL (-152 A S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#2| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2| |#2|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#2| (|Mapping| |#2| |#2| |#2|) $ |#2|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#2| (|Mapping| |#2| |#2| |#2|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#2| "failed") (|Mapping| (|Boolean|) |#2|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#2|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasAttribute| |#1| (QUOTE -4425))) +((|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasAttribute| |#1| (QUOTE -4424))) (-153 S) ((|constructor| (NIL "A collection is a homogeneous aggregate which can built from list of members. The operation used to build the aggregate is generically named \\spadfun{construct}. However,{} each collection provides its own special function with the same name as the data type,{} except with an initial lower case letter,{} \\spadignore{e.g.} \\spadfun{list} for \\spadtype{List},{} \\spadfun{flexibleArray} for \\spadtype{FlexibleArray},{} and so on.")) (|removeDuplicates| (($ $) "\\spad{removeDuplicates(u)} returns a copy of \\spad{u} with all duplicates removed.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,u)} returns a copy of \\spad{u} containing only those elements such \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{select(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})]}.")) (|remove| (($ |#1| $) "\\spad{remove(x,u)} returns a copy of \\spad{u} with all elements \\axiom{\\spad{y} = \\spad{x}} removed. Note: \\axiom{remove(\\spad{y},{}\\spad{c}) == [\\spad{x} for \\spad{x} in \\spad{c} | \\spad{x} ~= \\spad{y}]}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(p,u)} returns a copy of \\spad{u} removing all elements \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. Note: \\axiom{remove(\\spad{p},{}\\spad{u}) == [\\spad{x} for \\spad{x} in \\spad{u} | not \\spad{p}(\\spad{x})]}.")) (|reduce| ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1| |#1|) "\\spad{reduce(f,u,x,z)} reduces the binary operation \\spad{f} across \\spad{u},{} stopping when an \"absorbing element\" \\spad{z} is encountered. As for \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})},{} \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u},{}\\spad{x})} when \\spad{u} contains no element \\spad{z}. Thus the third argument \\spad{x} is returned when \\spad{u} is empty.") ((|#1| (|Mapping| |#1| |#1| |#1|) $ |#1|) "\\spad{reduce(f,u,x)} reduces the binary operation \\spad{f} across \\spad{u},{} where \\spad{x} is the identity operation of \\spad{f}. Same as \\axiom{reduce(\\spad{f},{}\\spad{u})} if \\spad{u} has 2 or more elements. Returns \\axiom{\\spad{f}(\\spad{x},{}\\spad{y})} if \\spad{u} has one element \\spad{y},{} \\spad{x} if \\spad{u} is empty. For example,{} \\axiom{reduce(+,{}\\spad{u},{}0)} returns the sum of the elements of \\spad{u}.") ((|#1| (|Mapping| |#1| |#1| |#1|) $) "\\spad{reduce(f,u)} reduces the binary operation \\spad{f} across \\spad{u}. For example,{} if \\spad{u} is \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]} then \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\axiom{\\spad{f}(..\\spad{f}(\\spad{f}(\\spad{x},{}\\spad{y}),{}...),{}\\spad{z})}. Note: if \\spad{u} has one element \\spad{x},{} \\axiom{reduce(\\spad{f},{}\\spad{u})} returns \\spad{x}. Error: if \\spad{u} is empty.")) (|find| (((|Union| |#1| "failed") (|Mapping| (|Boolean|) |#1|) $) "\\spad{find(p,u)} returns the first \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \"failed\" otherwise.")) (|construct| (($ (|List| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y},{}...,{}\\spad{z})} returns the collection of elements \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}} ordered as given. Equivalently written as \\axiom{[\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]\\$\\spad{D}},{} where \\spad{D} is the domain. \\spad{D} may be omitted for those of type List."))) NIL NIL (-154 |n| K Q) ((|constructor| (NIL "CliffordAlgebra(\\spad{n},{} \\spad{K},{} \\spad{Q}) defines a vector space of dimension \\spad{2**n} over \\spad{K},{} given a quadratic form \\spad{Q} on \\spad{K**n}. \\blankline If \\spad{e[i]},{} \\spad{1<=i<=n} is a basis for \\spad{K**n} then \\indented{3}{1,{} \\spad{e[i]} (\\spad{1<=i<=n}),{} \\spad{e[i1]*e[i2]}} (\\spad{1<=i1<i2<=n}),{}...,{}\\spad{e[1]*e[2]*..*e[n]} is a basis for the Clifford Algebra. \\blankline The algebra is defined by the relations \\indented{3}{\\spad{e[i]*e[j] = -e[j]*e[i]}\\space{2}(\\spad{i \\~~= j}),{}} \\indented{3}{\\spad{e[i]*e[i] = Q(e[i])}} \\blankline Examples of Clifford Algebras are: gaussians,{} quaternions,{} exterior algebras and spin algebras.")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} computes the multiplicative inverse of \\spad{x} or \"failed\" if \\spad{x} is not invertible.")) (|coefficient| ((|#2| $ (|List| (|PositiveInteger|))) "\\spad{coefficient(x,[i1,i2,...,iN])} extracts the coefficient of \\spad{e(i1)*e(i2)*...*e(iN)} in \\spad{x}.")) (|monomial| (($ |#2| (|List| (|PositiveInteger|))) "\\spad{monomial(c,[i1,i2,...,iN])} produces the value given by \\spad{c*e(i1)*e(i2)*...*e(iN)}.")) (|e| (($ (|PositiveInteger|)) "\\spad{e(n)} produces the appropriate unit element."))) -((-4420 . T) (-4419 . T) (-4422 . T)) +((-4419 . T) (-4418 . T) (-4421 . T)) NIL (-155) ((|constructor| (NIL "\\indented{1}{The purpose of this package is to provide reasonable plots of} functions with singularities.")) (|clipWithRanges| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|)))) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{clipWithRanges(pointLists,xMin,xMax,yMin,yMax)} performs clipping on a list of lists of points,{} \\spad{pointLists}. Clipping is done within the specified ranges of \\spad{xMin},{} \\spad{xMax} and \\spad{yMin},{} \\spad{yMax}. This function is used internally by the \\fakeAxiomFun{iClipParametric} subroutine in this package.")) (|clipParametric| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clipParametric(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clipParametric(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.")) (|clip| (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{clip(ll)} performs two-dimensional clipping on a list of lists of points,{} \\spad{ll}; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|List| (|Point| (|DoubleFloat|)))) "\\spad{clip(l)} performs two-dimensional clipping on a curve \\spad{l},{} which is a list of points; the default parameters \\spad{1/2} for the fraction and \\spad{5/1} for the scale are used in the \\fakeAxiomFun{iClipParametric} subroutine,{} which is called by this function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|) (|Fraction| (|Integer|)) (|Fraction| (|Integer|))) "\\spad{clip(p,frac,sc)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable \\spad{y = f(x)}; the fraction parameter is specified by \\spad{frac} and the scale parameter is specified by \\spad{sc} for use in the \\spadfun{clip} function.") (((|Record| (|:| |brans| (|List| (|List| (|Point| (|DoubleFloat|))))) (|:| |xValues| (|Segment| (|DoubleFloat|))) (|:| |yValues| (|Segment| (|DoubleFloat|)))) (|Plot|)) "\\spad{clip(p)} performs two-dimensional clipping on a plot,{} \\spad{p},{} from the domain \\spadtype{Plot} for the graph of one variable,{} \\spad{y = f(x)}; the default parameters \\spad{1/4} for the fraction and \\spad{5/1} for the scale are used in the \\spadfun{clip} function."))) @@ -568,7 +568,7 @@ NIL ((|constructor| (NIL "Color() specifies a domain of 27 colors provided in the \\Language{} system (the colors mix additively).")) (|color| (($ (|Integer|)) "\\spad{color(i)} returns a color of the indicated hue \\spad{i}.")) (|numberOfHues| (((|PositiveInteger|)) "\\spad{numberOfHues()} returns the number of total hues,{} set in totalHues.")) (|hue| (((|Integer|) $) "\\spad{hue(c)} returns the hue index of the indicated color \\spad{c}.")) (|blue| (($) "\\spad{blue()} returns the position of the blue hue from total hues.")) (|green| (($) "\\spad{green()} returns the position of the green hue from total hues.")) (|yellow| (($) "\\spad{yellow()} returns the position of the yellow hue from total hues.")) (|red| (($) "\\spad{red()} returns the position of the red hue from total hues.")) (+ (($ $ $) "\\spad{c1 + c2} additively mixes the two colors \\spad{c1} and \\spad{c2}.")) (* (($ (|DoubleFloat|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}.") (($ (|PositiveInteger|) $) "\\spad{s * c},{} returns the color \\spad{c},{} whose weighted shade has been scaled by \\spad{s}."))) NIL NIL -(-160 R -3495) +(-160 R -3494) ((|constructor| (NIL "Provides combinatorial functions over an integral domain.")) (|ipow| ((|#2| (|List| |#2|)) "\\spad{ipow(l)} should be local but conditional.")) (|iidprod| ((|#2| (|List| |#2|)) "\\spad{iidprod(l)} should be local but conditional.")) (|iidsum| ((|#2| (|List| |#2|)) "\\spad{iidsum(l)} should be local but conditional.")) (|iipow| ((|#2| (|List| |#2|)) "\\spad{iipow(l)} should be local but conditional.")) (|iiperm| ((|#2| (|List| |#2|)) "\\spad{iiperm(l)} should be local but conditional.")) (|iibinom| ((|#2| (|List| |#2|)) "\\spad{iibinom(l)} should be local but conditional.")) (|iifact| ((|#2| |#2|) "\\spad{iifact(x)} should be local but conditional.")) (|product| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{product(f(n), n = a..b)} returns \\spad{f}(a) * ... * \\spad{f}(\\spad{b}) as a formal product.") ((|#2| |#2| (|Symbol|)) "\\spad{product(f(n), n)} returns the formal product \\spad{P}(\\spad{n}) which verifies \\spad{P}(\\spad{n+1})/P(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|summation| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{summation(f(n), n = a..b)} returns \\spad{f}(a) + ... + \\spad{f}(\\spad{b}) as a formal sum.") ((|#2| |#2| (|Symbol|)) "\\spad{summation(f(n), n)} returns the formal sum \\spad{S}(\\spad{n}) which verifies \\spad{S}(\\spad{n+1}) - \\spad{S}(\\spad{n}) = \\spad{f}(\\spad{n}).")) (|factorials| ((|#2| |#2| (|Symbol|)) "\\spad{factorials(f, x)} rewrites the permutations and binomials in \\spad{f} involving \\spad{x} in terms of factorials.") ((|#2| |#2|) "\\spad{factorials(f)} rewrites the permutations and binomials in \\spad{f} in terms of factorials.")) (|factorial| ((|#2| |#2|) "\\spad{factorial(n)} returns the factorial of \\spad{n},{} \\spadignore{i.e.} n!.")) (|permutation| ((|#2| |#2| |#2|) "\\spad{permutation(n, r)} returns the number of permutations of \\spad{n} objects taken \\spad{r} at a time,{} \\spadignore{i.e.} n!/(\\spad{n}-\\spad{r})!.")) (|binomial| ((|#2| |#2| |#2|) "\\spad{binomial(n, r)} returns the number of subsets of \\spad{r} objects taken among \\spad{n} objects,{} \\spadignore{i.e.} n!/(r! * (\\spad{n}-\\spad{r})!).")) (** ((|#2| |#2| |#2|) "\\spad{a ** b} is the formal exponential a**b.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a combinatorial operator.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a combinatorial operator."))) NIL NIL @@ -599,10 +599,10 @@ NIL (-167 S R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#2|) (|:| |phi| |#2|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#2| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#2| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#2| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#2| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#2| |#2|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) NIL -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1224))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4421)) (|HasAttribute| |#2| (QUOTE -4424)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569)))) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4420)) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569)))) (-168 R) ((|constructor| (NIL "This category represents the extension of a ring by a square root of \\spad{-1}.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} or \"failed\" if \\spad{x} is not a rational number.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a rational number.")) (|polarCoordinates| (((|Record| (|:| |r| |#1|) (|:| |phi| |#1|)) $) "\\spad{polarCoordinates(x)} returns (\\spad{r},{} phi) such that \\spad{x} = \\spad{r} * exp(\\%\\spad{i} * phi).")) (|argument| ((|#1| $) "\\spad{argument(x)} returns the angle made by (0,{}1) and (0,{}\\spad{x}).")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x} = sqrt(norm(\\spad{x})).")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(x, r)} returns the exact quotient of \\spad{x} by \\spad{r},{} or \"failed\" if \\spad{r} does not divide \\spad{x} exactly.")) (|norm| ((|#1| $) "\\spad{norm(x)} returns \\spad{x} * conjugate(\\spad{x})")) (|real| ((|#1| $) "\\spad{real(x)} returns real part of \\spad{x}.")) (|imag| ((|#1| $) "\\spad{imag(x)} returns imaginary part of \\spad{x}.")) (|conjugate| (($ $) "\\spad{conjugate(x + \\%i y)} returns \\spad{x} - \\%\\spad{i} \\spad{y}.")) (|imaginary| (($) "\\spad{imaginary()} = sqrt(\\spad{-1}) = \\%\\spad{i}.")) (|complex| (($ |#1| |#1|) "\\spad{complex(x,y)} constructs \\spad{x} + \\%i*y.") ((|attribute|) "indicates that \\% has sqrt(\\spad{-1})"))) -((-4418 -3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4421 |has| |#1| (-6 -4421)) (-4424 |has| |#1| (-6 -4424)) (-1490 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 -3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4420 |has| |#1| (-6 -4420)) (-4423 |has| |#1| (-6 -4423)) (-1489 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-169 RR PR) ((|constructor| (NIL "\\indented{1}{Author:} Date Created: Date Last Updated: Basic Functions: Related Constructors: Complex,{} UnivariatePolynomial Also See: AMS Classifications: Keywords: complex,{} polynomial factorization,{} factor References:")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} factorizes the polynomial \\spad{p} with complex coefficients."))) @@ -614,8 +614,8 @@ NIL NIL (-171 R) ((|constructor| (NIL "\\spadtype {Complex(R)} creates the domain of elements of the form \\spad{a + b * i} where \\spad{a} and \\spad{b} come from the ring \\spad{R},{} and \\spad{i} is a new element such that \\spad{i**2 = -1}."))) -((-4418 -3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4421 |has| |#1| (-6 -4421)) (-4424 |has| |#1| (-6 -4424)) (-1490 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-3957 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-376)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-929))))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1081))) (-12 (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-1224)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-376)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasAttribute| |#1| (QUOTE -4424)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +((-4417 -3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4420 |has| |#1| (-6 -4420)) (-4423 |has| |#1| (-6 -4423)) (-1489 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-3956 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-363)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-376)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-928))))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-1080))) (-12 (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-1223)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-376)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-239)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-240))) (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasAttribute| |#1| (QUOTE -4420)) (|HasAttribute| |#1| (QUOTE -4423)) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) (-172 R S) ((|constructor| (NIL "This package extends maps from underlying rings to maps between complex over those rings.")) (|map| (((|Complex| |#2|) (|Mapping| |#2| |#1|) (|Complex| |#1|)) "\\spad{map(f,u)} maps \\spad{f} onto real and imaginary parts of \\spad{u}."))) NIL @@ -630,7 +630,7 @@ NIL NIL (-175) ((|constructor| (NIL "The category of commutative rings with unity,{} \\spadignore{i.e.} rings where \\spadop{*} is commutative,{} and which have a multiplicative identity. element.")) (|commutative| ((|attribute| "*") "multiplication is commutative."))) -(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-176) ((|constructor| (NIL "This category is the root of the I/O conduits.")) (|close!| (($ $) "\\spad{close!(c)} closes the conduit \\spad{c},{} changing its state to one that is invalid for future read or write operations."))) @@ -638,7 +638,7 @@ NIL NIL (-177 R) ((|constructor| (NIL "\\spadtype{ContinuedFraction} implements general \\indented{1}{continued fractions.\\space{2}This version is not restricted to simple,{}} \\indented{1}{finite fractions and uses the \\spadtype{Stream} as a} \\indented{1}{representation.\\space{2}The arithmetic functions assume that the} \\indented{1}{approximants alternate below/above the convergence point.} \\indented{1}{This is enforced by ensuring the partial numerators and partial} \\indented{1}{denominators are greater than 0 in the Euclidean domain view of \\spad{R}} \\indented{1}{(\\spadignore{i.e.} \\spad{sizeLess?(0, x)}).}")) (|complete| (($ $) "\\spad{complete(x)} causes all entries in \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed. If \\spadvar{\\spad{x}} is an infinite continued fraction,{} a user-initiated interrupt is necessary to stop the computation.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} causes the first \\spadvar{\\spad{n}} entries in the continued fraction \\spadvar{\\spad{x}} to be computed. Normally entries are only computed as needed.")) (|denominators| (((|Stream| |#1|) $) "\\spad{denominators(x)} returns the stream of denominators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|numerators| (((|Stream| |#1|) $) "\\spad{numerators(x)} returns the stream of numerators of the approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|convergents| (((|Stream| (|Fraction| |#1|)) $) "\\spad{convergents(x)} returns the stream of the convergents of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be finite.")) (|approximants| (((|Stream| (|Fraction| |#1|)) $) "\\spad{approximants(x)} returns the stream of approximants of the continued fraction \\spadvar{\\spad{x}}. If the continued fraction is finite,{} then the stream will be infinite and periodic with period 1.")) (|reducedForm| (($ $) "\\spad{reducedForm(x)} puts the continued fraction \\spadvar{\\spad{x}} in reduced form,{} \\spadignore{i.e.} the function returns an equivalent continued fraction of the form \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} extracts the whole part of \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{wholePart(x) = b0}.")) (|partialQuotients| (((|Stream| |#1|) $) "\\spad{partialQuotients(x)} extracts the partial quotients in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialQuotients(x) = [b0,b1,b2,b3,...]}.")) (|partialDenominators| (((|Stream| |#1|) $) "\\spad{partialDenominators(x)} extracts the denominators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialDenominators(x) = [b1,b2,b3,...]}.")) (|partialNumerators| (((|Stream| |#1|) $) "\\spad{partialNumerators(x)} extracts the numerators in \\spadvar{\\spad{x}}. That is,{} if \\spad{x = continuedFraction(b0, [a1,a2,a3,...], [b1,b2,b3,...])},{} then \\spad{partialNumerators(x) = [a1,a2,a3,...]}.")) (|reducedContinuedFraction| (($ |#1| (|Stream| |#1|)) "\\spad{reducedContinuedFraction(b0,b)} constructs a continued fraction in the following way: if \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + 1/(b1 + 1/(b2 + ...))}. That is,{} the result is the same as \\spad{continuedFraction(b0,[1,1,1,...],[b1,b2,b3,...])}.")) (|continuedFraction| (($ |#1| (|Stream| |#1|) (|Stream| |#1|)) "\\spad{continuedFraction(b0,a,b)} constructs a continued fraction in the following way: if \\spad{a = [a1,a2,...]} and \\spad{b = [b1,b2,...]} then the result is the continued fraction \\spad{b0 + a1/(b1 + a2/(b2 + ...))}.") (($ (|Fraction| |#1|)) "\\spad{continuedFraction(r)} converts the fraction \\spadvar{\\spad{r}} with components of type \\spad{R} to a continued fraction over \\spad{R}."))) -(((-4427 "*") . T) (-4418 . T) (-4423 . T) (-4417 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") . T) (-4417 . T) (-4422 . T) (-4416 . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-178) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Contour' a list of bindings making up a `virtual scope'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(c,n)} returns the first binding associated with `n'. Otherwise `nothing.")) (|push| (($ (|Binding|) $) "\\spad{push(c,b)} augments the contour with binding `b'.")) (|bindings| (((|List| (|Binding|)) $) "\\spad{bindings(c)} returns the list of bindings in countour \\spad{c}."))) @@ -655,7 +655,7 @@ NIL (-181 R S CS) ((|constructor| (NIL "This package supports matching patterns involving complex expressions")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(cexpr, pat, res)} matches the pattern \\spad{pat} to the complex expression \\spad{cexpr}. res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL -((|HasCategory| (-965 |#2|) (|%list| (QUOTE -901) (|devaluate| |#1|)))) +((|HasCategory| (-964 |#2|) (|%list| (QUOTE -900) (|devaluate| |#1|)))) (-182 R) ((|constructor| (NIL "This package \\undocumented{}")) (|multiEuclideanTree| (((|List| |#1|) (|List| |#1|) |#1|) "\\spad{multiEuclideanTree(l,r)} \\undocumented{}")) (|chineseRemainder| (((|List| |#1|) (|List| (|List| |#1|)) (|List| |#1|)) "\\spad{chineseRemainder(llv,lm)} returns a list of values,{} each of which corresponds to the Chinese remainder of the associated element of \\axiom{\\spad{llv}} and axiom{\\spad{lm}}. This is more efficient than applying chineseRemainder several times.") ((|#1| (|List| |#1|) (|List| |#1|)) "\\spad{chineseRemainder(lv,lm)} returns a value \\axiom{\\spad{v}} such that,{} if \\spad{x} is \\axiom{\\spad{lv}.\\spad{i}} modulo \\axiom{\\spad{lm}.\\spad{i}} for all \\axiom{\\spad{i}},{} then \\spad{x} is \\axiom{\\spad{v}} modulo \\axiom{\\spad{lm}(1)*lm(2)*...*lm(\\spad{n})}.")) (|modTree| (((|List| |#1|) |#1| (|List| |#1|)) "\\spad{modTree(r,l)} \\undocumented{}"))) NIL @@ -692,7 +692,7 @@ NIL ((|constructor| (NIL "This domain enumerates the three kinds of constructors available in OpenAxiom: category constructors,{} domain constructors,{} and package constructors.")) (|package| (($) "`package' is the kind of package constructors.")) (|domain| (($) "`domain' is the kind of domain constructors")) (|category| (($) "`category' is the kind of category constructors"))) NIL NIL -(-191 R -3495) +(-191 R -3494) ((|constructor| (NIL "\\spadtype{ComplexTrigonometricManipulations} provides function that compute the real and imaginary parts of complex functions.")) (|complexForm| (((|Complex| (|Expression| |#1|)) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| (((|Expression| |#1|) |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| (((|Expression| |#1|) |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL @@ -804,23 +804,23 @@ NIL ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a dual vector space basis,{} given by symbols.}")) (|dual| (($ (|LinearBasis| |#1|)) "\\spad{dual x} constructs the dual vector of a linear element which is part of a basis."))) NIL NIL -(-219 -3495 UP UPUP R) +(-219 -3494 UP UPUP R) ((|constructor| (NIL "This package provides functions for computing the residues of a function on an algebraic curve.")) (|doubleResultant| ((|#2| |#4| (|Mapping| |#2| |#2|)) "\\spad{doubleResultant(f, ')} returns \\spad{p}(\\spad{x}) whose roots are rational multiples of the residues of \\spad{f} at all its finite poles. Argument ' is the derivation to use."))) NIL NIL -(-220 -3495 FP) +(-220 -3494 FP) ((|constructor| (NIL "Package for the factorization of a univariate polynomial with coefficients in a finite field. The algorithm used is the \"distinct degree\" algorithm of Cantor-Zassenhaus,{} modified to use trace instead of the norm and a table for computing Frobenius as suggested by Naudin and Quitte .")) (|irreducible?| (((|Boolean|) |#2|) "\\spad{irreducible?(p)} tests whether the polynomial \\spad{p} is irreducible.")) (|tracePowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{tracePowMod(u,k,v)} produces the sum of \\spad{u**(q**i)} for \\spad{i} running and q= size \\spad{F}")) (|trace2PowMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{trace2PowMod(u,k,v)} produces the sum of \\spad{u**(2**i)} for \\spad{i} running from 1 to \\spad{k} all computed modulo the polynomial \\spad{v}.")) (|exptMod| ((|#2| |#2| (|NonNegativeInteger|) |#2|) "\\spad{exptMod(u,k,v)} raises the polynomial \\spad{u} to the \\spad{k}th power modulo the polynomial \\spad{v}.")) (|separateFactors| (((|List| |#2|) (|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|)))) "\\spad{separateFactors(lfact)} takes the list produced by \\spadfunFrom{separateDegrees}{DistinctDegreeFactorization} and produces the complete list of factors.")) (|separateDegrees| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |prod| |#2|))) |#2|) "\\spad{separateDegrees(p)} splits the square free polynomial \\spad{p} into factors each of which is a product of irreducibles of the same degree.")) (|distdfact| (((|Record| (|:| |cont| |#1|) (|:| |factors| (|List| (|Record| (|:| |irr| |#2|) (|:| |pow| (|Integer|)))))) |#2| (|Boolean|)) "\\spad{distdfact(p,sqfrflag)} produces the complete factorization of the polynomial \\spad{p} returning an internal data structure. If argument \\spad{sqfrflag} is \\spad{true},{} the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#2|) |#2|) "\\spad{factorSquareFree(p)} produces the complete factorization of the square free polynomial \\spad{p}.")) (|factor| (((|Factored| |#2|) |#2|) "\\spad{factor(p)} produces the complete factorization of the polynomial \\spad{p}."))) NIL NIL (-221) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions.")) (|decimal| (($ (|Fraction| (|Integer|))) "\\spad{decimal(r)} converts a rational number to a decimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(d)} returns the fractional part of a decimal expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-558) (QUOTE (-929))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1041))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861))) (-3957 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861)))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1173))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1198)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (|HasCategory| (-558) (QUOTE (-147))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-558) (QUOTE (-928))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1040))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860))) (-3956 (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860)))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1172))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1197)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -657) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (|HasCategory| (-558) (QUOTE (-147))))) (-222) ((|constructor| (NIL "This domain represents the syntax of a definition.")) (|body| (((|SpadAst|) $) "\\spad{body(d)} returns the right hand side of the definition `d'.")) (|signature| (((|Signature|) $) "\\spad{signature(d)} returns the signature of the operation being defined. Note that this list may be partial in that it contains only the types actually specified in the definition.")) (|head| (((|HeadAst|) $) "\\spad{head(d)} returns the head of the definition `d'. This is a list of identifiers starting with the name of the operation followed by the name of the parameters,{} if any."))) NIL NIL -(-223 R -3495) +(-223 R -3494) ((|constructor| (NIL "\\spadtype{ElementaryFunctionDefiniteIntegration} provides functions to compute definite integrals of elementary functions.")) (|innerint| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{innerint(f, x, a, b, ignore?)} should be local but conditional")) (|integrate| (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|)) (|String|)) "\\spad{integrate(f, x = a..b, \"noPole\")} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. If it is not possible to check whether \\spad{f} has a pole for \\spad{x} between a and \\spad{b} (because of parameters),{} then this function will assume that \\spad{f} has no such pole. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b} or if the last argument is not \"noPole\".") (((|Union| (|:| |f1| (|OrderedCompletion| |#2|)) (|:| |f2| (|List| (|OrderedCompletion| |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (|SegmentBinding| (|OrderedCompletion| |#2|))) "\\spad{integrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b}. Error: if \\spad{f} has a pole for \\spad{x} between a and \\spad{b}."))) NIL NIL @@ -834,19 +834,19 @@ NIL NIL (-226 S) ((|constructor| (NIL "Linked list implementation of a Dequeue")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-227 |CoefRing| |listIndVar|) ((|constructor| (NIL "The deRham complex of Euclidean space,{} that is,{} the class of differential forms of arbitary degree over a coefficient ring. See Flanders,{} Harley,{} Differential Forms,{} With Applications to the Physical Sciences,{} New York,{} Academic Press,{} 1963.")) (|exteriorDifferential| (($ $) "\\spad{exteriorDifferential(df)} returns the exterior derivative (gradient,{} curl,{} divergence,{} ...) of the differential form \\spad{df}.")) (|totalDifferential| (($ (|Expression| |#1|)) "\\spad{totalDifferential(x)} returns the total differential (gradient) form for element \\spad{x}.")) (|map| (($ (|Mapping| (|Expression| |#1|) (|Expression| |#1|)) $) "\\spad{map(f,df)} replaces each coefficient \\spad{x} of differential form \\spad{df} by \\spad{f(x)}.")) (|degree| (((|Integer|) $) "\\spad{degree(df)} returns the homogeneous degree of differential form \\spad{df}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?(df)} tests if differential form \\spad{df} is a 0-form,{} \\spadignore{i.e.} if degree(\\spad{df}) = 0.")) (|homogeneous?| (((|Boolean|) $) "\\spad{homogeneous?(df)} tests if all of the terms of differential form \\spad{df} have the same degree.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(n)} returns the \\spad{n}th basis term for a differential form.")) (|coefficient| (((|Expression| |#1|) $ $) "\\spad{coefficient(df,u)},{} where \\spad{df} is a differential form,{} returns the coefficient of \\spad{df} containing the basis term \\spad{u} if such a term exists,{} and 0 otherwise.")) (|reductum| (($ $) "\\spad{reductum(df)},{} where \\spad{df} is a differential form,{} returns \\spad{df} minus the leading term of \\spad{df} if \\spad{df} has two or more terms,{} and 0 otherwise.")) (|leadingBasisTerm| (($ $) "\\spad{leadingBasisTerm(df)} returns the leading basis term of differential form \\spad{df}.")) (|leadingCoefficient| (((|Expression| |#1|) $) "\\spad{leadingCoefficient(df)} returns the leading coefficient of differential form \\spad{df}."))) -((-4422 . T)) +((-4421 . T)) NIL -(-228 R -3495) +(-228 R -3494) ((|constructor| (NIL "\\spadtype{DefiniteIntegrationTools} provides common tools used by the definite integration of both rational and elementary functions.")) (|checkForZero| (((|Union| (|Boolean|) "failed") (|SparseUnivariatePolynomial| |#2|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.") (((|Union| (|Boolean|) "failed") (|Polynomial| |#1|) (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{checkForZero(p, x, a, b, incl?)} is \\spad{true} if \\spad{p} has a zero for \\spad{x} between a and \\spad{b},{} \\spad{false} otherwise,{} \"failed\" if this cannot be determined. Check for a and \\spad{b} inclusive if incl? is \\spad{true},{} exclusive otherwise.")) (|computeInt| (((|Union| (|OrderedCompletion| |#2|) "failed") (|Kernel| |#2|) |#2| (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|) (|Boolean|)) "\\spad{computeInt(x, g, a, b, eval?)} returns the integral of \\spad{f} for \\spad{x} between a and \\spad{b},{} assuming that \\spad{g} is an indefinite integral of \\spad{f} and \\spad{f} has no pole between a and \\spad{b}. If \\spad{eval?} is \\spad{true},{} then \\spad{g} can be evaluated safely at \\spad{a} and \\spad{b},{} provided that they are finite values. Otherwise,{} limits must be computed.")) (|ignore?| (((|Boolean|) (|String|)) "\\spad{ignore?(s)} is \\spad{true} if \\spad{s} is the string that tells the integrator to assume that the function has no pole in the integration interval."))) NIL NIL (-229) ((|constructor| (NIL "\\indented{1}{\\spadtype{DoubleFloat} is intended to make accessible} hardware floating point arithmetic in \\Language{},{} either native double precision,{} or IEEE. On most machines,{} there will be hardware support for the arithmetic operations: \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and possibly also the \\spadfunFrom{sqrt}{DoubleFloat} operation. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat},{} \\spadfunFrom{atan}{DoubleFloat} are normally coded in software based on minimax polynomial/rational approximations. Note that under Lisp/VM,{} \\spadfunFrom{atan}{DoubleFloat} is not available at this time. Some general comments about the accuracy of the operations: the operations \\spadfunFrom{+}{DoubleFloat},{} \\spadfunFrom{*}{DoubleFloat},{} \\spadfunFrom{/}{DoubleFloat} and \\spadfunFrom{sqrt}{DoubleFloat} are expected to be fully accurate. The operations \\spadfunFrom{exp}{DoubleFloat},{} \\spadfunFrom{log}{DoubleFloat},{} \\spadfunFrom{sin}{DoubleFloat},{} \\spadfunFrom{cos}{DoubleFloat} and \\spadfunFrom{atan}{DoubleFloat} are not expected to be fully accurate. In particular,{} \\spadfunFrom{sin}{DoubleFloat} and \\spadfunFrom{cos}{DoubleFloat} will lose all precision for large arguments. \\blankline The \\spadtype{Float} domain provides an alternative to the \\spad{DoubleFloat} domain. It provides an arbitrary precision model of floating point arithmetic. This means that accuracy problems like those above are eliminated by increasing the working precision where necessary. \\spadtype{Float} provides some special functions such as \\spadfunFrom{erf}{DoubleFloat},{} the error function in addition to the elementary functions. The disadvantage of \\spadtype{Float} is that it is much more expensive than small floats when the latter can be used.")) (|nan?| (((|Boolean|) $) "\\spad{nan? x} holds if \\spad{x} is a Not a Number floating point data in the IEEE 754 sense.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)} (that is,{} \\spad{|(r-f)/f| < b**(-n)}).") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm with base 10 for \\spad{x}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm with base 2 for \\spad{x}.")) (|exp1| (($) "\\spad{exp1()} returns the natural log base \\spad{2.718281828...}.")) (** (($ $ $) "\\spad{x ** y} returns the \\spad{y}th power of \\spad{x} (equal to \\spad{exp(y log x)}).")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4200 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4199 . T) (-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-230) ((|constructor| (NIL "This package provides special functions for double precision real and complex floating point.")) (|hypergeometric0F1| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{hypergeometric0F1(c,z)} is the hypergeometric function \\spad{0F1(; c; z)}.")) (|airyBi| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Bi''(x) - x * Bi(x) = 0}.}")) (|airyAi| (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}") (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}. This function satisfies the differential equation: \\indented{2}{\\spad{Ai''(x) - x * Ai(x) = 0}.}")) (|besselK| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselK(v,x)} is the modified Bessel function of the first kind,{} \\spad{K(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{K(v,x) = \\%pi/2*(I(-v,x) - I(v,x))/sin(v*\\%pi)}.} so is not valid for integer values of \\spad{v}.")) (|besselI| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselI(v,x)} is the modified Bessel function of the first kind,{} \\spad{I(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) - (x^2+v^2)w(x) = 0}.}")) (|besselY| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselY(v,x)} is the Bessel function of the second kind,{} \\spad{Y(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.} Note: The default implmentation uses the relation \\indented{2}{\\spad{Y(v,x) = (J(v,x) cos(v*\\%pi) - J(-v,x))/sin(v*\\%pi)}} so is not valid for integer values of \\spad{v}.")) (|besselJ| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{besselJ(v,x)} is the Bessel function of the first kind,{} \\spad{J(v,x)}. This function satisfies the differential equation: \\indented{2}{\\spad{x^2 w''(x) + x w'(x) + (x^2-v^2)w(x) = 0}.}")) (|polygamma| (((|Complex| (|DoubleFloat|)) (|NonNegativeInteger|) (|Complex| (|DoubleFloat|))) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.") (((|DoubleFloat|) (|NonNegativeInteger|) (|DoubleFloat|)) "\\spad{polygamma(n, x)} is the \\spad{n}-th derivative of \\spad{digamma(x)}.")) (|digamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{digamma(x)} is the function,{} \\spad{psi(x)},{} defined by \\indented{2}{\\spad{psi(x) = Gamma'(x)/Gamma(x)}.}")) (|logGamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{logGamma(x)} is the natural log of \\spad{Gamma(x)}. This can often be computed even if \\spad{Gamma(x)} cannot.")) (|Beta| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}") (((|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{Beta(x, y)} is the Euler beta function,{} \\spad{B(x,y)},{} defined by \\indented{2}{\\spad{Beta(x,y) = integrate(t^(x-1)*(1-t)^(y-1), t=0..1)}.} This is related to \\spad{Gamma(x)} by \\indented{2}{\\spad{Beta(x,y) = Gamma(x)*Gamma(y) / Gamma(x + y)}.}")) (|Gamma| (((|Complex| (|DoubleFloat|)) (|Complex| (|DoubleFloat|))) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}") (((|DoubleFloat|) (|DoubleFloat|)) "\\spad{Gamma(x)} is the Euler gamma function,{} \\spad{Gamma(x)},{} defined by \\indented{2}{\\spad{Gamma(x) = integrate(t^(x-1)*exp(-t), t=0..\\%infinity)}.}"))) @@ -854,19 +854,19 @@ NIL NIL (-231 R) ((|constructor| (NIL "\\indented{1}{A Denavit-Hartenberg Matrix is a 4x4 Matrix of the form:} \\indented{1}{\\spad{nx ox ax px}} \\indented{1}{\\spad{ny oy ay py}} \\indented{1}{\\spad{nz oz az pz}} \\indented{2}{\\spad{0\\space{2}0\\space{2}0\\space{2}1}} (\\spad{n},{} \\spad{o},{} and a are the direction cosines)")) (|translate| (($ |#1| |#1| |#1|) "\\spad{translate(X,Y,Z)} returns a dhmatrix for translation by \\spad{X},{} \\spad{Y},{} and \\spad{Z}")) (|scale| (($ |#1| |#1| |#1|) "\\spad{scale(sx,sy,sz)} returns a dhmatrix for scaling in the \\spad{X},{} \\spad{Y} and \\spad{Z} directions")) (|rotatez| (($ |#1|) "\\spad{rotatez(r)} returns a dhmatrix for rotation about axis \\spad{Z} for \\spad{r} degrees")) (|rotatey| (($ |#1|) "\\spad{rotatey(r)} returns a dhmatrix for rotation about axis \\spad{Y} for \\spad{r} degrees")) (|rotatex| (($ |#1|) "\\spad{rotatex(r)} returns a dhmatrix for rotation about axis \\spad{X} for \\spad{r} degrees")) (|identity| (($) "\\spad{identity()} create the identity dhmatrix")) (* (((|Point| |#1|) $ (|Point| |#1|)) "\\spad{t*p} applies the dhmatrix \\spad{t} to point \\spad{p}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4426 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-232 A S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) NIL NIL (-233 S) ((|constructor| (NIL "A dictionary is an aggregate in which entries can be inserted,{} searched for and removed. Duplicates are thrown away on insertion. This category models the usual notion of dictionary which involves large amounts of data where copying is impractical. Principal operations are thus destructive (non-copying) ones."))) -((-4426 . T)) +((-4425 . T)) NIL (-234 R) ((|constructor| (NIL "Differential extensions of a ring \\spad{R}. Given a differentiation on \\spad{R},{} extend it to a differentiation on \\%."))) -((-4422 . T)) +((-4421 . T)) NIL (-235 S T$) ((|constructor| (NIL "This category captures the interface of domains with a distinguished operation named \\spad{differentiate}. Usually,{} additional properties are wanted. For example,{} that it obeys the usual Leibniz identity of differentiation of product,{} in case of differential rings. One could also want \\spad{differentiate} to obey the chain rule when considering differential manifolds. The lack of specific requirement in this category is an implicit admission that currently \\Language{} is not expressive enough to express the most general notion of differentiation in an adequate manner,{} suitable for computational purposes.")) (D ((|#2| $) "\\spad{D x} is a shorthand for \\spad{differentiate x}")) (|differentiate| ((|#2| $) "\\spad{differentiate x} compute the derivative of \\spad{x}."))) @@ -878,7 +878,7 @@ NIL NIL (-237 R) ((|constructor| (NIL "An \\spad{R}-module equipped with a distinguised differential operator. If \\spad{R} is a differential ring,{} then differentiation on the module should extend differentiation on the differential ring \\spad{R}. The latter can be the null operator. In that case,{} the differentiation operator on the module is just an \\spad{R}-linear operator. For that reason,{} we do not require that the ring \\spad{R} be a DifferentialRing; \\blankline"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL (-238 S) ((|constructor| (NIL "This category is like \\spadtype{DifferentialDomain} where the target of the differentiation operator is the same as its source.")) (D (($ $ (|NonNegativeInteger|)) "\\spad{D(x, n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(x,n)} returns the \\spad{n}\\spad{-}th derivative of \\spad{x}."))) @@ -890,33 +890,33 @@ NIL NIL (-240) ((|constructor| (NIL "An ordinary differential ring,{} that is,{} a ring with an operation \\spadfun{differentiate}. \\blankline"))) -((-4422 . T)) +((-4421 . T)) NIL (-241 A S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#2| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#2|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) NIL -((|HasAttribute| |#1| (QUOTE -4425))) +((|HasAttribute| |#1| (QUOTE -4424))) (-242 S) ((|constructor| (NIL "This category is a collection of operations common to both categories \\spadtype{Dictionary} and \\spadtype{MultiDictionary}")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is not \\spad{true}.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,d)} destructively changes dictionary \\spad{d} by removeing all entries \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.") (($ |#1| $) "\\spad{remove!(x,d)} destructively changes dictionary \\spad{d} by removing all entries \\spad{y} such that \\axiom{\\spad{y} = \\spad{x}}.")) (|dictionary| (($ (|List| |#1|)) "\\spad{dictionary([x,y,...,z])} creates a dictionary consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{dictionary()}\\$\\spad{D} creates an empty dictionary of type \\spad{D}."))) -((-4426 . T)) +((-4425 . T)) NIL (-243) ((|constructor| (NIL "any solution of a homogeneous linear Diophantine equation can be represented as a sum of minimal solutions,{} which form a \"basis\" (a minimal solution cannot be represented as a nontrivial sum of solutions) in the case of an inhomogeneous linear Diophantine equation,{} each solution is the sum of a inhomogeneous solution and any number of homogeneous solutions therefore,{} it suffices to compute two sets: \\indented{3}{1. all minimal inhomogeneous solutions} \\indented{3}{2. all minimal homogeneous solutions} the algorithm implemented is a completion procedure,{} which enumerates all solutions in a recursive depth-first-search it can be seen as finding monotone paths in a graph for more details see Reference")) (|dioSolve| (((|Record| (|:| |varOrder| (|List| (|Symbol|))) (|:| |inhom| (|Union| (|List| (|Vector| (|NonNegativeInteger|))) "failed")) (|:| |hom| (|List| (|Vector| (|NonNegativeInteger|))))) (|Equation| (|Polynomial| (|Integer|)))) "\\spad{dioSolve(u)} computes a basis of all minimal solutions for linear homogeneous Diophantine equation \\spad{u},{} then all minimal solutions of inhomogeneous equation"))) NIL NIL -(-244 S -3020 R) +(-244 S -3019 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#3| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#3|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) NIL -((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-861))) (|HasAttribute| |#3| (QUOTE -4422)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1122)))) -(-245 -3020 R) +((|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-860))) (|HasAttribute| |#3| (QUOTE -4421)) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-1121)))) +(-245 -3019 R) ((|constructor| (NIL "\\indented{2}{This category represents a finite cartesian product of a given type.} Many categorical properties are preserved under this construction.")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the vectors \\spad{x} and \\spad{y}.")) (|unitVector| (($ (|PositiveInteger|)) "\\spad{unitVector(n)} produces a vector with 1 in position \\spad{n} and zero elsewhere.")) (|directProduct| (($ (|Vector| |#2|)) "\\spad{directProduct(v)} converts the vector \\spad{v} to become a direct product. Error: if the length of \\spad{v} is different from dim.")) (|finiteAggregate| ((|attribute|) "attribute to indicate an aggregate of finite size"))) -((-4419 |has| |#2| (-1070)) (-4420 |has| |#2| (-1070)) (-4422 |has| |#2| (-6 -4422)) (-4425 . T)) +((-4418 |has| |#2| (-1069)) (-4419 |has| |#2| (-1069)) (-4421 |has| |#2| (-6 -4421)) (-4424 . T)) NIL -(-246 -3020 R) +(-246 -3019 R) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying component type. This contrasts with simple vectors in that the members can be viewed as having constant length. Thus many categorical properties can by lifted from the underlying component type. Component extraction operations are provided but no updating operations. Thus new direct product elements can either be created by converting vector elements using the \\spadfun{directProduct} function or by taking appropriate linear combinations of basis vectors provided by the \\spad{unitVector} operation."))) -((-4419 |has| |#2| (-1070)) (-4420 |has| |#2| (-1070)) (-4422 |has| |#2| (-6 -4422)) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-376))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-3957 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-240))) (-3957 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4422)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-247 -3020 A B) +((-4418 |has| |#2| (-1069)) (-4419 |has| |#2| (-1069)) (-4421 |has| |#2| (-6 -4421)) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-376))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (-3956 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-240))) (-3956 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1069))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4421)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-247 -3019 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} direct products of elements of some type \\spad{A} and functions from \\spad{A} to another type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a direct product over \\spad{B}.")) (|map| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2|) (|DirectProduct| |#1| |#2|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#3| (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if the vector is empty.")) (|scan| (((|DirectProduct| |#1| |#3|) (|Mapping| |#3| |#2| |#3|) (|DirectProduct| |#1| |#2|) |#3|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL @@ -930,7 +930,7 @@ NIL NIL (-250) ((|constructor| (NIL "A division ring (sometimes called a skew field),{} \\spadignore{i.e.} a not necessarily commutative ring where all non-zero elements have multiplicative inverses.")) (|inv| (($ $) "\\spad{inv x} returns the multiplicative inverse of \\spad{x}. Error: if \\spad{x} is 0.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}."))) -((-4418 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-251 S) ((|constructor| (NIL "A doubly-linked aggregate serves as a model for a doubly-linked list,{} that is,{} a list which can has links to both next and previous nodes and thus can be efficiently traversed in both directions.")) (|setnext!| (($ $ $) "\\spad{setnext!(u,v)} destructively sets the next node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|setprevious!| (($ $ $) "\\spad{setprevious!(u,v)} destructively sets the previous node of doubly-linked aggregate \\spad{u} to \\spad{v},{} returning \\spad{v}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively concatenates doubly-linked aggregate \\spad{v} to the end of doubly-linked aggregate \\spad{u}.")) (|next| (($ $) "\\spad{next(l)} returns the doubly-linked aggregate beginning with its next element. Error: if \\spad{l} has no next element. Note: \\axiom{next(\\spad{l}) = rest(\\spad{l})} and \\axiom{previous(next(\\spad{l})) = \\spad{l}}.")) (|previous| (($ $) "\\spad{previous(l)} returns the doubly-link list beginning with its previous element. Error: if \\spad{l} has no previous element. Note: \\axiom{next(previous(\\spad{l})) = \\spad{l}}.")) (|tail| (($ $) "\\spad{tail(l)} returns the doubly-linked aggregate \\spad{l} starting at its second element. Error: if \\spad{l} is empty.")) (|head| (($ $) "\\spad{head(l)} returns the first element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty.")) (|last| ((|#1| $) "\\spad{last(l)} returns the last element of a doubly-linked aggregate \\spad{l}. Error: if \\spad{l} is empty."))) @@ -938,20 +938,20 @@ NIL NIL (-252 S) ((|constructor| (NIL "This domain provides some nice functions on lists")) (|elt| (((|NonNegativeInteger|) $ "count") "\\axiom{\\spad{l}.\"count\"} returns the number of elements in \\axiom{\\spad{l}}.") (($ $ "sort") "\\axiom{\\spad{l}.sort} returns \\axiom{\\spad{l}} with elements sorted. Note: \\axiom{\\spad{l}.sort = sort(\\spad{l})}") (($ $ "unique") "\\axiom{\\spad{l}.unique} returns \\axiom{\\spad{l}} with duplicates removed. Note: \\axiom{\\spad{l}.unique = removeDuplicates(\\spad{l})}.")) (|datalist| (($ (|List| |#1|)) "\\spad{datalist(l)} creates a datalist from \\spad{l}"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-253 M) ((|constructor| (NIL "DiscreteLogarithmPackage implements help functions for discrete logarithms in monoids using small cyclic groups.")) (|shanksDiscLogAlgorithm| (((|Union| (|NonNegativeInteger|) "failed") |#1| |#1| (|NonNegativeInteger|)) "\\spad{shanksDiscLogAlgorithm(b,a,p)} computes \\spad{s} with \\spad{b**s = a} for assuming that \\spad{a} and \\spad{b} are elements in a 'small' cyclic group of order \\spad{p} by Shank's algorithm. Note: this is a subroutine of the function \\spadfun{discreteLog}.")) (** ((|#1| |#1| (|Integer|)) "\\spad{x ** n} returns \\spad{x} raised to the integer power \\spad{n}"))) NIL NIL (-254 R) ((|constructor| (NIL "Category of modules that extend differential rings. \\blankline"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL (-255 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is lexicographic specified by the variable list parameter with the most significant variable first in the list.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4427 "*") |has| |#2| (-175)) (-4418 |has| |#2| (-569)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(((-4426 "*") |has| |#2| (-175)) (-4417 |has| |#2| (-569)) (-4422 |has| |#2| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) (-256) ((|showSummary| (((|Void|) $) "\\spad{showSummary(d)} prints out implementation detail information of domain `d'.")) (|reflect| (($ (|ConstructorCall| (|DomainConstructor|))) "\\spad{reflect cc} returns the domain object designated by the ConstructorCall syntax `cc'. The constructor implied by `cc' must be known to the system since it is instantiated.")) (|reify| (((|ConstructorCall| (|DomainConstructor|)) $) "\\spad{reify(d)} returns the abstract syntax for the domain `x'.")) (|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Create: October 18,{} 2007. Date Last Updated: December 20,{} 2008. Basic Operations: coerce,{} reify Related Constructors: Type,{} Syntax,{} OutputForm Also See: Type,{} ConstructorCall") (((|DomainConstructor|) $) "\\spad{constructor(d)} returns the domain constructor that is instantiated to the domain object `d'."))) NIL @@ -966,23 +966,23 @@ NIL NIL (-259 |n| R M S) ((|constructor| (NIL "This constructor provides a direct product type with a left matrix-module view."))) -((-4422 -3957 (-2961 (|has| |#4| (-1070)) (|has| |#4| (-240))) (|has| |#4| (-6 -4422)) (-2961 (|has| |#4| (-1070)) (|has| |#4| (-917 (-1198))))) (-4419 |has| |#4| (-1070)) (-4420 |has| |#4| (-1070)) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#4| (QUOTE (-376))) (-3957 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1070)))) (-3957 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (QUOTE (-815))) (-3957 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (QUOTE (-861)))) (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#4| (QUOTE (-240))) (-3957 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1070))))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#4| (QUOTE (-1122))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-746))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-815))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-861))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-861))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -658) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -919) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasAttribute| |#4| (QUOTE -4422)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1070))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1070)))) (-12 (|HasCategory| |#4| (QUOTE (-1070))) (|HasCategory| |#4| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) +((-4421 -3956 (-2960 (|has| |#4| (-1069)) (|has| |#4| (-240))) (|has| |#4| (-6 -4421)) (-2960 (|has| |#4| (-1069)) (|has| |#4| (-916 (-1197))))) (-4418 |has| |#4| (-1069)) (-4419 |has| |#4| (-1069)) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-745))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#4| (QUOTE (-376))) (-3956 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-1069)))) (-3956 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-376)))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (QUOTE (-745))) (|HasCategory| |#4| (QUOTE (-814))) (-3956 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (QUOTE (-860)))) (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-240))) (-3956 (|HasCategory| |#4| (QUOTE (-240))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1069))))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-1121))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-745))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-745))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-745))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-814))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-860))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-860))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -657) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -918) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1069)))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1069))))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#4| (QUOTE (-1069)))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasAttribute| |#4| (QUOTE -4421)) (-12 (|HasCategory| |#4| (QUOTE (-240))) (|HasCategory| |#4| (QUOTE (-1069))))) (-12 (|HasCategory| |#4| (QUOTE (-239))) (|HasCategory| |#4| (QUOTE (-1069)))) (-12 (|HasCategory| |#4| (QUOTE (-1069))) (|HasCategory| |#4| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#4| (QUOTE (-175))) (|HasCategory| |#4| (QUOTE (-21))) (|HasCategory| |#4| (QUOTE (-23))) (|HasCategory| |#4| (QUOTE (-133))) (|HasCategory| |#4| (QUOTE (-25))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102))) (-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|))))) (-260 |n| R S) ((|constructor| (NIL "This constructor provides a direct product of \\spad{R}-modules with an \\spad{R}-module view."))) -((-4422 -3957 (-2961 (|has| |#3| (-1070)) (|has| |#3| (-240))) (|has| |#3| (-6 -4422)) (-2961 (|has| |#3| (-1070)) (|has| |#3| (-917 (-1198))))) (-4419 |has| |#3| (-1070)) (-4420 |has| |#3| (-1070)) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#3| (QUOTE (-376))) (-3957 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3957 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-3957 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-240))) (-3957 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1070))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-1122))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -919) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasAttribute| |#3| (QUOTE -4422)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1070))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +((-4421 -3956 (-2960 (|has| |#3| (-1069)) (|has| |#3| (-240))) (|has| |#3| (-6 -4421)) (-2960 (|has| |#3| (-1069)) (|has| |#3| (-916 (-1197))))) (-4418 |has| |#3| (-1069)) (-4419 |has| |#3| (-1069)) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#3| (QUOTE (-376))) (-3956 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3956 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (QUOTE (-814))) (-3956 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-240))) (-3956 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1069))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-1121))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -918) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1069))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasAttribute| |#3| (QUOTE -4421)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1069))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (-261 A R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#4| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#3|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#3|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#3|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#3|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) NIL ((|HasCategory| |#2| (QUOTE (-240)))) (-262 R S V E) ((|constructor| (NIL "\\spadtype{DifferentialPolynomialCategory} is a category constructor specifying basic functions in an ordinary differential polynomial ring with a given ordered set of differential indeterminates. In addition,{} it implements defaults for the basic functions. The functions \\spadfun{order} and \\spadfun{weight} are extended from the set of derivatives of differential indeterminates to the set of differential polynomials. Other operations provided on differential polynomials are \\spadfun{leader},{} \\spadfun{initial},{} \\spadfun{separant},{} \\spadfun{differentialVariables},{} and \\spadfun{isobaric?}. Furthermore,{} if the ground ring is a differential ring,{} then evaluation (substitution of differential indeterminates by elements of the ground ring or by differential polynomials) is provided by \\spadfun{eval}. A convenient way of referencing derivatives is provided by the functions \\spadfun{makeVariable}. \\blankline To construct a domain using this constructor,{} one needs to provide a ground ring \\spad{R},{} an ordered set \\spad{S} of differential indeterminates,{} a ranking \\spad{V} on the set of derivatives of the differential indeterminates,{} and a set \\spad{E} of exponents in bijection with the set of differential monomials in the given differential indeterminates. \\blankline")) (|separant| (($ $) "\\spad{separant(p)} returns the partial derivative of the differential polynomial \\spad{p} with respect to its leader.")) (|initial| (($ $) "\\spad{initial(p)} returns the leading coefficient when the differential polynomial \\spad{p} is written as a univariate polynomial in its leader.")) (|leader| ((|#3| $) "\\spad{leader(p)} returns the derivative of the highest rank appearing in the differential polynomial \\spad{p} Note: an error occurs if \\spad{p} is in the ground ring.")) (|isobaric?| (((|Boolean|) $) "\\spad{isobaric?(p)} returns \\spad{true} if every differential monomial appearing in the differential polynomial \\spad{p} has same weight,{} and returns \\spad{false} otherwise.")) (|weight| (((|NonNegativeInteger|) $ |#2|) "\\spad{weight(p, s)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|NonNegativeInteger|) $) "\\spad{weight(p)} returns the maximum weight of all differential monomials appearing in the differential polynomial \\spad{p}.")) (|weights| (((|List| (|NonNegativeInteger|)) $ |#2|) "\\spad{weights(p, s)} returns a list of weights of differential monomials appearing in the differential polynomial \\spad{p} when \\spad{p} is viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.") (((|List| (|NonNegativeInteger|)) $) "\\spad{weights(p)} returns a list of weights of differential monomials appearing in differential polynomial \\spad{p}.")) (|degree| (((|NonNegativeInteger|) $ |#2|) "\\spad{degree(p, s)} returns the maximum degree of the differential polynomial \\spad{p} viewed as a differential polynomial in the differential indeterminate \\spad{s} alone.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of the differential polynomial \\spad{p},{} which is the maximum number of differentiations of a differential indeterminate,{} among all those appearing in \\spad{p}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(p,s)} returns the order of the differential polynomial \\spad{p} in differential indeterminate \\spad{s}.")) (|differentialVariables| (((|List| |#2|) $) "\\spad{differentialVariables(p)} returns a list of differential indeterminates occurring in a differential polynomial \\spad{p}.")) (|makeVariable| (((|Mapping| $ (|NonNegativeInteger|)) $) "\\spad{makeVariable(p)} views \\spad{p} as an element of a differential ring,{} in such a way that the \\spad{n}-th derivative of \\spad{p} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} := makeVariable(\\spad{p}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored.") (((|Mapping| $ (|NonNegativeInteger|)) |#2|) "\\spad{makeVariable(s)} views \\spad{s} as a differential indeterminate,{} in such a way that the \\spad{n}-th derivative of \\spad{s} may be simply referenced as \\spad{z}.\\spad{n} where \\spad{z} :=makeVariable(\\spad{s}). Note: In the interpreter,{} \\spad{z} is given as an internal map,{} which may be ignored."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL (-263 S) ((|constructor| (NIL "A dequeue is a doubly ended stack,{} that is,{} a bag where first items inserted are the first items extracted,{} at either the front or the back end of the data structure.")) (|reverse!| (($ $) "\\spad{reverse!(d)} destructively replaces \\spad{d} by its reverse dequeue,{} \\spadignore{i.e.} the top (front) element is now the bottom (back) element,{} and so on.")) (|extractBottom!| ((|#1| $) "\\spad{extractBottom!(d)} destructively extracts the bottom (back) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|extractTop!| ((|#1| $) "\\spad{extractTop!(d)} destructively extracts the top (front) element from the dequeue \\spad{d}. Error: if \\spad{d} is empty.")) (|insertBottom!| ((|#1| |#1| $) "\\spad{insertBottom!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d} at the bottom (back) of the dequeue.")) (|insertTop!| ((|#1| |#1| $) "\\spad{insertTop!(x,d)} destructively inserts \\spad{x} into the dequeue \\spad{d},{} that is,{} at the top (front) of the dequeue. The element previously at the top of the dequeue becomes the second in the dequeue,{} and so on.")) (|bottom!| ((|#1| $) "\\spad{bottom!(d)} returns the element at the bottom (back) of the dequeue.")) (|top!| ((|#1| $) "\\spad{top!(d)} returns the element at the top (front) of the dequeue.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(d)} returns the number of elements in dequeue \\spad{d}. Note: \\axiom{height(\\spad{d}) = \\# \\spad{d}}.")) (|dequeue| (($ (|List| |#1|)) "\\spad{dequeue([x,y,...,z])} creates a dequeue with first (top or front) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom or back) element \\spad{z}.") (($) "\\spad{dequeue()}\\$\\spad{D} creates an empty dequeue of type \\spad{D}."))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL (-264 |Ex|) ((|constructor| (NIL "TopLevelDrawFunctions provides top level functions for drawing graphics of expressions.")) (|makeObject| (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears as the default title.") (((|ThreeSpace| (|DoubleFloat|)) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(f(x,y),x = a..b,y = c..d,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeSpace| (|DoubleFloat|)) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{makeObject(curve(f(t),g(t),h(t)),t = a..b,l)} returns a space of the domain \\spadtype{ThreeSpace} which contains the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.")) (|draw| (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSurface| |#1|) (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(surface(f(u,v),g(u,v),h(u,v)),u = a..b,v = c..d,l)} draws the graph of the parametric surface \\spad{x = f(u,v)},{} \\spad{y = g(u,v)},{} \\spad{z = h(u,v)} as \\spad{u} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{v} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|))) "\\spad{draw(f(x,y),x = a..b,y = c..d)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} appears in the title bar.") (((|ThreeDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x,y),x = a..b,y = c..d,l)} draws the graph of \\spad{z = f(x,y)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)} and \\spad{y} ranges from \\spad{min(c,d)} to \\spad{max(c,d)}; \\spad{f(x,y)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title.") (((|ThreeDimensionalViewport|) (|ParametricSpaceCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t),h(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)},{} \\spad{z = h(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{h(t)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|))) "\\spad{draw(curve(f(t),g(t)),t = a..b)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} appears in the title bar.") (((|TwoDimensionalViewport|) (|ParametricPlaneCurve| |#1|) (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(curve(f(t),g(t)),t = a..b,l)} draws the graph of the parametric curve \\spad{x = f(t), y = g(t)} as \\spad{t} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{(f(t),g(t))} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|))) "\\spad{draw(f(x),x = a..b)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} appears in the title bar.") (((|TwoDimensionalViewport|) |#1| (|SegmentBinding| (|Float|)) (|List| (|DrawOption|))) "\\spad{draw(f(x),x = a..b,l)} draws the graph of \\spad{y = f(x)} as \\spad{x} ranges from \\spad{min(a,b)} to \\spad{max(a,b)}; \\spad{f(x)} is the default title,{} and the options contained in the list \\spad{l} of the domain \\spad{DrawOption} are applied."))) @@ -1023,15 +1023,15 @@ NIL (-273 S R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-239)))) +((|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-239)))) (-274 R) ((|constructor| (NIL "Extension of a base differential space with a derivation. \\blankline")) (D (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{D(x,d,n)} is a shorthand for \\spad{differentiate(x,d,n)}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{D(x,d)} is a shorthand for \\spad{differentiate(x,d)}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{differentiate(x,d,n)} computes the \\spad{n}\\spad{-}th derivative of \\spad{x} using a derivation extending \\spad{d} on \\spad{R}.") (($ $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(x,d)} computes the derivative of \\spad{x},{} extending differentiation \\spad{d} on \\spad{R}."))) NIL NIL (-275 R S V) ((|constructor| (NIL "\\spadtype{DifferentialSparseMultivariatePolynomial} implements an ordinary differential polynomial ring by combining a domain belonging to the category \\spadtype{DifferentialVariableCategory} with the domain \\spadtype{SparseMultivariatePolynomial}. \\blankline"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#3| (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#3| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#3| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) (-276 A S) ((|constructor| (NIL "\\spadtype{DifferentialVariableCategory} constructs the set of derivatives of a given set of (ordinary) differential indeterminates. If \\spad{x},{}...,{}\\spad{y} is an ordered set of differential indeterminates,{} and the prime notation is used for differentiation,{} then the set of derivatives (including zero-th order) of the differential indeterminates is \\spad{x},{}\\spad{x'},{}\\spad{x''},{}...,{} \\spad{y},{}\\spad{y'},{}\\spad{y''},{}... (Note: in the interpreter,{} the \\spad{n}-th derivative of \\spad{y} is displayed as \\spad{y} with a subscript \\spad{n}.) This set is viewed as a set of algebraic indeterminates,{} totally ordered in a way compatible with differentiation and the given order on the differential indeterminates. Such a total order is called a ranking of the differential indeterminates. \\blankline A domain in this category is needed to construct a differential polynomial domain. Differential polynomials are ordered by a ranking on the derivatives,{} and by an order (extending the ranking) on on the set of differential monomials. One may thus associate a domain in this category with a ranking of the differential indeterminates,{} just as one associates a domain in the category \\spadtype{OrderedAbelianMonoidSup} with an ordering of the set of monomials in a set of algebraic indeterminates. The ranking is specified through the binary relation \\spadfun{<}. For example,{} one may define one derivative to be less than another by lexicographically comparing first the \\spadfun{order},{} then the given order of the differential indeterminates appearing in the derivatives. This is the default implementation. \\blankline The notion of weight generalizes that of degree. A polynomial domain may be made into a graded ring if a weight function is given on the set of indeterminates,{} Very often,{} a grading is the first step in ordering the set of monomials. For differential polynomial domains,{} this constructor provides a function \\spadfun{weight},{} which allows the assignment of a non-negative number to each derivative of a differential indeterminate. For example,{} one may define the weight of a derivative to be simply its \\spadfun{order} (this is the default assignment). This weight function can then be extended to the set of all differential polynomials,{} providing a graded ring structure.")) (|coerce| (($ |#2|) "\\spad{coerce(s)} returns \\spad{s},{} viewed as the zero-th order derivative of \\spad{s}.")) (|weight| (((|NonNegativeInteger|) $) "\\spad{weight(v)} returns the weight of the derivative \\spad{v}.")) (|variable| ((|#2| $) "\\spad{variable(v)} returns \\spad{s} if \\spad{v} is any derivative of the differential indeterminate \\spad{s}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(v)} returns \\spad{n} if \\spad{v} is the \\spad{n}-th derivative of any differential indeterminate.")) (|makeVariable| (($ |#2| (|NonNegativeInteger|)) "\\spad{makeVariable(s, n)} returns the \\spad{n}-th derivative of a differential indeterminate \\spad{s} as an algebraic indeterminate."))) NIL @@ -1076,11 +1076,11 @@ NIL ((|constructor| (NIL "A domain used in the construction of the exterior algebra on a set \\spad{X} over a ring \\spad{R}. This domain represents the set of all ordered subsets of the set \\spad{X},{} assumed to be in correspondance with {1,{}2,{}3,{} ...}. The ordered subsets are themselves ordered lexicographically and are in bijective correspondance with an ordered basis of the exterior algebra. In this domain we are dealing strictly with the exponents of basis elements which can only be 0 or 1. \\blankline The multiplicative identity element of the exterior algebra corresponds to the empty subset of \\spad{X}. A coerce from List Integer to an ordered basis element is provided to allow the convenient input of expressions. Another exported function forgets the ordered structure and simply returns the list corresponding to an ordered subset.")) (|Nul| (($ (|NonNegativeInteger|)) "\\spad{Nul()} gives the basis element 1 for the algebra generated by \\spad{n} generators.")) (|exponents| (((|List| (|Integer|)) $) "\\spad{exponents(x)} converts a domain element into a list of zeros and ones corresponding to the exponents in the basis element that \\spad{x} represents.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(x)} gives the numbers of 1's in \\spad{x},{} \\spadignore{i.e.} the number of non-zero exponents in the basis element that \\spad{x} represents.")) (|coerce| (($ (|List| (|Integer|))) "\\spad{coerce(l)} converts a list of 0's and 1's into a basis element,{} where 1 (respectively 0) designates that the variable of the corresponding index of \\spad{l} is (respectively,{} is not) present. Error: if an element of \\spad{l} is not 0 or 1."))) NIL NIL -(-287 R -3495) +(-287 R -3494) ((|constructor| (NIL "Provides elementary functions over an integral domain.")) (|localReal?| (((|Boolean|) |#2|) "\\spad{localReal?(x)} should be local but conditional")) (|specialTrigs| (((|Union| |#2| "failed") |#2| (|List| (|Record| (|:| |func| |#2|) (|:| |pole| (|Boolean|))))) "\\spad{specialTrigs(x,l)} should be local but conditional")) (|iiacsch| ((|#2| |#2|) "\\spad{iiacsch(x)} should be local but conditional")) (|iiasech| ((|#2| |#2|) "\\spad{iiasech(x)} should be local but conditional")) (|iiacoth| ((|#2| |#2|) "\\spad{iiacoth(x)} should be local but conditional")) (|iiatanh| ((|#2| |#2|) "\\spad{iiatanh(x)} should be local but conditional")) (|iiacosh| ((|#2| |#2|) "\\spad{iiacosh(x)} should be local but conditional")) (|iiasinh| ((|#2| |#2|) "\\spad{iiasinh(x)} should be local but conditional")) (|iicsch| ((|#2| |#2|) "\\spad{iicsch(x)} should be local but conditional")) (|iisech| ((|#2| |#2|) "\\spad{iisech(x)} should be local but conditional")) (|iicoth| ((|#2| |#2|) "\\spad{iicoth(x)} should be local but conditional")) (|iitanh| ((|#2| |#2|) "\\spad{iitanh(x)} should be local but conditional")) (|iicosh| ((|#2| |#2|) "\\spad{iicosh(x)} should be local but conditional")) (|iisinh| ((|#2| |#2|) "\\spad{iisinh(x)} should be local but conditional")) (|iiacsc| ((|#2| |#2|) "\\spad{iiacsc(x)} should be local but conditional")) (|iiasec| ((|#2| |#2|) "\\spad{iiasec(x)} should be local but conditional")) (|iiacot| ((|#2| |#2|) "\\spad{iiacot(x)} should be local but conditional")) (|iiatan| ((|#2| |#2|) "\\spad{iiatan(x)} should be local but conditional")) (|iiacos| ((|#2| |#2|) "\\spad{iiacos(x)} should be local but conditional")) (|iiasin| ((|#2| |#2|) "\\spad{iiasin(x)} should be local but conditional")) (|iicsc| ((|#2| |#2|) "\\spad{iicsc(x)} should be local but conditional")) (|iisec| ((|#2| |#2|) "\\spad{iisec(x)} should be local but conditional")) (|iicot| ((|#2| |#2|) "\\spad{iicot(x)} should be local but conditional")) (|iitan| ((|#2| |#2|) "\\spad{iitan(x)} should be local but conditional")) (|iicos| ((|#2| |#2|) "\\spad{iicos(x)} should be local but conditional")) (|iisin| ((|#2| |#2|) "\\spad{iisin(x)} should be local but conditional")) (|iilog| ((|#2| |#2|) "\\spad{iilog(x)} should be local but conditional")) (|iiexp| ((|#2| |#2|) "\\spad{iiexp(x)} should be local but conditional")) (|iisqrt3| ((|#2|) "\\spad{iisqrt3()} should be local but conditional")) (|iisqrt2| ((|#2|) "\\spad{iisqrt2()} should be local but conditional")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(p)} returns an elementary operator with the same symbol as \\spad{p}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(p)} returns \\spad{true} if operator \\spad{p} is elementary")) (|pi| ((|#2|) "\\spad{pi()} returns the \\spad{pi} operator")) (|acsch| ((|#2| |#2|) "\\spad{acsch(x)} applies the inverse hyperbolic cosecant operator to \\spad{x}")) (|asech| ((|#2| |#2|) "\\spad{asech(x)} applies the inverse hyperbolic secant operator to \\spad{x}")) (|acoth| ((|#2| |#2|) "\\spad{acoth(x)} applies the inverse hyperbolic cotangent operator to \\spad{x}")) (|atanh| ((|#2| |#2|) "\\spad{atanh(x)} applies the inverse hyperbolic tangent operator to \\spad{x}")) (|acosh| ((|#2| |#2|) "\\spad{acosh(x)} applies the inverse hyperbolic cosine operator to \\spad{x}")) (|asinh| ((|#2| |#2|) "\\spad{asinh(x)} applies the inverse hyperbolic sine operator to \\spad{x}")) (|csch| ((|#2| |#2|) "\\spad{csch(x)} applies the hyperbolic cosecant operator to \\spad{x}")) (|sech| ((|#2| |#2|) "\\spad{sech(x)} applies the hyperbolic secant operator to \\spad{x}")) (|coth| ((|#2| |#2|) "\\spad{coth(x)} applies the hyperbolic cotangent operator to \\spad{x}")) (|tanh| ((|#2| |#2|) "\\spad{tanh(x)} applies the hyperbolic tangent operator to \\spad{x}")) (|cosh| ((|#2| |#2|) "\\spad{cosh(x)} applies the hyperbolic cosine operator to \\spad{x}")) (|sinh| ((|#2| |#2|) "\\spad{sinh(x)} applies the hyperbolic sine operator to \\spad{x}")) (|acsc| ((|#2| |#2|) "\\spad{acsc(x)} applies the inverse cosecant operator to \\spad{x}")) (|asec| ((|#2| |#2|) "\\spad{asec(x)} applies the inverse secant operator to \\spad{x}")) (|acot| ((|#2| |#2|) "\\spad{acot(x)} applies the inverse cotangent operator to \\spad{x}")) (|atan| ((|#2| |#2|) "\\spad{atan(x)} applies the inverse tangent operator to \\spad{x}")) (|acos| ((|#2| |#2|) "\\spad{acos(x)} applies the inverse cosine operator to \\spad{x}")) (|asin| ((|#2| |#2|) "\\spad{asin(x)} applies the inverse sine operator to \\spad{x}")) (|csc| ((|#2| |#2|) "\\spad{csc(x)} applies the cosecant operator to \\spad{x}")) (|sec| ((|#2| |#2|) "\\spad{sec(x)} applies the secant operator to \\spad{x}")) (|cot| ((|#2| |#2|) "\\spad{cot(x)} applies the cotangent operator to \\spad{x}")) (|tan| ((|#2| |#2|) "\\spad{tan(x)} applies the tangent operator to \\spad{x}")) (|cos| ((|#2| |#2|) "\\spad{cos(x)} applies the cosine operator to \\spad{x}")) (|sin| ((|#2| |#2|) "\\spad{sin(x)} applies the sine operator to \\spad{x}")) (|log| ((|#2| |#2|) "\\spad{log(x)} applies the logarithm operator to \\spad{x}")) (|exp| ((|#2| |#2|) "\\spad{exp(x)} applies the exponential operator to \\spad{x}"))) NIL NIL -(-288 R -3495) +(-288 R -3494) ((|constructor| (NIL "ElementaryFunctionStructurePackage provides functions to test the algebraic independence of various elementary functions,{} using the Risch structure theorem (real and complex versions). It also provides transformations on elementary functions which are not considered simplifications.")) (|tanQ| ((|#2| (|Fraction| (|Integer|)) |#2|) "\\spad{tanQ(q,a)} is a local function with a conditional implementation.")) (|rootNormalize| ((|#2| |#2| (|Kernel| |#2|)) "\\spad{rootNormalize(f, k)} returns \\spad{f} rewriting either \\spad{k} which must be an \\spad{n}th-root in terms of radicals already in \\spad{f},{} or some radicals in \\spad{f} in terms of \\spad{k}.")) (|validExponential| (((|Union| |#2| "failed") (|List| (|Kernel| |#2|)) |#2| (|Symbol|)) "\\spad{validExponential([k1,...,kn],f,x)} returns \\spad{g} if \\spad{exp(f)=g} and \\spad{g} involves only \\spad{k1...kn},{} and \"failed\" otherwise.")) (|realElementary| ((|#2| |#2| (|Symbol|)) "\\spad{realElementary(f,x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.") ((|#2| |#2|) "\\spad{realElementary(f)} rewrites \\spad{f} in terms of the 4 fundamental real transcendental elementary functions: \\spad{log, exp, tan, atan}.")) (|rischNormalize| (((|Record| (|:| |func| |#2|) (|:| |kers| (|List| (|Kernel| |#2|))) (|:| |vals| (|List| |#2|))) |#2| (|Symbol|)) "\\spad{rischNormalize(f, x)} returns \\spad{[g, [k1,...,kn], [h1,...,hn]]} such that \\spad{g = normalize(f, x)} and each \\spad{ki} was rewritten as \\spad{hi} during the normalization.")) (|normalize| ((|#2| |#2| (|Symbol|)) "\\spad{normalize(f, x)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{normalize(f)} rewrites \\spad{f} using the least possible number of real algebraically independent kernels."))) NIL NIL @@ -1103,10 +1103,10 @@ NIL (-293 A S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#2| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#2| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) NIL -((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122)))) +((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121)))) (-294 S) ((|constructor| (NIL "An extensible aggregate is one which allows insertion and deletion of entries. These aggregates are models of lists and streams which are represented by linked structures so as to make insertion,{} deletion,{} and concatenation efficient. However,{} access to elements of these extensible aggregates is generally slow since access is made from the end. See \\spadtype{FlexibleArray} for an exception.")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(u)} destructively removes duplicates from \\spad{u}.")) (|select!| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select!(p,u)} destructively changes \\spad{u} by keeping only values \\spad{x} such that \\axiom{\\spad{p}(\\spad{x})}.")) (|merge!| (($ $ $) "\\spad{merge!(u,v)} destructively merges \\spad{u} and \\spad{v} in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge!(p,u,v)} destructively merges \\spad{u} and \\spad{v} using predicate \\spad{p}.")) (|insert!| (($ $ $ (|Integer|)) "\\spad{insert!(v,u,i)} destructively inserts aggregate \\spad{v} into \\spad{u} at position \\spad{i}.") (($ |#1| $ (|Integer|)) "\\spad{insert!(x,u,i)} destructively inserts \\spad{x} into \\spad{u} at position \\spad{i}.")) (|remove!| (($ |#1| $) "\\spad{remove!(x,u)} destructively removes all values \\spad{x} from \\spad{u}.") (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove!(p,u)} destructively removes all elements \\spad{x} of \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}.")) (|delete!| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete!(u,i..j)} destructively deletes elements \\spad{u}.\\spad{i} through \\spad{u}.\\spad{j}.") (($ $ (|Integer|)) "\\spad{delete!(u,i)} destructively deletes the \\axiom{\\spad{i}}th element of \\spad{u}.")) (|concat!| (($ $ $) "\\spad{concat!(u,v)} destructively appends \\spad{v} to the end of \\spad{u}. \\spad{v} is unchanged") (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}."))) -((-4426 . T)) +((-4425 . T)) NIL (-295 S) ((|constructor| (NIL "Category for the elementary functions.")) (** (($ $ $) "\\spad{x**y} returns \\spad{x} to the power \\spad{y}.")) (|exp| (($ $) "\\spad{exp(x)} returns \\%\\spad{e} to the power \\spad{x}.")) (|log| (($ $) "\\spad{log(x)} returns the natural logarithm of \\spad{x}."))) @@ -1127,18 +1127,18 @@ NIL (-299 S |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#3| $ |#2| |#3|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#3| $ |#2|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#3| $ |#2| |#3|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) +((|HasAttribute| |#1| (QUOTE -4425))) (-300 |Dom| |Im|) ((|constructor| (NIL "An eltable aggregate is one which can be viewed as a function. For example,{} the list \\axiom{[1,{}7,{}4]} can applied to 0,{}1,{} and 2 respectively will return the integers 1,{}7,{} and 4; thus this list may be viewed as mapping 0 to 1,{} 1 to 7 and 2 to 4. In general,{} an aggregate can map members of a domain {\\em Dom} to an image domain {\\em Im}.")) (|qsetelt!| ((|#2| $ |#1| |#2|) "\\spad{qsetelt!(u,x,y)} sets the image of \\axiom{\\spad{x}} to be \\axiom{\\spad{y}} under \\axiom{\\spad{u}},{} without checking that \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If such a check is required use the function \\axiom{setelt}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(u,x,y)} sets the image of \\spad{x} to be \\spad{y} under \\spad{u},{} assuming \\spad{x} is in the domain of \\spad{u}. Error: if \\spad{x} is not in the domain of \\spad{u}.")) (|qelt| ((|#2| $ |#1|) "\\spad{qelt(u, x)} applies \\axiom{\\spad{u}} to \\axiom{\\spad{x}} without checking whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}}. If \\axiom{\\spad{x}} is not in the domain of \\axiom{\\spad{u}} a memory-access violation may occur. If a check on whether \\axiom{\\spad{x}} is in the domain of \\axiom{\\spad{u}} is required,{} use the function \\axiom{elt}.")) (|elt| ((|#2| $ |#1| |#2|) "\\spad{elt(u, x, y)} applies \\spad{u} to \\spad{x} if \\spad{x} is in the domain of \\spad{u},{} and returns \\spad{y} otherwise. For example,{} if \\spad{u} is a polynomial in \\axiom{\\spad{x}} over the rationals,{} \\axiom{elt(\\spad{u},{}\\spad{n},{}0)} may define the coefficient of \\axiom{\\spad{x}} to the power \\spad{n},{} returning 0 when \\spad{n} is out of range."))) NIL NIL -(-301 S R |Mod| -2247 -3938 |exactQuo|) +(-301 S R |Mod| -2246 -3937 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#2| |#3|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#2| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#3| $) "\\spad{modulus(x)} \\undocumented"))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-302) ((|constructor| (NIL "Entire Rings (non-commutative Integral Domains),{} \\spadignore{i.e.} a ring not necessarily commutative which has no zero divisors. \\blankline")) (|noZeroDivisors| ((|attribute|) "if a product is zero then one of the factors must be zero."))) -((-4418 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-303) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: March 18,{} 2010. An `Environment' is a stack of scope.")) (|categoryFrame| (($) "the current category environment in the interpreter.")) (|interactiveEnv| (($) "the current interactive environment in effect.")) (|currentEnv| (($) "the current normal environment in effect.")) (|putProperties| (($ (|Identifier|) (|List| (|Property|)) $) "\\spad{putProperties(n,props,e)} set the list of properties of \\spad{n} to \\spad{props} in \\spad{e}.")) (|getProperties| (((|List| (|Property|)) (|Identifier|) $) "\\spad{getBinding(n,e)} returns the list of properties of \\spad{n} in \\spad{e}.")) (|putProperty| (($ (|Identifier|) (|Identifier|) (|SExpression|) $) "\\spad{putProperty(n,p,v,e)} binds the property \\spad{(p,v)} to \\spad{n} in the topmost scope of \\spad{e}.")) (|getProperty| (((|Maybe| (|SExpression|)) (|Identifier|) (|Identifier|) $) "\\spad{getProperty(n,p,e)} returns the value of property with name \\spad{p} for the symbol \\spad{n} in environment \\spad{e}. Otherwise,{} \\spad{nothing}.")) (|scopes| (((|List| (|Scope|)) $) "\\spad{scopes(e)} returns the stack of scopes in environment \\spad{e}.")) (|empty| (($) "\\spad{empty()} constructs an empty environment"))) @@ -1150,16 +1150,16 @@ NIL NIL (-305 S) ((|constructor| (NIL "Equations as mathematical objects. All properties of the basis domain,{} \\spadignore{e.g.} being an abelian group are carried over the equation domain,{} by performing the structural operations on the left and on the right hand side.")) (|subst| (($ $ $) "\\spad{subst(eq1,eq2)} substitutes \\spad{eq2} into both sides of \\spad{eq1} the lhs of \\spad{eq2} should be a kernel")) (|inv| (($ $) "\\spad{inv(x)} returns the multiplicative inverse of \\spad{x}.")) (/ (($ $ $) "\\spad{e1/e2} produces a new equation by dividing the left and right hand sides of equations \\spad{e1} and \\spad{e2}.")) (|factorAndSplit| (((|List| $) $) "\\spad{factorAndSplit(eq)} make the right hand side 0 and factors the new left hand side. Each factor is equated to 0 and put into the resulting list without repetitions.")) (|rightOne| (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side.") (((|Union| $ "failed") $) "\\spad{rightOne(eq)} divides by the right hand side,{} if possible.")) (|leftOne| (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side.") (((|Union| $ "failed") $) "\\spad{leftOne(eq)} divides by the left hand side,{} if possible.")) (* (($ $ |#1|) "\\spad{eqn*x} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.") (($ |#1| $) "\\spad{x*eqn} produces a new equation by multiplying both sides of equation eqn by \\spad{x}.")) (- (($ $ |#1|) "\\spad{eqn-x} produces a new equation by subtracting \\spad{x} from both sides of equation eqn.") (($ |#1| $) "\\spad{x-eqn} produces a new equation by subtracting both sides of equation eqn from \\spad{x}.")) (|rightZero| (($ $) "\\spad{rightZero(eq)} subtracts the right hand side.")) (|leftZero| (($ $) "\\spad{leftZero(eq)} subtracts the left hand side.")) (+ (($ $ |#1|) "\\spad{eqn+x} produces a new equation by adding \\spad{x} to both sides of equation eqn.") (($ |#1| $) "\\spad{x+eqn} produces a new equation by adding \\spad{x} to both sides of equation eqn.")) (|eval| (($ $ (|List| $)) "\\spad{eval(eqn, [x1=v1, ... xn=vn])} replaces \\spad{xi} by \\spad{vi} in equation \\spad{eqn}.") (($ $ $) "\\spad{eval(eqn, x=f)} replaces \\spad{x} by \\spad{f} in equation \\spad{eqn}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,eqn)} constructs a new equation by applying \\spad{f} to both sides of \\spad{eqn}.")) (|rhs| ((|#1| $) "\\spad{rhs(eqn)} returns the right hand side of equation \\spad{eqn}.")) (|lhs| ((|#1| $) "\\spad{lhs(eqn)} returns the left hand side of equation \\spad{eqn}.")) (|swap| (($ $) "\\spad{swap(eq)} interchanges left and right hand side of equation \\spad{eq}.")) (|equation| (($ |#1| |#1|) "\\spad{equation(a,b)} creates an equation.")) (= (($ |#1| |#1|) "\\spad{a=b} creates an equation."))) -((-4422 -3957 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4419 |has| |#1| (-1070)) (-4420 |has| |#1| (-1070))) -((|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3957 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746)))) (|HasCategory| |#1| (QUOTE (-485))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-310))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485)))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746)))) (-3957 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-746)))) +((-4421 -3956 (|has| |#1| (-1069)) (|has| |#1| (-485))) (-4418 |has| |#1| (-1069)) (-4419 |has| |#1| (-1069))) +((|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3956 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-745)))) (|HasCategory| |#1| (QUOTE (-485))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-310))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-485)))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-745)))) (-3956 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-745)))) (-306 S R) ((|constructor| (NIL "This package provides operations for mapping the sides of equations.")) (|map| (((|Equation| |#2|) (|Mapping| |#2| |#1|) (|Equation| |#1|)) "\\spad{map(f,eq)} returns an equation where \\spad{f} is applied to the sides of \\spad{eq}"))) NIL NIL (-307 |Key| |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are compared using \\spadfun{eq?}. Thus keys are considered equal only if they are the same instance of a structure."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (-308) ((|constructor| (NIL "ErrorFunctions implements error functions callable from the system interpreter. Typically,{} these functions would be called in user functions. The simple forms of the functions take one argument which is either a string (an error message) or a list of strings which all together make up a message. The list can contain formatting codes (see below). The more sophisticated versions takes two arguments where the first argument is the name of the function from which the error was invoked and the second argument is either a string or a list of strings,{} as above. When you use the one argument version in an interpreter function,{} the system will automatically insert the name of the function as the new first argument. Thus in the user interpreter function \\indented{2}{\\spad{f x == if x < 0 then error \"negative argument\" else x}} the call to error will actually be of the form \\indented{2}{\\spad{error(\"f\",\"negative argument\")}} because the interpreter will have created a new first argument. \\blankline Formatting codes: error messages may contain the following formatting codes (they should either start or end a string or else have blanks around them): \\indented{3}{\\spad{\\%l}\\space{6}start a new line} \\indented{3}{\\spad{\\%b}\\space{6}start printing in a bold font (where available)} \\indented{3}{\\spad{\\%d}\\space{6}stop\\space{2}printing in a bold font (where available)} \\indented{3}{\\spad{ \\%ceon}\\space{2}start centering message lines} \\indented{3}{\\spad{\\%ceoff}\\space{2}stop\\space{2}centering message lines} \\indented{3}{\\spad{\\%rjon}\\space{3}start displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%rjoff}\\space{2}stop\\space{2}displaying lines \"ragged left\"} \\indented{3}{\\spad{\\%i}\\space{6}indent\\space{3}following lines 3 additional spaces} \\indented{3}{\\spad{\\%u}\\space{6}unindent following lines 3 additional spaces} \\indented{3}{\\spad{\\%xN}\\space{5}insert \\spad{N} blanks (eg,{} \\spad{\\%x10} inserts 10 blanks)} \\blankline")) (|error| (((|Exit|) (|String|) (|List| (|String|))) "\\spad{error(nam,lmsg)} displays error messages \\spad{lmsg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|String|) (|String|)) "\\spad{error(nam,msg)} displays error message \\spad{msg} preceded by a message containing the name \\spad{nam} of the function in which the error is contained.") (((|Exit|) (|List| (|String|))) "\\spad{error(lmsg)} displays error message \\spad{lmsg} and terminates.") (((|Exit|) (|String|)) "\\spad{error(msg)} displays error message \\spad{msg} and terminates."))) NIL @@ -1167,16 +1167,16 @@ NIL (-309 S) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1070)))) +((|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1069)))) (-310) ((|constructor| (NIL "An expression space is a set which is closed under certain operators.")) (|odd?| (((|Boolean|) $) "\\spad{odd? x} is \\spad{true} if \\spad{x} is an odd integer.")) (|even?| (((|Boolean|) $) "\\spad{even? x} is \\spad{true} if \\spad{x} is an even integer.")) (|definingPolynomial| (($ $) "\\spad{definingPolynomial(x)} returns an expression \\spad{p} such that \\spad{p(x) = 0}.")) (|minPoly| (((|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{minPoly(k)} returns \\spad{p} such that \\spad{p(k) = 0}.")) (|eval| (($ $ (|BasicOperator|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|BasicOperator|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|BasicOperator|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ $)) "\\spad{eval(x, s, f)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, f)} replaces every \\spad{s(a1,..,am)} in \\spad{x} by \\spad{f(a1,..,am)} for any \\spad{a1},{}...,{}\\spad{am}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}\\spad{an}.") (($ $ (|List| (|Symbol|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [f1,...,fm])} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.")) (|freeOf?| (((|Boolean|) $ (|Symbol|)) "\\spad{freeOf?(x, s)} tests if \\spad{x} does not contain any operator whose name is \\spad{s}.") (((|Boolean|) $ $) "\\spad{freeOf?(x, y)} tests if \\spad{x} does not contain any occurrence of \\spad{y},{} where \\spad{y} is a single kernel.")) (|map| (($ (|Mapping| $ $) (|Kernel| $)) "\\spad{map(f, k)} returns \\spad{op(f(x1),...,f(xn))} where \\spad{k = op(x1,...,xn)}.")) (|kernel| (($ (|BasicOperator|) (|List| $)) "\\spad{kernel(op, [f1,...,fn])} constructs \\spad{op(f1,...,fn)} without evaluating it.") (($ (|BasicOperator|) $) "\\spad{kernel(op, x)} constructs \\spad{op}(\\spad{x}) without evaluating it.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(x, s)} tests if \\spad{x} is a kernel and is the name of its operator is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(x, op)} tests if \\spad{x} is a kernel and is its operator is op.")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} tests if \\% accepts \\spad{op} as applicable to its elements.")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\%.")) (|operators| (((|List| (|BasicOperator|)) $) "\\spad{operators(f)} returns all the basic operators appearing in \\spad{f},{} no matter what their levels are.")) (|tower| (((|List| (|Kernel| $)) $) "\\spad{tower(f)} returns all the kernels appearing in \\spad{f},{} no matter what their levels are.")) (|kernels| (((|List| (|Kernel| $)) $) "\\spad{kernels(f)} returns the list of all the top-level kernels appearing in \\spad{f},{} but not the ones appearing in the arguments of the top-level kernels.")) (|mainKernel| (((|Union| (|Kernel| $) "failed") $) "\\spad{mainKernel(f)} returns a kernel of \\spad{f} with maximum nesting level,{} or if \\spad{f} has no kernels (\\spadignore{i.e.} \\spad{f} is a constant).")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(f)} returns the highest nesting level appearing in \\spad{f}. Constants have height 0. Symbols have height 1. For any operator op and expressions \\spad{f1},{}...,{}fn,{} \\spad{op(f1,...,fn)} has height equal to \\spad{1 + max(height(f1),...,height(fn))}.")) (|distribute| (($ $ $) "\\spad{distribute(f, g)} expands all the kernels in \\spad{f} that contain \\spad{g} in their arguments and that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or a \\spadfunFrom{paren}{ExpressionSpace} expression.") (($ $) "\\spad{distribute(f)} expands all the kernels in \\spad{f} that are formally enclosed by a \\spadfunFrom{box}{ExpressionSpace} or \\spadfunFrom{paren}{ExpressionSpace} expression.")) (|paren| (($ (|List| $)) "\\spad{paren([f1,...,fn])} returns \\spad{(f1,...,fn)}. This prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(paren [x, 2])} returns the formal kernel \\spad{atan((x, 2))}.") (($ $) "\\spad{paren(f)} returns (\\spad{f}). This prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(paren 1)} returns the formal kernel log((1)).")) (|box| (($ (|List| $)) "\\spad{box([f1,...,fn])} returns \\spad{(f1,...,fn)} with a 'box' around them that prevents the \\spad{fi} from being evaluated when operators are applied to them,{} and makes them applicable to a unary operator. For example,{} \\spad{atan(box [x, 2])} returns the formal kernel \\spad{atan(x, 2)}.") (($ $) "\\spad{box(f)} returns \\spad{f} with a 'box' around it that prevents \\spad{f} from being evaluated when operators are applied to it. For example,{} \\spad{log(1)} returns 0,{} but \\spad{log(box 1)} returns the formal kernel log(1).")) (|subst| (($ $ (|List| (|Kernel| $)) (|List| $)) "\\spad{subst(f, [k1...,kn], [g1,...,gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|List| (|Equation| $))) "\\spad{subst(f, [k1 = g1,...,kn = gn])} replaces the kernels \\spad{k1},{}...,{}kn by \\spad{g1},{}...,{}gn formally in \\spad{f}.") (($ $ (|Equation| $)) "\\spad{subst(f, k = g)} replaces the kernel \\spad{k} by \\spad{g} formally in \\spad{f}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op,[x1,...,xn])} or \\spad{op}([\\spad{x1},{}...,{}xn]) applies the \\spad{n}-ary operator \\spad{op} to \\spad{x1},{}...,{}xn.") (($ (|BasicOperator|) $ $ $ $) "\\spad{elt(op,x,y,z,t)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z},{} \\spad{t}) applies the 4-ary operator \\spad{op} to \\spad{x},{} \\spad{y},{} \\spad{z} and \\spad{t}.") (($ (|BasicOperator|) $ $ $) "\\spad{elt(op,x,y,z)} or \\spad{op}(\\spad{x},{} \\spad{y},{} \\spad{z}) applies the ternary operator \\spad{op} to \\spad{x},{} \\spad{y} and \\spad{z}.") (($ (|BasicOperator|) $ $) "\\spad{elt(op,x,y)} or \\spad{op}(\\spad{x},{} \\spad{y}) applies the binary operator \\spad{op} to \\spad{x} and \\spad{y}.") (($ (|BasicOperator|) $) "\\spad{elt(op,x)} or \\spad{op}(\\spad{x}) applies the unary operator \\spad{op} to \\spad{x}."))) NIL NIL -(-311 -3495 S) +(-311 -3494 S) ((|constructor| (NIL "This package allows a map from any expression space into any object to be lifted to a kernel over the expression set,{} using a given property of the operator of the kernel.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|String|) (|Kernel| |#1|)) "\\spad{map(f, p, k)} uses the property \\spad{p} of the operator of \\spad{k},{} in order to lift \\spad{f} and apply it to \\spad{k}."))) NIL NIL -(-312 E -3495) +(-312 E -3494) ((|constructor| (NIL "This package allows a mapping \\spad{E} -> \\spad{F} to be lifted to a kernel over \\spad{E}; This lifting can fail if the operator of the kernel cannot be applied in \\spad{F}; Do not use this package with \\spad{E} = \\spad{F},{} since this may drop some properties of the operators.")) (|map| ((|#2| (|Mapping| |#2| |#1|) (|Kernel| |#1|)) "\\spad{map(f, k)} returns \\spad{g = op(f(a1),...,f(an))} where \\spad{k = op(a1,...,an)}."))) NIL NIL @@ -1206,7 +1206,7 @@ NIL NIL (-319) ((|constructor| (NIL "A constructive euclidean domain,{} \\spadignore{i.e.} one can divide producing a quotient and a remainder where the remainder is either zero or is smaller (\\spadfun{euclideanSize}) than the divisor. \\blankline Conditional attributes: \\indented{2}{multiplicativeValuation\\tab{25}\\spad{Size(a*b)=Size(a)*Size(b)}} \\indented{2}{additiveValuation\\tab{25}\\spad{Size(a*b)=Size(a)+Size(b)}}")) (|multiEuclidean| (((|Union| (|List| $) "failed") (|List| $) $) "\\spad{multiEuclidean([f1,...,fn],z)} returns a list of coefficients \\spad{[a1, ..., an]} such that \\spad{ z / prod fi = sum aj/fj}. If no such list of coefficients exists,{} \"failed\" is returned.")) (|extendedEuclidean| (((|Union| (|Record| (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) "\\spad{extendedEuclidean(x,y,z)} either returns a record rec where \\spad{rec.coef1*x+rec.coef2*y=z} or returns \"failed\" if \\spad{z} cannot be expressed as a linear combination of \\spad{x} and \\spad{y}.") (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{extendedEuclidean(x,y)} returns a record rec where \\spad{rec.coef1*x+rec.coef2*y = rec.generator} and rec.generator is a gcd of \\spad{x} and \\spad{y}. The gcd is unique only up to associates if \\spadatt{canonicalUnitNormal} is not asserted. \\spadfun{principalIdeal} provides a version of this operation which accepts an arbitrary length list of arguments.")) (|rem| (($ $ $) "\\spad{x rem y} is the same as \\spad{divide(x,y).remainder}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|quo| (($ $ $) "\\spad{x quo y} is the same as \\spad{divide(x,y).quotient}. See \\spadfunFrom{divide}{EuclideanDomain}.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(x,y)} divides \\spad{x} by \\spad{y} producing a record containing a \\spad{quotient} and \\spad{remainder},{} where the remainder is smaller (see \\spadfunFrom{sizeLess?}{EuclideanDomain}) than the divisor \\spad{y}.")) (|euclideanSize| (((|NonNegativeInteger|) $) "\\spad{euclideanSize(x)} returns the euclidean size of the element \\spad{x}. Error: if \\spad{x} is zero.")) (|sizeLess?| (((|Boolean|) $ $) "\\spad{sizeLess?(x,y)} tests whether \\spad{x} is strictly smaller than \\spad{y} with respect to the \\spadfunFrom{euclideanSize}{EuclideanDomain}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-320 S R) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#2|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#2|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) @@ -1216,7 +1216,7 @@ NIL ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions.")) (|eval| (($ $ (|List| (|Equation| |#1|))) "\\spad{eval(f, [x1 = v1,...,xn = vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ (|Equation| |#1|)) "\\spad{eval(f,x = v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL NIL -(-322 -3495) +(-322 -3494) ((|constructor| (NIL "This package is to be used in conjuction with \\indented{12}{the CycleIndicators package. It provides an evaluation} \\indented{12}{function for SymmetricPolynomials.}")) (|eval| ((|#1| (|Mapping| |#1| (|Integer|)) (|SymmetricPolynomial| (|Fraction| (|Integer|)))) "\\spad{eval(f,s)} evaluates the cycle index \\spad{s} by applying \\indented{1}{the function \\spad{f} to each integer in a monomial partition,{}} \\indented{1}{forms their product and sums the results over all monomials.}"))) NIL NIL @@ -1230,12 +1230,12 @@ NIL NIL (-325 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent essential singularities of functions. Objects in this domain are quotients of sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) "\\spad{coerce(f)} converts a \\spadtype{UnivariatePuiseuxSeries} to an \\spadtype{ExponentialExpansion}.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> a+,f(var))}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-1041))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-861))) (-3957 (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-842))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-861)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-1173))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1275) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-929)))) (|HasCategory| (-1275 |#1| |#2| |#3| |#4|) (QUOTE (-147))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1040))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-860))) (-3956 (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-841))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-860)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-1172))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-239))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-240))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -321) (|%list| (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (|%list| (QUOTE -298) (|%list| (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)) (|%list| (QUOTE -1274) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#4|)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-319))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-928)))) (|HasCategory| (-1274 |#1| |#2| |#3| |#4|) (QUOTE (-147))))) (-326 R) ((|constructor| (NIL "Expressions involving symbolic functions.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} \\undocumented{}")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} \\undocumented{}")) (|simplifyPower| (($ $ (|Integer|)) "simplifyPower?(\\spad{f},{}\\spad{n}) \\undocumented{}")) (|number?| (((|Boolean|) $) "\\spad{number?(f)} tests if \\spad{f} is rational")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic quantities present in \\spad{f} by applying their defining relations."))) -((-4422 -3957 (-12 (|has| |#1| (-569)) (-3957 (|has| |#1| (-1070)) (|has| |#1| (-485)))) (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) ((-4427 "*") |has| |#1| (-569)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-569)) (-4417 |has| |#1| (-569))) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (-3957 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-21))) (-3957 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (QUOTE (-1070))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))))) (-3957 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1133)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1070)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3957 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1133))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (|%list| (QUOTE -1059) (QUOTE (-558))))) +((-4421 -3956 (-12 (|has| |#1| (-569)) (-3956 (|has| |#1| (-1069)) (|has| |#1| (-485)))) (|has| |#1| (-1069)) (|has| |#1| (-485))) (-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) ((-4426 "*") |has| |#1| (-569)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-569)) (-4416 |has| |#1| (-569))) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (-3956 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-21))) (-3956 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (QUOTE (-1069))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))))) (-3956 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1132)))) (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1069)))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-21)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1132)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-25)))) (-3956 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#1| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-1132))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (|%list| (QUOTE -1058) (QUOTE (-558))))) (-327 R S) ((|constructor| (NIL "Lifting of maps to Expressions. Date Created: 16 Jan 1989 Date Last Updated: 22 Jan 1990")) (|map| (((|Expression| |#2|) (|Mapping| |#2| |#1|) (|Expression| |#1|)) "\\spad{map(f, e)} applies \\spad{f} to all the constants appearing in \\spad{e}."))) NIL @@ -1244,7 +1244,7 @@ NIL ((|constructor| (NIL "This package provides functions to convert functional expressions to power series.")) (|series| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{series(f,x = a,n)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a); terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{series(f,x = a)} expands the expression \\spad{f} as a series in powers of (\\spad{x} - a).") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{series(f,n)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{series(f)} returns a series expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{series(x)} returns \\spad{x} viewed as a series.")) (|puiseux| (((|Any|) |#2| (|Equation| |#2|) (|Fraction| (|Integer|))) "\\spad{puiseux(f,x = a,n)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{puiseux(f,x = a)} expands the expression \\spad{f} as a Puiseux series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Fraction| (|Integer|))) "\\spad{puiseux(f,n)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{puiseux(f)} returns a Puiseux expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{puiseux(x)} returns \\spad{x} viewed as a Puiseux series.")) (|laurent| (((|Any|) |#2| (|Equation| |#2|) (|Integer|)) "\\spad{laurent(f,x = a,n)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{laurent(f,x = a)} expands the expression \\spad{f} as a Laurent series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|Integer|)) "\\spad{laurent(f,n)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{laurent(f)} returns a Laurent expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{laurent(x)} returns \\spad{x} viewed as a Laurent series.")) (|taylor| (((|Any|) |#2| (|Equation| |#2|) (|NonNegativeInteger|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}; terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2| (|Equation| |#2|)) "\\spad{taylor(f,x = a)} expands the expression \\spad{f} as a Taylor series in powers of \\spad{(x - a)}.") (((|Any|) |#2| (|NonNegativeInteger|)) "\\spad{taylor(f,n)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable and terms will be computed up to order at least \\spad{n}.") (((|Any|) |#2|) "\\spad{taylor(f)} returns a Taylor expansion of the expression \\spad{f}. Note: \\spad{f} should have only one variable; the series will be expanded in powers of that variable.") (((|Any|) (|Symbol|)) "\\spad{taylor(x)} returns \\spad{x} viewed as a Taylor series."))) NIL NIL -(-329 R -3495) +(-329 R -3494) ((|constructor| (NIL "Taylor series solutions of explicit ODE's.")) (|seriesSolve| (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq, y, x = a, [b0,...,bn])} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, [b0,...,b(n-1)])}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq, y, x = a, y a = b)} is equivalent to \\spad{seriesSolve(eq=0, y, x=a, y a = b)}.") (((|Any|) |#2| (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq, y, x = a, b)} is equivalent to \\spad{seriesSolve(eq = 0, y, x = a, y a = b)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) |#2|) "\\spad{seriesSolve(eq,y, x=a, b)} is equivalent to \\spad{seriesSolve(eq, y, x=a, y a = b)}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a,[y1 a = b1,..., yn a = bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| |#2|) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1=0,...,eqn=0], [y1,...,yn], x=a, [b1,...,bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x=a, [b1,...,bn])} is equivalent to \\spad{seriesSolve([eq1,...,eqn], [y1,...,yn], x = a, [y1 a = b1,..., yn a = bn])}.") (((|Any|) (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Equation| |#2|) (|List| (|Equation| |#2|))) "\\spad{seriesSolve([eq1,...,eqn],[y1,...,yn],x = a,[y1 a = b1,...,yn a = bn])} returns a taylor series solution of \\spad{[eq1,...,eqn]} around \\spad{x = a} with initial conditions \\spad{yi(a) = bi}. Note: eqi must be of the form \\spad{fi(x, y1 x, y2 x,..., yn x) y1'(x) + gi(x, y1 x, y2 x,..., yn x) = h(x, y1 x, y2 x,..., yn x)}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{seriesSolve(eq,y,x=a,[b0,...,b(n-1)])} returns a Taylor series solution of \\spad{eq} around \\spad{x = a} with initial conditions \\spad{y(a) = b0},{} \\spad{y'(a) = b1},{} \\spad{y''(a) = b2},{} ...,{}\\spad{y(n-1)(a) = b(n-1)} \\spad{eq} must be of the form \\spad{f(x, y x, y'(x),..., y(n-1)(x)) y(n)(x) + g(x,y x,y'(x),...,y(n-1)(x)) = h(x,y x, y'(x),..., y(n-1)(x))}.") (((|Any|) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|Equation| |#2|)) "\\spad{seriesSolve(eq,y,x=a, y a = b)} returns a Taylor series solution of \\spad{eq} around \\spad{x} = a with initial condition \\spad{y(a) = b}. Note: \\spad{eq} must be of the form \\spad{f(x, y x) y'(x) + g(x, y x) = h(x, y x)}."))) NIL NIL @@ -1254,8 +1254,8 @@ NIL NIL (-331 FE |var| |cen|) ((|constructor| (NIL "ExponentialOfUnivariatePuiseuxSeries is a domain used to represent essential singularities of functions. An object in this domain is a function of the form \\spad{exp(f(x))},{} where \\spad{f(x)} is a Puiseux series with no terms of non-negative degree. Objects are ordered according to order of singularity,{} with functions which tend more rapidly to zero or infinity considered to be larger. Thus,{} if \\spad{order(f(x)) < order(g(x))},{} \\spadignore{i.e.} the first non-zero term of \\spad{f(x)} has lower degree than the first non-zero term of \\spad{g(x)},{} then \\spad{exp(f(x)) > exp(g(x))}. If \\spad{order(f(x)) = order(g(x))},{} then the ordering is essentially random. This domain is used in computing limits involving functions with essential singularities.")) (|exponentialOrder| (((|Fraction| (|Integer|)) $) "\\spad{exponentialOrder(exp(c * x **(-n) + ...))} returns \\spad{-n}. exponentialOrder(0) returns \\spad{0}.")) (|exponent| (((|UnivariatePuiseuxSeries| |#1| |#2| |#3|) $) "\\spad{exponent(exp(f(x)))} returns \\spad{f(x)}")) (|exponential| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{exponential(f(x))} returns \\spad{exp(f(x))}. Note: the function does NOT check that \\spad{f(x)} has no non-negative terms."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|))))))) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-332 M) ((|constructor| (NIL "computes various functions on factored arguments.")) (|log| (((|List| (|Record| (|:| |coef| (|NonNegativeInteger|)) (|:| |logand| |#1|))) (|Factored| |#1|)) "\\spad{log(f)} returns \\spad{[(a1,b1),...,(am,bm)]} such that the logarithm of \\spad{f} is equal to \\spad{a1*log(b1) + ... + am*log(bm)}.")) (|nthRoot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#1|) (|:| |radicand| (|List| |#1|))) (|Factored| |#1|) (|NonNegativeInteger|)) "\\spad{nthRoot(f, n)} returns \\spad{(p, r, [r1,...,rm])} such that the \\spad{n}th-root of \\spad{f} is equal to \\spad{r * \\spad{p}th-root(r1 * ... * rm)},{} where \\spad{r1},{}...,{}rm are distinct factors of \\spad{f},{} each of which has an exponent smaller than \\spad{p} in \\spad{f}."))) NIL @@ -1266,8 +1266,8 @@ NIL NIL (-334 S) ((|constructor| (NIL "The free abelian group on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The operation is commutative."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| (-558) (QUOTE (-814)))) +((-4419 . T) (-4418 . T)) +((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| (-558) (QUOTE (-813)))) (-335 S E) ((|constructor| (NIL "A free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are in a given abelian monoid. The operation is commutative.")) (|highCommonTerms| (($ $ $) "\\spad{highCommonTerms(e1 a1 + ... + en an, f1 b1 + ... + fm bm)} returns \\indented{2}{\\spad{reduce(+,[max(ei, fi) ci])}} where \\spad{ci} ranges in the intersection of \\spad{{a1,...,an}} and \\spad{{b1,...,bm}}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, e1 a1 +...+ en an)} returns \\spad{e1 f(a1) +...+ en f(an)}.")) (|mapCoef| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapCoef(f, e1 a1 +...+ en an)} returns \\spad{f(e1) a1 +...+ f(en) an}.")) (|coefficient| ((|#2| |#1| $) "\\spad{coefficient(s, e1 a1 + ... + en an)} returns \\spad{ei} such that \\spad{ai} = \\spad{s},{} or 0 if \\spad{s} is not one of the \\spad{ai}'s.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th term of \\spad{x}.")) (|nthCoef| ((|#2| $ (|Integer|)) "\\spad{nthCoef(x, n)} returns the coefficient of the n^th term of \\spad{x}.")) (|terms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{terms(e1 a1 + ... + en an)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of terms in \\spad{x}. mapGen(\\spad{f},{} \\spad{a1}\\^\\spad{e1} ... an\\^en) returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (* (($ |#2| |#1|) "\\spad{e * s} returns \\spad{e} times \\spad{s}.")) (+ (($ |#1| $) "\\spad{s + x} returns the sum of \\spad{s} and \\spad{x}."))) NIL @@ -1275,26 +1275,26 @@ NIL (-336 S) ((|constructor| (NIL "The free abelian monoid on a set \\spad{S} is the monoid of finite sums of the form \\spad{reduce(+,[ni * si])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The operation is commutative."))) NIL -((|HasCategory| (-791) (QUOTE (-814)))) +((|HasCategory| (-790) (QUOTE (-813)))) (-337 S R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#2| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#2| |#3| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#3| |#3|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#3| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#2| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) NIL ((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175)))) (-338 R E) ((|constructor| (NIL "This category is similar to AbelianMonoidRing,{} except that the sum is assumed to be finite. It is a useful model for polynomials,{} but is somewhat more general.")) (|primitivePart| (($ $) "\\spad{primitivePart(p)} returns the unit normalized form of polynomial \\spad{p} divided by the content of \\spad{p}.")) (|content| ((|#1| $) "\\spad{content(p)} gives the gcd of the coefficients of polynomial \\spad{p}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(p,r)} returns the exact quotient of polynomial \\spad{p} by \\spad{r},{} or \"failed\" if none exists.")) (|binomThmExpt| (($ $ $ (|NonNegativeInteger|)) "\\spad{binomThmExpt(p,q,n)} returns \\spad{(x+y)^n} by means of the binomial theorem trick.")) (|pomopo!| (($ $ |#1| |#2| $) "\\spad{pomopo!(p1,r,e,p2)} returns \\spad{p1 + monomial(e,r) * p2} and may use \\spad{p1} as workspace. The constaant \\spad{r} is assumed to be nonzero.")) (|mapExponents| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExponents(fn,u)} maps function \\spad{fn} onto the exponents of the non-zero monomials of polynomial \\spad{u}.")) (|minimumDegree| ((|#2| $) "\\spad{minimumDegree(p)} gives the least exponent of a non-zero term of polynomial \\spad{p}. Error: if applied to 0.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(p)} gives the number of non-zero monomials in polynomial \\spad{p}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(p)} gives the list of non-zero coefficients of polynomial \\spad{p}.")) (|ground| ((|#1| $) "\\spad{ground(p)} retracts polynomial \\spad{p} to the coefficient ring.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(p)} tests if polynomial \\spad{p} is a member of the coefficient ring."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-339 S) ((|constructor| (NIL "\\indented{1}{A FlexibleArray is the notion of an array intended to allow for growth} at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-340 S -3495) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-340 S -3494) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#2|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#2|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#2| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#2| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#2|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#2|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#2|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#2|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) NIL ((|HasCategory| |#2| (QUOTE (-381)))) -(-341 -3495) +(-341 -3494) ((|constructor| (NIL "FiniteAlgebraicExtensionField {\\em F} is the category of fields which are finite algebraic extensions of the field {\\em F}. If {\\em F} is finite then any finite algebraic extension of {\\em F} is finite,{} too. Let {\\em K} be a finite algebraic extension of the finite field {\\em F}. The exponentiation of elements of {\\em K} defines a \\spad{Z}-module structure on the multiplicative group of {\\em K}. The additive group of {\\em K} becomes a module over the ring of polynomials over {\\em F} via the operation \\spadfun{linearAssociatedExp}(a:K,{}f:SparseUnivariatePolynomial \\spad{F}) which is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em K},{} {\\em c,d} from {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)} where {\\em q=size()\\$F}. The operations order and discreteLog associated with the multiplicative exponentiation have additive analogues associated to the operation \\spadfun{linearAssociatedExp}. These are the functions \\spadfun{linearAssociatedOrder} and \\spadfun{linearAssociatedLog},{} respectively.")) (|linearAssociatedLog| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") $ $) "\\spad{linearAssociatedLog(b,a)} returns a polynomial {\\em g},{} such that the \\spadfun{linearAssociatedExp}(\\spad{b},{}\\spad{g}) equals {\\em a}. If there is no such polynomial {\\em g},{} then \\spadfun{linearAssociatedLog} fails.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedLog(a)} returns a polynomial {\\em g},{} such that \\spadfun{linearAssociatedExp}(normalElement(),{}\\spad{g}) equals {\\em a}.")) (|linearAssociatedOrder| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{linearAssociatedOrder(a)} retruns the monic polynomial {\\em g} of least degree,{} such that \\spadfun{linearAssociatedExp}(a,{}\\spad{g}) is 0.")) (|linearAssociatedExp| (($ $ (|SparseUnivariatePolynomial| |#1|)) "\\spad{linearAssociatedExp(a,f)} is linear over {\\em F},{} \\spadignore{i.e.} for elements {\\em a} from {\\em \\$},{} {\\em c,d} form {\\em F} and {\\em f,g} univariate polynomials over {\\em F} we have \\spadfun{linearAssociatedExp}(a,{}cf+dg) equals {\\em c} times \\spadfun{linearAssociatedExp}(a,{}\\spad{f}) plus {\\em d} times \\spadfun{linearAssociatedExp}(a,{}\\spad{g}). Therefore \\spadfun{linearAssociatedExp} is defined completely by its action on monomials from {\\em F[X]}: \\spadfun{linearAssociatedExp}(a,{}monomial(1,{}\\spad{k})\\$SUP(\\spad{F})) is defined to be \\spadfun{Frobenius}(a,{}\\spad{k}) which is {\\em a**(q**k)},{} where {\\em q=size()\\$F}.")) (|generator| (($) "\\spad{generator()} returns a root of the defining polynomial. This element generates the field as an algebra over the ground field.")) (|normal?| (((|Boolean|) $) "\\spad{normal?(a)} tests whether the element \\spad{a} is normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i <= extensionDegree()-1} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Implementation according to Lidl/Niederreiter: Theorem 2.39.")) (|normalElement| (($) "\\spad{normalElement()} returns a element,{} normal over the ground field \\spad{F},{} \\spadignore{i.e.} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. At the first call,{} the element is computed by \\spadfunFrom{createNormalElement}{FiniteAlgebraicExtensionField} then cached in a global variable. On subsequent calls,{} the element is retrieved by referencing the global variable.")) (|createNormalElement| (($) "\\spad{createNormalElement()} computes a normal element over the ground field \\spad{F},{} that is,{} \\spad{a**(q**i), 0 <= i < extensionDegree()} is an \\spad{F}-basis,{} where \\spad{q = size()\\$F}. Reference: Such an element exists Lidl/Niederreiter: Theorem 2.35.")) (|trace| (($ $ (|PositiveInteger|)) "\\spad{trace(a,d)} computes the trace of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size \\spad{q}. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: \\spad{trace(a,d) = reduce(+,[a**(q**(d*i)) for i in 0..n/d])}.") ((|#1| $) "\\spad{trace(a)} computes the trace of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|norm| (($ $ (|PositiveInteger|)) "\\spad{norm(a,d)} computes the norm of \\spad{a} with respect to the field of extension degree \\spad{d} over the ground field of size. Error: if \\spad{d} does not divide the extension degree of \\spad{a}. Note: norm(a,{}\\spad{d}) = reduce(*,{}[a**(q**(d*i)) for \\spad{i} in 0..n/d])") ((|#1| $) "\\spad{norm(a)} computes the norm of \\spad{a} with respect to the field considered as an algebra with 1 over the ground field \\spad{F}.")) (|degree| (((|PositiveInteger|) $) "\\spad{degree(a)} returns the degree of the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|extensionDegree| (((|PositiveInteger|)) "\\spad{extensionDegree()} returns the degree of field extension.")) (|definingPolynomial| (((|SparseUnivariatePolynomial| |#1|)) "\\spad{definingPolynomial()} returns the polynomial used to define the field extension.")) (|minimalPolynomial| (((|SparseUnivariatePolynomial| $) $ (|PositiveInteger|)) "\\spad{minimalPolynomial(x,n)} computes the minimal polynomial of \\spad{x} over the field of extension degree \\spad{n} over the ground field \\spad{F}.") (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of an element \\spad{a} over the ground field \\spad{F}.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{}...,{}vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{F}-vectorspace basis.")) (|basis| (((|Vector| $) (|PositiveInteger|)) "\\spad{basis(n)} returns a fixed basis of a subfield of \\$ as \\spad{F}-vectorspace.") (((|Vector| $)) "\\spad{basis()} returns a fixed basis of \\$ as \\spad{F}-vectorspace."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-342) ((|constructor| (NIL "This domain builds representations of program code segments for use with the FortranProgram domain.")) (|setLabelValue| (((|SingleInteger|) (|SingleInteger|)) "\\spad{setLabelValue(i)} resets the counter which produces labels to \\spad{i}")) (|getCode| (((|SExpression|) $) "\\spad{getCode(f)} returns a Lisp list of strings representing \\spad{f} in Fortran notation. This is used by the FortranProgram domain.")) (|printCode| (((|Void|) $) "\\spad{printCode(f)} prints out \\spad{f} in FORTRAN notation.")) (|code| (((|Union| (|:| |nullBranch| "null") (|:| |assignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |arrayIndex| (|List| (|Polynomial| (|Integer|)))) (|:| |rand| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |arrayAssignmentBranch| (|Record| (|:| |var| (|Symbol|)) (|:| |rand| (|OutputForm|)) (|:| |ints2Floats?| (|Boolean|)))) (|:| |conditionalBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (|Record| (|:| |empty?| (|Boolean|)) (|:| |value| (|Record| (|:| |ints2Floats?| (|Boolean|)) (|:| |expr| (|OutputForm|)))))) (|:| |blockBranch| (|List| $)) (|:| |commentBranch| (|List| (|String|))) (|:| |callBranch| (|String|)) (|:| |forBranch| (|Record| (|:| |range| (|SegmentBinding| (|Polynomial| (|Integer|)))) (|:| |span| (|Polynomial| (|Integer|))) (|:| |body| $))) (|:| |labelBranch| (|SingleInteger|)) (|:| |loopBranch| (|Record| (|:| |switch| (|Switch|)) (|:| |body| $))) (|:| |commonBranch| (|Record| (|:| |name| (|Symbol|)) (|:| |contents| (|List| (|Symbol|))))) (|:| |printBranch| (|List| (|OutputForm|)))) $) "\\spad{code(f)} returns the internal representation of the object represented by \\spad{f}.")) (|operation| (((|Union| (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) "\\spad{operation(f)} returns the name of the operation represented by \\spad{f}.")) (|common| (($ (|Symbol|) (|List| (|Symbol|))) "\\spad{common(name,contents)} creates a representation a named common block.")) (|printStatement| (($ (|List| (|OutputForm|))) "\\spad{printStatement(l)} creates a representation of a PRINT statement.")) (|save| (($) "\\spad{save()} creates a representation of a SAVE statement.")) (|stop| (($) "\\spad{stop()} creates a representation of a STOP statement.")) (|block| (($ (|List| $)) "\\spad{block(l)} creates a representation of the statements in \\spad{l} as a block.")) (|assign| (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Float|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|Integer|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Complex| (|Float|))))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|Integer|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Complex| (|Float|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Float|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|Integer|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineComplex|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineFloat|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|List| (|Polynomial| (|Integer|))) (|Expression| (|MachineInteger|))) "\\spad{assign(x,l,y)} creates a representation of the assignment of \\spad{y} to the \\spad{l}\\spad{'}th element of array \\spad{x} (\\spad{l} is a list of indices).") (($ (|Symbol|) (|Vector| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineComplex|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineFloat|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|Expression| (|MachineInteger|)))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Vector| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Matrix| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineComplex|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineFloat|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|Expression| (|MachineInteger|))) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.") (($ (|Symbol|) (|String|)) "\\spad{assign(x,y)} creates a representation of the FORTRAN expression x=y.")) (|cond| (($ (|Switch|) $ $) "\\spad{cond(s,e,f)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e} ELSE \\spad{f}.") (($ (|Switch|) $) "\\spad{cond(s,e)} creates a representation of the FORTRAN expression IF (\\spad{s}) THEN \\spad{e}.")) (|returns| (($ (|Expression| (|Complex| (|Float|)))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Integer|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|Float|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineComplex|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineInteger|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($ (|Expression| (|MachineFloat|))) "\\spad{returns(e)} creates a representation of a FORTRAN RETURN statement with a returned value.") (($) "\\spad{returns()} creates a representation of a FORTRAN RETURN statement.")) (|call| (($ (|String|)) "\\spad{call(s)} creates a representation of a FORTRAN CALL statement")) (|comment| (($ (|List| (|String|))) "\\spad{comment(s)} creates a representation of the Strings \\spad{s} as a multi-line FORTRAN comment.") (($ (|String|)) "\\spad{comment(s)} creates a representation of the String \\spad{s} as a single FORTRAN comment.")) (|continue| (($ (|SingleInteger|)) "\\spad{continue(l)} creates a representation of a FORTRAN CONTINUE labelled with \\spad{l}")) (|goto| (($ (|SingleInteger|)) "\\spad{goto(l)} creates a representation of a FORTRAN GOTO statement")) (|repeatUntilLoop| (($ (|Switch|) $) "\\spad{repeatUntilLoop(s,c)} creates a repeat ... until loop in FORTRAN.")) (|whileLoop| (($ (|Switch|) $) "\\spad{whileLoop(s,c)} creates a while loop in FORTRAN.")) (|forLoop| (($ (|SegmentBinding| (|Polynomial| (|Integer|))) (|Polynomial| (|Integer|)) $) "\\spad{forLoop(i=1..10,n,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10 by \\spad{n}.") (($ (|SegmentBinding| (|Polynomial| (|Integer|))) $) "\\spad{forLoop(i=1..10,c)} creates a representation of a FORTRAN DO loop with \\spad{i} ranging over the values 1 to 10."))) @@ -1312,7 +1312,7 @@ NIL ((|constructor| (NIL "Represntation of data needed to instantiate a domain constructor.")) (|lookupFunction| (((|Identifier|) $) "\\spad{lookupFunction x} returns the name of the lookup function associated with the functor data \\spad{x}.")) (|categories| (((|PrimitiveArray| (|ConstructorCall| (|CategoryConstructor|))) $) "\\spad{categories x} returns the list of categories forms each domain object obtained from the domain data \\spad{x} belongs to.")) (|encodingDirectory| (((|PrimitiveArray| (|NonNegativeInteger|)) $) "\\spad{encodintDirectory x} returns the directory of domain-wide entity description.")) (|attributeData| (((|List| (|Pair| (|Syntax|) (|NonNegativeInteger|))) $) "\\spad{attributeData x} returns the list of attribute-predicate bit vector index pair associated with the functor data \\spad{x}.")) (|domainTemplate| (((|DomainTemplate|) $) "\\spad{domainTemplate x} returns the domain template vector associated with the functor data \\spad{x}."))) NIL NIL -(-346 -3495 UP UPUP R) +(-346 -3494 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|lSpaceBasis| (((|Vector| |#4|) $) "\\spad{lSpaceBasis(d)} returns a basis for \\spad{L(d) = {f | (f) >= -d}} as a module over \\spad{K[x]}.")) (|finiteBasis| (((|Vector| |#4|) $) "\\spad{finiteBasis(d)} returns a basis for \\spad{d} as a module over {\\em K[x]}."))) NIL NIL @@ -1320,37 +1320,37 @@ NIL ((|constructor| (NIL "\\indented{1}{Lift a map to finite divisors.} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 19 May 1993")) (|map| (((|FiniteDivisor| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{map(f,d)} \\undocumented{}"))) NIL NIL -(-348 S -3495 UP UPUP R) +(-348 S -3494 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#5| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) (|:| |principalPart| |#5|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#5| |#3| |#3| |#3| |#2|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#2| |#2| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#2| |#2|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#5|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#3| (|Fraction| |#3|) |#4| |#5|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL -(-349 -3495 UP UPUP R) +(-349 -3494 UP UPUP R) ((|constructor| (NIL "This category describes finite rational divisors on a curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve.")) (|generator| (((|Union| |#4| "failed") $) "\\spad{generator(d)} returns \\spad{f} if \\spad{(f) = d},{} \"failed\" if \\spad{d} is not principal.")) (|principal?| (((|Boolean|) $) "\\spad{principal?(D)} tests if the argument is the divisor of a function.")) (|reduce| (($ $) "\\spad{reduce(D)} converts \\spad{D} to some reduced form (the reduced forms can be differents in different implementations).")) (|decompose| (((|Record| (|:| |id| (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) "\\spad{decompose(d)} returns \\spad{[id, f]} where \\spad{d = (id) + div(f)}.")) (|divisor| (($ |#4| |#2| |#2| |#2| |#1|) "\\spad{divisor(h, d, d', g, r)} returns the sum of all the finite points where \\spad{h/d} has residue \\spad{r}. \\spad{h} must be integral. \\spad{d} must be squarefree. \\spad{d'} is some derivative of \\spad{d} (not necessarily dd/dx). \\spad{g = gcd(d,discriminant)} contains the ramified zeros of \\spad{d}") (($ |#1| |#1| (|Integer|)) "\\spad{divisor(a, b, n)} makes the divisor \\spad{nP} where P: \\spad{(x = a, y = b)}. \\spad{P} is allowed to be singular if \\spad{n} is a multiple of the rank.") (($ |#1| |#1|) "\\spad{divisor(a, b)} makes the divisor P: \\spad{(x = a, y = b)}. Error: if \\spad{P} is singular.") (($ |#4|) "\\spad{divisor(g)} returns the divisor of the function \\spad{g}.") (($ (|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|)) "\\spad{divisor(I)} makes a divisor \\spad{D} from an ideal \\spad{I}.")) (|ideal| (((|FractionalIdeal| |#2| (|Fraction| |#2|) |#3| |#4|) $) "\\spad{ideal(D)} returns the ideal corresponding to a divisor \\spad{D}."))) NIL NIL (-350 S R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) +((|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-351 R) ((|constructor| (NIL "This category provides a selection of evaluation operations depending on what the argument type \\spad{R} provides.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f, ex)} evaluates ex,{} applying \\spad{f} to values of type \\spad{R} in ex."))) NIL NIL (-352 |basicSymbols| |subscriptedSymbols| R) ((|constructor| (NIL "A domain of expressions involving functions which can be translated into standard Fortran-77,{} with some extra extensions from the NAG Fortran Library.")) (|useNagFunctions| (((|Boolean|) (|Boolean|)) "\\spad{useNagFunctions(v)} sets the flag which controls whether NAG functions \\indented{1}{are being used for mathematical and machine constants.\\space{2}The previous} \\indented{1}{value is returned.}") (((|Boolean|)) "\\spad{useNagFunctions()} indicates whether NAG functions are being used \\indented{1}{for mathematical and machine constants.}")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(e)} return a list of all the variables in \\spad{e}.")) (|pi| (($) "\\spad{pi(x)} represents the NAG Library function X01AAF which returns \\indented{1}{an approximation to the value of \\spad{pi}}")) (|tanh| (($ $) "\\spad{tanh(x)} represents the Fortran intrinsic function TANH")) (|cosh| (($ $) "\\spad{cosh(x)} represents the Fortran intrinsic function COSH")) (|sinh| (($ $) "\\spad{sinh(x)} represents the Fortran intrinsic function SINH")) (|atan| (($ $) "\\spad{atan(x)} represents the Fortran intrinsic function ATAN")) (|acos| (($ $) "\\spad{acos(x)} represents the Fortran intrinsic function ACOS")) (|asin| (($ $) "\\spad{asin(x)} represents the Fortran intrinsic function ASIN")) (|tan| (($ $) "\\spad{tan(x)} represents the Fortran intrinsic function TAN")) (|cos| (($ $) "\\spad{cos(x)} represents the Fortran intrinsic function COS")) (|sin| (($ $) "\\spad{sin(x)} represents the Fortran intrinsic function SIN")) (|log10| (($ $) "\\spad{log10(x)} represents the Fortran intrinsic function \\spad{LOG10}")) (|log| (($ $) "\\spad{log(x)} represents the Fortran intrinsic function LOG")) (|exp| (($ $) "\\spad{exp(x)} represents the Fortran intrinsic function EXP")) (|sqrt| (($ $) "\\spad{sqrt(x)} represents the Fortran intrinsic function SQRT")) (|abs| (($ $) "\\spad{abs(x)} represents the Fortran intrinsic function ABS")) (|coerce| (((|Expression| |#3|) $) "\\spad{coerce(x)} \\undocumented{}")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Symbol|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (((|Union| $ "failed") (|Expression| |#3|)) "\\spad{retractIfCan(e)} takes \\spad{e} and tries to transform it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}")) (|retract| (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Symbol|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a FortranExpression \\indented{1}{checking that it is one of the given basic symbols} \\indented{1}{or subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}") (($ (|Expression| |#3|)) "\\spad{retract(e)} takes \\spad{e} and transforms it into a \\indented{1}{FortranExpression checking that it contains no non-Fortran} \\indented{1}{functions,{} and that it only contains the given basic symbols} \\indented{1}{and subscripted symbols which correspond to scalar and array} \\indented{1}{parameters respectively.}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (|%list| (QUOTE -1059) (QUOTE (-558))))) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-391)))) (|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (|%list| (QUOTE -1058) (QUOTE (-558))))) (-353 |p| |n|) ((|constructor| (NIL "FiniteField(\\spad{p},{}\\spad{n}) implements finite fields with p**n elements. This packages checks that \\spad{p} is prime. For a non-checking version,{} see \\spadtype{InnerFiniteField}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| (-925 |#1|) (QUOTE (-147))) (|HasCategory| (-925 |#1|) (QUOTE (-381)))) (|HasCategory| (-925 |#1|) (QUOTE (-149))) (|HasCategory| (-925 |#1|) (QUOTE (-381))) (|HasCategory| (-925 |#1|) (QUOTE (-147)))) -(-354 S -3495 UP UPUP) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| (-924 |#1|) (QUOTE (-147))) (|HasCategory| (-924 |#1|) (QUOTE (-381)))) (|HasCategory| (-924 |#1|) (QUOTE (-149))) (|HasCategory| (-924 |#1|) (QUOTE (-381))) (|HasCategory| (-924 |#1|) (QUOTE (-147)))) +(-354 S -3494 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#2|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#2|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (|Mapping| |#3| |#3|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#3| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#3| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#2| $ |#2| |#2|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#3| |#3|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#3|)) (|:| |den| |#3|)) (|Mapping| |#3| |#3|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#3|) |#3|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#3|) |#3|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#3|)) (|:| |den| |#3|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#3|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#3|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#2|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#3|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#2|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#3|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#2|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#3|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#2|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#2| |#2|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) NIL ((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-376)))) -(-355 -3495 UP UPUP) +(-355 -3494 UP UPUP) ((|constructor| (NIL "This category is a model for the function field of a plane algebraic curve.")) (|rationalPoints| (((|List| (|List| |#1|))) "\\spad{rationalPoints()} returns the list of all the affine rational points.")) (|nonSingularModel| (((|List| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{nonSingularModel(u)} returns the equations in \\spad{u1},{}...,{}un of an affine non-singular model for the curve.")) (|algSplitSimple| (((|Record| (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (|Mapping| |#2| |#2|)) "\\spad{algSplitSimple(f, D)} returns \\spad{[h,d,d',g]} such that \\spad{f=h/d},{} \\spad{h} is integral at all the normal places \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{d' = Dd},{} \\spad{g = gcd(d, discriminant())} and \\spad{D} is the derivation to use. \\spad{f} must have at most simple finite poles.")) (|hyperelliptic| (((|Union| |#2| "failed")) "\\spad{hyperelliptic()} returns \\spad{p(x)} if the curve is the hyperelliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elliptic| (((|Union| |#2| "failed")) "\\spad{elliptic()} returns \\spad{p(x)} if the curve is the elliptic defined by \\spad{y**2 = p(x)},{} \"failed\" otherwise.")) (|elt| ((|#1| $ |#1| |#1|) "\\spad{elt(f,a,b)} or \\spad{f}(a,{} \\spad{b}) returns the value of \\spad{f} at the point \\spad{(x = a, y = b)} if it is not singular.")) (|primitivePart| (($ $) "\\spad{primitivePart(f)} removes the content of the denominator and the common content of the numerator of \\spad{f}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{differentiate(x, d)} extends the derivation \\spad{d} from UP to \\$ and applies it to \\spad{x}.")) (|integralDerivationMatrix| (((|Record| (|:| |num| (|Matrix| |#2|)) (|:| |den| |#2|)) (|Mapping| |#2| |#2|)) "\\spad{integralDerivationMatrix(d)} extends the derivation \\spad{d} from UP to \\$ and returns (\\spad{M},{} \\spad{Q}) such that the i^th row of \\spad{M} divided by \\spad{Q} form the coordinates of \\spad{d(wi)} with respect to \\spad{(w1,...,wn)} where \\spad{(w1,...,wn)} is the integral basis returned by integralBasis().")) (|integralRepresents| (($ (|Vector| |#2|) |#2|) "\\spad{integralRepresents([A1,...,An], D)} returns \\spad{(A1 w1+...+An wn)/D} where \\spad{(w1,...,wn)} is the integral basis of \\spad{integralBasis()}.")) (|integralCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{integralCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 w1 +...+ An wn) / D} where \\spad{(w1,...,wn)} is the integral basis returned by \\spad{integralBasis()}.")) (|represents| (($ (|Vector| |#2|) |#2|) "\\spad{represents([A0,...,A(n-1)],D)} returns \\spad{(A0 + A1 y +...+ A(n-1)*y**(n-1))/D}.")) (|yCoordinates| (((|Record| (|:| |num| (|Vector| |#2|)) (|:| |den| |#2|)) $) "\\spad{yCoordinates(f)} returns \\spad{[[A1,...,An], D]} such that \\spad{f = (A1 + A2 y +...+ An y**(n-1)) / D}.")) (|inverseIntegralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrixAtInfinity()} returns \\spad{M} such that \\spad{M (v1,...,vn) = (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|integralMatrixAtInfinity| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrixAtInfinity()} returns \\spad{M} such that \\spad{(v1,...,vn) = M (1, y, ..., y**(n-1))} where \\spad{(v1,...,vn)} is the local integral basis at infinity returned by \\spad{infIntBasis()}.")) (|inverseIntegralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{inverseIntegralMatrix()} returns \\spad{M} such that \\spad{M (w1,...,wn) = (1, y, ..., y**(n-1))} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|integralMatrix| (((|Matrix| (|Fraction| |#2|))) "\\spad{integralMatrix()} returns \\spad{M} such that \\spad{(w1,...,wn) = M (1, y, ..., y**(n-1))},{} where \\spad{(w1,...,wn)} is the integral basis of \\spadfunFrom{integralBasis}{FunctionFieldCategory}.")) (|reduceBasisAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{reduceBasisAtInfinity(b1,...,bn)} returns \\spad{(x**i * bj)} for all \\spad{i},{}\\spad{j} such that \\spad{x**i*bj} is locally integral at infinity.")) (|normalizeAtInfinity| (((|Vector| $) (|Vector| $)) "\\spad{normalizeAtInfinity(v)} makes \\spad{v} normal at infinity.")) (|complementaryBasis| (((|Vector| $) (|Vector| $)) "\\spad{complementaryBasis(b1,...,bn)} returns the complementary basis \\spad{(b1',...,bn')} of \\spad{(b1,...,bn)}.")) (|integral?| (((|Boolean|) $ |#2|) "\\spad{integral?(f, p)} tests whether \\spad{f} is locally integral at \\spad{p(x) = 0}.") (((|Boolean|) $ |#1|) "\\spad{integral?(f, a)} tests whether \\spad{f} is locally integral at \\spad{x = a}.") (((|Boolean|) $) "\\spad{integral?()} tests if \\spad{f} is integral over \\spad{k[x]}.")) (|integralAtInfinity?| (((|Boolean|) $) "\\spad{integralAtInfinity?()} tests if \\spad{f} is locally integral at infinity.")) (|integralBasisAtInfinity| (((|Vector| $)) "\\spad{integralBasisAtInfinity()} returns the local integral basis at infinity.")) (|integralBasis| (((|Vector| $)) "\\spad{integralBasis()} returns the integral basis for the curve.")) (|ramified?| (((|Boolean|) |#2|) "\\spad{ramified?(p)} tests whether \\spad{p(x) = 0} is ramified.") (((|Boolean|) |#1|) "\\spad{ramified?(a)} tests whether \\spad{x = a} is ramified.")) (|ramifiedAtInfinity?| (((|Boolean|)) "\\spad{ramifiedAtInfinity?()} tests if infinity is ramified.")) (|singular?| (((|Boolean|) |#2|) "\\spad{singular?(p)} tests whether \\spad{p(x) = 0} is singular.") (((|Boolean|) |#1|) "\\spad{singular?(a)} tests whether \\spad{x = a} is singular.")) (|singularAtInfinity?| (((|Boolean|)) "\\spad{singularAtInfinity?()} tests if there is a singularity at infinity.")) (|branchPoint?| (((|Boolean|) |#2|) "\\spad{branchPoint?(p)} tests whether \\spad{p(x) = 0} is a branch point.") (((|Boolean|) |#1|) "\\spad{branchPoint?(a)} tests whether \\spad{x = a} is a branch point.")) (|branchPointAtInfinity?| (((|Boolean|)) "\\spad{branchPointAtInfinity?()} tests if there is a branch point at infinity.")) (|rationalPoint?| (((|Boolean|) |#1| |#1|) "\\spad{rationalPoint?(a, b)} tests if \\spad{(x=a,y=b)} is on the curve.")) (|absolutelyIrreducible?| (((|Boolean|)) "\\spad{absolutelyIrreducible?()} tests if the curve absolutely irreducible?")) (|genus| (((|NonNegativeInteger|)) "\\spad{genus()} returns the genus of one absolutely irreducible component")) (|numberOfComponents| (((|NonNegativeInteger|)) "\\spad{numberOfComponents()} returns the number of absolutely irreducible components."))) -((-4418 |has| (-419 |#2|) (-376)) (-4423 |has| (-419 |#2|) (-376)) (-4417 |has| (-419 |#2|) (-376)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 |has| (-419 |#2|) (-376)) (-4422 |has| (-419 |#2|) (-376)) (-4416 |has| (-419 |#2|) (-376)) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-356 R1 UP1 UPUP1 F1 R2 UP2 UPUP2 F2) ((|constructor| (NIL "Lifts a map from rings to function fields over them.")) (|map| ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f, p)} lifts \\spad{f} to \\spad{F1} and applies it to \\spad{p}."))) @@ -1358,16 +1358,16 @@ NIL NIL (-357 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroup(\\spad{p},{}\\spad{n}) implements a finite field extension of degee \\spad{n} over the prime field with \\spad{p} elements. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. The Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| (-925 |#1|) (QUOTE (-147))) (|HasCategory| (-925 |#1|) (QUOTE (-381)))) (|HasCategory| (-925 |#1|) (QUOTE (-149))) (|HasCategory| (-925 |#1|) (QUOTE (-381))) (|HasCategory| (-925 |#1|) (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| (-924 |#1|) (QUOTE (-147))) (|HasCategory| (-924 |#1|) (QUOTE (-381)))) (|HasCategory| (-924 |#1|) (QUOTE (-149))) (|HasCategory| (-924 |#1|) (QUOTE (-381))) (|HasCategory| (-924 |#1|) (QUOTE (-147)))) (-358 GF |defpol|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtensionByPolynomial(GF,{}defpol) implements a finite extension field of the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial {\\em defpol},{} which MUST be primitive (user responsibility). Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field it is used to perform additions in the field quickly."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-359 GF |extdeg|) ((|constructor| (NIL "FiniteFieldCyclicGroupExtension(GF,{}\\spad{n}) implements a extension of degree \\spad{n} over the ground field {\\em GF}. Its elements are represented by powers of a primitive element,{} \\spadignore{i.e.} a generator of the multiplicative (cyclic) group. As primitive element we choose the root of the extension polynomial,{} which is created by {\\em createPrimitivePoly} from \\spadtype{FiniteFieldPolynomialPackage}. Zech logarithms are stored in a table of size half of the field size,{} and use \\spadtype{SingleInteger} for representing field elements,{} hence,{} there are restrictions on the size of the field.")) (|getZechTable| (((|PrimitiveArray| (|SingleInteger|))) "\\spad{getZechTable()} returns the zech logarithm table of the field. This table is used to perform additions in the field quickly."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-360 GF) ((|constructor| (NIL "FiniteFieldFunctions(GF) is a package with functions concerning finite extension fields of the finite ground field {\\em GF},{} \\spadignore{e.g.} Zech logarithms.")) (|createLowComplexityNormalBasis| (((|Union| (|SparseUnivariatePolynomial| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) (|PositiveInteger|)) "\\spad{createLowComplexityNormalBasis(n)} tries to find a a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix If no low complexity basis is found it calls \\axiomFunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}(\\spad{n}) to produce a normal polynomial of degree {\\em n} over {\\em GF}")) (|createLowComplexityTable| (((|Union| (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) "failed") (|PositiveInteger|)) "\\spad{createLowComplexityTable(n)} tries to find a low complexity normal basis of degree {\\em n} over {\\em GF} and returns its multiplication matrix Fails,{} if it does not find a low complexity basis")) (|sizeMultiplication| (((|NonNegativeInteger|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{sizeMultiplication(m)} returns the number of entries of the multiplication table {\\em m}.")) (|createMultiplicationMatrix| (((|Matrix| |#1|) (|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{createMultiplicationMatrix(m)} forms the multiplication table {\\em m} into a matrix over the ground field.")) (|createMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|))))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createMultiplicationTable(f)} generates a multiplication table for the normal basis of the field extension determined by {\\em f}. This is needed to perform multiplications between elements represented as coordinate vectors to this basis. See \\spadtype{FFNBP},{} \\spadtype{FFNBX}.")) (|createZechTable| (((|PrimitiveArray| (|SingleInteger|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{createZechTable(f)} generates a Zech logarithm table for the cyclic group representation of a extension of the ground field by the primitive polynomial {\\em f(x)},{} \\spadignore{i.e.} \\spad{Z(i)},{} defined by {\\em x**Z(i) = 1+x**i} is stored at index \\spad{i}. This is needed in particular to perform addition of field elements in finite fields represented in this way. See \\spadtype{FFCGP},{} \\spadtype{FFCGX}."))) NIL @@ -1382,51 +1382,51 @@ NIL NIL (-363) ((|constructor| (NIL "FiniteFieldCategory is the category of finite fields")) (|representationType| (((|Union| "prime" "polynomial" "normal" "cyclic")) "\\spad{representationType()} returns the type of the representation,{} one of: \\spad{prime},{} \\spad{polynomial},{} \\spad{normal},{} or \\spad{cyclic}.")) (|order| (((|PositiveInteger|) $) "\\spad{order(b)} computes the order of an element \\spad{b} in the multiplicative group of the field. Error: if \\spad{b} equals 0.")) (|discreteLog| (((|NonNegativeInteger|) $) "\\spad{discreteLog(a)} computes the discrete logarithm of \\spad{a} with respect to \\spad{primitiveElement()} of the field.")) (|primitive?| (((|Boolean|) $) "\\spad{primitive?(b)} tests whether the element \\spad{b} is a generator of the (cyclic) multiplicative group of the field,{} \\spadignore{i.e.} is a primitive element. Implementation Note: see ch.IX.1.3,{} th.2 in \\spad{D}. Lipson.")) (|primitiveElement| (($) "\\spad{primitiveElement()} returns a primitive element stored in a global variable in the domain. At first call,{} the primitive element is computed by calling \\spadfun{createPrimitiveElement}.")) (|createPrimitiveElement| (($) "\\spad{createPrimitiveElement()} computes a generator of the (cyclic) multiplicative group of the field.")) (|tableForDiscreteLogarithm| (((|Table| (|PositiveInteger|) (|NonNegativeInteger|)) (|Integer|)) "\\spad{tableForDiscreteLogarithm(a,n)} returns a table of the discrete logarithms of \\spad{a**0} up to \\spad{a**(n-1)} which,{} called with key \\spad{lookup(a**i)} returns \\spad{i} for \\spad{i} in \\spad{0..n-1}. Error: if not called for prime divisors of order of \\indented{7}{multiplicative group.}")) (|factorsOfCyclicGroupSize| (((|List| (|Record| (|:| |factor| (|Integer|)) (|:| |exponent| (|Integer|))))) "\\spad{factorsOfCyclicGroupSize()} returns the factorization of size()\\spad{-1}")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(mat)},{} given a matrix representing a homogeneous system of equations,{} returns a vector whose characteristic'th powers is a non-trivial solution,{} or \"failed\" if no such vector exists.")) (|charthRoot| (($ $) "\\spad{charthRoot(a)} takes the characteristic'th root of {\\em a}. Note: such a root is alway defined in finite fields."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-364 R UP -3495) +(-364 R UP -3494) ((|constructor| (NIL "In this package \\spad{R} is a Euclidean domain and \\spad{F} is a framed algebra over \\spad{R}. The package provides functions to compute the integral closure of \\spad{R} in the quotient field of \\spad{F}. It is assumed that \\spad{char(R/P) = char(R)} for any prime \\spad{P} of \\spad{R}. A typical instance of this is when \\spad{R = K[x]} and \\spad{F} is a function field over \\spad{R}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) |#1|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-365 |p| |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasis(\\spad{p},{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the prime field with \\spad{p} elements. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial created by \\spadfunFrom{createNormalPoly}{FiniteFieldPolynomialPackage}.")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: The time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| (|PrimeField| |#1|))) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| (|PrimeField| |#1|)) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| (-925 |#1|) (QUOTE (-147))) (|HasCategory| (-925 |#1|) (QUOTE (-381)))) (|HasCategory| (-925 |#1|) (QUOTE (-149))) (|HasCategory| (-925 |#1|) (QUOTE (-381))) (|HasCategory| (-925 |#1|) (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| (-924 |#1|) (QUOTE (-147))) (|HasCategory| (-924 |#1|) (QUOTE (-381)))) (|HasCategory| (-924 |#1|) (QUOTE (-149))) (|HasCategory| (-924 |#1|) (QUOTE (-381))) (|HasCategory| (-924 |#1|) (QUOTE (-147)))) (-366 GF |uni|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}uni) implements a finite extension of the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to. a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element,{} where \\spad{q} is the size of {\\em GF}. The normal element is chosen as a root of the extension polynomial,{} which MUST be normal over {\\em GF} (user responsibility)")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-367 GF |extdeg|) ((|constructor| (NIL "FiniteFieldNormalBasisExtensionByPolynomial(GF,{}\\spad{n}) implements a finite extension field of degree \\spad{n} over the ground field {\\em GF}. The elements are represented by coordinate vectors with respect to a normal basis,{} \\spadignore{i.e.} a basis consisting of the conjugates (\\spad{q}-powers) of an element,{} in this case called normal element. This is chosen as a root of the extension polynomial,{} created by {\\em createNormalPoly} from \\spadtype{FiniteFieldPolynomialPackage}")) (|sizeMultiplication| (((|NonNegativeInteger|)) "\\spad{sizeMultiplication()} returns the number of entries in the multiplication table of the field. Note: the time of multiplication of field elements depends on this size.")) (|getMultiplicationMatrix| (((|Matrix| |#1|)) "\\spad{getMultiplicationMatrix()} returns the multiplication table in form of a matrix.")) (|getMultiplicationTable| (((|Vector| (|List| (|Record| (|:| |value| |#1|) (|:| |index| (|SingleInteger|)))))) "\\spad{getMultiplicationTable()} returns the multiplication table for the normal basis of the field. This table is used to perform multiplications between field elements."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-368 GF |defpol|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} defpol) implements the extension of the finite field {\\em GF} generated by the extension polynomial {\\em defpol} which MUST be irreducible. Note: the user has the responsibility to ensure that {\\em defpol} is irreducible."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-369 GF) ((|constructor| (NIL "This package provides a number of functions for generating,{} counting and testing irreducible,{} normal,{} primitive,{} random polynomials over finite fields.")) (|reducedQPowers| (((|PrimitiveArray| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{reducedQPowers(f)} generates \\spad{[x,x**q,x**(q**2),...,x**(q**(n-1))]} reduced modulo \\spad{f} where \\spad{q = size()\\$GF} and \\spad{n = degree f}.")) (|leastAffineMultiple| (((|SparseUnivariatePolynomial| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{leastAffineMultiple(f)} computes the least affine polynomial which is divisible by the polynomial \\spad{f} over the finite field {\\em GF},{} \\spadignore{i.e.} a polynomial whose exponents are 0 or a power of \\spad{q},{} the size of {\\em GF}.")) (|random| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{random(m,n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{d} over the finite field {\\em GF},{} \\spad{d} between \\spad{m} and \\spad{n}.") (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{random(n)}\\$FFPOLY(GF) generates a random monic polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|nextPrimitiveNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitiveNormalPoly(f)} yields the next primitive normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or,{} in case these numbers are equal,{} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. If these numbers are equals,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g},{} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are coefficients according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextNormalPrimitivePoly(\\spad{f}).")) (|nextNormalPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPrimitivePoly(f)} yields the next normal primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g} or if {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than this number for \\spad{g}. Otherwise,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents for \\spad{f} are lexicographically less than those for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}. This operation is equivalent to nextPrimitiveNormalPoly(\\spad{f}).")) (|nextNormalPoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextNormalPoly(f)} yields the next normal polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the coefficient of the term of degree {\\em n-1} of \\spad{f} is less than that for \\spad{g}. In case these numbers are equal,{} \\spad{f < g} if if the number of monomials of \\spad{f} is less that for \\spad{g} or if the list of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextPrimitivePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextPrimitivePoly(f)} yields the next primitive polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the {\\em lookup} of the constant term of \\spad{f} is less than this number for \\spad{g}. If these values are equal,{} then \\spad{f < g} if if the number of monomials of \\spad{f} is less than that for \\spad{g} or if the lists of exponents of \\spad{f} are lexicographically less than the corresponding list for \\spad{g}. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|nextIrreduciblePoly| (((|Union| (|SparseUnivariatePolynomial| |#1|) "failed") (|SparseUnivariatePolynomial| |#1|)) "\\spad{nextIrreduciblePoly(f)} yields the next monic irreducible polynomial over a finite field {\\em GF} of the same degree as \\spad{f} in the following order,{} or \"failed\" if there are no greater ones. Error: if \\spad{f} has degree 0. Note: the input polynomial \\spad{f} is made monic. Also,{} \\spad{f < g} if the number of monomials of \\spad{f} is less than this number for \\spad{g}. If \\spad{f} and \\spad{g} have the same number of monomials,{} the lists of exponents are compared lexicographically. If these lists are also equal,{} the lists of coefficients are compared according to the lexicographic ordering induced by the ordering of the elements of {\\em GF} given by {\\em lookup}.")) (|createPrimitiveNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitiveNormalPoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. polynomial of degree \\spad{n} over the field {\\em GF}.")) (|createNormalPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPrimitivePoly(n)}\\$FFPOLY(GF) generates a normal and primitive polynomial of degree \\spad{n} over the field {\\em GF}. Note: this function is equivalent to createPrimitiveNormalPoly(\\spad{n})")) (|createNormalPoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createNormalPoly(n)}\\$FFPOLY(GF) generates a normal polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createPrimitivePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createPrimitivePoly(n)}\\$FFPOLY(GF) generates a primitive polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|createIrreduciblePoly| (((|SparseUnivariatePolynomial| |#1|) (|PositiveInteger|)) "\\spad{createIrreduciblePoly(n)}\\$FFPOLY(GF) generates a monic irreducible univariate polynomial of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfNormalPoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfNormalPoly(n)}\\$FFPOLY(GF) yields the number of normal polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfPrimitivePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfPrimitivePoly(n)}\\$FFPOLY(GF) yields the number of primitive polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|numberOfIrreduciblePoly| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{numberOfIrreduciblePoly(n)}\\$FFPOLY(GF) yields the number of monic irreducible univariate polynomials of degree \\spad{n} over the finite field {\\em GF}.")) (|normal?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{normal?(f)} tests whether the polynomial \\spad{f} over a finite field is normal,{} \\spadignore{i.e.} its roots are linearly independent over the field.")) (|primitive?| (((|Boolean|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{primitive?(f)} tests whether the polynomial \\spad{f} over a finite field is primitive,{} \\spadignore{i.e.} all its roots are primitive."))) NIL NIL -(-370 -3495 GF) +(-370 -3494 GF) ((|constructor| (NIL "\\spad{FiniteFieldPolynomialPackage2}(\\spad{F},{}GF) exports some functions concerning finite fields,{} which depend on a finite field {\\em GF} and an algebraic extension \\spad{F} of {\\em GF},{} \\spadignore{e.g.} a zero of a polynomial over {\\em GF} in \\spad{F}.")) (|rootOfIrreduciblePoly| ((|#1| (|SparseUnivariatePolynomial| |#2|)) "\\spad{rootOfIrreduciblePoly(f)} computes one root of the monic,{} irreducible polynomial \\spad{f},{} which degree must divide the extension degree of {\\em F} over {\\em GF},{} \\spadignore{i.e.} \\spad{f} splits into linear factors over {\\em F}.")) (|Frobenius| ((|#1| |#1|) "\\spad{Frobenius(x)} \\undocumented{}")) (|basis| (((|Vector| |#1|) (|PositiveInteger|)) "\\spad{basis(n)} \\undocumented{}")) (|lookup| (((|PositiveInteger|) |#1|) "\\spad{lookup(x)} \\undocumented{}")) (|coerce| ((|#1| |#2|) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-371 -3495 FP FPP) +(-371 -3494 FP FPP) ((|constructor| (NIL "This package solves linear diophantine equations for Bivariate polynomials over finite fields")) (|solveLinearPolynomialEquation| (((|Union| (|List| |#3|) "failed") (|List| |#3|) |#3|) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL (-372 GF |n|) ((|constructor| (NIL "FiniteFieldExtensionByPolynomial(GF,{} \\spad{n}) implements an extension of the finite field {\\em GF} of degree \\spad{n} generated by the extension polynomial constructed by \\spadfunFrom{createIrreduciblePoly}{FiniteFieldPolynomialPackage} from \\spadtype{FiniteFieldPolynomialPackage}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-147)))) (-373 R |ls|) ((|constructor| (NIL "This is just an interface between several packages and domains. The goal is to compute lexicographical Groebner bases of sets of polynomial with type \\spadtype{Polynomial R} by the {\\em FGLM} algorithm if this is possible (\\spadignore{i.e.} if the input system generates a zero-dimensional ideal).")) (|groebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|))) "\\axiom{groebner(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}}. If \\axiom{\\spad{lq1}} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|Polynomial| |#1|)) "failed") (|List| (|Polynomial| |#1|))) "\\axiom{fglmIfCan(\\spad{lq1})} returns the lexicographical Groebner basis of \\axiom{\\spad{lq1}} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(\\spad{lq1})} holds.")) (|zeroDimensional?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "\\axiom{zeroDimensional?(\\spad{lq1})} returns \\spad{true} iff \\axiom{\\spad{lq1}} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables of \\axiom{ls}."))) NIL NIL (-374 S) ((|constructor| (NIL "The free group on a set \\spad{S} is the group of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are integers. The multiplication is not commutative.")) (|factors| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| (|Integer|)))) $) "\\spad{factors(a1\\^e1,...,an\\^en)} returns \\spad{[[a1, e1],...,[an, en]]}.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| (|Integer|) (|Integer|)) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(x, n)} returns the factor of the n^th monomial of \\spad{x}.")) (|nthExpon| (((|Integer|) $ (|Integer|)) "\\spad{nthExpon(x, n)} returns the exponent of the n^th monomial of \\spad{x}.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(x)} returns the number of monomials in \\spad{x}.")) (** (($ |#1| (|Integer|)) "\\spad{s ** n} returns the product of \\spad{s} by itself \\spad{n} times.")) (* (($ $ |#1|) "\\spad{x * s} returns the product of \\spad{x} by \\spad{s} on the right.") (($ |#1| $) "\\spad{s * x} returns the product of \\spad{x} by \\spad{s} on the left."))) -((-4422 . T)) +((-4421 . T)) NIL (-375 S) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) @@ -1434,7 +1434,7 @@ NIL NIL (-376) ((|constructor| (NIL "The category of commutative fields,{} \\spadignore{i.e.} commutative rings where all non-zero elements have multiplicative inverses. The \\spadfun{factor} operation while trivial is useful to have defined. \\blankline")) (|canonicalsClosed| ((|attribute|) "since \\spad{0*0=0},{} \\spad{1*1=1}")) (|canonicalUnitNormal| ((|attribute|) "either 0 or 1.")) (/ (($ $ $) "\\spad{x/y} divides the element \\spad{x} by the element \\spad{y}. Error: if \\spad{y} is 0."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-377 S) ((|constructor| (NIL "This domain provides a basic model of files to save arbitrary values. The operations provide sequential access to the contents.")) (|readIfCan!| (((|Union| |#1| "failed") $) "\\spad{readIfCan!(f)} returns a value from the file \\spad{f},{} if possible. If \\spad{f} is not open for reading,{} or if \\spad{f} is at the end of file then \\spad{\"failed\"} is the result."))) @@ -1450,7 +1450,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-569)))) (-380 R) ((|constructor| (NIL "A FiniteRankNonAssociativeAlgebra is a non associative algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|unitsKnown| ((|attribute|) "unitsKnown means that \\spadfun{recip} truly yields reciprocal or \\spad{\"failed\"} if not a unit,{} similarly for \\spadfun{leftRecip} and \\spadfun{rightRecip}. The reason is that we use left,{} respectively right,{} minimal polynomials to decide this question.")) (|unit| (((|Union| $ "failed")) "\\spad{unit()} returns a unit of the algebra (necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnit| (((|Union| $ "failed")) "\\spad{rightUnit()} returns a right unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|leftUnit| (((|Union| $ "failed")) "\\spad{leftUnit()} returns a left unit of the algebra (not necessarily unique),{} or \\spad{\"failed\"} if there is none.")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none.")) (|rightMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of right powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|leftMinimalPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftMinimalPolynomial(a)} returns the polynomial determined by the smallest non-trivial linear combination of left powers of \\spad{a}. Note: the polynomial never has a constant term as in general the algebra has no unit.")) (|associatorDependence| (((|List| (|Vector| |#1|))) "\\spad{associatorDependence()} looks for the associator identities,{} \\spadignore{i.e.} finds a basis of the solutions of the linear combinations of the six permutations of \\spad{associator(a,b,c)} which yield 0,{} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. The order of the permutations is \\spad{123 231 312 132 321 213}.")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if there is no unit element,{} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|lieAlgebra?| (((|Boolean|)) "\\spad{lieAlgebra?()} tests if the algebra is anticommutative and \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jacobi identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Lie algebra \\spad{(A,+,*)},{} where \\spad{a*b := a@b-b@a}.")) (|jordanAlgebra?| (((|Boolean|)) "\\spad{jordanAlgebra?()} tests if the algebra is commutative,{} characteristic is not 2,{} and \\spad{(a*b)*a**2 - a*(b*a**2) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra (Jordan identity). Example: for every associative algebra \\spad{(A,+,@)} we can construct a Jordan algebra \\spad{(A,+,*)},{} where \\spad{a*b := (a@b+b@a)/2}.")) (|noncommutativeJordanAlgebra?| (((|Boolean|)) "\\spad{noncommutativeJordanAlgebra?()} tests if the algebra is flexible and Jordan admissible.")) (|jordanAdmissible?| (((|Boolean|)) "\\spad{jordanAdmissible?()} tests if 2 is invertible in the coefficient domain and the multiplication defined by \\spad{(1/2)(a*b+b*a)} determines a Jordan algebra,{} \\spadignore{i.e.} satisfies the Jordan identity. The property of \\spadatt{commutative(\"*\")} follows from by definition.")) (|lieAdmissible?| (((|Boolean|)) "\\spad{lieAdmissible?()} tests if the algebra defined by the commutators is a Lie algebra,{} \\spadignore{i.e.} satisfies the Jacobi identity. The property of anticommutativity follows from definition.")) (|jacobiIdentity?| (((|Boolean|)) "\\spad{jacobiIdentity?()} tests if \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra. For example,{} this holds for crossed products of 3-dimensional vectors.")) (|powerAssociative?| (((|Boolean|)) "\\spad{powerAssociative?()} tests if all subalgebras generated by a single element are associative.")) (|alternative?| (((|Boolean|)) "\\spad{alternative?()} tests if \\spad{2*associator(a,a,b) = 0 = 2*associator(a,b,b)} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|flexible?| (((|Boolean|)) "\\spad{flexible?()} tests if \\spad{2*associator(a,b,a) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|rightAlternative?| (((|Boolean|)) "\\spad{rightAlternative?()} tests if \\spad{2*associator(a,b,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|leftAlternative?| (((|Boolean|)) "\\spad{leftAlternative?()} tests if \\spad{2*associator(a,a,b) = 0} for all \\spad{a},{} \\spad{b} in the algebra. Note: we only can test this; in general we don't know whether \\spad{2*a=0} implies \\spad{a=0}.")) (|antiAssociative?| (((|Boolean|)) "\\spad{antiAssociative?()} tests if multiplication in algebra is anti-associative,{} \\spadignore{i.e.} \\spad{(a*b)*c + a*(b*c) = 0} for all \\spad{a},{}\\spad{b},{}\\spad{c} in the algebra.")) (|associative?| (((|Boolean|)) "\\spad{associative?()} tests if multiplication in algebra is associative.")) (|antiCommutative?| (((|Boolean|)) "\\spad{antiCommutative?()} tests if \\spad{a*a = 0} for all \\spad{a} in the algebra. Note: this implies \\spad{a*b + b*a = 0} for all \\spad{a} and \\spad{b}.")) (|commutative?| (((|Boolean|)) "\\spad{commutative?()} tests if multiplication in the algebra is commutative.")) (|rightCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{rightCharacteristicPolynomial(a)} returns the characteristic polynomial of the right regular representation of \\spad{a} with respect to any basis.")) (|leftCharacteristicPolynomial| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{leftCharacteristicPolynomial(a)} returns the characteristic polynomial of the left regular representation of \\spad{a} with respect to any basis.")) (|rightTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{rightTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}.")) (|leftTraceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftTraceMatrix([v1,...,vn])} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}.")) (|rightDiscriminant| ((|#1| (|Vector| $)) "\\spad{rightDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(rightTraceMatrix([v1,...,vn]))}.")) (|leftDiscriminant| ((|#1| (|Vector| $)) "\\spad{leftDiscriminant([v1,...,vn])} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj}. Note: the same as \\spad{determinant(leftTraceMatrix([v1,...,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,...,am],[v1,...,vm])} returns the linear combination \\spad{a1*vm + ... + an*vm}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([a1,...,am],[v1,...,vn])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rightNorm| ((|#1| $) "\\spad{rightNorm(a)} returns the determinant of the right regular representation of \\spad{a}.")) (|leftNorm| ((|#1| $) "\\spad{leftNorm(a)} returns the determinant of the left regular representation of \\spad{a}.")) (|rightTrace| ((|#1| $) "\\spad{rightTrace(a)} returns the trace of the right regular representation of \\spad{a}.")) (|leftTrace| ((|#1| $) "\\spad{leftTrace(a)} returns the trace of the left regular representation of \\spad{a}.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{rightRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{leftRegularRepresentation(a,[v1,...,vn])} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{R}-module basis \\spad{[v1,...,vn]}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|Vector| $)) "\\spad{structuralConstants([v1,v2,...,vm])} calculates the structural constants \\spad{[(gammaijk) for k in 1..m]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijm * vm},{} where \\spad{[v1,...,vm]} is an \\spad{R}-module basis of a subalgebra.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra as \\spad{R}-module.")) (|someBasis| (((|Vector| $)) "\\spad{someBasis()} returns some \\spad{R}-module basis."))) -((-4422 |has| |#1| (-569)) (-4420 . T) (-4419 . T)) +((-4421 |has| |#1| (-569)) (-4419 . T) (-4418 . T)) NIL (-381) ((|constructor| (NIL "The category of domains composed of a finite set of elements. We include the functions \\spadfun{lookup} and \\spadfun{index} to give a bijection between the finite set and an initial segment of positive integers. \\blankline")) (|random| (($) "\\spad{random()} returns a random element from the set.")) (|lookup| (((|PositiveInteger|) $) "\\spad{lookup(x)} returns a positive integer such that \\spad{x = index lookup x}.")) (|index| (($ (|PositiveInteger|)) "\\spad{index(i)} takes a positive integer \\spad{i} less than or equal to \\spad{size()} and returns the \\spad{i}\\spad{-}th element of the set. This operation establishs a bijection between the elements of the finite set and \\spad{1..size()}.")) (|size| (((|NonNegativeInteger|)) "\\spad{size()} returns the number of elements in the set."))) @@ -1462,15 +1462,15 @@ NIL ((|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-376)))) (-383 R UP) ((|constructor| (NIL "A FiniteRankAlgebra is an algebra over a commutative ring \\spad{R} which is a free \\spad{R}-module of finite rank.")) (|minimalPolynomial| ((|#2| $) "\\spad{minimalPolynomial(a)} returns the minimal polynomial of \\spad{a}.")) (|characteristicPolynomial| ((|#2| $) "\\spad{characteristicPolynomial(a)} returns the characteristic polynomial of the regular representation of \\spad{a} with respect to any basis.")) (|traceMatrix| (((|Matrix| |#1|) (|Vector| $)) "\\spad{traceMatrix([v1,..,vn])} is the \\spad{n}-by-\\spad{n} matrix ( Tr(\\spad{vi} * vj) )")) (|discriminant| ((|#1| (|Vector| $)) "\\spad{discriminant([v1,..,vn])} returns \\spad{determinant(traceMatrix([v1,..,vn]))}.")) (|represents| (($ (|Vector| |#1|) (|Vector| $)) "\\spad{represents([a1,..,an],[v1,..,vn])} returns \\spad{a1*v1 + ... + an*vn}.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $) (|Vector| $)) "\\spad{coordinates([v1,...,vm], basis)} returns the coordinates of the \\spad{vi}'s with to the basis \\spad{basis}. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $ (|Vector| $)) "\\spad{coordinates(a,basis)} returns the coordinates of \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|norm| ((|#1| $) "\\spad{norm(a)} returns the determinant of the regular representation of \\spad{a} with respect to any basis.")) (|trace| ((|#1| $) "\\spad{trace(a)} returns the trace of the regular representation of \\spad{a} with respect to any basis.")) (|regularRepresentation| (((|Matrix| |#1|) $ (|Vector| $)) "\\spad{regularRepresentation(a,basis)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the \\spad{basis} \\spad{basis}.")) (|rank| (((|PositiveInteger|)) "\\spad{rank()} returns the rank of the algebra."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL (-384 A S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#2| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#2| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#2| |#2|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122)))) +((|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121)))) (-385 S) ((|constructor| (NIL "A finite linear aggregate is a linear aggregate of finite length. The finite property of the aggregate adds several exports to the list of exports from \\spadtype{LinearAggregate} such as \\spadfun{reverse},{} \\spadfun{sort},{} and so on.")) (|sort!| (($ $) "\\spad{sort!(u)} returns \\spad{u} with its elements in ascending order.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort!(p,u)} returns \\spad{u} with its elements ordered by \\spad{p}.")) (|reverse!| (($ $) "\\spad{reverse!(u)} returns \\spad{u} with its elements in reverse order.")) (|copyInto!| (($ $ $ (|Integer|)) "\\spad{copyInto!(u,v,i)} returns aggregate \\spad{u} containing a copy of \\spad{v} inserted at element \\spad{i}.")) (|position| (((|Integer|) |#1| $ (|Integer|)) "\\spad{position(x,a,n)} returns the index \\spad{i} of the first occurrence of \\spad{x} in \\axiom{a} where \\axiom{\\spad{i} >= \\spad{n}},{} and \\axiom{minIndex(a) - 1} if no such \\spad{x} is found.") (((|Integer|) |#1| $) "\\spad{position(x,a)} returns the index \\spad{i} of the first occurrence of \\spad{x} in a,{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.") (((|Integer|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{position(p,a)} returns the index \\spad{i} of the first \\spad{x} in \\axiom{a} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true},{} and \\axiom{minIndex(a) - 1} if there is no such \\spad{x}.")) (|sorted?| (((|Boolean|) $) "\\spad{sorted?(u)} tests if the elements of \\spad{u} are in ascending order.") (((|Boolean|) (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sorted?(p,a)} tests if \\axiom{a} is sorted according to predicate \\spad{p}.")) (|sort| (($ $) "\\spad{sort(u)} returns an \\spad{u} with elements in ascending order. Note: \\axiom{sort(\\spad{u}) = sort(<=,{}\\spad{u})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $) "\\spad{sort(p,a)} returns a copy of \\axiom{a} sorted using total ordering predicate \\spad{p}.")) (|reverse| (($ $) "\\spad{reverse(a)} returns a copy of \\axiom{a} with elements in reverse order.")) (|merge| (($ $ $) "\\spad{merge(u,v)} merges \\spad{u} and \\spad{v} in ascending order. Note: \\axiom{merge(\\spad{u},{}\\spad{v}) = merge(<=,{}\\spad{u},{}\\spad{v})}.") (($ (|Mapping| (|Boolean|) |#1| |#1|) $ $) "\\spad{merge(p,a,b)} returns an aggregate \\spad{c} which merges \\axiom{a} and \\spad{b}. The result is produced by examining each element \\spad{x} of \\axiom{a} and \\spad{y} of \\spad{b} successively. If \\axiom{\\spad{p}(\\spad{x},{}\\spad{y})} is \\spad{true},{} then \\spad{x} is inserted into the result; otherwise \\spad{y} is inserted. If \\spad{x} is chosen,{} the next element of \\axiom{a} is examined,{} and so on. When all the elements of one aggregate are examined,{} the remaining elements of the other are appended. For example,{} \\axiom{merge(<,{}[1,{}3],{}[2,{}7,{}5])} returns \\axiom{[1,{}2,{}3,{}7,{}5]}."))) -((-4425 . T)) +((-4424 . T)) NIL (-386 S A R B) ((|constructor| (NIL "\\spad{FiniteLinearAggregateFunctions2} provides functions involving two FiniteLinearAggregates where the underlying domains might be different. An example of this might be creating a list of rational numbers by mapping a function across a list of integers where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregrate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a} resulting in a new aggregate over a possibly different underlying domain."))) @@ -1478,7 +1478,7 @@ NIL NIL (-387 |VarSet| R) ((|constructor| (NIL "The category of free Lie algebras. It is used by domains of non-commutative algebra: \\spadtype{LiePolynomial} and \\spadtype{XPBWPolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr)")) (|eval| (($ $ (|List| |#1|) (|List| $)) "\\axiom{eval(\\spad{p},{} [\\spad{x1},{}...,{}xn],{} [\\spad{v1},{}...,{}vn])} replaces \\axiom{\\spad{xi}} by \\axiom{\\spad{vi}} in \\axiom{\\spad{p}}.") (($ $ |#1| $) "\\axiom{eval(\\spad{p},{} \\spad{x},{} \\spad{v})} replaces \\axiom{\\spad{x}} by \\axiom{\\spad{v}} in \\axiom{\\spad{p}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\axiom{trunc(\\spad{p},{}\\spad{n})} returns the polynomial \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns \\axiom{Sum(r_i mirror(w_i))} if \\axiom{\\spad{x}} is \\axiom{Sum(r_i w_i)}.")) (|LiePoly| (($ (|LyndonWord| |#1|)) "\\axiom{LiePoly(\\spad{l})} returns the bracketed form of \\axiom{\\spad{l}} as a Lie polynomial.")) (|rquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{rquo(\\spad{x},{}\\spad{y})} returns the right simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|lquo| (((|XRecursivePolynomial| |#1| |#2|) (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{lquo(\\spad{x},{}\\spad{y})} returns the left simplification of \\axiom{\\spad{x}} by \\axiom{\\spad{y}}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(\\spad{x})} returns the greatest length of a word in the support of \\axiom{\\spad{x}}.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as distributed polynomial.") (($ |#1|) "\\axiom{coerce(\\spad{x})} returns \\axiom{\\spad{x}} as a Lie polynomial.")) (|coef| ((|#2| (|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coef(\\spad{x},{}\\spad{y})} returns the scalar product of \\axiom{\\spad{x}} by \\axiom{\\spad{y}},{} the set of words being regarded as an orthogonal basis."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4419 . T) (-4418 . T)) NIL (-388 S V) ((|constructor| (NIL "This package exports 3 sorting algorithms which work over FiniteLinearAggregates.")) (|shellSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{shellSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the shellSort algorithm.")) (|heapSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{heapSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the heapsort algorithm.")) (|quickSort| ((|#2| (|Mapping| (|Boolean|) |#1| |#1|) |#2|) "\\spad{quickSort(f, agg)} sorts the aggregate agg with the ordering function \\spad{f} using the quicksort algorithm."))) @@ -1487,14 +1487,14 @@ NIL (-389 S R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) +((|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-390 R) ((|constructor| (NIL "\\spad{S} is \\spadtype{FullyLinearlyExplicitRingOver R} means that \\spad{S} is a \\spadtype{LinearlyExplicitRingOver R} and,{} in addition,{} if \\spad{R} is a \\spadtype{LinearlyExplicitRingOver Integer},{} then so is \\spad{S}"))) NIL NIL (-391) ((|constructor| (NIL "\\spadtype{Float} implements arbitrary precision floating point arithmetic. The number of significant digits of each operation can be set to an arbitrary value (the default is 20 decimal digits). The operation \\spad{float(mantissa,exponent,\\spadfunFrom{base}{FloatingPointSystem})} for integer \\spad{mantissa},{} \\spad{exponent} specifies the number \\spad{mantissa * \\spadfunFrom{base}{FloatingPointSystem} ** exponent} The underlying representation for floats is binary not decimal. The implications of this are described below. \\blankline The model adopted is that arithmetic operations are rounded to to nearest unit in the last place,{} that is,{} accurate to within \\spad{2**(-\\spadfunFrom{bits}{FloatingPointSystem})}. Also,{} the elementary functions and constants are accurate to one unit in the last place. A float is represented as a record of two integers,{} the mantissa and the exponent. The \\spadfunFrom{base}{FloatingPointSystem} of the representation is binary,{} hence a \\spad{Record(m:mantissa,e:exponent)} represents the number \\spad{m * 2 ** e}. Though it is not assumed that the underlying integers are represented with a binary \\spadfunFrom{base}{FloatingPointSystem},{} the code will be most efficient when this is the the case (this is \\spad{true} in most implementations of Lisp). The decision to choose the \\spadfunFrom{base}{FloatingPointSystem} to be binary has some unfortunate consequences. First,{} decimal numbers like 0.3 cannot be represented exactly. Second,{} there is a further loss of accuracy during conversion to decimal for output. To compensate for this,{} if \\spad{d} digits of precision are specified,{} \\spad{1 + ceiling(log2 d)} bits are used. Two numbers that are displayed identically may therefore be not equal. On the other hand,{} a significant efficiency loss would be incurred if we chose to use a decimal \\spadfunFrom{base}{FloatingPointSystem} when the underlying integer base is binary. \\blankline Algorithms used: For the elementary functions,{} the general approach is to apply identities so that the taylor series can be used,{} and,{} so that it will converge within \\spad{O( sqrt n )} steps. For example,{} using the identity \\spad{exp(x) = exp(x/2)**2},{} we can compute \\spad{exp(1/3)} to \\spad{n} digits of precision as follows. We have \\spad{exp(1/3) = exp(2 ** (-sqrt s) / 3) ** (2 ** sqrt s)}. The taylor series will converge in less than sqrt \\spad{n} steps and the exponentiation requires sqrt \\spad{n} multiplications for a total of \\spad{2 sqrt n} multiplications. Assuming integer multiplication costs \\spad{O( n**2 )} the overall running time is \\spad{O( sqrt(n) n**2 )}. This approach is the best known approach for precisions up to about 10,{}000 digits at which point the methods of Brent which are \\spad{O( log(n) n**2 )} become competitive. Note also that summing the terms of the taylor series for the elementary functions is done using integer operations. This avoids the overhead of floating point operations and results in efficient code at low precisions. This implementation makes no attempt to reuse storage,{} relying on the underlying system to do \\spadgloss{garbage collection}. \\spad{I} estimate that the efficiency of this package at low precisions could be improved by a factor of 2 if in-place operations were available. \\blankline Running times: in the following,{} \\spad{n} is the number of bits of precision \\indented{5}{\\spad{*},{} \\spad{/},{} \\spad{sqrt},{} \\spad{pi},{} \\spad{exp1},{} \\spad{log2},{} \\spad{log10}: \\spad{ O( n**2 )}} \\indented{5}{\\spad{exp},{} \\spad{log},{} \\spad{sin},{} \\spad{atan}:\\space{2}\\spad{ O( sqrt(n) n**2 )}} The other elementary functions are coded in terms of the ones above.")) (|outputSpacing| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputSpacing(n)} inserts a space after \\spad{n} (default 10) digits on output; outputSpacing(0) means no spaces are inserted.")) (|outputGeneral| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputGeneral(n)} sets the output mode to general notation with \\spad{n} significant digits displayed.") (((|Void|)) "\\spad{outputGeneral()} sets the output mode (default mode) to general notation; numbers will be displayed in either fixed or floating (scientific) notation depending on the magnitude.")) (|outputFixed| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFixed(n)} sets the output mode to fixed point notation,{} with \\spad{n} digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFixed()} sets the output mode to fixed point notation; the output will contain a decimal point.")) (|outputFloating| (((|Void|) (|NonNegativeInteger|)) "\\spad{outputFloating(n)} sets the output mode to floating (scientific) notation with \\spad{n} significant digits displayed after the decimal point.") (((|Void|)) "\\spad{outputFloating()} sets the output mode to floating (scientific) notation,{} \\spadignore{i.e.} \\spad{mantissa * 10 exponent} is displayed as \\spad{0.mantissa E exponent}.")) (|atan| (($ $ $) "\\spad{atan(x,y)} computes the arc tangent from \\spad{x} with phase \\spad{y}.")) (|exp1| (($) "\\spad{exp1()} returns exp 1: \\spad{2.7182818284...}.")) (|log10| (($ $) "\\spad{log10(x)} computes the logarithm for \\spad{x} to base 10.") (($) "\\spad{log10()} returns \\spad{ln 10}: \\spad{2.3025809299...}.")) (|log2| (($ $) "\\spad{log2(x)} computes the logarithm for \\spad{x} to base 2.") (($) "\\spad{log2()} returns \\spad{ln 2},{} \\spadignore{i.e.} \\spad{0.6931471805...}.")) (|rationalApproximation| (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n, b)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< b**(-n)},{} that is \\spad{|(r-f)/f| < b**(-n)}.") (((|Fraction| (|Integer|)) $ (|NonNegativeInteger|)) "\\spad{rationalApproximation(f, n)} computes a rational approximation \\spad{r} to \\spad{f} with relative error \\spad{< 10**(-n)}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(x,n)} adds \\spad{n} to the exponent of float \\spad{x}.")) (|relerror| (((|Integer|) $ $) "\\spad{relerror(x,y)} computes the absolute value of \\spad{x - y} divided by \\spad{y},{} when \\spad{y \\~= 0}.")) (|normalize| (($ $) "\\spad{normalize(x)} normalizes \\spad{x} at current precision.")) (** (($ $ $) "\\spad{x ** y} computes \\spad{exp(y log x)} where \\spad{x >= 0}.")) (/ (($ $ (|Integer|)) "\\spad{x / i} computes the division from \\spad{x} by an integer \\spad{i}."))) -((-4408 . T) (-4416 . T) (-4200 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4407 . T) (-4415 . T) (-4199 . T) (-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-392 |Par|) ((|constructor| (NIL "\\indented{3}{This is a package for the approximation of complex solutions for} systems of equations of rational functions with complex rational coefficients. The results are expressed as either complex rational numbers or complex floats depending on the type of the precision parameter which can be either a rational number or a floating point number.")) (|complexRoots| (((|List| (|List| (|Complex| |#1|))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) (|List| (|Symbol|)) |#1|) "\\spad{complexRoots(lrf, lv, eps)} finds all the complex solutions of a list of rational functions with rational number coefficients with respect the the variables appearing in \\spad{lv}. Each solution is computed to precision eps and returned as list corresponding to the order of variables in \\spad{lv}.") (((|List| (|Complex| |#1|)) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexRoots(rf, eps)} finds all the complex solutions of a univariate rational function with rational number coefficients. The solutions are computed to precision eps.")) (|complexSolve| (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(eq,eps)} finds all the complex solutions of the equation \\spad{eq} of rational functions with rational rational coefficients with respect to all the variables appearing in \\spad{eq},{} with precision \\spad{eps}.") (((|List| (|Equation| (|Polynomial| (|Complex| |#1|)))) (|Fraction| (|Polynomial| (|Complex| (|Integer|)))) |#1|) "\\spad{complexSolve(p,eps)} find all the complex solutions of the rational function \\spad{p} with complex rational coefficients with respect to all the variables appearing in \\spad{p},{} with precision \\spad{eps}.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| (|Complex| (|Integer|)))))) |#1|) "\\spad{complexSolve(leq,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{leq} of equations of rational functions over complex rationals with respect to all the variables appearing in lp.") (((|List| (|List| (|Equation| (|Polynomial| (|Complex| |#1|))))) (|List| (|Fraction| (|Polynomial| (|Complex| (|Integer|))))) |#1|) "\\spad{complexSolve(lp,eps)} finds all the complex solutions to precision \\spad{eps} of the system \\spad{lp} of rational functions over the complex rationals with respect to all the variables appearing in \\spad{lp}."))) @@ -1506,11 +1506,11 @@ NIL NIL (-394 R S) ((|constructor| (NIL "A \\spad{bi}-module is a free module over a ring with generators indexed by an ordered set. Each element can be expressed as a finite linear combination of generators. Only non-zero terms are stored."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) +((-4419 . T) (-4418 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-395 R S) ((|constructor| (NIL "This domain implements linear combinations of elements from the domain \\spad{S} with coefficients in the domain \\spad{R} where \\spad{S} is an ordered set and \\spad{R} is a ring (which may be non-commutative). This domain is used by domains of non-commutative algebra such as: \\indented{4}{\\spadtype{XDistributedPolynomial},{}} \\indented{4}{\\spadtype{XRecursivePolynomial}.} Author: Michel Petitot (petitot@lifl.fr)")) (* (($ |#2| |#1|) "\\spad{s*r} returns the product \\spad{r*s} used by \\spadtype{XRecursivePolynomial}"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) ((|HasCategory| |#1| (QUOTE (-175)))) (-396) ((|constructor| (NIL "\\axiomType{FortranMatrixCategory} provides support for producing Functions and Subroutines when the input to these is an AXIOM object of type \\axiomType{Matrix} or in domains involving \\axiomType{FortranCode}.")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|Matrix| (|MachineFloat|))) "\\spad{coerce(v)} produces an ASP which returns the value of \\spad{v}."))) @@ -1518,7 +1518,7 @@ NIL NIL (-397 R |Basis|) ((|constructor| (NIL "A domain of this category implements formal linear combinations of elements from a domain \\spad{Basis} with coefficients in a domain \\spad{R}. The domain \\spad{Basis} needs only to belong to the category \\spadtype{SetCategory} and \\spad{R} to the category \\spadtype{Ring}. Thus the coefficient ring may be non-commutative. See the \\spadtype{XDistributedPolynomial} constructor for examples of domains built with the \\spadtype{FreeModuleCat} category constructor. Author: Michel Petitot (petitot@lifl.fr)")) (|reductum| (($ $) "\\spad{reductum(x)} returns \\spad{x} minus its leading term.")) (|leadingTerm| (((|Record| (|:| |k| |#2|) (|:| |c| |#1|)) $) "\\spad{leadingTerm(x)} returns the first term which appears in \\spad{ListOfTerms(x)}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(x)} returns the first coefficient which appears in \\spad{ListOfTerms(x)}.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(x)} returns the first element from \\spad{Basis} which appears in \\spad{ListOfTerms(x)}.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(x)} returns the number of monomials of \\spad{x}.")) (|monomials| (((|List| $) $) "\\spad{monomials(x)} returns the list of \\spad{r_i*b_i} whose sum is \\spad{x}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(x)} returns the list of coefficients of \\spad{x}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{ListOfTerms(x)} returns a list \\spad{lt} of terms with type \\spad{Record(k: Basis, c: R)} such that \\spad{x} equals \\spad{reduce(+, map(x +-> monom(x.k, x.c), lt))}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} contains a single monomial.")) (|monom| (($ |#2| |#1|) "\\spad{monom(b,r)} returns the element with the single monomial \\indented{1}{\\spad{b} and coefficient \\spad{r}.}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients \\indented{1}{of the non-zero monomials of \\spad{u}.}")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(x,b)} returns the coefficient of \\spad{b} in \\spad{x}.")) (* (($ |#1| |#2|) "\\spad{r*b} returns the product of \\spad{r} by \\spad{b}."))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL (-398) ((|constructor| (NIL "\\axiomType{FortranMatrixFunctionCategory} provides support for producing Functions and Subroutines representing matrices of expressions.")) (|retractIfCan| (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Matrix| (|Expression| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Fraction| (|Polynomial| (|Float|))))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Matrix| (|Expression| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) @@ -1531,10 +1531,10 @@ NIL (-400 S) ((|constructor| (NIL "The free monoid on a set \\spad{S} is the monoid of finite products of the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are nonnegative integers. The multiplication is not commutative."))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) +((|HasCategory| |#1| (QUOTE (-860)))) (-401) ((|constructor| (NIL "A category of domains which model machine arithmetic used by machines in the AXIOM-NAG link."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-402) ((|constructor| (NIL "This domain provides an interface to names in the file system."))) @@ -1546,13 +1546,13 @@ NIL NIL (-404 |n| |class| R) ((|constructor| (NIL "Generate the Free Lie Algebra over a ring \\spad{R} with identity; A \\spad{P}. Hall basis is generated by a package call to HallBasis.")) (|generator| (($ (|NonNegativeInteger|)) "\\spad{generator(i)} is the \\spad{i}th Hall Basis element")) (|shallowExpand| (((|OutputForm|) $) "\\spad{shallowExpand(x)} \\undocumented{}")) (|deepExpand| (((|OutputForm|) $) "\\spad{deepExpand(x)} \\undocumented{}")) (|dimension| (((|NonNegativeInteger|)) "\\spad{dimension()} is the rank of this Lie algebra"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL (-405) ((|constructor| (NIL "Code to manipulate Fortran Output Stack")) (|topFortranOutputStack| (((|String|)) "\\spad{topFortranOutputStack()} returns the top element of the Fortran output stack")) (|pushFortranOutputStack| (((|Void|) (|String|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack") (((|Void|) (|FileName|)) "\\spad{pushFortranOutputStack(f)} pushes \\spad{f} onto the Fortran output stack")) (|popFortranOutputStack| (((|Void|)) "\\spad{popFortranOutputStack()} pops the Fortran output stack")) (|showFortranOutputStack| (((|Stack| (|String|))) "\\spad{showFortranOutputStack()} returns the Fortran output stack")) (|clearFortranOutputStack| (((|Stack| (|String|))) "\\spad{clearFortranOutputStack()} clears the Fortran output stack"))) NIL NIL -(-406 -3495 UP UPUP R) +(-406 -3494 UP UPUP R) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 11 Jul 1990")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|)) "\\spad{order(x)} \\undocumented"))) NIL NIL @@ -1568,11 +1568,11 @@ NIL ((|constructor| (NIL "\\axiomType{FortranFunctionCategory} is the category of arguments to NAG Library routines which return (sets of) function values.")) (|retractIfCan| (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Polynomial| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Integer|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (((|Union| $ "failed") (|Expression| (|Float|))) "\\spad{retractIfCan(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|retract| (($ (|Fraction| (|Polynomial| (|Integer|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Fraction| (|Polynomial| (|Float|)))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Polynomial| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Integer|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}") (($ (|Expression| (|Float|))) "\\spad{retract(e)} tries to convert \\spad{e} into an ASP,{} checking that \\indented{1}{legal Fortran-77 is produced.}")) (|coerce| (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(e)} takes the component of \\spad{e} from \\spadtype{List FortranCode} and uses it as the body of the ASP,{} making the declarations in the \\spadtype{SymbolTable} component.") (($ (|FortranCode|)) "\\spad{coerce(e)} takes an object from \\spadtype{FortranCode} and \\indented{1}{uses it as the body of an ASP.}") (($ (|List| (|FortranCode|))) "\\spad{coerce(e)} takes an object from \\spadtype{List FortranCode} and \\indented{1}{uses it as the body of an ASP.}"))) NIL NIL -(-410 -3970 |returnType| -1537 |symbols|) +(-410 -3969 |returnType| -1536 |symbols|) ((|constructor| (NIL "\\axiomType{FortranProgram} allows the user to build and manipulate simple models of FORTRAN subprograms. These can then be transformed into actual FORTRAN notation.")) (|coerce| (($ (|Equation| (|Expression| (|Complex| (|Float|))))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Float|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|Integer|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|Complex| (|Float|)))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Float|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|Integer|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineComplex|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineFloat|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Equation| (|Expression| (|MachineInteger|)))) "\\spad{coerce(eq)} \\undocumented{}") (($ (|Expression| (|MachineComplex|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineFloat|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Expression| (|MachineInteger|))) "\\spad{coerce(e)} \\undocumented{}") (($ (|Record| (|:| |localSymbols| (|SymbolTable|)) (|:| |code| (|List| (|FortranCode|))))) "\\spad{coerce(r)} \\undocumented{}") (($ (|List| (|FortranCode|))) "\\spad{coerce(lfc)} \\undocumented{}") (($ (|FortranCode|)) "\\spad{coerce(fc)} \\undocumented{}"))) NIL NIL -(-411 -3495 UP) +(-411 -3494 UP) ((|constructor| (NIL "\\indented{1}{Full partial fraction expansion of rational functions} Author: Manuel Bronstein Date Created: 9 December 1992 Date Last Updated: June 18,{} 2010 References: \\spad{M}.Bronstein & \\spad{B}.Salvy,{} \\indented{12}{Full Partial Fraction Decomposition of Rational Functions,{}} \\indented{12}{in Proceedings of \\spad{ISSAC'93},{} Kiev,{} ACM Press.}")) (|construct| (($ (|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|)))) "\\spad{construct(l)} is the inverse of fracPart.")) (|fracPart| (((|List| (|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |center| |#2|) (|:| |num| |#2|))) $) "\\spad{fracPart(f)} returns the list of summands of the fractional part of \\spad{f}.")) (|polyPart| ((|#2| $) "\\spad{polyPart(f)} returns the polynomial part of \\spad{f}.")) (|fullPartialFraction| (($ (|Fraction| |#2|)) "\\spad{fullPartialFraction(f)} returns \\spad{[p, [[j, Dj, Hj]...]]} such that \\spad{f = p(x) + \\sum_{[j,Dj,Hj] in l} \\sum_{Dj(a)=0} Hj(a)/(x - a)\\^j}.")) (+ (($ |#2| $) "\\spad{p + x} returns the sum of \\spad{p} and \\spad{x}"))) NIL NIL @@ -1586,28 +1586,28 @@ NIL NIL (-414) ((|constructor| (NIL "FieldOfPrimeCharacteristic is the category of fields of prime characteristic,{} \\spadignore{e.g.} finite fields,{} algebraic closures of fields of prime characteristic,{} transcendental extensions of of fields of prime characteristic.")) (|primeFrobenius| (($ $ (|NonNegativeInteger|)) "\\spad{primeFrobenius(a,s)} returns \\spad{a**(p**s)} where \\spad{p} is the characteristic.") (($ $) "\\spad{primeFrobenius(a)} returns \\spad{a ** p} where \\spad{p} is the characteristic.")) (|discreteLog| (((|Union| (|NonNegativeInteger|) "failed") $ $) "\\spad{discreteLog(b,a)} computes \\spad{s} with \\spad{b**s = a} if such an \\spad{s} exists.")) (|order| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{order(a)} computes the order of an element in the multiplicative group of the field. Error: if \\spad{a} is 0."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-415 S) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) NIL -((|HasAttribute| |#1| (QUOTE -4408)) (|HasAttribute| |#1| (QUOTE -4416))) +((|HasAttribute| |#1| (QUOTE -4407)) (|HasAttribute| |#1| (QUOTE -4415))) (-416) ((|constructor| (NIL "This category is intended as a model for floating point systems. A floating point system is a model for the real numbers. In fact,{} it is an approximation in the sense that not all real numbers are exactly representable by floating point numbers. A floating point system is characterized by the following: \\blankline \\indented{2}{1: \\spadfunFrom{base}{FloatingPointSystem} of the \\spadfunFrom{exponent}{FloatingPointSystem}.} \\indented{9}{(actual implemenations are usually binary or decimal)} \\indented{2}{2: \\spadfunFrom{precision}{FloatingPointSystem} of the \\spadfunFrom{mantissa}{FloatingPointSystem} (arbitrary or fixed)} \\indented{2}{3: rounding error for operations} \\blankline Because a Float is an approximation to the real numbers,{} even though it is defined to be a join of a Field and OrderedRing,{} some of the attributes do not hold. In particular associative(\"+\") does not hold. Algorithms defined over a field need special considerations when the field is a floating point system.")) (|max| (($) "\\spad{max()} returns the maximum floating point number.")) (|min| (($) "\\spad{min()} returns the minimum floating point number.")) (|decreasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{decreasePrecision(n)} decreases the current \\spadfunFrom{precision}{FloatingPointSystem} precision by \\spad{n} decimal digits.")) (|increasePrecision| (((|PositiveInteger|) (|Integer|)) "\\spad{increasePrecision(n)} increases the current \\spadfunFrom{precision}{FloatingPointSystem} by \\spad{n} decimal digits.")) (|precision| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(n)} set the precision in the base to \\spad{n} decimal digits.") (((|PositiveInteger|)) "\\spad{precision()} returns the precision in digits base.")) (|digits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{digits(d)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{d} digits.") (((|PositiveInteger|)) "\\spad{digits()} returns ceiling's precision in decimal digits.")) (|bits| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{bits(n)} set the \\spadfunFrom{precision}{FloatingPointSystem} to \\spad{n} bits.") (((|PositiveInteger|)) "\\spad{bits()} returns ceiling's precision in bits.")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(x)} returns the mantissa part of \\spad{x}.")) (|exponent| (((|Integer|) $) "\\spad{exponent(x)} returns the \\spadfunFrom{exponent}{FloatingPointSystem} part of \\spad{x}.")) (|base| (((|PositiveInteger|)) "\\spad{base()} returns the base of the \\spadfunFrom{exponent}{FloatingPointSystem}.")) (|order| (((|Integer|) $) "\\spad{order x} is the order of magnitude of \\spad{x}. Note: \\spad{base ** order x <= |x| < base ** (1 + order x)}.")) (|float| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{float(a,e,b)} returns \\spad{a * b ** e}.") (($ (|Integer|) (|Integer|)) "\\spad{float(a,e)} returns \\spad{a * base() ** e}.")) (|approximate| ((|attribute|) "\\spad{approximate} means \"is an approximation to the real numbers\"."))) -((-4200 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4199 . T) (-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-417 R) ((|constructor| (NIL "\\spadtype{Factored} creates a domain whose objects are kept in factored form as long as possible. Thus certain operations like multiplication and gcd are relatively easy to do. Others,{} like addition require somewhat more work,{} and unless the argument domain provides a factor function,{} the result may not be completely factored. Each object consists of a unit and a list of factors,{} where a factor has a member of \\spad{R} (the \"base\"),{} and exponent and a flag indicating what is known about the base. A flag may be one of \"nil\",{} \"sqfr\",{} \"irred\" or \"prime\",{} which respectively mean that nothing is known about the base,{} it is square-free,{} it is irreducible,{} or it is prime. The current restriction to integral domains allows simplification to be performed without worrying about multiplication order.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(u)} returns a rational number if \\spad{u} really is one,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(u)} assumes spadvar{\\spad{u}} is actually a rational number and does the conversion to rational number (see \\spadtype{Fraction Integer}).")) (|rational?| (((|Boolean|) $) "\\spad{rational?(u)} tests if \\spadvar{\\spad{u}} is actually a rational number (see \\spadtype{Fraction Integer}).")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps the function \\userfun{\\spad{fn}} across the factors of \\spadvar{\\spad{u}} and creates a new factored object. Note: this clears the information flags (sets them to \"nil\") because the effect of \\userfun{\\spad{fn}} is clearly not known in general.")) (|unitNormalize| (($ $) "\\spad{unitNormalize(u)} normalizes the unit part of the factorization. For example,{} when working with factored integers,{} this operation will ensure that the bases are all positive integers.")) (|unit| ((|#1| $) "\\spad{unit(u)} extracts the unit part of the factorization.")) (|flagFactor| (($ |#1| (|Integer|) (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) "\\spad{flagFactor(base,exponent,flag)} creates a factored object with a single factor whose \\spad{base} is asserted to be properly described by the information \\spad{flag}.")) (|sqfrFactor| (($ |#1| (|Integer|)) "\\spad{sqfrFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be square-free (flag = \"sqfr\").")) (|primeFactor| (($ |#1| (|Integer|)) "\\spad{primeFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be prime (flag = \"prime\").")) (|numberOfFactors| (((|NonNegativeInteger|) $) "\\spad{numberOfFactors(u)} returns the number of factors in \\spadvar{\\spad{u}}.")) (|nthFlag| (((|Union| #1# #2# #3# #4#) $ (|Integer|)) "\\spad{nthFlag(u,n)} returns the information flag of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} \"nil\" is returned.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(u,n)} returns the base of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 1 is returned. If \\spadvar{\\spad{u}} consists only of a unit,{} the unit is returned.")) (|nthExponent| (((|Integer|) $ (|Integer|)) "\\spad{nthExponent(u,n)} returns the exponent of the \\spad{n}th factor of \\spadvar{\\spad{u}}. If \\spadvar{\\spad{n}} is not a valid index for a factor (for example,{} less than 1 or too big),{} 0 is returned.")) (|irreducibleFactor| (($ |#1| (|Integer|)) "\\spad{irreducibleFactor(base,exponent)} creates a factored object with a single factor whose \\spad{base} is asserted to be irreducible (flag = \"irred\").")) (|factors| (((|List| (|Record| (|:| |factor| |#1|) (|:| |exponent| (|Integer|)))) $) "\\spad{factors(u)} returns a list of the factors in a form suitable for iteration. That is,{} it returns a list where each element is a record containing a base and exponent. The original object is the product of all the factors and the unit (which can be extracted by \\axiom{unit(\\spad{u})}).")) (|nilFactor| (($ |#1| (|Integer|)) "\\spad{nilFactor(base,exponent)} creates a factored object with a single factor with no information about the kind of \\spad{base} (flag = \"nil\").")) (|factorList| (((|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|)))) $) "\\spad{factorList(u)} returns the list of factors with flags (for use by factoring code).")) (|makeFR| (($ |#1| (|List| (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (|Integer|))))) "\\spad{makeFR(unit,listOfFactors)} creates a factored object (for use by factoring code).")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of the first factor of \\spadvar{\\spad{u}},{} or 0 if the factored form consists solely of a unit.")) (|expand| ((|#1| $) "\\spad{expand(f)} multiplies the unit and factors together,{} yielding an \"unfactored\" object. Note: this is purposely not called \\spadfun{coerce} which would cause the interpreter to do this automatically."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1243))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1243)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -321) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -298) (QUOTE $) (QUOTE $))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1242))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-1242)))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-464)))) (-418 R S) ((|constructor| (NIL "\\spadtype{FactoredFunctions2} contains functions that involve factored objects whose underlying domains may not be the same. For example,{} \\spadfun{map} might be used to coerce an object of type \\spadtype{Factored(Integer)} to \\spadtype{Factored(Complex(Integer))}.")) (|map| (((|Factored| |#2|) (|Mapping| |#2| |#1|) (|Factored| |#1|)) "\\spad{map(fn,u)} is used to apply the function \\userfun{\\spad{fn}} to every factor of \\spadvar{\\spad{u}}. The new factored object will have all its information flags set to \"nil\". This function is used,{} for example,{} to coerce every factor base to another type."))) NIL NIL (-419 S) ((|constructor| (NIL "Fraction takes an IntegralDomain \\spad{S} and produces the domain of Fractions with numerators and denominators from \\spad{S}. If \\spad{S} is also a GcdDomain,{} then gcd's between numerator and denominator will be cancelled during all operations.")) (|canonical| ((|attribute|) "\\spad{canonical} means that equal elements are in fact identical."))) -((-4412 -12 (|has| |#1| (-6 -4423)) (|has| |#1| (-464)) (|has| |#1| (-6 -4412))) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1041))) (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-842))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +((-4411 -12 (|has| |#1| (-6 -4422)) (|has| |#1| (-464)) (|has| |#1| (-6 -4411))) (-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1040))) (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-841))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-557))) (-12 (|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464)))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) (-420 A B) ((|constructor| (NIL "This package extends a map between integral domains to a map between Fractions over those domains by applying the map to the numerators and denominators.")) (|map| (((|Fraction| |#2|) (|Mapping| |#2| |#1|) (|Fraction| |#1|)) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of the fraction \\spad{frac}."))) NIL @@ -1618,28 +1618,28 @@ NIL NIL (-422 R UP) ((|constructor| (NIL "A \\spadtype{FramedAlgebra} is a \\spadtype{FiniteRankAlgebra} together with a fixed \\spad{R}-module basis.")) (|regularRepresentation| (((|Matrix| |#1|) $) "\\spad{regularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed basis.")) (|discriminant| ((|#1|) "\\spad{discriminant()} = determinant(traceMatrix()).")) (|traceMatrix| (((|Matrix| |#1|)) "\\spad{traceMatrix()} is the \\spad{n}-by-\\spad{n} matrix ( \\spad{Tr(vi * vj)} ),{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,..,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} vn are the elements of the fixed basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([v1,...,vm])} returns the coordinates of the \\spad{vi}'s with to the fixed basis. The coordinates of \\spad{vi} are contained in the \\spad{i}th row of the matrix returned by this function.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL (-423 A S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) +((|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-424 S) ((|constructor| (NIL "\\indented{2}{A is fully retractable to \\spad{B} means that A is retractable to \\spad{B},{} and,{}} \\indented{2}{in addition,{} if \\spad{B} is retractable to the integers or rational} \\indented{2}{numbers then so is A.} \\indented{2}{In particular,{} what we are asserting is that there are no integers} \\indented{2}{(rationals) in A which don't retract into \\spad{B}.} Date Created: March 1990 Date Last Updated: 9 April 1991"))) NIL NIL -(-425 R -3495 UP A) +(-425 R -3494 UP A) ((|constructor| (NIL "Fractional ideals in a framed algebra.")) (|randomLC| ((|#4| (|NonNegativeInteger|) (|Vector| |#4|)) "\\spad{randomLC(n,x)} should be local but conditional.")) (|minimize| (($ $) "\\spad{minimize(I)} returns a reduced set of generators for \\spad{I}.")) (|denom| ((|#1| $) "\\spad{denom(1/d * (f1,...,fn))} returns \\spad{d}.")) (|numer| (((|Vector| |#4|) $) "\\spad{numer(1/d * (f1,...,fn))} = the vector \\spad{[f1,...,fn]}.")) (|norm| ((|#2| $) "\\spad{norm(I)} returns the norm of the ideal \\spad{I}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} returns the vector \\spad{[f1,...,fn]}.")) (|ideal| (($ (|Vector| |#4|)) "\\spad{ideal([f1,...,fn])} returns the ideal \\spad{(f1,...,fn)}."))) -((-4422 . T)) +((-4421 . T)) NIL (-426 R1 F1 U1 A1 R2 F2 U2 A2) ((|constructor| (NIL "\\indented{1}{Lifting of morphisms to fractional ideals.} Author: Manuel Bronstein Date Created: 1 Feb 1989 Date Last Updated: 27 Feb 1990 Keywords: ideal,{} algebra,{} module.")) (|map| (((|FractionalIdeal| |#5| |#6| |#7| |#8|) (|Mapping| |#5| |#1|) (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{map(f,i)} \\undocumented{}"))) NIL NIL -(-427 R -3495 UP A |ibasis|) +(-427 R -3494 UP A |ibasis|) ((|constructor| (NIL "Module representation of fractional ideals.")) (|module| (($ (|FractionalIdeal| |#1| |#2| |#3| |#4|)) "\\spad{module(I)} returns \\spad{I} viewed has a module over \\spad{R}.") (($ (|Vector| |#4|)) "\\spad{module([f1,...,fn])} = the module generated by \\spad{(f1,...,fn)} over \\spad{R}.")) (|norm| ((|#2| $) "\\spad{norm(f)} returns the norm of the module \\spad{f}.")) (|basis| (((|Vector| |#4|) $) "\\spad{basis((f1,...,fn))} = the vector \\spad{[f1,...,fn]}."))) NIL -((|HasCategory| |#4| (|%list| (QUOTE -1059) (|devaluate| |#2|)))) +((|HasCategory| |#4| (|%list| (QUOTE -1058) (|devaluate| |#2|)))) (-428 AR R AS S) ((|constructor| (NIL "\\spad{FramedNonAssociativeAlgebraFunctions2} implements functions between two framed non associative algebra domains defined over different rings. The function map is used to coerce between algebras over different domains having the same structural constants.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the coordinates of \\spad{u} to get an element in \\spad{AS} via identification of the basis of \\spad{AR} as beginning part of the basis of \\spad{AS}."))) NIL @@ -1650,7 +1650,7 @@ NIL ((|HasCategory| |#2| (QUOTE (-376)))) (-430 R) ((|constructor| (NIL "FramedNonAssociativeAlgebra(\\spad{R}) is a \\spadtype{FiniteRankNonAssociativeAlgebra} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank) over a commutative ring \\spad{R} together with a fixed \\spad{R}-module basis.")) (|apply| (($ (|Matrix| |#1|) $) "\\spad{apply(m,a)} defines a left operation of \\spad{n} by \\spad{n} matrices where \\spad{n} is the rank of the algebra in terms of matrix-vector multiplication,{} this is a substitute for a left module structure. Error: if shape of matrix doesn't fit.")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{rightRankPolynomial()} calculates the right minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Polynomial| |#1|))) "\\spad{leftRankPolynomial()} calculates the left minimal polynomial of the generic element in the algebra,{} defined by the same structural constants over the polynomial ring in symbolic coefficients with respect to the fixed basis.")) (|rightRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{rightRegularRepresentation(a)} returns the matrix of the linear map defined by right multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|leftRegularRepresentation| (((|Matrix| |#1|) $) "\\spad{leftRegularRepresentation(a)} returns the matrix of the linear map defined by left multiplication by \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|rightTraceMatrix| (((|Matrix| |#1|)) "\\spad{rightTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|leftTraceMatrix| (((|Matrix| |#1|)) "\\spad{leftTraceMatrix()} is the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|rightDiscriminant| ((|#1|) "\\spad{rightDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the right trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(rightTraceMatrix())}.")) (|leftDiscriminant| ((|#1|) "\\spad{leftDiscriminant()} returns the determinant of the \\spad{n}-by-\\spad{n} matrix whose element at the \\spad{i}\\spad{-}th row and \\spad{j}\\spad{-}th column is given by the left trace of the product \\spad{vi*vj},{} where \\spad{v1},{}...,{}\\spad{vn} are the elements of the fixed \\spad{R}-module basis. Note: the same as \\spad{determinant(leftTraceMatrix())}.")) (|convert| (($ (|Vector| |#1|)) "\\spad{convert([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{convert(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|represents| (($ (|Vector| |#1|)) "\\spad{represents([a1,...,an])} returns \\spad{a1*v1 + ... + an*vn},{} where \\spad{v1},{} ...,{} \\spad{vn} are the elements of the fixed \\spad{R}-module basis.")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|))) "\\spad{structuralConstants()} calculates the structural constants \\spad{[(gammaijk) for k in 1..rank()]} defined by \\spad{vi * vj = gammaij1 * v1 + ... + gammaijn * vn},{} where \\spad{v1},{}...,{}\\spad{vn} is the fixed \\spad{R}-module basis.")) (|coordinates| (((|Matrix| |#1|) (|Vector| $)) "\\spad{coordinates([a1,...,am])} returns a matrix whose \\spad{i}-th row is formed by the coordinates of \\spad{ai} with respect to the fixed \\spad{R}-module basis.") (((|Vector| |#1|) $) "\\spad{coordinates(a)} returns the coordinates of \\spad{a} with respect to the fixed \\spad{R}-module basis.")) (|basis| (((|Vector| $)) "\\spad{basis()} returns the fixed \\spad{R}-module basis."))) -((-4422 |has| |#1| (-569)) (-4420 . T) (-4419 . T)) +((-4421 |has| |#1| (-569)) (-4419 . T) (-4418 . T)) NIL (-431 R) ((|constructor| (NIL "\\spadtype{FactoredFunctionUtilities} implements some utility functions for manipulating factored objects.")) (|mergeFactors| (((|Factored| |#1|) (|Factored| |#1|) (|Factored| |#1|)) "\\spad{mergeFactors(u,v)} is used when the factorizations of \\spadvar{\\spad{u}} and \\spadvar{\\spad{v}} are known to be disjoint,{} \\spadignore{e.g.} resulting from a content/primitive part split. Essentially,{} it creates a new factored object by multiplying the units together and appending the lists of factors.")) (|refine| (((|Factored| |#1|) (|Factored| |#1|) (|Mapping| (|Factored| |#1|) |#1|)) "\\spad{refine(u,fn)} is used to apply the function \\userfun{\\spad{fn}} to each factor of \\spadvar{\\spad{u}} and then build a new factored object from the results. For example,{} if \\spadvar{\\spad{u}} were created by calling \\spad{nilFactor(10,2)} then \\spad{refine(u,factor)} would create a factored object equal to that created by \\spad{factor(100)} or \\spad{primeFactor(2,2) * primeFactor(5,2)}."))) @@ -1659,10 +1659,10 @@ NIL (-432 S R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $)) (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#2| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#2|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#2|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#2|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#2| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#2| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1133))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) +((|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-1132))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) (-433 R) ((|constructor| (NIL "A space of formal functions with arguments in an arbitrary ordered set.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| $)) $ (|Kernel| $)) "\\spad{univariate(f, k)} returns \\spad{f} viewed as a univariate fraction in \\spad{k}.")) (/ (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $)) (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{p1/p2} returns the quotient of \\spad{p1} and \\spad{p2} as an element of \\%.")) (|denominator| (($ $) "\\spad{denominator(f)} returns the denominator of \\spad{f} converted to \\%.")) (|denom| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|convert| (($ (|Factored| $)) "\\spad{convert(f1\\^e1 ... fm\\^em)} returns \\spad{(f1)\\^e1 ... (fm)\\^em} as an element of \\%,{} using formal kernels created using a \\spadfunFrom{paren}{ExpressionSpace}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|numerator| (($ $) "\\spad{numerator(f)} returns the numerator of \\spad{f} converted to \\%.")) (|numer| (((|SparseMultivariatePolynomial| |#1| (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{R} if \\spad{R} is an integral domain. If not,{} then numer(\\spad{f}) = \\spad{f} viewed as a polynomial in the kernels over \\spad{R}.")) (|coerce| (($ (|Fraction| (|Polynomial| (|Fraction| |#1|)))) "\\spad{coerce(f)} returns \\spad{f} as an element of \\%.") (($ (|Polynomial| (|Fraction| |#1|))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.") (($ (|Fraction| |#1|)) "\\spad{coerce(q)} returns \\spad{q} as an element of \\%.") (($ (|SparseMultivariatePolynomial| |#1| (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} as an element of \\%.")) (|isMult| (((|Union| (|Record| (|:| |coef| (|Integer|)) (|:| |var| (|Kernel| $))) "failed") $) "\\spad{isMult(p)} returns \\spad{[n, x]} if \\spad{p = n * x} and \\spad{n <> 0}.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if \\spad{p = m1 +...+ mn} and \\spad{n > 1}.")) (|isExpt| (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|Symbol|)) "\\spad{isExpt(p,f)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = f(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $ (|BasicOperator|)) "\\spad{isExpt(p,op)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0} and \\spad{x = op(a)}.") (((|Union| (|Record| (|:| |var| (|Kernel| $)) (|:| |exponent| (|Integer|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1*...*an} and \\spad{n > 1}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns \\spad{x} * \\spad{x} * \\spad{x} * ... * \\spad{x} (\\spad{n} times).")) (|eval| (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ $)) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a)**n} in \\spad{x} by \\spad{f(a)} for any \\spad{a}.") (($ $ (|Symbol|) (|NonNegativeInteger|) (|Mapping| $ (|List| $))) "\\spad{eval(x, s, n, f)} replaces every \\spad{s(a1,...,am)**n} in \\spad{x} by \\spad{f(a1,...,am)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ (|List| $)))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a1,...,an)**ni} in \\spad{x} by \\spad{fi(a1,...,an)} for any \\spad{a1},{}...,{}am.") (($ $ (|List| (|Symbol|)) (|List| (|NonNegativeInteger|)) (|List| (|Mapping| $ $))) "\\spad{eval(x, [s1,...,sm], [n1,...,nm], [f1,...,fm])} replaces every \\spad{si(a)**ni} in \\spad{x} by \\spad{fi(a)} for any \\spad{a}.") (($ $ (|List| (|BasicOperator|)) (|List| $) (|Symbol|)) "\\spad{eval(x, [s1,...,sm], [f1,...,fm], y)} replaces every \\spad{si(a)} in \\spad{x} by \\spad{fi(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $ (|BasicOperator|) $ (|Symbol|)) "\\spad{eval(x, s, f, y)} replaces every \\spad{s(a)} in \\spad{x} by \\spad{f(y)} with \\spad{y} replaced by \\spad{a} for any \\spad{a}.") (($ $) "\\spad{eval(f)} unquotes all the quoted operators in \\spad{f}.") (($ $ (|List| (|Symbol|))) "\\spad{eval(f, [foo1,...,foon])} unquotes all the \\spad{fooi}'s in \\spad{f}.") (($ $ (|Symbol|)) "\\spad{eval(f, foo)} unquotes all the foo's in \\spad{f}.")) (|applyQuote| (($ (|Symbol|) (|List| $)) "\\spad{applyQuote(foo, [x1,...,xn])} returns \\spad{'foo(x1,...,xn)}.") (($ (|Symbol|) $ $ $ $) "\\spad{applyQuote(foo, x, y, z, t)} returns \\spad{'foo(x,y,z,t)}.") (($ (|Symbol|) $ $ $) "\\spad{applyQuote(foo, x, y, z)} returns \\spad{'foo(x,y,z)}.") (($ (|Symbol|) $ $) "\\spad{applyQuote(foo, x, y)} returns \\spad{'foo(x,y)}.") (($ (|Symbol|) $) "\\spad{applyQuote(foo, x)} returns \\spad{'foo(x)}.")) (|variables| (((|List| (|Symbol|)) $) "\\spad{variables(f)} returns the list of all the variables of \\spad{f}.")) (|ground| ((|#1| $) "\\spad{ground(f)} returns \\spad{f} as an element of \\spad{R}. An error occurs if \\spad{f} is not an element of \\spad{R}.")) (|ground?| (((|Boolean|) $) "\\spad{ground?(f)} tests if \\spad{f} is an element of \\spad{R}."))) -((-4422 -3957 (|has| |#1| (-1070)) (|has| |#1| (-485))) (-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) ((-4427 "*") |has| |#1| (-569)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-569)) (-4417 |has| |#1| (-569))) +((-4421 -3956 (|has| |#1| (-1069)) (|has| |#1| (-485))) (-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) ((-4426 "*") |has| |#1| (-569)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-569)) (-4416 |has| |#1| (-569))) NIL (-434 R A S B) ((|constructor| (NIL "This package allows a mapping \\spad{R} -> \\spad{S} to be lifted to a mapping from a function space over \\spad{R} to a function space over \\spad{S}.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, a)} applies \\spad{f} to all the constants in \\spad{R} appearing in \\spad{a}."))) @@ -1679,36 +1679,36 @@ NIL (-437 A S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#2| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#2| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) NIL -((|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-381)))) +((|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-381)))) (-438 S) ((|constructor| (NIL "A finite-set aggregate models the notion of a finite set,{} that is,{} a collection of elements characterized by membership,{} but not by order or multiplicity. See \\spadtype{Set} for an example.")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest element of aggregate \\spad{u}.")) (|max| ((|#1| $) "\\spad{max(u)} returns the largest element of aggregate \\spad{u}.")) (|universe| (($) "\\spad{universe()}\\$\\spad{D} returns the universal set for finite set aggregate \\spad{D}.")) (|complement| (($ $) "\\spad{complement(u)} returns the complement of the set \\spad{u},{} \\spadignore{i.e.} the set of all values not in \\spad{u}.")) (|cardinality| (((|NonNegativeInteger|) $) "\\spad{cardinality(u)} returns the number of elements of \\spad{u}. Note: \\axiom{cardinality(\\spad{u}) = \\#u}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) +((-4424 . T) (-4414 . T) (-4425 . T)) NIL (-439 S A R B) ((|constructor| (NIL "\\spad{FiniteSetAggregateFunctions2} provides functions involving two finite set aggregates where the underlying domains might be different. An example of this is to create a set of rational numbers by mapping a function across a set of integers,{} where the function divides each integer by 1000.")) (|scan| ((|#4| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-aggregates \\spad{x} of aggregate \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad {[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}.")) (|reduce| ((|#3| (|Mapping| |#3| |#1| |#3|) |#2| |#3|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the aggregate \\spad{a} and an accumulant initialised to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does a \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as an identity element for the function.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f,a)} applies function \\spad{f} to each member of aggregate \\spad{a},{} creating a new aggregate with a possibly different underlying domain."))) NIL NIL -(-440 R -3495) +(-440 R -3494) ((|constructor| (NIL "\\spadtype{FunctionSpaceComplexIntegration} provides functions for the indefinite integration of complex-valued functions.")) (|complexIntegrate| ((|#2| |#2| (|Symbol|)) "\\spad{complexIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable.")) (|internalIntegrate0| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate0 should} be a local function,{} but is conditional.")) (|internalIntegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a complex variable."))) NIL NIL (-441 R E) ((|constructor| (NIL "\\indented{1}{Author: James Davenport} Date Created: 17 April 1992 Date Last Updated: Basic Functions: Related Constructors: Also See: AMS Classifications: Keywords: References: Description:")) (|makeCos| (($ |#2| |#1|) "\\spad{makeCos(e,r)} makes a sin expression with given argument and coefficient")) (|makeSin| (($ |#2| |#1|) "\\spad{makeSin(e,r)} makes a sin expression with given argument and coefficient")) (|coerce| (($ (|FourierComponent| |#2|)) "\\spad{coerce(c)} converts sin/cos terms into Fourier Series") (($ |#1|) "\\spad{coerce(r)} converts coefficients into Fourier Series"))) -((-4412 -12 (|has| |#1| (-6 -4412)) (|has| |#2| (-6 -4412))) (-4419 . T) (-4420 . T) (-4422 . T)) -((-12 (|HasAttribute| |#1| (QUOTE -4412)) (|HasAttribute| |#2| (QUOTE -4412)))) -(-442 R -3495) +((-4411 -12 (|has| |#1| (-6 -4411)) (|has| |#2| (-6 -4411))) (-4418 . T) (-4419 . T) (-4421 . T)) +((-12 (|HasAttribute| |#1| (QUOTE -4411)) (|HasAttribute| |#2| (QUOTE -4411)))) +(-442 R -3494) ((|constructor| (NIL "\\spadtype{FunctionSpaceIntegration} provides functions for the indefinite integration of real-valued functions.")) (|integrate| (((|Union| |#2| (|List| |#2|)) |#2| (|Symbol|)) "\\spad{integrate(f, x)} returns the integral of \\spad{f(x)dx} where \\spad{x} is viewed as a real variable."))) NIL NIL -(-443 R -3495) +(-443 R -3494) ((|constructor| (NIL "Provides some special functions over an integral domain.")) (|iiabs| ((|#2| |#2|) "\\spad{iiabs(x)} should be local but conditional.")) (|iiGamma| ((|#2| |#2|) "\\spad{iiGamma(x)} should be local but conditional.")) (|airyBi| ((|#2| |#2|) "\\spad{airyBi(x)} returns the airybi function applied to \\spad{x}")) (|airyAi| ((|#2| |#2|) "\\spad{airyAi(x)} returns the airyai function applied to \\spad{x}")) (|besselK| ((|#2| |#2| |#2|) "\\spad{besselK(x,y)} returns the besselk function applied to \\spad{x} and \\spad{y}")) (|besselI| ((|#2| |#2| |#2|) "\\spad{besselI(x,y)} returns the besseli function applied to \\spad{x} and \\spad{y}")) (|besselY| ((|#2| |#2| |#2|) "\\spad{besselY(x,y)} returns the bessely function applied to \\spad{x} and \\spad{y}")) (|besselJ| ((|#2| |#2| |#2|) "\\spad{besselJ(x,y)} returns the besselj function applied to \\spad{x} and \\spad{y}")) (|polygamma| ((|#2| |#2| |#2|) "\\spad{polygamma(x,y)} returns the polygamma function applied to \\spad{x} and \\spad{y}")) (|digamma| ((|#2| |#2|) "\\spad{digamma(x)} returns the digamma function applied to \\spad{x}")) (|Beta| ((|#2| |#2| |#2|) "\\spad{Beta(x,y)} returns the beta function applied to \\spad{x} and \\spad{y}")) (|Gamma| ((|#2| |#2| |#2|) "\\spad{Gamma(a,x)} returns the incomplete Gamma function applied to a and \\spad{x}") ((|#2| |#2|) "\\spad{Gamma(f)} returns the formal Gamma function applied to \\spad{f}")) (|abs| ((|#2| |#2|) "\\spad{abs(f)} returns the absolute value operator applied to \\spad{f}")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns a copy of \\spad{op} with the domain-dependent properties appropriate for \\spad{F}; error if \\spad{op} is not a special function operator")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} is \\spad{true} if \\spad{op} is a special function operator."))) NIL NIL -(-444 R -3495) +(-444 R -3494) ((|constructor| (NIL "FunctionsSpacePrimitiveElement provides functions to compute primitive elements in functions spaces.")) (|primitiveElement| (((|Record| (|:| |primelt| |#2|) (|:| |pol1| (|SparseUnivariatePolynomial| |#2|)) (|:| |pol2| (|SparseUnivariatePolynomial| |#2|)) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) |#2| |#2|) "\\spad{primitiveElement(a1, a2)} returns \\spad{[a, q1, q2, q]} such that \\spad{k(a1, a2) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The minimal polynomial for \\spad{a2} may involve \\spad{a1},{} but the minimal polynomial for \\spad{a1} may not involve \\spad{a2}; This operations uses \\spadfun{resultant}.") (((|Record| (|:| |primelt| |#2|) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#2|))) (|:| |prim| (|SparseUnivariatePolynomial| |#2|))) (|List| |#2|)) "\\spad{primitiveElement([a1,...,an])} returns \\spad{[a, [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}."))) NIL ((|HasCategory| |#2| (QUOTE (-27)))) -(-445 R -3495) +(-445 R -3494) ((|constructor| (NIL "This package provides function which replaces transcendental kernels in a function space by random integers. The correspondence between the kernels and the integers is fixed between calls to new().")) (|newReduc| (((|Void|)) "\\spad{newReduc()} \\undocumented")) (|bringDown| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) |#2| (|Kernel| |#2|)) "\\spad{bringDown(f,k)} \\undocumented") (((|Fraction| (|Integer|)) |#2|) "\\spad{bringDown(f)} \\undocumented"))) NIL NIL @@ -1716,10 +1716,10 @@ NIL ((|constructor| (NIL "Creates and manipulates objects which correspond to the basic FORTRAN data types: REAL,{} INTEGER,{} COMPLEX,{} LOGICAL and CHARACTER")) (= (((|Boolean|) $ $) "\\spad{x=y} tests for equality")) (|logical?| (((|Boolean|) $) "\\spad{logical?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type LOGICAL.")) (|character?| (((|Boolean|) $) "\\spad{character?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type CHARACTER.")) (|doubleComplex?| (((|Boolean|) $) "\\spad{doubleComplex?(t)} tests whether \\spad{t} is equivalent to the (non-standard) FORTRAN type DOUBLE COMPLEX.")) (|complex?| (((|Boolean|) $) "\\spad{complex?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type COMPLEX.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type INTEGER.")) (|double?| (((|Boolean|) $) "\\spad{double?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type DOUBLE PRECISION")) (|real?| (((|Boolean|) $) "\\spad{real?(t)} tests whether \\spad{t} is equivalent to the FORTRAN type REAL.")) (|coerce| (((|SExpression|) $) "\\spad{coerce(x)} returns the \\spad{s}-expression associated with \\spad{x}") (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol associated with \\spad{x}") (($ (|Symbol|)) "\\spad{coerce(s)} transforms the symbol \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of real,{} complex,{}double precision,{} logical,{} integer,{} character,{} REAL,{} COMPLEX,{} LOGICAL,{} INTEGER,{} CHARACTER,{} DOUBLE PRECISION") (($ (|String|)) "\\spad{coerce(s)} transforms the string \\spad{s} into an element of FortranScalarType provided \\spad{s} is one of \"real\",{} \"double precision\",{} \"complex\",{} \"logical\",{} \"integer\",{} \"character\",{} \"REAL\",{} \"COMPLEX\",{} \"LOGICAL\",{} \"INTEGER\",{} \"CHARACTER\",{} \"DOUBLE PRECISION\""))) NIL NIL -(-447 R -3495 UP) +(-447 R -3494 UP) ((|constructor| (NIL "\\indented{1}{Used internally by IR2F} Author: Manuel Bronstein Date Created: 12 May 1988 Date Last Updated: 22 September 1993 Keywords: function,{} space,{} polynomial,{} factoring")) (|anfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) "failed") |#3|) "\\spad{anfactor(p)} tries to factor \\spad{p} over algebraic numbers,{} returning \"failed\" if it cannot")) (|UP2ifCan| (((|Union| (|:| |overq| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) (|:| |overan| (|SparseUnivariatePolynomial| (|AlgebraicNumber|))) (|:| |failed| (|Boolean|))) |#3|) "\\spad{UP2ifCan(x)} should be local but conditional.")) (|qfactor| (((|Union| (|Factored| (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "failed") |#3|) "\\spad{qfactor(p)} tries to factor \\spad{p} over fractions of integers,{} returning \"failed\" if it cannot")) (|ffactor| (((|Factored| |#3|) |#3|) "\\spad{ffactor(p)} tries to factor a univariate polynomial \\spad{p} over \\spad{F}"))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-48))))) +((|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-48))))) (-448) ((|constructor| (NIL "Creates and manipulates objects which correspond to FORTRAN data types,{} including array dimensions.")) (|fortranCharacter| (($) "\\spad{fortranCharacter()} returns CHARACTER,{} an element of FortranType")) (|fortranDoubleComplex| (($) "\\spad{fortranDoubleComplex()} returns DOUBLE COMPLEX,{} an element of FortranType")) (|fortranComplex| (($) "\\spad{fortranComplex()} returns COMPLEX,{} an element of FortranType")) (|fortranLogical| (($) "\\spad{fortranLogical()} returns LOGICAL,{} an element of FortranType")) (|fortranInteger| (($) "\\spad{fortranInteger()} returns INTEGER,{} an element of FortranType")) (|fortranDouble| (($) "\\spad{fortranDouble()} returns DOUBLE PRECISION,{} an element of FortranType")) (|fortranReal| (($) "\\spad{fortranReal()} returns REAL,{} an element of FortranType")) (|construct| (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|List| (|Polynomial| (|Integer|))) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType") (($ (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) (|List| (|Symbol|)) (|Boolean|)) "\\spad{construct(type,dims)} creates an element of FortranType")) (|external?| (((|Boolean|) $) "\\spad{external?(u)} returns \\spad{true} if \\spad{u} is declared to be EXTERNAL")) (|dimensionsOf| (((|List| (|Polynomial| (|Integer|))) $) "\\spad{dimensionsOf(t)} returns the dimensions of \\spad{t}")) (|scalarTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{scalarTypeOf(t)} returns the FORTRAN data type of \\spad{t}")) (|coerce| (($ (|FortranScalarType|)) "\\spad{coerce(t)} creates an element from a scalar type"))) NIL @@ -1748,7 +1748,7 @@ NIL ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizer} provides functions to factor resolvents.")) (|btwFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|) (|Set| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{btwFact(p,sqf,pd,r)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors). \\spad{pd} is the \\spadtype{Set} of possible degrees. \\spad{r} is a lower bound for the number of factors of \\spad{p}. Please do not use this function in your code because its design may change.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(p,sqf)} returns the factorization of \\spad{p},{} the result is a Record such that \\spad{contp=}content \\spad{p},{} \\spad{factors=}List of irreducible factors of \\spad{p} with exponent. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).")) (|factorOfDegree| (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|) (|Boolean|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r,sqf)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors. If \\spad{sqf=true} the polynomial is assumed to be square free (\\spadignore{i.e.} without repeated factors).") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,listOfDegrees,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees},{} and that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorOfDegree(d,p,listOfDegrees)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1| (|NonNegativeInteger|)) "\\spad{factorOfDegree(d,p,r)} returns a factor of \\spad{p} of degree \\spad{d} knowing that \\spad{p} has at least \\spad{r} factors.") (((|Union| |#1| "failed") (|PositiveInteger|) |#1|) "\\spad{factorOfDegree(d,p)} returns a factor of \\spad{p} of degree \\spad{d}.")) (|factorSquareFree| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factorSquareFree(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factorSquareFree(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors. \\spad{f} is supposed not having any repeated factor (this is not checked).") (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} returns the factorization of \\spad{p} which is supposed not having any repeated factor (this is not checked).")) (|factor| (((|Factored| |#1|) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factor(p,d,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{d} divides the degree of all factors of \\spad{p} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{factor(p,listOfDegrees,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm,{} knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees} and that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1| (|List| (|NonNegativeInteger|))) "\\spad{factor(p,listOfDegrees)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has for possible splitting of its degree \\spad{listOfDegrees}.") (((|Factored| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{factor(p,r)} factorizes the polynomial \\spad{p} using the single factor bound algorithm and knowing that \\spad{p} has at least \\spad{r} factors.") (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns the factorization of \\spad{p} over the integers.")) (|tryFunctionalDecomposition| (((|Boolean|) (|Boolean|)) "\\spad{tryFunctionalDecomposition(b)} chooses whether factorizers have to look for functional decomposition of polynomials (\\spad{true}) or not (\\spad{false}). Returns the previous value.")) (|tryFunctionalDecomposition?| (((|Boolean|)) "\\spad{tryFunctionalDecomposition?()} returns \\spad{true} if factorizers try functional decomposition of polynomials before factoring them.")) (|eisensteinIrreducible?| (((|Boolean|) |#1|) "\\spad{eisensteinIrreducible?(p)} returns \\spad{true} if \\spad{p} can be shown to be irreducible by Eisenstein's criterion,{} \\spad{false} is inconclusive.")) (|useEisensteinCriterion| (((|Boolean|) (|Boolean|)) "\\spad{useEisensteinCriterion(b)} chooses whether factorizers check Eisenstein's criterion before factoring: \\spad{true} for using it,{} \\spad{false} else. Returns the previous value.")) (|useEisensteinCriterion?| (((|Boolean|)) "\\spad{useEisensteinCriterion?()} returns \\spad{true} if factorizers check Eisenstein's criterion before factoring.")) (|useSingleFactorBound| (((|Boolean|) (|Boolean|)) "\\spad{useSingleFactorBound(b)} chooses the algorithm to be used by the factorizers: \\spad{true} for algorithm with single factor bound,{} \\spad{false} for algorithm with overall bound. Returns the previous value.")) (|useSingleFactorBound?| (((|Boolean|)) "\\spad{useSingleFactorBound?()} returns \\spad{true} if algorithm with single factor bound is used for factorization,{} \\spad{false} for algorithm with overall bound.")) (|modularFactor| (((|Record| (|:| |prime| (|Integer|)) (|:| |factors| (|List| |#1|))) |#1|) "\\spad{modularFactor(f)} chooses a \"good\" prime and returns the factorization of \\spad{f} modulo this prime in a form that may be used by \\spadfunFrom{completeHensel}{GeneralHenselPackage}. If prime is zero it means that \\spad{f} has been proved to be irreducible over the integers or that \\spad{f} is a unit (\\spadignore{i.e.} 1 or \\spad{-1}). \\spad{f} shall be primitive (\\spadignore{i.e.} content(\\spad{p})\\spad{=1}) and square free (\\spadignore{i.e.} without repeated factors).")) (|numberOfFactors| (((|NonNegativeInteger|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{numberOfFactors(ddfactorization)} returns the number of factors of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|stopMusserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{stopMusserTrials(n)} sets to \\spad{n} the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**n} trials. Returns the previous value.") (((|PositiveInteger|)) "\\spad{stopMusserTrials()} returns the bound on the number of factors for which \\spadfun{modularFactor} stops to look for an other prime. You will have to remember that the step of recombining the extraneous factors may take up to \\spad{2**stopMusserTrials()} trials.")) (|musserTrials| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{musserTrials(n)} sets to \\spad{n} the number of primes to be tried in \\spadfun{modularFactor} and returns the previous value.") (((|PositiveInteger|)) "\\spad{musserTrials()} returns the number of primes that are tried in \\spadfun{modularFactor}.")) (|degreePartition| (((|Multiset| (|NonNegativeInteger|)) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|))))) "\\spad{degreePartition(ddfactorization)} returns the degree partition of the polynomial \\spad{f} modulo \\spad{p} where \\spad{ddfactorization} is the distinct degree factorization of \\spad{f} computed by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} for some prime \\spad{p}.")) (|makeFR| (((|Factored| |#1|) (|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|))))))) "\\spad{makeFR(flist)} turns the final factorization of henselFact into a \\spadtype{Factored} object."))) NIL NIL -(-455 R UP -3495) +(-455 R UP -3494) ((|constructor| (NIL "\\spadtype{GaloisGroupFactorizationUtilities} provides functions that will be used by the factorizer.")) (|length| ((|#3| |#2|) "\\spad{length(p)} returns the sum of the absolute values of the coefficients of the polynomial \\spad{p}.")) (|height| ((|#3| |#2|) "\\spad{height(p)} returns the maximal absolute value of the coefficients of the polynomial \\spad{p}.")) (|infinityNorm| ((|#3| |#2|) "\\spad{infinityNorm(f)} returns the maximal absolute value of the coefficients of the polynomial \\spad{f}.")) (|quadraticNorm| ((|#3| |#2|) "\\spad{quadraticNorm(f)} returns the \\spad{l2} norm of the polynomial \\spad{f}.")) (|norm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{norm(f,p)} returns the lp norm of the polynomial \\spad{f}.")) (|singleFactorBound| (((|Integer|) |#2|) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{p} shall be of degree higher or equal to 2.") (((|Integer|) |#2| (|NonNegativeInteger|)) "\\spad{singleFactorBound(p,r)} returns a bound on the infinite norm of the factor of \\spad{p} with smallest Bombieri's norm. \\spad{r} is a lower bound for the number of factors of \\spad{p}. \\spad{p} shall be of degree higher or equal to 2.")) (|rootBound| (((|Integer|) |#2|) "\\spad{rootBound(p)} returns a bound on the largest norm of the complex roots of \\spad{p}.")) (|bombieriNorm| ((|#3| |#2| (|PositiveInteger|)) "\\spad{bombieriNorm(p,n)} returns the \\spad{n}th Bombieri's norm of \\spad{p}.") ((|#3| |#2|) "\\spad{bombieriNorm(p)} returns quadratic Bombieri's norm of \\spad{p}.")) (|beauzamyBound| (((|Integer|) |#2|) "\\spad{beauzamyBound(p)} returns a bound on the larger coefficient of any factor of \\spad{p}."))) NIL NIL @@ -1786,16 +1786,16 @@ NIL NIL (-464) ((|constructor| (NIL "This category describes domains where \\spadfun{gcd} can be computed but where there is no guarantee of the existence of \\spadfun{factor} operation for factorisation into irreducibles. However,{} if such a \\spadfun{factor} operation exist,{} factorization will be unique up to order and units.")) (|lcm| (($ (|List| $)) "\\spad{lcm(l)} returns the least common multiple of the elements of the list \\spad{l}.") (($ $ $) "\\spad{lcm(x,y)} returns the least common multiple of \\spad{x} and \\spad{y}.")) (|gcd| (($ (|List| $)) "\\spad{gcd(l)} returns the common gcd of the elements in the list \\spad{l}.") (($ $ $) "\\spad{gcd(x,y)} returns the greatest common divisor of \\spad{x} and \\spad{y}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-465 R |n| |ls| |gamma|) ((|constructor| (NIL "AlgebraGenericElementPackage allows you to create generic elements of an algebra,{} \\spadignore{i.e.} the scalars are extended to include symbolic coefficients")) (|conditionsForIdempotents| (((|List| (|Polynomial| |#1|))) "\\spad{conditionsForIdempotents()} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the fixed \\spad{R}-module basis") (((|List| (|Polynomial| |#1|)) (|Vector| $)) "\\spad{conditionsForIdempotents([v1,...,vn])} determines a complete list of polynomial equations for the coefficients of idempotents with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}")) (|genericRightDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericRightDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericRightTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericRightTraceForm (a,b)} is defined to be \\spadfun{genericRightTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericLeftDiscriminant| (((|Fraction| (|Polynomial| |#1|))) "\\spad{genericLeftDiscriminant()} is the determinant of the generic left trace forms of all products of basis element,{} if the generic left trace form is associative,{} an algebra is separable if the generic left discriminant is invertible,{} if it is non-zero,{} there is some ring extension which makes the algebra separable")) (|genericLeftTraceForm| (((|Fraction| (|Polynomial| |#1|)) $ $) "\\spad{genericLeftTraceForm (a,b)} is defined to be \\spad{genericLeftTrace (a*b)},{} this defines a symmetric bilinear form on the algebra")) (|genericRightNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{rightRankPolynomial} and changes the sign if the degree of this polynomial is odd")) (|genericRightTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericRightTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{rightRankPolynomial} and changes the sign")) (|genericRightMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericRightMinimalPolynomial(a)} substitutes the coefficients of \\spad{a} for the generic coefficients in \\spadfun{rightRankPolynomial}")) (|rightRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{rightRankPolynomial()} returns the right minimimal polynomial of the generic element")) (|genericLeftNorm| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftNorm(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the constant term in \\spadfun{leftRankPolynomial} and changes the sign if the degree of this polynomial is odd. This is a form of degree \\spad{k}")) (|genericLeftTrace| (((|Fraction| (|Polynomial| |#1|)) $) "\\spad{genericLeftTrace(a)} substitutes the coefficients of \\spad{a} for the generic coefficients into the coefficient of the second highest term in \\spadfun{leftRankPolynomial} and changes the sign. \\indented{1}{This is a linear form}")) (|genericLeftMinimalPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|))) $) "\\spad{genericLeftMinimalPolynomial(a)} substitutes the coefficients of {em a} for the generic coefficients in \\spad{leftRankPolynomial()}")) (|leftRankPolynomial| (((|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) "\\spad{leftRankPolynomial()} returns the left minimimal polynomial of the generic element")) (|generic| (($ (|Vector| (|Symbol|)) (|Vector| $)) "\\spad{generic(vs,ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} with the symbolic coefficients \\spad{vs} error,{} if the vector of symbols is shorter than the vector of elements") (($ (|Symbol|) (|Vector| $)) "\\spad{generic(s,v)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{v} with the symbolic coefficients \\spad{s1,s2,..}") (($ (|Vector| $)) "\\spad{generic(ve)} returns a generic element,{} \\spadignore{i.e.} the linear combination of \\spad{ve} basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}") (($ (|Vector| (|Symbol|))) "\\spad{generic(vs)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{vs}; error,{} if the vector of symbols is too short") (($ (|Symbol|)) "\\spad{generic(s)} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{s1,s2,..}") (($) "\\spad{generic()} returns a generic element,{} \\spadignore{i.e.} the linear combination of the fixed basis with the symbolic coefficients \\spad{\\%x1,\\%x2,..}")) (|rightUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{rightUnits()} returns the affine space of all right units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|leftUnits| (((|Union| (|Record| (|:| |particular| $) (|:| |basis| (|List| $))) "failed")) "\\spad{leftUnits()} returns the affine space of all left units of the algebra,{} or \\spad{\"failed\"} if there is none")) (|coerce| (($ (|Vector| (|Fraction| (|Polynomial| |#1|)))) "\\spad{coerce(v)} assumes that it is called with a vector of length equal to the dimension of the algebra,{} then a linear combination with the basis element is formed"))) -((-4422 |has| (-419 (-965 |#1|)) (-569)) (-4420 . T) (-4419 . T)) -((|HasCategory| (-419 (-965 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-419 (-965 |#1|)) (QUOTE (-569)))) +((-4421 |has| (-419 (-964 |#1|)) (-569)) (-4419 . T) (-4418 . T)) +((|HasCategory| (-419 (-964 |#1|)) (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-419 (-964 |#1|)) (QUOTE (-569)))) (-466 |vl| R E) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is specified by its third parameter. Suggested types which define term orderings include: \\spadtype{DirectProduct},{} \\spadtype{HomogeneousDirectProduct},{} \\spadtype{SplitHomogeneousDirectProduct} and finally \\spadtype{OrderedDirectProduct} which accepts an arbitrary user function to define a term ordering.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4427 "*") |has| |#2| (-175)) (-4418 |has| |#2| (-569)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(((-4426 "*") |has| |#2| (-175)) (-4417 |has| |#2| (-569)) (-4422 |has| |#2| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) (-467 R BP) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni.} January 1990 The equation \\spad{Af+Bg=h} and its generalization to \\spad{n} polynomials is solved for solutions over the \\spad{R},{} euclidean domain. A table containing the solutions of \\spad{Af+Bg=x**k} is used. The operations are performed modulus a prime which are in principle big enough,{} but the solutions are tested and,{} in case of failure,{} a hensel lifting process is used to get to the right solutions. It will be used in the factorization of multivariate polynomials over finite field,{} with \\spad{R=F[x]}.")) (|testModulus| (((|Boolean|) |#1| (|List| |#2|)) "\\spad{testModulus(p,lp)} returns \\spad{true} if the the prime \\spad{p} is valid for the list of polynomials \\spad{lp},{} \\spadignore{i.e.} preserves the degree and they remain relatively prime.")) (|solveid| (((|Union| (|List| |#2|) "failed") |#2| |#1| (|Vector| (|List| |#2|))) "\\spad{solveid(h,table)} computes the coefficients of the extended euclidean algorithm for a list of polynomials whose tablePow is \\spad{table} and with right side \\spad{h}.")) (|tablePow| (((|Union| (|Vector| (|List| |#2|)) "failed") (|NonNegativeInteger|) |#1| (|List| |#2|)) "\\spad{tablePow(maxdeg,prime,lpol)} constructs the table with the coefficients of the Extended Euclidean Algorithm for \\spad{lpol}. Here the right side is \\spad{x**k},{} for \\spad{k} less or equal to \\spad{maxdeg}. The operation returns \"failed\" when the elements are not coprime modulo \\spad{prime}.")) (|compBound| (((|NonNegativeInteger|) |#2| (|List| |#2|)) "\\spad{compBound(p,lp)} computes a bound for the coefficients of the solution polynomials. Given a polynomial right hand side \\spad{p},{} and a list \\spad{lp} of left hand side polynomials. Exported because it depends on the valuation.")) (|reduction| ((|#2| |#2| |#1|) "\\spad{reduction(p,prime)} reduces the polynomial \\spad{p} modulo \\spad{prime} of \\spad{R}. Note: this function is exported only because it's conditional."))) NIL @@ -1822,7 +1822,7 @@ NIL NIL (-473 |vl| R IS E |ff| P) ((|constructor| (NIL "This package \\undocumented")) (* (($ |#6| $) "\\spad{p*x} \\undocumented")) (|multMonom| (($ |#2| |#4| $) "\\spad{multMonom(r,e,x)} \\undocumented")) (|build| (($ |#2| |#3| |#4|) "\\spad{build(r,i,e)} \\undocumented")) (|unitVector| (($ |#3|) "\\spad{unitVector(x)} \\undocumented")) (|monomial| (($ |#2| (|ModuleMonomial| |#3| |#4| |#5|)) "\\spad{monomial(r,x)} \\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|leadingIndex| ((|#3| $) "\\spad{leadingIndex(x)} \\undocumented")) (|leadingExponent| ((|#4| $) "\\spad{leadingExponent(x)} \\undocumented")) (|leadingMonomial| (((|ModuleMonomial| |#3| |#4| |#5|) $) "\\spad{leadingMonomial(x)} \\undocumented")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(x)} \\undocumented"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL (-474 E V R P Q) ((|constructor| (NIL "Gosper's summation algorithm.")) (|GospersMethod| (((|Union| |#5| "failed") |#5| |#2| (|Mapping| |#2|)) "\\spad{GospersMethod(b, n, new)} returns a rational function \\spad{rf(n)} such that \\spad{a(n) * rf(n)} is the indefinite sum of \\spad{a(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{a(n+1) * rf(n+1) - a(n) * rf(n) = a(n)},{} where \\spad{b(n) = a(n)/a(n-1)} is a rational function. Returns \"failed\" if no such rational function \\spad{rf(n)} exists. Note: \\spad{new} is a nullary function returning a new \\spad{V} every time. The condition on \\spad{a(n)} is that \\spad{a(n)/a(n-1)} is a rational function of \\spad{n}."))) @@ -1830,8 +1830,8 @@ NIL NIL (-475 R E |VarSet| P) ((|constructor| (NIL "A domain for polynomial sets.")) (|convert| (($ (|List| |#4|)) "\\axiom{convert(lp)} returns the polynomial set whose members are the polynomials of \\axiom{lp}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-476 S R E) ((|constructor| (NIL "GradedAlgebra(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-algebra''. A graded algebra is a graded module together with a degree preserving \\spad{R}-linear map,{} called the {\\em product}. \\blankline The name ``product'' is written out in full so inner and outer products with the same mapping type can be distinguished by name.")) (|product| (($ $ $) "\\spad{product(a,b)} is the degree-preserving \\spad{R}-linear product: \\blankline \\indented{2}{\\spad{degree product(a,b) = degree a + degree b}} \\indented{2}{\\spad{product(a1+a2,b) = product(a1,b) + product(a2,b)}} \\indented{2}{\\spad{product(a,b1+b2) = product(a,b1) + product(a,b2)}} \\indented{2}{\\spad{product(r*a,b) = product(a,r*b) = r*product(a,b)}} \\indented{2}{\\spad{product(a,product(b,c)) = product(product(a,b),c)}}")) ((|One|) (($) "1 is the identity for \\spad{product}."))) NIL @@ -1860,7 +1860,7 @@ NIL ((|constructor| (NIL "GradedModule(\\spad{R},{}\\spad{E}) denotes ``E-graded \\spad{R}-module'',{} \\spadignore{i.e.} collection of \\spad{R}-modules indexed by an abelian monoid \\spad{E}. An element \\spad{g} of \\spad{G[s]} for some specific \\spad{s} in \\spad{E} is said to be an element of \\spad{G} with {\\em degree} \\spad{s}. Sums are defined in each module \\spad{G[s]} so two elements of \\spad{G} have a sum if they have the same degree. \\blankline Morphisms can be defined and composed by degree to give the mathematical category of graded modules.")) (+ (($ $ $) "\\spad{g+h} is the sum of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.")) (- (($ $ $) "\\spad{g-h} is the difference of \\spad{g} and \\spad{h} in the module of elements of the same degree as \\spad{g} and \\spad{h}. Error: if \\spad{g} and \\spad{h} have different degrees.") (($ $) "\\spad{-g} is the additive inverse of \\spad{g} in the module of elements of the same grade as \\spad{g}.")) (* (($ $ |#1|) "\\spad{g*r} is right module multiplication.") (($ |#1| $) "\\spad{r*g} is left module multiplication.")) ((|Zero|) (($) "0 denotes the zero of degree 0.")) (|degree| ((|#2| $) "\\spad{degree(g)} names the degree of \\spad{g}. The set of all elements of a given degree form an \\spad{R}-module."))) NIL NIL -(-483 |lv| -3495 R) +(-483 |lv| -3494 R) ((|constructor| (NIL "\\indented{1}{Author : \\spad{P}.Gianni,{} Summer \\spad{'88},{} revised November \\spad{'89}} Solve systems of polynomial equations using Groebner bases Total order Groebner bases are computed and then converted to lex ones This package is mostly intended for internal use.")) (|genericPosition| (((|Record| (|:| |dpolys| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |coords| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{genericPosition(lp,lv)} puts a radical zero dimensional ideal in general position,{} for system \\spad{lp} in variables \\spad{lv}.")) (|testDim| (((|Union| (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "failed") (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{testDim(lp,lv)} tests if the polynomial system \\spad{lp} in variables \\spad{lv} is zero dimensional.")) (|groebSolve| (((|List| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|OrderedVariableList| |#1|))) "\\spad{groebSolve(lp,lv)} reduces the polynomial system \\spad{lp} in variables \\spad{lv} to triangular form. Algorithm based on groebner bases algorithm with linear algebra for change of ordering. Preprocessing for the general solver. The polynomials in input are of type \\spadtype{DMP}."))) NIL NIL @@ -1870,23 +1870,23 @@ NIL NIL (-485) ((|constructor| (NIL "The class of multiplicative groups,{} \\spadignore{i.e.} monoids with multiplicative inverses. \\blankline")) (|commutator| (($ $ $) "\\spad{commutator(p,q)} computes \\spad{inv(p) * inv(q) * p * q}.")) (|conjugate| (($ $ $) "\\spad{conjugate(p,q)} computes \\spad{inv(q) * p * q}; this is 'right action by conjugation'.")) (|unitsKnown| ((|attribute|) "unitsKnown asserts that recip only returns \"failed\" for non-units.")) (** (($ $ (|Integer|)) "\\spad{x**n} returns \\spad{x} raised to the integer power \\spad{n}.")) (/ (($ $ $) "\\spad{x/y} is the same as \\spad{x} times the inverse of \\spad{y}.")) (|inv| (($ $) "\\spad{inv(x)} returns the inverse of \\spad{x}."))) -((-4422 . T)) +((-4421 . T)) NIL (-486 |Coef| |var| |cen|) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x\\^r)}.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|UnivariatePuiseuxSeries| |#1| |#2| |#3|)) "\\spad{coerce(f)} converts a Puiseux series to a general power series.") (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Puiseux series."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|))))))) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|))))))) (-487 |Key| |Entry| |Tbl| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) +((-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-488 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{TriangularSetCategory}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members but they are displayed in reverse order.\\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}"))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) (-489) ((|constructor| (NIL "\\indented{1}{Symbolic fractions in \\%\\spad{pi} with integer coefficients;} \\indented{1}{The point for using \\spad{Pi} as the default domain for those fractions} \\indented{1}{is that \\spad{Pi} is coercible to the float types,{} and not Expression.} Date Created: 21 Feb 1990 Date Last Updated: 12 Mai 1992")) (|pi| (($) "\\spad{pi()} returns the symbolic \\%\\spad{pi}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-490) ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the case expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the has expression `e'."))) @@ -1894,29 +1894,29 @@ NIL NIL (-491 |Key| |Entry| |hashfn|) ((|constructor| (NIL "This domain provides access to the underlying Lisp hash tables. By varying the hashfn parameter,{} tables suited for different purposes can be obtained."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (-492) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date Created : August 1988 Date Last Updated : March 9 1990 Related Constructors: OrderedSetInts,{} Commutator,{} FreeNilpotentLie AMS Classification: Primary 17B05,{} 17B30; Secondary 17A50 Keywords: free Lie algebra,{} Hall basis,{} basic commutators Description : Generate a basis for the free Lie algebra on \\spad{n} generators over a ring \\spad{R} with identity up to basic commutators of length \\spad{c} using the algorithm of \\spad{P}. Hall as given in Serre's book Lie Groups -- Lie Algebras")) (|generate| (((|Vector| (|List| (|Integer|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{generate(numberOfGens, maximalWeight)} generates a vector of elements of the form [left,{}weight,{}right] which represents a \\spad{P}. Hall basis element for the free lie algebra on \\spad{numberOfGens} generators. We only generate those basis elements of weight less than or equal to maximalWeight")) (|inHallBasis?| (((|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{inHallBasis?(numberOfGens, leftCandidate, rightCandidate, left)} tests to see if a new element should be added to the \\spad{P}. Hall basis being constructed. The list \\spad{[leftCandidate,wt,rightCandidate]} is included in the basis if in the unique factorization of \\spad{rightCandidate},{} we have left factor leftOfRight,{} and leftOfRight <= \\spad{leftCandidate}")) (|lfunc| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{lfunc(d,n)} computes the rank of the \\spad{n}th factor in the lower central series of the free \\spad{d}-generated free Lie algebra; This rank is \\spad{d} if \\spad{n} = 1 and binom(\\spad{d},{}2) if \\spad{n} = 2"))) NIL NIL (-493 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables are from a user specified list of symbols. The coefficient ring may be non commutative,{} but the variables are assumed to commute. The term ordering is total degree ordering refined by reverse lexicographic ordering with respect to the position that the variables appear in the list of variables parameter.")) (|reorder| (($ $ (|List| (|Integer|))) "\\spad{reorder(p, perm)} applies the permutation perm to the variables in a polynomial and returns the new correctly ordered polynomial"))) -(((-4427 "*") |has| |#2| (-175)) (-4418 |has| |#2| (-569)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-494 -3020 S) +(((-4426 "*") |has| |#2| (-175)) (-4417 |has| |#2| (-569)) (-4422 |has| |#2| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-494 -3019 S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered first by the sum of their components,{} and then refined using a reverse lexicographic ordering. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4419 |has| |#2| (-1070)) (-4420 |has| |#2| (-1070)) (-4422 |has| |#2| (-6 -4422)) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-376))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-3957 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-240))) (-3957 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4422)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +((-4418 |has| |#2| (-1069)) (-4419 |has| |#2| (-1069)) (-4421 |has| |#2| (-6 -4421)) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-376))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (-3956 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-240))) (-3956 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1069))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4421)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) (-495) ((|constructor| (NIL "This domain represents the header of a definition.")) (|parameters| (((|List| (|ParameterAst|)) $) "\\spad{parameters(h)} gives the parameters specified in the definition header `h'.")) (|name| (((|Identifier|) $) "\\spad{name(h)} returns the name of the operation defined defined.")) (|headAst| (($ (|Identifier|) (|List| (|ParameterAst|))) "\\spad{headAst(f,[x1,..,xn])} constructs a function definition header."))) NIL NIL (-496 S) ((|constructor| (NIL "Heap implemented in a flexible array to allow for insertions")) (|heap| (($ (|List| |#1|)) "\\spad{heap(ls)} creates a heap of elements consisting of the elements of \\spad{ls}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-497 -3495 UP UPUP R) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-497 -3494 UP UPUP R) ((|constructor| (NIL "This domains implements finite rational divisors on an hyperelliptic curve,{} that is finite formal sums SUM(\\spad{n} * \\spad{P}) where the \\spad{n}'s are integers and the \\spad{P}'s are finite rational points on the curve. The equation of the curve must be \\spad{y^2} = \\spad{f}(\\spad{x}) and \\spad{f} must have odd degree."))) NIL NIL @@ -1926,12 +1926,12 @@ NIL NIL (-499) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating hexadecimal expansions.")) (|hex| (($ (|Fraction| (|Integer|))) "\\spad{hex(r)} converts a rational number to a hexadecimal expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(h)} returns the fractional part of a hexadecimal expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-558) (QUOTE (-929))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1041))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861))) (-3957 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861)))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1173))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1198)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (|HasCategory| (-558) (QUOTE (-147))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-558) (QUOTE (-928))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1040))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860))) (-3956 (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860)))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1172))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1197)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -657) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (|HasCategory| (-558) (QUOTE (-147))))) (-500 A S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#2| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#2|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#2|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#2| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#2|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#2| |#2|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL -((|HasAttribute| |#1| (QUOTE -4425)) (|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) +((|HasAttribute| |#1| (QUOTE -4424)) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-501 S) ((|constructor| (NIL "A homogeneous aggregate is an aggregate of elements all of the same type. In the current system,{} all aggregates are homogeneous. Two attributes characterize classes of aggregates. Aggregates from domains with attribute \\spadatt{finiteAggregate} have a finite number of members. Those with attribute \\spadatt{shallowlyMutable} allow an element to be modified or updated without changing its overall value.")) (|member?| (((|Boolean|) |#1| $) "\\spad{member?(x,u)} tests if \\spad{x} is a member of \\spad{u}. For collections,{} \\axiom{member?(\\spad{x},{}\\spad{u}) = reduce(or,{}[x=y for \\spad{y} in \\spad{u}],{}\\spad{false})}.")) (|members| (((|List| |#1|) $) "\\spad{members(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|parts| (((|List| |#1|) $) "\\spad{parts(u)} returns a list of the consecutive elements of \\spad{u}. For collections,{} \\axiom{parts([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = (\\spad{x},{}\\spad{y},{}...,{}\\spad{z})}.")) (|count| (((|NonNegativeInteger|) |#1| $) "\\spad{count(x,u)} returns the number of occurrences of \\spad{x} in \\spad{u}. For collections,{} \\axiom{count(\\spad{x},{}\\spad{u}) = reduce(+,{}[x=y for \\spad{y} in \\spad{u}],{}0)}.") (((|NonNegativeInteger|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{count(p,u)} returns the number of elements \\spad{x} in \\spad{u} such that \\axiom{\\spad{p}(\\spad{x})} is \\spad{true}. For collections,{} \\axiom{count(\\spad{p},{}\\spad{u}) = reduce(+,{}[1 for \\spad{x} in \\spad{u} | \\spad{p}(\\spad{x})],{}0)}.")) (|every?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{every?(f,u)} tests if \\spad{p}(\\spad{x}) is \\spad{true} for all elements \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{every?(\\spad{p},{}\\spad{u}) = reduce(and,{}map(\\spad{f},{}\\spad{u}),{}\\spad{true},{}\\spad{false})}.")) (|any?| (((|Boolean|) (|Mapping| (|Boolean|) |#1|) $) "\\spad{any?(p,u)} tests if \\axiom{\\spad{p}(\\spad{x})} is \\spad{true} for any element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{any?(\\spad{p},{}\\spad{u}) = reduce(or,{}map(\\spad{f},{}\\spad{u}),{}\\spad{false},{}\\spad{true})}.")) (|map!| (($ (|Mapping| |#1| |#1|) $) "\\spad{map!(f,u)} destructively replaces each element \\spad{x} of \\spad{u} by \\axiom{\\spad{f}(\\spad{x})}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,u)} returns a copy of \\spad{u} with each element \\spad{x} replaced by \\spad{f}(\\spad{x}). For collections,{} \\axiom{map(\\spad{f},{}\\spad{u}) = [\\spad{f}(\\spad{x}) for \\spad{x} in \\spad{u}]}."))) NIL @@ -1952,34 +1952,34 @@ NIL ((|constructor| (NIL "Category for the hyperbolic trigonometric functions.")) (|tanh| (($ $) "\\spad{tanh(x)} returns the hyperbolic tangent of \\spad{x}.")) (|sinh| (($ $) "\\spad{sinh(x)} returns the hyperbolic sine of \\spad{x}.")) (|sech| (($ $) "\\spad{sech(x)} returns the hyperbolic secant of \\spad{x}.")) (|csch| (($ $) "\\spad{csch(x)} returns the hyperbolic cosecant of \\spad{x}.")) (|coth| (($ $) "\\spad{coth(x)} returns the hyperbolic cotangent of \\spad{x}.")) (|cosh| (($ $) "\\spad{cosh(x)} returns the hyperbolic cosine of \\spad{x}."))) NIL NIL -(-506 -3495 UP |AlExt| |AlPol|) +(-506 -3494 UP |AlExt| |AlPol|) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of a field over which we can factor UP's.")) (|factor| (((|Factored| |#4|) |#4| (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{factor(p, f)} returns a prime factorisation of \\spad{p}; \\spad{f} is a factorisation map for elements of UP."))) NIL NIL (-507) ((|constructor| (NIL "Algebraic closure of the rational numbers.")) (|norm| (($ $ (|List| (|Kernel| $))) "\\spad{norm(f,l)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernels \\spad{l}") (($ $ (|Kernel| $)) "\\spad{norm(f,k)} computes the norm of the algebraic number \\spad{f} with respect to the extension generated by kernel \\spad{k}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|List| (|Kernel| $))) "\\spad{norm(p,l)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernels \\spad{l}") (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|Kernel| $)) "\\spad{norm(p,k)} computes the norm of the polynomial \\spad{p} with respect to the extension generated by kernel \\spad{k}")) (|trueEqual| (((|Boolean|) $ $) "\\spad{trueEqual(x,y)} tries to determine if the two numbers are equal")) (|reduce| (($ $) "\\spad{reduce(f)} simplifies all the unreduced algebraic numbers present in \\spad{f} by applying their defining relations.")) (|denom| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{denom(f)} returns the denominator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|numer| (((|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $)) $) "\\spad{numer(f)} returns the numerator of \\spad{f} viewed as a polynomial in the kernels over \\spad{Z}.")) (|coerce| (($ (|SparseMultivariatePolynomial| (|Integer|) (|Kernel| $))) "\\spad{coerce(p)} returns \\spad{p} viewed as an algebraic number."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| $ (QUOTE (-1070))) (|HasCategory| $ (|%list| (QUOTE -1059) (QUOTE (-558))))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| $ (QUOTE (-1069))) (|HasCategory| $ (|%list| (QUOTE -1058) (QUOTE (-558))))) (-508 S |mn|) ((|constructor| (NIL "\\indented{1}{Author Micheal Monagan \\spad{Aug/87}} This is the basic one dimensional array data type."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-509 R |mnRow| |mnCol|) ((|constructor| (NIL "\\indented{1}{An IndexedTwoDimensionalArray is a 2-dimensional array where} the minimal row and column indices are parameters of the type. Rows and columns are returned as IndexedOneDimensionalArray's with minimal indices matching those of the IndexedTwoDimensionalArray. The index of the 'first' row may be obtained by calling the function 'minRowIndex'. The index of the 'first' column may be obtained by calling the function 'minColIndex'. The index of the first element of a 'Row' is the same as the index of the first column in an array and vice versa."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-510 K R UP) ((|constructor| (NIL "\\indented{1}{Author: Clifton Williamson} Date Created: 9 August 1993 Date Last Updated: 3 December 1993 Basic Operations: chineseRemainder,{} factorList Related Domains: PAdicWildFunctionFieldIntegralBasis(\\spad{K},{}\\spad{R},{}UP,{}\\spad{F}) Also See: WildFunctionFieldIntegralBasis,{} FunctionFieldIntegralBasis AMS Classifications: Keywords: function field,{} finite field,{} integral basis Examples: References: Description:")) (|chineseRemainder| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|List| |#3|) (|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|NonNegativeInteger|)) "\\spad{chineseRemainder(lu,lr,n)} \\undocumented")) (|listConjugateBases| (((|List| (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) (|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{listConjugateBases(bas,q,n)} returns the list \\spad{[bas,bas^Frob,bas^(Frob^2),...bas^(Frob^(n-1))]},{} where \\spad{Frob} raises the coefficients of all polynomials appearing in the basis \\spad{bas} to the \\spad{q}th power.")) (|factorList| (((|List| (|SparseUnivariatePolynomial| |#1|)) |#1| (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{factorList(k,n,m,j)} \\undocumented"))) NIL NIL -(-511 R UP -3495) +(-511 R UP -3494) ((|constructor| (NIL "This package contains functions used in the packages FunctionFieldIntegralBasis and NumberFieldIntegralBasis.")) (|moduleSum| (((|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|))) (|Record| (|:| |basis| (|Matrix| |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (|Matrix| |#1|)))) "\\spad{moduleSum(m1,m2)} returns the sum of two modules in the framed algebra \\spad{F}. Each module \\spad{mi} is represented as follows: \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn} and \\spad{mi} is a record \\spad{[basis,basisDen,basisInv]}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then a basis \\spad{v1,...,vn} for \\spad{mi} is given by \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|idealiserMatrix| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiserMatrix(m1, m2)} returns the matrix representing the linear conditions on the Ring associatied with an ideal defined by \\spad{m1} and \\spad{m2}.")) (|idealiser| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{idealiser(m1,m2,d)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2} where \\spad{d} is the known part of the denominator") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{idealiser(m1,m2)} computes the order of an ideal defined by \\spad{m1} and \\spad{m2}")) (|leastPower| (((|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{leastPower(p,n)} returns \\spad{e},{} where \\spad{e} is the smallest integer such that \\spad{p **e >= n}")) (|divideIfCan!| ((|#1| (|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Integer|)) "\\spad{divideIfCan!(matrix,matrixOut,prime,n)} attempts to divide the entries of \\spad{matrix} by \\spad{prime} and store the result in \\spad{matrixOut}. If it is successful,{} 1 is returned and if not,{} \\spad{prime} is returned. Here both \\spad{matrix} and \\spad{matrixOut} are \\spad{n}-by-\\spad{n} upper triangular matrices.")) (|matrixGcd| ((|#1| (|Matrix| |#1|) |#1| (|NonNegativeInteger|)) "\\spad{matrixGcd(mat,sing,n)} is \\spad{gcd(sing,g)} where \\spad{g} is the gcd of the entries of the \\spad{n}-by-\\spad{n} upper-triangular matrix \\spad{mat}.")) (|diagonalProduct| ((|#1| (|Matrix| |#1|)) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns a square-free factorisation of \\spad{x}"))) NIL NIL (-512 |mn|) ((|constructor| (NIL "\\spadtype{IndexedBits} is a domain to compactly represent large quantities of Boolean data.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em And} of \\spad{n} and \\spad{m}.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em Or} of \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em Not} of \\spad{n}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| (-114) (QUOTE (-1122))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-861))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| (-114) (QUOTE (-1122))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-114) (QUOTE (-102)))) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| (-114) (QUOTE (-1121))) (|HasCategory| (-114) (|%list| (QUOTE -321) (QUOTE (-114))))) (|HasCategory| (-114) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-114) (QUOTE (-860))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| (-114) (QUOTE (-1121))) (|HasCategory| (-114) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-114) (QUOTE (-102)))) (-513 K R UP L) ((|constructor| (NIL "IntegralBasisPolynomialTools provides functions for \\indented{1}{mapping functions on the coefficients of univariate and bivariate} \\indented{1}{polynomials.}")) (|mapBivariate| (((|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#4|)) (|Mapping| |#4| |#1|) |#3|) "\\spad{mapBivariate(f,p(x,y))} applies the function \\spad{f} to the coefficients of \\spad{p(x,y)}.")) (|mapMatrixIfCan| (((|Union| (|Matrix| |#2|) "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|Matrix| (|SparseUnivariatePolynomial| |#4|))) "\\spad{mapMatrixIfCan(f,mat)} applies the function \\spad{f} to the coefficients of the entries of \\spad{mat} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariateIfCan| (((|Union| |#2| "failed") (|Mapping| (|Union| |#1| "failed") |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariateIfCan(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)},{} if possible,{} and returns \\spad{\"failed\"} otherwise.")) (|mapUnivariate| (((|SparseUnivariatePolynomial| |#4|) (|Mapping| |#4| |#1|) |#2|) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}.") ((|#2| (|Mapping| |#1| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{mapUnivariate(f,p(x))} applies the function \\spad{f} to the coefficients of \\spad{p(x)}."))) NIL @@ -1992,10 +1992,10 @@ NIL ((|constructor| (NIL "InnerCommonDenominator provides functions to compute the common denominator of a finite linear aggregate of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) "\\spad{splitDenominator([q1,...,qn])} returns \\spad{[[p1,...,pn], d]} such that \\spad{qi = pi/d} and \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|clearDenominator| ((|#3| |#4|) "\\spad{clearDenominator([q1,...,qn])} returns \\spad{[p1,...,pn]} such that \\spad{qi = pi/d} where \\spad{d} is a common denominator for the \\spad{qi}'s.")) (|commonDenominator| ((|#1| |#4|) "\\spad{commonDenominator([q1,...,qn])} returns a common denominator \\spad{d} for \\spad{q1},{}...,{}qn."))) NIL NIL -(-516 -3495 |Expon| |VarSet| |DPoly|) +(-516 -3494 |Expon| |VarSet| |DPoly|) ((|constructor| (NIL "This domain represents polynomial ideals with coefficients in any field and supports the basic ideal operations,{} including intersection sum and quotient. An ideal is represented by a list of polynomials (the generators of the ideal) and a boolean that is \\spad{true} if the generators are a Groebner basis. The algorithms used are based on Groebner basis computations. The ordering is determined by the datatype of the input polynomials. Users may use refinements of total degree orderings.")) (|relationsIdeal| (((|SuchThat| (|List| (|Polynomial| |#1|)) (|List| (|Equation| (|Polynomial| |#1|)))) (|List| |#4|)) "\\spad{relationsIdeal(polyList)} returns the ideal of relations among the polynomials in \\spad{polyList}.")) (|saturate| (($ $ |#4| (|List| |#3|)) "\\spad{saturate(I,f,lvar)} is the saturation with respect to the prime principal ideal which is generated by \\spad{f} in the polynomial ring \\spad{F[lvar]}.") (($ $ |#4|) "\\spad{saturate(I,f)} is the saturation of the ideal \\spad{I} with respect to the multiplicative set generated by the polynomial \\spad{f}.")) (|coerce| (($ (|List| |#4|)) "\\spad{coerce(polyList)} converts the list of polynomials \\spad{polyList} to an ideal.")) (|generators| (((|List| |#4|) $) "\\spad{generators(I)} returns a list of generators for the ideal \\spad{I}.")) (|groebner?| (((|Boolean|) $) "\\spad{groebner?(I)} tests if the generators of the ideal \\spad{I} are a Groebner basis.")) (|groebnerIdeal| (($ (|List| |#4|)) "\\spad{groebnerIdeal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList} which are assumed to be a Groebner basis. Note: this operation avoids a Groebner basis computation.")) (|ideal| (($ (|List| |#4|)) "\\spad{ideal(polyList)} constructs the ideal generated by the list of polynomials \\spad{polyList}.")) (|leadingIdeal| (($ $) "\\spad{leadingIdeal(I)} is the ideal generated by the leading terms of the elements of the ideal \\spad{I}.")) (|dimension| (((|Integer|) $) "\\spad{dimension(I)} gives the dimension of the ideal \\spad{I}. in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Integer|) $ (|List| |#3|)) "\\spad{dimension(I,lvar)} gives the dimension of the ideal \\spad{I},{} in the ring \\spad{F[lvar]}")) (|backOldPos| (($ (|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $))) "\\spad{backOldPos(genPos)} takes the result produced by \\spadfunFrom{generalPosition}{PolynomialIdeals} and performs the inverse transformation,{} returning the original ideal \\spad{backOldPos(generalPosition(I,listvar))} = \\spad{I}.")) (|generalPosition| (((|Record| (|:| |mval| (|Matrix| |#1|)) (|:| |invmval| (|Matrix| |#1|)) (|:| |genIdeal| $)) $ (|List| |#3|)) "\\spad{generalPosition(I,listvar)} perform a random linear transformation on the variables in \\spad{listvar} and returns the transformed ideal along with the change of basis matrix.")) (|groebner| (($ $) "\\spad{groebner(I)} returns a set of generators of \\spad{I} that are a Groebner basis for \\spad{I}.")) (|quotient| (($ $ |#4|) "\\spad{quotient(I,f)} computes the quotient of the ideal \\spad{I} by the principal ideal generated by the polynomial \\spad{f},{} \\spad{(I:(f))}.") (($ $ $) "\\spad{quotient(I,J)} computes the quotient of the ideals \\spad{I} and \\spad{J},{} \\spad{(I:J)}.")) (|intersect| (($ (|List| $)) "\\spad{intersect(LI)} computes the intersection of the list of ideals \\spad{LI}.") (($ $ $) "\\spad{intersect(I,J)} computes the intersection of the ideals \\spad{I} and \\spad{J}.")) (|zeroDim?| (((|Boolean|) $) "\\spad{zeroDim?(I)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]},{} where lvar are the variables appearing in \\spad{I}") (((|Boolean|) $ (|List| |#3|)) "\\spad{zeroDim?(I,lvar)} tests if the ideal \\spad{I} is zero dimensional,{} \\spadignore{i.e.} all its associated primes are maximal,{} in the ring \\spad{F[lvar]}")) (|inRadical?| (((|Boolean|) |#4| $) "\\spad{inRadical?(f,I)} tests if some power of the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|in?| (((|Boolean|) $ $) "\\spad{in?(I,J)} tests if the ideal \\spad{I} is contained in the ideal \\spad{J}.")) (|element?| (((|Boolean|) |#4| $) "\\spad{element?(f,I)} tests whether the polynomial \\spad{f} belongs to the ideal \\spad{I}.")) (|zero?| (((|Boolean|) $) "\\spad{zero?(I)} tests whether the ideal \\spad{I} is the zero ideal")) (|one?| (((|Boolean|) $) "\\spad{one?(I)} tests whether the ideal \\spad{I} is the unit ideal,{} \\spadignore{i.e.} contains 1.")) (+ (($ $ $) "\\spad{I+J} computes the ideal generated by the union of \\spad{I} and \\spad{J}.")) (** (($ $ (|NonNegativeInteger|)) "\\spad{I**n} computes the \\spad{n}th power of the ideal \\spad{I}.")) (* (($ $ $) "\\spad{I*J} computes the product of the ideal \\spad{I} and \\spad{J}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-1198))))) +((|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-1197))))) (-517 |vl| |nv|) ((|constructor| (NIL "\\indented{2}{This package provides functions for the primary decomposition of} polynomial ideals over the rational numbers. The ideals are members of the \\spadtype{PolynomialIdeals} domain,{} and the polynomial generators are required to be from the \\spadtype{DistributedMultivariatePolynomial} domain.")) (|contract| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|List| (|OrderedVariableList| |#1|))) "\\spad{contract(I,lvar)} contracts the ideal \\spad{I} to the polynomial ring \\spad{F[lvar]}.")) (|primaryDecomp| (((|List| (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{primaryDecomp(I)} returns a list of primary ideals such that their intersection is the ideal \\spad{I}.")) (|radical| (((|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radical(I)} returns the radical of the ideal \\spad{I}.")) (|prime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{prime?(I)} tests if the ideal \\spad{I} is prime.")) (|zeroDimPrimary?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrimary?(I)} tests if the ideal \\spad{I} is 0-dimensional primary.")) (|zeroDimPrime?| (((|Boolean|) (|PolynomialIdeals| (|Fraction| (|Integer|)) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|OrderedVariableList| |#1|) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{zeroDimPrime?(I)} tests if the ideal \\spad{I} is a 0-dimensional prime."))) NIL @@ -2007,11 +2007,11 @@ NIL (-519 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian groups over an abelian group \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-520 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of abelian monoids over an abelian monoid \\spad{A} of} generators indexed by the ordered set \\spad{S}. All items have finite support. Only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-521 A S) ((|constructor| (NIL "This category represents the direct product of some set with respect to an ordered indexing set.")) (|terms| (((|List| (|Pair| |#2| |#1|)) $) "\\spad{terms x} returns the list of terms in \\spad{x}. Each term is a pair of a support (the first component) and the corresponding value (the second component).")) (|reductum| (($ $) "\\spad{reductum(z)} returns a new element created by removing the leading coefficient/support pair from the element \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingSupport| ((|#2| $) "\\spad{leadingSupport(z)} returns the index of leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(z)} returns the coefficient of the leading (with respect to the ordering on the indexing set) monomial of \\spad{z}. Error: if \\spad{z} has no support.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(a,s)} constructs a direct product element with the \\spad{s} component set to \\spad{a}")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,z)} returns the new element created by applying the function \\spad{f} to each component of the direct product element \\spad{z}."))) NIL @@ -2019,15 +2019,15 @@ NIL (-522 A S) ((|constructor| (NIL "Indexed direct products of objects over a set \\spad{A} of generators indexed by an ordered set \\spad{S}. All items have finite support."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-523 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoids \\spad{A} of} generators indexed by the ordered set \\spad{S}. The inherited order is lexicographical. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-524 A S) ((|constructor| (NIL "\\indented{1}{Indexed direct products of ordered abelian monoid sups \\spad{A},{}} generators indexed by the ordered set \\spad{S}. All items have finite support: only non-zero terms are stored."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-525 S A B) ((|constructor| (NIL "This category provides \\spadfun{eval} operations. A domain may belong to this category if it is possible to make ``evaluation'' substitutions. The difference between this and \\spadtype{Evalable} is that the operations in this category specify the substitution as a pair of arguments rather than as an equation.")) (|eval| (($ $ (|List| |#2|) (|List| |#3|)) "\\spad{eval(f, [x1,...,xn], [v1,...,vn])} replaces \\spad{xi} by \\spad{vi} in \\spad{f}.") (($ $ |#2| |#3|) "\\spad{eval(f, x, v)} replaces \\spad{x} by \\spad{v} in \\spad{f}."))) NIL @@ -2039,39 +2039,39 @@ NIL (-527 S E |un|) ((|constructor| (NIL "Internal implementation of a free abelian monoid."))) NIL -((|HasCategory| |#2| (QUOTE (-814)))) +((|HasCategory| |#2| (QUOTE (-813)))) (-528 S |mn|) ((|constructor| (NIL "\\indented{1}{Author: Michael Monagan \\spad{July/87},{} modified SMW \\spad{June/91}} A FlexibleArray is the notion of an array intended to allow for growth at the end only. Hence the following efficient operations \\indented{2}{\\spad{append(x,a)} meaning append item \\spad{x} at the end of the array \\spad{a}} \\indented{2}{\\spad{delete(a,n)} meaning delete the last item from the array \\spad{a}} Flexible arrays support the other operations inherited from \\spadtype{ExtensibleLinearAggregate}. However,{} these are not efficient. Flexible arrays combine the \\spad{O(1)} access time property of arrays with growing and shrinking at the end in \\spad{O(1)} (average) time. This is done by using an ordinary array which may have zero or more empty slots at the end. When the array becomes full it is copied into a new larger (50\\% larger) array. Conversely,{} when the array becomes less than 1/2 full,{} it is copied into a smaller array. Flexible arrays provide for an efficient implementation of many data structures in particular heaps,{} stacks and sets.")) (|shrinkable| (((|Boolean|) (|Boolean|)) "\\spad{shrinkable(b)} sets the shrinkable attribute of flexible arrays to \\spad{b} and returns the previous value")) (|physicalLength!| (($ $ (|Integer|)) "\\spad{physicalLength!(x,n)} changes the physical length of \\spad{x} to be \\spad{n} and returns the new array.")) (|physicalLength| (((|NonNegativeInteger|) $) "\\spad{physicalLength(x)} returns the number of elements \\spad{x} can accomodate before growing")) (|flexibleArray| (($ (|List| |#1|)) "\\spad{flexibleArray(l)} creates a flexible array from the list of elements \\spad{l}"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-529) ((|constructor| (NIL "This domain represents AST for conditional expressions.")) (|elseBranch| (((|SpadAst|) $) "thenBranch(\\spad{e}) returns the `else-branch' of `e'.")) (|thenBranch| (((|SpadAst|) $) "\\spad{thenBranch(e)} returns the `then-branch' of `e'.")) (|condition| (((|SpadAst|) $) "\\spad{condition(e)} returns the condition of the if-expression `e'."))) NIL NIL (-530 |p| |n|) ((|constructor| (NIL "InnerFiniteField(\\spad{p},{}\\spad{n}) implements finite fields with \\spad{p**n} elements where \\spad{p} is assumed prime but does not check. For a version which checks that \\spad{p} is prime,{} see \\spadtype{FiniteField}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (|HasCategory| (-593 |#1|) (QUOTE (-147))) (|HasCategory| (-593 |#1|) (QUOTE (-381)))) (|HasCategory| (-593 |#1|) (QUOTE (-149))) (|HasCategory| (-593 |#1|) (QUOTE (-381))) (|HasCategory| (-593 |#1|) (QUOTE (-147)))) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (|HasCategory| (-593 |#1|) (QUOTE (-147))) (|HasCategory| (-593 |#1|) (QUOTE (-381)))) (|HasCategory| (-593 |#1|) (QUOTE (-149))) (|HasCategory| (-593 |#1|) (QUOTE (-381))) (|HasCategory| (-593 |#1|) (QUOTE (-147)))) (-531 R |mnRow| |mnCol| |Row| |Col|) ((|constructor| (NIL "\\indented{1}{This is an internal type which provides an implementation of} 2-dimensional arrays as PrimitiveArray's of PrimitiveArray's."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-532 S |mn|) ((|constructor| (NIL "\\spadtype{IndexedList} is a basic implementation of the functions in \\spadtype{ListAggregate},{} often using functions in the underlying LISP system. The second parameter to the constructor (\\spad{mn}) is the beginning index of the list. That is,{} if \\spad{l} is a list,{} then \\spad{elt(l,mn)} is the first value. This constructor is probably best viewed as the implementation of singly-linked lists that are addressable by index rather than as a mere wrapper for LISP lists."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-533 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{InnerMatrixLinearAlgebraFunctions} is an internal package which provides standard linear algebra functions on domains in \\spad{MatrixCategory}")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|generalizedInverse| ((|#4| |#4|) "\\spad{generalizedInverse(m)} returns the generalized (Moore--Penrose) inverse of the matrix \\spad{m},{} \\spadignore{i.e.} the matrix \\spad{h} such that m*h*m=h,{} h*m*h=m,{} m*h and h*m are both symmetric matrices.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}."))) NIL -((|HasAttribute| |#3| (QUOTE -4426))) +((|HasAttribute| |#3| (QUOTE -4425))) (-534 R |Row| |Col| M QF |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{InnerMatrixQuotientFieldFunctions} provides functions on matrices over an integral domain which involve the quotient field of that integral domain. The functions rowEchelon and inverse return matrices with entries in the quotient field.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|inverse| (((|Union| |#8| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square. Note: the result will have entries in the quotient field.")) (|rowEchelon| ((|#8| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}. the result will have entries in the quotient field."))) NIL -((|HasAttribute| |#7| (QUOTE -4426))) +((|HasAttribute| |#7| (QUOTE -4425))) (-535 R |mnRow| |mnCol|) ((|constructor| (NIL "An \\spad{IndexedMatrix} is a matrix where the minimal row and column indices are parameters of the type. The domains Row and Col are both IndexedVectors. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a 'Row' is the same as the index of the first column in a matrix and vice versa."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4426 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) (-536) ((|constructor| (NIL "This domain represents an `import' of types.")) (|imports| (((|List| (|TypeAst|)) $) "\\spad{imports(x)} returns the list of imported types.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::ImportAst constructs an ImportAst for the list if types `ts'."))) NIL @@ -2103,8 +2103,8 @@ NIL (-543 |Varset|) ((|constructor| (NIL "\\indented{2}{IndexedExponents of an ordered set of variables gives a representation} for the degree of polynomials in commuting variables. It gives an ordered pairing of non negative integer exponents with variables"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-791) (QUOTE (-1122))))) -(-544 K -3495 |Par|) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-790) (QUOTE (-1121))))) +(-544 K -3494 |Par|) ((|constructor| (NIL "This package is the inner package to be used by NumericRealEigenPackage and NumericComplexEigenPackage for the computation of numeric eigenvalues and eigenvectors.")) (|innerEigenvectors| (((|List| (|Record| (|:| |outval| |#2|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#2|))))) (|Matrix| |#1|) |#3| (|Mapping| (|Factored| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|))) "\\spad{innerEigenvectors(m,eps,factor)} computes explicitly the eigenvalues and the correspondent eigenvectors of the matrix \\spad{m}. The parameter \\spad{eps} determines the type of the output,{} \\spad{factor} is the univariate factorizer to br used to reduce the characteristic polynomial into irreducible factors.")) (|solve1| (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{solve1(pol, eps)} finds the roots of the univariate polynomial polynomial \\spad{pol} to precision eps. If \\spad{K} is \\spad{Fraction Integer} then only the real roots are returned,{} if \\spad{K} is \\spad{Complex Fraction Integer} then all roots are found.")) (|charpol| (((|SparseUnivariatePolynomial| |#1|) (|Matrix| |#1|)) "\\spad{charpol(m)} computes the characteristic polynomial of a matrix \\spad{m} with entries in \\spad{K}. This function returns a polynomial over \\spad{K},{} while the general one (that is in EiegenPackage) returns Fraction \\spad{P} \\spad{K}"))) NIL NIL @@ -2128,7 +2128,7 @@ NIL ((|constructor| (NIL "This package computes infinite products of univariate Taylor series over an integral domain of characteristic 0.")) (|generalInfiniteProduct| ((|#2| |#2| (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| ((|#2| |#2|) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| ((|#2| |#2|) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| ((|#2| |#2|) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-550 K -3495 |Par|) +(-550 K -3494 |Par|) ((|constructor| (NIL "This is an internal package for computing approximate solutions to systems of polynomial equations. The parameter \\spad{K} specifies the coefficient field of the input polynomials and must be either \\spad{Fraction(Integer)} or \\spad{Complex(Fraction Integer)}. The parameter \\spad{F} specifies where the solutions must lie and can be one of the following: \\spad{Float},{} \\spad{Fraction(Integer)},{} \\spad{Complex(Float)},{} \\spad{Complex(Fraction Integer)}. The last parameter specifies the type of the precision operand and must be either \\spad{Fraction(Integer)} or \\spad{Float}.")) (|makeEq| (((|List| (|Equation| (|Polynomial| |#2|))) (|List| |#2|) (|List| (|Symbol|))) "\\spad{makeEq(lsol,lvar)} returns a list of equations formed by corresponding members of \\spad{lvar} and \\spad{lsol}.")) (|innerSolve| (((|List| (|List| |#2|)) (|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) |#3|) "\\spad{innerSolve(lnum,lden,lvar,eps)} returns a list of solutions of the system of polynomials \\spad{lnum},{} with the side condition that none of the members of \\spad{lden} vanish identically on any solution. Each solution is expressed as a list corresponding to the list of variables in \\spad{lvar} and with precision specified by \\spad{eps}.")) (|innerSolve1| (((|List| |#2|) (|Polynomial| |#1|) |#3|) "\\spad{innerSolve1(p,eps)} returns the list of the zeros of the polynomial \\spad{p} with precision \\spad{eps}.") (((|List| |#2|) (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{innerSolve1(up,eps)} returns the list of the zeros of the univariate polynomial \\spad{up} with precision \\spad{eps}."))) NIL NIL @@ -2158,11 +2158,11 @@ NIL NIL (-557) ((|constructor| (NIL "An \\spad{IntegerNumberSystem} is a model for the integers.")) (|invmod| (($ $ $) "\\spad{invmod(a,b)},{} \\spad{0<=a<b>1},{} \\spad{(a,b)=1} means \\spad{1/a mod b}.")) (|powmod| (($ $ $ $) "\\spad{powmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a**b mod p}.")) (|mulmod| (($ $ $ $) "\\spad{mulmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a*b mod p}.")) (|submod| (($ $ $ $) "\\spad{submod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a-b mod p}.")) (|addmod| (($ $ $ $) "\\spad{addmod(a,b,p)},{} \\spad{0<=a,b<p>1},{} means \\spad{a+b mod p}.")) (|mask| (($ $) "\\spad{mask(n)} returns \\spad{2**n-1} (an \\spad{n} bit mask).")) (|dec| (($ $) "\\spad{dec(x)} returns \\spad{x - 1}.")) (|inc| (($ $) "\\spad{inc(x)} returns \\spad{x + 1}.")) (|copy| (($ $) "\\spad{copy(n)} gives a copy of \\spad{n}.")) (|random| (($ $) "\\spad{random(a)} creates a random element from 0 to \\spad{a-1}.") (($) "\\spad{random()} creates a random element.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(n)} creates a rational number,{} or returns \"failed\" if this is not possible.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(n)} creates a rational number (see \\spadtype{Fraction Integer})..")) (|rational?| (((|Boolean|) $) "\\spad{rational?(n)} tests if \\spad{n} is a rational number (see \\spadtype{Fraction Integer}).")) (|symmetricRemainder| (($ $ $) "\\spad{symmetricRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{ -b/2 <= r < b/2 }.")) (|positiveRemainder| (($ $ $) "\\spad{positiveRemainder(a,b)} (where \\spad{b > 1}) yields \\spad{r} where \\spad{0 <= r < b} and \\spad{r == a rem b}.")) (|bit?| (((|Boolean|) $ $) "\\spad{bit?(n,i)} returns \\spad{true} if and only if \\spad{i}-th bit of \\spad{n} is a 1.")) (|shift| (($ $ $) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} digits.")) (|length| (($ $) "\\spad{length(a)} length of \\spad{a} in digits.")) (|base| (($) "\\spad{base()} returns the base for the operations of \\spad{IntegerNumberSystem}.")) (|multiplicativeValuation| ((|attribute|) "euclideanSize(a*b) returns \\spad{euclideanSize(a)*euclideanSize(b)}.")) (|even?| (((|Boolean|) $) "\\spad{even?(n)} returns \\spad{true} if and only if \\spad{n} is even.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(n)} returns \\spad{true} if and only if \\spad{n} is odd."))) -((-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4422 . T) (-4423 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-558) ((|constructor| (NIL "\\spadtype{Integer} provides the domain of arbitrary precision integers.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4412 . T) (-4416 . T) (-4411 . T) (-4422 . T) (-4423 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-559) ((|constructor| (NIL "This domain is a datatype for (signed) integer values of precision 16 bits."))) @@ -2182,13 +2182,13 @@ NIL NIL (-563 |Key| |Entry| |addDom|) ((|constructor| (NIL "This domain is used to provide a conditional \"add\" domain for the implementation of \\spadtype{Table}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) -(-564 R -3495) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) +(-564 R -3494) ((|constructor| (NIL "This package provides functions for the integration of algebraic integrands over transcendental functions.")) (|algint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|SparseUnivariatePolynomial| |#2|) (|SparseUnivariatePolynomial| |#2|))) "\\spad{algint(f, x, y, d)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}; \\spad{d} is the derivation to use on \\spad{k[x]}."))) NIL NIL -(-565 R0 -3495 UP UPUP R) +(-565 R0 -3494 UP UPUP R) ((|constructor| (NIL "This package provides functions for integrating a function on an algebraic curve.")) (|palginfieldint| (((|Union| |#5| "failed") |#5| (|Mapping| |#3| |#3|)) "\\spad{palginfieldint(f, d)} returns an algebraic function \\spad{g} such that \\spad{dg = f} if such a \\spad{g} exists,{} \"failed\" otherwise. Argument \\spad{f} must be a pure algebraic function.")) (|palgintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{palgintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}. Argument \\spad{f} must be a pure algebraic function.")) (|algintegrate| (((|IntegrationResult| |#5|) |#5| (|Mapping| |#3| |#3|)) "\\spad{algintegrate(f, d)} integrates \\spad{f} with respect to the derivation \\spad{d}."))) NIL NIL @@ -2198,7 +2198,7 @@ NIL NIL (-567 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This category implements of interval arithmetic and transcendental + functions over intervals.")) (|contains?| (((|Boolean|) $ |#1|) "\\spad{contains?(i,f)} returns \\spad{true} if \\axiom{\\spad{f}} is contained within the interval \\axiom{\\spad{i}},{} \\spad{false} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is negative,{} \\axiom{\\spad{false}} otherwise.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(u)} returns \\axiom{\\spad{true}} if every element of \\spad{u} is positive,{} \\axiom{\\spad{false}} otherwise.")) (|width| ((|#1| $) "\\spad{width(u)} returns \\axiom{sup(\\spad{u}) - inf(\\spad{u})}.")) (|sup| ((|#1| $) "\\spad{sup(u)} returns the supremum of \\axiom{\\spad{u}}.")) (|inf| ((|#1| $) "\\spad{inf(u)} returns the infinum of \\axiom{\\spad{u}}.")) (|qinterval| (($ |#1| |#1|) "\\spad{qinterval(inf,sup)} creates a new interval \\axiom{[\\spad{inf},{}\\spad{sup}]},{} without checking the ordering on the elements.")) (|interval| (($ (|Fraction| (|Integer|))) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1|) "\\spad{interval(f)} creates a new interval around \\spad{f}.") (($ |#1| |#1|) "\\spad{interval(inf,sup)} creates a new interval,{} either \\axiom{[\\spad{inf},{}\\spad{sup}]} if \\axiom{\\spad{inf} <= \\spad{sup}} or \\axiom{[\\spad{sup},{}in]} otherwise."))) -((-4200 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4199 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-568 S) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) @@ -2206,9 +2206,9 @@ NIL NIL (-569) ((|constructor| (NIL "The category of commutative integral domains,{} \\spadignore{i.e.} commutative rings with no zero divisors. \\blankline Conditional attributes: \\indented{2}{canonicalUnitNormal\\tab{20}the canonical field is the same for all associates} \\indented{2}{canonicalsClosed\\tab{20}the product of two canonicals is itself canonical}")) (|unit?| (((|Boolean|) $) "\\spad{unit?(x)} tests whether \\spad{x} is a unit,{} \\spadignore{i.e.} is invertible.")) (|associates?| (((|Boolean|) $ $) "\\spad{associates?(x,y)} tests whether \\spad{x} and \\spad{y} are associates,{} \\spadignore{i.e.} differ by a unit factor.")) (|unitCanonical| (($ $) "\\spad{unitCanonical(x)} returns \\spad{unitNormal(x).canonical}.")) (|unitNormal| (((|Record| (|:| |unit| $) (|:| |canonical| $) (|:| |associate| $)) $) "\\spad{unitNormal(x)} tries to choose a canonical element from the associate class of \\spad{x}. The attribute canonicalUnitNormal,{} if asserted,{} means that the \"canonical\" element is the same across all associates of \\spad{x} if \\spad{unitNormal(x) = [u,c,a]} then \\spad{u*c = x},{} \\spad{a*u = 1}.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} either returns an element \\spad{c} such that \\spad{c*b=a} or \"failed\" if no such element can be found."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-570 R -3495) +(-570 R -3494) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for elemntary functions.")) (|lfextlimint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (|Symbol|) (|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{lfextlimint(f,x,k,[k1,...,kn])} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - c dk/dx}. Value \\spad{h} is looked for in a field containing \\spad{f} and \\spad{k1},{}...,{}kn (the \\spad{ki}'s must be logs).")) (|lfintegrate| (((|IntegrationResult| |#2|) |#2| (|Symbol|)) "\\spad{lfintegrate(f, x)} = \\spad{g} such that \\spad{dg/dx = f}.")) (|lfinfieldint| (((|Union| |#2| "failed") |#2| (|Symbol|)) "\\spad{lfinfieldint(f, x)} returns a function \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|lflimitedint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Symbol|) (|List| |#2|)) "\\spad{lflimitedint(f,x,[g1,...,gn])} returns functions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} and \\spad{d(h+sum(ci log(gi)))/dx = f},{} if possible,{} \"failed\" otherwise.")) (|lfextendedint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #1#) |#2| (|Symbol|) |#2|) "\\spad{lfextendedint(f, x, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f - cg},{} if (\\spad{h},{} \\spad{c}) exist,{} \"failed\" otherwise."))) NIL NIL @@ -2220,19 +2220,19 @@ NIL ((|constructor| (NIL "\\blankline")) (|entry| (((|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| |range| (|Union| (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{entry(n)} \\undocumented{}")) (|entries| (((|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) "\\spad{entries(x)} \\undocumented{}")) (|showAttributes| (((|Union| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showAttributes(x)} \\undocumented{}")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|fTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |endPointContinuity| (|Union| (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (|Union| (|:| |str| (|Stream| (|DoubleFloat|))) (|:| |notEvaluated| #6#))) (|:| |range| (|Union| (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) "\\spad{fTable(l)} creates a functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(f)} returns the list of keys of \\spad{f}")) (|clearTheFTable| (((|Void|)) "\\spad{clearTheFTable()} clears the current table of functions.")) (|showTheFTable| (($) "\\spad{showTheFTable()} returns the current table of functions."))) NIL NIL -(-573 R -3495 L) +(-573 R -3494 L) ((|constructor| (NIL "This internal package rationalises integrands on curves of the form: \\indented{2}{\\spad{y\\^2 = a x\\^2 + b x + c}} \\indented{2}{\\spad{y\\^2 = (a x + b) / (c x + d)}} \\indented{2}{\\spad{f(x, y) = 0} where \\spad{f} has degree 1 in \\spad{x}} The rationalization is done for integration,{} limited integration,{} extended integration and the risch differential equation.")) (|palgLODE0| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgLODE0(op,g,x,y,z,t,c)} returns the solution of \\spad{op f = g} Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Record| (|:| |particular| (|Union| |#2| #1#)) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgLODE0(op, g, x, y, d, p)} returns the solution of \\spad{op f = g}. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|lift| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|SparseUnivariatePolynomial| |#2|) (|Kernel| |#2|)) "\\spad{lift(u,k)} \\undocumented")) (|multivariate| ((|#2| (|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) (|Kernel| |#2|) |#2|) "\\spad{multivariate(u,k,f)} \\undocumented")) (|univariate| (((|SparseUnivariatePolynomial| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|SparseUnivariatePolynomial| |#2|)) "\\spad{univariate(f,k,k,p)} \\undocumented")) (|palgRDE0| (((|Union| |#2| #2="failed") |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgRDE0(f, g, x, y, foo, t, c)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.") (((|Union| |#2| #2#) |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #2#) |#2| |#2| (|Symbol|)) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgRDE0(f, g, x, y, foo, d, p)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}. Argument \\spad{foo},{} called by \\spad{foo(a, b, x)},{} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}.")) (|palglimint0| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palglimint0(f, x, y, [u1,...,un], z, t, c)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}.") (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #3#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palglimint0(f, x, y, [u1,...,un], d, p)} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} and \"failed\" otherwise. Argument \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2y(x)\\^2 = P(x)}.")) (|palgextint0| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4="failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgextint0(f, x, y, g, z, t, c)} returns functions \\spad{[h, d]} such that \\spad{dh/dx = f(x,y) - d g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy},{} and \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}. The operation returns \"failed\" if no such functions exist.") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) #4#) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgextint0(f, x, y, g, d, p)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)},{} or \"failed\" if no such functions exist.")) (|palgint0| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|Fraction| (|SparseUnivariatePolynomial| |#2|))) "\\spad{palgint0(f, x, y, z, t, c)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{f(x,y)dx = c f(t,y) dy}; \\spad{c} and \\spad{t} are rational functions of \\spad{y}. Argument \\spad{z} is a dummy variable not appearing in \\spad{f(x,y)}.") (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) "\\spad{palgint0(f, x, y, d, p)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x} satisfying \\spad{d(x)\\^2 y(x)\\^2 = P(x)}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -678) (|devaluate| |#2|)))) +((|HasCategory| |#3| (|%list| (QUOTE -677) (|devaluate| |#2|)))) (-574) ((|constructor| (NIL "This package provides various number theoretic functions on the integers.")) (|sumOfKthPowerDivisors| (((|Integer|) (|Integer|) (|NonNegativeInteger|)) "\\spad{sumOfKthPowerDivisors(n,k)} returns the sum of the \\spad{k}th powers of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. the sum of the \\spad{k}th powers of the divisors of \\spad{n} is often denoted by \\spad{sigma_k(n)}.")) (|sumOfDivisors| (((|Integer|) (|Integer|)) "\\spad{sumOfDivisors(n)} returns the sum of the integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The sum of the divisors of \\spad{n} is often denoted by \\spad{sigma(n)}.")) (|numberOfDivisors| (((|Integer|) (|Integer|)) "\\spad{numberOfDivisors(n)} returns the number of integers between 1 and \\spad{n} (inclusive) which divide \\spad{n}. The number of divisors of \\spad{n} is often denoted by \\spad{tau(n)}.")) (|moebiusMu| (((|Integer|) (|Integer|)) "\\spad{moebiusMu(n)} returns the Moebius function \\spad{mu(n)}. \\spad{mu(n)} is either \\spad{-1},{}0 or 1 as follows: \\spad{mu(n) = 0} if \\spad{n} is divisible by a square > 1,{} \\spad{mu(n) = (-1)^k} if \\spad{n} is square-free and has \\spad{k} distinct prime divisors.")) (|legendre| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{legendre(a,p)} returns the Legendre symbol \\spad{L(a/p)}. \\spad{L(a/p) = (-1)**((p-1)/2) mod p} (\\spad{p} prime),{} which is 0 if \\spad{a} is 0,{} 1 if \\spad{a} is a quadratic residue \\spad{mod p} and \\spad{-1} otherwise. Note: because the primality test is expensive,{} if it is known that \\spad{p} is prime then use \\spad{jacobi(a,p)}.")) (|jacobi| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{jacobi(a,b)} returns the Jacobi symbol \\spad{J(a/b)}. When \\spad{b} is odd,{} \\spad{J(a/b) = product(L(a/p) for p in factor b )}. Note: by convention,{} 0 is returned if \\spad{gcd(a,b) ~= 1}. Iterative \\spad{O(log(b)^2)} version coded by Michael Monagan June 1987.")) (|harmonic| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{harmonic(n)} returns the \\spad{n}th harmonic number. This is \\spad{H[n] = sum(1/k,k=1..n)}.")) (|fibonacci| (((|Integer|) (|Integer|)) "\\spad{fibonacci(n)} returns the \\spad{n}th Fibonacci number. the Fibonacci numbers \\spad{F[n]} are defined by \\spad{F[0] = F[1] = 1} and \\spad{F[n] = F[n-1] + F[n-2]}. The algorithm has running time \\spad{O(log(n)^3)}. Reference: Knuth,{} The Art of Computer Programming Vol 2,{} Semi-Numerical Algorithms.")) (|eulerPhi| (((|Integer|) (|Integer|)) "\\spad{eulerPhi(n)} returns the number of integers between 1 and \\spad{n} (including 1) which are relatively prime to \\spad{n}. This is the Euler phi function \\spad{\\phi(n)} is also called the totient function.")) (|euler| (((|Integer|) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler number. This is \\spad{2^n E(n,1/2)},{} where \\spad{E(n,x)} is the \\spad{n}th Euler polynomial.")) (|divisors| (((|List| (|Integer|)) (|Integer|)) "\\spad{divisors(n)} returns a list of the divisors of \\spad{n}.")) (|chineseRemainder| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{chineseRemainder(x1,m1,x2,m2)} returns \\spad{w},{} where \\spad{w} is such that \\spad{w = x1 mod m1} and \\spad{w = x2 mod m2}. Note: \\spad{m1} and \\spad{m2} must be relatively prime.")) (|bernoulli| (((|Fraction| (|Integer|)) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli number. this is \\spad{B(n,0)},{} where \\spad{B(n,x)} is the \\spad{n}th Bernoulli polynomial."))) NIL NIL -(-575 -3495 UP UPUP R) +(-575 -3494 UP UPUP R) ((|constructor| (NIL "algebraic Hermite redution.")) (|HermiteIntegrate| (((|Record| (|:| |answer| |#4|) (|:| |logpart| |#4|)) |#4| (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, ')} returns \\spad{[g,h]} such that \\spad{f = g' + h} and \\spad{h} has a only simple finite normal poles."))) NIL NIL -(-576 -3495 UP) +(-576 -3494 UP) ((|constructor| (NIL "Hermite integration,{} transcendental case.")) (|HermiteIntegrate| (((|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |logpart| (|Fraction| |#2|)) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{HermiteIntegrate(f, D)} returns \\spad{[g, h, s, p]} such that \\spad{f = Dg + h + s + p},{} \\spad{h} has a squarefree denominator normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. Furthermore,{} \\spad{h} and \\spad{s} have no polynomial parts. \\spad{D} is the derivation to use on \\spadtype{UP}."))) NIL NIL @@ -2240,15 +2240,15 @@ NIL ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|))) (|:| |extra| (|Result|))) (|NumericalIntegrationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine for solving the numerical integration problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalIntegrationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.")) (|integrate| (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|Symbol|)) "\\spad{integrate(exp, x = a..b, numerical)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error if the last argument is not {\\tt numerical}.") (((|Union| (|Result|) "failed") (|Expression| (|Float|)) (|SegmentBinding| (|OrderedCompletion| (|Float|))) (|String|)) "\\spad{integrate(exp, x = a..b, \"numerical\")} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range,{} {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.\\newline \\blankline Default values for the absolute and relative error are used. \\blankline It is an error of the last argument is not {\\tt \"numerical\"}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel, routines)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy,{} using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsabs, epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|)))) (|Float|)) "\\spad{integrate(exp, [a..b,c..d,...], epsrel)} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|List| (|Segment| (|OrderedCompletion| (|Float|))))) "\\spad{integrate(exp, [a..b,c..d,...])} is a top level ANNA function to integrate a multivariate expression,{} {\\tt \\spad{exp}},{} over a given set of ranges. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|)))) "\\spad{integrate(exp, a..b)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline Default values for the absolute and relative error are used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|)) "\\spad{integrate(exp, a..b, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}. \\blankline If epsrel = 0,{} a default absolute accuracy is used.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|)) "\\spad{integrate(exp, a..b, epsabs, epsrel)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|NumericalIntegrationProblem|)) "\\spad{integrate(IntegrationProblem)} is a top level ANNA function to integrate an expression over a given range or ranges to the required absolute and relative accuracy. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|Segment| (|OrderedCompletion| (|Float|))) (|Float|) (|Float|) (|RoutinesTable|)) "\\spad{integrate(exp, a..b, epsrel, routines)} is a top level ANNA function to integrate an expression,{} {\\tt \\spad{exp}},{} over a given range {\\tt a} to {\\tt \\spad{b}} to the required absolute and relative accuracy using the routines available in the RoutinesTable provided. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalIntegrationCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline It then performs the integration of the given expression on that \\axiom{domain}."))) NIL NIL -(-578 R -3495 L) +(-578 R -3494 L) ((|constructor| (NIL "This package provides functions for integration,{} limited integration,{} extended integration and the risch differential equation for pure algebraic integrands.")) (|palgLODE| (((|Record| (|:| |particular| (|Union| |#2| #1="failed")) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Symbol|)) "\\spad{palgLODE(op, g, kx, y, x)} returns the solution of \\spad{op f = g}. \\spad{y} is an algebraic function of \\spad{x}.")) (|palgRDE| (((|Union| |#2| #1#) |#2| |#2| |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|Mapping| (|Union| |#2| #1#) |#2| |#2| (|Symbol|))) "\\spad{palgRDE(nfp, f, g, x, y, foo)} returns a function \\spad{z(x,y)} such that \\spad{dz/dx + n * df/dx z(x,y) = g(x,y)} if such a \\spad{z} exists,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}; \\spad{foo(a, b, x)} is a function that solves \\spad{du/dx + n * da/dx u(x) = u(x)} for an unknown \\spad{u(x)} not involving \\spad{y}. \\spad{nfp} is \\spad{n * df/dx}.")) (|palglimint| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) (|List| |#2|)) "\\spad{palglimint(f, x, y, [u1,...,un])} returns functions \\spad{[h,[[ci, ui]]]} such that the \\spad{ui}'s are among \\spad{[u1,...,un]} and \\spad{d(h + sum(ci log(ui)))/dx = f(x,y)} if such functions exist,{} \"failed\" otherwise; \\spad{y} is an algebraic function of \\spad{x}.")) (|palgextint| (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| (|Kernel| |#2|) (|Kernel| |#2|) |#2|) "\\spad{palgextint(f, x, y, g)} returns functions \\spad{[h, c]} such that \\spad{dh/dx = f(x,y) - c g},{} where \\spad{y} is an algebraic function of \\spad{x}; returns \"failed\" if no such functions exist.")) (|palgint| (((|IntegrationResult| |#2|) |#2| (|Kernel| |#2|) (|Kernel| |#2|)) "\\spad{palgint(f, x, y)} returns the integral of \\spad{f(x,y)dx} where \\spad{y} is an algebraic function of \\spad{x}."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -678) (|devaluate| |#2|)))) -(-579 R -3495) +((|HasCategory| |#3| (|%list| (QUOTE -677) (|devaluate| |#2|)))) +(-579 R -3494) ((|constructor| (NIL "\\spadtype{PatternMatchIntegration} provides functions that use the pattern matcher to find some indefinite and definite integrals involving special functions and found in the litterature.")) (|pmintegrate| (((|Union| |#2| "failed") |#2| (|Symbol|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{pmintegrate(f, x = a..b)} returns the integral of \\spad{f(x)dx} from a to \\spad{b} if it can be found by the built-in pattern matching rules.") (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}.")) (|pmComplexintegrate| (((|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|)) "\\spad{pmComplexintegrate(f, x)} returns either \"failed\" or \\spad{[g,h]} such that \\spad{integrate(f,x) = g + integrate(h,x)}. It only looks for special complex integrals that pmintegrate does not return.")) (|splitConstant| (((|Record| (|:| |const| |#2|) (|:| |nconst| |#2|)) |#2| (|Symbol|)) "\\spad{splitConstant(f, x)} returns \\spad{[c, g]} such that \\spad{f = c * g} and \\spad{c} does not involve \\spad{t}."))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1160)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-647))))) -(-580 -3495 UP) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1159)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-646))))) +(-580 -3494 UP) ((|constructor| (NIL "This package provides functions for the base case of the Risch algorithm.")) (|limitedint| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|List| (|Fraction| |#2|))) "\\spad{limitedint(f, [g1,...,gn])} returns fractions \\spad{[h,[[ci, gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{ci' = 0},{} and \\spad{(h+sum(ci log(gi)))' = f},{} if possible,{} \"failed\" otherwise.")) (|extendedint| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{extendedint(f, g)} returns fractions \\spad{[h, c]} such that \\spad{c' = 0} and \\spad{h' = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|infieldint| (((|Union| (|Fraction| |#2|) "failed") (|Fraction| |#2|)) "\\spad{infieldint(f)} returns \\spad{g} such that \\spad{g' = f} or \"failed\" if the integral of \\spad{f} is not a rational function.")) (|integrate| (((|IntegrationResult| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{integrate(f)} returns \\spad{g} such that \\spad{g' = f}."))) NIL NIL @@ -2256,27 +2256,27 @@ NIL ((|constructor| (NIL "Provides integer testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|integerIfCan| (((|Union| (|Integer|) "failed") |#1|) "\\spad{integerIfCan(x)} returns \\spad{x} as an integer,{} \"failed\" if \\spad{x} is not an integer.")) (|integer?| (((|Boolean|) |#1|) "\\spad{integer?(x)} is \\spad{true} if \\spad{x} is an integer,{} \\spad{false} otherwise.")) (|integer| (((|Integer|) |#1|) "\\spad{integer(x)} returns \\spad{x} as an integer; error if \\spad{x} is not an integer."))) NIL NIL -(-582 -3495) +(-582 -3494) ((|constructor| (NIL "This package provides functions for the integration of rational functions.")) (|extendedIntegrate| (((|Union| (|Record| (|:| |ratpart| (|Fraction| (|Polynomial| |#1|))) (|:| |coeff| (|Fraction| (|Polynomial| |#1|)))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{extendedIntegrate(f, x, g)} returns fractions \\spad{[h, c]} such that \\spad{dc/dx = 0} and \\spad{dh/dx = f - cg},{} if \\spad{(h, c)} exist,{} \"failed\" otherwise.")) (|limitedIntegrate| (((|Union| (|Record| (|:| |mainpart| (|Fraction| (|Polynomial| |#1|))) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| (|Polynomial| |#1|))) (|:| |logand| (|Fraction| (|Polynomial| |#1|))))))) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limitedIntegrate(f, x, [g1,...,gn])} returns fractions \\spad{[h, [[ci,gi]]]} such that the \\spad{gi}'s are among \\spad{[g1,...,gn]},{} \\spad{dci/dx = 0},{} and \\spad{d(h + sum(ci log(gi)))/dx = f} if possible,{} \"failed\" otherwise.")) (|infieldIntegrate| (((|Union| (|Fraction| (|Polynomial| |#1|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{infieldIntegrate(f, x)} returns a fraction \\spad{g} such that \\spad{dg/dx = f} if \\spad{g} exists,{} \"failed\" otherwise.")) (|internalIntegrate| (((|IntegrationResult| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{internalIntegrate(f, x)} returns \\spad{g} such that \\spad{dg/dx = f}."))) NIL NIL (-583 R) ((|constructor| (NIL "\\indented{1}{+ Author: Mike Dewar} + Date Created: November 1996 + Date Last Updated: + Basic Functions: + Related Constructors: + Also See: + AMS Classifications: + Keywords: + References: + Description: + This domain is an implementation of interval arithmetic and transcendental + functions over intervals."))) -((-4200 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4199 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-584) ((|constructor| (NIL "This package provides the implementation for the \\spadfun{solveLinearPolynomialEquation} operation over the integers. It uses a lifting technique from the package GenExEuclid")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| (|Integer|))) "failed") (|List| (|SparseUnivariatePolynomial| (|Integer|))) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists."))) NIL NIL -(-585 R -3495) +(-585 R -3494) ((|constructor| (NIL "\\indented{1}{Tools for the integrator} Author: Manuel Bronstein Date Created: 25 April 1990 Date Last Updated: 9 June 1993 Keywords: elementary,{} function,{} integration.")) (|intPatternMatch| (((|IntegrationResult| |#2|) |#2| (|Symbol|) (|Mapping| (|IntegrationResult| |#2|) |#2| (|Symbol|)) (|Mapping| (|Union| (|Record| (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (|Symbol|))) "\\spad{intPatternMatch(f, x, int, pmint)} tries to integrate \\spad{f} first by using the integration function \\spad{int},{} and then by using the pattern match intetgration function \\spad{pmint} on any remaining unintegrable part.")) (|mkPrim| ((|#2| |#2| (|Symbol|)) "\\spad{mkPrim(f, x)} makes the logs in \\spad{f} which are linear in \\spad{x} primitive with respect to \\spad{x}.")) (|removeConstantTerm| ((|#2| |#2| (|Symbol|)) "\\spad{removeConstantTerm(f, x)} returns \\spad{f} minus any additive constant with respect to \\spad{x}.")) (|vark| (((|List| (|Kernel| |#2|)) (|List| |#2|) (|Symbol|)) "\\spad{vark([f1,...,fn],x)} returns the set-theoretic union of \\spad{(varselect(f1,x),...,varselect(fn,x))}.")) (|union| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|))) "\\spad{union(l1, l2)} returns set-theoretic union of \\spad{l1} and \\spad{l2}.")) (|ksec| (((|Kernel| |#2|) (|Kernel| |#2|) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{ksec(k, [k1,...,kn], x)} returns the second top-level \\spad{ki} after \\spad{k} involving \\spad{x}.")) (|kmax| (((|Kernel| |#2|) (|List| (|Kernel| |#2|))) "\\spad{kmax([k1,...,kn])} returns the top-level \\spad{ki} for integration.")) (|varselect| (((|List| (|Kernel| |#2|)) (|List| (|Kernel| |#2|)) (|Symbol|)) "\\spad{varselect([k1,...,kn], x)} returns the \\spad{ki} which involve \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-647))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-569)))) -(-586 -3495 UP) +((-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-296))) (|HasCategory| |#2| (QUOTE (-646))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-296)))) (|HasCategory| |#1| (QUOTE (-569)))) +(-586 -3494 UP) ((|constructor| (NIL "This package provides functions for the transcendental case of the Risch algorithm.")) (|monomialIntPoly| (((|Record| (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{monomialIntPoly(p, ')} returns [\\spad{q},{} \\spad{r}] such that \\spad{p = q' + r} and \\spad{degree(r) < degree(t')}. Error if \\spad{degree(t') < 2}.")) (|monomialIntegrate| (((|Record| (|:| |ir| (|IntegrationResult| (|Fraction| |#2|))) (|:| |specpart| (|Fraction| |#2|)) (|:| |polypart| |#2|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomialIntegrate(f, ')} returns \\spad{[ir, s, p]} such that \\spad{f = ir' + s + p} and all the squarefree factors of the denominator of \\spad{s} are special \\spad{w}.\\spad{r}.\\spad{t} the derivation '.")) (|expintfldpoly| (((|Union| (|LaurentPolynomial| |#1| |#2|) "failed") (|LaurentPolynomial| |#1| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintfldpoly(p, foo)} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument foo is a Risch differential equation function on \\spad{F}.")) (|primintfldpoly| (((|Union| |#2| "failed") |#2| (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|) |#1|) "\\spad{primintfldpoly(p, ', t')} returns \\spad{q} such that \\spad{p' = q} or \"failed\" if no such \\spad{q} exists. Argument \\spad{t'} is the derivative of the primitive generating the extension.")) (|primlimintfrac| (((|Union| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|)))))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|List| (|Fraction| |#2|))) "\\spad{primlimintfrac(f, ', [u1,...,un])} returns \\spad{[v, [c1,...,cn]]} such that \\spad{ci' = 0} and \\spad{f = v' + +/[ci * ui'/ui]}. Error: if \\spad{degree numer f >= degree denom f}.")) (|primextintfrac| (((|Union| (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Fraction| |#2|)) "\\spad{primextintfrac(f, ', g)} returns \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0}. Error: if \\spad{degree numer f >= degree denom f} or if \\spad{degree numer g >= degree denom g} or if \\spad{denom g} is not squarefree.")) (|explimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|List| (|Fraction| |#2|))) "\\spad{explimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primlimitedint| (((|Union| (|Record| (|:| |answer| (|Record| (|:| |mainpart| (|Fraction| |#2|)) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| (|Fraction| |#2|)) (|:| |logand| (|Fraction| |#2|))))))) (|:| |a0| |#1|)) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|List| (|Fraction| |#2|))) "\\spad{primlimitedint(f, ', foo, [u1,...,un])} returns \\spad{[v, [c1,...,cn], a]} such that \\spad{ci' = 0},{} \\spad{f = v' + a + reduce(+,[ci * ui'/ui])},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if no such \\spad{v},{} \\spad{ci},{} a exist. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|expextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|) (|Fraction| |#2|)) "\\spad{expextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is a Risch differential equation function on \\spad{F}.")) (|primextendedint| (((|Union| (|Record| (|:| |answer| (|Fraction| |#2|)) (|:| |a0| |#1|)) (|Record| (|:| |ratpart| (|Fraction| |#2|)) (|:| |coeff| (|Fraction| |#2|))) "failed") (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (|Fraction| |#2|)) "\\spad{primextendedint(f, ', foo, g)} returns either \\spad{[v, c]} such that \\spad{f = v' + c g} and \\spad{c' = 0},{} or \\spad{[v, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Returns \"failed\" if neither case can hold. Argument \\spad{foo} is an extended integration function on \\spad{F}.")) (|tanintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|List| |#1|) "failed") (|Integer|) |#1| |#1|)) "\\spad{tanintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential system solver on \\spad{F}.")) (|expintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Record| (|:| |ans| |#1|) (|:| |right| |#1|) (|:| |sol?| (|Boolean|))) (|Integer|) |#1|)) "\\spad{expintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in \\spad{F}; Argument foo is a Risch differential equation solver on \\spad{F}.")) (|primintegrate| (((|Record| (|:| |answer| (|IntegrationResult| (|Fraction| |#2|))) (|:| |a0| |#1|)) (|Fraction| |#2|) (|Mapping| |#2| |#2|) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) "\\spad{primintegrate(f, ', foo)} returns \\spad{[g, a]} such that \\spad{f = g' + a},{} and \\spad{a = 0} or \\spad{a} has no integral in UP. Argument foo is an extended integration function on \\spad{F}."))) NIL NIL -(-587 R -3495) +(-587 R -3494) ((|constructor| (NIL "This package computes the inverse Laplace Transform.")) (|inverseLaplace| (((|Union| |#2| "failed") |#2| (|Symbol|) (|Symbol|)) "\\spad{inverseLaplace(f, s, t)} returns the Inverse Laplace transform of \\spad{f(s)} using \\spad{t} as the new variable or \"failed\" if unable to find a closed form."))) NIL NIL @@ -2298,25 +2298,25 @@ NIL NIL (-592 |p| |unBalanced?|) ((|constructor| (NIL "This domain implements Zp,{} the \\spad{p}-adic completion of the integers. This is an internal domain."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL (-593 |p|) ((|constructor| (NIL "InnerPrimeField(\\spad{p}) implements the field with \\spad{p} elements. Note: argument \\spad{p} MUST be a prime (this domain does not check). See \\spadtype{PrimeField} for a domain that does check."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) ((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) (-594) ((|constructor| (NIL "A package to print strings without line-feed nor carriage-return.")) (|iprint| (((|Void|) (|String|)) "\\axiom{iprint(\\spad{s})} prints \\axiom{\\spad{s}} at the current position of the cursor."))) NIL NIL -(-595 -3495) +(-595 -3494) ((|constructor| (NIL "If a function \\spad{f} has an elementary integral \\spad{g},{} then \\spad{g} can be written in the form \\spad{g = h + c1 log(u1) + c2 log(u2) + ... + cn log(un)} where \\spad{h},{} which is in the same field than \\spad{f},{} is called the rational part of the integral,{} and \\spad{c1 log(u1) + ... cn log(un)} is called the logarithmic part of the integral. This domain manipulates integrals represented in that form,{} by keeping both parts separately. The logs are not explicitly computed.")) (|differentiate| ((|#1| $ (|Symbol|)) "\\spad{differentiate(ir,x)} differentiates \\spad{ir} with respect to \\spad{x}") ((|#1| $ (|Mapping| |#1| |#1|)) "\\spad{differentiate(ir,D)} differentiates \\spad{ir} with respect to the derivation \\spad{D}.")) (|integral| (($ |#1| (|Symbol|)) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}") (($ |#1| |#1|) "\\spad{integral(f,x)} returns the formal integral of \\spad{f} with respect to \\spad{x}")) (|elem?| (((|Boolean|) $) "\\spad{elem?(ir)} tests if an integration result is elementary over F?")) (|notelem| (((|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) "\\spad{notelem(ir)} returns the non-elementary part of an integration result")) (|logpart| (((|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) $) "\\spad{logpart(ir)} returns the logarithmic part of an integration result")) (|ratpart| ((|#1| $) "\\spad{ratpart(ir)} returns the rational part of an integration result")) (|mkAnswer| (($ |#1| (|List| (|Record| (|:| |scalar| (|Fraction| (|Integer|))) (|:| |coeff| (|SparseUnivariatePolynomial| |#1|)) (|:| |logand| (|SparseUnivariatePolynomial| |#1|)))) (|List| (|Record| (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) "\\spad{mkAnswer(r,l,ne)} creates an integration result from a rational part \\spad{r},{} a logarithmic part \\spad{l},{} and a non-elementary part \\spad{ne}."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-1198))))) -(-596 E -3495) +((-4419 . T) (-4418 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-1197))))) +(-596 E -3494) ((|constructor| (NIL "\\indented{1}{Internally used by the integration packages} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 12 August 1992 Keywords: integration.")) (|map| (((|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |mainpart| |#1|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#1|) (|:| |logand| |#1|))))) "failed")) "\\spad{map(f,ufe)} \\undocumented") (((|Union| |#2| "failed") (|Mapping| |#2| |#1|) (|Union| |#1| "failed")) "\\spad{map(f,ue)} \\undocumented") (((|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") (|Mapping| |#2| |#1|) (|Union| (|Record| (|:| |ratpart| |#1|) (|:| |coeff| |#1|)) "failed")) "\\spad{map(f,ure)} \\undocumented") (((|IntegrationResult| |#2|) (|Mapping| |#2| |#1|) (|IntegrationResult| |#1|)) "\\spad{map(f,ire)} \\undocumented"))) NIL NIL -(-597 R -3495) +(-597 R -3494) ((|constructor| (NIL "This package allows a sum of logs over the roots of a polynomial to be expressed as explicit logarithms and arc tangents,{} provided that the indexing polynomial can be factored into quadratics.")) (|complexExpand| ((|#2| (|IntegrationResult| |#2|)) "\\spad{complexExpand(i)} returns the expanded complex function corresponding to \\spad{i}.")) (|expand| (((|List| |#2|) (|IntegrationResult| |#2|)) "\\spad{expand(i)} returns the list of possible real functions corresponding to \\spad{i}.")) (|split| (((|IntegrationResult| |#2|) (|IntegrationResult| |#2|)) "\\spad{split(u(x) + sum_{P(a)=0} Q(a,x))} returns \\spad{u(x) + sum_{P1(a)=0} Q(a,x) + ... + sum_{Pn(a)=0} Q(a,x)} where \\spad{P1},{}...,{}Pn are the factors of \\spad{P}."))) NIL NIL @@ -2348,2861 +2348,2857 @@ NIL ((|constructor| (NIL "This domain represents a `has' expression.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the is expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the is expression `e'."))) NIL NIL -(-605 |mn|) -((|constructor| (NIL "This domain implements low-level strings"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-3957 (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122)))) (|HasCategory| (-146) (QUOTE (-861))) (-3957 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) -(-606 E V R P) +(-605 E V R P) ((|constructor| (NIL "tools for the summation packages.")) (|sum| (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2|) "\\spad{sum(p(n), n)} returns \\spad{P(n)},{} the indefinite sum of \\spad{p(n)} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{P(n+1) - P(n) = a(n)}.") (((|Record| (|:| |num| |#4|) (|:| |den| (|Integer|))) |#4| |#2| (|Segment| |#4|)) "\\spad{sum(p(n), n = a..b)} returns \\spad{p(a) + p(a+1) + ... + p(b)}."))) NIL NIL -(-607 |Coef|) +(-606 |Coef|) ((|constructor| (NIL "InnerSparseUnivariatePowerSeries is an internal domain \\indented{2}{used for creating sparse Taylor and Laurent series.}")) (|cAcsch| (($ $) "\\spad{cAcsch(f)} computes the inverse hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsech| (($ $) "\\spad{cAsech(f)} computes the inverse hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcoth| (($ $) "\\spad{cAcoth(f)} computes the inverse hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtanh| (($ $) "\\spad{cAtanh(f)} computes the inverse hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcosh| (($ $) "\\spad{cAcosh(f)} computes the inverse hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsinh| (($ $) "\\spad{cAsinh(f)} computes the inverse hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsch| (($ $) "\\spad{cCsch(f)} computes the hyperbolic cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSech| (($ $) "\\spad{cSech(f)} computes the hyperbolic secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCoth| (($ $) "\\spad{cCoth(f)} computes the hyperbolic cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTanh| (($ $) "\\spad{cTanh(f)} computes the hyperbolic tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCosh| (($ $) "\\spad{cCosh(f)} computes the hyperbolic cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSinh| (($ $) "\\spad{cSinh(f)} computes the hyperbolic sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcsc| (($ $) "\\spad{cAcsc(f)} computes the arccosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsec| (($ $) "\\spad{cAsec(f)} computes the arcsecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcot| (($ $) "\\spad{cAcot(f)} computes the arccotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAtan| (($ $) "\\spad{cAtan(f)} computes the arctangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAcos| (($ $) "\\spad{cAcos(f)} computes the arccosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cAsin| (($ $) "\\spad{cAsin(f)} computes the arcsine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCsc| (($ $) "\\spad{cCsc(f)} computes the cosecant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSec| (($ $) "\\spad{cSec(f)} computes the secant of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCot| (($ $) "\\spad{cCot(f)} computes the cotangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cTan| (($ $) "\\spad{cTan(f)} computes the tangent of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cCos| (($ $) "\\spad{cCos(f)} computes the cosine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cSin| (($ $) "\\spad{cSin(f)} computes the sine of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cLog| (($ $) "\\spad{cLog(f)} computes the logarithm of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cExp| (($ $) "\\spad{cExp(f)} computes the exponential of the power series \\spad{f}. For use when the coefficient ring is commutative.")) (|cRationalPower| (($ $ (|Fraction| (|Integer|))) "\\spad{cRationalPower(f,r)} computes \\spad{f^r}. For use when the coefficient ring is commutative.")) (|cPower| (($ $ |#1|) "\\spad{cPower(f,r)} computes \\spad{f^r},{} where \\spad{f} has constant coefficient 1. For use when the coefficient ring is commutative.")) (|integrate| (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. Warning: function does not check for a term of degree \\spad{-1}.")) (|seriesToOutputForm| (((|OutputForm|) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) (|Reference| (|OrderedCompletion| (|Integer|))) (|Symbol|) |#1| (|Fraction| (|Integer|))) "\\spad{seriesToOutputForm(st,refer,var,cen,r)} prints the series \\spad{f((var - cen)^r)}.")) (|iCompose| (($ $ $) "\\spad{iCompose(f,g)} returns \\spad{f(g(x))}. This is an internal function which should only be called for Taylor series \\spad{f(x)} and \\spad{g(x)} such that the constant coefficient of \\spad{g(x)} is zero.")) (|taylorQuoByVar| (($ $) "\\spad{taylorQuoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...}")) (|iExquo| (((|Union| $ "failed") $ $ (|Boolean|)) "\\spad{iExquo(f,g,taylor?)} is the quotient of the power series \\spad{f} and \\spad{g}. If \\spad{taylor?} is \\spad{true},{} then we must have \\spad{order(f) >= order(g)}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(fn,f)} returns the series \\spad{sum(fn(n) * an * x^n,n = n0..)},{} where \\spad{f} is the series \\spad{sum(an * x^n,n = n0..)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents.")) (|getStream| (((|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|))) $) "\\spad{getStream(f)} returns the stream of terms representing the series \\spad{f}.")) (|getRef| (((|Reference| (|OrderedCompletion| (|Integer|))) $) "\\spad{getRef(f)} returns a reference containing the order to which the terms of \\spad{f} have been computed.")) (|makeSeries| (($ (|Reference| (|OrderedCompletion| (|Integer|))) (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{makeSeries(refer,str)} creates a power series from the reference \\spad{refer} and the stream \\spad{str}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558)))))) -(-608 |Coef|) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (|HasCategory| (-558) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558)))))) +(-607 |Coef|) ((|constructor| (NIL "Internal package for dense Taylor series. This is an internal Taylor series type in which Taylor series are represented by a \\spadtype{Stream} of \\spadtype{Ring} elements. For univariate series,{} the \\spad{Stream} elements are the Taylor coefficients. For multivariate series,{} the \\spad{n}th Stream element is a form of degree \\spad{n} in the power series variables.")) (* (($ $ (|Integer|)) "\\spad{x*i} returns the product of integer \\spad{i} and the series \\spad{x}.")) (|order| (((|NonNegativeInteger|) $ (|NonNegativeInteger|)) "\\spad{order(x,n)} returns the minimum of \\spad{n} and the order of \\spad{x}.") (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the order of a power series \\spad{x},{} \\indented{1}{\\spadignore{i.e.} the degree of the first non-zero term of the series.}")) (|pole?| (((|Boolean|) $) "\\spad{pole?(x)} tests if the series \\spad{x} has a pole. \\indented{1}{Note: this is \\spad{false} when \\spad{x} is a Taylor series.}")) (|series| (($ (|Stream| |#1|)) "\\spad{series(s)} creates a power series from a stream of \\indented{1}{ring elements.} \\indented{1}{For univariate series types,{} the stream \\spad{s} should be a stream} \\indented{1}{of Taylor coefficients. For multivariate series types,{} the} \\indented{1}{stream \\spad{s} should be a stream of forms the \\spad{n}th element} \\indented{1}{of which is a} \\indented{1}{form of degree \\spad{n} in the power series variables.}")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(x)} returns a stream of ring elements. \\indented{1}{When \\spad{x} is a univariate series,{} this is a stream of Taylor} \\indented{1}{coefficients. When \\spad{x} is a multivariate series,{} the} \\indented{1}{\\spad{n}th element of the stream is a form of} \\indented{1}{degree \\spad{n} in the power series variables.}"))) -(((-4427 "*") |has| |#1| (-569)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-569)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) ((|HasCategory| |#1| (QUOTE (-569)))) -(-609) +(-608) ((|constructor| (NIL "This domain provides representations for internal type form.")) (|mappingMode| (($ $ (|List| $)) "\\spad{mappingMode(r,ts)} returns a mapping mode with return mode \\spad{r},{} and parameter modes \\spad{ts}.")) (|categoryMode| (($) "\\spad{categoryMode} is a constant mode denoting Category.")) (|voidMode| (($) "\\spad{voidMode} is a constant mode denoting Void.")) (|noValueMode| (($) "\\spad{noValueMode} is a constant mode that indicates that the value of an expression is to be ignored.")) (|jokerMode| (($) "\\spad{jokerMode} is a constant that stands for any mode in a type inference context"))) NIL NIL -(-610 A B) +(-609 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|InfiniteTuple| |#2|) (|Mapping| |#2| |#1|) (|InfiniteTuple| |#1|)) "\\spad{map(f,[x0,x1,x2,...])} returns \\spad{[f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-611 A B C) +(-610 A B C) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|Stream| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented") (((|InfiniteTuple| |#3|) (|Mapping| |#3| |#1| |#2|) (|InfiniteTuple| |#1|) (|InfiniteTuple| |#2|)) "\\spad{map(f,a,b)} \\undocumented"))) NIL NIL -(-612 R -3495 FG) +(-611 R -3494 FG) ((|constructor| (NIL "This package provides transformations from trigonometric functions to exponentials and logarithms,{} and back. \\spad{F} and FG should be the same type of function space.")) (|trigs2explogs| ((|#3| |#3| (|List| (|Kernel| |#3|)) (|List| (|Symbol|))) "\\spad{trigs2explogs(f, [k1,...,kn], [x1,...,xm])} rewrites all the trigonometric functions appearing in \\spad{f} and involving one of the \\spad{xi's} in terms of complex logarithms and exponentials. A kernel of the form \\spad{tan(u)} is expressed using \\spad{exp(u)**2} if it is one of the \\spad{ki's},{} in terms of \\spad{exp(2*u)} otherwise.")) (|explogs2trigs| (((|Complex| |#2|) |#3|) "\\spad{explogs2trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (F2FG ((|#3| |#2|) "\\spad{F2FG(a + sqrt(-1) b)} returns \\spad{a + i b}.")) (FG2F ((|#2| |#3|) "\\spad{FG2F(a + i b)} returns \\spad{a + sqrt(-1) b}.")) (GF2FG ((|#3| (|Complex| |#2|)) "\\spad{GF2FG(a + i b)} returns \\spad{a + i b} viewed as a function with the \\spad{i} pushed down into the coefficient domain."))) NIL NIL -(-613 S) +(-612 S) ((|constructor| (NIL "This package implements 'infinite tuples' for the interpreter. The representation is a stream.")) (|construct| (((|Stream| |#1|) $) "\\spad{construct(t)} converts an infinite tuple to a stream.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,s)} returns \\spad{[s,f(s),f(f(s)),...]}.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(p,t)} returns \\spad{[x for x in t | p(x)]}.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,t)} returns \\spad{[x for x in t while not p(x)]}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,t)} returns \\spad{[x for x in t while p(x)]}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(f,t)} replaces the tuple \\spad{t} by \\spad{[f(x) for x in t]}."))) NIL NIL -(-614 R |mn|) +(-613 R |mn|) ((|constructor| (NIL "\\indented{2}{This type represents vector like objects with varying lengths} and a user-specified initial index."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-615 S |Index| |Entry|) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-614 S |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#2| |#2|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#3|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#3| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#2| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#2| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#3| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#2|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#2| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#3|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL -((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-861))) (|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#3| (QUOTE (-1122)))) -(-616 |Index| |Entry|) +((|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-860))) (|HasAttribute| |#1| (QUOTE -4424)) (|HasCategory| |#3| (QUOTE (-1121)))) +(-615 |Index| |Entry|) ((|constructor| (NIL "An indexed aggregate is a many-to-one mapping of indices to entries. For example,{} a one-dimensional-array is an indexed aggregate where the index is an integer. Also,{} a table is an indexed aggregate where the indices and entries may have any type.")) (|swap!| (((|Void|) $ |#1| |#1|) "\\spad{swap!(u,i,j)} interchanges elements \\spad{i} and \\spad{j} of aggregate \\spad{u}. No meaningful value is returned.")) (|fill!| (($ $ |#2|) "\\spad{fill!(u,x)} replaces each entry in aggregate \\spad{u} by \\spad{x}. The modified \\spad{u} is returned as value.")) (|first| ((|#2| $) "\\spad{first(u)} returns the first element \\spad{x} of \\spad{u}. Note: for collections,{} \\axiom{first([\\spad{x},{}\\spad{y},{}...,{}\\spad{z}]) = \\spad{x}}. Error: if \\spad{u} is empty.")) (|minIndex| ((|#1| $) "\\spad{minIndex(u)} returns the minimum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{minIndex(a) = reduce(min,{}[\\spad{i} for \\spad{i} in indices a])}; for lists,{} \\axiom{minIndex(a) = 1}.")) (|maxIndex| ((|#1| $) "\\spad{maxIndex(u)} returns the maximum index \\spad{i} of aggregate \\spad{u}. Note: in general,{} \\axiom{maxIndex(\\spad{u}) = reduce(max,{}[\\spad{i} for \\spad{i} in indices \\spad{u}])}; if \\spad{u} is a list,{} \\axiom{maxIndex(\\spad{u}) = \\#u}.")) (|entry?| (((|Boolean|) |#2| $) "\\spad{entry?(x,u)} tests if \\spad{x} equals \\axiom{\\spad{u} . \\spad{i}} for some index \\spad{i}.")) (|indices| (((|List| |#1|) $) "\\spad{indices(u)} returns a list of indices of aggregate \\spad{u} in no particular order.")) (|index?| (((|Boolean|) |#1| $) "\\spad{index?(i,u)} tests if \\spad{i} is an index of aggregate \\spad{u}.")) (|entries| (((|List| |#2|) $) "\\spad{entries(u)} returns a list of all the entries of aggregate \\spad{u} in no assumed order."))) NIL NIL -(-617) +(-616) ((|constructor| (NIL "This domain represents the join of categories ASTs.")) (|categories| (((|List| (|TypeAst|)) $) "catehories(\\spad{x}) returns the types in the join `x'.")) (|coerce| (($ (|List| (|TypeAst|))) "ts::JoinAst construct the AST for a join of the types `ts'."))) NIL NIL -(-618 R A) +(-617 R A) ((|constructor| (NIL "\\indented{1}{AssociatedJordanAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A}} \\indented{1}{to define the new multiplications \\spad{a*b := (a *\\$A b + b *\\$A a)/2}} \\indented{1}{(anticommutator).} \\indented{1}{The usual notation \\spad{{a,b}_+} cannot be used due to} \\indented{1}{restrictions in the current language.} \\indented{1}{This domain only gives a Jordan algebra if the} \\indented{1}{Jordan-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds} \\indented{1}{for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}.} \\indented{1}{This relation can be checked by} \\indented{1}{\\spadfun{jordanAdmissible?()\\$A}.} \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Jordan algebra. Moreover,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same \\spad{true} for the associated Jordan algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Jordan algebra \\spadtype{AssociatedJordanAlgebra}(\\spad{R},{}A)."))) -((-4422 -3957 (-2961 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4420 . T) (-4419 . T)) -((-3957 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) -(-619) +((-4421 -3956 (-2960 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4419 . T) (-4418 . T)) +((-3956 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +(-618) ((|constructor| (NIL "This is the datatype for the JVM bytecodes."))) NIL NIL -(-620) +(-619) ((|constructor| (NIL "JVM class file access bitmask and values.")) (|jvmAbstract| (($) "The class was declared abstract; therefore object of this class may not be created.")) (|jvmInterface| (($) "The class file represents an interface,{} not a class.")) (|jvmSuper| (($) "Instruct the JVM to treat base clss method invokation specially.")) (|jvmFinal| (($) "The class was declared final; therefore no derived class allowed.")) (|jvmPublic| (($) "The class was declared public,{} therefore may be accessed from outside its package"))) NIL NIL -(-621) +(-620) ((|constructor| (NIL "JVM class file constant pool tags.")) (|jvmNameAndTypeConstantTag| (($) "The correspondong constant pool entry represents the name and type of a field or method info.")) (|jvmInterfaceMethodConstantTag| (($) "The correspondong constant pool entry represents an interface method info.")) (|jvmMethodrefConstantTag| (($) "The correspondong constant pool entry represents a class method info.")) (|jvmFieldrefConstantTag| (($) "The corresponding constant pool entry represents a class field info.")) (|jvmStringConstantTag| (($) "The corresponding constant pool entry is a string constant info.")) (|jvmClassConstantTag| (($) "The corresponding constant pool entry represents a class or and interface.")) (|jvmDoubleConstantTag| (($) "The corresponding constant pool entry is a double constant info.")) (|jvmLongConstantTag| (($) "The corresponding constant pool entry is a long constant info.")) (|jvmFloatConstantTag| (($) "The corresponding constant pool entry is a float constant info.")) (|jvmIntegerConstantTag| (($) "The corresponding constant pool entry is an integer constant info.")) (|jvmUTF8ConstantTag| (($) "The corresponding constant pool entry is sequence of bytes representing Java \\spad{UTF8} string constant."))) NIL NIL -(-622) +(-621) ((|constructor| (NIL "JVM class field access bitmask and values.")) (|jvmTransient| (($) "The field was declared transient.")) (|jvmVolatile| (($) "The field was declared volatile.")) (|jvmFinal| (($) "The field was declared final; therefore may not be modified after initialization.")) (|jvmStatic| (($) "The field was declared static.")) (|jvmProtected| (($) "The field was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The field was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The field was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-623) +(-622) ((|constructor| (NIL "JVM class method access bitmask and values.")) (|jvmStrict| (($) "The method was declared fpstrict; therefore floating-point mode is FP-strict.")) (|jvmAbstract| (($) "The method was declared abstract; therefore no implementation is provided.")) (|jvmNative| (($) "The method was declared native; therefore implemented in a language other than Java.")) (|jvmSynchronized| (($) "The method was declared synchronized.")) (|jvmFinal| (($) "The method was declared final; therefore may not be overriden. in derived classes.")) (|jvmStatic| (($) "The method was declared static.")) (|jvmProtected| (($) "The method was declared protected; therefore may be accessed withing derived classes.")) (|jvmPrivate| (($) "The method was declared private; threfore can be accessed only within the defining class.")) (|jvmPublic| (($) "The method was declared public; therefore mey accessed from outside its package."))) NIL NIL -(-624) +(-623) ((|constructor| (NIL "This is the datatype for the JVM opcodes."))) NIL NIL -(-625 |Entry|) +(-624 |Entry|) ((|constructor| (NIL "This domain allows a random access file to be viewed both as a table and as a file object.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (QUOTE (-1180))) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-1180) (QUOTE (-861))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-102)))) -(-626 S |Key| |Entry|) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (QUOTE (-1179))) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-860))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-102)))) +(-625 S |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#3| "failed") |#2| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#3| "failed") |#2| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#2|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#2| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) NIL NIL -(-627 |Key| |Entry|) +(-626 |Key| |Entry|) ((|constructor| (NIL "A keyed dictionary is a dictionary of key-entry pairs for which there is a unique entry for each key.")) (|search| (((|Union| |#2| "failed") |#1| $) "\\spad{search(k,t)} searches the table \\spad{t} for the key \\spad{k},{} returning the entry stored in \\spad{t} for key \\spad{k}. If \\spad{t} has no such key,{} \\axiom{search(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|remove!| (((|Union| |#2| "failed") |#1| $) "\\spad{remove!(k,t)} searches the table \\spad{t} for the key \\spad{k} removing (and return) the entry if there. If \\spad{t} has no such key,{} \\axiom{remove!(\\spad{k},{}\\spad{t})} returns \"failed\".")) (|keys| (((|List| |#1|) $) "\\spad{keys(t)} returns the list the keys in table \\spad{t}.")) (|key?| (((|Boolean|) |#1| $) "\\spad{key?(k,t)} tests if \\spad{k} is a key in table \\spad{t}."))) -((-4426 . T)) +((-4425 . T)) NIL -(-628 S) +(-627 S) ((|constructor| (NIL "A kernel over a set \\spad{S} is an operator applied to a given list of arguments from \\spad{S}.")) (|is?| (((|Boolean|) $ (|Symbol|)) "\\spad{is?(op(a1,...,an), s)} tests if the name of op is \\spad{s}.") (((|Boolean|) $ (|BasicOperator|)) "\\spad{is?(op(a1,...,an), f)} tests if op = \\spad{f}.")) (|symbolIfCan| (((|Union| (|Symbol|) "failed") $) "\\spad{symbolIfCan(k)} returns \\spad{k} viewed as a symbol if \\spad{k} is a symbol,{} and \"failed\" otherwise.")) (|kernel| (($ (|Symbol|)) "\\spad{kernel(x)} returns \\spad{x} viewed as a kernel.") (($ (|BasicOperator|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{kernel(op, [a1,...,an], m)} returns the kernel \\spad{op(a1,...,an)} of nesting level \\spad{m}. Error: if \\spad{op} is \\spad{k}-ary for some \\spad{k} not equal to \\spad{m}.")) (|height| (((|NonNegativeInteger|) $) "\\spad{height(k)} returns the nesting level of \\spad{k}.")) (|argument| (((|List| |#1|) $) "\\spad{argument(op(a1,...,an))} returns \\spad{[a1,...,an]}.")) (|operator| (((|BasicOperator|) $) "\\spad{operator(op(a1,...,an))} returns the operator op."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) -(-629 R S) +((|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) +(-628 R S) ((|constructor| (NIL "This package exports some auxiliary functions on kernels")) (|constantIfCan| (((|Union| |#1| "failed") (|Kernel| |#2|)) "\\spad{constantIfCan(k)} \\undocumented")) (|constantKernel| (((|Kernel| |#2|) |#1|) "\\spad{constantKernel(r)} \\undocumented"))) NIL NIL -(-630 S) +(-629 S) ((|constructor| (NIL "A is coercible to \\spad{B} means any element of A can automatically be converted into an element of \\spad{B} by the interpreter.")) (|coerce| ((|#1| $) "\\spad{coerce(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-631 S) +(-630 S) ((|constructor| (NIL "A is convertible to \\spad{B} means any element of A can be converted into an element of \\spad{B},{} but not automatically by the interpreter.")) (|convert| ((|#1| $) "\\spad{convert(a)} transforms a into an element of \\spad{S}."))) NIL NIL -(-632 -3495 UP) +(-631 -3494 UP) ((|constructor| (NIL "\\spadtype{Kovacic} provides a modified Kovacic's algorithm for solving explicitely irreducible 2nd order linear ordinary differential equations.")) (|kovacic| (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{kovacic(a_0,a_1,a_2,ezfactor)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{\\$a_2 y'' + a_1 y' + a0 y = 0\\$}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|Union| (|SparseUnivariatePolynomial| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{kovacic(a_0,a_1,a_2)} returns either \"failed\" or \\spad{P}(\\spad{u}) such that \\spad{\\$e^{\\int(-a_1/2a_2)} e^{\\int u}\\$} is a solution of \\indented{5}{\\spad{a_2 y'' + a_1 y' + a0 y = 0}} whenever \\spad{u} is a solution of \\spad{P u = 0}. The equation must be already irreducible over the rational functions."))) NIL NIL -(-633 S) +(-632 S) ((|constructor| (NIL "A is coercible from \\spad{B} iff any element of domain \\spad{B} can be automically converted into an element of domain A.")) (|coerce| (($ |#1|) "\\spad{coerce(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-634) +(-633) ((|constructor| (NIL "This domain implements Kleene's 3-valued propositional logic.")) (|case| (((|Boolean|) $ (|[\|\|]| |true|)) "\\spad{s case true} holds if the value of `x' is `true'.") (((|Boolean|) $ (|[\|\|]| |unknown|)) "\\spad{x case unknown} holds if the value of `x' is `unknown'") (((|Boolean|) $ (|[\|\|]| |false|)) "\\spad{x case false} holds if the value of `x' is `false'")) (|unknown| (($) "the indefinite `unknown'"))) NIL NIL -(-635 S) +(-634 S) ((|constructor| (NIL "A is convertible from \\spad{B} iff any element of domain \\spad{B} can be explicitly converted into an element of domain A.")) (|convert| (($ |#1|) "\\spad{convert(s)} transforms `s' into an element of `\\%'."))) NIL NIL -(-636 A R S) +(-635 A R S) ((|constructor| (NIL "LocalAlgebra produces the localization of an algebra,{} \\spadignore{i.e.} fractions whose numerators come from some \\spad{R} algebra.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{a / d} divides the element \\spad{a} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-860)))) -(-637 S R) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-859)))) +(-636 S R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#2|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) NIL NIL -(-638 R) +(-637 R) ((|constructor| (NIL "The category of all left algebras over an arbitrary ring.")) (|coerce| (($ |#1|) "\\spad{coerce(r)} returns \\spad{r} * 1 where 1 is the identity of the left algebra."))) -((-4422 . T)) +((-4421 . T)) NIL -(-639 R -3495) +(-638 R -3494) ((|constructor| (NIL "This package computes the forward Laplace Transform.")) (|laplace| ((|#2| |#2| (|Symbol|) (|Symbol|)) "\\spad{laplace(f, t, s)} returns the Laplace transform of \\spad{f(t)} using \\spad{s} as the new variable. This is \\spad{integral(exp(-s*t)*f(t), t = 0..\\%plusInfinity)}. Returns the formal object \\spad{laplace(f, t, s)} if it cannot compute the transform."))) NIL NIL -(-640 R UP) +(-639 R UP) ((|constructor| (NIL "\\indented{1}{Univariate polynomials with negative and positive exponents.} Author: Manuel Bronstein Date Created: May 1988 Date Last Updated: 26 Apr 1990")) (|separate| (((|Record| (|:| |polyPart| $) (|:| |fracPart| (|Fraction| |#2|))) (|Fraction| |#2|)) "\\spad{separate(x)} \\undocumented")) (|monomial| (($ |#1| (|Integer|)) "\\spad{monomial(x,n)} \\undocumented")) (|coefficient| ((|#1| $ (|Integer|)) "\\spad{coefficient(x,n)} \\undocumented")) (|trailingCoefficient| ((|#1| $) "\\spad{trailingCoefficient }\\undocumented")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient }\\undocumented")) (|reductum| (($ $) "\\spad{reductum(x)} \\undocumented")) (|order| (((|Integer|) $) "\\spad{order(x)} \\undocumented")) (|degree| (((|Integer|) $) "\\spad{degree(x)} \\undocumented")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} \\undocumented"))) -((-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4418 . T) (-4422 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) -(-641 R E V P TS ST) +((-4419 . T) (-4418 . T) ((-4426 "*") . T) (-4417 . T) (-4421 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) +(-640 R E V P TS ST) ((|constructor| (NIL "A package for solving polynomial systems by means of Lazard triangular sets [1]. This package provides two operations. One for solving in the sense of the regular zeros,{} and the other for solving in the sense of the Zariski closure. Both produce square-free regular sets. Moreover,{} the decompositions do not contain any redundant component. However,{} only zero-dimensional regular sets are normalized,{} since normalization may be time consumming in positive dimension. The decomposition process is that of [2].\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| |#6|) (|List| |#4|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?)} has the same specifications as \\axiomOpFrom{zeroSetSplit(lp,{}clos?)}{RegularTriangularSetCategory}.")) (|normalizeIfCan| ((|#6| |#6|) "\\axiom{normalizeIfCan(ts)} returns \\axiom{ts} in an normalized shape if \\axiom{ts} is zero-dimensional."))) NIL NIL -(-642 OV E Z P) +(-641 OV E Z P) ((|constructor| (NIL "Package for leading coefficient determination in the lifting step. Package working for every \\spad{R} euclidean with property \"F\".")) (|distFact| (((|Union| (|Record| (|:| |polfac| (|List| |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (|List| (|SparseUnivariatePolynomial| |#3|)))) "failed") |#3| (|List| (|SparseUnivariatePolynomial| |#3|)) (|Record| (|:| |contp| |#3|) (|:| |factors| (|List| (|Record| (|:| |irr| |#4|) (|:| |pow| (|Integer|)))))) (|List| |#3|) (|List| |#1|) (|List| |#3|)) "\\spad{distFact(contm,unilist,plead,vl,lvar,lval)},{} where \\spad{contm} is the content of the evaluated polynomial,{} \\spad{unilist} is the list of factors of the evaluated polynomial,{} \\spad{plead} is the complete factorization of the leading coefficient,{} \\spad{vl} is the list of factors of the leading coefficient evaluated,{} \\spad{lvar} is the list of variables,{} \\spad{lval} is the list of values,{} returns a record giving the list of leading coefficients to impose on the univariate factors,{}")) (|polCase| (((|Boolean|) |#3| (|NonNegativeInteger|) (|List| |#3|)) "\\spad{polCase(contprod, numFacts, evallcs)},{} where \\spad{contprod} is the product of the content of the leading coefficient of the polynomial to be factored with the content of the evaluated polynomial,{} \\spad{numFacts} is the number of factors of the leadingCoefficient,{} and evallcs is the list of the evaluated factors of the leadingCoefficient,{} returns \\spad{true} if the factors of the leading Coefficient can be distributed with this valuation."))) NIL NIL -(-643) +(-642) ((|constructor| (NIL "This domain represents assignment expressions.")) (|rhs| (((|SpadAst|) $) "\\spad{rhs(e)} returns the right hand side of the assignment expression `e'.")) (|lhs| (((|SpadAst|) $) "\\spad{lhs(e)} returns the left hand side of the assignment expression `e'."))) NIL NIL -(-644 |VarSet| R |Order|) +(-643 |VarSet| R |Order|) ((|constructor| (NIL "Management of the Lie Group associated with a free nilpotent Lie algebra. Every Lie bracket with length greater than \\axiom{Order} are assumed to be null. The implementation inherits from the \\spadtype{XPBWPolynomial} domain constructor: Lyndon coordinates are exponential coordinates of the second kind. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|identification| (((|List| (|Equation| |#2|)) $ $) "\\axiom{identification(\\spad{g},{}\\spad{h})} returns the list of equations \\axiom{g_i = h_i},{} where \\axiom{g_i} (resp. \\axiom{h_i}) are exponential coordinates of \\axiom{\\spad{g}} (resp. \\axiom{\\spad{h}}).")) (|LyndonCoordinates| (((|List| (|Record| (|:| |k| (|LyndonWord| |#1|)) (|:| |c| |#2|))) $) "\\axiom{LyndonCoordinates(\\spad{g})} returns the exponential coordinates of \\axiom{\\spad{g}}.")) (|LyndonBasis| (((|List| (|LiePolynomial| |#1| |#2|)) (|List| |#1|)) "\\axiom{LyndonBasis(lv)} returns the Lyndon basis of the nilpotent free Lie algebra.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{g})} returns the list of variables of \\axiom{\\spad{g}}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{g})} is the mirror of the internal representation of \\axiom{\\spad{g}}.")) (|coerce| (((|XPBWPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{g})} returns the internal representation of \\axiom{\\spad{g}}.")) (|ListOfTerms| (((|List| (|Record| (|:| |k| (|PoincareBirkhoffWittLyndonBasis| |#1|)) (|:| |c| |#2|))) $) "\\axiom{ListOfTerms(\\spad{p})} returns the internal representation of \\axiom{\\spad{p}}.")) (|log| (((|LiePolynomial| |#1| |#2|) $) "\\axiom{log(\\spad{p})} returns the logarithm of \\axiom{\\spad{p}}.")) (|exp| (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{exp(\\spad{p})} returns the exponential of \\axiom{\\spad{p}}."))) -((-4422 . T)) +((-4421 . T)) NIL -(-645 R |ls|) +(-644 R |ls|) ((|constructor| (NIL "A package for solving polynomial systems with finitely many solutions. The decompositions are given by means of regular triangular sets. The computations use lexicographical Groebner bases. The main operations are \\axiomOpFrom{lexTriangular}{LexTriangularPackage} and \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage}. The second one provide decompositions by means of square-free regular triangular sets. Both are based on the {\\em lexTriangular} method described in [1]. They differ from the algorithm described in [2] by the fact that multiciplities of the roots are not kept. With the \\axiomOpFrom{squareFreeLexTriangular}{LexTriangularPackage} operation all multiciplities are removed. With the other operation some multiciplities may remain. Both operations admit an optional argument to produce normalized triangular sets. \\newline")) (|zeroSetSplit| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{} norm?)} decomposes the variety associated with \\axiom{lp} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{lp} needs to generate a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|squareFreeLexTriangular| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#2|)) (|OrderedVariableList| |#2|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{squareFreeLexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into square-free regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|lexTriangular| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|)) "\\axiom{lexTriangular(base,{} norm?)} decomposes the variety associated with \\axiom{base} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{base} needs to be a lexicographical Groebner basis of a zero-dimensional ideal. If \\axiom{norm?} is \\axiom{\\spad{true}} then the regular sets are normalized.")) (|groebner| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{groebner(lp)} returns the lexicographical Groebner basis of \\axiom{lp}. If \\axiom{lp} generates a zero-dimensional ideal then the {\\em FGLM} strategy is used,{} otherwise the {\\em Sugar} strategy is used.")) (|fglmIfCan| (((|Union| (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "failed") (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{fglmIfCan(lp)} returns the lexicographical Groebner basis of \\axiom{lp} by using the {\\em FGLM} strategy,{} if \\axiom{zeroDimensional?(lp)} holds .")) (|zeroDimensional?| (((|Boolean|) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|)))) "\\axiom{zeroDimensional?(lp)} returns \\spad{true} iff \\axiom{lp} generates a zero-dimensional ideal \\spad{w}.\\spad{r}.\\spad{t}. the variables involved in \\axiom{lp}."))) NIL NIL -(-646 R -3495) +(-645 R -3494) ((|constructor| (NIL "This package provides liouvillian functions over an integral domain.")) (|integral| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{integral(f,x = a..b)} denotes the definite integral of \\spad{f} with respect to \\spad{x} from \\spad{a} to \\spad{b}.") ((|#2| |#2| (|Symbol|)) "\\spad{integral(f,x)} indefinite integral of \\spad{f} with respect to \\spad{x}.")) (|dilog| ((|#2| |#2|) "\\spad{dilog(f)} denotes the dilogarithm")) (|erf| ((|#2| |#2|) "\\spad{erf(f)} denotes the error function")) (|li| ((|#2| |#2|) "\\spad{li(f)} denotes the logarithmic integral")) (|Ci| ((|#2| |#2|) "\\spad{Ci(f)} denotes the cosine integral")) (|Si| ((|#2| |#2|) "\\spad{Si(f)} denotes the sine integral")) (|Ei| ((|#2| |#2|) "\\spad{Ei(f)} denotes the exponential integral")) (|operator| (((|BasicOperator|) (|BasicOperator|)) "\\spad{operator(op)} returns the Liouvillian operator based on \\spad{op}")) (|belong?| (((|Boolean|) (|BasicOperator|)) "\\spad{belong?(op)} checks if \\spad{op} is Liouvillian"))) NIL NIL -(-647) +(-646) ((|constructor| (NIL "Category for the transcendental Liouvillian functions.")) (|erf| (($ $) "\\spad{erf(x)} returns the error function of \\spad{x},{} \\spadignore{i.e.} \\spad{2 / sqrt(\\%pi)} times the integral of \\spad{exp(-x**2) dx}.")) (|dilog| (($ $) "\\spad{dilog(x)} returns the dilogarithm of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{log(x) / (1 - x) dx}.")) (|li| (($ $) "\\spad{li(x)} returns the logarithmic integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{dx / log(x)}.")) (|Ci| (($ $) "\\spad{Ci(x)} returns the cosine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{cos(x) / x dx}.")) (|Si| (($ $) "\\spad{Si(x)} returns the sine integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{sin(x) / x dx}.")) (|Ei| (($ $) "\\spad{Ei(x)} returns the exponential integral of \\spad{x},{} \\spadignore{i.e.} the integral of \\spad{exp(x)/x dx}."))) NIL NIL -(-648 |lv| -3495) +(-647 |lv| -3494) ((|constructor| (NIL "\\indented{1}{Given a Groebner basis \\spad{B} with respect to the total degree ordering for} a zero-dimensional ideal \\spad{I},{} compute a Groebner basis with respect to the lexicographical ordering by using linear algebra.")) (|transform| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{transform }\\undocumented")) (|choosemon| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{choosemon }\\undocumented")) (|intcompBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{intcompBasis }\\undocumented")) (|anticoord| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|List| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{anticoord }\\undocumented")) (|coord| (((|Vector| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{coord }\\undocumented")) (|computeBasis| (((|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{computeBasis }\\undocumented")) (|minPol| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented") (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) (|OrderedVariableList| |#1|)) "\\spad{minPol }\\undocumented")) (|totolex| (((|List| (|DistributedMultivariatePolynomial| |#1| |#2|)) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{totolex }\\undocumented")) (|groebgen| (((|Record| (|:| |glbase| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |glval| (|List| (|Integer|)))) (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{groebgen }\\undocumented")) (|linGenPos| (((|Record| (|:| |gblist| (|List| (|DistributedMultivariatePolynomial| |#1| |#2|))) (|:| |gvlist| (|List| (|Integer|)))) (|List| (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|))) "\\spad{linGenPos }\\undocumented"))) NIL NIL -(-649) +(-648) ((|constructor| (NIL "This domain provides a simple way to save values in files.")) (|setelt| (((|Any|) $ (|Symbol|) (|Any|)) "\\spad{lib.k := v} saves the value \\spad{v} in the library \\spad{lib}. It can later be extracted using the key \\spad{k}.")) (|pack!| (($ $) "\\spad{pack!(f)} reorganizes the file \\spad{f} on disk to recover unused space.")) (|library| (($ (|FileName|)) "\\spad{library(ln)} creates a new library file."))) -((-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (QUOTE (-1180))) (|%list| (QUOTE |:|) (QUOTE -2286) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1180) (QUOTE (-861))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (QUOTE (-1122)))) -(-650 R A) +((-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (QUOTE (-1179))) (|%list| (QUOTE |:|) (QUOTE -2285) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-1179) (QUOTE (-860))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (QUOTE (-1121)))) +(-649 R A) ((|constructor| (NIL "AssociatedLieAlgebra takes an algebra \\spad{A} and uses \\spadfun{*\\$A} to define the Lie bracket \\spad{a*b := (a *\\$A b - b *\\$A a)} (commutator). Note that the notation \\spad{[a,b]} cannot be used due to restrictions of the current compiler. This domain only gives a Lie algebra if the Jacobi-identity \\spad{(a*b)*c + (b*c)*a + (c*a)*b = 0} holds for all \\spad{a},{}\\spad{b},{}\\spad{c} in \\spad{A}. This relation can be checked by \\spad{lieAdmissible?()\\$A}. \\blankline If the underlying algebra is of type \\spadtype{FramedNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank,{} together with a fixed \\spad{R}-module basis),{} then the same is \\spad{true} for the associated Lie algebra. Also,{} if the underlying algebra is of type \\spadtype{FiniteRankNonAssociativeAlgebra(R)} (\\spadignore{i.e.} a non associative algebra over \\spad{R} which is a free \\spad{R}-module of finite rank),{} then the same is \\spad{true} for the associated Lie algebra.")) (|coerce| (($ |#2|) "\\spad{coerce(a)} coerces the element \\spad{a} of the algebra \\spad{A} to an element of the Lie algebra \\spadtype{AssociatedLieAlgebra}(\\spad{R},{}A)."))) -((-4422 -3957 (-2961 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4420 . T) (-4419 . T)) -((-3957 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) -(-651 S R) +((-4421 -3956 (-2960 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) (-4419 . T) (-4418 . T)) +((-3956 (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -430) (|devaluate| |#1|))))) (|HasCategory| |#2| (|%list| (QUOTE -380) (|devaluate| |#1|)))) +(-650 S R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#2|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-652 R) +(-651 R) ((|constructor| (NIL "\\axiom{JacobiIdentity} means that \\axiom{[\\spad{x},{}[\\spad{y},{}\\spad{z}]]+[\\spad{y},{}[\\spad{z},{}\\spad{x}]]+[\\spad{z},{}[\\spad{x},{}\\spad{y}]] = 0} holds.")) (/ (($ $ |#1|) "\\axiom{x/r} returns the division of \\axiom{\\spad{x}} by \\axiom{\\spad{r}}.")) (|construct| (($ $ $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket of \\axiom{\\spad{x}} and \\axiom{\\spad{y}}."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4419 . T) (-4418 . T)) NIL -(-653 R FE) +(-652 R FE) ((|constructor| (NIL "PowerSeriesLimitPackage implements limits of expressions in one or more variables as one of the variables approaches a limiting value. Included are two-sided limits,{} left- and right- hand limits,{} and limits at plus or minus infinity.")) (|complexLimit| (((|Union| (|OnePointCompletion| |#2|) "failed") |#2| (|Equation| (|OnePointCompletion| |#2|))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit \\spad{lim(x -> a,f(x))}.")) (|limit| (((|Union| (|OrderedCompletion| |#2|) #1="failed") |#2| (|Equation| |#2|) (|String|)) "\\spad{limit(f(x),x=a,\"left\")} computes the left hand real limit \\spad{lim(x -> a-,f(x))}; \\spad{limit(f(x),x=a,\"right\")} computes the right hand real limit \\spad{lim(x -> a+,f(x))}.") (((|Union| (|OrderedCompletion| |#2|) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| |#2|) #1#))) "failed") |#2| (|Equation| (|OrderedCompletion| |#2|))) "\\spad{limit(f(x),x = a)} computes the real limit \\spad{lim(x -> a,f(x))}."))) NIL NIL -(-654 R) +(-653 R) ((|constructor| (NIL "Computation of limits for rational functions.")) (|complexLimit| (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|OnePointCompletion| (|Fraction| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OnePointCompletion| (|Polynomial| |#1|)))) "\\spad{complexLimit(f(x),x = a)} computes the complex limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.")) (|limit| (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|String|)) "\\spad{limit(f(x),x,a,\"left\")} computes the real limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a} from the left; limit(\\spad{f}(\\spad{x}),{}\\spad{x},{}a,{}\"right\") computes the corresponding limit as \\spad{x} approaches \\spad{a} from the right.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2="failed") (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}.") (((|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) (|Record| (|:| |leftHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#)) (|:| |rightHandLimit| (|Union| (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|))) #1#))) #2#) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|OrderedCompletion| (|Polynomial| |#1|)))) "\\spad{limit(f(x),x = a)} computes the real two-sided limit of \\spad{f} as its argument \\spad{x} approaches \\spad{a}."))) NIL NIL -(-655 |vars|) +(-654 |vars|) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: July 2,{} 2010 Date Last Modified: July 2,{} 2010 Descrption: \\indented{2}{Representation of a vector space basis,{} given by symbols.}")) (|dual| (($ (|DualBasis| |#1|)) "\\spad{dual f} constructs the dual vector of a linear form which is part of a basis."))) NIL NIL -(-656 S R) +(-655 S R) ((|constructor| (NIL "Test for linear dependence.")) (|solveLinear| (((|Union| (|Vector| (|Fraction| |#1|)) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in the quotient field of \\spad{S}.") (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|) |#2|) "\\spad{solveLinear([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such \\spad{ci}'s exist in \\spad{S}.")) (|linearDependence| (((|Union| (|Vector| |#1|) "failed") (|Vector| |#2|)) "\\spad{linearDependence([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over \\spad{S}.")) (|linearlyDependent?| (((|Boolean|) (|Vector| |#2|)) "\\spad{linearlyDependent?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over \\spad{S},{} \\spad{false} otherwise."))) NIL -((-2959 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) -(-657 K B) +((-2958 (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-376)))) +(-656 K B) ((|constructor| (NIL "A simple data structure for elements that form a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear element with respect to the basis \\spad{B}.")) (|linearElement| (($ (|List| |#1|)) "\\spad{linearElement [x1,..,xn]} returns a linear element \\indented{1}{with coordinates \\spad{[x1,..,xn]} with respect to} the basis elements \\spad{B}."))) -((-4420 . T) (-4419 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-655 |#2|) (QUOTE (-1122))))) -(-658 R) +((-4419 . T) (-4418 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-654 |#2|) (QUOTE (-1121))))) +(-657 R) ((|constructor| (NIL "An extension of left-module with an explicit linear dependence test.")) (|reducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| $) (|Vector| $)) "\\spad{reducedSystem(A, v)} returns a matrix \\spad{B} and a vector \\spad{w} such that \\spad{A x = v} and \\spad{B x = w} have the same solutions in \\spad{R}.") (((|Matrix| |#1|) (|Matrix| $)) "\\spad{reducedSystem(A)} returns a matrix \\spad{B} such that \\spad{A x = 0} and \\spad{B x = 0} have the same solutions in \\spad{R}.")) (|leftReducedSystem| (((|Record| (|:| |mat| (|Matrix| |#1|)) (|:| |vec| (|Vector| |#1|))) (|Vector| $) $) "\\spad{reducedSystem([v1,...,vn],u)} returns a matrix \\spad{M} with coefficients in \\spad{R} and a vector \\spad{w} such that the system of equations \\spad{c1*v1 + ... + cn*vn = u} has the same solution as \\spad{c * M = w} where \\spad{c} is the row vector \\spad{[c1,...cn]}.") (((|Matrix| |#1|) (|Vector| $)) "\\spad{leftReducedSystem [v1,...,vn]} returns a matrix \\spad{M} with coefficients in \\spad{R} such that the system of equations \\spad{c1*v1 + ... + cn*vn = 0\\$\\%} has the same solution as \\spad{c * M = 0} where \\spad{c} is the row vector \\spad{[c1,...cn]}."))) NIL NIL -(-659 K B) +(-658 K B) ((|constructor| (NIL "A simple data structure for linear forms on a vector space of finite dimension over a given field,{} with a given symbolic basis.")) (|coordinates| (((|Vector| |#1|) $) "\\spad{coordinates x} returns the coordinates of the linear form with respect to the basis \\spad{DualBasis B}.")) (|linearForm| (($ (|List| |#1|)) "\\spad{linearForm [x1,..,xn]} constructs a linear form with coordinates \\spad{[x1,..,xn]} with respect to the basis elements \\spad{DualBasis B}."))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL -(-660 S) +(-659 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-linear set if it is stable by dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet,{} RightLinearSet."))) NIL NIL -(-661 S) +(-660 S) ((|constructor| (NIL "\\spadtype{List} implements singly-linked lists that are addressable by indices; the index of the first element is 1. In addition to the operations provided by \\spadtype{IndexedList},{} this constructor provides some LISP-like functions such as \\spadfun{null} and \\spadfun{cons}.")) (|setDifference| (($ $ $) "\\spad{setDifference(u1,u2)} returns a list of the elements of \\spad{u1} that are not also in \\spad{u2}. The order of elements in the resulting list is unspecified.")) (|setIntersection| (($ $ $) "\\spad{setIntersection(u1,u2)} returns a list of the elements that lists \\spad{u1} and \\spad{u2} have in common. The order of elements in the resulting list is unspecified.")) (|setUnion| (($ $ $) "\\spad{setUnion(u1,u2)} appends the two lists \\spad{u1} and \\spad{u2},{} then removes all duplicates. The order of elements in the resulting list is unspecified.")) (|append| (($ $ $) "\\spad{append(u1,u2)} appends the elements of list \\spad{u1} onto the front of list \\spad{u2}. This new list and \\spad{u2} will share some structure.")) (|cons| (($ |#1| $) "\\spad{cons(element,u)} appends \\spad{element} onto the front of list \\spad{u} and returns the new list. This new list and the old one will share some structure.")) (|null| (((|Boolean|) $) "\\spad{null(u)} tests if list \\spad{u} is the empty list.")) (|nil| (($) "\\spad{nil} is the empty list."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-662 A B) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-661 A B) ((|constructor| (NIL "\\spadtype{ListFunctions2} implements utility functions that operate on two kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|List| |#1|)) "\\spad{map(fn,u)} applies \\spad{fn} to each element of list \\spad{u} and returns a new list with the results. For example \\spad{map(square,[1,2,3]) = [1,4,9]}.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{reduce(fn,u,ident)} successively uses the binary function \\spad{fn} on the elements of list \\spad{u} and the result of previous applications. \\spad{ident} is returned if the \\spad{u} is empty. Note the order of application in the following examples: \\spad{reduce(fn,[1,2,3],0) = fn(3,fn(2,fn(1,0)))} and \\spad{reduce(*,[2,3],1) = 3 * (2 * 1)}.")) (|scan| (((|List| |#2|) (|Mapping| |#2| |#1| |#2|) (|List| |#1|) |#2|) "\\spad{scan(fn,u,ident)} successively uses the binary function \\spad{fn} to reduce more and more of list \\spad{u}. \\spad{ident} is returned if the \\spad{u} is empty. The result is a list of the reductions at each step. See \\spadfun{reduce} for more information. Examples: \\spad{scan(fn,[1,2],0) = [fn(2,fn(1,0)),fn(1,0)]} and \\spad{scan(*,[2,3],1) = [2 * 1, 3 * (2 * 1)]}."))) NIL NIL -(-663 A B) +(-662 A B) ((|constructor| (NIL "\\spadtype{ListToMap} allows mappings to be described by a pair of lists of equal lengths. The image of an element \\spad{x},{} which appears in position \\spad{n} in the first list,{} is then the \\spad{n}th element of the second list. A default value or default function can be specified to be used when \\spad{x} does not appear in the first list. In the absence of defaults,{} an error will occur in that case.")) (|match| ((|#2| (|List| |#1|) (|List| |#2|) |#1| (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, a, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is a default function to call if a is not in \\spad{la}. The value returned is then obtained by applying \\spad{f} to argument a.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) (|Mapping| |#2| |#1|)) "\\spad{match(la, lb, f)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{f} is used as the function to call when the given function argument is not in \\spad{la}. The value returned is \\spad{f} applied to that argument.") ((|#2| (|List| |#1|) (|List| |#2|) |#1| |#2|) "\\spad{match(la, lb, a, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length. and applies this map to a. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Argument \\spad{b} is the default target value if a is not in \\spad{la}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|) |#2|) "\\spad{match(la, lb, b)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{b} is used as the default target value if the given function argument is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") ((|#2| (|List| |#1|) (|List| |#2|) |#1|) "\\spad{match(la, lb, a)} creates a map defined by lists \\spad{la} and \\spad{lb} of equal length,{} where \\spad{a} is used as the default source value if the given one is not in \\spad{la}. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index \\spad{lb}. Error: if \\spad{la} and \\spad{lb} are not of equal length.") (((|Mapping| |#2| |#1|) (|List| |#1|) (|List| |#2|)) "\\spad{match(la, lb)} creates a map with no default source or target values defined by lists \\spad{la} and lb of equal length. The target of a source value \\spad{x} in \\spad{la} is the value \\spad{y} with the same index lb. Error: if \\spad{la} and lb are not of equal length. Note: when this map is applied,{} an error occurs when applied to a value missing from \\spad{la}."))) NIL NIL -(-664 A B C) +(-663 A B C) ((|constructor| (NIL "\\spadtype{ListFunctions3} implements utility functions that operate on three kinds of lists,{} each with a possibly different type of element.")) (|map| (((|List| |#3|) (|Mapping| |#3| |#1| |#2|) (|List| |#1|) (|List| |#2|)) "\\spad{map(fn,list1, u2)} applies the binary function \\spad{fn} to corresponding elements of lists \\spad{u1} and \\spad{u2} and returns a list of the results (in the same order). Thus \\spad{map(/,[1,2,3],[4,5,6]) = [1/4,2/4,1/2]}. The computation terminates when the end of either list is reached. That is,{} the length of the result list is equal to the minimum of the lengths of \\spad{u1} and \\spad{u2}."))) NIL NIL -(-665 T$) +(-664 T$) ((|constructor| (NIL "This domain represents AST for Spad literals."))) NIL NIL -(-666 S) +(-665 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-left linear set if it is stable by left-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: RightLinearSet.")) (* (($ |#1| $) "\\spad{s*x} is the left-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-667 S) +(-666 S) ((|substitute| (($ |#1| |#1| $) "\\spad{substitute(x,y,d)} replace \\spad{x}'s with \\spad{y}'s in dictionary \\spad{d}.")) (|duplicates?| (((|Boolean|) $) "\\spad{duplicates?(d)} tests if dictionary \\spad{d} has duplicate entries."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-668 R) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-667 R) ((|constructor| (NIL "The category of left modules over an rng (ring not necessarily with unit). This is an abelian group which supports left multiplation by elements of the rng. \\blankline"))) NIL NIL -(-669 S E |un|) +(-668 S E |un|) ((|constructor| (NIL "This internal package represents monoid (abelian or not,{} with or without inverses) as lists and provides some common operations to the various flavors of monoids.")) (|mapGen| (($ (|Mapping| |#1| |#1|) $) "\\spad{mapGen(f, a1\\^e1 ... an\\^en)} returns \\spad{f(a1)\\^e1 ... f(an)\\^en}.")) (|mapExpon| (($ (|Mapping| |#2| |#2|) $) "\\spad{mapExpon(f, a1\\^e1 ... an\\^en)} returns \\spad{a1\\^f(e1) ... an\\^f(en)}.")) (|commutativeEquality| (((|Boolean|) $ $) "\\spad{commutativeEquality(x,y)} returns \\spad{true} if \\spad{x} and \\spad{y} are equal assuming commutativity")) (|plus| (($ $ $) "\\spad{plus(x, y)} returns \\spad{x + y} where \\spad{+} is the monoid operation,{} which is assumed commutative.") (($ |#1| |#2| $) "\\spad{plus(s, e, x)} returns \\spad{e * s + x} where \\spad{+} is the monoid operation,{} which is assumed commutative.")) (|leftMult| (($ |#1| $) "\\spad{leftMult(s, a)} returns \\spad{s * a} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|rightMult| (($ $ |#1|) "\\spad{rightMult(a, s)} returns \\spad{a * s} where \\spad{*} is the monoid operation,{} which is assumed non-commutative.")) (|makeUnit| (($) "\\spad{makeUnit()} returns the unit element of the monomial.")) (|size| (((|NonNegativeInteger|) $) "\\spad{size(l)} returns the number of monomials forming \\spad{l}.")) (|reverse!| (($ $) "\\spad{reverse!(l)} reverses the list of monomials forming \\spad{l},{} destroying the element \\spad{l}.")) (|reverse| (($ $) "\\spad{reverse(l)} reverses the list of monomials forming \\spad{l}. This has some effect if the monoid is non-abelian,{} \\spadignore{i.e.} \\spad{reverse(a1\\^e1 ... an\\^en) = an\\^en ... a1\\^e1} which is different.")) (|nthFactor| ((|#1| $ (|Integer|)) "\\spad{nthFactor(l, n)} returns the factor of the n^th monomial of \\spad{l}.")) (|nthExpon| ((|#2| $ (|Integer|)) "\\spad{nthExpon(l, n)} returns the exponent of the n^th monomial of \\spad{l}.")) (|makeMulti| (($ (|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|)))) "\\spad{makeMulti(l)} returns the element whose list of monomials is \\spad{l}.")) (|makeTerm| (($ |#1| |#2|) "\\spad{makeTerm(s, e)} returns the monomial \\spad{s} exponentiated by \\spad{e} (\\spadignore{e.g.} s^e or \\spad{e} * \\spad{s}).")) (|listOfMonoms| (((|List| (|Record| (|:| |gen| |#1|) (|:| |exp| |#2|))) $) "\\spad{listOfMonoms(l)} returns the list of the monomials forming \\spad{l}.")) (|outputForm| (((|OutputForm|) $ (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Mapping| (|OutputForm|) (|OutputForm|) (|OutputForm|)) (|Integer|)) "\\spad{outputForm(l, fop, fexp, unit)} converts the monoid element represented by \\spad{l} to an \\spadtype{OutputForm}. Argument unit is the output form for the \\spadignore{unit} of the monoid (\\spadignore{e.g.} 0 or 1),{} \\spad{fop(a, b)} is the output form for the monoid operation applied to \\spad{a} and \\spad{b} (\\spadignore{e.g.} \\spad{a + b},{} \\spad{a * b},{} \\spad{ab}),{} and \\spad{fexp(a, n)} is the output form for the exponentiation operation applied to \\spad{a} and \\spad{n} (\\spadignore{e.g.} \\spad{n a},{} \\spad{n * a},{} \\spad{a ** n},{} \\spad{a\\^n})."))) NIL NIL -(-670 A S) +(-669 A S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#2| $ (|UniversalSegment| (|Integer|)) |#2|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#2| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#2| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#2|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#2|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) -(-671 S) +((|HasAttribute| |#1| (QUOTE -4425))) +(-670 S) ((|constructor| (NIL "A linear aggregate is an aggregate whose elements are indexed by integers. Examples of linear aggregates are strings,{} lists,{} and arrays. Most of the exported operations for linear aggregates are non-destructive but are not always efficient for a particular aggregate. For example,{} \\spadfun{concat} of two lists needs only to copy its first argument,{} whereas \\spadfun{concat} of two arrays needs to copy both arguments. Most of the operations exported here apply to infinite objects (\\spadignore{e.g.} streams) as well to finite ones. For finite linear aggregates,{} see \\spadtype{FiniteLinearAggregate}.")) (|setelt| ((|#1| $ (|UniversalSegment| (|Integer|)) |#1|) "\\spad{setelt(u,i..j,x)} (also written: \\axiom{\\spad{u}(\\spad{i}..\\spad{j}) := \\spad{x}}) destructively replaces each element in the segment \\axiom{\\spad{u}(\\spad{i}..\\spad{j})} by \\spad{x}. The value \\spad{x} is returned. Note: \\spad{u} is destructively change so that \\axiom{\\spad{u}.\\spad{k} := \\spad{x} for \\spad{k} in \\spad{i}..\\spad{j}}; its length remains unchanged.")) (|insert| (($ $ $ (|Integer|)) "\\spad{insert(v,u,k)} returns a copy of \\spad{u} having \\spad{v} inserted beginning at the \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{v},{}\\spad{u},{}\\spad{k}) = concat( \\spad{u}(0..\\spad{k}-1),{} \\spad{v},{} \\spad{u}(\\spad{k}..) )}.") (($ |#1| $ (|Integer|)) "\\spad{insert(x,u,i)} returns a copy of \\spad{u} having \\spad{x} as its \\axiom{\\spad{i}}th element. Note: \\axiom{insert(\\spad{x},{}a,{}\\spad{k}) = concat(concat(a(0..\\spad{k}-1),{}\\spad{x}),{}a(\\spad{k}..))}.")) (|delete| (($ $ (|UniversalSegment| (|Integer|))) "\\spad{delete(u,i..j)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th through \\axiom{\\spad{j}}th element deleted. Note: \\axiom{delete(a,{}\\spad{i}..\\spad{j}) = concat(a(0..\\spad{i}-1),{}a(\\spad{j+1}..))}.") (($ $ (|Integer|)) "\\spad{delete(u,i)} returns a copy of \\spad{u} with the \\axiom{\\spad{i}}th element deleted. Note: for lists,{} \\axiom{delete(a,{}\\spad{i}) == concat(a(0..\\spad{i} - 1),{}a(\\spad{i} + 1,{}..))}.")) (|map| (($ (|Mapping| |#1| |#1| |#1|) $ $) "\\spad{map(f,u,v)} returns a new collection \\spad{w} with elements \\axiom{\\spad{z} = \\spad{f}(\\spad{x},{}\\spad{y})} for corresponding elements \\spad{x} and \\spad{y} from \\spad{u} and \\spad{v}. Note: for linear aggregates,{} \\axiom{\\spad{w}.\\spad{i} = \\spad{f}(\\spad{u}.\\spad{i},{}\\spad{v}.\\spad{i})}.")) (|concat| (($ (|List| $)) "\\spad{concat(u)},{} where \\spad{u} is a lists of aggregates \\axiom{[a,{}\\spad{b},{}...,{}\\spad{c}]},{} returns a single aggregate consisting of the elements of \\axiom{a} followed by those of \\spad{b} followed ... by the elements of \\spad{c}. Note: \\axiom{concat(a,{}\\spad{b},{}...,{}\\spad{c}) = concat(a,{}concat(\\spad{b},{}...,{}\\spad{c}))}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} then \\axiom{\\spad{w}.\\spad{i} = \\spad{u}.\\spad{i} for \\spad{i} in indices \\spad{u}} and \\axiom{\\spad{w}.(\\spad{j} + maxIndex \\spad{u}) = \\spad{v}.\\spad{j} for \\spad{j} in indices \\spad{v}}.") (($ |#1| $) "\\spad{concat(x,u)} returns aggregate \\spad{u} with additional element at the front. Note: for lists: \\axiom{concat(\\spad{x},{}\\spad{u}) == concat([\\spad{x}],{}\\spad{u})}.") (($ $ |#1|) "\\spad{concat(u,x)} returns aggregate \\spad{u} with additional element \\spad{x} at the end. Note: for lists,{} \\axiom{concat(\\spad{u},{}\\spad{x}) == concat(\\spad{u},{}[\\spad{x}])}")) (|new| (($ (|NonNegativeInteger|) |#1|) "\\spad{new(n,x)} returns \\axiom{fill!(new \\spad{n},{}\\spad{x})}."))) NIL NIL -(-672 M R S) +(-671 M R S) ((|constructor| (NIL "Localize(\\spad{M},{}\\spad{R},{}\\spad{S}) produces fractions with numerators from an \\spad{R} module \\spad{M} and denominators from some multiplicative subset \\spad{D} of \\spad{R}.")) (|denom| ((|#3| $) "\\spad{denom x} returns the denominator of \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer x} returns the numerator of \\spad{x}.")) (/ (($ |#1| |#3|) "\\spad{m / d} divides the element \\spad{m} by \\spad{d}.") (($ $ |#3|) "\\spad{x / d} divides the element \\spad{x} by \\spad{d}."))) -((-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-812)))) -(-673 R -3495 L) +((-4419 . T) (-4418 . T)) +((|HasCategory| |#1| (QUOTE (-811)))) +(-672 R -3494 L) ((|constructor| (NIL "\\spad{ElementaryFunctionLODESolver} provides the top-level functions for finding closed form solutions of linear ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| "failed") |#3| |#2| (|Symbol|) |#2| (|List| |#2|)) "\\spad{solve(op, g, x, a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{op y = g, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) "failed") |#3| |#2| (|Symbol|)) "\\spad{solve(op, g, x)} returns either a solution of the ordinary differential equation \\spad{op y = g} or \"failed\" if no non-trivial solution can be found; When found,{} the solution is returned in the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{op y = 0}. A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; \\spad{x} is the dependent variable."))) NIL NIL -(-674 A -2888) +(-673 A -2887) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator} defines a ring of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-675 A) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-674 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator1} defines a ring of differential operators with coefficients in a differential ring A. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-676 A M) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-675 A M) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperator2} defines a ring of differential operators with coefficients in a differential ring A and acting on an A-module \\spad{M}. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|differentiate| (($ $) "\\spad{differentiate(x)} returns the derivative of \\spad{x}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-677 S A) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-676 S A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-678 A) +(-677 A) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorCategory} is the category of differential operators with coefficients in a ring A with a given derivation. Multiplication of operators corresponds to functional composition: \\indented{4}{\\spad{(L1 * L2).(f) = L1 L2 f}}")) (|directSum| (($ $ $) "\\spad{directSum(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}.")) (|symmetricSquare| (($ $) "\\spad{symmetricSquare(a)} computes \\spad{symmetricProduct(a,a)} using a more efficient method.")) (|symmetricPower| (($ $ (|NonNegativeInteger|)) "\\spad{symmetricPower(a,n)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}.")) (|symmetricProduct| (($ $ $) "\\spad{symmetricProduct(a,b)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}.")) (|adjoint| (($ $) "\\spad{adjoint(a)} returns the adjoint operator of a.")) (D (($) "\\spad{D()} provides the operator corresponding to a derivation in the ring \\spad{A}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-679 -3495 UP) +(-678 -3494 UP) ((|constructor| (NIL "\\spadtype{LinearOrdinaryDifferentialOperatorFactorizer} provides a factorizer for linear ordinary differential operators whose coefficients are rational functions.")) (|factor1| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor1(a)} returns the factorisation of a,{} assuming that a has no first-order right factor.")) (|factor| (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{factor(a)} returns the factorisation of a.") (((|List| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{factor(a, zeros)} returns the factorisation of a. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-680 A L) +(-679 A L) ((|constructor| (NIL "\\spad{LinearOrdinaryDifferentialOperatorsOps} provides symmetric products and sums for linear ordinary differential operators.")) (|directSum| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{directSum(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the sums of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use.")) (|symmetricPower| ((|#2| |#2| (|NonNegativeInteger|) (|Mapping| |#1| |#1|)) "\\spad{symmetricPower(a,n,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of \\spad{n} solutions of \\spad{a}. \\spad{D} is the derivation to use.")) (|symmetricProduct| ((|#2| |#2| |#2| (|Mapping| |#1| |#1|)) "\\spad{symmetricProduct(a,b,D)} computes an operator \\spad{c} of minimal order such that the nullspace of \\spad{c} is generated by all the products of a solution of \\spad{a} by a solution of \\spad{b}. \\spad{D} is the derivation to use."))) NIL NIL -(-681 S) +(-680 S) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-682) +(-681) ((|constructor| (NIL "`Logic' provides the basic operations for lattices,{} \\spadignore{e.g.} boolean algebra.")) (|\\/| (($ $ $) "\\spadignore{ \\/ } returns the logical `join',{} \\spadignore{e.g.} `or'.")) (|/\\| (($ $ $) "\\spadignore { /\\ }returns the logical `meet',{} \\spadignore{e.g.} `and'.")) (~ (($ $) "\\spad{~(x)} returns the logical complement of \\spad{x}."))) NIL NIL -(-683 R) +(-682 R) ((|constructor| (NIL "Given a PolynomialFactorizationExplicit ring,{} this package provides a defaulting rule for the \\spad{solveLinearPolynomialEquation} operation,{} by moving into the field of fractions,{} and solving it there via the \\spad{multiEuclidean} operation.")) (|solveLinearPolynomialEquationByFractions| (((|Union| (|List| (|SparseUnivariatePolynomial| |#1|)) "failed") (|List| (|SparseUnivariatePolynomial| |#1|)) (|SparseUnivariatePolynomial| |#1|)) "\\spad{solveLinearPolynomialEquationByFractions([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such exists."))) NIL NIL -(-684 |VarSet| R) +(-683 |VarSet| R) ((|constructor| (NIL "This type supports Lie polynomials in Lyndon basis see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|construct| (($ $ (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) $) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.") (($ (|LyndonWord| |#1|) (|LyndonWord| |#1|)) "\\axiom{construct(\\spad{x},{}\\spad{y})} returns the Lie bracket \\axiom{[\\spad{x},{}\\spad{y}]}.")) (|LiePolyIfCan| (((|Union| $ "failed") (|XDistributedPolynomial| |#1| |#2|)) "\\axiom{LiePolyIfCan(\\spad{p})} returns \\axiom{\\spad{p}} in Lyndon basis if \\axiom{\\spad{p}} is a Lie polynomial,{} otherwise \\axiom{\"failed\"} is returned."))) -((|JacobiIdentity| . T) (|NullSquare| . T) (-4420 . T) (-4419 . T)) +((|JacobiIdentity| . T) (|NullSquare| . T) (-4419 . T) (-4418 . T)) ((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-175)))) -(-685 A S) +(-684 A S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#2|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) NIL NIL -(-686 S) +(-685 S) ((|constructor| (NIL "A list aggregate is a model for a linked list data structure. A linked list is a versatile data structure. Insertion and deletion are efficient and searching is a linear operation.")) (|list| (($ |#1|) "\\spad{list(x)} returns the list of one element \\spad{x}."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-687 -3495 |Row| |Col| M) +(-686 -3494 |Row| |Col| M) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}.")) (|rank| (((|NonNegativeInteger|) |#4| |#3|) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) |#4| |#3|) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| |#3| #1="failed") |#4| |#3|) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|)))) |#4| (|List| |#3|)) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| |#3| #1#)) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-688 -3495) +(-687 -3494) ((|constructor| (NIL "This package solves linear system in the matrix form \\spad{AX = B}. It is essentially a particular instantiation of the package \\spadtype{LinearSystemMatrixPackage} for Matrix and Vector. This package's existence makes it easier to use \\spadfun{solve} in the AXIOM interpreter.")) (|rank| (((|NonNegativeInteger|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{rank(A,B)} computes the rank of the complete matrix \\spad{(A|B)} of the linear system \\spad{AX = B}.")) (|hasSolution?| (((|Boolean|) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{hasSolution?(A,B)} tests if the linear system \\spad{AX = B} has a solution.")) (|particularSolution| (((|Union| (|Vector| |#1|) #1="failed") (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{particularSolution(A,B)} finds a particular solution of the linear system \\spad{AX = B}.")) (|solve| (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|List| (|List| |#1|)) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|List| (|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|))))) (|Matrix| |#1|) (|List| (|Vector| |#1|))) "\\spad{solve(A,LB)} finds a particular soln of the systems \\spad{AX = B} and a basis of the associated homogeneous systems \\spad{AX = 0} where \\spad{B} varies in the list of column vectors \\spad{LB}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|List| (|List| |#1|)) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}.") (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) #1#)) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{solve(A,B)} finds a particular solution of the system \\spad{AX = B} and a basis of the associated homogeneous system \\spad{AX = 0}."))) NIL NIL -(-689 R E OV P) +(-688 R E OV P) ((|constructor| (NIL "this package finds the solutions of linear systems presented as a list of polynomials.")) (|linSolve| (((|Record| (|:| |particular| (|Union| (|Vector| (|Fraction| |#4|)) "failed")) (|:| |basis| (|List| (|Vector| (|Fraction| |#4|))))) (|List| |#4|) (|List| |#3|)) "\\spad{linSolve(lp,lvar)} finds the solutions of the linear system of polynomials \\spad{lp} = 0 with respect to the list of symbols \\spad{lvar}."))) NIL NIL -(-690 |n| R) +(-689 |n| R) ((|constructor| (NIL "LieSquareMatrix(\\spad{n},{}\\spad{R}) implements the Lie algebra of the \\spad{n} by \\spad{n} matrices over the commutative ring \\spad{R}. The Lie bracket (commutator) of the algebra is given by \\spad{a*b := (a *\\$SQMATRIX(n,R) b - b *\\$SQMATRIX(n,R) a)},{} where \\spadfun{*\\$SQMATRIX(\\spad{n},{}\\spad{R})} is the usual matrix multiplication."))) -((-4422 . T) (-4425 . T) (-4419 . T) (-4420 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4427 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))) (-3957 (|HasAttribute| |#2| (QUOTE (-4427 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) -(-691) +((-4421 . T) (-4424 . T) (-4418 . T) (-4419 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4426 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569))) (-3956 (|HasAttribute| |#2| (QUOTE (-4426 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +(-690) ((|constructor| (NIL "This domain represents `literal sequence' syntax.")) (|elements| (((|List| (|SpadAst|)) $) "\\spad{elements(e)} returns the list of expressions in the `literal' list `e'."))) NIL NIL -(-692 |VarSet|) +(-691 |VarSet|) ((|constructor| (NIL "Lyndon words over arbitrary (ordered) symbols: see Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). A Lyndon word is a word which is smaller than any of its right factors \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering. If \\axiom{a} and \\axiom{\\spad{b}} are two Lyndon words such that \\axiom{a < \\spad{b}} holds \\spad{w}.\\spad{r}.\\spad{t} lexicographical ordering then \\axiom{a*b} is a Lyndon word. Parenthesized Lyndon words can be generated from symbols by using the following rule: \\axiom{[[a,{}\\spad{b}],{}\\spad{c}]} is a Lyndon word iff \\axiom{a*b < \\spad{c} <= \\spad{b}} holds. Lyndon words are internally represented by binary trees using the \\spadtype{Magma} domain constructor. Two ordering are provided: lexicographic and length-lexicographic. \\newline Author : Michel Petitot (petitot@lifl.fr).")) (|LyndonWordsList| (((|List| $) (|List| |#1|) (|PositiveInteger|)) "\\axiom{LyndonWordsList(vl,{} \\spad{n})} returns the list of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|LyndonWordsList1| (((|OneDimensionalArray| (|List| $)) (|List| |#1|) (|PositiveInteger|)) "\\axiom{\\spad{LyndonWordsList1}(vl,{} \\spad{n})} returns an array of lists of Lyndon words over the alphabet \\axiom{vl},{} up to order \\axiom{\\spad{n}}.")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|lyndonIfCan| (((|Union| $ "failed") (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndonIfCan(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word.")) (|lyndon| (($ (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon(\\spad{w})} convert \\axiom{\\spad{w}} into a Lyndon word,{} error if \\axiom{\\spad{w}} is not a Lyndon word.")) (|lyndon?| (((|Boolean|) (|OrderedFreeMonoid| |#1|)) "\\axiom{lyndon?(\\spad{w})} test if \\axiom{\\spad{w}} is a Lyndon word.")) (|factor| (((|List| $) (|OrderedFreeMonoid| |#1|)) "\\axiom{factor(\\spad{x})} returns the decreasing factorization into Lyndon words.")) (|coerce| (((|Magma| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{Magma}(VarSet) corresponding to \\axiom{\\spad{x}}.") (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{LyndonWord}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry."))) NIL NIL -(-693 A S) +(-692 A S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#2| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#2|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-694 S) +(-693 S) ((|constructor| (NIL "LazyStreamAggregate is the category of streams with lazy evaluation. It is understood that the function 'empty?' will cause lazy evaluation if necessary to determine if there are entries. Functions which call 'empty?',{} \\spadignore{e.g.} 'first' and 'rest',{} will also cause lazy evaluation if necessary.")) (|complete| (($ $) "\\spad{complete(st)} causes all entries of 'st' to be computed. this function should only be called on streams which are known to be finite.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(st,n)} causes entries to be computed,{} if necessary,{} so that 'st' will have at least 'n' explicit entries or so that all entries of 'st' will be computed if 'st' is finite with length <= \\spad{n}.")) (|numberOfComputedEntries| (((|NonNegativeInteger|) $) "\\spad{numberOfComputedEntries(st)} returns the number of explicitly computed entries of stream \\spad{st} which exist immediately prior to the time this function is called.")) (|rst| (($ $) "\\spad{rst(s)} returns a pointer to the next node of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|frst| ((|#1| $) "\\spad{frst(s)} returns the first element of stream \\spad{s}. Caution: this function should only be called after a \\spad{empty?} test has been made since there no error check.")) (|lazyEvaluate| (($ $) "\\spad{lazyEvaluate(s)} causes one lazy evaluation of stream \\spad{s}. Caution: the first node must be a lazy evaluation mechanism (satisfies \\spad{lazy?(s) = true}) as there is no error check. Note: a call to this function may or may not produce an explicit first entry")) (|lazy?| (((|Boolean|) $) "\\spad{lazy?(s)} returns \\spad{true} if the first node of the stream \\spad{s} is a lazy evaluation mechanism which could produce an additional entry to \\spad{s}.")) (|explicitlyEmpty?| (((|Boolean|) $) "\\spad{explicitlyEmpty?(s)} returns \\spad{true} if the stream is an (explicitly) empty stream. Note: this is a null test which will not cause lazy evaluation.")) (|explicitEntries?| (((|Boolean|) $) "\\spad{explicitEntries?(s)} returns \\spad{true} if the stream \\spad{s} has explicitly computed entries,{} and \\spad{false} otherwise.")) (|select| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{select(f,st)} returns a stream consisting of those elements of stream \\spad{st} satisfying the predicate \\spad{f}. Note: \\spad{select(f,st) = [x for x in st | f(x)]}.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{remove(f,st)} returns a stream consisting of those elements of stream \\spad{st} which do not satisfy the predicate \\spad{f}. Note: \\spad{remove(f,st) = [x for x in st | not f(x)]}."))) NIL NIL -(-695 R) +(-694 R) ((|constructor| (NIL "This domain represents three dimensional matrices over a general object type")) (|matrixDimensions| (((|Vector| (|NonNegativeInteger|)) $) "\\spad{matrixDimensions(x)} returns the dimensions of a matrix")) (|matrixConcat3D| (($ (|Symbol|) $ $) "\\spad{matrixConcat3D(s,x,y)} concatenates two 3-\\spad{D} matrices along a specified axis")) (|coerce| (((|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|))) $) "\\spad{coerce(x)} moves from the domain to the representation type") (($ (|PrimitiveArray| (|PrimitiveArray| (|PrimitiveArray| |#1|)))) "\\spad{coerce(p)} moves from the representation type (PrimitiveArray PrimitiveArray PrimitiveArray \\spad{R}) to the domain")) (|setelt!| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{setelt!(x,i,j,k,s)} (or \\spad{x}.\\spad{i}.\\spad{j}.k:=s) sets a specific element of the array to some value of type \\spad{R}")) (|elt| ((|#1| $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{elt(x,i,j,k)} extract an element from the matrix \\spad{x}")) (|construct| (($ (|List| (|List| (|List| |#1|)))) "\\spad{construct(lll)} creates a 3-\\spad{D} matrix from a List List List \\spad{R} \\spad{lll}")) (|plus| (($ $ $) "\\spad{plus(x,y)} adds two matrices,{} term by term we note that they must be the same size")) (|identityMatrix| (($ (|NonNegativeInteger|)) "\\spad{identityMatrix(n)} create an identity matrix we note that this must be square")) (|zeroMatrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zeroMatrix(i,j,k)} create a matrix with all zero terms"))) NIL -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-696) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-695) ((|constructor| (NIL "This domain represents the syntax of a macro definition.")) (|body| (((|SpadAst|) $) "\\spad{body(m)} returns the right hand side of the definition `m'.")) (|head| (((|HeadAst|) $) "\\spad{head(m)} returns the head of the macro definition `m'. This is a list of identifiers starting with the name of the macro followed by the name of the parameters,{} if any."))) NIL NIL -(-697 |VarSet|) +(-696 |VarSet|) ((|constructor| (NIL "This type is the basic representation of parenthesized words (binary trees over arbitrary symbols) useful in \\spadtype{LiePolynomial}. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\axiom{varList(\\spad{x})} returns the list of distinct entries of \\axiom{\\spad{x}}.")) (|right| (($ $) "\\axiom{right(\\spad{x})} returns right subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|retractable?| (((|Boolean|) $) "\\axiom{retractable?(\\spad{x})} tests if \\axiom{\\spad{x}} is a tree with only one entry.")) (|rest| (($ $) "\\axiom{rest(\\spad{x})} return \\axiom{\\spad{x}} without the first entry or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|mirror| (($ $) "\\axiom{mirror(\\spad{x})} returns the reversed word of \\axiom{\\spad{x}}. That is \\axiom{\\spad{x}} itself if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true} and \\axiom{mirror(\\spad{z}) * mirror(\\spad{y})} if \\axiom{\\spad{x}} is \\axiom{y*z}.")) (|lexico| (((|Boolean|) $ $) "\\axiom{lexico(\\spad{x},{}\\spad{y})} returns \\axiom{\\spad{true}} iff \\axiom{\\spad{x}} is smaller than \\axiom{\\spad{y}} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\axiom{VarSet}. \\spad{N}.\\spad{B}. This operation does not take into account the tree structure of its arguments. Thus this is not a total ordering.")) (|length| (((|PositiveInteger|) $) "\\axiom{length(\\spad{x})} returns the number of entries in \\axiom{\\spad{x}}.")) (|left| (($ $) "\\axiom{left(\\spad{x})} returns left subtree of \\axiom{\\spad{x}} or error if \\axiomOpFrom{retractable?}{Magma}(\\axiom{\\spad{x}}) is \\spad{true}.")) (|first| ((|#1| $) "\\axiom{first(\\spad{x})} returns the first entry of the tree \\axiom{\\spad{x}}.")) (|coerce| (((|OrderedFreeMonoid| |#1|) $) "\\axiom{coerce(\\spad{x})} returns the element of \\axiomType{OrderedFreeMonoid}(VarSet) corresponding to \\axiom{\\spad{x}} by removing parentheses.")) (* (($ $ $) "\\axiom{x*y} returns the tree \\axiom{[\\spad{x},{}\\spad{y}]}."))) NIL NIL -(-698 A) +(-697 A) ((|constructor| (NIL "various Currying operations.")) (|recur| ((|#1| (|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|NonNegativeInteger|) |#1|) "\\spad{recur(n,g,x)} is \\spad{g(n,g(n-1,..g(1,x)..))}.")) (|iter| ((|#1| (|Mapping| |#1| |#1|) (|NonNegativeInteger|) |#1|) "\\spad{iter(f,n,x)} applies \\spad{f n} times to \\spad{x}."))) NIL NIL -(-699 A C) +(-698 A C) ((|constructor| (NIL "various Currying operations.")) (|arg2| ((|#2| |#1| |#2|) "\\spad{arg2(a,c)} selects its second argument.")) (|arg1| ((|#1| |#1| |#2|) "\\spad{arg1(a,c)} selects its first argument."))) NIL NIL -(-700 A B C) +(-699 A B C) ((|constructor| (NIL "various Currying operations.")) (|comp| ((|#3| (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{comp(f,g,x)} is \\spad{f(g x)}."))) NIL NIL -(-701) +(-700) ((|constructor| (NIL "This domain represents a mapping type AST. A mapping AST \\indented{2}{is a syntactic description of a function type,{} \\spadignore{e.g.} its result} \\indented{2}{type and the list of its argument types.}")) (|target| (((|TypeAst|) $) "\\spad{target(s)} returns the result type AST for `s'.")) (|source| (((|List| (|TypeAst|)) $) "\\spad{source(s)} returns the parameter type AST list of `s'.")) (|mappingAst| (($ (|List| (|TypeAst|)) (|TypeAst|)) "\\spad{mappingAst(s,t)} builds the mapping AST \\spad{s} -> \\spad{t}")) (|coerce| (($ (|Signature|)) "sig::MappingAst builds a MappingAst from the Signature `sig'."))) NIL NIL -(-702 A) +(-701 A) ((|constructor| (NIL "various Currying operations.")) (|recur| (((|Mapping| |#1| (|NonNegativeInteger|) |#1|) (|Mapping| |#1| (|NonNegativeInteger|) |#1|)) "\\spad{recur(g)} is the function \\spad{h} such that \\indented{1}{\\spad{h(n,x)= g(n,g(n-1,..g(1,x)..))}.}")) (** (((|Mapping| |#1| |#1|) (|Mapping| |#1| |#1|) (|NonNegativeInteger|)) "\\spad{f**n} is the function which is the \\spad{n}-fold application \\indented{1}{of \\spad{f}.}")) (|id| ((|#1| |#1|) "\\spad{id x} is \\spad{x}.")) (|fixedPoint| (((|List| |#1|) (|Mapping| (|List| |#1|) (|List| |#1|)) (|Integer|)) "\\spad{fixedPoint(f,n)} is the fixed point of function \\indented{1}{\\spad{f} which is assumed to transform a list of length} \\indented{1}{\\spad{n}.}") ((|#1| (|Mapping| |#1| |#1|)) "\\spad{fixedPoint f} is the fixed point of function \\spad{f}. \\indented{1}{\\spadignore{i.e.} such that \\spad{fixedPoint f = f(fixedPoint f)}.}")) (|coerce| (((|Mapping| |#1|) |#1|) "\\spad{coerce A} changes its argument into a \\indented{1}{nullary function.}")) (|nullary| (((|Mapping| |#1|) |#1|) "\\spad{nullary A} changes its argument into a \\indented{1}{nullary function.}"))) NIL NIL -(-703 A C) +(-702 A C) ((|constructor| (NIL "various Currying operations.")) (|diag| (((|Mapping| |#2| |#1|) (|Mapping| |#2| |#1| |#1|)) "\\spad{diag(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a = f(a,a)}.}")) (|constant| (((|Mapping| |#2| |#1|) (|Mapping| |#2|)) "\\spad{vu(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g a= f ()}.}")) (|curry| (((|Mapping| |#2|) (|Mapping| |#2| |#1|) |#1|) "\\spad{cu(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g ()= f a}.}")) (|const| (((|Mapping| |#2| |#1|) |#2|) "\\spad{const c} is a function which produces \\spad{c} when \\indented{1}{applied to its argument.}"))) NIL NIL -(-704 A B C) +(-703 A B C) ((|constructor| (NIL "various Currying operations.")) (* (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#2|) (|Mapping| |#2| |#1|)) "\\spad{f*g} is the function \\spad{h} \\indented{1}{such that \\spad{h x= f(g x)}.}")) (|twist| (((|Mapping| |#3| |#2| |#1|) (|Mapping| |#3| |#1| |#2|)) "\\spad{twist(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f(b,a)}.}")) (|constantLeft| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#2|)) "\\spad{constantLeft(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f b}.}")) (|constantRight| (((|Mapping| |#3| |#1| |#2|) (|Mapping| |#3| |#1|)) "\\spad{constantRight(f)} is the function \\spad{g} \\indented{1}{such that \\spad{g (a,b)= f a}.}")) (|curryLeft| (((|Mapping| |#3| |#2|) (|Mapping| |#3| |#1| |#2|) |#1|) "\\spad{curryLeft(f,a)} is the function \\spad{g} \\indented{1}{such that \\spad{g b = f(a,b)}.}")) (|curryRight| (((|Mapping| |#3| |#1|) (|Mapping| |#3| |#1| |#2|) |#2|) "\\spad{curryRight(f,b)} is the function \\spad{g} such that \\indented{1}{\\spad{g a = f(a,b)}.}"))) NIL NIL -(-705 S R |Row| |Col|) +(-704 S R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#4|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#2|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#2|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#2| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#2|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#3|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#4|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#2|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#2| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#2|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) NIL -((|HasAttribute| |#2| (QUOTE (-4427 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569)))) -(-706 R |Row| |Col|) +((|HasAttribute| |#2| (QUOTE (-4426 "*"))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-569)))) +(-705 R |Row| |Col|) ((|constructor| (NIL "\\spadtype{MatrixCategory} is a general matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col. A domain belonging to this category will be shallowly mutable. The index of the 'first' row may be obtained by calling the function \\spadfun{minRowIndex}. The index of the 'first' column may be obtained by calling the function \\spadfun{minColIndex}. The index of the first element of a Row is the same as the index of the first column in a matrix and vice versa.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|minordet| ((|#1| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. Error: if the matrix is not square.")) (|nullSpace| (((|List| |#3|) $) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#1|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if matrix is not square or if the matrix is square but not invertible.") (($ $ (|NonNegativeInteger|)) "\\spad{x ** n} computes a non-negative integral power of the matrix \\spad{x}. Error: if the matrix is not square.")) (* ((|#2| |#2| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#3| $ |#3|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.") (($ (|Integer|) $) "\\spad{n * x} is an integer multiple.") (($ $ |#1|) "\\spad{x * r} is the right scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ |#1| $) "\\spad{r*x} is the left scalar multiple of the scalar \\spad{r} and the matrix \\spad{x}.") (($ $ $) "\\spad{x * y} is the product of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (- (($ $) "\\spad{-x} returns the negative of the matrix \\spad{x}.") (($ $ $) "\\spad{x - y} is the difference of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (+ (($ $ $) "\\spad{x + y} is the sum of the matrices \\spad{x} and \\spad{y}. Error: if the dimensions are incompatible.")) (|setsubMatrix!| (($ $ (|Integer|) (|Integer|) $) "\\spad{setsubMatrix(x,i1,j1,y)} destructively alters the matrix \\spad{x}. Here \\spad{x(i,j)} is set to \\spad{y(i-i1+1,j-j1+1)} for \\spad{i = i1,...,i1-1+nrows y} and \\spad{j = j1,...,j1-1+ncols y}.")) (|subMatrix| (($ $ (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subMatrix(x,i1,i2,j1,j2)} extracts the submatrix \\spad{[x(i,j)]} where the index \\spad{i} ranges from \\spad{i1} to \\spad{i2} and the index \\spad{j} ranges from \\spad{j1} to \\spad{j2}.")) (|swapColumns!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapColumns!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th columns of \\spad{m}. This destructively alters the matrix.")) (|swapRows!| (($ $ (|Integer|) (|Integer|)) "\\spad{swapRows!(m,i,j)} interchanges the \\spad{i}th and \\spad{j}th rows of \\spad{m}. This destructively alters the matrix.")) (|setelt| (($ $ (|List| (|Integer|)) (|List| (|Integer|)) $) "\\spad{setelt(x,rowList,colList,y)} destructively alters the matrix \\spad{x}. If \\spad{y} is \\spad{m}-by-\\spad{n},{} \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then \\spad{x(i<k>,j<l>)} is set to \\spad{y(k,l)} for \\spad{k = 1,...,m} and \\spad{l = 1,...,n}.")) (|elt| (($ $ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{elt(x,rowList,colList)} returns an \\spad{m}-by-\\spad{n} matrix consisting of elements of \\spad{x},{} where \\spad{m = \\# rowList} and \\spad{n = \\# colList}. If \\spad{rowList = [i<1>,i<2>,...,i<m>]} and \\spad{colList = [j<1>,j<2>,...,j<n>]},{} then the \\spad{(k,l)}th entry of \\spad{elt(x,rowList,colList)} is \\spad{x(i<k>,j<l>)}.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|vertConcat| (($ $ $) "\\spad{vertConcat(x,y)} vertically concatenates two matrices with an equal number of columns. The entries of \\spad{y} appear below of the entries of \\spad{x}. Error: if the matrices do not have the same number of columns.")) (|horizConcat| (($ $ $) "\\spad{horizConcat(x,y)} horizontally concatenates two matrices with an equal number of rows. The entries of \\spad{y} appear to the right of the entries of \\spad{x}. Error: if the matrices do not have the same number of rows.")) (|squareTop| (($ $) "\\spad{squareTop(m)} returns an \\spad{n}-by-\\spad{n} matrix consisting of the first \\spad{n} rows of the \\spad{m}-by-\\spad{n} matrix \\spad{m}. Error: if \\spad{m < n}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.") (($ |#2|) "\\spad{transpose(r)} converts the row \\spad{r} to a row matrix.")) (|coerce| (($ |#3|) "\\spad{coerce(col)} converts the column \\spad{col} to a column matrix.")) (|diagonalMatrix| (($ (|List| $)) "\\spad{diagonalMatrix([m1,...,mk])} creates a block diagonal matrix \\spad{M} with block matrices {\\em m1},{}...,{}{\\em mk} down the diagonal,{} with 0 block matrices elsewhere. More precisly: if \\spad{ri := nrows mi},{} \\spad{ci := ncols mi},{} then \\spad{m} is an (r1+..+rk) by (c1+..+ck) - matrix with entries \\spad{m.i.j = ml.(i-r1-..-r(l-1)).(j-n1-..-n(l-1))},{} if \\spad{(r1+..+r(l-1)) < i <= r1+..+rl} and \\spad{(c1+..+c(l-1)) < i <= c1+..+cl},{} \\spad{m.i.j} = 0 otherwise.") (($ (|List| |#1|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ (|NonNegativeInteger|) |#1|) "\\spad{scalarMatrix(n,r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere.")) (|matrix| (($ (|NonNegativeInteger|) (|NonNegativeInteger|) (|Mapping| |#1| (|Integer|) (|Integer|))) "\\spad{matrix(n,m,f)} construcys and \\spad{n * m} matrix with the \\spad{(i,j)} entry equal to \\spad{f(i,j)}.") (($ (|List| (|List| |#1|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|zero| (($ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{zero(m,n)} returns an \\spad{m}-by-\\spad{n} zero matrix.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|finiteAggregate| ((|attribute|) "matrices are finite")) (|shallowlyMutable| ((|attribute|) "One may destructively alter matrices"))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL -(-707 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +(-706 R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{MatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#5| (|Mapping| |#5| |#1| |#5|) |#4| |#5|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices \\spad{i} and \\spad{j}.")) (|map| (((|Union| |#8| "failed") (|Mapping| (|Union| |#5| "failed") |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}.") ((|#8| (|Mapping| |#5| |#1|) |#4|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-708 R |Row| |Col| M) +(-707 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{MatrixLinearAlgebraFunctions} provides functions to compute inverses and canonical forms.")) (|inverse| (((|Union| |#4| "failed") |#4|) "\\spad{inverse(m)} returns the inverse of the matrix. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelon| ((|#4| |#4|) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (|adjoint| (((|Record| (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) "\\spad{adjoint(m)} returns the ajoint matrix of \\spad{m} (\\spadignore{i.e.} the matrix \\spad{n} such that m*n = determinant(\\spad{m})*id) and the detrminant of \\spad{m}.")) (|invertIfCan| (((|Union| |#4| "failed") |#4|) "\\spad{invertIfCan(m)} returns the inverse of \\spad{m} over \\spad{R}")) (|fractionFreeGauss!| ((|#4| |#4|) "\\spad{fractionFreeGauss(m)} performs the fraction free gaussian elimination on the matrix \\spad{m}.")) (|nullSpace| (((|List| |#3|) |#4|) "\\spad{nullSpace(m)} returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) |#4|) "\\spad{nullity(m)} returns the mullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) |#4|) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|elColumn2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elColumn2!(m,a,i,j)} adds to column \\spad{i} a*column(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow2!| ((|#4| |#4| |#1| (|Integer|) (|Integer|)) "\\spad{elRow2!(m,a,i,j)} adds to row \\spad{i} a*row(\\spad{m},{}\\spad{j}) : elementary operation of second kind. (\\spad{i} ~=j)")) (|elRow1!| ((|#4| |#4| (|Integer|) (|Integer|)) "\\spad{elRow1!(m,i,j)} swaps rows \\spad{i} and \\spad{j} of matrix \\spad{m} : elementary operation of first kind")) (|minordet| ((|#1| |#4|) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors. Error: if the matrix is not square.")) (|determinant| ((|#1| |#4|) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}. an error message is returned if the matrix is not square."))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569)))) -(-709 R) +(-708 R) ((|constructor| (NIL "\\spadtype{Matrix} is a matrix domain where 1-based indexing is used for both rows and columns.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m}. If the matrix is not invertible,{} \"failed\" is returned. Error: if the matrix is not square.")) (|diagonalMatrix| (($ (|Vector| |#1|)) "\\spad{diagonalMatrix(v)} returns a diagonal matrix where the elements of \\spad{v} appear on the diagonal."))) -((-4425 . T) (-4426 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4427 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-710 R) +((-4424 . T) (-4425 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-319))) (|HasCategory| |#1| (QUOTE (-569))) (|HasAttribute| |#1| (QUOTE (-4426 "*"))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-709 R) ((|constructor| (NIL "This package provides standard arithmetic operations on matrices. The functions in this package store the results of computations in existing matrices,{} rather than creating new matrices. This package works only for matrices of type Matrix and uses the internal representation of this type.")) (** (((|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{x ** n} computes the \\spad{n}-th power of a square matrix. The power \\spad{n} is assumed greater than 1.")) (|power!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|NonNegativeInteger|)) "\\spad{power!(a,b,c,m,n)} computes \\spad{m} ** \\spad{n} and stores the result in \\spad{a}. The matrices \\spad{b} and \\spad{c} are used to store intermediate results. Error: if \\spad{a},{} \\spad{b},{} \\spad{c},{} and \\spad{m} are not square and of the same dimensions.")) (|times!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{times!(c,a,b)} computes the matrix product \\spad{a * b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have compatible dimensions.")) (|rightScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rightScalarTimes!(c,a,r)} computes the scalar product \\spad{a * r} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|leftScalarTimes!| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| (|Matrix| |#1|)) "\\spad{leftScalarTimes!(c,r,a)} computes the scalar product \\spad{r * a} and stores the result in the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions.")) (|minus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{!minus!(c,a,b)} computes the matrix difference \\spad{a - b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{minus!(c,a)} computes \\spad{-a} and stores the result in the matrix \\spad{c}. Error: if a and \\spad{c} do not have the same dimensions.")) (|plus!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{plus!(c,a,b)} computes the matrix sum \\spad{a + b} and stores the result in the matrix \\spad{c}. Error: if \\spad{a},{} \\spad{b},{} and \\spad{c} do not have the same dimensions.")) (|copy!| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{copy!(c,a)} copies the matrix \\spad{a} into the matrix \\spad{c}. Error: if \\spad{a} and \\spad{c} do not have the same dimensions."))) NIL NIL -(-711 T$) +(-710 T$) ((|constructor| (NIL "This domain implements the notion of optional value,{} where a computation may fail to produce expected value.")) (|nothing| (($) "\\spad{nothing} represents failure or absence of value.")) (|autoCoerce| ((|#1| $) "\\spad{autoCoerce} is a courtesy coercion function used by the compiler in case it knows that `x' really is a \\spadtype{T}.")) (|case| (((|Boolean|) $ (|[\|\|]| |nothing|)) "\\spad{x case nothing} holds if the value for \\spad{x} is missing.") (((|Boolean|) $ (|[\|\|]| |#1|)) "\\spad{x case T} returns \\spad{true} if \\spad{x} is actually a data of type \\spad{T}.")) (|just| (($ |#1|) "\\spad{just x} injects the value `x' into \\%."))) NIL NIL -(-712 S -3495 FLAF FLAS) +(-711 S -3494 FLAF FLAS) ((|constructor| (NIL "\\indented{1}{\\spadtype{MultiVariableCalculusFunctions} Package provides several} \\indented{1}{functions for multivariable calculus.} These include gradient,{} hessian and jacobian,{} divergence and laplacian. Various forms for banded and sparse storage of matrices are included.")) (|bandedJacobian| (((|Matrix| |#2|) |#3| |#4| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{bandedJacobian(vf,xlist,kl,ku)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist},{} \\spad{kl} is the number of nonzero subdiagonals,{} \\spad{ku} is the number of nonzero superdiagonals,{} \\spad{kl+ku+1} being actual bandwidth. Stores the nonzero band in a matrix,{} dimensions \\spad{kl+ku+1} by \\#xlist. The upper triangle is in the top \\spad{ku} rows,{} the diagonal is in row \\spad{ku+1},{} the lower triangle in the last \\spad{kl} rows. Entries in a column in the band store correspond to entries in same column of full store. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|jacobian| (((|Matrix| |#2|) |#3| |#4|) "\\spad{jacobian(vf,xlist)} computes the jacobian,{} the matrix of first partial derivatives,{} of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|bandedHessian| (((|Matrix| |#2|) |#2| |#4| (|NonNegativeInteger|)) "\\spad{bandedHessian(v,xlist,k)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist},{} \\spad{k} is the semi-bandwidth,{} the number of nonzero subdiagonals,{} 2*k+1 being actual bandwidth. Stores the nonzero band in lower triangle in a matrix,{} dimensions \\spad{k+1} by \\#xlist,{} whose rows are the vectors formed by diagonal,{} subdiagonal,{} etc. of the real,{} full-matrix,{} hessian. (The notation conforms to LAPACK/NAG-\\spad{F07} conventions.)")) (|hessian| (((|Matrix| |#2|) |#2| |#4|) "\\spad{hessian(v,xlist)} computes the hessian,{} the matrix of second partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|laplacian| ((|#2| |#2| |#4|) "\\spad{laplacian(v,xlist)} computes the laplacian of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}.")) (|divergence| ((|#2| |#3| |#4|) "\\spad{divergence(vf,xlist)} computes the divergence of the vector field \\spad{vf},{} \\spad{vf} a vector function of the variables listed in \\spad{xlist}.")) (|gradient| (((|Vector| |#2|) |#2| |#4|) "\\spad{gradient(v,xlist)} computes the gradient,{} the vector of first partial derivatives,{} of the scalar field \\spad{v},{} \\spad{v} a function of the variables listed in \\spad{xlist}."))) NIL NIL -(-713 R Q) +(-712 R Q) ((|constructor| (NIL "MatrixCommonDenominator provides functions to compute the common denominator of a matrix of elements of the quotient field of an integral domain.")) (|splitDenominator| (((|Record| (|:| |num| (|Matrix| |#1|)) (|:| |den| |#1|)) (|Matrix| |#2|)) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|clearDenominator| (((|Matrix| |#1|) (|Matrix| |#2|)) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the elements of \\spad{q}.")) (|commonDenominator| ((|#1| (|Matrix| |#2|)) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the elements of \\spad{q}."))) NIL NIL -(-714) +(-713) ((|constructor| (NIL "A domain which models the complex number representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Complex| (|Float|)) $) "\\spad{coerce(u)} transforms \\spad{u} into a COmplex Float") (($ (|Complex| (|MachineInteger|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|MachineFloat|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Integer|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex") (($ (|Complex| (|Float|))) "\\spad{coerce(u)} transforms \\spad{u} into a MachineComplex"))) -((-4418 . T) (-4423 |has| (-719) (-376)) (-4417 |has| (-719) (-376)) (-1490 . T) (-4424 |has| (-719) (-6 -4424)) (-4421 |has| (-719) (-6 -4421)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-719) (QUOTE (-149))) (|HasCategory| (-719) (QUOTE (-147))) (|HasCategory| (-719) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-381))) (|HasCategory| (-719) (QUOTE (-376))) (-3957 (|HasCategory| (-719) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-239))) (-3957 (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| (-719) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-3957 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (|%list| (QUOTE -298) (QUOTE (-719)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -321) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -526) (QUOTE (-1198)) (QUOTE (-719)))) (|HasCategory| (-719) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-719) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-719) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (-3957 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-363)))) (|HasCategory| (-719) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-719) (QUOTE (-1041))) (|HasCategory| (-719) (QUOTE (-1224))) (-12 (|HasCategory| (-719) (QUOTE (-1023))) (|HasCategory| (-719) (QUOTE (-1224)))) (-3957 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-929)))) (|HasCategory| (-719) (QUOTE (-376)))) (-3957 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (QUOTE (-929)))) (-12 (|HasCategory| (-719) (QUOTE (-363))) (|HasCategory| (-719) (QUOTE (-929))))) (|HasCategory| (-719) (QUOTE (-557))) (-12 (|HasCategory| (-719) (QUOTE (-1081))) (|HasCategory| (-719) (QUOTE (-1224)))) (|HasCategory| (-719) (QUOTE (-1081))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929))) (-3957 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (|HasCategory| (-719) (QUOTE (-376)))) (-3957 (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (|HasCategory| (-719) (QUOTE (-239)))) (-3957 (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (|HasCategory| (-719) (QUOTE (-569)))) (-12 (|HasCategory| (-719) (QUOTE (-239))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| (-719) (QUOTE (-240))) (|HasCategory| (-719) (QUOTE (-376)))) (-12 (|HasCategory| (-719) (QUOTE (-376))) (|HasCategory| (-719) (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| (-719) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-719) (QUOTE (-569))) (|HasAttribute| (-719) (QUOTE -4424)) (|HasAttribute| (-719) (QUOTE -4421)) (-12 (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (|HasCategory| (-719) (|%list| (QUOTE -919) (QUOTE (-1198)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (|HasCategory| (-719) (QUOTE (-147)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-719) (QUOTE (-319))) (|HasCategory| (-719) (QUOTE (-929)))) (|HasCategory| (-719) (QUOTE (-363))))) -(-715 S) +((-4417 . T) (-4422 |has| (-718) (-376)) (-4416 |has| (-718) (-376)) (-1489 . T) (-4423 |has| (-718) (-6 -4423)) (-4420 |has| (-718) (-6 -4420)) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-718) (QUOTE (-149))) (|HasCategory| (-718) (QUOTE (-147))) (|HasCategory| (-718) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-718) (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| (-718) (QUOTE (-381))) (|HasCategory| (-718) (QUOTE (-376))) (-3956 (|HasCategory| (-718) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-718) (QUOTE (-376)))) (|HasCategory| (-718) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-718) (QUOTE (-240))) (|HasCategory| (-718) (QUOTE (-239))) (-3956 (-12 (|HasCategory| (-718) (QUOTE (-376))) (|HasCategory| (-718) (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| (-718) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-3956 (|HasCategory| (-718) (QUOTE (-376))) (|HasCategory| (-718) (QUOTE (-363)))) (|HasCategory| (-718) (QUOTE (-363))) (|HasCategory| (-718) (|%list| (QUOTE -298) (QUOTE (-718)) (QUOTE (-718)))) (|HasCategory| (-718) (|%list| (QUOTE -321) (QUOTE (-718)))) (|HasCategory| (-718) (|%list| (QUOTE -526) (QUOTE (-1197)) (QUOTE (-718)))) (|HasCategory| (-718) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-718) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-718) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-718) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (-3956 (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-376))) (|HasCategory| (-718) (QUOTE (-363)))) (|HasCategory| (-718) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-718) (QUOTE (-1040))) (|HasCategory| (-718) (QUOTE (-1223))) (-12 (|HasCategory| (-718) (QUOTE (-1022))) (|HasCategory| (-718) (QUOTE (-1223)))) (-3956 (-12 (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (-12 (|HasCategory| (-718) (QUOTE (-363))) (|HasCategory| (-718) (QUOTE (-928)))) (|HasCategory| (-718) (QUOTE (-376)))) (-3956 (-12 (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (-12 (|HasCategory| (-718) (QUOTE (-376))) (|HasCategory| (-718) (QUOTE (-928)))) (-12 (|HasCategory| (-718) (QUOTE (-363))) (|HasCategory| (-718) (QUOTE (-928))))) (|HasCategory| (-718) (QUOTE (-557))) (-12 (|HasCategory| (-718) (QUOTE (-1080))) (|HasCategory| (-718) (QUOTE (-1223)))) (|HasCategory| (-718) (QUOTE (-1080))) (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928))) (-3956 (-12 (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (|HasCategory| (-718) (QUOTE (-376)))) (-3956 (-12 (|HasCategory| (-718) (QUOTE (-240))) (|HasCategory| (-718) (QUOTE (-376)))) (|HasCategory| (-718) (QUOTE (-239)))) (-3956 (-12 (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (|HasCategory| (-718) (QUOTE (-569)))) (-12 (|HasCategory| (-718) (QUOTE (-239))) (|HasCategory| (-718) (QUOTE (-376)))) (-12 (|HasCategory| (-718) (QUOTE (-376))) (|HasCategory| (-718) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| (-718) (QUOTE (-240))) (|HasCategory| (-718) (QUOTE (-376)))) (-12 (|HasCategory| (-718) (QUOTE (-376))) (|HasCategory| (-718) (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| (-718) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-718) (QUOTE (-569))) (|HasAttribute| (-718) (QUOTE -4423)) (|HasAttribute| (-718) (QUOTE -4420)) (-12 (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (|HasCategory| (-718) (|%list| (QUOTE -918) (QUOTE (-1197)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (|HasCategory| (-718) (QUOTE (-147)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-718) (QUOTE (-319))) (|HasCategory| (-718) (QUOTE (-928)))) (|HasCategory| (-718) (QUOTE (-363))))) +(-714 S) ((|constructor| (NIL "A multi-dictionary is a dictionary which may contain duplicates. As for any dictionary,{} its size is assumed large so that copying (non-destructive) operations are generally to be avoided.")) (|duplicates| (((|List| (|Record| (|:| |entry| |#1|) (|:| |count| (|NonNegativeInteger|)))) $) "\\spad{duplicates(d)} returns a list of values which have duplicates in \\spad{d}")) (|removeDuplicates!| (($ $) "\\spad{removeDuplicates!(d)} destructively removes any duplicate values in dictionary \\spad{d}.")) (|insert!| (($ |#1| $ (|NonNegativeInteger|)) "\\spad{insert!(x,d,n)} destructively inserts \\spad{n} copies of \\spad{x} into dictionary \\spad{d}."))) -((-4426 . T)) +((-4425 . T)) NIL -(-716 U) +(-715 U) ((|constructor| (NIL "This package supports factorization and gcds of univariate polynomials over the integers modulo different primes. The inputs are given as polynomials over the integers with the prime passed explicitly as an extra argument.")) (|exptMod| ((|#1| |#1| (|Integer|) |#1| (|Integer|)) "\\spad{exptMod(f,n,g,p)} raises the univariate polynomial \\spad{f} to the \\spad{n}th power modulo the polynomial \\spad{g} and the prime \\spad{p}.")) (|separateFactors| (((|List| |#1|) (|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) (|Integer|)) "\\spad{separateFactors(ddl, p)} refines the distinct degree factorization produced by \\spadfunFrom{ddFact}{ModularDistinctDegreeFactorizer} to give a complete list of factors.")) (|ddFact| (((|List| (|Record| (|:| |factor| |#1|) (|:| |degree| (|Integer|)))) |#1| (|Integer|)) "\\spad{ddFact(f,p)} computes a distinct degree factorization of the polynomial \\spad{f} modulo the prime \\spad{p},{} \\spadignore{i.e.} such that each factor is a product of irreducibles of the same degrees. The input polynomial \\spad{f} is assumed to be square-free modulo \\spad{p}.")) (|factor| (((|List| |#1|) |#1| (|Integer|)) "\\spad{factor(f1,p)} returns the list of factors of the univariate polynomial \\spad{f1} modulo the integer prime \\spad{p}. Error: if \\spad{f1} is not square-free modulo \\spad{p}.")) (|linears| ((|#1| |#1| (|Integer|)) "\\spad{linears(f,p)} returns the product of all the linear factors of \\spad{f} modulo \\spad{p}. Potentially incorrect result if \\spad{f} is not square-free modulo \\spad{p}.")) (|gcd| ((|#1| |#1| |#1| (|Integer|)) "\\spad{gcd(f1,f2,p)} computes the gcd of the univariate polynomials \\spad{f1} and \\spad{f2} modulo the integer prime \\spad{p}."))) NIL NIL -(-717) +(-716) ((|constructor| (NIL "\\indented{1}{<description of package>} Author: Jim Wen Date Created: ?? Date Last Updated: October 1991 by Jon Steinbach Keywords: Examples: References:")) (|ptFunc| (((|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|))) "\\spad{ptFunc(a,b,c,d)} is an internal function exported in order to compile packages.")) (|meshPar1Var| (((|ThreeSpace| (|DoubleFloat|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Expression| (|Integer|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar1Var(s,t,u,f,s1,l)} \\undocumented")) (|meshFun2Var| (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1="undefined") (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshFun2Var(f,g,s1,s2,l)} \\undocumented")) (|meshPar2Var| (((|ThreeSpace| (|DoubleFloat|)) (|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(sp,f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,s1,s2,l)} \\undocumented") (((|ThreeSpace| (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) (|Union| (|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) #1#) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{meshPar2Var(f,g,h,j,s1,s2,l)} \\undocumented"))) NIL NIL -(-718 OV E -3495 PG) +(-717 OV E -3494 PG) ((|constructor| (NIL "Package for factorization of multivariate polynomials over finite fields.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field. \\spad{p} is represented as a univariate polynomial with multivariate coefficients over a finite field.") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} produces the complete factorization of the multivariate polynomial \\spad{p} over a finite field."))) NIL NIL -(-719) +(-718) ((|constructor| (NIL "A domain which models the floating point representation used by machines in the AXIOM-NAG link.")) (|changeBase| (($ (|Integer|) (|Integer|) (|PositiveInteger|)) "\\spad{changeBase(exp,man,base)} \\undocumented{}")) (|exponent| (((|Integer|) $) "\\spad{exponent(u)} returns the exponent of \\spad{u}")) (|mantissa| (((|Integer|) $) "\\spad{mantissa(u)} returns the mantissa of \\spad{u}")) (|coerce| (($ (|MachineInteger|)) "\\spad{coerce(u)} transforms a MachineInteger into a MachineFloat") (((|Float|) $) "\\spad{coerce(u)} transforms a MachineFloat to a standard Float")) (|minimumExponent| (((|Integer|)) "\\spad{minimumExponent()} returns the minimum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{minimumExponent(e)} sets the minimum exponent in the model to \\spad{e}")) (|maximumExponent| (((|Integer|)) "\\spad{maximumExponent()} returns the maximum exponent in the model") (((|Integer|) (|Integer|)) "\\spad{maximumExponent(e)} sets the maximum exponent in the model to \\spad{e}")) (|base| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{base(b)} sets the base of the model to \\spad{b}")) (|precision| (((|PositiveInteger|)) "\\spad{precision()} returns the number of digits in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{precision(p)} sets the number of digits in the model to \\spad{p}"))) -((-4200 . T) (-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4199 . T) (-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-720 R) +(-719 R) ((|constructor| (NIL "\\indented{1}{Modular hermitian row reduction.} Author: Manuel Bronstein Date Created: 22 February 1989 Date Last Updated: 24 November 1993 Keywords: matrix,{} reduction.")) (|normalizedDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{normalizedDivide(n,d)} returns a normalized quotient and remainder such that consistently unique representatives for the residue class are chosen,{} \\spadignore{e.g.} positive remainders")) (|rowEchelonLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1| |#1|) "\\spad{rowEchelonLocal(m, d, p)} computes the row-echelon form of \\spad{m} concatenated with \\spad{d} times the identity matrix over a local ring where \\spad{p} is the only prime.")) (|rowEchLocal| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchLocal(m,p)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus over a local ring where \\spad{p} is the only prime.")) (|rowEchelon| (((|Matrix| |#1|) (|Matrix| |#1|) |#1|) "\\spad{rowEchelon(m, d)} computes a modular row-echelon form mod \\spad{d} of \\indented{3}{[\\spad{d}\\space{5}]} \\indented{3}{[\\space{2}\\spad{d}\\space{3}]} \\indented{3}{[\\space{4}. ]} \\indented{3}{[\\space{5}\\spad{d}]} \\indented{3}{[\\space{3}\\spad{M}\\space{2}]} where \\spad{M = m mod d}.")) (|rowEch| (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{rowEch(m)} computes a modular row-echelon form of \\spad{m},{} finding an appropriate modulus."))) NIL NIL -(-721) +(-720) ((|constructor| (NIL "A domain which models the integer representation used by machines in the AXIOM-NAG link.")) (|coerce| (((|Expression| $) (|Expression| (|Integer|))) "\\spad{coerce(x)} returns \\spad{x} with coefficients in the domain")) (|maxint| (((|PositiveInteger|)) "\\spad{maxint()} returns the maximum integer in the model") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{maxint(u)} sets the maximum integer in the model to \\spad{u}"))) -((-4424 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4423 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-722 S D1 D2 I) +(-721 S D1 D2 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#4| |#2| |#3|) |#1| (|Symbol|) (|Symbol|)) "\\spad{compiledFunction(expr,x,y)} returns a function \\spad{f: (D1, D2) -> I} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(D1, D2)}")) (|binaryFunction| (((|Mapping| |#4| |#2| |#3|) (|Symbol|)) "\\spad{binaryFunction(s)} is a local function"))) NIL NIL -(-723 S) +(-722 S) ((|constructor| (NIL "MakeFloatCompiledFunction transforms top-level objects into compiled Lisp functions whose arguments are Lisp floats. This by-passes the \\Language{} compiler and interpreter,{} thereby gaining several orders of magnitude.")) (|makeFloatFunction| (((|Mapping| (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|) (|Symbol|)) "\\spad{makeFloatFunction(expr, x, y)} returns a Lisp function \\spad{f: (\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat}) -> \\axiomType{DoubleFloat}} defined by \\spad{f(x, y) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{(\\axiomType{DoubleFloat}, \\axiomType{DoubleFloat})}.") (((|Mapping| (|DoubleFloat|) (|DoubleFloat|)) |#1| (|Symbol|)) "\\spad{makeFloatFunction(expr, x)} returns a Lisp function \\spad{f: \\axiomType{DoubleFloat} -> \\axiomType{DoubleFloat}} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\axiomType{DoubleFloat}."))) NIL NIL -(-724 S) +(-723 S) ((|constructor| (NIL "transforms top-level objects into interpreter functions.")) (|function| (((|Symbol|) |#1| (|Symbol|) (|List| (|Symbol|))) "\\spad{function(e, foo, [x1,...,xn])} creates a function \\spad{foo(x1,...,xn) == e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x, y)} creates a function \\spad{foo(x, y) = e}.") (((|Symbol|) |#1| (|Symbol|) (|Symbol|)) "\\spad{function(e, foo, x)} creates a function \\spad{foo(x) == e}.") (((|Symbol|) |#1| (|Symbol|)) "\\spad{function(e, foo)} creates a function \\spad{foo() == e}."))) NIL NIL -(-725 S T$) +(-724 S T$) ((|constructor| (NIL "MakeRecord is used internally by the interpreter to create record types which are used for doing parallel iterations on streams.")) (|makeRecord| (((|Record| (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) "\\spad{makeRecord(a,b)} creates a record object with type Record(part1:S,{} part2:R),{} where \\spad{part1} is \\spad{a} and \\spad{part2} is \\spad{b}."))) NIL NIL -(-726 S -3070 I) +(-725 S -3069 I) ((|constructor| (NIL "transforms top-level objects into compiled functions.")) (|compiledFunction| (((|Mapping| |#3| |#2|) |#1| (|Symbol|)) "\\spad{compiledFunction(expr, x)} returns a function \\spad{f: D -> I} defined by \\spad{f(x) == expr}. Function \\spad{f} is compiled and directly applicable to objects of type \\spad{D}.")) (|unaryFunction| (((|Mapping| |#3| |#2|) (|Symbol|)) "\\spad{unaryFunction(a)} is a local function"))) NIL NIL -(-727 E OV R P) +(-726 E OV R P) ((|constructor| (NIL "This package provides the functions for the multivariate \"lifting\",{} using an algorithm of Paul Wang. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|lifting1| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|List| |#4|) (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#4|)))) (|List| (|NonNegativeInteger|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{lifting1(u,lv,lu,lr,lp,lt,ln,t,r)} \\undocumented")) (|lifting| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|SparseUnivariatePolynomial| |#3|)) (|List| |#3|) (|List| |#4|) (|List| (|NonNegativeInteger|)) |#3|) "\\spad{lifting(u,lv,lu,lr,lp,ln,r)} \\undocumented")) (|corrPoly| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| |#3|) (|List| (|NonNegativeInteger|)) (|List| (|SparseUnivariatePolynomial| |#4|)) (|Vector| (|List| (|SparseUnivariatePolynomial| |#3|))) |#3|) "\\spad{corrPoly(u,lv,lr,ln,lu,t,r)} \\undocumented"))) NIL NIL -(-728 R) +(-727 R) ((|constructor| (NIL "This is the category of linear operator rings with one generator. The generator is not named by the category but can always be constructed as \\spad{monomial(1,1)}. \\blankline For convenience,{} call the generator \\spad{G}. Then each value is equal to \\indented{4}{\\spad{sum(a(i)*G**i, i = 0..n)}} for some unique \\spad{n} and \\spad{a(i)} in \\spad{R}. \\blankline Note that multiplication is not necessarily commutative. In fact,{} if \\spad{a} is in \\spad{R},{} it is quite normal to have \\spad{a*G \\~= G*a}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) \\~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-729 R1 UP1 UPUP1 R2 UP2 UPUP2) +(-728 R1 UP1 UPUP1 R2 UP2 UPUP2) ((|constructor| (NIL "Lifting of a map through 2 levels of polynomials.")) (|map| ((|#6| (|Mapping| |#4| |#1|) |#3|) "\\spad{map(f, p)} lifts \\spad{f} to the domain of \\spad{p} then applies it to \\spad{p}."))) NIL NIL -(-730) +(-729) ((|constructor| (NIL "\\spadtype{MathMLFormat} provides a coercion from \\spadtype{OutputForm} to MathML format.")) (|display| (((|Void|) (|String|)) "prints the string returned by coerce,{} adding <math ...> tags.")) (|exprex| (((|String|) (|OutputForm|)) "coverts \\spadtype{OutputForm} to \\spadtype{String} with the structure preserved with braces. Actually this is not quite accurate. The function \\spadfun{precondition} is first applied to the \\spadtype{OutputForm} expression before \\spadfun{exprex}. The raw \\spadtype{OutputForm} and the nature of the \\spadfun{precondition} function is still obscure to me at the time of this writing (2007-02-14).")) (|coerceL| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format and displays result as one long string.")) (|coerceS| (((|String|) (|OutputForm|)) "\\spad{coerceS(o)} changes \\spad{o} in the standard output format to MathML format and displays formatted result.")) (|coerce| (((|String|) (|OutputForm|)) "coerceS(\\spad{o}) changes \\spad{o} in the standard output format to MathML format."))) NIL NIL -(-731 R |Mod| -2247 -3938 |exactQuo|) +(-730 R |Mod| -2246 -3937 |exactQuo|) ((|constructor| (NIL "\\indented{1}{These domains are used for the factorization and gcds} of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{ModularRing},{} \\spadtype{EuclideanModularRing}")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-732 R |Rep|) +(-731 R |Rep|) ((|constructor| (NIL "This package \\undocumented")) (|frobenius| (($ $) "\\spad{frobenius(x)} \\undocumented")) (|computePowers| (((|PrimitiveArray| $)) "\\spad{computePowers()} \\undocumented")) (|pow| (((|PrimitiveArray| $)) "\\spad{pow()} \\undocumented")) (|An| (((|Vector| |#1|) $) "\\spad{An(x)} \\undocumented")) (|UnVectorise| (($ (|Vector| |#1|)) "\\spad{UnVectorise(v)} \\undocumented")) (|Vectorise| (((|Vector| |#1|) $) "\\spad{Vectorise(x)} \\undocumented")) (|lift| ((|#2| $) "\\spad{lift(x)} \\undocumented")) (|reduce| (($ |#2|) "\\spad{reduce(x)} \\undocumented")) (|modulus| ((|#2|) "\\spad{modulus()} \\undocumented")) (|setPoly| ((|#2| |#2|) "\\spad{setPoly(x)} \\undocumented"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4421 |has| |#1| (-376)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-733 IS E |ff|) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4420 |has| |#1| (-376)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-732 IS E |ff|) ((|constructor| (NIL "This package \\undocumented")) (|construct| (($ |#1| |#2|) "\\spad{construct(i,e)} \\undocumented")) (|index| ((|#1| $) "\\spad{index(x)} \\undocumented")) (|exponent| ((|#2| $) "\\spad{exponent(x)} \\undocumented"))) NIL NIL -(-734 R M) +(-733 R M) ((|constructor| (NIL "Algebra of ADDITIVE operators on a module.")) (|makeop| (($ |#1| (|FreeGroup| (|BasicOperator|))) "\\spad{makeop should} be local but conditional")) (|opeval| ((|#2| (|BasicOperator|) |#2|) "\\spad{opeval should} be local but conditional")) (** (($ $ (|Integer|)) "\\spad{op**n} \\undocumented") (($ (|BasicOperator|) (|Integer|)) "\\spad{op**n} \\undocumented")) (|evaluateInverse| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluateInverse(x,f)} \\undocumented")) (|evaluate| (($ $ (|Mapping| |#2| |#2|)) "\\spad{evaluate(f, u +-> g u)} attaches the map \\spad{g} to \\spad{f}. \\spad{f} must be a basic operator \\spad{g} MUST be additive,{} \\spadignore{i.e.} \\spad{g(a + b) = g(a) + g(b)} for any \\spad{a},{} \\spad{b} in \\spad{M}. This implies that \\spad{g(n a) = n g(a)} for any \\spad{a} in \\spad{M} and integer \\spad{n > 0}.")) (|conjug| ((|#1| |#1|) "\\spad{conjug(x)}should be local but conditional")) (|adjoint| (($ $ $) "\\spad{adjoint(op1, op2)} sets the adjoint of \\spad{op1} to be \\spad{op2}. \\spad{op1} must be a basic operator") (($ $) "\\spad{adjoint(op)} returns the adjoint of the operator \\spad{op}."))) -((-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) (-4422 . T)) +((-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) (-4421 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-735 R |Mod| -2247 -3938 |exactQuo|) +(-734 R |Mod| -2246 -3937 |exactQuo|) ((|constructor| (NIL "These domains are used for the factorization and gcds of univariate polynomials over the integers in order to work modulo different primes. See \\spadtype{EuclideanModularRing} ,{}\\spadtype{ModularField}")) (|inv| (($ $) "\\spad{inv(x)} \\undocumented")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} \\undocumented")) (|exQuo| (((|Union| $ "failed") $ $) "\\spad{exQuo(x,y)} \\undocumented")) (|reduce| (($ |#1| |#2|) "\\spad{reduce(r,m)} \\undocumented")) (|coerce| ((|#1| $) "\\spad{coerce(x)} \\undocumented")) (|modulus| ((|#2| $) "\\spad{modulus(x)} \\undocumented"))) -((-4422 . T)) +((-4421 . T)) NIL -(-736 S R) +(-735 S R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) NIL NIL -(-737 R) +(-736 R) ((|constructor| (NIL "The category of modules over a commutative ring. \\blankline"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL -(-738 -3495) +(-737 -3494) ((|constructor| (NIL "\\indented{1}{MoebiusTransform(\\spad{F}) is the domain of fractional linear (Moebius)} transformations over \\spad{F}.")) (|eval| (((|OnePointCompletion| |#1|) $ (|OnePointCompletion| |#1|)) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).") ((|#1| $ |#1|) "\\spad{eval(m,x)} returns \\spad{(a*x + b)/(c*x + d)} where \\spad{m = moebius(a,b,c,d)} (see \\spadfunFrom{moebius}{MoebiusTransform}).")) (|recip| (($ $) "\\spad{recip(m)} = recip() * \\spad{m}") (($) "\\spad{recip()} returns \\spad{matrix [[0,1],[1,0]]} representing the map \\spad{x -> 1 / x}.")) (|scale| (($ $ |#1|) "\\spad{scale(m,h)} returns \\spad{scale(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{scale(k)} returns \\spad{matrix [[k,0],[0,1]]} representing the map \\spad{x -> k * x}.")) (|shift| (($ $ |#1|) "\\spad{shift(m,h)} returns \\spad{shift(h) * m} (see \\spadfunFrom{shift}{MoebiusTransform}).") (($ |#1|) "\\spad{shift(k)} returns \\spad{matrix [[1,k],[0,1]]} representing the map \\spad{x -> x + k}.")) (|moebius| (($ |#1| |#1| |#1| |#1|) "\\spad{moebius(a,b,c,d)} returns \\spad{matrix [[a,b],[c,d]]}."))) -((-4422 . T)) +((-4421 . T)) NIL -(-739 S) +(-738 S) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-740) +(-739) ((|constructor| (NIL "Monad is the class of all multiplicative monads,{} \\spadignore{i.e.} sets with a binary operation.")) (** (($ $ (|PositiveInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|PositiveInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,1) := a}.")) (|rightPower| (($ $ (|PositiveInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,1) := a}.")) (* (($ $ $) "\\spad{a*b} is the product of \\spad{a} and \\spad{b} in a set with a binary operation."))) NIL NIL -(-741 S) +(-740 S) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-742) +(-741) ((|constructor| (NIL "\\indented{1}{MonadWithUnit is the class of multiplicative monads with unit,{}} \\indented{1}{\\spadignore{i.e.} sets with a binary operation and a unit element.} Axioms \\indented{3}{leftIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{3}\\tab{30} 1*x=x} \\indented{3}{rightIdentity(\"*\":(\\%,{}\\%)->\\%,{}1)\\space{2}\\tab{30} x*1=x} Common Additional Axioms \\indented{3}{unitsKnown---if \"recip\" says \"failed\",{} that PROVES input wasn't a unit}")) (|rightRecip| (((|Union| $ "failed") $) "\\spad{rightRecip(a)} returns an element,{} which is a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|leftRecip| (((|Union| $ "failed") $) "\\spad{leftRecip(a)} returns an element,{} which is a left inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(a)} returns an element,{} which is both a left and a right inverse of \\spad{a},{} or \\spad{\"failed\"} if such an element doesn't exist or cannot be determined (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{a**n} returns the \\spad{n}\\spad{-}th power of \\spad{a},{} defined by repeated squaring.")) (|leftPower| (($ $ (|NonNegativeInteger|)) "\\spad{leftPower(a,n)} returns the \\spad{n}\\spad{-}th left power of \\spad{a},{} \\spadignore{i.e.} \\spad{leftPower(a,n) := a * leftPower(a,n-1)} and \\spad{leftPower(a,0) := 1}.")) (|rightPower| (($ $ (|NonNegativeInteger|)) "\\spad{rightPower(a,n)} returns the \\spad{n}\\spad{-}th right power of \\spad{a},{} \\spadignore{i.e.} \\spad{rightPower(a,n) := rightPower(a,n-1) * a} and \\spad{rightPower(a,0) := 1}.")) (|one?| (((|Boolean|) $) "\\spad{one?(a)} tests whether \\spad{a} is the unit 1.")) ((|One|) (($) "1 returns the unit element,{} denoted by 1."))) NIL NIL -(-743 S R UP) +(-742 S R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#2|) (|Vector| $) (|Mapping| |#2| |#2|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#3| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#3|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#3|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#3|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#3|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) NIL ((|HasCategory| |#2| (QUOTE (-363))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381)))) -(-744 R UP) +(-743 R UP) ((|constructor| (NIL "A \\spadtype{MonogenicAlgebra} is an algebra of finite rank which can be generated by a single element.")) (|derivationCoordinates| (((|Matrix| |#1|) (|Vector| $) (|Mapping| |#1| |#1|)) "\\spad{derivationCoordinates(b, ')} returns \\spad{M} such that \\spad{b' = M b}.")) (|lift| ((|#2| $) "\\spad{lift(z)} returns a minimal degree univariate polynomial up such that \\spad{z=reduce up}.")) (|convert| (($ |#2|) "\\spad{convert(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|reduce| (((|Union| $ "failed") (|Fraction| |#2|)) "\\spad{reduce(frac)} converts the fraction \\spad{frac} to an algebra element.") (($ |#2|) "\\spad{reduce(up)} converts the univariate polynomial \\spad{up} to an algebra element,{} reducing by the \\spad{definingPolynomial()} if necessary.")) (|definingPolynomial| ((|#2|) "\\spad{definingPolynomial()} returns the minimal polynomial which \\spad{generator()} satisfies.")) (|generator| (($) "\\spad{generator()} returns the generator for this domain."))) -((-4418 |has| |#1| (-376)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 |has| |#1| (-376)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-745 S) +(-744 S) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-746) +(-745) ((|constructor| (NIL "The class of multiplicative monoids,{} \\spadignore{i.e.} semigroups with a multiplicative identity element. \\blankline")) (|recip| (((|Union| $ "failed") $) "\\spad{recip(x)} tries to compute the multiplicative inverse for \\spad{x} or \"failed\" if it cannot find the inverse (see unitsKnown).")) (** (($ $ (|NonNegativeInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (|one?| (((|Boolean|) $) "\\spad{one?(x)} tests if \\spad{x} is equal to 1.")) (|sample| (($) "\\spad{sample yields} a value of type \\%")) ((|One|) (($) "1 is the multiplicative identity."))) NIL NIL -(-747 -3495 UP) +(-746 -3494 UP) ((|constructor| (NIL "Tools for handling monomial extensions.")) (|decompose| (((|Record| (|:| |poly| |#2|) (|:| |normal| (|Fraction| |#2|)) (|:| |special| (|Fraction| |#2|))) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{decompose(f, D)} returns \\spad{[p,n,s]} such that \\spad{f = p+n+s},{} all the squarefree factors of \\spad{denom(n)} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} \\spad{denom(s)} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{n} and \\spad{s} are proper fractions (no pole at infinity). \\spad{D} is the derivation to use.")) (|normalDenom| ((|#2| (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{normalDenom(f, D)} returns the product of all the normal factors of \\spad{denom(f)}. \\spad{D} is the derivation to use.")) (|splitSquarefree| (((|Record| (|:| |normal| (|Factored| |#2|)) (|:| |special| (|Factored| |#2|))) |#2| (|Mapping| |#2| |#2|)) "\\spad{splitSquarefree(p, D)} returns \\spad{[n_1 n_2\\^2 ... n_m\\^m, s_1 s_2\\^2 ... s_q\\^q]} such that \\spad{p = n_1 n_2\\^2 ... n_m\\^m s_1 s_2\\^2 ... s_q\\^q},{} each \\spad{n_i} is normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D} and each \\spad{s_i} is special \\spad{w}.\\spad{r}.\\spad{t} \\spad{D}. \\spad{D} is the derivation to use.")) (|split| (((|Record| (|:| |normal| |#2|) (|:| |special| |#2|)) |#2| (|Mapping| |#2| |#2|)) "\\spad{split(p, D)} returns \\spad{[n,s]} such that \\spad{p = n s},{} all the squarefree factors of \\spad{n} are normal \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D},{} and \\spad{s} is special \\spad{w}.\\spad{r}.\\spad{t}. \\spad{D}. \\spad{D} is the derivation to use."))) NIL NIL -(-748 |VarSet| E1 E2 R S PR PS) +(-747 |VarSet| E1 E2 R S PR PS) ((|constructor| (NIL "\\indented{1}{Utilities for MPolyCat} Author: Manuel Bronstein Date Created: 1987 Date Last Updated: 28 March 1990 (PG)")) (|reshape| ((|#7| (|List| |#5|) |#6|) "\\spad{reshape(l,p)} \\undocumented")) (|map| ((|#7| (|Mapping| |#5| |#4|) |#6|) "\\spad{map(f,p)} \\undocumented "))) NIL NIL -(-749 |Vars1| |Vars2| E1 E2 R PR1 PR2) +(-748 |Vars1| |Vars2| E1 E2 R PR1 PR2) ((|constructor| (NIL "This package \\undocumented")) (|map| ((|#7| (|Mapping| |#2| |#1|) |#6|) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-750 E OV R PPR) +(-749 E OV R PPR) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are polynomials over some ring \\spad{R} over which we can factor. It is used internally by packages such as the solve package which need to work with polynomials in a specific set of variables with coefficients which are polynomials in all the other variables.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors a polynomial with polynomial coefficients.")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-751 |vl| R) +(-750 |vl| R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are from a user specified list of symbols. The ordering is specified by the position of the variable in the list. The coefficient ring may be non commutative,{} but the variables are assumed to commute."))) -(((-4427 "*") |has| |#2| (-175)) (-4418 |has| |#2| (-569)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-878 |#1|) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-752 E OV R PRF) +(((-4426 "*") |has| |#2| (-175)) (-4417 |has| |#2| (-569)) (-4422 |has| |#2| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-877 |#1|) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-751 E OV R PRF) ((|constructor| (NIL "\\indented{3}{This package exports a factor operation for multivariate polynomials} with coefficients which are rational functions over some ring \\spad{R} over which we can factor. It is used internally by packages such as primary decomposition which need to work with polynomials with rational function coefficients,{} \\spadignore{i.e.} themselves fractions of polynomials.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(prf)} factors a polynomial with rational function coefficients.")) (|pushuconst| ((|#4| (|Fraction| (|Polynomial| |#3|)) |#2|) "\\spad{pushuconst(r,var)} takes a rational function and raises all occurances of the variable \\spad{var} to the polynomial level.")) (|pushucoef| ((|#4| (|SparseUnivariatePolynomial| (|Polynomial| |#3|)) |#2|) "\\spad{pushucoef(upoly,var)} converts the anonymous univariate polynomial \\spad{upoly} to a polynomial in \\spad{var} over rational functions.")) (|pushup| ((|#4| |#4| |#2|) "\\spad{pushup(prf,var)} raises all occurences of the variable \\spad{var} in the coefficients of the polynomial \\spad{prf} back to the polynomial level.")) (|pushdterm| ((|#4| (|SparseUnivariatePolynomial| |#4|) |#2|) "\\spad{pushdterm(monom,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the monomial \\spad{monom}.")) (|pushdown| ((|#4| |#4| |#2|) "\\spad{pushdown(prf,var)} pushes all top level occurences of the variable \\spad{var} into the coefficient domain for the polynomial \\spad{prf}.")) (|totalfract| (((|Record| (|:| |sup| (|Polynomial| |#3|)) (|:| |inf| (|Polynomial| |#3|))) |#4|) "\\spad{totalfract(prf)} takes a polynomial whose coefficients are themselves fractions of polynomials and returns a record containing the numerator and denominator resulting from putting \\spad{prf} over a common denominator.")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-753 E OV R P) +(-752 E OV R P) ((|constructor| (NIL "\\indented{1}{MRationalFactorize contains the factor function for multivariate} polynomials over the quotient field of a ring \\spad{R} such that the package MultivariateFactorize can factor multivariate polynomials over \\spad{R}.")) (|factor| (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} with coefficients which are fractions of elements of \\spad{R}."))) NIL NIL -(-754 R S M) +(-753 R S M) ((|constructor| (NIL "\\spad{MonoidRingFunctions2} implements functions between two monoid rings defined with the same monoid over different rings.")) (|map| (((|MonoidRing| |#2| |#3|) (|Mapping| |#2| |#1|) (|MonoidRing| |#1| |#3|)) "\\spad{map(f,u)} maps \\spad{f} onto the coefficients \\spad{f} the element \\spad{u} of the monoid ring to create an element of a monoid ring with the same monoid \\spad{b}."))) NIL NIL -(-755 R M) +(-754 R M) ((|constructor| (NIL "\\spadtype{MonoidRing}(\\spad{R},{}\\spad{M}),{} implements the algebra of all maps from the monoid \\spad{M} to the commutative ring \\spad{R} with finite support. Multiplication of two maps \\spad{f} and \\spad{g} is defined to map an element \\spad{c} of \\spad{M} to the (convolution) sum over {\\em f(a)g(b)} such that {\\em ab = c}. Thus \\spad{M} can be identified with a canonical basis and the maps can also be considered as formal linear combinations of the elements in \\spad{M}. Scalar multiples of a basis element are called monomials. A prominent example is the class of polynomials where the monoid is a direct product of the natural numbers with pointwise addition. When \\spad{M} is \\spadtype{FreeMonoid Symbol},{} one gets polynomials in infinitely many non-commuting variables. Another application area is representation theory of finite groups \\spad{G},{} where modules over \\spadtype{MonoidRing}(\\spad{R},{}\\spad{G}) are studied.")) (|reductum| (($ $) "\\spad{reductum(f)} is \\spad{f} minus its leading monomial.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} gives the coefficient of \\spad{f},{} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|leadingMonomial| ((|#2| $) "\\spad{leadingMonomial(f)} gives the monomial of \\spad{f} whose corresponding monoid element is the greatest among all those with non-zero coefficients.")) (|numberOfMonomials| (((|NonNegativeInteger|) $) "\\spad{numberOfMonomials(f)} is the number of non-zero coefficients with respect to the canonical basis.")) (|monomials| (((|List| $) $) "\\spad{monomials(f)} gives the list of all monomials whose sum is \\spad{f}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(f)} lists all non-zero coefficients.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(f)} tests if \\spad{f} is a single monomial.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,u)} maps function \\spad{fn} onto the coefficients of the non-zero monomials of \\spad{u}.")) (|terms| (((|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|))) $) "\\spad{terms(f)} gives the list of non-zero coefficients combined with their corresponding basis element as records. This is the internal representation.")) (|coerce| (($ (|List| (|Record| (|:| |coef| |#1|) (|:| |monom| |#2|)))) "\\spad{coerce(lt)} converts a list of terms and coefficients to a member of the domain.")) (|coefficient| ((|#1| $ |#2|) "\\spad{coefficient(f,m)} extracts the coefficient of \\spad{m} in \\spad{f} with respect to the canonical basis \\spad{M}.")) (|monomial| (($ |#1| |#2|) "\\spad{monomial(r,m)} creates a scalar multiple of the basis element \\spad{m}."))) -((-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) (-4422 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-861)))) -(-756 S) +((-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) (-4421 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-860)))) +(-755 S) ((|constructor| (NIL "A multiset is a set with multiplicities.")) (|remove!| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove!(p,ms,number)} removes destructively at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove!(x,ms,number)} removes destructively at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|remove| (($ (|Mapping| (|Boolean|) |#1|) $ (|Integer|)) "\\spad{remove(p,ms,number)} removes at most \\spad{number} copies of elements \\spad{x} such that \\spad{p(x)} is \\spadfun{\\spad{true}} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.") (($ |#1| $ (|Integer|)) "\\spad{remove(x,ms,number)} removes at most \\spad{number} copies of element \\spad{x} if \\spad{number} is positive,{} all of them if \\spad{number} equals zero,{} and all but at most \\spad{-number} if \\spad{number} is negative.")) (|members| (((|List| |#1|) $) "\\spad{members(ms)} returns a list of the elements of \\spad{ms} {\\em without} their multiplicity. See also \\spadfun{parts}.")) (|multiset| (($ (|List| |#1|)) "\\spad{multiset(ls)} creates a multiset with elements from \\spad{ls}.") (($ |#1|) "\\spad{multiset(s)} creates a multiset with singleton \\spad{s}.") (($) "\\spad{multiset()}\\$\\spad{D} creates an empty multiset of domain \\spad{D}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-757 S) +((-4424 . T) (-4414 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-756 S) ((|constructor| (NIL "A multi-set aggregate is a set which keeps track of the multiplicity of its elements."))) -((-4415 . T) (-4426 . T)) +((-4414 . T) (-4425 . T)) NIL -(-758) +(-757) ((|constructor| (NIL "\\spadtype{MoreSystemCommands} implements an interface with the system command facility. These are the commands that are issued from source files or the system interpreter and they start with a close parenthesis,{} \\spadignore{e.g.} \\spadsyscom{what} commands.")) (|systemCommand| (((|Void|) (|String|)) "\\spad{systemCommand(cmd)} takes the string \\spadvar{\\spad{cmd}} and passes it to the runtime environment for execution as a system command. Although various things may be printed,{} no usable value is returned."))) NIL NIL -(-759 S) +(-758 S) ((|constructor| (NIL "This package exports tools for merging lists")) (|mergeDifference| (((|List| |#1|) (|List| |#1|) (|List| |#1|)) "\\spad{mergeDifference(l1,l2)} returns a list of elements in \\spad{l1} not present in \\spad{l2}. Assumes lists are ordered and all \\spad{x} in \\spad{l2} are also in \\spad{l1}."))) NIL NIL -(-760 |Coef| |Var|) +(-759 |Coef| |Var|) ((|constructor| (NIL "\\spadtype{MultivariateTaylorSeriesCategory} is the most general multivariate Taylor series category.")) (|integrate| (($ $ |#2|) "\\spad{integrate(f,x)} returns the anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{x} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| (((|NonNegativeInteger|) $ |#2| (|NonNegativeInteger|)) "\\spad{order(f,x,n)} returns \\spad{min(n,order(f,x))}.") (((|NonNegativeInteger|) $ |#2|) "\\spad{order(f,x)} returns the order of \\spad{f} viewed as a series in \\spad{x} may result in an infinite loop if \\spad{f} has no non-zero terms.")) (|monomial| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[x1,x2,...,xk],[n1,n2,...,nk])} returns \\spad{a * x1^n1 * ... * xk^nk}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} returns \\spad{a*x^n}.")) (|extend| (($ $ (|NonNegativeInteger|)) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree \\spad{<= n} to be computed.")) (|coefficient| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(f,[x1,x2,...,xk],[n1,n2,...,nk])} returns the coefficient of \\spad{x1^n1 * ... * xk^nk} in \\spad{f}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{coefficient(f,x,n)} returns the coefficient of \\spad{x^n} in \\spad{f}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL -(-761 OV E R P) +(-760 OV E R P) ((|constructor| (NIL "\\indented{2}{This is the top level package for doing multivariate factorization} over basic domains like \\spadtype{Integer} or \\spadtype{Fraction Integer}.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain where \\spad{p} is represented as a univariate polynomial with multivariate coefficients") (((|Factored| |#4|) |#4|) "\\spad{factor(p)} factors the multivariate polynomial \\spad{p} over its coefficient domain"))) NIL NIL -(-762 E OV R P) +(-761 E OV R P) ((|constructor| (NIL "Author : \\spad{P}.Gianni This package provides the functions for the computation of the square free decomposition of a multivariate polynomial. It uses the package GenExEuclid for the resolution of the equation \\spad{Af + Bg = h} and its generalization to \\spad{n} polynomials over an integral domain and the package \\spad{MultivariateLifting} for the \"multivariate\" lifting.")) (|normDeriv2| (((|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{normDeriv2 should} be local")) (|myDegree| (((|List| (|NonNegativeInteger|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|NonNegativeInteger|)) "\\spad{myDegree should} be local")) (|lift| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|SparseUnivariatePolynomial| |#3|) |#4| (|List| |#2|) (|List| (|NonNegativeInteger|)) (|List| |#3|)) "\\spad{lift should} be local")) (|check| (((|Boolean|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|)))) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{check should} be local")) (|coefChoose| ((|#4| (|Integer|) (|Factored| |#4|)) "\\spad{coefChoose should} be local")) (|intChoose| (((|Record| (|:| |upol| (|SparseUnivariatePolynomial| |#3|)) (|:| |Lval| (|List| |#3|)) (|:| |Lfact| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) (|:| |ctpol| |#3|)) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{intChoose should} be local")) (|nsqfree| (((|Record| (|:| |unitPart| |#4|) (|:| |suPart| (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#4|)) (|:| |exponent| (|Integer|)))))) (|SparseUnivariatePolynomial| |#4|) (|List| |#2|) (|List| (|List| |#3|))) "\\spad{nsqfree should} be local")) (|consnewpol| (((|Record| (|:| |pol| (|SparseUnivariatePolynomial| |#4|)) (|:| |polval| (|SparseUnivariatePolynomial| |#3|))) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#3|) (|Integer|)) "\\spad{consnewpol should} be local")) (|univcase| (((|Factored| |#4|) |#4| |#2|) "\\spad{univcase should} be local")) (|compdegd| (((|Integer|) (|List| (|Record| (|:| |factor| (|SparseUnivariatePolynomial| |#3|)) (|:| |exponent| (|Integer|))))) "\\spad{compdegd should} be local")) (|squareFreePrim| (((|Factored| |#4|) |#4|) "\\spad{squareFreePrim(p)} compute the square free decomposition of a primitive multivariate polynomial \\spad{p}.")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p} presented as a univariate polynomial with multivariate coefficients.") (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} computes the square free decomposition of a multivariate polynomial \\spad{p}."))) NIL NIL -(-763 S R) +(-762 S R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) NIL NIL -(-764 R) +(-763 R) ((|constructor| (NIL "NonAssociativeAlgebra is the category of non associative algebras (modules which are themselves non associative rngs). Axioms \\indented{3}{r*(a*b) = (r*a)*b = a*(r*b)}")) (|plenaryPower| (($ $ (|PositiveInteger|)) "\\spad{plenaryPower(a,n)} is recursively defined to be \\spad{plenaryPower(a,n-1)*plenaryPower(a,n-1)} for \\spad{n>1} and \\spad{a} for \\spad{n=1}."))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL -(-765) +(-764) ((|constructor| (NIL "This package uses the NAG Library to compute the zeros of a polynomial with real or complex coefficients. See \\downlink{Manual Page}{\\spad{manpageXXc02}}.")) (|c02agf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02agf(a,n,scale,ifail)} finds all the roots of a real polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02agf}.")) (|c02aff| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Boolean|) (|Integer|)) "\\spad{c02aff(a,n,scale,ifail)} finds all the roots of a complex polynomial equation,{} using a variant of Laguerre's Method. See \\downlink{Manual Page}{manpageXXc02aff}."))) NIL NIL -(-766) +(-765) ((|constructor| (NIL "This package uses the NAG Library to calculate real zeros of continuous real functions of one or more variables. (Complex equations must be expressed in terms of the equivalent larger system of real equations.) See \\downlink{Manual Page}{\\spad{manpageXXc05}}.")) (|c05pbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp35| FCN)))) "\\spad{c05pbf(n,ldfjac,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. The user must provide the Jacobian. See \\downlink{Manual Page}{manpageXXc05pbf}.")) (|c05nbf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp6| FCN)))) "\\spad{c05nbf(n,lwa,x,xtol,ifail,fcn)} is an easy-to-use routine to find a solution of a system of nonlinear equations by a modification of the Powell hybrid method. See \\downlink{Manual Page}{manpageXXc05nbf}.")) (|c05adf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{c05adf(a,b,eps,eta,ifail,f)} locates a zero of a continuous function in a given interval by a combination of the methods of linear interpolation,{} extrapolation and bisection. See \\downlink{Manual Page}{manpageXXc05adf}."))) NIL NIL -(-767) +(-766) ((|constructor| (NIL "This package uses the NAG Library to calculate the discrete Fourier transform of a sequence of real or complex data values,{} and applies it to calculate convolutions and correlations. See \\downlink{Manual Page}{\\spad{manpageXXc06}}.")) (|c06gsf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gsf(m,n,x,ifail)} takes \\spad{m} Hermitian sequences,{} each containing \\spad{n} data values,{} and forms the real and imaginary parts of the \\spad{m} corresponding complex sequences. See \\downlink{Manual Page}{manpageXXc06gsf}.")) (|c06gqf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gqf(m,n,x,ifail)} forms the complex conjugates,{} each containing \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gqf}.")) (|c06gcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gcf(n,y,ifail)} forms the complex conjugate of a sequence of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gcf}.")) (|c06gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06gbf(n,x,ifail)} forms the complex conjugate of \\spad{n} data values. See \\downlink{Manual Page}{manpageXXc06gbf}.")) (|c06fuf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fuf(m,n,init,x,y,trigm,trign,ifail)} computes the two-dimensional discrete Fourier transform of a bivariate sequence of complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fuf}.")) (|c06frf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06frf(m,n,init,x,y,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06frf}.")) (|c06fqf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fqf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} Hermitian sequences,{} each containing \\spad{n} complex data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fqf}.")) (|c06fpf| (((|Result|) (|Integer|) (|Integer|) (|String|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06fpf(m,n,init,x,trig,ifail)} computes the discrete Fourier transforms of \\spad{m} sequences,{} each containing \\spad{n} real data values. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXc06fpf}.")) (|c06ekf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ekf(job,n,x,y,ifail)} calculates the circular convolution of two real vectors of period \\spad{n}. No extra workspace is required. See \\downlink{Manual Page}{manpageXXc06ekf}.")) (|c06ecf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ecf(n,x,y,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ecf}.")) (|c06ebf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06ebf(n,x,ifail)} calculates the discrete Fourier transform of a Hermitian sequence of \\spad{n} complex data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06ebf}.")) (|c06eaf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{c06eaf(n,x,ifail)} calculates the discrete Fourier transform of a sequence of \\spad{n} real data values. (No extra workspace required.) See \\downlink{Manual Page}{manpageXXc06eaf}."))) NIL NIL -(-768) +(-767) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical value of definite integrals in one or more dimensions and to evaluate weights and abscissae of integration rules. See \\downlink{Manual Page}{\\spad{manpageXXd01}}.")) (|d01gbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01gbf(ndim,a,b,maxcls,eps,lenwrk,mincls,wrkstr,ifail,functn)} returns an approximation to the integral of a function over a hyper-rectangular region,{} using a Monte Carlo method. An approximate relative error estimate is also returned. This routine is suitable for low accuracy work. See \\downlink{Manual Page}{manpageXXd01gbf}.")) (|d01gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|)) "\\spad{d01gaf(x,y,n,ifail)} integrates a function which is specified numerically at four or more points,{} over the whole of its specified range,{} using third-order finite-difference formulae with error estimates,{} according to a method due to Gill and Miller. See \\downlink{Manual Page}{manpageXXd01gaf}.")) (|d01fcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp4| FUNCTN)))) "\\spad{d01fcf(ndim,a,b,maxpts,eps,lenwrk,minpts,ifail,functn)} attempts to evaluate a multi-dimensional integral (up to 15 dimensions),{} with constant and finite limits,{} to a specified relative accuracy,{} using an adaptive subdivision strategy. See \\downlink{Manual Page}{manpageXXd01fcf}.")) (|d01bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{d01bbf(a,b,itype,n,gtype,ifail)} returns the weight appropriate to a Gaussian quadrature. The formulae provided are Gauss-Legendre,{} Gauss-Rational,{} Gauss- Laguerre and Gauss-Hermite. See \\downlink{Manual Page}{manpageXXd01bbf}.")) (|d01asf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01asf(a,omega,key,epsabs,limlst,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}infty): See \\downlink{Manual Page}{manpageXXd01asf}.")) (|d01aqf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01aqf(a,b,c,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the Hilbert transform of a function \\spad{g}(\\spad{x}) over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01aqf}.")) (|d01apf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01apf(a,b,alfa,beta,key,epsabs,epsrel,lw,liw,ifail,g)} is an adaptive integrator which calculates an approximation to the integral of a function \\spad{g}(\\spad{x})\\spad{w}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01apf}.")) (|d01anf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| G)))) "\\spad{d01anf(a,b,omega,key,epsabs,epsrel,lw,liw,ifail,g)} calculates an approximation to the sine or the cosine transform of a function \\spad{g} over [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01anf}.")) (|d01amf| (((|Result|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01amf(bound,inf,epsabs,epsrel,lw,liw,ifail,f)} calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over an infinite or semi-infinite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01amf}.")) (|d01alf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01alf(a,b,npts,points,epsabs,epsrel,lw,liw,ifail,f)} is a general purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01alf}.")) (|d01akf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01akf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is an adaptive integrator,{} especially suited to oscillating,{} non-singular integrands,{} which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01akf}.")) (|d01ajf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp1| F)))) "\\spad{d01ajf(a,b,epsabs,epsrel,lw,liw,ifail,f)} is a general-purpose integrator which calculates an approximation to the integral of a function \\spad{f}(\\spad{x}) over a finite interval [a,{}\\spad{b}]: See \\downlink{Manual Page}{manpageXXd01ajf}."))) NIL NIL -(-769) +(-768) ((|constructor| (NIL "This package uses the NAG Library to calculate the numerical solution of ordinary differential equations. There are two main types of problem,{} those in which all boundary conditions are specified at one point (initial-value problems),{} and those in which the boundary conditions are distributed between two or more points (boundary- value problems and eigenvalue problems). Routines are available for initial-value problems,{} two-point boundary-value problems and Sturm-Liouville eigenvalue problems. See \\downlink{Manual Page}{\\spad{manpageXXd02}}.")) (|d02raf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp41| FCN JACOBF JACEPS))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp42| G JACOBG JACGEP)))) "\\spad{d02raf(n,mnp,numbeg,nummix,tol,init,iy,ijac,lwork,liwork,np,x,y,deleps,ifail,fcn,g)} solves the two-point boundary-value problem with general boundary conditions for a system of ordinary differential equations,{} using a deferred correction technique and Newton iteration. See \\downlink{Manual Page}{manpageXXd02raf}.")) (|d02kef| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL))) (|FileName|) (|FileName|)) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval,monit,report)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. Files \\spad{monit} and \\spad{report} will be used to define the subroutines for the MONIT and REPORT arguments. See \\downlink{Manual Page}{manpageXXd02gbf}.") (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp10| COEFFN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp80| BDYVAL)))) "\\spad{d02kef(xpoint,m,k,tol,maxfun,match,elam,delam,hmax,maxit,ifail,coeffn,bdyval)} finds a specified eigenvalue of a regular singular second- order Sturm-Liouville system on a finite or infinite range,{} using a Pruefer transformation and a shooting method. It also reports values of the eigenfunction and its derivatives. Provision is made for discontinuities in the coefficient functions or their derivatives. See \\downlink{Manual Page}{manpageXXd02kef}. ASP domains \\spad{Asp12} and \\spad{Asp33} are used to supply default subroutines for the MONIT and REPORT arguments via their \\axiomOp{outputAsFortran} operation.")) (|d02gbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp77| FCNF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp78| FCNG)))) "\\spad{d02gbf(a,b,n,tol,mnp,lw,liw,c,d,gam,x,np,ifail,fcnf,fcng)} solves a general linear two-point boundary value problem for a system of ordinary differential equations using a deferred correction technique. See \\downlink{Manual Page}{manpageXXd02gbf}.")) (|d02gaf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02gaf(u,v,n,a,b,tol,mnp,lw,liw,x,np,ifail,fcn)} solves the two-point boundary-value problem with assigned boundary values for a system of ordinary differential equations,{} using a deferred correction technique and a Newton iteration. See \\downlink{Manual Page}{manpageXXd02gaf}.")) (|d02ejf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp31| PEDERV))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02ejf(xend,m,n,relabs,iw,x,y,tol,ifail,g,fcn,pederv,output)} integrates a stiff system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a variable-order,{} variable-step method implementing the Backward Differentiation Formulae (BDF),{} until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02ejf}.")) (|d02cjf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|String|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02cjf(xend,m,n,tol,relabs,x,y,ifail,g,fcn,output)} integrates a system of first-order ordinary differential equations over a range with suitable initial conditions,{} using a variable-order,{} variable-step Adams method until a user-specified function,{} if supplied,{} of the solution is zero,{} and returns the solution at points specified by the user,{} if desired. See \\downlink{Manual Page}{manpageXXd02cjf}.")) (|d02bhf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp9| G))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN)))) "\\spad{d02bhf(xend,n,irelab,hmax,x,y,tol,ifail,g,fcn)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} until a user-specified function of the solution is zero. See \\downlink{Manual Page}{manpageXXd02bhf}.")) (|d02bbf| (((|Result|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp7| FCN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp8| OUTPUT)))) "\\spad{d02bbf(xend,m,n,irelab,x,y,tol,ifail,fcn,output)} integrates a system of first-order ordinary differential equations over an interval with suitable initial conditions,{} using a Runge-Kutta-Merson method,{} and returns the solution at points specified by the user. See \\downlink{Manual Page}{manpageXXd02bbf}."))) NIL NIL -(-770) +(-769) ((|constructor| (NIL "This package uses the NAG Library to solve partial differential equations. See \\downlink{Manual Page}{\\spad{manpageXXd03}}.")) (|d03faf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|ThreeDimensionalMatrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03faf(xs,xf,l,lbdcnd,bdxs,bdxf,ys,yf,m,mbdcnd,bdys,bdyf,zs,zf,n,nbdcnd,bdzs,bdzf,lambda,ldimf,mdimf,lwrk,f,ifail)} solves the Helmholtz equation in Cartesian co-ordinates in three dimensions using the standard seven-point finite difference approximation. This routine is designed to be particularly efficient on vector processors. See \\downlink{Manual Page}{manpageXXd03faf}.")) (|d03eef| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|String|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp73| PDEF))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp74| BNDY)))) "\\spad{d03eef(xmin,xmax,ymin,ymax,ngx,ngy,lda,scheme,ifail,pdef,bndy)} discretizes a second order elliptic partial differential equation (PDE) on a rectangular region. See \\downlink{Manual Page}{manpageXXd03eef}.")) (|d03edf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{d03edf(ngx,ngy,lda,maxit,acc,iout,a,rhs,ub,ifail)} solves seven-diagonal systems of linear equations which arise from the discretization of an elliptic partial differential equation on a rectangular region. This routine uses a multigrid technique. See \\downlink{Manual Page}{manpageXXd03edf}."))) NIL NIL -(-771) +(-770) ((|constructor| (NIL "This package uses the NAG Library to calculate the interpolation of a function of one or two variables. When provided with the value of the function (and possibly one or more of its lowest-order derivatives) at each of a number of values of the variable(\\spad{s}),{} the routines provide either an interpolating function or an interpolated value. For some of the interpolating functions,{} there are supporting routines to evaluate,{} differentiate or integrate them. See \\downlink{Manual Page}{\\spad{manpageXXe01}}.")) (|e01sff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sff(m,x,y,f,rnw,fnodes,px,py,ifail)} evaluates at a given point the two-dimensional interpolating function computed by E01SEF. See \\downlink{Manual Page}{manpageXXe01sff}.")) (|e01sef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sef(m,x,y,f,nw,nq,rnw,rnq,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using a modified Shepard method. See \\downlink{Manual Page}{manpageXXe01sef}.")) (|e01sbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01sbf(m,x,y,f,triang,grads,px,py,ifail)} evaluates at a given point the two-dimensional interpolant function computed by E01SAF. See \\downlink{Manual Page}{manpageXXe01sbf}.")) (|e01saf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01saf(m,x,y,f,ifail)} generates a two-dimensional surface interpolating a set of scattered data points,{} using the method of Renka and Cline. See \\downlink{Manual Page}{manpageXXe01saf}.")) (|e01daf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01daf(mx,my,x,y,f,ifail)} computes a bicubic spline interpolating surface through a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. See \\downlink{Manual Page}{manpageXXe01daf}.")) (|e01bhf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{e01bhf(n,x,f,d,a,b,ifail)} evaluates the definite integral of a piecewise cubic Hermite interpolant over the interval [a,{}\\spad{b}]. See \\downlink{Manual Page}{manpageXXe01bhf}.")) (|e01bgf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bgf(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant and its first derivative at a set of points. See \\downlink{Manual Page}{manpageXXe01bgf}.")) (|e01bff| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bff(n,x,f,d,m,px,ifail)} evaluates a piecewise cubic Hermite interpolant at a set of points. See \\downlink{Manual Page}{manpageXXe01bff}.")) (|e01bef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e01bef(n,x,f,ifail)} computes a monotonicity-preserving piecewise cubic Hermite interpolant to a set of data points. See \\downlink{Manual Page}{manpageXXe01bef}.")) (|e01baf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e01baf(m,x,y,lck,lwrk,ifail)} determines a cubic spline to a given set of data. See \\downlink{Manual Page}{manpageXXe01baf}."))) NIL NIL -(-772) +(-771) ((|constructor| (NIL "This package uses the NAG Library to find a function which approximates a set of data points. Typically the data contain random errors,{} as of experimental measurement,{} which need to be smoothed out. To seek an approximation to the data,{} it is first necessary to specify for the approximating function a mathematical form (a polynomial,{} for example) which contains a number of unspecified coefficients: the appropriate fitting routine then derives for the coefficients the values which provide the best fit of that particular form. The package deals mainly with curve and surface fitting (\\spadignore{i.e.} fitting with functions of one and of two variables) when a polynomial or a cubic spline is used as the fitting function,{} since these cover the most common needs. However,{} fitting with other functions and/or more variables can be undertaken by means of general linear or nonlinear routines (some of which are contained in other packages) depending on whether the coefficients in the function occur linearly or nonlinearly. Cases where a graph rather than a set of data points is given can be treated simply by first reading a suitable set of points from the graph. The package also contains routines for evaluating,{} differentiating and integrating polynomial and spline curves and surfaces,{} once the numerical values of their coefficients have been determined. See \\downlink{Manual Page}{\\spad{manpageXXe02}}.")) (|e02zaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02zaf(px,py,lamda,mu,m,x,y,npoint,nadres,ifail)} sorts two-dimensional data into rectangular panels. See \\downlink{Manual Page}{manpageXXe02zaf}.")) (|e02gaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02gaf(m,la,nplus2,toler,a,b,ifail)} calculates an \\spad{l} solution to an over-determined system of \\indented{22}{1} linear equations. See \\downlink{Manual Page}{manpageXXe02gaf}.")) (|e02dff| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02dff(mx,my,px,py,x,y,lamda,mu,c,lwrk,liwrk,ifail)} calculates values of a bicubic spline representation. The spline is evaluated at all points on a rectangular grid. See \\downlink{Manual Page}{manpageXXe02dff}.")) (|e02def| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02def(m,px,py,x,y,lamda,mu,c,ifail)} calculates values of a bicubic spline representation. See \\downlink{Manual Page}{manpageXXe02def}.")) (|e02ddf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02ddf(start,m,x,y,f,w,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,ifail)} computes a bicubic spline approximation to a set of scattered data are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02ddf}.")) (|e02dcf| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{e02dcf(start,mx,x,my,y,f,s,nxest,nyest,lwrk,liwrk,nx,lamda,ny,mu,wrk,iwrk,ifail)} computes a bicubic spline approximation to a set of data values,{} given on a rectangular grid in the \\spad{x}-\\spad{y} plane. The knots of the spline are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02dcf}.")) (|e02daf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02daf(m,px,py,x,y,f,w,mu,point,npoint,nc,nws,eps,lamda,ifail)} forms a minimal,{} weighted least-squares bicubic spline surface fit with prescribed knots to a given set of data points. See \\downlink{Manual Page}{manpageXXe02daf}.")) (|e02bef| (((|Result|) (|String|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|))) "\\spad{e02bef(start,m,x,y,w,s,nest,lwrk,n,lamda,ifail,wrk,iwrk)} computes a cubic spline approximation to an arbitrary set of data points. The knot are located automatically,{} but a single parameter must be specified to control the trade-off between closeness of fit and smoothness of fit. See \\downlink{Manual Page}{manpageXXe02bef}.")) (|e02bdf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02bdf(ncap7,lamda,c,ifail)} computes the definite integral from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bdf}.")) (|e02bcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|) (|Integer|)) "\\spad{e02bcf(ncap7,lamda,c,x,left,ifail)} evaluates a cubic spline and its first three derivatives from its \\spad{B}-spline representation. See \\downlink{Manual Page}{manpageXXe02bcf}.")) (|e02bbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02bbf(ncap7,lamda,c,x,ifail)} evaluates a cubic spline representation. See \\downlink{Manual Page}{manpageXXe02bbf}.")) (|e02baf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02baf(m,ncap7,x,y,w,lamda,ifail)} computes a weighted least-squares approximation to an arbitrary set of data points by a cubic splines prescribed by the user. Cubic spline can also be carried out. See \\downlink{Manual Page}{manpageXXe02baf}.")) (|e02akf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|)) "\\spad{e02akf(np1,xmin,xmax,a,ia1,la,x,ifail)} evaluates a polynomial from its Chebyshev-series representation,{} allowing an arbitrary index increment for accessing the array of coefficients. See \\downlink{Manual Page}{manpageXXe02akf}.")) (|e02ajf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ajf(np1,xmin,xmax,a,ia1,la,qatm1,iaint1,laint,ifail)} determines the coefficients in the Chebyshev-series representation of the indefinite integral of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ajf}.")) (|e02ahf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02ahf(np1,xmin,xmax,a,ia1,la,iadif1,ladif,ifail)} determines the coefficients in the Chebyshev-series representation of the derivative of a polynomial given in Chebyshev-series form. See \\downlink{Manual Page}{manpageXXe02ahf}.")) (|e02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{e02agf(m,kplus1,nrows,xmin,xmax,x,y,w,mf,xf,yf,lyf,ip,lwrk,liwrk,ifail)} computes constrained weighted least-squares polynomial approximations in Chebyshev-series form to an arbitrary set of data points. The values of the approximations and any number of their derivatives can be specified at selected points. See \\downlink{Manual Page}{manpageXXe02agf}.")) (|e02aef| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|DoubleFloat|) (|Integer|)) "\\spad{e02aef(nplus1,a,xcap,ifail)} evaluates a polynomial from its Chebyshev-series representation. See \\downlink{Manual Page}{manpageXXe02aef}.")) (|e02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e02adf(m,kplus1,nrows,x,y,w,ifail)} computes weighted least-squares polynomial approximations to an arbitrary set of data points. See \\downlink{Manual Page}{manpageXXe02adf}."))) NIL NIL -(-773) +(-772) ((|constructor| (NIL "This package uses the NAG Library to perform optimization. An optimization problem involves minimizing a function (called the objective function) of several variables,{} possibly subject to restrictions on the values of the variables defined by a set of constraint functions. The routines in the NAG Foundation Library are concerned with function minimization only,{} since the problem of maximizing a given function can be transformed into a minimization problem simply by multiplying the function by \\spad{-1}. See \\downlink{Manual Page}{\\spad{manpageXXe04}}.")) (|e04ycf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04ycf(job,m,n,fsumsq,s,lv,v,ifail)} returns estimates of elements of the variance matrix of the estimated regression coefficients for a nonlinear least squares problem. The estimates are derived from the Jacobian of the function \\spad{f}(\\spad{x}) at the solution. See \\downlink{Manual Page}{manpageXXe04ycf}.")) (|e04ucf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Boolean|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp55| CONFUN))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04ucf(n,nclin,ncnln,nrowa,nrowj,nrowr,a,bl,bu,liwork,lwork,sta,cra,der,fea,fun,hes,infb,infs,linf,lint,list,maji,majp,mini,minp,mon,nonf,opt,ste,stao,stac,stoo,stoc,ve,istate,cjac,clamda,r,x,ifail,confun,objfun)} is designed to minimize an arbitrary smooth function subject to constraints on the variables,{} linear constraints. (E04UCF may be used for unconstrained,{} bound-constrained and linearly constrained optimization.) The user must provide subroutines that define the objective and constraint functions and as many of their first partial derivatives as possible. Unspecified derivatives are approximated by finite differences. All matrices are treated as dense,{} and hence E04UCF is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04ucf}.")) (|e04naf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Boolean|) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp20| QPHESS)))) "\\spad{e04naf(itmax,msglvl,n,nclin,nctotl,nrowa,nrowh,ncolh,bigbnd,a,bl,bu,cvec,featol,hess,cold,lpp,orthog,liwork,lwork,x,istate,ifail,qphess)} is a comprehensive programming (QP) or linear programming (LP) problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04naf}.")) (|e04mbf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{e04mbf(itmax,msglvl,n,nclin,nctotl,nrowa,a,bl,bu,cvec,linobj,liwork,lwork,x,ifail)} is an easy-to-use routine for solving linear programming problems,{} or for finding a feasible point for such problems. It is not intended for large sparse problems. See \\downlink{Manual Page}{manpageXXe04mbf}.")) (|e04jaf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp24| FUNCT1)))) "\\spad{e04jaf(n,ibound,liw,lw,bl,bu,x,ifail,funct1)} is an easy-to-use quasi-Newton algorithm for finding a minimum of a function \\spad{F}(\\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ),{} subject to fixed upper and \\indented{25}{1\\space{2}2\\space{6}\\spad{n}} lower bounds of the independent variables \\spad{x} ,{}\\spad{x} ,{}...,{}\\spad{x} ,{} using \\indented{43}{1\\space{2}2\\space{6}\\spad{n}} function values only. See \\downlink{Manual Page}{manpageXXe04jaf}.")) (|e04gcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp19| LSFUN2)))) "\\spad{e04gcf(m,n,liw,lw,x,ifail,lsfun2)} is an easy-to-use quasi-Newton algorithm for finding an unconstrained minimum of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). First derivatives are required. See \\downlink{Manual Page}{manpageXXe04gcf}.")) (|e04fdf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp50| LSFUN1)))) "\\spad{e04fdf(m,n,liw,lw,x,ifail,lsfun1)} is an easy-to-use algorithm for finding an unconstrained minimum of a sum of squares of \\spad{m} nonlinear functions in \\spad{n} variables (m>=n). No derivatives are required. See \\downlink{Manual Page}{manpageXXe04fdf}.")) (|e04dgf| (((|Result|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp49| OBJFUN)))) "\\spad{e04dgf(n,es,fu,it,lin,list,ma,op,pr,sta,sto,ve,x,ifail,objfun)} minimizes an unconstrained nonlinear function of several variables using a pre-conditioned,{} limited memory quasi-Newton conjugate gradient method. First derivatives are required. The routine is intended for use on large scale problems. See \\downlink{Manual Page}{manpageXXe04dgf}."))) NIL NIL -(-774) +(-773) ((|constructor| (NIL "This package uses the NAG Library to provide facilities for matrix factorizations and associated transformations. See \\downlink{Manual Page}{\\spad{manpageXXf01}}.")) (|f01ref| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01ref(wheret,m,n,ncolq,lda,theta,a,ifail)} returns the first \\spad{ncolq} columns of the complex \\spad{m} by \\spad{m} unitary matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01ref}.")) (|f01rdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rdf(trans,wheret,m,n,a,lda,theta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01rdf}.")) (|f01rcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f01rcf(m,n,lda,a,ifail)} finds the QR factorization of the complex \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01rcf}.")) (|f01qef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qef(wheret,m,n,ncolq,lda,zeta,a,ifail)} returns the first \\spad{ncolq} columns of the real \\spad{m} by \\spad{m} orthogonal matrix \\spad{Q},{} where \\spad{Q} is given as the product of Householder transformation matrices. See \\downlink{Manual Page}{manpageXXf01qef}.")) (|f01qdf| (((|Result|) (|String|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qdf(trans,wheret,m,n,a,lda,zeta,ncolb,ldb,b,ifail)} performs one of the transformations See \\downlink{Manual Page}{manpageXXf01qdf}.")) (|f01qcf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01qcf(m,n,lda,a,ifail)} finds the QR factorization of the real \\spad{m} by \\spad{n} matrix A,{} where m>=n. See \\downlink{Manual Page}{manpageXXf01qcf}.")) (|f01mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01mcf(n,avals,lal,nrow,ifail)} computes the Cholesky factorization of a real symmetric positive-definite variable-bandwidth matrix. See \\downlink{Manual Page}{manpageXXf01mcf}.")) (|f01maf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{f01maf(n,nz,licn,lirn,abort,avals,irn,icn,droptl,densw,ifail)} computes an incomplete Cholesky factorization of a real sparse symmetric positive-definite matrix A. See \\downlink{Manual Page}{manpageXXf01maf}.")) (|f01bsf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Boolean|) (|DoubleFloat|) (|Boolean|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f01bsf(n,nz,licn,ivect,jvect,icn,ikeep,grow,eta,abort,idisp,avals,ifail)} factorizes a real sparse matrix using the pivotal sequence previously obtained by F01BRF when a matrix of the same sparsity pattern was factorized. See \\downlink{Manual Page}{manpageXXf01bsf}.")) (|f01brf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Boolean|) (|List| (|Boolean|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f01brf(n,nz,licn,lirn,pivot,lblock,grow,abort,a,irn,icn,ifail)} factorizes a real sparse matrix. The routine either forms the LU factorization of a permutation of the entire matrix,{} or,{} optionally,{} first permutes the matrix to block lower triangular form and then only factorizes the diagonal blocks. See \\downlink{Manual Page}{manpageXXf01brf}."))) NIL NIL -(-775) +(-774) ((|constructor| (NIL "This package uses the NAG Library to compute \\begin{items} \\item eigenvalues and eigenvectors of a matrix \\item eigenvalues and eigenvectors of generalized matrix eigenvalue problems \\item singular values and singular vectors of a matrix. \\end{items} See \\downlink{Manual Page}{\\spad{manpageXXf02}}.")) (|f02xef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f02xef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldph,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general complex matrix. See \\downlink{Manual Page}{manpageXXf02xef}.")) (|f02wef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Boolean|) (|Integer|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02wef(m,n,lda,ncolb,ldb,wantq,ldq,wantp,ldpt,a,b,ifail)} returns all,{} or part,{} of the singular value decomposition of a general real matrix. See \\downlink{Manual Page}{manpageXXf02wef}.")) (|f02fjf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE))) (|FileName|)) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image,monit)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.") (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp27| DOT))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| IMAGE)))) "\\spad{f02fjf(n,k,tol,novecs,nrx,lwork,lrwork,liwork,m,noits,x,ifail,dot,image)} finds eigenvalues of a real sparse symmetric or generalized symmetric eigenvalue problem. See \\downlink{Manual Page}{manpageXXf02fjf}.")) (|f02bjf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Boolean|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bjf(n,ia,ib,eps1,matv,iv,a,b,ifail)} calculates all the eigenvalues and,{} if required,{} all the eigenvectors of the generalized eigenproblem Ax=(lambda)Bx where A and \\spad{B} are real,{} square matrices,{} using the QZ algorithm. See \\downlink{Manual Page}{manpageXXf02bjf}.")) (|f02bbf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02bbf(ia,n,alb,ub,m,iv,a,ifail)} calculates selected eigenvalues of a real symmetric matrix by reduction to tridiagonal form,{} bisection and inverse iteration,{} where the selected eigenvalues lie within a given interval. See \\downlink{Manual Page}{manpageXXf02bbf}.")) (|f02axf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02axf(ar,iar,ai,iai,n,ivr,ivi,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02axf}.")) (|f02awf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02awf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalues of a complex Hermitian matrix. See \\downlink{Manual Page}{manpageXXf02awf}.")) (|f02akf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02akf(iar,iai,n,ivr,ivi,ar,ai,ifail)} calculates all the eigenvalues of a complex matrix. See \\downlink{Manual Page}{manpageXXf02akf}.")) (|f02ajf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02ajf(iar,iai,n,ar,ai,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02ajf}.")) (|f02agf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02agf(ia,n,ivr,ivi,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02agf}.")) (|f02aff| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aff(ia,n,a,ifail)} calculates all the eigenvalues of a real unsymmetric matrix. See \\downlink{Manual Page}{manpageXXf02aff}.")) (|f02aef| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aef(ia,ib,n,iv,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf02aef}.")) (|f02adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02adf(ia,ib,n,a,b,ifail)} calculates all the eigenvalues of Ax=(lambda)Bx,{} where A is a real symmetric matrix and \\spad{B} is a real symmetric positive- definite matrix. See \\downlink{Manual Page}{manpageXXf02adf}.")) (|f02abf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f02abf(a,ia,n,iv,ifail)} calculates all the eigenvalues of a real symmetric matrix. See \\downlink{Manual Page}{manpageXXf02abf}.")) (|f02aaf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f02aaf(ia,n,a,ifail)} calculates all the eigenvalue. See \\downlink{Manual Page}{manpageXXf02aaf}."))) NIL NIL -(-776) +(-775) ((|constructor| (NIL "This package uses the NAG Library to solve the matrix equation \\axiom{AX=B},{} where \\axiom{\\spad{B}} may be a single vector or a matrix of multiple right-hand sides. The matrix \\axiom{A} may be real,{} complex,{} symmetric,{} Hermitian positive- definite,{} or sparse. It may also be rectangular,{} in which case a least-squares solution is obtained. See \\downlink{Manual Page}{\\spad{manpageXXf04}}.")) (|f04qaf| (((|Result|) (|Integer|) (|Integer|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp30| APROD)))) "\\spad{f04qaf(m,n,damp,atol,btol,conlim,itnlim,msglvl,lrwork,liwork,b,ifail,aprod)} solves sparse unsymmetric equations,{} sparse linear least- squares problems and sparse damped linear least-squares problems,{} using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04qaf}.")) (|f04mcf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04mcf(n,al,lal,d,nrow,ir,b,nrb,iselct,nrx,ifail)} computes the approximate solution of a system of real linear equations with multiple right-hand sides,{} AX=B,{} where A is a symmetric positive-definite variable-bandwidth matrix,{} which has previously been factorized by F01MCF. Related systems may also be solved. See \\downlink{Manual Page}{manpageXXf04mcf}.")) (|f04mbf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Boolean|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp28| APROD))) (|Union| (|:| |fn| (|FileName|)) (|:| |fp| (|Asp34| MSOLVE)))) "\\spad{f04mbf(n,b,precon,shift,itnlim,msglvl,lrwork,liwork,rtol,ifail,aprod,msolve)} solves a system of real sparse symmetric linear equations using a Lanczos algorithm. See \\downlink{Manual Page}{manpageXXf04mbf}.")) (|f04maf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|Integer|)) (|Integer|)) "\\spad{f04maf(n,nz,avals,licn,irn,lirn,icn,wkeep,ikeep,inform,b,acc,noits,ifail)} \\spad{e} a sparse symmetric positive-definite system of linear equations,{} Ax=b,{} using a pre-conditioned conjugate gradient method,{} where A has been factorized by F01MAF. See \\downlink{Manual Page}{manpageXXf04maf}.")) (|f04jgf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|DoubleFloat|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04jgf(m,n,nra,tol,lwork,a,b,ifail)} finds the solution of a linear least-squares problem,{} Ax=b ,{} where A is a real \\spad{m} by \\spad{n} (m>=n) matrix and \\spad{b} is an \\spad{m} element vector. If the matrix of observations is not of full rank,{} then the minimal least-squares solution is returned. See \\downlink{Manual Page}{manpageXXf04jgf}.")) (|f04faf| (((|Result|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04faf(job,n,d,e,b,ifail)} calculates the approximate solution of a set of real symmetric positive-definite tridiagonal linear equations. See \\downlink{Manual Page}{manpageXXf04faf}.")) (|f04axf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|Integer|)) (|Matrix| (|DoubleFloat|))) "\\spad{f04axf(n,a,licn,icn,ikeep,mtype,idisp,rhs)} calculates the approximate solution of a set of real sparse linear equations with a single right-hand side,{} Ax=b or \\indented{1}{\\spad{T}} A x=b,{} where A has been factorized by F01BRF or F01BSF. See \\downlink{Manual Page}{manpageXXf04axf}.")) (|f04atf| (((|Result|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{f04atf(a,ia,b,n,iaa,ifail)} calculates the accurate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting,{} and iterative refinement. See \\downlink{Manual Page}{manpageXXf04atf}.")) (|f04asf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04asf(ia,b,n,a,ifail)} calculates the accurate solution of a set of real symmetric positive-definite linear equations with a single right- hand side,{} Ax=b,{} using a Cholesky factorization and iterative refinement. See \\downlink{Manual Page}{manpageXXf04asf}.")) (|f04arf| (((|Result|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|)) "\\spad{f04arf(ia,b,n,a,ifail)} calculates the approximate solution of a set of real linear equations with a single right-hand side,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04arf}.")) (|f04adf| (((|Result|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|Complex| (|DoubleFloat|))) (|Integer|)) "\\spad{f04adf(ia,b,ib,n,m,ic,a,ifail)} calculates the approximate solution of a set of complex linear equations with multiple right-hand sides,{} using an LU factorization with partial pivoting. See \\downlink{Manual Page}{manpageXXf04adf}."))) NIL NIL -(-777) +(-776) ((|constructor| (NIL "This package uses the NAG Library to compute matrix factorizations,{} and to solve systems of linear equations following the matrix factorizations. See \\downlink{Manual Page}{\\spad{manpageXXf07}}.")) (|f07fef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fef(uplo,n,nrhs,a,lda,ldb,b)} (DPOTRS) solves a real symmetric positive-definite system of linear equations with multiple right-hand sides,{} AX=B,{} where A has been factorized by F07FDF (DPOTRF). See \\downlink{Manual Page}{manpageXXf07fef}.")) (|f07fdf| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07fdf(uplo,n,lda,a)} (DPOTRF) computes the Cholesky factorization of a real symmetric positive-definite matrix. See \\downlink{Manual Page}{manpageXXf07fdf}.")) (|f07aef| (((|Result|) (|String|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|)) (|Integer|) (|Matrix| (|Integer|)) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07aef(trans,n,nrhs,a,lda,ipiv,ldb,b)} (DGETRS) solves a real system of linear equations with \\indented{36}{\\spad{T}} multiple right-hand sides,{} AX=B or A X=B,{} where A has been factorized by F07ADF (DGETRF). See \\downlink{Manual Page}{manpageXXf07aef}.")) (|f07adf| (((|Result|) (|Integer|) (|Integer|) (|Integer|) (|Matrix| (|DoubleFloat|))) "\\spad{f07adf(m,n,lda,a)} (DGETRF) computes the LU factorization of a real \\spad{m} by \\spad{n} matrix. See \\downlink{Manual Page}{manpageXXf07adf}."))) NIL NIL -(-778) +(-777) ((|constructor| (NIL "This package uses the NAG Library to compute some commonly occurring physical and mathematical functions. See \\downlink{Manual Page}{manpageXXs}.")) (|s21bdf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bdf(x,y,z,r,ifail)} returns a value of the symmetrised elliptic integral of the third kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bdf}.")) (|s21bcf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bcf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the second kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bcf}.")) (|s21bbf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21bbf(x,y,z,ifail)} returns a value of the symmetrised elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21bbf}.")) (|s21baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s21baf(x,y,ifail)} returns a value of an elementary integral,{} which occurs as a degenerate case of an elliptic integral of the first kind,{} via the routine name. See \\downlink{Manual Page}{manpageXXs21baf}.")) (|s20adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20adf(x,ifail)} returns a value for the Fresnel Integral \\spad{C}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20adf}.")) (|s20acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s20acf(x,ifail)} returns a value for the Fresnel Integral \\spad{S}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs20acf}.")) (|s19adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19adf(x,ifail)} returns a value for the Kelvin function kei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19adf}.")) (|s19acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19acf(x,ifail)} returns a value for the Kelvin function ker(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs19acf}.")) (|s19abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19abf(x,ifail)} returns a value for the Kelvin function bei(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19abf}.")) (|s19aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s19aaf(x,ifail)} returns a value for the Kelvin function ber(\\spad{x}) via the routine name. See \\downlink{Manual Page}{manpageXXs19aaf}.")) (|s18def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18def(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{I}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18def}.")) (|s18dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s18dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the modified Bessel functions \\indented{1}{\\spad{K}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs18dcf}.")) (|s18aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aff(x,ifail)} returns a value for the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18aff}.")) (|s18aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18aef(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{I} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18aef}.")) (|s18adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18adf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs18adf}.")) (|s18acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s18acf(x,ifail)} returns the value of the modified Bessel Function \\indented{1}{\\spad{K} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs18acf}.")) (|s17dlf| (((|Result|) (|Integer|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dlf(m,fnu,z,n,scale,ifail)} returns a sequence of values for the Hankel functions \\indented{2}{(1)\\space{11}(2)} \\indented{1}{\\spad{H}\\space{6}(\\spad{z}) or \\spad{H}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and} \\indented{2}{(nu)+n\\space{8}(nu)+n} \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dlf}.")) (|s17dhf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dhf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Bi}(\\spad{z}) or its derivative Bi'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dhf}.")) (|s17dgf| (((|Result|) (|String|) (|Complex| (|DoubleFloat|)) (|String|) (|Integer|)) "\\spad{s17dgf(deriv,z,scale,ifail)} returns the value of the Airy function \\spad{Ai}(\\spad{z}) or its derivative Ai'(\\spad{z}) for complex \\spad{z},{} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dgf}.")) (|s17def| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17def(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{J}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17def}.")) (|s17dcf| (((|Result|) (|DoubleFloat|) (|Complex| (|DoubleFloat|)) (|Integer|) (|String|) (|Integer|)) "\\spad{s17dcf(fnu,z,n,scale,ifail)} returns a sequence of values for the Bessel functions \\indented{1}{\\spad{Y}\\space{6}(\\spad{z}) for complex \\spad{z},{} non-negative (nu) and \\spad{n=0},{}1,{}...,{}\\spad{N}-1,{}} \\indented{2}{(nu)+n} with an option for exponential scaling. See \\downlink{Manual Page}{manpageXXs17dcf}.")) (|s17akf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17akf(x,ifail)} returns a value for the derivative of the Airy function \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17akf}.")) (|s17ajf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ajf(x,ifail)} returns a value of the derivative of the Airy function \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ajf}.")) (|s17ahf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17ahf(x,ifail)} returns a value of the Airy function,{} \\spad{Bi}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17ahf}.")) (|s17agf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17agf(x,ifail)} returns a value for the Airy function,{} \\spad{Ai}(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs17agf}.")) (|s17aff| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aff(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17aff}.")) (|s17aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17aef(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{J} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17aef}.")) (|s17adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17adf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs17adf}.")) (|s17acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s17acf(x,ifail)} returns the value of the Bessel Function \\indented{1}{\\spad{Y} (\\spad{x}),{} via the routine name.} \\indented{2}{0} See \\downlink{Manual Page}{manpageXXs17acf}.")) (|s15aef| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15aef(x,ifail)} returns the value of the error function erf(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15aef}.")) (|s15adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s15adf(x,ifail)} returns the value of the complementary error function,{} erfc(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs15adf}.")) (|s14baf| (((|Result|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|)) "\\spad{s14baf(a,x,tol,ifail)} computes values for the incomplete gamma functions \\spad{P}(a,{}\\spad{x}) and \\spad{Q}(a,{}\\spad{x}). See \\downlink{Manual Page}{manpageXXs14baf}.")) (|s14abf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14abf(x,ifail)} returns a value for the log,{} ln(Gamma(\\spad{x})),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14abf}.")) (|s14aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s14aaf(x,ifail)} returns the value of the Gamma function (Gamma)(\\spad{x}),{} via the routine name. See \\downlink{Manual Page}{manpageXXs14aaf}.")) (|s13adf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13adf(x,ifail)} returns the value of the sine integral See \\downlink{Manual Page}{manpageXXs13adf}.")) (|s13acf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13acf(x,ifail)} returns the value of the cosine integral See \\downlink{Manual Page}{manpageXXs13acf}.")) (|s13aaf| (((|Result|) (|DoubleFloat|) (|Integer|)) "\\spad{s13aaf(x,ifail)} returns the value of the exponential integral \\indented{1}{\\spad{E} (\\spad{x}),{} via the routine name.} \\indented{2}{1} See \\downlink{Manual Page}{manpageXXs13aaf}.")) (|s01eaf| (((|Result|) (|Complex| (|DoubleFloat|)) (|Integer|)) "\\spad{s01eaf(z,ifail)} S01EAF evaluates the exponential function exp(\\spad{z}) ,{} for complex \\spad{z}. See \\downlink{Manual Page}{manpageXXs01eaf}."))) NIL NIL -(-779) +(-778) ((|constructor| (NIL "Support functions for the NAG Library Link functions")) (|restorePrecision| (((|Void|)) "\\spad{restorePrecision()} \\undocumented{}")) (|checkPrecision| (((|Boolean|)) "\\spad{checkPrecision()} \\undocumented{}")) (|dimensionsOf| (((|SExpression|) (|Symbol|) (|Matrix| (|Integer|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}") (((|SExpression|) (|Symbol|) (|Matrix| (|DoubleFloat|))) "\\spad{dimensionsOf(s,m)} \\undocumented{}")) (|aspFilename| (((|String|) (|String|)) "\\spad{aspFilename(\"f\")} returns a String consisting of \\spad{\"f\"} suffixed with \\indented{1}{an extension identifying the current AXIOM session.}")) (|fortranLinkerArgs| (((|String|)) "\\spad{fortranLinkerArgs()} returns the current linker arguments")) (|fortranCompilerName| (((|String|)) "\\spad{fortranCompilerName()} returns the name of the currently selected \\indented{1}{Fortran compiler}"))) NIL NIL -(-780 S) +(-779 S) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-781) +(-780) ((|constructor| (NIL "NonAssociativeRng is a basic ring-type structure,{} not necessarily commutative or associative,{} and not necessarily with unit. Axioms \\indented{2}{x*(y+z) = x*y + x*z} \\indented{2}{(x+y)*z = x*z + y*z} Common Additional Axioms \\indented{2}{noZeroDivisors\\space{2}ab = 0 => \\spad{a=0} or \\spad{b=0}}")) (|antiCommutator| (($ $ $) "\\spad{antiCommutator(a,b)} returns \\spad{a*b+b*a}.")) (|commutator| (($ $ $) "\\spad{commutator(a,b)} returns \\spad{a*b-b*a}.")) (|associator| (($ $ $ $) "\\spad{associator(a,b,c)} returns \\spad{(a*b)*c-a*(b*c)}."))) NIL NIL -(-782 S) +(-781 S) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-783) +(-782) ((|constructor| (NIL "A NonAssociativeRing is a non associative rng which has a unit,{} the multiplication is not necessarily commutative or associative.")) (|coerce| (($ (|Integer|)) "\\spad{coerce(n)} coerces the integer \\spad{n} to an element of the ring.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring."))) NIL NIL -(-784 |Par|) +(-783 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the complex rational numbers. The results are expressed either as complex floating numbers or as complex rational numbers depending on the type of the precision parameter.")) (|complexEigenvectors| (((|List| (|Record| (|:| |outval| (|Complex| |#1|)) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| (|Complex| |#1|)))))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvectors(m,eps)} returns a list of records each one containing a complex eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} and are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|complexEigenvalues| (((|List| (|Complex| |#1|)) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) |#1|) "\\spad{complexEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as complex floats or complex rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|)))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over Complex Rationals with variable \\spad{x}.") (((|Polynomial| (|Complex| (|Fraction| (|Integer|)))) (|Matrix| (|Complex| (|Fraction| (|Integer|))))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over complex rationals with a new symbol as variable."))) NIL NIL -(-785 -3495) +(-784 -3494) ((|constructor| (NIL "\\spadtype{NumericContinuedFraction} provides functions \\indented{2}{for converting floating point numbers to continued fractions.}")) (|continuedFraction| (((|ContinuedFraction| (|Integer|)) |#1|) "\\spad{continuedFraction(f)} converts the floating point number \\spad{f} to a reduced continued fraction."))) NIL NIL -(-786 P -3495) +(-785 P -3494) ((|constructor| (NIL "This package provides a division and related operations for \\spadtype{MonogenicLinearOperator}\\spad{s} over a \\spadtype{Field}. Since the multiplication is in general non-commutative,{} these operations all have left- and right-hand versions. This package provides the operations based on left-division.")) (|leftLcm| ((|#1| |#1| |#1|) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftGcd| ((|#1| |#1| |#1|) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| ((|#1| |#1| |#1|) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| ((|#1| |#1| |#1|) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| |#1|) (|:| |remainder| |#1|)) |#1| |#1|) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''."))) NIL NIL -(-787 T$) +(-786 T$) NIL NIL NIL -(-788 UP -3495) +(-787 UP -3494) ((|constructor| (NIL "In this package \\spad{F} is a framed algebra over the integers (typically \\spad{F = Z[a]} for some algebraic integer a). The package provides functions to compute the integral closure of \\spad{Z} in the quotient quotient field of \\spad{F}.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|)))) (|Integer|)) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{Z} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| (|Integer|))) (|:| |basisDen| (|Integer|)) (|:| |basisInv| (|Matrix| (|Integer|))))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{Z} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{Z}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|discriminant| (((|Integer|)) "\\spad{discriminant()} returns the discriminant of the integral closure of \\spad{Z} in the quotient field of the framed algebra \\spad{F}."))) NIL NIL -(-789) +(-788) ((|retract| (((|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |nia| (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |mdnia| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-790 R) +(-789 R) ((|constructor| (NIL "NonLinearSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving. The solutions are given in the algebraic closure of \\spad{R} whenever possible.")) (|solve| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solve(lp)} finds the solution in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions in the algebraic closure of \\spad{R} of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}.")) (|solveInField| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{solveInField(lp)} finds the solution of the list \\spad{lp} of rational functions with respect to all the symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{solveInField(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-791) +(-790) ((|constructor| (NIL "\\spadtype{NonNegativeInteger} provides functions for non \\indented{2}{negative integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : \\spad{x*y = y*x}.")) (|random| (($ $) "\\spad{random(n)} returns a random integer from 0 to \\spad{n-1}.")) (|shift| (($ $ (|Integer|)) "\\spad{shift(a,i)} shift \\spad{a} by \\spad{i} bits.")) (|exquo| (((|Union| $ "failed") $ $) "\\spad{exquo(a,b)} returns the quotient of \\spad{a} and \\spad{b},{} or \"failed\" if \\spad{b} is zero or \\spad{a} rem \\spad{b} is zero.")) (|divide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{divide(a,b)} returns a record containing both remainder and quotient.")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two non negative integers \\spad{a} and \\spad{b}.")) (|rem| (($ $ $) "\\spad{a rem b} returns the remainder of \\spad{a} and \\spad{b}.")) (|quo| (($ $ $) "\\spad{a quo b} returns the quotient of \\spad{a} and \\spad{b},{} forgetting the remainder."))) -(((-4427 "*") . T)) +(((-4426 "*") . T)) NIL -(-792 R -3495) +(-791 R -3494) ((|constructor| (NIL "NonLinearFirstOrderODESolver provides a function for finding closed form first integrals of nonlinear ordinary differential equations of order 1.")) (|solve| (((|Union| |#2| "failed") |#2| |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(M(x,y), N(x,y), y, x)} returns \\spad{F(x,y)} such that \\spad{F(x,y) = c} for a constant \\spad{c} is a first integral of the equation \\spad{M(x,y) dx + N(x,y) dy = 0},{} or \"failed\" if no first-integral can be found."))) NIL NIL -(-793) +(-792) ((|constructor| (NIL "\\spadtype{None} implements a type with no objects. It is mainly used in technical situations where such a thing is needed (\\spadignore{e.g.} the interpreter and some of the internal \\spadtype{Expression} code)."))) NIL NIL -(-794 S) +(-793 S) ((|constructor| (NIL "\\spadtype{NoneFunctions1} implements functions on \\spadtype{None}. It particular it includes a particulary dangerous coercion from any other type to \\spadtype{None}.")) (|coerce| (((|None|) |#1|) "\\spad{coerce(x)} changes \\spad{x} into an object of type \\spadtype{None}."))) NIL NIL -(-795 R |PolR| E |PolE|) +(-794 R |PolR| E |PolE|) ((|constructor| (NIL "This package implements the norm of a polynomial with coefficients in a monogenic algebra (using resultants)")) (|norm| ((|#2| |#4|) "\\spad{norm q} returns the norm of \\spad{q},{} \\spadignore{i.e.} the product of all the conjugates of \\spad{q}."))) NIL NIL -(-796 R E V P TS) +(-795 R E V P TS) ((|constructor| (NIL "A package for computing normalized assocites of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}")) (|normInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normInvertible?(\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|outputArgs| (((|Void|) (|String|) (|String|) |#4| |#5|) "\\axiom{outputArgs(\\spad{s1},{}\\spad{s2},{}\\spad{p},{}ts)} is an internal subroutine,{} exported only for developement.")) (|normalize| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{normalize(\\spad{p},{}ts)} normalizes \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|normalizedAssociate| ((|#4| |#4| |#5|) "\\axiom{normalizedAssociate(\\spad{p},{}ts)} returns a normalized polynomial \\axiom{\\spad{n}} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts} such that \\axiom{\\spad{n}} and \\axiom{\\spad{p}} are associates \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} and assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}.")) (|recip| (((|Record| (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) "\\axiom{recip(\\spad{p},{}ts)} returns the inverse of \\axiom{\\spad{p}} \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts} assuming that \\axiom{\\spad{p}} is invertible \\spad{w}.\\spad{r}.\\spad{t} \\spad{ts}."))) NIL NIL -(-797 -3495 |ExtF| |SUEx| |ExtP| |n|) +(-796 -3494 |ExtF| |SUEx| |ExtP| |n|) ((|constructor| (NIL "This package \\undocumented")) (|Frobenius| ((|#4| |#4|) "\\spad{Frobenius(x)} \\undocumented")) (|retractIfCan| (((|Union| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) "failed") |#4|) "\\spad{retractIfCan(x)} \\undocumented")) (|normFactors| (((|List| |#4|) |#4|) "\\spad{normFactors(x)} \\undocumented"))) NIL NIL -(-798 BP E OV R P) +(-797 BP E OV R P) ((|constructor| (NIL "Package for the determination of the coefficients in the lifting process. Used by \\spadtype{MultivariateLifting}. This package will work for every euclidean domain \\spad{R} which has property \\spad{F},{} \\spadignore{i.e.} there exists a factor operation in \\spad{R[x]}.")) (|listexp| (((|List| (|NonNegativeInteger|)) |#1|) "\\spad{listexp }\\undocumented")) (|npcoef| (((|Record| (|:| |deter| (|List| (|SparseUnivariatePolynomial| |#5|))) (|:| |dterm| (|List| (|List| (|Record| (|:| |expt| (|NonNegativeInteger|)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (|List| |#1|)) (|:| |nlead| (|List| |#5|))) (|SparseUnivariatePolynomial| |#5|) (|List| |#1|) (|List| |#5|)) "\\spad{npcoef }\\undocumented"))) NIL NIL -(-799 |Par|) +(-798 |Par|) ((|constructor| (NIL "This package computes explicitly eigenvalues and eigenvectors of matrices with entries over the Rational Numbers. The results are expressed as floating numbers or as rational numbers depending on the type of the parameter Par.")) (|realEigenvectors| (((|List| (|Record| (|:| |outval| |#1|) (|:| |outmult| (|Integer|)) (|:| |outvect| (|List| (|Matrix| |#1|))))) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvectors(m,eps)} returns a list of records each one containing a real eigenvalue,{} its algebraic multiplicity,{} and a list of associated eigenvectors. All these results are computed to precision \\spad{eps} as floats or rational numbers depending on the type of \\spad{eps} .")) (|realEigenvalues| (((|List| |#1|) (|Matrix| (|Fraction| (|Integer|))) |#1|) "\\spad{realEigenvalues(m,eps)} computes the eigenvalues of the matrix \\spad{m} to precision \\spad{eps}. The eigenvalues are expressed as floats or rational numbers depending on the type of \\spad{eps} (float or rational).")) (|characteristicPolynomial| (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|))) (|Symbol|)) "\\spad{characteristicPolynomial(m,x)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with variable \\spad{x}. Fraction \\spad{P} RN.") (((|Polynomial| (|Fraction| (|Integer|))) (|Matrix| (|Fraction| (|Integer|)))) "\\spad{characteristicPolynomial(m)} returns the characteristic polynomial of the matrix \\spad{m} expressed as polynomial over RN with a new symbol as variable."))) NIL NIL -(-800 R |VarSet|) +(-799 R |VarSet|) ((|constructor| (NIL "A post-facto extension for \\axiomType{SMP} in order to speed up operations related to pseudo-division and gcd. This domain is based on the \\axiomType{NSUP} constructor which is itself a post-facto extension of the \\axiomType{SUP} constructor."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198))))) (-3957 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198)))) (-2959 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198)))) (-2959 (|HasCategory| |#1| (QUOTE (-557)))) (-2959 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198)))) (-2959 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558))))) (-2959 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-1198)))) (-2959 (|HasCategory| |#1| (|%list| (QUOTE -1012) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-801 R) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197))))) (-3956 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197)))) (-2958 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197)))) (-2958 (|HasCategory| |#1| (QUOTE (-557)))) (-2958 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197)))) (-2958 (|HasCategory| |#1| (|%list| (QUOTE -38) (QUOTE (-558))))) (-2958 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-1197)))) (-2958 (|HasCategory| |#1| (|%list| (QUOTE -1011) (QUOTE (-558))))))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-800 R) ((|constructor| (NIL "A post-facto extension for \\axiomType{SUP} in order to speed up operations related to pseudo-division and gcd for both \\axiomType{SUP} and,{} consequently,{} \\axiomType{NSMP}.")) (|halfExtendedResultant2| (((|Record| (|:| |resultant| |#1|) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedResultant2}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|halfExtendedResultant1| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedResultant1}(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca]} such that \\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{} cb]}")) (|extendedResultant| (((|Record| (|:| |resultant| |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedResultant(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}ca,{}cb]} such that \\axiom{\\spad{r}} is the resultant of \\axiom{a} and \\axiom{\\spad{b}} and \\axiom{\\spad{r} = ca * a + cb * \\spad{b}}")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} such that \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]}")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{} cb]} such that \\axiom{\\spad{g}} is a gcd of \\axiom{a} and \\axiom{\\spad{b}} in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{\\spad{g} = ca * a + cb * \\spad{b}}")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns \\axiom{resultant(a,{}\\spad{b})} if \\axiom{a} and \\axiom{\\spad{b}} has no non-trivial gcd in \\axiom{R^(\\spad{-1}) \\spad{P}} otherwise the non-zero sub-resultant with smallest index.")) (|subResultantsChain| (((|List| $) $ $) "\\axiom{subResultantsChain(a,{}\\spad{b})} returns the list of the non-zero sub-resultants of \\axiom{a} and \\axiom{\\spad{b}} sorted by increasing degree.")) (|lazyPseudoQuotient| (($ $ $) "\\axiom{lazyPseudoQuotient(a,{}\\spad{b})} returns \\axiom{\\spad{q}} if \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}")) (|lazyPseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{c^n * a = q*b +r} and \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} where \\axiom{\\spad{n} + \\spad{g} = max(0,{} degree(\\spad{b}) - degree(a) + 1)}.")) (|lazyPseudoRemainder| (($ $ $) "\\axiom{lazyPseudoRemainder(a,{}\\spad{b})} returns \\axiom{\\spad{r}} if \\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]}. This lazy pseudo-remainder is computed by means of the \\axiomOpFrom{fmecg}{NewSparseUnivariatePolynomial} operation.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| |#1|) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{r},{}\\spad{c},{}\\spad{n}]} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{c^n * a - \\spad{r}} where \\axiom{\\spad{c}} is \\axiom{leadingCoefficient(\\spad{b})} and \\axiom{\\spad{n}} is as small as possible with the previous properties.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} returns \\axiom{\\spad{r}} such that \\axiom{\\spad{r}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{b}} divides \\axiom{a -r} where \\axiom{\\spad{b}} is monic.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\axiom{fmecg(\\spad{p1},{}\\spad{e},{}\\spad{r},{}\\spad{p2})} returns \\axiom{\\spad{p1} - \\spad{r} * X**e * \\spad{p2}} where \\axiom{\\spad{X}} is \\axiom{monomial(1,{}1)}"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4421 |has| |#1| (-376)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-802 R S) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4420 |has| |#1| (-376)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-801 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|NewSparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|NewSparseUnivariatePolynomial| |#1|)) "\\axiom{map(func,{} poly)} creates a new polynomial by applying func to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-803 R) +(-802 R) ((|constructor| (NIL "This package provides polynomials as functions on a ring.")) (|eulerE| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{eulerE(n,r)} \\undocumented")) (|bernoulliB| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{bernoulliB(n,r)} \\undocumented")) (|cyclotomic| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{cyclotomic(n,r)} \\undocumented"))) NIL ((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) -(-804 R E V P) +(-803 R E V P) ((|constructor| (NIL "The category of normalized triangular sets. A triangular set \\spad{ts} is said normalized if for every algebraic variable \\spad{v} of \\spad{ts} the polynomial \\spad{select(ts,v)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. every polynomial in \\spad{collectUnder(ts,v)}. A polynomial \\spad{p} is said normalized \\spad{w}.\\spad{r}.\\spad{t}. a non-constant polynomial \\spad{q} if \\spad{p} is constant or \\spad{degree(p,mdeg(q)) = 0} and \\spad{init(p)} is normalized \\spad{w}.\\spad{r}.\\spad{t}. \\spad{q}. One of the important features of normalized triangular sets is that they are regular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[3] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.}"))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-805 S) +(-804 S) ((|constructor| (NIL "Numeric provides real and complex numerical evaluation functions for various symbolic types.")) (|numericIfCan| (((|Union| (|Float|) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Expression| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numericIfCan(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Float|) "failed") (|Polynomial| |#1|)) "\\spad{numericIfCan(x)} returns a real approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.")) (|complexNumericIfCan| (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Expression| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| |#1|)) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumericIfCan(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places,{} or \"failed\" if \\axiom{\\spad{x}} is not a constant.") (((|Union| (|Complex| (|Float|)) "failed") (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumericIfCan(x)} returns a complex approximation of \\spad{x},{} or \"failed\" if \\axiom{\\spad{x}} is not constant.")) (|complexNumeric| (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Expression| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|))) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| (|Complex| |#1|)))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x}") (((|Complex| (|Float|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|)) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Polynomial| (|Complex| |#1|))) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) (|Complex| |#1|) (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) (|Complex| |#1|)) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.") (((|Complex| (|Float|)) |#1| (|PositiveInteger|)) "\\spad{complexNumeric(x, n)} returns a complex approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Complex| (|Float|)) |#1|) "\\spad{complexNumeric(x)} returns a complex approximation of \\spad{x}.")) (|numeric| (((|Float|) (|Expression| |#1|) (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Expression| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Fraction| (|Polynomial| |#1|)) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Fraction| (|Polynomial| |#1|))) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) (|Polynomial| |#1|) (|PositiveInteger|)) "\\spad{numeric(x,n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) (|Polynomial| |#1|)) "\\spad{numeric(x)} returns a real approximation of \\spad{x}.") (((|Float|) |#1| (|PositiveInteger|)) "\\spad{numeric(x, n)} returns a real approximation of \\spad{x} up to \\spad{n} decimal places.") (((|Float|) |#1|) "\\spad{numeric(x)} returns a real approximation of \\spad{x}."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1070))) (|HasCategory| |#1| (QUOTE (-175)))) -(-806) +((-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-1069))) (|HasCategory| |#1| (QUOTE (-175)))) +(-805) ((|constructor| (NIL "NumberFormats provides function to format and read arabic and roman numbers,{} to convert numbers to strings and to read floating-point numbers.")) (|ScanFloatIgnoreSpacesIfCan| (((|Union| (|Float|) "failed") (|String|)) "\\spad{ScanFloatIgnoreSpacesIfCan(s)} tries to form a floating point number from the string \\spad{s} ignoring any spaces.")) (|ScanFloatIgnoreSpaces| (((|Float|) (|String|)) "\\spad{ScanFloatIgnoreSpaces(s)} forms a floating point number from the string \\spad{s} ignoring any spaces. Error is generated if the string is not recognised as a floating point number.")) (|ScanRoman| (((|PositiveInteger|) (|String|)) "\\spad{ScanRoman(s)} forms an integer from a Roman numeral string \\spad{s}.")) (|FormatRoman| (((|String|) (|PositiveInteger|)) "\\spad{FormatRoman(n)} forms a Roman numeral string from an integer \\spad{n}.")) (|ScanArabic| (((|PositiveInteger|) (|String|)) "\\spad{ScanArabic(s)} forms an integer from an Arabic numeral string \\spad{s}.")) (|FormatArabic| (((|String|) (|PositiveInteger|)) "\\spad{FormatArabic(n)} forms an Arabic numeral string from an integer \\spad{n}."))) NIL NIL -(-807) +(-806) ((|numericalIntegration| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) (|Result|)) "\\spad{numericalIntegration(args,hints)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|List| (|Segment| (|OrderedCompletion| (|DoubleFloat|))))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|)) (|:| |extra| (|Result|))) (|RoutinesTable|) (|Record| (|:| |var| (|Symbol|)) (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |range| (|Segment| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-808) +(-807) ((|constructor| (NIL "This package is a suite of functions for the numerical integration of an ordinary differential equation of \\spad{n} variables: \\blankline \\indented{8}{\\center{dy/dx = \\spad{f}(\\spad{y},{}\\spad{x})\\space{5}\\spad{y} is an \\spad{n}-vector}} \\blankline \\par All the routines are based on a 4-th order Runge-Kutta kernel. These routines generally have as arguments: \\spad{n},{} the number of dependent variables; \\spad{x1},{} the initial point; \\spad{h},{} the step size; \\spad{y},{} a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h}; \\spad{derivs},{} a function which computes the right hand side of the ordinary differential equation: \\spad{derivs(dydx,y,x)} computes \\spad{dydx},{} a vector which contains the derivative information. \\blankline \\par In order of increasing complexity:\\begin{items} \\blankline \\item \\spad{rk4(y,n,x1,h,derivs)} advances the solution vector to \\spad{x1 + h} and return the values in \\spad{y}. \\blankline \\item \\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. \\blankline \\item Starting with \\spad{y} at \\spad{x1},{} \\spad{rk4f(y,n,x1,x2,ns,derivs)} uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. Argument \\spad{x2},{} is the final point,{} and \\spad{ns},{} the number of steps to take. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} takes a 5-th order Runge-Kutta step with monitoring of local truncation to ensure accuracy and adjust stepsize. The function takes two half steps and one full step and scales the difference in solutions at the final point. If the error is within \\spad{eps},{} the step is taken and the result is returned. If the error is not within \\spad{eps},{} the stepsize if decreased and the procedure is tried again until the desired accuracy is reached. Upon input,{} an trial step size must be given and upon return,{} an estimate of the next step size to use is returned as well as the step size which produced the desired accuracy. The scaled error is computed as \\center{\\spad{error = MAX(ABS((y2steps(i) - y1step(i))/yscal(i)))}} and this is compared against \\spad{eps}. If this is greater than \\spad{eps},{} the step size is reduced accordingly to \\center{\\spad{hnew = 0.9 * hdid * (error/eps)**(-1/4)}} If the error criterion is satisfied,{} then we check if the step size was too fine and return a more efficient one. If \\spad{error > \\spad{eps} * (6.0E-04)} then the next step size should be \\center{\\spad{hnext = 0.9 * hdid * (error/\\spad{eps})**(\\spad{-1/5})}} Otherwise \\spad{hnext = 4.0 * hdid} is returned. A more detailed discussion of this and related topics can be found in the book \"Numerical Recipies\" by \\spad{W}.Press,{} \\spad{B}.\\spad{P}. Flannery,{} \\spad{S}.A. Teukolsky,{} \\spad{W}.\\spad{T}. Vetterling published by Cambridge University Press. Argument \\spad{step} is a record of 3 floating point numbers \\spad{(try , did , next)},{} \\spad{eps} is the required accuracy,{} \\spad{yscal} is the scaling vector for the difference in solutions. On input,{} \\spad{step.try} should be the guess at a step size to achieve the accuracy. On output,{} \\spad{step.did} contains the step size which achieved the accuracy and \\spad{step.next} is the next step size to use. \\blankline \\item \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is the same as \\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} except that the user must provide the 7 scratch arrays \\spad{t1-t7} of size \\spad{n}. \\blankline \\item \\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver program which uses \\spad{rk4qc} to integrate \\spad{n} ordinary differential equations starting at \\spad{x1} to \\spad{x2},{} keeping the local truncation error to within \\spad{eps} by changing the local step size. The scaling vector is defined as \\center{\\spad{yscal(i) = abs(y(i)) + abs(h*dydx(i)) + tiny}} where \\spad{y(i)} is the solution at location \\spad{x},{} \\spad{dydx} is the ordinary differential equation's right hand side,{} \\spad{h} is the current step size and \\spad{tiny} is 10 times the smallest positive number representable. The user must supply an estimate for a trial step size and the maximum number of calls to \\spad{rk4qc} to use. Argument \\spad{x2} is the final point,{} \\spad{eps} is local truncation,{} \\spad{ns} is the maximum number of call to \\spad{rk4qc} to use. \\end{items}")) (|rk4f| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4f(y,n,x1,x2,ns,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Starting with \\spad{y} at \\spad{x1},{} this function uses \\spad{ns} fixed steps of a 4-th order Runge-Kutta integrator to advance the solution vector to \\spad{x2} and return the values in \\spad{y}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4qc| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs,t1,t2,t3,t4,t5,t6,t7)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Record| (|:| |tryValue| (|Float|)) (|:| |did| (|Float|)) (|:| |next| (|Float|))) (|Float|) (|Vector| (|Float|)) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4qc(y,n,x1,step,eps,yscal,derivs)} is a subfunction for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. This function takes a 5-th order Runge-Kutta \\spad{step} with monitoring of local truncation to ensure accuracy and adjust stepsize. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4a| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4a(y,n,x1,x2,eps,h,ns,derivs)} is a driver function for the numerical integration of an ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector using a 4-th order Runge-Kutta method. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.")) (|rk4| (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Vector| (|Float|))) "\\spad{rk4(y,n,x1,h,derivs,t1,t2,t3,t4)} is the same as \\spad{rk4(y,n,x1,h,derivs)} except that you must provide 4 scratch arrays \\spad{t1}-\\spad{t4} of size \\spad{n}. For details,{} see \\con{NumericalOrdinaryDifferentialEquations}.") (((|Void|) (|Vector| (|Float|)) (|Integer|) (|Float|) (|Float|) (|Mapping| (|Void|) (|Vector| (|Float|)) (|Vector| (|Float|)) (|Float|))) "\\spad{rk4(y,n,x1,h,derivs)} uses a 4-th order Runge-Kutta method to numerically integrate the ordinary differential equation {\\em dy/dx = f(y,x)} of \\spad{n} variables,{} where \\spad{y} is an \\spad{n}-vector. Argument \\spad{y} is a vector of initial conditions of length \\spad{n} which upon exit contains the solution at \\spad{x1 + h},{} \\spad{n} is the number of dependent variables,{} \\spad{x1} is the initial point,{} \\spad{h} is the step size,{} and \\spad{derivs} is a function which computes the right hand side of the ordinary differential equation. For details,{} see \\spadtype{NumericalOrdinaryDifferentialEquations}."))) NIL NIL -(-809) +(-808) ((|constructor| (NIL "This suite of routines performs numerical quadrature using algorithms derived from the basic trapezoidal rule. Because the error term of this rule contains only even powers of the step size (for open and closed versions),{} fast convergence can be obtained if the integrand is sufficiently smooth. \\blankline Each routine returns a Record of type TrapAns,{} which contains\\indent{3} \\newline value (\\spadtype{Float}):\\tab{20} estimate of the integral \\newline error (\\spadtype{Float}):\\tab{20} estimate of the error in the computation \\newline totalpts (\\spadtype{Integer}):\\tab{20} total number of function evaluations \\newline success (\\spadtype{Boolean}):\\tab{20} if the integral was computed within the user specified error criterion \\indent{0}\\indent{0} To produce this estimate,{} each routine generates an internal sequence of sub-estimates,{} denoted by {\\em S(i)},{} depending on the routine,{} to which the various convergence criteria are applied. The user must supply a relative accuracy,{} \\spad{eps_r},{} and an absolute accuracy,{} \\spad{eps_a}. Convergence is obtained when either \\center{\\spad{ABS(S(i) - S(i-1)) < eps_r * ABS(S(i-1))}} \\center{or \\spad{ABS(S(i) - S(i-1)) < eps_a}} are \\spad{true} statements. \\blankline The routines come in three families and three flavors: \\newline\\tab{3} closed:\\tab{20}romberg,{}\\tab{30}simpson,{}\\tab{42}trapezoidal \\newline\\tab{3} open: \\tab{20}rombergo,{}\\tab{30}simpsono,{}\\tab{42}trapezoidalo \\newline\\tab{3} adaptive closed:\\tab{20}aromberg,{}\\tab{30}asimpson,{}\\tab{42}atrapezoidal \\par The {\\em S(i)} for the trapezoidal family is the value of the integral using an equally spaced absicca trapezoidal rule for that level of refinement. \\par The {\\em S(i)} for the simpson family is the value of the integral using an equally spaced absicca simpson rule for that level of refinement. \\par The {\\em S(i)} for the romberg family is the estimate of the integral using an equally spaced absicca romberg method. For the \\spad{i}\\spad{-}th level,{} this is an appropriate combination of all the previous trapezodial estimates so that the error term starts with the \\spad{2*(i+1)} power only. \\par The three families come in a closed version,{} where the formulas include the endpoints,{} an open version where the formulas do not include the endpoints and an adaptive version,{} where the user is required to input the number of subintervals over which the appropriate closed family integrator will apply with the usual convergence parmeters for each subinterval. This is useful where a large number of points are needed only in a small fraction of the entire domain. \\par Each routine takes as arguments: \\newline \\spad{f}\\tab{10} integrand \\newline a\\tab{10} starting point \\newline \\spad{b}\\tab{10} ending point \\newline \\spad{eps_r}\\tab{10} relative error \\newline \\spad{eps_a}\\tab{10} absolute error \\newline \\spad{nmin} \\tab{10} refinement level when to start checking for convergence (> 1) \\newline \\spad{nmax} \\tab{10} maximum level of refinement \\par The adaptive routines take as an additional parameter \\newline \\spad{nint}\\tab{10} the number of independent intervals to apply a closed \\indented{1}{family integrator of the same name.} \\par Notes: \\newline Closed family level \\spad{i} uses \\spad{1 + 2**i} points. \\newline Open family level \\spad{i} uses \\spad{1 + 3**i} points.")) (|trapezoidalo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidalo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpsono| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpsono(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|rombergo| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{rombergo(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spad{fn} over the open interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|trapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{trapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the trapezoidal method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|simpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{simpson(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the simpson method to numerically integrate function \\spad{fn} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|romberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|)) "\\spad{romberg(fn,a,b,epsrel,epsabs,nmin,nmax)} uses the romberg method to numerically integrate function \\spadvar{\\spad{fn}} over the closed interval \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax}. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|atrapezoidal| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{atrapezoidal(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive trapezoidal method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|asimpson| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{asimpson(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive simpson method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details.")) (|aromberg| (((|Record| (|:| |value| (|Float|)) (|:| |error| (|Float|)) (|:| |totalpts| (|Integer|)) (|:| |success| (|Boolean|))) (|Mapping| (|Float|) (|Float|)) (|Float|) (|Float|) (|Float|) (|Float|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{aromberg(fn,a,b,epsrel,epsabs,nmin,nmax,nint)} uses the adaptive romberg method to numerically integrate function \\spad{fn} over the closed interval from \\spad{a} to \\spad{b},{} with relative accuracy \\spad{epsrel} and absolute accuracy \\spad{epsabs},{} with the refinement levels for convergence checking vary from \\spad{nmin} to \\spad{nmax},{} and where \\spad{nint} is the number of independent intervals to apply the integrator. The value returned is a record containing the value of the integral,{} the estimate of the error in the computation,{} the total number of function evaluations,{} and either a boolean value which is \\spad{true} if the integral was computed within the user specified error criterion. See \\spadtype{NumericalQuadrature} for details."))) NIL NIL -(-810 |Curve|) +(-809 |Curve|) ((|constructor| (NIL "\\indented{1}{Author: Clifton \\spad{J}. Williamson} Date Created: Bastille Day 1989 Date Last Updated: 5 June 1990 Keywords: Examples: Package for constructing tubes around 3-dimensional parametric curves.")) (|tube| (((|TubePlot| |#1|) |#1| (|DoubleFloat|) (|Integer|)) "\\spad{tube(c,r,n)} creates a tube of radius \\spad{r} around the curve \\spad{c}."))) NIL NIL -(-811 S) +(-810 S) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-812) +(-811) ((|constructor| (NIL "Ordered sets which are also abelian groups,{} such that the addition preserves the ordering.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}.")) (|sign| (((|Integer|) $) "\\spad{sign(x)} is \\spad{1} if \\spad{x} is positive,{} \\spad{-1} if \\spad{x} is negative,{} and \\spad{0} otherwise.")) (|negative?| (((|Boolean|) $) "\\spad{negative?(x)} holds when \\spad{x} is less than \\spad{0}."))) NIL NIL -(-813 S) +(-812 S) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-814) +(-813) ((|constructor| (NIL "Ordered sets which are also abelian monoids,{} such that the addition preserves the ordering.")) (|positive?| (((|Boolean|) $) "\\spad{positive?(x)} holds when \\spad{x} is greater than \\spad{0}."))) NIL NIL -(-815) +(-814) ((|constructor| (NIL "This domain is an OrderedAbelianMonoid with a \\spadfun{sup} operation added. The purpose of the \\spadfun{sup} operator in this domain is to act as a supremum with respect to the partial order imposed by \\spadop{-},{} rather than with respect to the total \\spad{>} order (since that is \"max\"). \\blankline")) (|sup| (($ $ $) "\\spad{sup(x,y)} returns the least element from which both \\spad{x} and \\spad{y} can be subtracted."))) NIL NIL -(-816) +(-815) ((|constructor| (NIL "Ordered sets which are also abelian semigroups,{} such that the addition preserves the ordering. \\indented{2}{\\spad{ x < y => x+z < y+z}}"))) NIL NIL -(-817 S R) +(-816 S R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#2| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#2| |#2| |#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#2| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#2| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#2| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#2| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#2| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#2| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#2| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) NIL -((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-381)))) -(-818 R) +((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-381)))) +(-817 R) ((|constructor| (NIL "OctonionCategory gives the categorial frame for the octonions,{} and eight-dimensional non-associative algebra,{} doubling the the quaternions in the same way as doubling the Complex numbers to get the quaternions.")) (|inv| (($ $) "\\spad{inv(o)} returns the inverse of \\spad{o} if it exists.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(o)} returns the real part if all seven imaginary parts are 0,{} and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(o)} returns the real part if all seven imaginary parts are 0. Error: if \\spad{o} is not rational.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(o)} tests if \\spad{o} is rational,{} \\spadignore{i.e.} that all seven imaginary parts are 0.")) (|abs| ((|#1| $) "\\spad{abs(o)} computes the absolute value of an octonion,{} equal to the square root of the \\spadfunFrom{norm}{Octonion}.")) (|octon| (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) "\\spad{octon(re,ri,rj,rk,rE,rI,rJ,rK)} constructs an octonion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(o)} returns the norm of an octonion,{} equal to the sum of the squares of its coefficients.")) (|imagK| ((|#1| $) "\\spad{imagK(o)} extracts the imaginary \\spad{K} part of octonion \\spad{o}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(o)} extracts the imaginary \\spad{J} part of octonion \\spad{o}.")) (|imagI| ((|#1| $) "\\spad{imagI(o)} extracts the imaginary \\spad{I} part of octonion \\spad{o}.")) (|imagE| ((|#1| $) "\\spad{imagE(o)} extracts the imaginary \\spad{E} part of octonion \\spad{o}.")) (|imagk| ((|#1| $) "\\spad{imagk(o)} extracts the \\spad{k} part of octonion \\spad{o}.")) (|imagj| ((|#1| $) "\\spad{imagj(o)} extracts the \\spad{j} part of octonion \\spad{o}.")) (|imagi| ((|#1| $) "\\spad{imagi(o)} extracts the \\spad{i} part of octonion \\spad{o}.")) (|real| ((|#1| $) "\\spad{real(o)} extracts real part of octonion \\spad{o}.")) (|conjugate| (($ $) "\\spad{conjugate(o)} negates the imaginary parts \\spad{i},{}\\spad{j},{}\\spad{k},{}\\spad{E},{}\\spad{I},{}\\spad{J},{}\\spad{K} of octonian \\spad{o}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-819) +(-818) ((|constructor| (NIL "Ordered sets which are also abelian cancellation monoids,{} such that the addition preserves the ordering."))) NIL NIL -(-820 R) +(-819 R) ((|constructor| (NIL "Octonion implements octonions (Cayley-Dixon algebra) over a commutative ring,{} an eight-dimensional non-associative algebra,{} doubling the quaternions in the same way as doubling the complex numbers to get the quaternions the main constructor function is {\\em octon} which takes 8 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j} imaginary part,{} the \\spad{k} imaginary part,{} (as with quaternions) and in addition the imaginary parts \\spad{E},{} \\spad{I},{} \\spad{J},{} \\spad{K}.")) (|octon| (($ (|Quaternion| |#1|) (|Quaternion| |#1|)) "\\spad{octon(qe,qE)} constructs an octonion from two quaternions using the relation {\\em O = Q + QE}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-3957 (|HasCategory| (-1017 |#1|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-1017 |#1|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1017 |#1|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1017 |#1|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) -(-821 -3957 R OS S) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (-3956 (|HasCategory| (-1016 |#1|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-1016 |#1|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-557))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1016 |#1|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1016 |#1|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) +(-820 -3956 R OS S) ((|constructor| (NIL "\\spad{OctonionCategoryFunctions2} implements functions between two octonion domains defined over different rings. The function map is used to coerce between octonion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the octonion \\spad{u}."))) NIL NIL -(-822) +(-821) ((|ODESolve| (((|Result|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{ODESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-823 R -3495 L) +(-822 R -3494 L) ((|constructor| (NIL "Solution of linear ordinary differential equations,{} constant coefficient case.")) (|constDsolve| (((|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#3| |#2| (|Symbol|)) "\\spad{constDsolve(op, g, x)} returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular solution of the equation \\spad{op y = g},{} and the \\spad{yi}'s form a basis for the solutions of \\spad{op y = 0}."))) NIL NIL -(-824 R -3495) +(-823 R -3494) ((|constructor| (NIL "\\spad{ElementaryFunctionODESolver} provides the top-level functions for finding closed form solutions of ordinary differential equations and initial value problems.")) (|solve| (((|Union| |#2| #1="failed") |#2| (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| |#2| #1#) (|Equation| |#2|) (|BasicOperator|) (|Equation| |#2|) (|List| |#2|)) "\\spad{solve(eq, y, x = a, [y0,...,ym])} returns either the solution of the initial value problem \\spad{eq, y(a) = y0, y'(a) = y1,...} or \"failed\" if the solution cannot be found; error if the equation is not one linear ordinary or of the form \\spad{dy/dx = f(x,y)}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2="failed") |#2| (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}.") (((|Union| (|Record| (|:| |particular| |#2|) (|:| |basis| (|List| |#2|))) |#2| #2#) (|Equation| |#2|) (|BasicOperator|) (|Symbol|)) "\\spad{solve(eq, y, x)} returns either a solution of the ordinary differential equation \\spad{eq} or \"failed\" if no non-trivial solution can be found; If the equation is linear ordinary,{} a solution is of the form \\spad{[h, [b1,...,bm]]} where \\spad{h} is a particular solution and \\spad{[b1,...bm]} are linearly independent solutions of the associated homogenuous equation \\spad{f(x,y) = 0}; A full basis for the solutions of the homogenuous equation is not always returned,{} only the solutions which were found; If the equation is of the form {dy/dx = \\spad{f}(\\spad{x},{}\\spad{y})},{} a solution is of the form \\spad{h(x,y)} where \\spad{h(x,y) = c} is a first integral of the equation for any constant \\spad{c}; error if the equation is not one of those 2 forms.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| |#2|) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|List| (|Equation| |#2|)) (|List| (|BasicOperator|)) (|Symbol|)) "\\spad{solve([eq_1,...,eq_n], [y_1,...,y_n], x)} returns either \"failed\" or,{} if the equations form a fist order linear system,{} a solution of the form \\spad{[y_p, [b_1,...,b_n]]} where \\spad{h_p} is a particular solution and \\spad{[b_1,...b_m]} are linearly independent solutions of the associated homogenuous system. error if the equations do not form a first order linear system") (((|Union| (|List| (|Vector| |#2|)) "failed") (|Matrix| |#2|) (|Symbol|)) "\\spad{solve(m, x)} returns a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable.") (((|Union| (|Record| (|:| |particular| (|Vector| |#2|)) (|:| |basis| (|List| (|Vector| |#2|)))) "failed") (|Matrix| |#2|) (|Vector| |#2|) (|Symbol|)) "\\spad{solve(m, v, x)} returns \\spad{[v_p, [v_1,...,v_m]]} such that the solutions of the system \\spad{D y = m y + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D y = m y}. \\spad{x} is the dependent variable."))) NIL NIL -(-825) +(-824) ((|constructor| (NIL "\\axiom{ODEIntensityFunctionsTable()} provides a dynamic table and a set of functions to store details found out about sets of ODE's.")) (|showIntensityFunctions| (((|Union| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))) "failed") (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{showIntensityFunctions(k)} returns the entries in the table of intensity functions \\spad{k}.")) (|insert!| (($ (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|)))))) "\\spad{insert!(r)} inserts an entry \\spad{r} into theIFTable")) (|iFTable| (($ (|List| (|Record| (|:| |key| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) (|:| |entry| (|Record| (|:| |stiffness| (|Float|)) (|:| |stability| (|Float|)) (|:| |expense| (|Float|)) (|:| |accuracy| (|Float|)) (|:| |intermediateResults| (|Float|))))))) "\\spad{iFTable(l)} creates an intensity-functions table from the elements of \\spad{l}.")) (|keys| (((|List| (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) $) "\\spad{keys(tab)} returns the list of keys of \\spad{f}")) (|clearTheIFTable| (((|Void|)) "\\spad{clearTheIFTable()} clears the current table of intensity functions.")) (|showTheIFTable| (($) "\\spad{showTheIFTable()} returns the current table of intensity functions."))) NIL NIL -(-826 R -3495) +(-825 R -3494) ((|constructor| (NIL "\\spadtype{ODEIntegration} provides an interface to the integrator. This package is intended for use by the differential equations solver but not at top-level.")) (|diff| (((|Mapping| |#2| |#2|) (|Symbol|)) "\\spad{diff(x)} returns the derivation with respect to \\spad{x}.")) (|expint| ((|#2| |#2| (|Symbol|)) "\\spad{expint(f, x)} returns e^{the integral of \\spad{f} with respect to \\spad{x}}.")) (|int| ((|#2| |#2| (|Symbol|)) "\\spad{int(f, x)} returns the integral of \\spad{f} with respect to \\spad{x}."))) NIL NIL -(-827) +(-826) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalODEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical ODE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{OrdinaryDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of ODEs by checking various attributes of the system of ODEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,epsabs,epsrel)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to an absolute error requirement \\axiom{\\spad{epsabs}} and relative error \\axiom{\\spad{epsrel}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,intVals,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The values of \\spad{Y}[1]..\\spad{Y}[\\spad{n}] will be output for the values of \\spad{X} in \\axiom{\\spad{intVals}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Expression| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,G,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. The calculation will stop if the function \\spad{G}(\\spad{X},{}\\spad{Y}[1],{}..,{}\\spad{Y}[\\spad{n}]) evaluates to zero before \\spad{X} = \\spad{xEnd}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|)) (|Float|)) "\\spad{solve(f,xStart,xEnd,yInitial,tol)} is a top level ANNA function to solve numerically a system of ordinary differential equations,{} \\axiom{\\spad{f}},{} \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}] from \\axiom{\\spad{xStart}} to \\axiom{\\spad{xEnd}} with the initial values for \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (\\axiom{\\spad{yInitial}}) to a tolerance \\axiom{\\spad{tol}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|Vector| (|Expression| (|Float|))) (|Float|) (|Float|) (|List| (|Float|))) "\\spad{solve(f,xStart,xEnd,yInitial)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with a starting value for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions) and a final value of \\spad{X}. A default value is used for the accuracy requirement. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|) (|RoutinesTable|)) "\\spad{solve(odeProblem,R)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} contained in the table of routines \\axiom{\\spad{R}} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine.") (((|Result|) (|NumericalODEProblem|)) "\\spad{solve(odeProblem)} is a top level ANNA function to solve numerically a system of ordinary differential equations \\spadignore{i.e.} equations for the derivatives \\spad{Y}[1]'..\\spad{Y}[\\spad{n}]' defined in terms of \\spad{X},{}\\spad{Y}[1]..\\spad{Y}[\\spad{n}],{} together with starting values for \\spad{X} and \\spad{Y}[1]..\\spad{Y}[\\spad{n}] (called the initial conditions),{} a final value of \\spad{X},{} an accuracy requirement and any intermediate points at which the result is required. \\blankline It iterates over the \\axiom{domains} of \\axiomType{OrdinaryDifferentialEquationsSolverCategory} to get the name and other relevant information of the the (domain of the) numerical routine likely to be the most appropriate,{} \\spadignore{i.e.} have the best \\axiom{measure}. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of ODE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine."))) NIL NIL -(-828 -3495 UP UPUP R) +(-827 -3494 UP UPUP R) ((|constructor| (NIL "In-field solution of an linear ordinary differential equation,{} pure algebraic case.")) (|algDsolve| (((|Record| (|:| |particular| (|Union| |#4| "failed")) (|:| |basis| (|List| |#4|))) (|LinearOrdinaryDifferentialOperator1| |#4|) |#4|) "\\spad{algDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no solution in \\spad{R}. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{y_i's} form a basis for the solutions in \\spad{R} of the homogeneous equation."))) NIL NIL -(-829 -3495 UP L LQ) +(-828 -3494 UP L LQ) ((|constructor| (NIL "\\spad{PrimitiveRatDE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the transcendental case.} \\indented{1}{The derivation to use is given by the parameter \\spad{L}.}")) (|splitDenominator| (((|Record| (|:| |eq| |#3|) (|:| |rh| (|List| (|Fraction| |#2|)))) |#4| (|List| (|Fraction| |#2|))) "\\spad{splitDenominator(op, [g1,...,gm])} returns \\spad{op0, [h1,...,hm]} such that the equations \\spad{op y = c1 g1 + ... + cm gm} and \\spad{op0 y = c1 h1 + ... + cm hm} have the same solutions.")) (|indicialEquation| ((|#2| |#4| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.") ((|#2| |#3| |#1|) "\\spad{indicialEquation(op, a)} returns the indicial equation of \\spad{op} at \\spad{a}.")) (|indicialEquations| (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#4|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3| |#2|) "\\spad{indicialEquations(op, p)} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op} above the roots of \\spad{p},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.") (((|List| (|Record| (|:| |center| |#2|) (|:| |equation| |#2|))) |#3|) "\\spad{indicialEquations op} returns \\spad{[[d1,e1],...,[dq,eq]]} where the \\spad{d_i}'s are the affine singularities of \\spad{op},{} and the \\spad{e_i}'s are the indicial equations at each \\spad{d_i}.")) (|denomLODE| ((|#2| |#3| (|List| (|Fraction| |#2|))) "\\spad{denomLODE(op, [g1,...,gm])} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{p/d} for some polynomial \\spad{p}.") (((|Union| |#2| "failed") |#3| (|Fraction| |#2|)) "\\spad{denomLODE(op, g)} returns a polynomial \\spad{d} such that any rational solution of \\spad{op y = g} is of the form \\spad{p/d} for some polynomial \\spad{p},{} and \"failed\",{} if the equation has no rational solution."))) NIL NIL -(-830) +(-829) ((|retract| (((|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |xinit| (|DoubleFloat|)) (|:| |xend| (|DoubleFloat|)) (|:| |fn| (|Vector| (|Expression| (|DoubleFloat|)))) (|:| |yinit| (|List| (|DoubleFloat|))) (|:| |intvals| (|List| (|DoubleFloat|))) (|:| |g| (|Expression| (|DoubleFloat|))) (|:| |abserr| (|DoubleFloat|)) (|:| |relerr| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-831 -3495 UP L LQ) +(-830 -3494 UP L LQ) ((|constructor| (NIL "In-field solution of Riccati equations,{} primitive case.")) (|changeVar| ((|#3| |#3| (|Fraction| |#2|)) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.") ((|#3| |#3| |#2|) "\\spad{changeVar(+/[ai D^i], a)} returns the operator \\spad{+/[ai (D+a)^i]}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#2|) |#2| (|SparseUnivariatePolynomial| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, zeros, ezfactor)} returns \\spad{[[f1, L1], [f2, L2], ... , [fk, Lk]]} such that the singular part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z=0}. \\spad{zeros(C(x),H(x,y))} returns all the \\spad{P_i(x)}'s such that \\spad{H(x,P_i(x)) = 0 modulo C(x)}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk, Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y=0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z=y e^{-int p}} is \\spad{Li z =0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|constantCoefficientRicDE| (((|List| (|Record| (|:| |constant| |#1|) (|:| |eq| |#3|))) |#3| (|Mapping| (|List| |#1|) |#2|)) "\\spad{constantCoefficientRicDE(op, ric)} returns \\spad{[[a1, L1], [a2, L2], ... , [ak, Lk]]} such that any rational solution with no polynomial part of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{ai}'s in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. \\spad{ric} is a Riccati equation solver over \\spad{F},{} whose input is the associated linear equation.")) (|leadingCoefficientRicDE| (((|List| (|Record| (|:| |deg| (|NonNegativeInteger|)) (|:| |eq| |#2|))) |#3|) "\\spad{leadingCoefficientRicDE(op)} returns \\spad{[[m1, p1], [m2, p2], ... , [mk, pk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must have degree mj for some \\spad{j},{} and its leading coefficient is then a zero of pj. In addition,{}\\spad{m1>m2> ... >mk}.")) (|denomRicDE| ((|#2| |#3|) "\\spad{denomRicDE(op)} returns a polynomial \\spad{d} such that any rational solution of the associated Riccati equation of \\spad{op y = 0} is of the form \\spad{p/d + q'/q + r} for some polynomials \\spad{p} and \\spad{q} and a reduced \\spad{r}. Also,{} \\spad{deg(p) < deg(d)} and {gcd(\\spad{d},{}\\spad{q}) = 1}."))) NIL NIL -(-832 -3495 UP) +(-831 -3494 UP) ((|constructor| (NIL "\\spad{RationalLODE} provides functions for in-field solutions of linear \\indented{1}{ordinary differential equations,{} in the rational case.}")) (|indicialEquationAtInfinity| ((|#2| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.") ((|#2| (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{indicialEquationAtInfinity op} returns the indicial equation of \\spad{op} at infinity.")) (|ratDsolve| (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1="failed")) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation.") (((|Record| (|:| |basis| (|List| (|Fraction| |#2|))) (|:| |mat| (|Matrix| |#1|))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|List| (|Fraction| |#2|))) "\\spad{ratDsolve(op, [g1,...,gm])} returns \\spad{[[h1,...,hq], M]} such that any rational solution of \\spad{op y = c1 g1 + ... + cm gm} is of the form \\spad{d1 h1 + ... + dq hq} where \\spad{M [d1,...,dq,c1,...,cm] = 0}.") (((|Record| (|:| |particular| (|Union| (|Fraction| |#2|) #1#)) (|:| |basis| (|List| (|Fraction| |#2|)))) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Fraction| |#2|)) "\\spad{ratDsolve(op, g)} returns \\spad{[\"failed\", []]} if the equation \\spad{op y = g} has no rational solution. Otherwise,{} it returns \\spad{[f, [y1,...,ym]]} where \\spad{f} is a particular rational solution and the \\spad{yi}'s form a basis for the rational solutions of the homogeneous equation."))) NIL NIL -(-833 -3495 L UP A LO) +(-832 -3494 L UP A LO) ((|constructor| (NIL "Elimination of an algebraic from the coefficentss of a linear ordinary differential equation.")) (|reduceLODE| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) |#5| |#4|) "\\spad{reduceLODE(op, g)} returns \\spad{[m, v]} such that any solution in \\spad{A} of \\spad{op z = g} is of the form \\spad{z = (z_1,...,z_m) . (b_1,...,b_m)} where the \\spad{b_i's} are the basis of \\spad{A} over \\spad{F} returned by \\spadfun{basis}() from \\spad{A},{} and the \\spad{z_i's} satisfy the differential system \\spad{M.z = v}."))) NIL NIL -(-834 -3495 UP) +(-833 -3494 UP) ((|constructor| (NIL "In-field solution of Riccati equations,{} rational case.")) (|polyRicDE| (((|List| (|Record| (|:| |poly| |#2|) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{polyRicDE(op, zeros)} returns \\spad{[[p1, L1], [p2, L2], ... , [pk,Lk]]} such that the polynomial part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{pi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int p}} is \\spad{Li z = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.")) (|singRicDE| (((|List| (|Record| (|:| |frac| (|Fraction| |#2|)) (|:| |eq| (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))))) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{singRicDE(op, ezfactor)} returns \\spad{[[f1,L1], [f2,L2],..., [fk,Lk]]} such that the singular ++ part of any rational solution of the associated Riccati equation of \\spad{op y = 0} must be one of the \\spad{fi}'s (up to the constant coefficient),{} in which case the equation for \\spad{z = y e^{-int ai}} is \\spad{Li z = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.")) (|ricDsolve| (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|))) "\\spad{ricDsolve(op)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator2| |#2| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|) (|Mapping| (|Factored| |#2|) |#2|)) "\\spad{ricDsolve(op, zeros, ezfactor)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}. Argument \\spad{ezfactor} is a factorisation in \\spad{UP},{} not necessarily into irreducibles.") (((|List| (|Fraction| |#2|)) (|LinearOrdinaryDifferentialOperator1| (|Fraction| |#2|)) (|Mapping| (|List| |#1|) |#2|)) "\\spad{ricDsolve(op, zeros)} returns the rational solutions of the associated Riccati equation of \\spad{op y = 0}. \\spad{zeros} is a zero finder in \\spad{UP}."))) NIL ((|HasCategory| |#1| (QUOTE (-27)))) -(-835 -3495 LO) +(-834 -3494 LO) ((|constructor| (NIL "SystemODESolver provides tools for triangulating and solving some systems of linear ordinary differential equations.")) (|solveInField| (((|Record| (|:| |particular| (|Union| (|Vector| |#1|) "failed")) (|:| |basis| (|List| (|Vector| |#1|)))) (|Matrix| |#2|) (|Vector| |#1|) (|Mapping| (|Record| (|:| |particular| (|Union| |#1| "failed")) (|:| |basis| (|List| |#1|))) |#2| |#1|)) "\\spad{solveInField(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{m x = v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{m x = 0}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|solve| (((|Union| (|Record| (|:| |particular| (|Vector| |#1|)) (|:| |basis| (|Matrix| |#1|))) "failed") (|Matrix| |#1|) (|Vector| |#1|) (|Mapping| (|Union| (|Record| (|:| |particular| |#1|) (|:| |basis| (|List| |#1|))) "failed") |#2| |#1|)) "\\spad{solve(m, v, solve)} returns \\spad{[[v_1,...,v_m], v_p]} such that the solutions in \\spad{F} of the system \\spad{D x = m x + v} are \\spad{v_p + c_1 v_1 + ... + c_m v_m} where the \\spad{c_i's} are constants,{} and the \\spad{v_i's} form a basis for the solutions of \\spad{D x = m x}. Argument \\spad{solve} is a function for solving a single linear ordinary differential equation in \\spad{F}.")) (|triangulate| (((|Record| (|:| |mat| (|Matrix| |#2|)) (|:| |vec| (|Vector| |#1|))) (|Matrix| |#2|) (|Vector| |#1|)) "\\spad{triangulate(m, v)} returns \\spad{[m_0, v_0]} such that \\spad{m_0} is upper triangular and the system \\spad{m_0 x = v_0} is equivalent to \\spad{m x = v}.") (((|Record| (|:| A (|Matrix| |#1|)) (|:| |eqs| (|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)) (|:| |eq| |#2|) (|:| |rh| |#1|))))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{triangulate(M,v)} returns \\spad{A,[[C_1,g_1,L_1,h_1],...,[C_k,g_k,L_k,h_k]]} such that under the change of variable \\spad{y = A z},{} the first order linear system \\spad{D y = M y + v} is uncoupled as \\spad{D z_i = C_i z_i + g_i} and each \\spad{C_i} is a companion matrix corresponding to the scalar equation \\spad{L_i z_j = h_i}."))) NIL NIL -(-836 -3495 LODO) +(-835 -3494 LODO) ((|constructor| (NIL "\\spad{ODETools} provides tools for the linear ODE solver.")) (|particularSolution| (((|Union| |#1| "failed") |#2| |#1| (|List| |#1|) (|Mapping| |#1| |#1|)) "\\spad{particularSolution(op, g, [f1,...,fm], I)} returns a particular solution \\spad{h} of the equation \\spad{op y = g} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if no particular solution is found. Note: the method of variations of parameters is used.")) (|variationOfParameters| (((|Union| (|Vector| |#1|) "failed") |#2| |#1| (|List| |#1|)) "\\spad{variationOfParameters(op, g, [f1,...,fm])} returns \\spad{[u1,...,um]} such that a particular solution of the equation \\spad{op y = g} is \\spad{f1 int(u1) + ... + fm int(um)} where \\spad{[f1,...,fm]} are linearly independent and \\spad{op(fi)=0}. The value \"failed\" is returned if \\spad{m < n} and no particular solution is found.")) (|wronskianMatrix| (((|Matrix| |#1|) (|List| |#1|) (|NonNegativeInteger|)) "\\spad{wronskianMatrix([f1,...,fn], q, D)} returns the \\spad{q x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}.") (((|Matrix| |#1|) (|List| |#1|)) "\\spad{wronskianMatrix([f1,...,fn])} returns the \\spad{n x n} matrix \\spad{m} whose i^th row is \\spad{[f1^(i-1),...,fn^(i-1)]}."))) NIL NIL -(-837 -3020 S |f|) +(-836 -3019 S |f|) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The ordering on the type is determined by its third argument which represents the less than function on vectors. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4419 |has| |#2| (-1070)) (-4420 |has| |#2| (-1070)) (-4422 |has| |#2| (-6 -4422)) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-376))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (-3957 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-240))) (-3957 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1070))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-815))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-861))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4422)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1070)))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) -(-838 R) +((-4418 |has| |#2| (-1069)) (-4419 |has| |#2| (-1069)) (-4421 |has| |#2| (-6 -4421)) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-376))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376)))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (-3956 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-240))) (-3956 (|HasCategory| |#2| (QUOTE (-240))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1069))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-814))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-860))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#2| (QUOTE -4421)) (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-1069)))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-25))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))))) +(-837 R) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is orderly. This is analogous to the domain \\spadtype{Polynomial}. \\blankline"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-840 (-1198)) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-840 (-1198)) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-840 (-1198)) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-840 (-1198)) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-840 (-1198)) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-839 |Kernels| R |var|) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-839 (-1197)) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-839 (-1197)) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-839 (-1197)) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-839 (-1197)) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-839 (-1197)) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-838 |Kernels| R |var|) ((|constructor| (NIL "This constructor produces an ordinary differential ring from a partial differential ring by specifying a variable."))) -(((-4427 "*") |has| |#2| (-376)) (-4418 |has| |#2| (-376)) (-4423 |has| |#2| (-376)) (-4417 |has| |#2| (-376)) (-4422 . T) (-4420 . T) (-4419 . T)) +(((-4426 "*") |has| |#2| (-376)) (-4417 |has| |#2| (-376)) (-4422 |has| |#2| (-376)) (-4416 |has| |#2| (-376)) (-4421 . T) (-4419 . T) (-4418 . T)) ((|HasCategory| |#2| (QUOTE (-376)))) -(-840 S) +(-839 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used orderly ranking to the set of derivatives of an ordered list of differential indeterminates. An orderly ranking is a ranking \\spadfun{<} of the derivatives with the property that for two derivatives \\spad{u} and \\spad{v},{} \\spad{u} \\spadfun{<} \\spad{v} if the \\spadfun{order} of \\spad{u} is less than that of \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines an orderly ranking \\spadfun{<} on derivatives \\spad{u} via the lexicographic order on the pair (\\spadfun{order}(\\spad{u}),{} \\spadfun{variable}(\\spad{u}))."))) NIL NIL -(-841 S) +(-840 S) ((|constructor| (NIL "\\indented{3}{The free monoid on a set \\spad{S} is the monoid of finite products of} the form \\spad{reduce(*,[si ** ni])} where the \\spad{si}'s are in \\spad{S},{} and the \\spad{ni}'s are non-negative integers. The multiplication is not commutative. For two elements \\spad{x} and \\spad{y} the relation \\spad{x < y} holds if either \\spad{length(x) < length(y)} holds or if these lengths are equal and if \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the lexicographical ordering induced by \\spad{S}. This domain inherits implementation from \\spadtype{FreeMonoid}.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables of \\spad{x}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the length of \\spad{x}.")) (|div| (((|Union| (|Record| (|:| |lm| $) (|:| |rm| $)) "failed") $ $) "\\spad{x div y} returns the left and right exact quotients of \\spad{x} by \\spad{y},{} that is \\spad{[l, r]} such that \\spad{x = l * y * r}. \"failed\" is returned iff \\spad{x} is not of the form \\spad{l * y * r}. monomial of \\spad{x}.")) (|rquo| (((|Union| $ "failed") $ |#1|) "\\spad{rquo(x, s)} returns the exact right quotient of \\spad{x} by \\spad{s}.")) (|lquo| (((|Union| $ "failed") $ |#1|) "\\spad{lquo(x, s)} returns the exact left quotient of \\spad{x} by \\spad{s}.")) (|lexico| (((|Boolean|) $ $) "\\spad{lexico(x,y)} returns \\spad{true} iff \\spad{x} is smaller than \\spad{y} \\spad{w}.\\spad{r}.\\spad{t}. the pure lexicographical ordering induced by \\spad{S}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns the reversed word of \\spad{x}.")) (|rest| (($ $) "\\spad{rest(x)} returns \\spad{x} except the first letter.")) (|first| ((|#1| $) "\\spad{first(x)} returns the first letter of \\spad{x}."))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-842) +((|HasCategory| |#1| (QUOTE (-860)))) +(-841) ((|constructor| (NIL "The category of ordered commutative integral domains,{} where ordering and the arithmetic operations are compatible \\blankline"))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-843 P R) +(-842 P R) ((|constructor| (NIL "This constructor creates the \\spadtype{MonogenicLinearOperator} domain which is ``opposite'' in the ring sense to \\spad{P}. That is,{} as sets \\spad{P = \\$} but \\spad{a * b} in \\spad{\\$} is equal to \\spad{b * a} in \\spad{P}.")) (|po| ((|#1| $) "\\spad{po(q)} creates a value in \\spad{P} equal to \\spad{q} in \\$.")) (|op| (($ |#1|) "\\spad{op(p)} creates a value in \\$ equal to \\spad{p} in \\spad{P}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) ((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-240)))) -(-844 S) +(-843 S) ((|constructor| (NIL "to become an in order iterator")) (|min| ((|#1| $) "\\spad{min(u)} returns the smallest entry in the multiset aggregate \\spad{u}."))) -((-4425 . T) (-4415 . T) (-4426 . T)) +((-4424 . T) (-4414 . T) (-4425 . T)) NIL -(-845 R) +(-844 R) ((|constructor| (NIL "Adjunction of a complex infinity to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one,{} \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is infinite.")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|infinity| (($) "\\spad{infinity()} returns infinity."))) -((-4422 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3957 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-846 R S) +((-4421 |has| |#1| (-859))) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-21))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3956 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557)))) +(-845 R S) ((|constructor| (NIL "Lifting of maps to one-point completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|) (|OnePointCompletion| |#2|)) "\\spad{map(f, r, i)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = \\spad{i}.") (((|OnePointCompletion| |#2|) (|Mapping| |#2| |#1|) (|OnePointCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(infinity) = infinity."))) NIL NIL -(-847 R) +(-846 R) ((|constructor| (NIL "Algebra of ADDITIVE operators over a ring."))) -((-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) (-4422 . T)) +((-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) (-4421 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149)))) -(-848 A S) +(-847 A S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#2|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#2| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-849 S) +(-848 S) ((|constructor| (NIL "This category specifies the interface for operators used to build terms,{} in the sense of Universal Algebra. The domain parameter \\spad{S} provides representation for the `external name' of an operator.")) (|is?| (((|Boolean|) $ |#1|) "\\spad{is?(op,n)} holds if the name of the operator \\spad{op} is \\spad{n}.")) (|arity| (((|Arity|) $) "\\spad{arity(op)} returns the arity of the operator \\spad{op}.")) (|name| ((|#1| $) "\\spad{name(op)} returns the externam name of \\spad{op}."))) NIL NIL -(-850) +(-849) ((|constructor| (NIL "This package exports tools to create AXIOM Library information databases.")) (|getDatabase| (((|Database| (|IndexCard|)) (|String|)) "\\spad{getDatabase(\"char\")} returns a list of appropriate entries in the browser database. The legal values for \\spad{\"char\"} are \"o\" (operations),{} \"k\" (constructors),{} \"d\" (domains),{} \"c\" (categories) or \"p\" (packages)."))) NIL NIL -(-851) +(-850) ((|constructor| (NIL "This the datatype for an operator-signature pair.")) (|construct| (($ (|Identifier|) (|Signature|)) "\\spad{construct(op,sig)} construct a signature-operator with operator name `op',{} and signature `sig'.")) (|signature| (((|Signature|) $) "\\spad{signature(x)} returns the signature of `x'."))) NIL NIL -(-852) +(-851) ((|numericalOptimization| (((|Result|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.") (((|Result|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{numericalOptimization(args)} performs the optimization of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far.") (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve an optimization problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-853) +(-852) ((|goodnessOfFit| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{goodnessOfFit(lf,start)} is a top level ANNA function to check to goodness of fit of a least squares model \\spadignore{i.e.} the minimization of a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation. goodnessOfFit(\\spad{lf},{}\\spad{start}) is a top level function to iterate over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then checks the goodness of fit of the least squares model.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{goodnessOfFit(prob)} is a top level ANNA function to check to goodness of fit of a least squares model as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}. It then calls the numerical routine \\axiomType{E04YCF} to get estimates of the variance-covariance matrix of the regression coefficients of the least-squares problem. \\blankline It thus returns both the results of the optimization and the variance-covariance calculation.")) (|optimize| (((|Result|) (|List| (|Expression| (|Float|))) (|List| (|Float|))) "\\spad{optimize(lf,start)} is a top level ANNA function to minimize a set of functions,{} \\axiom{\\spad{lf}},{} of one or more variables without constraints \\spadignore{i.e.} a least-squares problem. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|))) "\\spad{optimize(f,start)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables without constraints. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with simple constraints. The bounds on the variables are defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|Expression| (|Float|)) (|List| (|Float|)) (|List| (|OrderedCompletion| (|Float|))) (|List| (|Expression| (|Float|))) (|List| (|OrderedCompletion| (|Float|)))) "\\spad{optimize(f,start,lower,cons,upper)} is a top level ANNA function to minimize a function,{} \\axiom{\\spad{f}},{} of one or more variables with the given constraints. \\blankline These constraints may be simple constraints on the variables in which case \\axiom{\\spad{cons}} would be an empty list and the bounds on those variables defined in \\axiom{\\spad{lower}} and \\axiom{\\spad{upper}},{} or a mixture of simple,{} linear and non-linear constraints,{} where \\axiom{\\spad{cons}} contains the linear and non-linear constraints and the bounds on these are added to \\axiom{\\spad{upper}} and \\axiom{\\spad{lower}}. \\blankline The parameter \\axiom{\\spad{start}} is a list of the initial guesses of the values of the variables. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|)) "\\spad{optimize(prob)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.") (((|Result|) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{optimize(prob,routines)} is a top level ANNA function to minimize a function or a set of functions with any constraints as defined within \\axiom{\\spad{prob}}. \\blankline It iterates over the \\axiom{domains} listed in \\axiom{\\spad{routines}} of \\axiomType{NumericalOptimizationCategory} to get the name and other relevant information of the best \\axiom{measure} and then optimize the function on that \\axiom{domain}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalOptimizationProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical optimization problem defined by \\axiom{\\spad{prob}} by checking various attributes of the functions and calculating a measure of compatibility of each routine to these attributes. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{NumericalOptimizationCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information."))) NIL NIL -(-854) +(-853) ((|retract| (((|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|)))))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Union| (|:| |noa| (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) (|:| |lsa| (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |lfn| (|List| (|Expression| (|DoubleFloat|)))) (|:| |init| (|List| (|DoubleFloat|))))) "\\spad{coerce(x)} \\undocumented{}") (($ (|Record| (|:| |fn| (|Expression| (|DoubleFloat|))) (|:| |init| (|List| (|DoubleFloat|))) (|:| |lb| (|List| (|OrderedCompletion| (|DoubleFloat|)))) (|:| |cf| (|List| (|Expression| (|DoubleFloat|)))) (|:| |ub| (|List| (|OrderedCompletion| (|DoubleFloat|)))))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-855 R) +(-854 R) ((|constructor| (NIL "Adjunction of two real infinites quantities to a set. Date Created: 4 Oct 1989 Date Last Updated: 1 Nov 1989")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(x)} returns \\spad{x} as a finite rational number if it is one and \"failed\" otherwise.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(x)} returns \\spad{x} as a finite rational number. Error: if \\spad{x} cannot be so converted.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(x)} tests if \\spad{x} is a finite rational number.")) (|whatInfinity| (((|SingleInteger|) $) "\\spad{whatInfinity(x)} returns 0 if \\spad{x} is finite,{} 1 if \\spad{x} is +infinity,{} and \\spad{-1} if \\spad{x} is -infinity.")) (|infinite?| (((|Boolean|) $) "\\spad{infinite?(x)} tests if \\spad{x} is +infinity or -infinity,{}")) (|finite?| (((|Boolean|) $) "\\spad{finite?(x)} tests if \\spad{x} is finite.")) (|minusInfinity| (($) "\\spad{minusInfinity()} returns -infinity.")) (|plusInfinity| (($) "\\spad{plusInfinity()} returns +infinity."))) -((-4422 |has| |#1| (-860))) -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-21))) (-3957 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3957 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557)))) -(-856 R S) +((-4421 |has| |#1| (-859))) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-21))) (-3956 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-859)))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3956 (|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-557)))) +(-855 R S) ((|constructor| (NIL "Lifting of maps to ordered completions. Date Created: 4 Oct 1989 Date Last Updated: 4 Oct 1989")) (|map| (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|) (|OrderedCompletion| |#2|) (|OrderedCompletion| |#2|)) "\\spad{map(f, r, p, m)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = \\spad{p} and that \\spad{f}(minusInfinity) = \\spad{m}.") (((|OrderedCompletion| |#2|) (|Mapping| |#2| |#1|) (|OrderedCompletion| |#1|)) "\\spad{map(f, r)} lifts \\spad{f} and applies it to \\spad{r},{} assuming that \\spad{f}(plusInfinity) = plusInfinity and that \\spad{f}(minusInfinity) = minusInfinity."))) NIL NIL -(-857) +(-856) ((|constructor| (NIL "Ordered finite sets.")) (|max| (($) "\\spad{max} is the maximum value of \\%.")) (|min| (($) "\\spad{min} is the minimum value of \\%."))) NIL NIL -(-858 -3020 S) +(-857 -3019 S) ((|constructor| (NIL "\\indented{3}{This package provides ordering functions on vectors which} are suitable parameters for OrderedDirectProduct.")) (|reverseLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{reverseLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by the reverse lexicographic ordering.")) (|totalLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{totalLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the ordering which is total degree refined by lexicographic ordering.")) (|pureLex| (((|Boolean|) (|Vector| |#2|) (|Vector| |#2|)) "\\spad{pureLex(v1,v2)} return \\spad{true} if the vector \\spad{v1} is less than the vector \\spad{v2} in the lexicographic ordering."))) NIL NIL -(-859) +(-858) ((|constructor| (NIL "Ordered sets which are also monoids,{} such that multiplication preserves the ordering. \\blankline"))) NIL NIL -(-860) +(-859) ((|constructor| (NIL "Ordered sets which are also rings,{} that is,{} domains where the ring operations are compatible with the ordering. \\blankline"))) -((-4422 . T)) +((-4421 . T)) NIL -(-861) +(-860) ((|constructor| (NIL "The class of totally ordered sets,{} that is,{} sets such that for each pair of elements \\spad{(a,b)} exactly one of the following relations holds \\spad{a<b or a=b or b<a} and the relation is transitive,{} \\spadignore{i.e.} \\spad{a<b and b<c => a<c}."))) NIL NIL -(-862 T$ |f|) +(-861 T$ |f|) ((|constructor| (NIL "This domain turns any total ordering \\spad{f} on a type \\spad{T} into a model of the category \\spadtype{OrderedType}."))) NIL -((|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) -(-863 S) +((|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) +(-862 S) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-864) +(-863) ((|constructor| (NIL "Category of types equipped with a total ordering.")) (|min| (($ $ $) "\\spad{min(x,y)} returns the minimum of \\spad{x} and \\spad{y} relative to the ordering.")) (|max| (($ $ $) "\\spad{max(x,y)} returns the maximum of \\spad{x} and \\spad{y} relative to the ordering.")) (>= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is greater or equal than \\spad{y} in the current domain.")) (<= (((|Boolean|) $ $) "\\spad{x <= y} holds if \\spad{x} is less or equal than \\spad{y} in the current domain.")) (> (((|Boolean|) $ $) "\\spad{x > y} holds if \\spad{x} is greater than \\spad{y} in the current domain.")) (< (((|Boolean|) $ $) "\\spad{x < y} holds if \\spad{x} is less than \\spad{y} in the current domain."))) NIL NIL -(-865 S R) +(-864 S R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#2| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#2|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#2| $ |#2| |#2|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#2|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#2| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#2| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) NIL ((|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175)))) -(-866 R) +(-865 R) ((|constructor| (NIL "This is the category of univariate skew polynomials over an Ore coefficient ring. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}. This category is an evolution of the types \\indented{2}{MonogenicLinearOperator,{} OppositeMonogenicLinearOperator,{} and} \\indented{2}{NonCommutativeOperatorDivision} developped by Jean Della Dora and Stephen \\spad{M}. Watt.")) (|leftLcm| (($ $ $) "\\spad{leftLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = aa*a = bb*b} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using right-division.")) (|rightExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{rightExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = c * a + d * b = rightGcd(a, b)}.")) (|rightGcd| (($ $ $) "\\spad{rightGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = aa*g}} \\indented{3}{\\spad{b = bb*g}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using right-division.")) (|rightExactQuotient| (((|Union| $ "failed") $ $) "\\spad{rightExactQuotient(a,b)} computes the value \\spad{q},{} if it exists such that \\spad{a = q*b}.")) (|rightRemainder| (($ $ $) "\\spad{rightRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|rightQuotient| (($ $ $) "\\spad{rightQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|rightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{rightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''.")) (|rightLcm| (($ $ $) "\\spad{rightLcm(a,b)} computes the value \\spad{m} of lowest degree such that \\spad{m = a*aa = b*bb} for some values \\spad{aa} and \\spad{bb}. The value \\spad{m} is computed using left-division.")) (|leftExtendedGcd| (((|Record| (|:| |coef1| $) (|:| |coef2| $) (|:| |generator| $)) $ $) "\\spad{leftExtendedGcd(a,b)} returns \\spad{[c,d]} such that \\spad{g = a * c + b * d = leftGcd(a, b)}.")) (|leftGcd| (($ $ $) "\\spad{leftGcd(a,b)} computes the value \\spad{g} of highest degree such that \\indented{3}{\\spad{a = g*aa}} \\indented{3}{\\spad{b = g*bb}} for some values \\spad{aa} and \\spad{bb}. The value \\spad{g} is computed using left-division.")) (|leftExactQuotient| (((|Union| $ "failed") $ $) "\\spad{leftExactQuotient(a,b)} computes the value \\spad{q},{} if it exists,{} \\indented{1}{such that \\spad{a = b*q}.}")) (|leftRemainder| (($ $ $) "\\spad{leftRemainder(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{r} is returned.")) (|leftQuotient| (($ $ $) "\\spad{leftQuotient(a,b)} computes the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. The value \\spad{q} is returned.")) (|leftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{leftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''.")) (|primitivePart| (($ $) "\\spad{primitivePart(l)} returns \\spad{l0} such that \\spad{l = a * l0} for some a in \\spad{R},{} and \\spad{content(l0) = 1}.")) (|content| ((|#1| $) "\\spad{content(l)} returns the gcd of all the coefficients of \\spad{l}.")) (|monicRightDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicRightDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''.")) (|monicLeftDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicLeftDivide(a,b)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''.")) (|exquo| (((|Union| $ "failed") $ |#1|) "\\spad{exquo(l, a)} returns the exact quotient of \\spad{l} by a,{} returning \\axiom{\"failed\"} if this is not possible.")) (|apply| ((|#1| $ |#1| |#1|) "\\spad{apply(p, c, m)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|coefficients| (((|List| |#1|) $) "\\spad{coefficients(l)} returns the list of all the nonzero coefficients of \\spad{l}.")) (|monomial| (($ |#1| (|NonNegativeInteger|)) "\\spad{monomial(c,k)} produces \\spad{c} times the \\spad{k}-th power of the generating operator,{} \\spad{monomial(1,1)}.")) (|coefficient| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coefficient(l,k)} is \\spad{a(k)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|reductum| (($ $) "\\spad{reductum(l)} is \\spad{l - monomial(a(n),n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(l)} is \\spad{a(n)} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|minimumDegree| (((|NonNegativeInteger|) $) "\\spad{minimumDegree(l)} is the smallest \\spad{k} such that \\spad{a(k) ~= 0} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(l)} is \\spad{n} if \\indented{2}{\\spad{l = sum(monomial(a(i),i), i = 0..n)}.}"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-867 R C) +(-866 R C) ((|constructor| (NIL "\\spad{UnivariateSkewPolynomialCategoryOps} provides products and \\indented{1}{divisions of univariate skew polynomials.}")) (|rightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{rightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|leftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{leftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|monicRightDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicRightDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = q*b + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``right division''. \\spad{\\sigma} is the morphism to use.")) (|monicLeftDivide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2| (|Automorphism| |#1|)) "\\spad{monicLeftDivide(a, b, sigma)} returns the pair \\spad{[q,r]} such that \\spad{a = b*q + r} and the degree of \\spad{r} is less than the degree of \\spad{b}. \\spad{b} must be monic. This process is called ``left division''. \\spad{\\sigma} is the morphism to use.")) (|apply| ((|#1| |#2| |#1| |#1| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{apply(p, c, m, sigma, delta)} returns \\spad{p(m)} where the action is given by \\spad{x m = c sigma(m) + delta(m)}.")) (|times| ((|#2| |#2| |#2| (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{times(p, q, sigma, delta)} returns \\spad{p * q}. \\spad{\\sigma} and \\spad{\\delta} are the maps to use."))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) -(-868 R |sigma| -3662) +(-867 R |sigma| -3661) ((|constructor| (NIL "This is the domain of sparse univariate skew polynomials over an Ore coefficient field. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}.")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p, x)} returns the output form of \\spad{p} using \\spad{x} for the otherwise anonymous variable."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) -(-869 |x| R |sigma| -3662) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-376)))) +(-868 |x| R |sigma| -3661) ((|constructor| (NIL "This is the domain of univariate skew polynomials over an Ore coefficient field in a named variable. The multiplication is given by \\spad{x a = \\sigma(a) x + \\delta a}."))) -((-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-376)))) -(-870 R) +((-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-376)))) +(-869 R) ((|constructor| (NIL "This package provides orthogonal polynomials as functions on a ring.")) (|legendreP| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{legendreP(n,x)} is the \\spad{n}-th Legendre polynomial,{} \\spad{P[n](x)}. These are defined by \\spad{1/sqrt(1-2*x*t+t**2) = sum(P[n](x)*t**n, n = 0..)}.")) (|laguerreL| ((|#1| (|NonNegativeInteger|) (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(m,n,x)} is the associated Laguerre polynomial,{} \\spad{L<m>[n](x)}. This is the \\spad{m}-th derivative of \\spad{L[n](x)}.") ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{laguerreL(n,x)} is the \\spad{n}-th Laguerre polynomial,{} \\spad{L[n](x)}. These are defined by \\spad{exp(-t*x/(1-t))/(1-t) = sum(L[n](x)*t**n/n!, n = 0..)}.")) (|hermiteH| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{hermiteH(n,x)} is the \\spad{n}-th Hermite polynomial,{} \\spad{H[n](x)}. These are defined by \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n = 0..)}.")) (|chebyshevU| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevU(n,x)} is the \\spad{n}-th Chebyshev polynomial of the second kind,{} \\spad{U[n](x)}. These are defined by \\spad{1/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}.")) (|chebyshevT| ((|#1| (|NonNegativeInteger|) |#1|) "\\spad{chebyshevT(n,x)} is the \\spad{n}-th Chebyshev polynomial of the first kind,{} \\spad{T[n](x)}. These are defined by \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x) *t**n, n = 0..)}."))) NIL ((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) -(-871) +(-870) ((|constructor| (NIL "Semigroups with compatible ordering."))) NIL NIL -(-872) +(-871) ((|constructor| (NIL "\\indented{1}{Author : Larry Lambe} Date created : 14 August 1988 Date Last Updated : 11 March 1991 Description : A domain used in order to take the free \\spad{R}-module on the Integers \\spad{I}. This is actually the forgetful functor from OrderedRings to OrderedSets applied to \\spad{I}")) (|value| (((|Integer|) $) "\\spad{value(x)} returns the integer associated with \\spad{x}")) (|coerce| (($ (|Integer|)) "\\spad{coerce(i)} returns the element corresponding to \\spad{i}"))) NIL NIL -(-873) +(-872) ((|constructor| (NIL "OutPackage allows pretty-printing from programs.")) (|outputList| (((|Void|) (|List| (|Any|))) "\\spad{outputList(l)} displays the concatenated components of the list \\spad{l} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}; quotes are stripped from strings.")) (|output| (((|Void|) (|String|) (|OutputForm|)) "\\spad{output(s,x)} displays the string \\spad{s} followed by the form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|OutputForm|)) "\\spad{output(x)} displays the output form \\spad{x} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}.") (((|Void|) (|String|)) "\\spad{output(s)} displays the string \\spad{s} on the ``algebra output'' stream,{} as defined by \\spadsyscom{set output algebra}."))) NIL NIL -(-874 S) +(-873 S) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-875) +(-874) ((|constructor| (NIL "This category describes output byte stream conduits.")) (|writeBytes!| (((|NonNegativeInteger|) $ (|ByteBuffer|)) "\\spad{writeBytes!(c,b)} write bytes from buffer `b' onto the conduit `c'. The actual number of written bytes is returned.")) (|writeUInt8!| (((|Maybe| (|UInt8|)) $ (|UInt8|)) "\\spad{writeUInt8!(c,b)} attempts to write the unsigned 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeInt8!| (((|Maybe| (|Int8|)) $ (|Int8|)) "\\spad{writeInt8!(c,b)} attempts to write the 8-bit value `v' on the conduit `c'. Returns the written value if successful,{} otherwise,{} returns \\spad{nothing}.")) (|writeByte!| (((|Maybe| (|Byte|)) $ (|Byte|)) "\\spad{writeByte!(c,b)} attempts to write the byte `b' on the conduit `c'. Returns the written byte if successful,{} otherwise,{} returns \\spad{nothing}."))) NIL NIL -(-876) +(-875) ((|constructor| (NIL "This domain provides representation for binary files open for output operations. `Binary' here means that the conduits do not interpret their contents.")) (|isOpen?| (((|Boolean|) $) "open?(ifile) holds if `ifile' is in open state.")) (|outputBinaryFile| (($ (|String|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file.") (($ (|FileName|)) "\\spad{outputBinaryFile(f)} returns an output conduit obtained by opening the file named by `f' as a binary file."))) NIL NIL -(-877) +(-876) ((|constructor| (NIL "This domain is used to create and manipulate mathematical expressions for output. It is intended to provide an insulating layer between the expression rendering software (\\spadignore{e.g.} TeX,{} or Script) and the output coercions in the various domains.")) (SEGMENT (($ $) "\\spad{SEGMENT(x)} creates the prefix form: \\spad{x..}.") (($ $ $) "\\spad{SEGMENT(x,y)} creates the infix form: \\spad{x..y}.")) (|not| (($ $) "\\spad{not f} creates the equivalent prefix form.")) (|or| (($ $ $) "\\spad{f or g} creates the equivalent infix form.")) (|and| (($ $ $) "\\spad{f and g} creates the equivalent infix form.")) (|exquo| (($ $ $) "\\spad{exquo(f,g)} creates the equivalent infix form.")) (|quo| (($ $ $) "\\spad{f quo g} creates the equivalent infix form.")) (|rem| (($ $ $) "\\spad{f rem g} creates the equivalent infix form.")) (|div| (($ $ $) "\\spad{f div g} creates the equivalent infix form.")) (** (($ $ $) "\\spad{f ** g} creates the equivalent infix form.")) (/ (($ $ $) "\\spad{f / g} creates the equivalent infix form.")) (* (($ $ $) "\\spad{f * g} creates the equivalent infix form.")) (- (($ $) "\\spad{- f} creates the equivalent prefix form.") (($ $ $) "\\spad{f - g} creates the equivalent infix form.")) (+ (($ $ $) "\\spad{f + g} creates the equivalent infix form.")) (>= (($ $ $) "\\spad{f >= g} creates the equivalent infix form.")) (<= (($ $ $) "\\spad{f <= g} creates the equivalent infix form.")) (> (($ $ $) "\\spad{f > g} creates the equivalent infix form.")) (< (($ $ $) "\\spad{f < g} creates the equivalent infix form.")) (~= (($ $ $) "\\spad{f ~= g} creates the equivalent infix form.")) (= (($ $ $) "\\spad{f = g} creates the equivalent infix form.")) (|blankSeparate| (($ (|List| $)) "\\spad{blankSeparate(l)} creates the form separating the elements of \\spad{l} by blanks.")) (|semicolonSeparate| (($ (|List| $)) "\\spad{semicolonSeparate(l)} creates the form separating the elements of \\spad{l} by semicolons.")) (|commaSeparate| (($ (|List| $)) "\\spad{commaSeparate(l)} creates the form separating the elements of \\spad{l} by commas.")) (|pile| (($ (|List| $)) "\\spad{pile(l)} creates the form consisting of the elements of \\spad{l} which displays as a pile,{} \\spadignore{i.e.} the elements begin on a new line and are indented right to the same margin.")) (|paren| (($ (|List| $)) "\\spad{paren(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in parentheses.") (($ $) "\\spad{paren(f)} creates the form enclosing \\spad{f} in parentheses.")) (|bracket| (($ (|List| $)) "\\spad{bracket(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in square brackets.") (($ $) "\\spad{bracket(f)} creates the form enclosing \\spad{f} in square brackets.")) (|brace| (($ (|List| $)) "\\spad{brace(lf)} creates the form separating the elements of \\spad{lf} by commas and encloses the result in curly brackets.") (($ $) "\\spad{brace(f)} creates the form enclosing \\spad{f} in braces (curly brackets).")) (|int| (($ $ $ $) "\\spad{int(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by an integral sign with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{int(expr,lowerlimit)} creates the form prefixing \\spad{expr} by an integral sign with a \\spad{lowerlimit}.") (($ $) "\\spad{int(expr)} creates the form prefixing \\spad{expr} with an integral sign.")) (|prod| (($ $ $ $) "\\spad{prod(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{prod(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital \\spad{pi} with a \\spad{lowerlimit}.") (($ $) "\\spad{prod(expr)} creates the form prefixing \\spad{expr} by a capital \\spad{pi}.")) (|sum| (($ $ $ $) "\\spad{sum(expr,lowerlimit,upperlimit)} creates the form prefixing \\spad{expr} by a capital sigma with both a \\spad{lowerlimit} and \\spad{upperlimit}.") (($ $ $) "\\spad{sum(expr,lowerlimit)} creates the form prefixing \\spad{expr} by a capital sigma with a \\spad{lowerlimit}.") (($ $) "\\spad{sum(expr)} creates the form prefixing \\spad{expr} by a capital sigma.")) (|overlabel| (($ $ $) "\\spad{overlabel(x,f)} creates the form \\spad{f} with \"x overbar\" over the top.")) (|overbar| (($ $) "\\spad{overbar(f)} creates the form \\spad{f} with an overbar.")) (|prime| (($ $ (|NonNegativeInteger|)) "\\spad{prime(f,n)} creates the form \\spad{f} followed by \\spad{n} primes.") (($ $) "\\spad{prime(f)} creates the form \\spad{f} followed by a suffix prime (single quote).")) (|dot| (($ $ (|NonNegativeInteger|)) "\\spad{dot(f,n)} creates the form \\spad{f} with \\spad{n} dots overhead.") (($ $) "\\spad{dot(f)} creates the form with a one dot overhead.")) (|quote| (($ $) "\\spad{quote(f)} creates the form \\spad{f} with a prefix quote.")) (|supersub| (($ $ (|List| $)) "\\spad{supersub(a,[sub1,super1,sub2,super2,...])} creates a form with each subscript aligned under each superscript.")) (|scripts| (($ $ (|List| $)) "\\spad{scripts(f, [sub, super, presuper, presub])} \\indented{1}{creates a form for \\spad{f} with scripts on all 4 corners.}")) (|presuper| (($ $ $) "\\spad{presuper(f,n)} creates a form for \\spad{f} presuperscripted by \\spad{n}.")) (|presub| (($ $ $) "\\spad{presub(f,n)} creates a form for \\spad{f} presubscripted by \\spad{n}.")) (|super| (($ $ $) "\\spad{super(f,n)} creates a form for \\spad{f} superscripted by \\spad{n}.")) (|sub| (($ $ $) "\\spad{sub(f,n)} creates a form for \\spad{f} subscripted by \\spad{n}.")) (|binomial| (($ $ $) "\\spad{binomial(n,m)} creates a form for the binomial coefficient of \\spad{n} and \\spad{m}.")) (|differentiate| (($ $ (|NonNegativeInteger|)) "\\spad{differentiate(f,n)} creates a form for the \\spad{n}th derivative of \\spad{f},{} \\spadignore{e.g.} \\spad{f'},{} \\spad{f''},{} \\spad{f'''},{} \"f super \\spad{iv}\".")) (|rarrow| (($ $ $) "\\spad{rarrow(f,g)} creates a form for the mapping \\spad{f -> g}.")) (|assign| (($ $ $) "\\spad{assign(f,g)} creates a form for the assignment \\spad{f := g}.")) (|slash| (($ $ $) "\\spad{slash(f,g)} creates a form for the horizontal fraction of \\spad{f} over \\spad{g}.")) (|over| (($ $ $) "\\spad{over(f,g)} creates a form for the vertical fraction of \\spad{f} over \\spad{g}.")) (|root| (($ $ $) "\\spad{root(f,n)} creates a form for the \\spad{n}th root of form \\spad{f}.") (($ $) "\\spad{root(f)} creates a form for the square root of form \\spad{f}.")) (|zag| (($ $ $) "\\spad{zag(f,g)} creates a form for the continued fraction form for \\spad{f} over \\spad{g}.")) (|matrix| (($ (|List| (|List| $))) "\\spad{matrix(llf)} makes \\spad{llf} (a list of lists of forms) into a form which displays as a matrix.")) (|box| (($ $) "\\spad{box(f)} encloses \\spad{f} in a box.")) (|label| (($ $ $) "\\spad{label(n,f)} gives form \\spad{f} an equation label \\spad{n}.")) (|string| (($ $) "\\spad{string(f)} creates \\spad{f} with string quotes.")) (|elt| (($ $ (|List| $)) "\\spad{elt(op,l)} creates a form for application of \\spad{op} to list of arguments \\spad{l}.")) (|infix?| (((|Boolean|) $) "\\spad{infix?(op)} returns \\spad{true} if \\spad{op} is an infix operator,{} and \\spad{false} otherwise.")) (|postfix| (($ $ $) "\\spad{postfix(op, a)} creates a form which prints as: a \\spad{op}.")) (|infix| (($ $ $ $) "\\spad{infix(op, a, b)} creates a form which prints as: a \\spad{op} \\spad{b}.") (($ $ (|List| $)) "\\spad{infix(f,l)} creates a form depicting the \\spad{n}-ary application of infix operation \\spad{f} to a tuple of arguments \\spad{l}.")) (|prefix| (($ $ (|List| $)) "\\spad{prefix(f,l)} creates a form depicting the \\spad{n}-ary prefix application of \\spad{f} to a tuple of arguments given by list \\spad{l}.")) (|vconcat| (($ (|List| $)) "\\spad{vconcat(u)} vertically concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{vconcat(f,g)} vertically concatenates forms \\spad{f} and \\spad{g}.")) (|hconcat| (($ (|List| $)) "\\spad{hconcat(u)} horizontally concatenates all forms in list \\spad{u}.") (($ $ $) "\\spad{hconcat(f,g)} horizontally concatenate forms \\spad{f} and \\spad{g}.")) (|center| (($ $) "\\spad{center(f)} centers form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{center(f,n)} centers form \\spad{f} within space of width \\spad{n}.")) (|right| (($ $) "\\spad{right(f)} right-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{right(f,n)} right-justifies form \\spad{f} within space of width \\spad{n}.")) (|left| (($ $) "\\spad{left(f)} left-justifies form \\spad{f} in total space.") (($ $ (|Integer|)) "\\spad{left(f,n)} left-justifies form \\spad{f} within space of width \\spad{n}.")) (|rspace| (($ (|Integer|) (|Integer|)) "\\spad{rspace(n,m)} creates rectangular white space,{} \\spad{n} wide by \\spad{m} high.")) (|vspace| (($ (|Integer|)) "\\spad{vspace(n)} creates white space of height \\spad{n}.")) (|hspace| (($ (|Integer|)) "\\spad{hspace(n)} creates white space of width \\spad{n}.")) (|superHeight| (((|Integer|) $) "\\spad{superHeight(f)} returns the height of form \\spad{f} above the base line.")) (|subHeight| (((|Integer|) $) "\\spad{subHeight(f)} returns the height of form \\spad{f} below the base line.")) (|height| (((|Integer|)) "\\spad{height()} returns the height of the display area (an integer).") (((|Integer|) $) "\\spad{height(f)} returns the height of form \\spad{f} (an integer).")) (|width| (((|Integer|)) "\\spad{width()} returns the width of the display area (an integer).") (((|Integer|) $) "\\spad{width(f)} returns the width of form \\spad{f} (an integer).")) (|doubleFloatFormat| (((|String|) (|String|)) "change the output format for doublefloats using lisp format strings")) (|empty| (($) "\\spad{empty()} creates an empty form.")) (|outputForm| (($ (|DoubleFloat|)) "\\spad{outputForm(sf)} creates an form for small float \\spad{sf}.") (($ (|String|)) "\\spad{outputForm(s)} creates an form for string \\spad{s}.") (($ (|Symbol|)) "\\spad{outputForm(s)} creates an form for symbol \\spad{s}.") (($ (|Integer|)) "\\spad{outputForm(n)} creates an form for integer \\spad{n}.")) (|messagePrint| (((|Void|) (|String|)) "\\spad{messagePrint(s)} prints \\spad{s} without string quotes. Note: \\spad{messagePrint(s)} is equivalent to \\spad{print message(s)}.")) (|message| (($ (|String|)) "\\spad{message(s)} creates an form with no string quotes from string \\spad{s}.")) (|print| (((|Void|) $) "\\spad{print(u)} prints the form \\spad{u}."))) NIL NIL -(-878 |VariableList|) +(-877 |VariableList|) ((|constructor| (NIL "This domain implements ordered variables")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} returns a member of the variable set or failed"))) NIL NIL -(-879) +(-878) ((|constructor| (NIL "This domain represents set of overloaded operators (in fact operator descriptors).")) (|members| (((|List| (|FunctionDescriptor|)) $) "\\spad{members(x)} returns the list of operator descriptors,{} \\spadignore{e.g.} signature and implementation slots,{} of the overload set \\spad{x}.")) (|name| (((|Identifier|) $) "\\spad{name(x)} returns the name of the overload set \\spad{x}."))) NIL NIL -(-880 R |vl| |wl| |wtlevel|) +(-879 R |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over the \"Polynomial\" type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} This changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) (-4422 . T)) +((-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) (-4421 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) -(-881 R PS UP) +(-880 R PS UP) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|padecf| (((|Union| (|ContinuedFraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{padecf(nd,dd,ns,ds)} computes the approximant as a continued fraction of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function).")) (|pade| (((|Union| (|Fraction| |#3|) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) |#2| |#2|) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-882 R |x| |pt|) +(-881 R |x| |pt|) ((|constructor| (NIL "\\indented{1}{This package computes reliable Pad&ea. approximants using} a generalized Viskovatov continued fraction algorithm. Authors: Trager,{}Burge,{} Hassner & Watt. Date Created: April 1987 Date Last Updated: 12 April 1990 Keywords: Pade,{} series Examples: References: \\indented{2}{\"Pade Approximants,{} Part I: Basic Theory\",{} Baker & Graves-Morris.}")) (|pade| (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,s)} computes the quotient of polynomials (if it exists) with numerator degree at most \\spad{nd} and denominator degree at most \\spad{dd} which matches the series \\spad{s} to order \\spad{nd + dd}.") (((|Union| (|Fraction| (|UnivariatePolynomial| |#2| |#1|)) "failed") (|NonNegativeInteger|) (|NonNegativeInteger|) (|UnivariateTaylorSeries| |#1| |#2| |#3|) (|UnivariateTaylorSeries| |#1| |#2| |#3|)) "\\spad{pade(nd,dd,ns,ds)} computes the approximant as a quotient of polynomials (if it exists) for arguments \\spad{nd} (numerator degree of approximant),{} \\spad{dd} (denominator degree of approximant),{} \\spad{ns} (numerator series of function),{} and \\spad{ds} (denominator series of function)."))) NIL NIL -(-883 |p|) +(-882 |p|) ((|constructor| (NIL "Stream-based implementation of Zp: \\spad{p}-adic numbers are represented as sum(\\spad{i} = 0..,{} a[\\spad{i}] * p^i),{} where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-884 |p|) +(-883 |p|) ((|constructor| (NIL "This is the catefory of stream-based representations of \\indented{2}{the \\spad{p}-adic integers.}")) (|root| (($ (|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{root(f,a)} returns a root of the polynomial \\spad{f}. Argument \\spad{a} must be a root of \\spad{f} \\spad{(mod p)}.")) (|sqrt| (($ $ (|Integer|)) "\\spad{sqrt(b,a)} returns a square root of \\spad{b}. Argument \\spad{a} is a square root of \\spad{b} \\spad{(mod p)}.")) (|approximate| (((|Integer|) $ (|Integer|)) "\\spad{approximate(x,n)} returns an integer \\spad{y} such that \\spad{y = x (mod p^n)} when \\spad{n} is positive,{} and 0 otherwise.")) (|quotientByP| (($ $) "\\spad{quotientByP(x)} returns \\spad{b},{} where \\spad{x = a + b p}.")) (|moduloP| (((|Integer|) $) "\\spad{modulo(x)} returns a,{} where \\spad{x = a + b p}.")) (|modulus| (((|Integer|)) "\\spad{modulus()} returns the value of \\spad{p}.")) (|complete| (($ $) "\\spad{complete(x)} forces the computation of all digits.")) (|extend| (($ $ (|Integer|)) "\\spad{extend(x,n)} forces the computation of digits up to order \\spad{n}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(x)} returns the exponent of the highest power of \\spad{p} dividing \\spad{x}.")) (|digits| (((|Stream| (|Integer|)) $) "\\spad{digits(x)} returns a stream of \\spad{p}-adic digits of \\spad{x}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-885 |p|) +(-884 |p|) ((|constructor| (NIL "Stream-based implementation of Qp: numbers are represented as sum(\\spad{i} = \\spad{k}..,{} a[\\spad{i}] * p^i) where the a[\\spad{i}] lie in 0,{}1,{}...,{}(\\spad{p} - 1)."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-883 |#1|) (QUOTE (-929))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-883 |#1|) (QUOTE (-147))) (|HasCategory| (-883 |#1|) (QUOTE (-149))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-883 |#1|) (QUOTE (-1041))) (|HasCategory| (-883 |#1|) (QUOTE (-842))) (|HasCategory| (-883 |#1|) (QUOTE (-861))) (-3957 (|HasCategory| (-883 |#1|) (QUOTE (-842))) (|HasCategory| (-883 |#1|) (QUOTE (-861)))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-883 |#1|) (QUOTE (-1173))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| (-883 |#1|) (QUOTE (-239))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-883 |#1|) (QUOTE (-240))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| (-883 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -883) (|devaluate| |#1|)) (|%list| (QUOTE -883) (|devaluate| |#1|)))) (|HasCategory| (-883 |#1|) (QUOTE (-319))) (|HasCategory| (-883 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-883 |#1|) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-883 |#1|) (QUOTE (-929)))) (|HasCategory| (-883 |#1|) (QUOTE (-147))))) -(-886 |p| PADIC) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-882 |#1|) (QUOTE (-928))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-882 |#1|) (QUOTE (-147))) (|HasCategory| (-882 |#1|) (QUOTE (-149))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-882 |#1|) (QUOTE (-1040))) (|HasCategory| (-882 |#1|) (QUOTE (-841))) (|HasCategory| (-882 |#1|) (QUOTE (-860))) (-3956 (|HasCategory| (-882 |#1|) (QUOTE (-841))) (|HasCategory| (-882 |#1|) (QUOTE (-860)))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-882 |#1|) (QUOTE (-1172))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| (-882 |#1|) (QUOTE (-239))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-882 |#1|) (QUOTE (-240))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -321) (|%list| (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (|%list| (QUOTE -298) (|%list| (QUOTE -882) (|devaluate| |#1|)) (|%list| (QUOTE -882) (|devaluate| |#1|)))) (|HasCategory| (-882 |#1|) (QUOTE (-319))) (|HasCategory| (-882 |#1|) (QUOTE (-557))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-882 |#1|) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-882 |#1|) (QUOTE (-928)))) (|HasCategory| (-882 |#1|) (QUOTE (-147))))) +(-885 |p| PADIC) ((|constructor| (NIL "This is the category of stream-based representations of Qp.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,x)} removes up to \\spad{n} leading zeroes from the \\spad{p}-adic rational \\spad{x}.") (($ $) "\\spad{removeZeroes(x)} removes leading zeroes from the representation of the \\spad{p}-adic rational \\spad{x}. A \\spad{p}-adic rational is represented by (1) an exponent and (2) a \\spad{p}-adic integer which may have leading zero digits. When the \\spad{p}-adic integer has a leading zero digit,{} a 'leading zero' is removed from the \\spad{p}-adic rational as follows: the number is rewritten by increasing the exponent by 1 and dividing the \\spad{p}-adic integer by \\spad{p}. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}.")) (|continuedFraction| (((|ContinuedFraction| (|Fraction| (|Integer|))) $) "\\spad{continuedFraction(x)} converts the \\spad{p}-adic rational number \\spad{x} to a continued fraction.")) (|approximate| (((|Fraction| (|Integer|)) $ (|Integer|)) "\\spad{approximate(x,n)} returns a rational number \\spad{y} such that \\spad{y = x (mod p^n)}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-861))) (-3957 (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-887 S T$) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-860))) (-3956 (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1172))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-557))) (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-886 S T$) ((|constructor| (NIL "\\indented{1}{This domain provides a very simple representation} of the notion of `pair of objects'. It does not try to achieve all possible imaginable things.")) (|second| ((|#2| $) "\\spad{second(p)} extracts the second components of `p'.")) (|first| ((|#1| $) "\\spad{first(p)} extracts the first component of `p'.")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} is same as pair(\\spad{s},{}\\spad{t}),{} with syntactic sugar.")) (|pair| (($ |#1| |#2|) "\\spad{pair(s,t)} returns a pair object composed of `s' and `t'."))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-1122))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))))) -(-888) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-1121))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))))) +(-887) ((|constructor| (NIL "This domain describes four groups of color shades (palettes).")) (|coerce| (($ (|Color|)) "\\spad{coerce(c)} sets the average shade for the palette to that of the indicated color \\spad{c}.")) (|shade| (((|Integer|) $) "\\spad{shade(p)} returns the shade index of the indicated palette \\spad{p}.")) (|hue| (((|Color|) $) "\\spad{hue(p)} returns the hue field of the indicated palette \\spad{p}.")) (|light| (($ (|Color|)) "\\spad{light(c)} sets the shade of a hue,{} \\spad{c},{} to it's highest value.")) (|pastel| (($ (|Color|)) "\\spad{pastel(c)} sets the shade of a hue,{} \\spad{c},{} above bright,{} but below light.")) (|bright| (($ (|Color|)) "\\spad{bright(c)} sets the shade of a hue,{} \\spad{c},{} above dim,{} but below pastel.")) (|dim| (($ (|Color|)) "\\spad{dim(c)} sets the shade of a hue,{} \\spad{c},{} above dark,{} but below bright.")) (|dark| (($ (|Color|)) "\\spad{dark(c)} sets the shade of the indicated hue of \\spad{c} to it's lowest value."))) NIL NIL -(-889) +(-888) ((|constructor| (NIL "This package provides a coerce from polynomials over algebraic numbers to \\spadtype{Expression AlgebraicNumber}.")) (|coerce| (((|Expression| (|Integer|)) (|Fraction| (|Polynomial| (|AlgebraicNumber|)))) "\\spad{coerce(rf)} converts \\spad{rf},{} a fraction of polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}.") (((|Expression| (|Integer|)) (|Polynomial| (|AlgebraicNumber|))) "\\spad{coerce(p)} converts the polynomial \\spad{p} with algebraic number coefficients to \\spadtype{Expression Integer}."))) NIL NIL -(-890) +(-889) ((|constructor| (NIL "Representation of parameters to functions or constructors. For the most part,{} they are Identifiers. However,{} in very cases,{} they are \"flags\",{} \\spadignore{e.g.} string literals.")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(x)@String} implicitly coerce the object \\spad{x} to \\spadtype{String}. This function is left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(x)@Identifier} implicitly coerce the object \\spad{x} to \\spadtype{Identifier}. This function is left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} if the parameter AST object \\spad{x} designates a flag.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} if the parameter AST object \\spad{x} designates an \\spadtype{Identifier}."))) NIL NIL -(-891 CF1 CF2) +(-890 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricPlaneCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricPlaneCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-892 |ComponentFunction|) +(-891 |ComponentFunction|) ((|constructor| (NIL "ParametricPlaneCurve is used for plotting parametric plane curves in the affine plane.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function for \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component \\spad{i} of the plane curve is.")) (|curve| (($ |#1| |#1|) "\\spad{curve(c1,c2)} creates a plane curve from 2 component functions \\spad{c1} and \\spad{c2}."))) NIL NIL -(-893 CF1 CF2) +(-892 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSpaceCurve| |#2|) (|Mapping| |#2| |#1|) (|ParametricSpaceCurve| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-894 |ComponentFunction|) +(-893 |ComponentFunction|) ((|constructor| (NIL "ParametricSpaceCurve is used for plotting parametric space curves in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(c,i)} returns a coordinate function of \\spad{c} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the space curve is.")) (|curve| (($ |#1| |#1| |#1|) "\\spad{curve(c1,c2,c3)} creates a space curve from 3 component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-895) +(-894) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad script parser.} Related Constructors: Syntax. See Also: Syntax.")) (|getSyntaxFormsFromFile| (((|List| (|Syntax|)) (|String|)) "\\spad{getSyntaxFormsFromFile(f)} parses the source file \\spad{f} (supposedly containing Spad scripts) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that source location information is not part of result."))) NIL NIL -(-896 CF1 CF2) +(-895 CF1 CF2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|ParametricSurface| |#2|) (|Mapping| |#2| |#1|) (|ParametricSurface| |#1|)) "\\spad{map(f,x)} \\undocumented"))) NIL NIL -(-897 |ComponentFunction|) +(-896 |ComponentFunction|) ((|constructor| (NIL "ParametricSurface is used for plotting parametric surfaces in affine 3-space.")) (|coordinate| ((|#1| $ (|NonNegativeInteger|)) "\\spad{coordinate(s,i)} returns a coordinate function of \\spad{s} using 1-based indexing according to \\spad{i}. This indicates what the function for the coordinate component,{} \\spad{i},{} of the surface is.")) (|surface| (($ |#1| |#1| |#1|) "\\spad{surface(c1,c2,c3)} creates a surface from 3 parametric component functions \\spad{c1},{} \\spad{c2},{} and \\spad{c3}."))) NIL NIL -(-898) +(-897) ((|constructor| (NIL "PartitionsAndPermutations contains functions for generating streams of integer partitions,{} and streams of sequences of integers composed from a multi-set.")) (|permutations| (((|Stream| (|List| (|Integer|))) (|Integer|)) "\\spad{permutations(n)} is the stream of permutations \\indented{1}{formed from \\spad{1,2,3,...,n}.}")) (|sequences| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|))) "\\spad{sequences([l0,l1,l2,..,ln])} is the set of \\indented{1}{all sequences formed from} \\spad{l0} 0's,{}\\spad{l1} 1's,{}\\spad{l2} 2's,{}...,{}\\spad{ln} \\spad{n}'s.") (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{sequences(l1,l2)} is the stream of all sequences that \\indented{1}{can be composed from the multiset defined from} \\indented{1}{two lists of integers \\spad{l1} and \\spad{l2}.} \\indented{1}{For example,{}the pair \\spad{([1,2,4],[2,3,5])} represents} \\indented{1}{multi-set with 1 \\spad{2},{} 2 \\spad{3}'s,{} and 4 \\spad{5}'s.}")) (|shufflein| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|Stream| (|List| (|Integer|)))) "\\spad{shufflein(l,st)} maps shuffle(\\spad{l},{}\\spad{u}) on to all \\indented{1}{members \\spad{u} of \\spad{st},{} concatenating the results.}")) (|shuffle| (((|Stream| (|List| (|Integer|))) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{shuffle(l1,l2)} forms the stream of all shuffles of \\spad{l1} \\indented{1}{and \\spad{l2},{} \\spadignore{i.e.} all sequences that can be formed from} \\indented{1}{merging \\spad{l1} and \\spad{l2}.}")) (|conjugates| (((|Stream| (|List| (|PositiveInteger|))) (|Stream| (|List| (|PositiveInteger|)))) "\\spad{conjugates(lp)} is the stream of conjugates of a stream \\indented{1}{of partitions \\spad{lp}.}")) (|conjugate| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{conjugate(pt)} is the conjugate of the partition \\spad{pt}."))) NIL NIL -(-899 R) +(-898 R) ((|constructor| (NIL "An object \\spad{S} is Patternable over an object \\spad{R} if \\spad{S} can lift the conversions from \\spad{R} into \\spadtype{Pattern(Integer)} and \\spadtype{Pattern(Float)} to itself."))) NIL NIL -(-900 R S L) +(-899 R S L) ((|constructor| (NIL "A PatternMatchListResult is an object internally returned by the pattern matcher when matching on lists. It is either a failed match,{} or a pair of PatternMatchResult,{} one for atoms (elements of the list),{} and one for lists.")) (|lists| (((|PatternMatchResult| |#1| |#3|) $) "\\spad{lists(r)} returns the list of matches that match lists.")) (|atoms| (((|PatternMatchResult| |#1| |#2|) $) "\\spad{atoms(r)} returns the list of matches that match atoms (elements of the lists).")) (|makeResult| (($ (|PatternMatchResult| |#1| |#2|) (|PatternMatchResult| |#1| |#3|)) "\\spad{makeResult(r1,r2)} makes the combined result [\\spad{r1},{}\\spad{r2}].")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-901 S) +(-900 S) ((|constructor| (NIL "A set \\spad{R} is PatternMatchable over \\spad{S} if elements of \\spad{R} can be matched to patterns over \\spad{S}.")) (|patternMatch| (((|PatternMatchResult| |#1| $) $ (|Pattern| |#1|) (|PatternMatchResult| |#1| $)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}. res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion). Initially,{} res is just the result of \\spadfun{new} which is an empty list of matches."))) NIL NIL -(-902 |Base| |Subject| |Pat|) +(-901 |Base| |Subject| |Pat|) ((|constructor| (NIL "This package provides the top-level pattern macthing functions.")) (|Is| (((|PatternMatchResult| |#1| |#2|) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a match of the form \\spad{[v1 = e1,...,vn = en]}; returns an empty match if \\spad{expr} is exactly equal to pat. returns a \\spadfun{failed} match if pat does not match \\spad{expr}.") (((|List| (|Equation| (|Polynomial| |#2|))) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|List| (|Equation| |#2|)) |#2| |#3|) "\\spad{Is(expr, pat)} matches the pattern pat on the expression \\spad{expr} and returns a list of matches \\spad{[v1 = e1,...,vn = en]}; returns an empty list if either \\spad{expr} is exactly equal to pat or if pat does not match \\spad{expr}.") (((|PatternMatchListResult| |#1| |#2| (|List| |#2|)) (|List| |#2|) |#3|) "\\spad{Is([e1,...,en], pat)} matches the pattern pat on the list of expressions \\spad{[e1,...,en]} and returns the result.")) (|is?| (((|Boolean|) (|List| |#2|) |#3|) "\\spad{is?([e1,...,en], pat)} tests if the list of expressions \\spad{[e1,...,en]} matches the pattern pat.") (((|Boolean|) |#2| |#3|) "\\spad{is?(expr, pat)} tests if the expression \\spad{expr} matches the pattern pat."))) NIL -((-12 (-2959 (|HasCategory| |#2| (QUOTE (-1070)))) (-2959 (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198)))))) (-12 (|HasCategory| |#2| (QUOTE (-1070))) (-2959 (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198)))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198))))) -(-903 R S) +((-12 (-2958 (|HasCategory| |#2| (QUOTE (-1069)))) (-2958 (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197)))))) (-12 (|HasCategory| |#2| (QUOTE (-1069))) (-2958 (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197)))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197))))) +(-902 R S) ((|constructor| (NIL "A PatternMatchResult is an object internally returned by the pattern matcher; It is either a failed match,{} or a list of matches of the form (var,{} expr) meaning that the variable var matches the expression expr.")) (|satisfy?| (((|Union| (|Boolean|) "failed") $ (|Pattern| |#1|)) "\\spad{satisfy?(r, p)} returns \\spad{true} if the matches satisfy the top-level predicate of \\spad{p},{} \\spad{false} if they don't,{} and \"failed\" if not enough variables of \\spad{p} are matched in \\spad{r} to decide.")) (|construct| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|)))) "\\spad{construct([v1,e1],...,[vn,en])} returns the match result containing the matches (\\spad{v1},{}\\spad{e1}),{}...,{}(vn,{}en).")) (|destruct| (((|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| |#2|))) $) "\\spad{destruct(r)} returns the list of matches (var,{} expr) in \\spad{r}. Error: if \\spad{r} is a failed match.")) (|addMatchRestricted| (($ (|Pattern| |#1|) |#2| $ |#2|) "\\spad{addMatchRestricted(var, expr, r, val)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} that \\spad{var} is not matched to another expression already,{} and that either \\spad{var} is an optional pattern variable or that \\spad{expr} is not equal to val (usually an identity).")) (|insertMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{insertMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} without checking predicates or previous matches for \\spad{var}.")) (|addMatch| (($ (|Pattern| |#1|) |#2| $) "\\spad{addMatch(var, expr, r)} adds the match (\\spad{var},{} \\spad{expr}) in \\spad{r},{} provided that \\spad{expr} satisfies the predicates attached to \\spad{var},{} and that \\spad{var} is not matched to another expression already.")) (|getMatch| (((|Union| |#2| "failed") (|Pattern| |#1|) $) "\\spad{getMatch(var, r)} returns the expression that \\spad{var} matches in the result \\spad{r},{} and \"failed\" if \\spad{var} is not matched in \\spad{r}.")) (|union| (($ $ $) "\\spad{union(a, b)} makes the set-union of two match results.")) (|new| (($) "\\spad{new()} returns a new empty match result.")) (|failed| (($) "\\spad{failed()} returns a failed match.")) (|failed?| (((|Boolean|) $) "\\spad{failed?(r)} tests if \\spad{r} is a failed match."))) NIL NIL -(-904 R A B) +(-903 R A B) ((|constructor| (NIL "Lifts maps to pattern matching results.")) (|map| (((|PatternMatchResult| |#1| |#3|) (|Mapping| |#3| |#2|) (|PatternMatchResult| |#1| |#2|)) "\\spad{map(f, [(v1,a1),...,(vn,an)])} returns the matching result [(\\spad{v1},{}\\spad{f}(\\spad{a1})),{}...,{}(vn,{}\\spad{f}(an))]."))) NIL NIL -(-905 R) +(-904 R) ((|constructor| (NIL "Patterns for use by the pattern matcher.")) (|optpair| (((|Union| (|List| $) "failed") (|List| $)) "\\spad{optpair(l)} returns \\spad{l} has the form \\spad{[a, b]} and a is optional,{} and \"failed\" otherwise.")) (|variables| (((|List| $) $) "\\spad{variables(p)} returns the list of matching variables appearing in \\spad{p}.")) (|getBadValues| (((|List| (|Any|)) $) "\\spad{getBadValues(p)} returns the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (($ $ (|Any|)) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|resetBadValues| (($ $) "\\spad{resetBadValues(p)} initializes the list of \"bad values\" for \\spad{p} to \\spad{[]}. Note: \\spad{p} is not allowed to match any of its \"bad values\".")) (|hasTopPredicate?| (((|Boolean|) $) "\\spad{hasTopPredicate?(p)} tests if \\spad{p} has a top-level predicate.")) (|topPredicate| (((|Record| (|:| |var| (|List| (|Symbol|))) (|:| |pred| (|Any|))) $) "\\spad{topPredicate(x)} returns \\spad{[[a1,...,an], f]} where the top-level predicate of \\spad{x} is \\spad{f(a1,...,an)}. Note: \\spad{n} is 0 if \\spad{x} has no top-level predicate.")) (|setTopPredicate| (($ $ (|List| (|Symbol|)) (|Any|)) "\\spad{setTopPredicate(x, [a1,...,an], f)} returns \\spad{x} with the top-level predicate set to \\spad{f(a1,...,an)}.")) (|patternVariable| (($ (|Symbol|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{patternVariable(x, c?, o?, m?)} creates a pattern variable \\spad{x},{} which is constant if \\spad{c? = true},{} optional if \\spad{o? = true},{} and multiple if \\spad{m? = true}.")) (|withPredicates| (($ $ (|List| (|Any|))) "\\spad{withPredicates(p, [p1,...,pn])} makes a copy of \\spad{p} and attaches the predicate \\spad{p1} and ... and pn to the copy,{} which is returned.")) (|setPredicates| (($ $ (|List| (|Any|))) "\\spad{setPredicates(p, [p1,...,pn])} attaches the predicate \\spad{p1} and ... and pn to \\spad{p}.")) (|predicates| (((|List| (|Any|)) $) "\\spad{predicates(p)} returns \\spad{[p1,...,pn]} such that the predicate attached to \\spad{p} is \\spad{p1} and ... and pn.")) (|hasPredicate?| (((|Boolean|) $) "\\spad{hasPredicate?(p)} tests if \\spad{p} has predicates attached to it.")) (|optional?| (((|Boolean|) $) "\\spad{optional?(p)} tests if \\spad{p} is a single matching variable which can match an identity.")) (|multiple?| (((|Boolean|) $) "\\spad{multiple?(p)} tests if \\spad{p} is a single matching variable allowing list matching or multiple term matching in a sum or product.")) (|generic?| (((|Boolean|) $) "\\spad{generic?(p)} tests if \\spad{p} is a single matching variable.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests if \\spad{p} contains no matching variables.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(p)} tests if \\spad{p} is a symbol.")) (|quoted?| (((|Boolean|) $) "\\spad{quoted?(p)} tests if \\spad{p} is of the form 's for a symbol \\spad{s}.")) (|inR?| (((|Boolean|) $) "\\spad{inR?(p)} tests if \\spad{p} is an atom (\\spadignore{i.e.} an element of \\spad{R}).")) (|copy| (($ $) "\\spad{copy(p)} returns a recursive copy of \\spad{p}.")) (|convert| (($ (|List| $)) "\\spad{convert([a1,...,an])} returns the pattern \\spad{[a1,...,an]}.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(p)} returns the nesting level of \\spad{p}.")) (/ (($ $ $) "\\spad{a / b} returns the pattern \\spad{a / b}.")) (** (($ $ $) "\\spad{a ** b} returns the pattern \\spad{a ** b}.") (($ $ (|NonNegativeInteger|)) "\\spad{a ** n} returns the pattern \\spad{a ** n}.")) (* (($ $ $) "\\spad{a * b} returns the pattern \\spad{a * b}.")) (+ (($ $ $) "\\spad{a + b} returns the pattern \\spad{a + b}.")) (|elt| (($ (|BasicOperator|) (|List| $)) "\\spad{elt(op, [a1,...,an])} returns \\spad{op(a1,...,an)}.")) (|isPower| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| $)) "failed") $) "\\spad{isPower(p)} returns \\spad{[a, b]} if \\spad{p = a ** b},{} and \"failed\" otherwise.")) (|isList| (((|Union| (|List| $) "failed") $) "\\spad{isList(p)} returns \\spad{[a1,...,an]} if \\spad{p = [a1,...,an]},{} \"failed\" otherwise.")) (|isQuotient| (((|Union| (|Record| (|:| |num| $) (|:| |den| $)) "failed") $) "\\spad{isQuotient(p)} returns \\spad{[a, b]} if \\spad{p = a / b},{} and \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |val| $) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[q, n]} if \\spad{n > 0} and \\spad{p = q ** n},{} and \"failed\" otherwise.")) (|isOp| (((|Union| (|Record| (|:| |op| (|BasicOperator|)) (|:| |arg| (|List| $))) "failed") $) "\\spad{isOp(p)} returns \\spad{[op, [a1,...,an]]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.") (((|Union| (|List| $) "failed") $ (|BasicOperator|)) "\\spad{isOp(p, op)} returns \\spad{[a1,...,an]} if \\spad{p = op(a1,...,an)},{} and \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} and \\spad{p = a1 * ... * an},{} and \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[a1,...,an]} if \\spad{n > 1} \\indented{1}{and \\spad{p = a1 + ... + an},{}} and \"failed\" otherwise.")) ((|One|) (($) "1")) ((|Zero|) (($) "0"))) NIL NIL -(-906 R -3070) +(-905 R -3069) ((|constructor| (NIL "Tools for patterns.")) (|badValues| (((|List| |#2|) (|Pattern| |#1|)) "\\spad{badValues(p)} returns the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|addBadValue| (((|Pattern| |#1|) (|Pattern| |#1|) |#2|) "\\spad{addBadValue(p, v)} adds \\spad{v} to the list of \"bad values\" for \\spad{p}; \\spad{p} is not allowed to match any of its \"bad values\".")) (|satisfy?| (((|Boolean|) (|List| |#2|) (|Pattern| |#1|)) "\\spad{satisfy?([v1,...,vn], p)} returns \\spad{f(v1,...,vn)} where \\spad{f} is the top-level predicate attached to \\spad{p}.") (((|Boolean|) |#2| (|Pattern| |#1|)) "\\spad{satisfy?(v, p)} returns \\spad{f}(\\spad{v}) where \\spad{f} is the predicate attached to \\spad{p}.")) (|predicate| (((|Mapping| (|Boolean|) |#2|) (|Pattern| |#1|)) "\\spad{predicate(p)} returns the predicate attached to \\spad{p},{} the constant function \\spad{true} if \\spad{p} has no predicates attached to it.")) (|suchThat| (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#2|))) "\\spad{suchThat(p, [a1,...,an], f)} returns a copy of \\spad{p} with the top-level predicate set to \\spad{f(a1,...,an)}.") (((|Pattern| |#1|) (|Pattern| |#1|) (|List| (|Mapping| (|Boolean|) |#2|))) "\\spad{suchThat(p, [f1,...,fn])} makes a copy of \\spad{p} and adds the predicate \\spad{f1} and ... and fn to the copy,{} which is returned.") (((|Pattern| |#1|) (|Pattern| |#1|) (|Mapping| (|Boolean|) |#2|)) "\\spad{suchThat(p, f)} makes a copy of \\spad{p} and adds the predicate \\spad{f} to the copy,{} which is returned."))) NIL NIL -(-907 R S) +(-906 R S) ((|constructor| (NIL "Lifts maps to patterns.")) (|map| (((|Pattern| |#2|) (|Mapping| |#2| |#1|) (|Pattern| |#1|)) "\\spad{map(f, p)} applies \\spad{f} to all the leaves of \\spad{p} and returns the result as a pattern over \\spad{S}."))) NIL NIL -(-908 |VarSet|) +(-907 |VarSet|) ((|constructor| (NIL "This domain provides the internal representation of polynomials in non-commutative variables written over the Poincare-Birkhoff-Witt basis. See the \\spadtype{XPBWPolynomial} domain constructor. See Free Lie Algebras by \\spad{C}. Reutenauer (Oxford science publications). \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|varList| (((|List| |#1|) $) "\\spad{varList([l1]*[l2]*...[ln])} returns the list of variables in the word \\spad{l1*l2*...*ln}.")) (|retractable?| (((|Boolean|) $) "\\spad{retractable?([l1]*[l2]*...[ln])} returns \\spad{true} iff \\spad{n} equals \\spad{1}.")) (|rest| (($ $) "\\spad{rest([l1]*[l2]*...[ln])} returns the list \\spad{l2, .... ln}.")) (|ListOfTerms| (((|List| (|LyndonWord| |#1|)) $) "\\spad{ListOfTerms([l1]*[l2]*...[ln])} returns the list of words \\spad{l1, l2, .... ln}.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length([l1]*[l2]*...[ln])} returns the length of the word \\spad{l1*l2*...*ln}.")) (|first| (((|LyndonWord| |#1|) $) "\\spad{first([l1]*[l2]*...[ln])} returns the Lyndon word \\spad{l1}.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} return \\spad{v}") (((|OrderedFreeMonoid| |#1|) $) "\\spad{coerce([l1]*[l2]*...[ln])} returns the word \\spad{l1*l2*...*ln},{} where \\spad{[l_i]} is the backeted form of the Lyndon word \\spad{l_i}.")) ((|One|) (($) "\\spad{1} returns the empty list."))) NIL NIL -(-909 UP R) +(-908 UP R) ((|constructor| (NIL "This package \\undocumented")) (|compose| ((|#1| |#1| |#1|) "\\spad{compose(p,q)} \\undocumented"))) NIL NIL -(-910 A T$ S) +(-909 A T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#2| $ |#3|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#2| $ |#3|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-911 T$ S) +(-910 T$ S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains with a distinguished} \\indented{2}{operation named \\spad{differentiate} for partial differentiation with} \\indented{2}{respect to some domain of variables.} See Also: \\indented{2}{DifferentialDomain,{} PartialDifferentialSpace}")) (D ((|#1| $ |#2|) "\\spad{D(x,v)} is a shorthand for \\spad{differentiate(x,v)}")) (|differentiate| ((|#1| $ |#2|) "\\spad{differentiate(x,v)} computes the partial derivative of \\spad{x} with respect to \\spad{v}."))) NIL NIL -(-912) +(-911) ((|PDESolve| (((|Result|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{PDESolve(args)} performs the integration of the function given the strategy or method returned by \\axiomFun{measure}.")) (|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |explanations| (|String|))) (|RoutinesTable|) (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{measure(R,args)} calculates an estimate of the ability of a particular method to solve a problem. \\blankline This method may be either a specific NAG routine or a strategy (such as transforming the function from one which is difficult to one which is easier to solve). \\blankline It will call whichever agents are needed to perform analysis on the problem in order to calculate the measure. There is a parameter,{} labelled \\axiom{sofar},{} which would contain the best compatibility found so far."))) NIL NIL -(-913 UP -3495) +(-912 UP -3494) ((|constructor| (NIL "This package \\undocumented")) (|rightFactorCandidate| ((|#1| |#1| (|NonNegativeInteger|)) "\\spad{rightFactorCandidate(p,n)} \\undocumented")) (|leftFactor| (((|Union| |#1| "failed") |#1| |#1|) "\\spad{leftFactor(p,q)} \\undocumented")) (|decompose| (((|Union| (|Record| (|:| |left| |#1|) (|:| |right| |#1|)) "failed") |#1| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{decompose(up,m,n)} \\undocumented") (((|List| |#1|) |#1|) "\\spad{decompose(up)} \\undocumented"))) NIL NIL -(-914) +(-913) ((|measure| (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{measure(prob,R)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} listed in \\axiom{\\spad{R}} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.") (((|Record| (|:| |measure| (|Float|)) (|:| |name| (|String|)) (|:| |explanations| (|List| (|String|)))) (|NumericalPDEProblem|)) "\\spad{measure(prob)} is a top level ANNA function for identifying the most appropriate numerical routine from those in the routines table provided for solving the numerical PDE problem defined by \\axiom{\\spad{prob}}. \\blankline It calls each \\axiom{domain} of \\axiom{category} \\axiomType{PartialDifferentialEquationsSolverCategory} in turn to calculate all measures and returns the best \\spadignore{i.e.} the name of the most appropriate domain and any other relevant information. It predicts the likely most effective NAG numerical Library routine to solve the input set of PDEs by checking various attributes of the system of PDEs and calculating a measure of compatibility of each routine to these attributes.")) (|solve| (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}) and the boundary values (\\axiom{\\spad{bounds}}). A default value for tolerance is used. There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|Float|) (|Float|) (|Float|) (|Float|) (|NonNegativeInteger|) (|NonNegativeInteger|) (|List| (|Expression| (|Float|))) (|List| (|List| (|Expression| (|Float|)))) (|String|) (|DoubleFloat|)) "\\spad{solve(xmin,ymin,xmax,ymax,ngx,ngy,pde,bounds,st,tol)} is a top level ANNA function to solve numerically a system of partial differential equations. This is defined as a list of coefficients (\\axiom{\\spad{pde}}),{} a grid (\\axiom{\\spad{xmin}},{} \\axiom{\\spad{ymin}},{} \\axiom{\\spad{xmax}},{} \\axiom{\\spad{ymax}},{} \\axiom{\\spad{ngx}},{} \\axiom{\\spad{ngy}}),{} the boundary values (\\axiom{\\spad{bounds}}) and a tolerance requirement (\\axiom{\\spad{tol}}). There is also a parameter (\\axiom{\\spad{st}}) which should contain the value \"elliptic\" if the PDE is known to be elliptic,{} or \"unknown\" if it is uncertain. This causes the routine to check whether the PDE is elliptic. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|) (|RoutinesTable|)) "\\spad{solve(PDEProblem,routines)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the \\spad{routines} contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **") (((|Result|) (|NumericalPDEProblem|)) "\\spad{solve(PDEProblem)} is a top level ANNA function to solve numerically a system of partial differential equations. \\blankline The method used to perform the numerical process will be one of the routines contained in the NAG numerical Library. The function predicts the likely most effective routine by checking various attributes of the system of PDE's and calculating a measure of compatibility of each routine to these attributes. \\blankline It then calls the resulting `best' routine. \\blankline ** At the moment,{} only Second Order Elliptic Partial Differential Equations are solved **"))) NIL NIL -(-915) +(-914) ((|retract| (((|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|))) $) "\\spad{retract(x)} \\undocumented{}")) (|coerce| (($ (|Record| (|:| |pde| (|List| (|Expression| (|DoubleFloat|)))) (|:| |constraints| (|List| (|Record| (|:| |start| (|DoubleFloat|)) (|:| |finish| (|DoubleFloat|)) (|:| |grid| (|NonNegativeInteger|)) (|:| |boundaryType| (|Integer|)) (|:| |dStart| (|Matrix| (|DoubleFloat|))) (|:| |dFinish| (|Matrix| (|DoubleFloat|)))))) (|:| |f| (|List| (|List| (|Expression| (|DoubleFloat|))))) (|:| |st| (|String|)) (|:| |tol| (|DoubleFloat|)))) "\\spad{coerce(x)} \\undocumented{}"))) NIL NIL -(-916 R S) +(-915 R S) ((|constructor| (NIL "A partial differential \\spad{R}-module with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL -(-917 S) +(-916 S) ((|constructor| (NIL "A partial differential ring with differentiations indexed by a parameter type \\spad{S}. \\blankline"))) -((-4422 . T)) +((-4421 . T)) NIL -(-918 A S) +(-917 A S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#2|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#2|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#2| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#2|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-919 S) +(-918 S) ((|constructor| (NIL "\\indented{2}{This category captures the interface of domains stable by partial} \\indented{2}{differentiation with respect to variables from some domain.} See Also: \\indented{2}{PartialDifferentialDomain}")) (D (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{D(x,[s1,...,sn],[n1,...,nn])} is a shorthand for \\spad{differentiate(x,[s1,...,sn],[n1,...,nn])}.") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{D(x,s,n)} is a shorthand for \\spad{differentiate(x,s,n)}.") (($ $ (|List| |#1|)) "\\spad{D(x,[s1,...sn])} is a shorthand for \\spad{differentiate(x,[s1,...sn])}.")) (|differentiate| (($ $ (|List| |#1|) (|List| (|NonNegativeInteger|))) "\\spad{differentiate(x,[s1,...,sn],[n1,...,nn])} computes multiple partial derivatives,{} \\spadignore{i.e.}") (($ $ |#1| (|NonNegativeInteger|)) "\\spad{differentiate(x,s,n)} computes multiple partial derivatives,{} \\spadignore{i.e.} \\spad{n}\\spad{-}th derivative of \\spad{x} with respect to \\spad{s}.") (($ $ (|List| |#1|)) "\\spad{differentiate(x,[s1,...sn])} computes successive partial derivatives,{} \\spadignore{i.e.} \\spad{differentiate(...differentiate(x, s1)..., sn)}."))) NIL NIL -(-920 S) +(-919 S) ((|constructor| (NIL "\\indented{1}{A PendantTree(\\spad{S})is either a leaf? and is an \\spad{S} or has} a left and a right both PendantTree(\\spad{S})'s")) (|ptree| (($ $ $) "\\spad{ptree(x,y)} \\undocumented") (($ |#1|) "\\spad{ptree(s)} is a leaf? pendant tree"))) NIL -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-921 S) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-920 S) ((|constructor| (NIL "Permutation(\\spad{S}) implements the group of all bijections \\indented{2}{on a set \\spad{S},{} which move only a finite number of points.} \\indented{2}{A permutation is considered as a map from \\spad{S} into \\spad{S}. In particular} \\indented{2}{multiplication is defined as composition of maps:} \\indented{2}{{\\em pi1 * pi2 = pi1 o pi2}.} \\indented{2}{The internal representation of permuatations are two lists} \\indented{2}{of equal length representing preimages and images.}")) (|coerceImages| (($ (|List| |#1|)) "\\spad{coerceImages(ls)} coerces the list {\\em ls} to a permutation whose image is given by {\\em ls} and the preimage is fixed to be {\\em [1,...,n]}. Note: {coerceImages(\\spad{ls})=coercePreimagesImages([1,{}...,{}\\spad{n}],{}\\spad{ls})}. We assume that both preimage and image do not contain repetitions.")) (|fixedPoints| (((|Set| |#1|) $) "\\spad{fixedPoints(p)} returns the points fixed by the permutation \\spad{p}.")) (|sort| (((|List| $) (|List| $)) "\\spad{sort(lp)} sorts a list of permutations {\\em lp} according to cycle structure first according to length of cycles,{} second,{} if \\spad{S} has \\spadtype{Finite} or \\spad{S} has \\spadtype{OrderedSet} according to lexicographical order of entries in cycles of equal length.")) (|odd?| (((|Boolean|) $) "\\spad{odd?(p)} returns \\spad{true} if and only if \\spad{p} is an odd permutation \\spadignore{i.e.} {\\em sign(p)} is {\\em -1}.")) (|even?| (((|Boolean|) $) "\\spad{even?(p)} returns \\spad{true} if and only if \\spad{p} is an even permutation,{} \\spadignore{i.e.} {\\em sign(p)} is 1.")) (|sign| (((|Integer|) $) "\\spad{sign(p)} returns the signum of the permutation \\spad{p},{} \\spad{+1} or \\spad{-1}.")) (|numberOfCycles| (((|NonNegativeInteger|) $) "\\spad{numberOfCycles(p)} returns the number of non-trivial cycles of the permutation \\spad{p}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(p)} returns the order of a permutation \\spad{p} as a group element.")) (|cyclePartition| (((|Partition|) $) "\\spad{cyclePartition(p)} returns the cycle structure of a permutation \\spad{p} including cycles of length 1 only if \\spad{S} is finite.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} retuns the number of points moved by the permutation \\spad{p}.")) (|coerceListOfPairs| (($ (|List| (|List| |#1|))) "\\spad{coerceListOfPairs(lls)} coerces a list of pairs {\\em lls} to a permutation. Error: if not consistent,{} \\spadignore{i.e.} the set of the first elements coincides with the set of second elements. coerce(\\spad{p}) generates output of the permutation \\spad{p} with domain OutputForm.")) (|coerce| (($ (|List| |#1|)) "\\spad{coerce(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur.") (($ (|List| (|List| |#1|))) "\\spad{coerce(lls)} coerces a list of cycles {\\em lls} to a permutation,{} each cycle being a list with no repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|coercePreimagesImages| (($ (|List| (|List| |#1|))) "\\spad{coercePreimagesImages(lls)} coerces the representation {\\em lls} of a permutation as a list of preimages and images to a permutation. We assume that both preimage and image do not contain repetitions.")) (|listRepresentation| (((|Record| (|:| |preimage| (|List| |#1|)) (|:| |image| (|List| |#1|))) $) "\\spad{listRepresentation(p)} produces a representation {\\em rep} of the permutation \\spad{p} as a list of preimages and images,{} \\spad{i}.\\spad{e} \\spad{p} maps {\\em (rep.preimage).k} to {\\em (rep.image).k} for all indices \\spad{k}. Elements of \\spad{S} not in {\\em (rep.preimage).k} are fixed points,{} and these are the only fixed points of the permutation."))) -((-4422 . T)) -((-3957 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-861)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-861)))) -(-922 |n| R) +((-4421 . T)) +((-3956 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-860)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-860)))) +(-921 |n| R) ((|constructor| (NIL "Permanent implements the functions {\\em permanent},{} the permanent for square matrices.")) (|permanent| ((|#2| (|SquareMatrix| |#1| |#2|)) "\\spad{permanent(x)} computes the permanent of a square matrix \\spad{x}. The {\\em permanent} is equivalent to the \\spadfun{determinant} except that coefficients have no change of sign. This function is much more difficult to compute than the {\\em determinant}. The formula used is by \\spad{H}.\\spad{J}. Ryser,{} improved by [Nijenhuis and Wilf,{} Ch. 19]. Note: permanent(\\spad{x}) choose one of three algorithms,{} depending on the underlying ring \\spad{R} and on \\spad{n},{} the number of rows (and columns) of x:\\begin{items} \\item 1. if 2 has an inverse in \\spad{R} we can use the algorithm of \\indented{3}{[Nijenhuis and Wilf,{} ch.19,{}\\spad{p}.158]; if 2 has no inverse,{}} \\indented{3}{some modifications are necessary:} \\item 2. if {\\em n > 6} and \\spad{R} is an integral domain with characteristic \\indented{3}{different from 2 (the algorithm works if and only 2 is not a} \\indented{3}{zero-divisor of \\spad{R} and {\\em characteristic()\\$R ~= 2},{}} \\indented{3}{but how to check that for any given \\spad{R} ?),{}} \\indented{3}{the local function {\\em permanent2} is called;} \\item 3. else,{} the local function {\\em permanent3} is called \\indented{3}{(works for all commutative rings \\spad{R}).} \\end{items}"))) NIL NIL -(-923 S) +(-922 S) ((|constructor| (NIL "PermutationCategory provides a categorial environment \\indented{1}{for subgroups of bijections of a set (\\spadignore{i.e.} permutations)}")) (< (((|Boolean|) $ $) "\\spad{p < q} is an order relation on permutations. Note: this order is only total if and only if \\spad{S} is totally ordered or \\spad{S} is finite.")) (|orbit| (((|Set| |#1|) $ |#1|) "\\spad{orbit(p, el)} returns the orbit of {\\em el} under the permutation \\spad{p},{} \\spadignore{i.e.} the set which is given by applications of the powers of \\spad{p} to {\\em el}.")) (|support| (((|Set| |#1|) $) "\\spad{support p} returns the set of points not fixed by the permutation \\spad{p}.")) (|cycles| (($ (|List| (|List| |#1|))) "\\spad{cycles(lls)} coerces a list list of cycles {\\em lls} to a permutation,{} each cycle being a list with not repetitions,{} is coerced to the permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list,{} then these permutations are mutiplied. Error: if repetitions occur in one cycle.")) (|cycle| (($ (|List| |#1|)) "\\spad{cycle(ls)} coerces a cycle {\\em ls},{} \\spadignore{i.e.} a list with not repetitions to a permutation,{} which maps {\\em ls.i} to {\\em ls.i+1},{} indices modulo the length of the list. Error: if repetitions occur."))) -((-4422 . T)) +((-4421 . T)) NIL -(-924 S) +(-923 S) ((|constructor| (NIL "PermutationGroup implements permutation groups acting on a set \\spad{S},{} \\spadignore{i.e.} all subgroups of the symmetric group of \\spad{S},{} represented as a list of permutations (generators). Note that therefore the objects are not members of the \\Language category \\spadtype{Group}. Using the idea of base and strong generators by Sims,{} basic routines and algorithms are implemented so that the word problem for permutation groups can be solved.")) (|initializeGroupForWordProblem| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{initializeGroupForWordProblem(gp,m,n)} initializes the group {\\em gp} for the word problem. Notes: (1) with a small integer you get shorter words,{} but the routine takes longer than the standard routine for longer words. (2) be careful: invoking this routine will destroy the possibly stored information about your group (but will recompute it again). (3) users need not call this function normally for the soultion of the word problem.") (((|Void|) $) "\\spad{initializeGroupForWordProblem(gp)} initializes the group {\\em gp} for the word problem. Notes: it calls the other function of this name with parameters 0 and 1: {\\em initializeGroupForWordProblem(gp,0,1)}. Notes: (1) be careful: invoking this routine will destroy the possibly information about your group (but will recompute it again) (2) users need not call this function normally for the soultion of the word problem.")) (<= (((|Boolean|) $ $) "\\spad{gp1 <= gp2} returns \\spad{true} if and only if {\\em gp1} is a subgroup of {\\em gp2}. Note: because of a bug in the parser you have to call this function explicitly by {\\em gp1 <=\\$(PERMGRP S) gp2}.")) (< (((|Boolean|) $ $) "\\spad{gp1 < gp2} returns \\spad{true} if and only if {\\em gp1} is a proper subgroup of {\\em gp2}.")) (|support| (((|Set| |#1|) $) "\\spad{support(gp)} returns the points moved by the group {\\em gp}.")) (|wordInGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInGenerators(p,gp)} returns the word for the permutation \\spad{p} in the original generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em generators}.")) (|wordInStrongGenerators| (((|List| (|NonNegativeInteger|)) (|Permutation| |#1|) $) "\\spad{wordInStrongGenerators(p,gp)} returns the word for the permutation \\spad{p} in the strong generators of the group {\\em gp},{} represented by the indices of the list,{} given by {\\em strongGenerators}.")) (|member?| (((|Boolean|) (|Permutation| |#1|) $) "\\spad{member?(pp,gp)} answers the question,{} whether the permutation {\\em pp} is in the group {\\em gp} or not.")) (|orbits| (((|Set| (|Set| |#1|)) $) "\\spad{orbits(gp)} returns the orbits of the group {\\em gp},{} \\spadignore{i.e.} it partitions the (finite) of all moved points.")) (|orbit| (((|Set| (|List| |#1|)) $ (|List| |#1|)) "\\spad{orbit(gp,ls)} returns the orbit of the ordered list {\\em ls} under the group {\\em gp}. Note: return type is \\spad{L} \\spad{L} \\spad{S} temporarily because FSET \\spad{L} \\spad{S} has an error.") (((|Set| (|Set| |#1|)) $ (|Set| |#1|)) "\\spad{orbit(gp,els)} returns the orbit of the unordered set {\\em els} under the group {\\em gp}.") (((|Set| |#1|) $ |#1|) "\\spad{orbit(gp,el)} returns the orbit of the element {\\em el} under the group {\\em gp},{} \\spadignore{i.e.} the set of all points gained by applying each group element to {\\em el}.")) (|permutationGroup| (($ (|List| (|Permutation| |#1|))) "\\spad{permutationGroup(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.")) (|wordsForStrongGenerators| (((|List| (|List| (|NonNegativeInteger|))) $) "\\spad{wordsForStrongGenerators(gp)} returns the words for the strong generators of the group {\\em gp} in the original generators of {\\em gp},{} represented by their indices in the list,{} given by {\\em generators}.")) (|strongGenerators| (((|List| (|Permutation| |#1|)) $) "\\spad{strongGenerators(gp)} returns strong generators for the group {\\em gp}.")) (|base| (((|List| |#1|) $) "\\spad{base(gp)} returns a base for the group {\\em gp}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(gp)} returns the number of points moved by all permutations of the group {\\em gp}.")) (|order| (((|NonNegativeInteger|) $) "\\spad{order(gp)} returns the order of the group {\\em gp}.")) (|random| (((|Permutation| |#1|) $) "\\spad{random(gp)} returns a random product of maximal 20 generators of the group {\\em gp}. Note: {\\em random(gp)=random(gp,20)}.") (((|Permutation| |#1|) $ (|Integer|)) "\\spad{random(gp,i)} returns a random product of maximal \\spad{i} generators of the group {\\em gp}.")) (|elt| (((|Permutation| |#1|) $ (|NonNegativeInteger|)) "\\spad{elt(gp,i)} returns the \\spad{i}-th generator of the group {\\em gp}.")) (|generators| (((|List| (|Permutation| |#1|)) $) "\\spad{generators(gp)} returns the generators of the group {\\em gp}.")) (|coerce| (($ (|List| (|Permutation| |#1|))) "\\spad{coerce(ls)} coerces a list of permutations {\\em ls} to the group generated by this list.") (((|List| (|Permutation| |#1|)) $) "\\spad{coerce(gp)} returns the generators of the group {\\em gp}."))) NIL NIL -(-925 |p|) +(-924 |p|) ((|constructor| (NIL "PrimeField(\\spad{p}) implements the field with \\spad{p} elements if \\spad{p} is a prime number. Error: if \\spad{p} is not prime. Note: this domain does not check that argument is a prime."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) ((|HasCategory| $ (QUOTE (-149))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| $ (QUOTE (-381)))) -(-926 R E |VarSet| S) +(-925 R E |VarSet| S) ((|constructor| (NIL "PolynomialFactorizationByRecursion(\\spad{R},{}\\spad{E},{}\\spad{VarSet},{}\\spad{S}) is used for factorization of sparse univariate polynomials over a domain \\spad{S} of multivariate polynomials over \\spad{R}.")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|List| |#3|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|bivariateSLPEBR| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|) |#3|) "\\spad{bivariateSLPEBR(lp,p,v)} implements the bivariate case of \\spadfunFrom{solveLinearPolynomialEquationByRecursion}{PolynomialFactorizationByRecursionUnivariate}; its implementation depends on \\spad{R}")) (|randomR| ((|#1|) "\\spad{randomR produces} a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#4|)) "failed") (|List| (|SparseUnivariatePolynomial| |#4|)) (|SparseUnivariatePolynomial| |#4|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-927 R S) +(-926 R S) ((|constructor| (NIL "\\indented{1}{PolynomialFactorizationByRecursionUnivariate} \\spad{R} is a \\spadfun{PolynomialFactorizationExplicit} domain,{} \\spad{S} is univariate polynomials over \\spad{R} We are interested in handling SparseUnivariatePolynomials over \\spad{S},{} is a variable we shall call \\spad{z}")) (|factorSFBRlcUnit| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSFBRlcUnit(p)} returns the square free factorization of polynomial \\spad{p} (see \\spadfun{factorSquareFreeByRecursion}{PolynomialFactorizationByRecursionUnivariate}) in the case where the leading coefficient of \\spad{p} is a unit.")) (|randomR| ((|#1|) "\\spad{randomR()} produces a random element of \\spad{R}")) (|factorSquareFreeByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorSquareFreeByRecursion(p)} returns the square free factorization of \\spad{p}. This functions performs the recursion step for factorSquareFreePolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorSquareFreePolynomial}).")) (|factorByRecursion| (((|Factored| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{factorByRecursion(p)} factors polynomial \\spad{p}. This function performs the recursion step for factorPolynomial,{} as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{factorPolynomial})")) (|solveLinearPolynomialEquationByRecursion| (((|Union| (|List| (|SparseUnivariatePolynomial| |#2|)) "failed") (|List| (|SparseUnivariatePolynomial| |#2|)) (|SparseUnivariatePolynomial| |#2|)) "\\spad{solveLinearPolynomialEquationByRecursion([p1,...,pn],p)} returns the list of polynomials \\spad{[q1,...,qn]} such that \\spad{sum qi/pi = p / prod pi},{} a recursion step for solveLinearPolynomialEquation as defined in \\spadfun{PolynomialFactorizationExplicit} category (see \\spadfun{solveLinearPolynomialEquation}). If no such list of \\spad{qi} exists,{} then \"failed\" is returned."))) NIL NIL -(-928 S) +(-927 S) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) NIL ((|HasCategory| |#1| (QUOTE (-147)))) -(-929) +(-928) ((|constructor| (NIL "This is the category of domains that know \"enough\" about themselves in order to factor univariate polynomials over themselves. This will be used in future releases for supporting factorization over finitely generated coefficient fields,{} it is not yet available in the current release of axiom.")) (|charthRoot| (((|Maybe| $) $) "\\spad{charthRoot(r)} returns the \\spad{p}\\spad{-}th root of \\spad{r},{} or \\spad{nothing} if none exists in the domain.")) (|conditionP| (((|Union| (|Vector| $) "failed") (|Matrix| $)) "\\spad{conditionP(m)} returns a vector of elements,{} not all zero,{} whose \\spad{p}\\spad{-}th powers (\\spad{p} is the characteristic of the domain) are a solution of the homogenous linear system represented by \\spad{m},{} or \"failed\" is there is no such vector.")) (|solveLinearPolynomialEquation| (((|Union| (|List| (|SparseUnivariatePolynomial| $)) "failed") (|List| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{solveLinearPolynomialEquation([f1, ..., fn], g)} (where the \\spad{fi} are relatively prime to each other) returns a list of \\spad{ai} such that \\spad{g/prod fi = sum ai/fi} or returns \"failed\" if no such list of \\spad{ai}'s exists.")) (|gcdPolynomial| (((|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $) (|SparseUnivariatePolynomial| $)) "\\spad{gcdPolynomial(p,q)} returns the gcd of the univariate polynomials \\spad{p} qnd \\spad{q}.")) (|factorSquareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorSquareFreePolynomial(p)} factors the univariate polynomial \\spad{p} into irreducibles where \\spad{p} is known to be square free and primitive with respect to its main variable.")) (|factorPolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{factorPolynomial(p)} returns the factorization into irreducibles of the univariate polynomial \\spad{p}.")) (|squareFreePolynomial| (((|Factored| (|SparseUnivariatePolynomial| $)) (|SparseUnivariatePolynomial| $)) "\\spad{squareFreePolynomial(p)} returns the square-free factorization of the univariate polynomial \\spad{p}."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-930 R0 -3495 UP UPUP R) +(-929 R0 -3494 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#5|)) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsionIfCan(f)}\\\\ undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| |#2| |#3| |#4| |#5|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-931 UP UPUP R) +(-930 UP UPUP R) ((|constructor| (NIL "This package provides function for testing whether a divisor on a curve is a torsion divisor.")) (|torsionIfCan| (((|Union| (|Record| (|:| |order| (|NonNegativeInteger|)) (|:| |function| |#3|)) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsionIfCan(f)} \\undocumented")) (|torsion?| (((|Boolean|) (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{torsion?(f)} \\undocumented")) (|order| (((|Union| (|NonNegativeInteger|) "failed") (|FiniteDivisor| (|Fraction| (|Integer|)) |#1| |#2| |#3|)) "\\spad{order(f)} \\undocumented"))) NIL NIL -(-932 UP UPUP) +(-931 UP UPUP) ((|constructor| (NIL "\\indented{1}{Utilities for PFOQ and PFO} Author: Manuel Bronstein Date Created: 25 Aug 1988 Date Last Updated: 11 Jul 1990")) (|polyred| ((|#2| |#2|) "\\spad{polyred(u)} \\undocumented")) (|doubleDisc| (((|Integer|) |#2|) "\\spad{doubleDisc(u)} \\undocumented")) (|mix| (((|Integer|) (|List| (|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))))) "\\spad{mix(l)} \\undocumented")) (|badNum| (((|Integer|) |#2|) "\\spad{badNum(u)} \\undocumented") (((|Record| (|:| |den| (|Integer|)) (|:| |gcdnum| (|Integer|))) |#1|) "\\spad{badNum(p)} \\undocumented")) (|getGoodPrime| (((|PositiveInteger|) (|Integer|)) "\\spad{getGoodPrime n} returns the smallest prime not dividing \\spad{n}"))) NIL NIL -(-933 R) +(-932 R) ((|constructor| (NIL "The domain \\spadtype{PartialFraction} implements partial fractions over a euclidean domain \\spad{R}. This requirement on the argument domain allows us to normalize the fractions. Of particular interest are the 2 forms for these fractions. The ``compact'' form has only one fractional term per prime in the denominator,{} while the ``p-adic'' form expands each numerator \\spad{p}-adically via the prime \\spad{p} in the denominator. For computational efficiency,{} the compact form is used,{} though the \\spad{p}-adic form may be gotten by calling the function \\spadfunFrom{padicFraction}{PartialFraction}. For a general euclidean domain,{} it is not known how to factor the denominator. Thus the function \\spadfunFrom{partialFraction}{PartialFraction} takes as its second argument an element of \\spadtype{Factored(R)}.")) (|wholePart| ((|#1| $) "\\spad{wholePart(p)} extracts the whole part of the partial fraction \\spad{p}.")) (|partialFraction| (($ |#1| (|Factored| |#1|)) "\\spad{partialFraction(numer,denom)} is the main function for constructing partial fractions. The second argument is the denominator and should be factored.")) (|padicFraction| (($ $) "\\spad{padicFraction(q)} expands the fraction \\spad{p}-adically in the primes \\spad{p} in the denominator of \\spad{q}. For example,{} \\spad{padicFraction(3/(2**2)) = 1/2 + 1/(2**2)}. Use \\spadfunFrom{compactFraction}{PartialFraction} to return to compact form.")) (|padicallyExpand| (((|SparseUnivariatePolynomial| |#1|) |#1| |#1|) "\\spad{padicallyExpand(p,x)} is a utility function that expands the second argument \\spad{x} ``p-adically'' in the first.")) (|numberOfFractionalTerms| (((|Integer|) $) "\\spad{numberOfFractionalTerms(p)} computes the number of fractional terms in \\spad{p}. This returns 0 if there is no fractional part.")) (|nthFractionalTerm| (($ $ (|Integer|)) "\\spad{nthFractionalTerm(p,n)} extracts the \\spad{n}th fractional term from the partial fraction \\spad{p}. This returns 0 if the index \\spad{n} is out of range.")) (|firstNumer| ((|#1| $) "\\spad{firstNumer(p)} extracts the numerator of the first fractional term. This returns 0 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|firstDenom| (((|Factored| |#1|) $) "\\spad{firstDenom(p)} extracts the denominator of the first fractional term. This returns 1 if there is no fractional part (use \\spadfunFrom{wholePart}{PartialFraction} to get the whole part).")) (|compactFraction| (($ $) "\\spad{compactFraction(p)} normalizes the partial fraction \\spad{p} to the compact representation. In this form,{} the partial fraction has only one fractional term per prime in the denominator.")) (|coerce| (($ (|Fraction| (|Factored| |#1|))) "\\spad{coerce(f)} takes a fraction with numerator and denominator in factored form and creates a partial fraction. It is necessary for the parts to be factored because it is not known in general how to factor elements of \\spad{R} and this is needed to decompose into partial fractions.") (((|Fraction| |#1|) $) "\\spad{coerce(p)} sums up the components of the partial fraction and returns a single fraction."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-934 R) +(-933 R) ((|constructor| (NIL "The package \\spadtype{PartialFractionPackage} gives an easier to use interfact the domain \\spadtype{PartialFraction}. The user gives a fraction of polynomials,{} and a variable and the package converts it to the proper datatype for the \\spadtype{PartialFraction} domain.")) (|partialFraction| (((|Any|) (|Polynomial| |#1|) (|Factored| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(num, facdenom, var)} returns the partial fraction decomposition of the rational function whose numerator is \\spad{num} and whose factored denominator is \\spad{facdenom} with respect to the variable var.") (((|Any|) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{partialFraction(rf, var)} returns the partial fraction decomposition of the rational function \\spad{rf} with respect to the variable var."))) NIL NIL -(-935 E OV R P) +(-934 E OV R P) ((|gcdPrimitive| ((|#4| (|List| |#4|)) "\\spad{gcdPrimitive lp} computes the gcd of the list of primitive polynomials lp.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.") ((|#4| |#4| |#4|) "\\spad{gcdPrimitive(p,q)} computes the gcd of the primitive polynomials \\spad{p} and \\spad{q}.")) (|gcd| (((|SparseUnivariatePolynomial| |#4|) (|List| (|SparseUnivariatePolynomial| |#4|))) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") (((|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|) (|SparseUnivariatePolynomial| |#4|)) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}.") ((|#4| (|List| |#4|)) "\\spad{gcd(lp)} computes the gcd of the list of polynomials \\spad{lp}.") ((|#4| |#4| |#4|) "\\spad{gcd(p,q)} computes the gcd of the two polynomials \\spad{p} and \\spad{q}."))) NIL NIL -(-936) +(-935) ((|constructor| (NIL "PermutationGroupExamples provides permutation groups for some classes of groups: symmetric,{} alternating,{} dihedral,{} cyclic,{} direct products of cyclic,{} which are in fact the finite abelian groups of symmetric groups called Young subgroups. Furthermore,{} Rubik's group as permutation group of 48 integers and a list of sporadic simple groups derived from the atlas of finite groups.")) (|youngGroup| (((|PermutationGroup| (|Integer|)) (|Partition|)) "\\spad{youngGroup(lambda)} constructs the direct product of the symmetric groups given by the parts of the partition {\\em lambda}.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{youngGroup([n1,...,nk])} constructs the direct product of the symmetric groups {\\em Sn1},{}...,{}{\\em Snk}.")) (|rubiksGroup| (((|PermutationGroup| (|Integer|))) "\\spad{rubiksGroup constructs} the permutation group representing Rubic's Cube acting on integers {\\em 10*i+j} for {\\em 1 <= i <= 6},{} {\\em 1 <= j <= 8}. The faces of Rubik's Cube are labelled in the obvious way Front,{} Right,{} Up,{} Down,{} Left,{} Back and numbered from 1 to 6 in this given ordering,{} the pieces on each face (except the unmoveable center piece) are clockwise numbered from 1 to 8 starting with the piece in the upper left corner. The moves of the cube are represented as permutations on these pieces,{} represented as a two digit integer {\\em ij} where \\spad{i} is the numer of theface (1 to 6) and \\spad{j} is the number of the piece on this face. The remaining ambiguities are resolved by looking at the 6 generators,{} which represent a 90 degree turns of the faces,{} or from the following pictorial description. Permutation group representing Rubic's Cube acting on integers 10*i+j for 1 <= \\spad{i} <= 6,{} 1 <= \\spad{j} \\spad{<=8}. \\blankline\\begin{verbatim}Rubik's Cube: +-----+ +-- B where: marks Side # : / U /|/ / / | F(ront) <-> 1 L --> +-----+ R| R(ight) <-> 2 | | + U(p) <-> 3 | F | / D(own) <-> 4 | |/ L(eft) <-> 5 +-----+ B(ack) <-> 6 ^ | DThe Cube's surface: The pieces on each side +---+ (except the unmoveable center |567| piece) are clockwise numbered |4U8| from 1 to 8 starting with the |321| piece in the upper left +---+---+---+ corner (see figure on the |781|123|345| left). The moves of the cube |6L2|8F4|2R6| are represented as |543|765|187| permutations on these pieces. +---+---+---+ Each of the pieces is |123| represented as a two digit |8D4| integer ij where i is the |765| # of the side ( 1 to 6 for +---+ F to B (see table above )) |567| and j is the # of the piece. |4B8| |321| +---+\\end{verbatim}")) (|janko2| (((|PermutationGroup| (|Integer|))) "\\spad{janko2 constructs} the janko group acting on the integers 1,{}...,{}100.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{janko2(li)} constructs the janko group acting on the 100 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 100 different entries")) (|mathieu24| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu24 constructs} the mathieu group acting on the integers 1,{}...,{}24.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu24(li)} constructs the mathieu group acting on the 24 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 24 different entries.")) (|mathieu23| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu23 constructs} the mathieu group acting on the integers 1,{}...,{}23.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu23(li)} constructs the mathieu group acting on the 23 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 23 different entries.")) (|mathieu22| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu22 constructs} the mathieu group acting on the integers 1,{}...,{}22.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu22(li)} constructs the mathieu group acting on the 22 integers given in the list {\\em li}. Note: duplicates in the list will be removed. Error: if {\\em li} has less or more than 22 different entries.")) (|mathieu12| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu12 constructs} the mathieu group acting on the integers 1,{}...,{}12.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu12(li)} constructs the mathieu group acting on the 12 integers given in the list {\\em li}. Note: duplicates in the list will be removed Error: if {\\em li} has less or more than 12 different entries.")) (|mathieu11| (((|PermutationGroup| (|Integer|))) "\\spad{mathieu11 constructs} the mathieu group acting on the integers 1,{}...,{}11.") (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{mathieu11(li)} constructs the mathieu group acting on the 11 integers given in the list {\\em li}. Note: duplicates in the list will be removed. error,{} if {\\em li} has less or more than 11 different entries.")) (|dihedralGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{dihedralGroup([i1,...,ik])} constructs the dihedral group of order 2k acting on the integers out of {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{dihedralGroup(n)} constructs the dihedral group of order 2n acting on integers 1,{}...,{}\\spad{N}.")) (|cyclicGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{cyclicGroup([i1,...,ik])} constructs the cyclic group of order \\spad{k} acting on the integers {\\em i1},{}...,{}{\\em ik}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{cyclicGroup(n)} constructs the cyclic group of order \\spad{n} acting on the integers 1,{}...,{}\\spad{n}.")) (|abelianGroup| (((|PermutationGroup| (|Integer|)) (|List| (|PositiveInteger|))) "\\spad{abelianGroup([n1,...,nk])} constructs the abelian group that is the direct product of cyclic groups with order {\\em ni}.")) (|alternatingGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{alternatingGroup(li)} constructs the alternating group acting on the integers in the list {\\em li},{} generators are in general the {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is odd and product of the 2-cycle {\\em (li.1,li.2)} with {\\em n-2}-cycle {\\em (li.3,...,li.n)} and the 3-cycle {\\em (li.1,li.2,li.3)},{} if \\spad{n} is even. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{alternatingGroup(n)} constructs the alternating group {\\em An} acting on the integers 1,{}...,{}\\spad{n},{} generators are in general the {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is odd and the product of the 2-cycle {\\em (1,2)} with {\\em n-2}-cycle {\\em (3,...,n)} and the 3-cycle {\\em (1,2,3)} if \\spad{n} is even.")) (|symmetricGroup| (((|PermutationGroup| (|Integer|)) (|List| (|Integer|))) "\\spad{symmetricGroup(li)} constructs the symmetric group acting on the integers in the list {\\em li},{} generators are the cycle given by {\\em li} and the 2-cycle {\\em (li.1,li.2)}. Note: duplicates in the list will be removed.") (((|PermutationGroup| (|Integer|)) (|PositiveInteger|)) "\\spad{symmetricGroup(n)} constructs the symmetric group {\\em Sn} acting on the integers 1,{}...,{}\\spad{n},{} generators are the {\\em n}-cycle {\\em (1,...,n)} and the 2-cycle {\\em (1,2)}."))) NIL NIL -(-937 -3495) +(-936 -3494) ((|constructor| (NIL "Groebner functions for \\spad{P} \\spad{F} \\indented{2}{This package is an interface package to the groebner basis} package which allows you to compute groebner bases for polynomials in either lexicographic ordering or total degree ordering refined by reverse lex. The input is the ordinary polynomial type which is internally converted to a type with the required ordering. The resulting grobner basis is converted back to ordinary polynomials. The ordering among the variables is controlled by an explicit list of variables which is passed as a second argument. The coefficient domain is allowed to be any gcd domain,{} but the groebner basis is computed as if the polynomials were over a field.")) (|totalGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{totalGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} with the terms ordered first by total degree and then refined by reverse lexicographic ordering. The variables are ordered by their position in the list \\spad{lv}.")) (|lexGroebner| (((|List| (|Polynomial| |#1|)) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{lexGroebner(lp,lv)} computes Groebner basis for the list of polynomials \\spad{lp} in lexicographic order. The variables are ordered by their position in the list \\spad{lv}."))) NIL NIL -(-938) +(-937) ((|constructor| (NIL "\\spadtype{PositiveInteger} provides functions for \\indented{2}{positive integers.}")) (|commutative| ((|attribute| "*") "\\spad{commutative(\"*\")} means multiplication is commutative : x*y = y*x")) (|gcd| (($ $ $) "\\spad{gcd(a,b)} computes the greatest common divisor of two positive integers \\spad{a} and \\spad{b}."))) -(((-4427 "*") . T)) +(((-4426 "*") . T)) NIL -(-939 R) +(-938 R) ((|constructor| (NIL "\\indented{1}{Provides a coercion from the symbolic fractions in \\%\\spad{pi} with} integer coefficients to any Expression type. Date Created: 21 Feb 1990 Date Last Updated: 21 Feb 1990")) (|coerce| (((|Expression| |#1|) (|Pi|)) "\\spad{coerce(f)} returns \\spad{f} as an Expression(\\spad{R})."))) NIL NIL -(-940) +(-939) ((|constructor| (NIL "The category of constructive principal ideal domains,{} \\spadignore{i.e.} where a single generator can be constructively found for any ideal given by a finite set of generators. Note that this constructive definition only implies that finitely generated ideals are principal. It is not clear what we would mean by an infinitely generated ideal.")) (|expressIdealMember| (((|Maybe| (|List| $)) (|List| $) $) "\\spad{expressIdealMember([f1,...,fn],h)} returns a representation of \\spad{h} as a linear combination of the \\spad{fi} or \\spad{nothing} if \\spad{h} is not in the ideal generated by the \\spad{fi}.")) (|principalIdeal| (((|Record| (|:| |coef| (|List| $)) (|:| |generator| $)) (|List| $)) "\\spad{principalIdeal([f1,...,fn])} returns a record whose generator component is a generator of the ideal generated by \\spad{[f1,...,fn]} whose coef component satisfies \\spad{generator = sum (input.i * coef.i)}"))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-941 |xx| -3495) +(-940 |xx| -3494) ((|constructor| (NIL "This package exports interpolation algorithms")) (|interpolate| (((|SparseUnivariatePolynomial| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(lf,lg)} \\undocumented") (((|UnivariatePolynomial| |#1| |#2|) (|UnivariatePolynomial| |#1| |#2|) (|List| |#2|) (|List| |#2|)) "\\spad{interpolate(u,lf,lg)} \\undocumented"))) NIL NIL -(-942 -3495 P) +(-941 -3494 P) ((|constructor| (NIL "This package exports interpolation algorithms")) (|LagrangeInterpolation| ((|#2| (|List| |#1|) (|List| |#1|)) "\\spad{LagrangeInterpolation(l1,l2)} \\undocumented"))) NIL NIL -(-943 R |Var| |Expon| GR) +(-942 R |Var| |Expon| GR) ((|constructor| (NIL "Author: William Sit,{} spring 89")) (|inconsistent?| (((|Boolean|) (|List| (|Polynomial| |#1|))) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.") (((|Boolean|) (|List| |#4|)) "inconsistant?(pl) returns \\spad{true} if the system of equations \\spad{p} = 0 for \\spad{p} in pl is inconsistent. It is assumed that pl is a groebner basis.")) (|sqfree| ((|#4| |#4|) "\\spad{sqfree(p)} returns the product of square free factors of \\spad{p}")) (|regime| (((|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))) (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|List| |#4|)) (|NonNegativeInteger|) (|NonNegativeInteger|) (|Integer|)) "\\spad{regime(y,c, w, p, r, rm, m)} returns a regime,{} a list of polynomials specifying the consistency conditions,{} a particular solution and basis representing the general solution of the parametric linear system \\spad{c} \\spad{z} = \\spad{w} on that regime. The regime returned depends on the subdeterminant \\spad{y}.det and the row and column indices. The solutions are simplified using the assumption that the system has rank \\spad{r} and maximum rank \\spad{rm}. The list \\spad{p} represents a list of list of factors of polynomials in a groebner basis of the ideal generated by higher order subdeterminants,{} and ius used for the simplification. The mode \\spad{m} distinguishes the cases when the system is homogeneous,{} or the right hand side is arbitrary,{} or when there is no new right hand side variables.")) (|redmat| (((|Matrix| |#4|) (|Matrix| |#4|) (|List| |#4|)) "\\spad{redmat(m,g)} returns a matrix whose entries are those of \\spad{m} modulo the ideal generated by the groebner basis \\spad{g}")) (|ParCond| (((|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCond(m,k)} returns the list of all \\spad{k} by \\spad{k} subdeterminants in the matrix \\spad{m}")) (|overset?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\spad{overset?(s,sl)} returns \\spad{true} if \\spad{s} properly a sublist of a member of \\spad{sl}; otherwise it returns \\spad{false}")) (|nextSublist| (((|List| (|List| (|Integer|))) (|Integer|) (|Integer|)) "\\spad{nextSublist(n,k)} returns a list of \\spad{k}-subsets of {1,{} ...,{} \\spad{n}}.")) (|minset| (((|List| (|List| |#4|)) (|List| (|List| |#4|))) "\\spad{minset(sl)} returns the sublist of \\spad{sl} consisting of the minimal lists (with respect to inclusion) in the list \\spad{sl} of lists")) (|minrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{minrank(r)} returns the minimum rank in the list \\spad{r} of regimes")) (|maxrank| (((|NonNegativeInteger|) (|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|))))) "\\spad{maxrank(r)} returns the maximum rank in the list \\spad{r} of regimes")) (|factorset| (((|List| |#4|) |#4|) "\\spad{factorset(p)} returns the set of irreducible factors of \\spad{p}.")) (|B1solve| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |mat| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|:| |vec| (|List| (|Fraction| (|Polynomial| |#1|)))) (|:| |rank| (|NonNegativeInteger|)) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|))))) "\\spad{B1solve(s)} solves the system (\\spad{s}.mat) \\spad{z} = \\spad{s}.vec for the variables given by the column indices of \\spad{s}.cols in terms of the other variables and the right hand side \\spad{s}.vec by assuming that the rank is \\spad{s}.rank,{} that the system is consistent,{} with the linearly independent equations indexed by the given row indices \\spad{s}.rows; the coefficients in \\spad{s}.mat involving parameters are treated as polynomials. B1solve(\\spad{s}) returns a particular solution to the system and a basis of the homogeneous system (\\spad{s}.mat) \\spad{z} = 0.")) (|redpps| (((|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))) (|List| |#4|)) "\\spad{redpps(s,g)} returns the simplified form of \\spad{s} after reducing modulo a groebner basis \\spad{g}")) (|ParCondList| (((|List| (|Record| (|:| |rank| (|NonNegativeInteger|)) (|:| |eqns| (|List| (|Record| (|:| |det| |#4|) (|:| |rows| (|List| (|Integer|))) (|:| |cols| (|List| (|Integer|)))))) (|:| |fgb| (|List| |#4|)))) (|Matrix| |#4|) (|NonNegativeInteger|)) "\\spad{ParCondList(c,r)} computes a list of subdeterminants of each rank >= \\spad{r} of the matrix \\spad{c} and returns a groebner basis for the ideal they generate")) (|hasoln| (((|Record| (|:| |sysok| (|Boolean|)) (|:| |z0| (|List| |#4|)) (|:| |n0| (|List| |#4|))) (|List| |#4|) (|List| |#4|)) "\\spad{hasoln(g, l)} tests whether the quasi-algebraic set defined by \\spad{p} = 0 for \\spad{p} in \\spad{g} and \\spad{q} ~= 0 for \\spad{q} in \\spad{l} is empty or not and returns a simplified definition of the quasi-algebraic set")) (|pr2dmp| ((|#4| (|Polynomial| |#1|)) "\\spad{pr2dmp(p)} converts \\spad{p} to target domain")) (|se2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{se2rfi(l)} converts \\spad{l} to target domain")) (|dmp2rfi| (((|List| (|Fraction| (|Polynomial| |#1|))) (|List| |#4|)) "\\spad{dmp2rfi(l)} converts \\spad{l} to target domain") (((|Matrix| (|Fraction| (|Polynomial| |#1|))) (|Matrix| |#4|)) "\\spad{dmp2rfi(m)} converts \\spad{m} to target domain") (((|Fraction| (|Polynomial| |#1|)) |#4|) "\\spad{dmp2rfi(p)} converts \\spad{p} to target domain")) (|bsolve| (((|Record| (|:| |rgl| (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|)))))))))) (|:| |rgsz| (|Integer|))) (|Matrix| |#4|) (|List| (|Fraction| (|Polynomial| |#1|))) (|NonNegativeInteger|) (|String|) (|Integer|)) "\\spad{bsolve(c, w, r, s, m)} returns a list of regimes and solutions of the system \\spad{c} \\spad{z} = \\spad{w} for ranks at least \\spad{r}; depending on the mode \\spad{m} chosen,{} it writes the output to a file given by the string \\spad{s}.")) (|rdregime| (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{rdregime(s)} reads in a list from a file with name \\spad{s}")) (|wrregime| (((|Integer|) (|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|String|)) "\\spad{wrregime(l,s)} writes a list of regimes to a file named \\spad{s} and returns the number of regimes written")) (|psolve| (((|Integer|) (|Matrix| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,k,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|) (|String|)) "\\spad{psolve(c,w,k,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|String|)) "\\spad{psolve(c,s)} solves \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| (|Symbol|)) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|Integer|) (|Matrix| |#4|) (|List| |#4|) (|String|)) "\\spad{psolve(c,w,s)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w},{} writes the results to a file named \\spad{s},{} and returns the number of regimes") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|PositiveInteger|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks >= \\spad{k} of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|)) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|) (|PositiveInteger|)) "\\spad{psolve(c,w,k)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks >= \\spad{k} of the matrix \\spad{c} and given right hand side vector \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|)) "\\spad{psolve(c)} solves the homogeneous linear system \\spad{c} \\spad{z} = 0 for all possible ranks of the matrix \\spad{c}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| (|Symbol|))) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and indeterminate right hand side \\spad{w}") (((|List| (|Record| (|:| |eqzro| (|List| |#4|)) (|:| |neqzro| (|List| |#4|)) (|:| |wcond| (|List| (|Polynomial| |#1|))) (|:| |bsoln| (|Record| (|:| |partsol| (|Vector| (|Fraction| (|Polynomial| |#1|)))) (|:| |basis| (|List| (|Vector| (|Fraction| (|Polynomial| |#1|))))))))) (|Matrix| |#4|) (|List| |#4|)) "\\spad{psolve(c,w)} solves \\spad{c} \\spad{z} = \\spad{w} for all possible ranks of the matrix \\spad{c} and given right hand side vector \\spad{w}"))) NIL NIL -(-944) +(-943) ((|constructor| (NIL "The Plot domain supports plotting of functions defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example floating point numbers and infinite continued fractions. The facilities at this point are limited to 2-dimensional plots or either a single function or a parametric function.")) (|debug| (((|Boolean|) (|Boolean|)) "\\spad{debug(true)} turns debug mode on \\spad{debug(false)} turns debug mode off")) (|numFunEvals| (((|Integer|)) "\\spad{numFunEvals()} returns the number of points computed")) (|setAdaptive| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive(true)} turns adaptive plotting on \\spad{setAdaptive(false)} turns adaptive plotting off")) (|adaptive?| (((|Boolean|)) "\\spad{adaptive?()} determines whether plotting be done adaptively")) (|setScreenResolution| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution(i)} sets the screen resolution to \\spad{i}")) (|screenResolution| (((|Integer|)) "\\spad{screenResolution()} returns the screen resolution")) (|setMaxPoints| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints(i)} sets the maximum number of points in a plot to \\spad{i}")) (|maxPoints| (((|Integer|)) "\\spad{maxPoints()} returns the maximum number of points in a plot")) (|setMinPoints| (((|Integer|) (|Integer|)) "\\spad{setMinPoints(i)} sets the minimum number of points in a plot to \\spad{i}")) (|minPoints| (((|Integer|)) "\\spad{minPoints()} returns the minimum number of points in a plot")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}")) (|refine| (($ $) "\\spad{refine(p)} performs a refinement on the plot \\spad{p}") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r)} \\undocumented")) (|parametric?| (((|Boolean|) $) "\\spad{parametric? determines} whether it is a parametric plot?")) (|plotPolar| (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) "\\spad{plotPolar(f)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[0,2*\\%pi]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,a..b)} plots the polar curve \\spad{r = f(theta)} as theta ranges over the interval \\spad{[a,b]}; this is the same as the parametric curve \\spad{x = f(t) * cos(t)},{} \\spad{y = f(t) * sin(t)}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(t +-> (f(t),g(t)),a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b,c..d,e..f)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}; \\spad{x}-range of \\spad{[c,d]} and \\spad{y}-range of \\spad{[e,f]} are noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,a..b)} plots the parametric curve \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over the interval \\spad{[a,b]}.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b,c..d)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|List| (|Mapping| (|DoubleFloat|) (|DoubleFloat|))) (|Segment| (|DoubleFloat|))) "\\spad{plot([f1,...,fm],a..b)} plots the functions \\spad{y = f1(x)},{}...,{} \\spad{y = fm(x)} on the interval \\spad{a..b}.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b,c..d)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}; \\spad{y}-range of \\spad{[c,d]} is noted in Plot object.") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,a..b)} plots the function \\spad{f(x)} on the interval \\spad{[a,b]}."))) NIL NIL -(-945 S) +(-944 S) ((|constructor| (NIL "\\spad{PlotFunctions1} provides facilities for plotting curves where functions SF -> SF are specified by giving an expression")) (|plotPolar| (((|Plot|) |#1| (|Symbol|)) "\\spad{plotPolar(f,theta)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges from 0 to 2 \\spad{pi}") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plotPolar(f,theta,seg)} plots the graph of \\spad{r = f(theta)} as \\spad{theta} ranges over an interval")) (|plot| (((|Plot|) |#1| |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,t,seg)} plots the graph of \\spad{x = f(t)},{} \\spad{y = g(t)} as \\spad{t} ranges over an interval.") (((|Plot|) |#1| (|Symbol|) (|Segment| (|DoubleFloat|))) "\\spad{plot(fcn,x,seg)} plots the graph of \\spad{y = f(x)} on a interval"))) NIL NIL -(-946) +(-945) ((|constructor| (NIL "Plot3D supports parametric plots defined over a real number system. A real number system is a model for the real numbers and as such may be an approximation. For example,{} floating point numbers and infinite continued fractions are real number systems. The facilities at this point are limited to 3-dimensional parametric plots.")) (|debug3D| (((|Boolean|) (|Boolean|)) "\\spad{debug3D(true)} turns debug mode on; debug3D(\\spad{false}) turns debug mode off.")) (|numFunEvals3D| (((|Integer|)) "\\spad{numFunEvals3D()} returns the number of points computed.")) (|setAdaptive3D| (((|Boolean|) (|Boolean|)) "\\spad{setAdaptive3D(true)} turns adaptive plotting on; setAdaptive3D(\\spad{false}) turns adaptive plotting off.")) (|adaptive3D?| (((|Boolean|)) "\\spad{adaptive3D?()} determines whether plotting be done adaptively.")) (|setScreenResolution3D| (((|Integer|) (|Integer|)) "\\spad{setScreenResolution3D(i)} sets the screen resolution for a 3d graph to \\spad{i}.")) (|screenResolution3D| (((|Integer|)) "\\spad{screenResolution3D()} returns the screen resolution for a 3d graph.")) (|setMaxPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMaxPoints3D(i)} sets the maximum number of points in a plot to \\spad{i}.")) (|maxPoints3D| (((|Integer|)) "\\spad{maxPoints3D()} returns the maximum number of points in a plot.")) (|setMinPoints3D| (((|Integer|) (|Integer|)) "\\spad{setMinPoints3D(i)} sets the minimum number of points in a plot to \\spad{i}.")) (|minPoints3D| (((|Integer|)) "\\spad{minPoints3D()} returns the minimum number of points in a plot.")) (|tValues| (((|List| (|List| (|DoubleFloat|))) $) "\\spad{tValues(p)} returns a list of lists of the values of the parameter for which a point is computed,{} one list for each curve in the plot \\spad{p}.")) (|tRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{tRange(p)} returns the range of the parameter in a parametric plot \\spad{p}.")) (|refine| (($ $) "\\spad{refine(x)} \\undocumented") (($ $ (|Segment| (|DoubleFloat|))) "\\spad{refine(x,r)} \\undocumented")) (|zoom| (($ $ (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{zoom(x,r,s,t)} \\undocumented")) (|plot| (($ $ (|Segment| (|DoubleFloat|))) "\\spad{plot(x,r)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f1,f2,f3,f4,x,y,z,w)} \\undocumented") (($ (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Mapping| (|DoubleFloat|) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{plot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}.")) (|pointPlot| (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,x,y,z,w)} \\undocumented") (($ (|Mapping| (|Point| (|DoubleFloat|)) (|DoubleFloat|)) (|Segment| (|DoubleFloat|))) "\\spad{pointPlot(f,g,h,a..b)} plots {/emx = \\spad{f}(\\spad{t}),{} \\spad{y} = \\spad{g}(\\spad{t}),{} \\spad{z} = \\spad{h}(\\spad{t})} as \\spad{t} ranges over {/em[a,{}\\spad{b}]}."))) NIL NIL -(-947) +(-946) ((|constructor| (NIL "This package exports plotting tools")) (|calcRanges| (((|List| (|Segment| (|DoubleFloat|))) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{calcRanges(l)} \\undocumented"))) NIL NIL -(-948) +(-947) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list.")) (|optional| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation)..")) (|constant| (((|Expression| (|Integer|)) (|Symbol|)) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity.")) (|assert| (((|Expression| (|Integer|)) (|Symbol|) (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}."))) NIL NIL -(-949 R -3495) +(-948 R -3494) ((|constructor| (NIL "Attaching assertions to symbols for pattern matching; Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|multiple| ((|#2| |#2|) "\\spad{multiple(x)} tells the pattern matcher that \\spad{x} should preferably match a multi-term quantity in a sum or product. For matching on lists,{} multiple(\\spad{x}) tells the pattern matcher that \\spad{x} should match a list instead of an element of a list. Error: if \\spad{x} is not a symbol.")) (|optional| ((|#2| |#2|) "\\spad{optional(x)} tells the pattern matcher that \\spad{x} can match an identity (0 in a sum,{} 1 in a product or exponentiation). Error: if \\spad{x} is not a symbol.")) (|constant| ((|#2| |#2|) "\\spad{constant(x)} tells the pattern matcher that \\spad{x} should match only the symbol 'x and no other quantity. Error: if \\spad{x} is not a symbol.")) (|assert| ((|#2| |#2| (|Identifier|)) "\\spad{assert(x, s)} makes the assertion \\spad{s} about \\spad{x}. Error: if \\spad{x} is not a symbol."))) NIL NIL -(-950 S A B) +(-949 S A B) ((|constructor| (NIL "This packages provides tools for matching recursively in type towers.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#2| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches. Note: this function handles type towers by changing the predicates and calling the matching function provided by \\spad{A}.")) (|fixPredicate| (((|Mapping| (|Boolean|) |#2|) (|Mapping| (|Boolean|) |#3|)) "\\spad{fixPredicate(f)} returns \\spad{g} defined by \\spad{g}(a) = \\spad{f}(a::B)."))) NIL NIL -(-951 S R -3495) +(-950 S R -3494) ((|constructor| (NIL "This package provides pattern matching functions on function spaces.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-952 I) +(-951 I) ((|constructor| (NIL "This package provides pattern matching functions on integers.")) (|patternMatch| (((|PatternMatchResult| (|Integer|) |#1|) |#1| (|Pattern| (|Integer|)) (|PatternMatchResult| (|Integer|) |#1|)) "\\spad{patternMatch(n, pat, res)} matches the pattern \\spad{pat} to the integer \\spad{n}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-953 S E) +(-952 S E) ((|constructor| (NIL "This package provides pattern matching functions on kernels.")) (|patternMatch| (((|PatternMatchResult| |#1| |#2|) (|Kernel| |#2|) (|Pattern| |#1|) (|PatternMatchResult| |#1| |#2|)) "\\spad{patternMatch(f(e1,...,en), pat, res)} matches the pattern \\spad{pat} to \\spad{f(e1,...,en)}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-954 S R L) +(-953 S R L) ((|constructor| (NIL "This package provides pattern matching functions on lists.")) (|patternMatch| (((|PatternMatchListResult| |#1| |#2| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchListResult| |#1| |#2| |#3|)) "\\spad{patternMatch(l, pat, res)} matches the pattern \\spad{pat} to the list \\spad{l}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-955 S E V R P) +(-954 S E V R P) ((|constructor| (NIL "This package provides pattern matching functions on polynomials.")) (|patternMatch| (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|)) "\\spad{patternMatch(p, pat, res)} matches the pattern \\spad{pat} to the polynomial \\spad{p}; res contains the variables of \\spad{pat} which are already matched and their matches.") (((|PatternMatchResult| |#1| |#5|) |#5| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|) (|Mapping| (|PatternMatchResult| |#1| |#5|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#5|))) "\\spad{patternMatch(p, pat, res, vmatch)} matches the pattern \\spad{pat} to the polynomial \\spad{p}. \\spad{res} contains the variables of \\spad{pat} which are already matched and their matches; vmatch is the matching function to use on the variables."))) NIL -((|HasCategory| |#3| (|%list| (QUOTE -901) (|devaluate| |#1|)))) -(-956 -3070) +((|HasCategory| |#3| (|%list| (QUOTE -900) (|devaluate| |#1|)))) +(-955 -3069) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| (((|Expression| (|Integer|)) (|Symbol|) (|List| (|Mapping| (|Boolean|) |#1|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}.") (((|Expression| (|Integer|)) (|Symbol|) (|Mapping| (|Boolean|) |#1|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}."))) NIL NIL -(-957 R -3495 -3070) +(-956 R -3494 -3069) ((|constructor| (NIL "Attaching predicates to symbols for pattern matching. Date Created: 21 Mar 1989 Date Last Updated: 23 May 1990")) (|suchThat| ((|#2| |#2| (|List| (|Mapping| (|Boolean|) |#3|))) "\\spad{suchThat(x, [f1, f2, ..., fn])} attaches the predicate \\spad{f1} and \\spad{f2} and ... and fn to \\spad{x}. Error: if \\spad{x} is not a symbol.") ((|#2| |#2| (|Mapping| (|Boolean|) |#3|)) "\\spad{suchThat(x, foo)} attaches the predicate foo to \\spad{x}; error if \\spad{x} is not a symbol."))) NIL NIL -(-958 S R Q) +(-957 S R Q) ((|constructor| (NIL "This package provides pattern matching functions on quotients.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|)) "\\spad{patternMatch(a/b, pat, res)} matches the pattern \\spad{pat} to the quotient \\spad{a/b}; res contains the variables of \\spad{pat} which are already matched and their matches."))) NIL NIL -(-959 S) +(-958 S) ((|constructor| (NIL "This package provides pattern matching functions on symbols.")) (|patternMatch| (((|PatternMatchResult| |#1| (|Symbol|)) (|Symbol|) (|Pattern| |#1|) (|PatternMatchResult| |#1| (|Symbol|))) "\\spad{patternMatch(expr, pat, res)} matches the pattern \\spad{pat} to the expression \\spad{expr}; res contains the variables of \\spad{pat} which are already matched and their matches (necessary for recursion)."))) NIL NIL -(-960 S R P) +(-959 S R P) ((|constructor| (NIL "This package provides tools for the pattern matcher.")) (|patternMatchTimes| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatchTimes(lsubj, lpat, res, match)} matches the product of patterns \\spad{reduce(*,lpat)} to the product of subjects \\spad{reduce(*,lsubj)}; \\spad{r} contains the previous matches and match is a pattern-matching function on \\spad{P}.")) (|patternMatch| (((|PatternMatchResult| |#1| |#3|) (|List| |#3|) (|List| (|Pattern| |#1|)) (|Mapping| |#3| (|List| |#3|)) (|PatternMatchResult| |#1| |#3|) (|Mapping| (|PatternMatchResult| |#1| |#3|) |#3| (|Pattern| |#1|) (|PatternMatchResult| |#1| |#3|))) "\\spad{patternMatch(lsubj, lpat, op, res, match)} matches the list of patterns \\spad{lpat} to the list of subjects \\spad{lsubj},{} allowing for commutativity; \\spad{op} is the operator such that \\spad{op}(\\spad{lpat}) should match \\spad{op}(\\spad{lsubj}) at the end,{} \\spad{r} contains the previous matches,{} and match is a pattern-matching function on \\spad{P}."))) NIL NIL -(-961) +(-960) ((|constructor| (NIL "This package provides various polynomial number theoretic functions over the integers.")) (|legendre| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{legendre(n)} returns the \\spad{n}th Legendre polynomial \\spad{P[n](x)}. Note: Legendre polynomials,{} denoted \\spad{P[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{1/sqrt(1-2*t*x+t**2) = sum(P[n](x)*t**n, n=0..infinity)}.")) (|laguerre| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{laguerre(n)} returns the \\spad{n}th Laguerre polynomial \\spad{L[n](x)}. Note: Laguerre polynomials,{} denoted \\spad{L[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(x*t/(t-1))/(1-t) = sum(L[n](x)*t**n/n!, n=0..infinity)}.")) (|hermite| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{hermite(n)} returns the \\spad{n}th Hermite polynomial \\spad{H[n](x)}. Note: Hermite polynomials,{} denoted \\spad{H[n](x)},{} are computed from the two term recurrence. The generating function is: \\spad{exp(2*t*x-t**2) = sum(H[n](x)*t**n/n!, n=0..infinity)}.")) (|fixedDivisor| (((|Integer|) (|SparseUnivariatePolynomial| (|Integer|))) "\\spad{fixedDivisor(a)} for \\spad{a(x)} in \\spad{Z[x]} is the largest integer \\spad{f} such that \\spad{f} divides \\spad{a(x=k)} for all integers \\spad{k}. Note: fixed divisor of \\spad{a} is \\spad{reduce(gcd,[a(x=k) for k in 0..degree(a)])}.")) (|euler| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{euler(n)} returns the \\spad{n}th Euler polynomial \\spad{E[n](x)}. Note: Euler polynomials denoted \\spad{E(n,x)} computed by solving the differential equation \\spad{differentiate(E(n,x),x) = n E(n-1,x)} where \\spad{E(0,x) = 1} and initial condition comes from \\spad{E(n) = 2**n E(n,1/2)}.")) (|cyclotomic| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{cyclotomic(n)} returns the \\spad{n}th cyclotomic polynomial \\spad{phi[n](x)}. Note: \\spad{phi[n](x)} is the factor of \\spad{x**n - 1} whose roots are the primitive \\spad{n}th roots of unity.")) (|chebyshevU| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevU(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{U[n](x)}. Note: Chebyshev polynomials of the second kind,{} denoted \\spad{U[n](x)},{} computed from the two term recurrence. The generating function \\spad{1/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|chebyshevT| (((|SparseUnivariatePolynomial| (|Integer|)) (|Integer|)) "\\spad{chebyshevT(n)} returns the \\spad{n}th Chebyshev polynomial \\spad{T[n](x)}. Note: Chebyshev polynomials of the first kind,{} denoted \\spad{T[n](x)},{} computed from the two term recurrence. The generating function \\spad{(1-t*x)/(1-2*t*x+t**2) = sum(T[n](x)*t**n, n=0..infinity)}.")) (|bernoulli| (((|SparseUnivariatePolynomial| (|Fraction| (|Integer|))) (|Integer|)) "\\spad{bernoulli(n)} returns the \\spad{n}th Bernoulli polynomial \\spad{B[n](x)}. Note: Bernoulli polynomials denoted \\spad{B(n,x)} computed by solving the differential equation \\spad{differentiate(B(n,x),x) = n B(n-1,x)} where \\spad{B(0,x) = 1} and initial condition comes from \\spad{B(n) = B(n,0)}."))) NIL NIL -(-962 R) +(-961 R) ((|constructor| (NIL "This domain implements points in coordinate space"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-963 |lv| R) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-962 |lv| R) ((|constructor| (NIL "Package with the conversion functions among different kind of polynomials")) (|pToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToDmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{DMP}.")) (|dmpToP| (((|Polynomial| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToP(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{POLY}.")) (|hdmpToP| (((|Polynomial| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToP(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{POLY}.")) (|pToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|Polynomial| |#2|)) "\\spad{pToHdmp(p)} converts \\spad{p} from a \\spadtype{POLY} to a \\spadtype{HDMP}.")) (|hdmpToDmp| (((|DistributedMultivariatePolynomial| |#1| |#2|) (|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{hdmpToDmp(p)} converts \\spad{p} from a \\spadtype{HDMP} to a \\spadtype{DMP}.")) (|dmpToHdmp| (((|HomogeneousDistributedMultivariatePolynomial| |#1| |#2|) (|DistributedMultivariatePolynomial| |#1| |#2|)) "\\spad{dmpToHdmp(p)} converts \\spad{p} from a \\spadtype{DMP} to a \\spadtype{HDMP}."))) NIL NIL -(-964 |TheField| |ThePols|) +(-963 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealPolynomialUtilitiesPackage} provides common functions used by interval coding.")) (|lazyVariations| (((|NonNegativeInteger|) (|List| |#1|) (|Integer|) (|Integer|)) "\\axiom{lazyVariations(\\spad{l},{}\\spad{s1},{}sn)} is the number of sign variations in the list of non null numbers [s1::l]@sn,{}")) (|sturmVariationsOf| (((|NonNegativeInteger|) (|List| |#1|)) "\\axiom{sturmVariationsOf(\\spad{l})} is the number of sign variations in the list of numbers \\spad{l},{} note that the first term counts as a sign")) (|boundOfCauchy| ((|#1| |#2|) "\\axiom{boundOfCauchy(\\spad{p})} bounds the roots of \\spad{p}")) (|sturmSequence| (((|List| |#2|) |#2|) "\\axiom{sturmSequence(\\spad{p}) = sylvesterSequence(\\spad{p},{}p')}")) (|sylvesterSequence| (((|List| |#2|) |#2| |#2|) "\\axiom{sylvesterSequence(\\spad{p},{}\\spad{q})} is the negated remainder sequence of \\spad{p} and \\spad{q} divided by the last computed term"))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-965 R) +((|HasCategory| |#1| (QUOTE (-859)))) +(-964 R) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials whose variables are arbitrary symbols. The ordering is alphabetic determined by the Symbol type. The coefficient ring may be non commutative,{} but the variables are assumed to commute.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(p,x)} computes the integral of \\spad{p*dx},{} \\spadignore{i.e.} integrates the polynomial \\spad{p} with respect to the variable \\spad{x}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1198) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1198) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1198) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1198) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1198) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-966 R S) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1197) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1197) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1197) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1197) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1197) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-965 R S) ((|constructor| (NIL "\\indented{2}{This package takes a mapping between coefficient rings,{} and lifts} it to a mapping between polynomials over those rings.")) (|map| (((|Polynomial| |#2|) (|Mapping| |#2| |#1|) (|Polynomial| |#1|)) "\\spad{map(f, p)} produces a new polynomial as a result of applying the function \\spad{f} to every coefficient of the polynomial \\spad{p}."))) NIL NIL -(-967 |x| R) +(-966 |x| R) ((|constructor| (NIL "This package is primarily to help the interpreter do coercions. It allows you to view a polynomial as a univariate polynomial in one of its variables with coefficients which are again a polynomial in all the other variables.")) (|univariate| (((|UnivariatePolynomial| |#1| (|Polynomial| |#2|)) (|Polynomial| |#2|) (|Variable| |#1|)) "\\spad{univariate(p, x)} converts the polynomial \\spad{p} to a one of type \\spad{UnivariatePolynomial(x,Polynomial(R))},{} ie. as a member of \\spad{R[...][x]}."))) NIL NIL -(-968 S R E |VarSet|) +(-967 S R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#4|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#4|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#4|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#4|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#4|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#4|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#4|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#2|) |#4|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#4|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#4| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#4|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#4|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#4| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#4|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#4|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) NIL -((|HasCategory| |#2| (QUOTE (-929))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) -(-969 R E |VarSet|) +((|HasCategory| |#2| (QUOTE (-928))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#4| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#4| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#4| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#4| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) +(-968 R E |VarSet|) ((|constructor| (NIL "The category for general multi-variate polynomials over a ring \\spad{R},{} in variables from VarSet,{} with exponents from the \\spadtype{OrderedAbelianMonoidSup}.")) (|canonicalUnitNormal| ((|attribute|) "we can choose a unique representative for each associate class. This normalization is chosen to be normalization of leading coefficient (by default).")) (|squareFreePart| (($ $) "\\spad{squareFreePart(p)} returns product of all the irreducible factors of polynomial \\spad{p} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(p)} returns the square free factorization of the polynomial \\spad{p}.")) (|primitivePart| (($ $ |#3|) "\\spad{primitivePart(p,v)} returns the unitCanonical associate of the polynomial \\spad{p} with its content with respect to the variable \\spad{v} divided out.") (($ $) "\\spad{primitivePart(p)} returns the unitCanonical associate of the polynomial \\spad{p} with its content divided out.")) (|content| (($ $ |#3|) "\\spad{content(p,v)} is the gcd of the coefficients of the polynomial \\spad{p} when \\spad{p} is viewed as a univariate polynomial with respect to the variable \\spad{v}. Thus,{} for polynomial 7*x**2*y + 14*x*y**2,{} the gcd of the coefficients with respect to \\spad{x} is 7*y.")) (|discriminant| (($ $ |#3|) "\\spad{discriminant(p,v)} returns the disriminant of the polynomial \\spad{p} with respect to the variable \\spad{v}.")) (|resultant| (($ $ $ |#3|) "\\spad{resultant(p,q,v)} returns the resultant of the polynomials \\spad{p} and \\spad{q} with respect to the variable \\spad{v}.")) (|primitiveMonomials| (((|List| $) $) "\\spad{primitiveMonomials(p)} gives the list of monomials of the polynomial \\spad{p} with their coefficients removed. Note: \\spad{primitiveMonomials(sum(a_(i) X^(i))) = [X^(1),...,X^(n)]}.")) (|variables| (((|List| |#3|) $) "\\spad{variables(p)} returns the list of those variables actually appearing in the polynomial \\spad{p}.")) (|totalDegree| (((|NonNegativeInteger|) $ (|List| |#3|)) "\\spad{totalDegree(p, lv)} returns the maximum sum (over all monomials of polynomial \\spad{p}) of the variables in the list lv.") (((|NonNegativeInteger|) $) "\\spad{totalDegree(p)} returns the largest sum over all monomials of all exponents of a monomial.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#3|) (|:| |exponent| (|NonNegativeInteger|))) "failed") $) "\\spad{isExpt(p)} returns \\spad{[x, n]} if polynomial \\spad{p} has the form \\spad{x**n} and \\spad{n > 0}.")) (|isTimes| (((|Union| (|List| $) "failed") $) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if polynomial \\spad{p = a1 ... an} and \\spad{n >= 2},{} and,{} for each \\spad{i},{} \\spad{ai} is either a nontrivial constant in \\spad{R} or else of the form \\spad{x**e},{} where \\spad{e > 0} is an integer and \\spad{x} in a member of VarSet.")) (|isPlus| (((|Union| (|List| $) "failed") $) "\\spad{isPlus(p)} returns \\spad{[m1,...,mn]} if polynomial \\spad{p = m1 + ... + mn} and \\spad{n >= 2} and each \\spad{mi} is a nonzero monomial.")) (|multivariate| (($ (|SparseUnivariatePolynomial| $) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.") (($ (|SparseUnivariatePolynomial| |#1|) |#3|) "\\spad{multivariate(sup,v)} converts an anonymous univariable polynomial \\spad{sup} to a polynomial in the variable \\spad{v}.")) (|monomial| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{monomial(a,[v1..vn],[e1..en])} returns \\spad{a*prod(vi**ei)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{monomial(a,x,n)} creates the monomial \\spad{a*x**n} where \\spad{a} is a polynomial,{} \\spad{x} is a variable and \\spad{n} is a nonnegative integer.")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\spad{monicDivide(a,b,v)} divides the polynomial a by the polynomial \\spad{b},{} with each viewed as a univariate polynomial in \\spad{v} returning both the quotient and remainder. Error: if \\spad{b} is not monic with respect to \\spad{v}.")) (|minimumDegree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{minimumDegree(p, lv)} gives the list of minimum degrees of the polynomial \\spad{p} with respect to each of the variables in the list lv") (((|NonNegativeInteger|) $ |#3|) "\\spad{minimumDegree(p,v)} gives the minimum degree of polynomial \\spad{p} with respect to \\spad{v},{} \\spadignore{i.e.} viewed a univariate polynomial in \\spad{v}")) (|mainVariable| (((|Union| |#3| "failed") $) "\\spad{mainVariable(p)} returns the biggest variable which actually occurs in the polynomial \\spad{p},{} or \"failed\" if no variables are present. fails precisely if polynomial satisfies ground?")) (|univariate| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{univariate(p)} converts the multivariate polynomial \\spad{p},{} which should actually involve only one variable,{} into a univariate polynomial in that variable,{} whose coefficients are in the ground ring. Error: if polynomial is genuinely multivariate") (((|SparseUnivariatePolynomial| $) $ |#3|) "\\spad{univariate(p,v)} converts the multivariate polynomial \\spad{p} into a univariate polynomial in \\spad{v},{} whose coefficients are still multivariate polynomials (in all the other variables).")) (|monomials| (((|List| $) $) "\\spad{monomials(p)} returns the list of non-zero monomials of polynomial \\spad{p},{} \\spadignore{i.e.} \\spad{monomials(sum(a_(i) X^(i))) = [a_(1) X^(1),...,a_(n) X^(n)]}.")) (|coefficient| (($ $ (|List| |#3|) (|List| (|NonNegativeInteger|))) "\\spad{coefficient(p, lv, ln)} views the polynomial \\spad{p} as a polynomial in the variables of \\spad{lv} and returns the coefficient of the term \\spad{lv**ln},{} \\spadignore{i.e.} \\spad{prod(lv_i ** ln_i)}.") (($ $ |#3| (|NonNegativeInteger|)) "\\spad{coefficient(p,v,n)} views the polynomial \\spad{p} as a univariate polynomial in \\spad{v} and returns the coefficient of the \\spad{v**n} term.")) (|degree| (((|List| (|NonNegativeInteger|)) $ (|List| |#3|)) "\\spad{degree(p,lv)} gives the list of degrees of polynomial \\spad{p} with respect to each of the variables in the list \\spad{lv}.") (((|NonNegativeInteger|) $ |#3|) "\\spad{degree(p,v)} gives the degree of polynomial \\spad{p} with respect to the variable \\spad{v}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL -(-970 E V R P -3495) +(-969 E V R P -3494) ((|constructor| (NIL "This package transforms multivariate polynomials or fractions into univariate polynomials or fractions,{} and back.")) (|isPower| (((|Union| (|Record| (|:| |val| |#5|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isPower(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isExpt| (((|Union| (|Record| (|:| |var| |#2|) (|:| |exponent| (|Integer|))) "failed") |#5|) "\\spad{isExpt(p)} returns \\spad{[x, n]} if \\spad{p = x**n} and \\spad{n <> 0},{} \"failed\" otherwise.")) (|isTimes| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isTimes(p)} returns \\spad{[a1,...,an]} if \\spad{p = a1 ... an} and \\spad{n > 1},{} \"failed\" otherwise.")) (|isPlus| (((|Union| (|List| |#5|) "failed") |#5|) "\\spad{isPlus(p)} returns [\\spad{m1},{}...,{}mn] if \\spad{p = m1 + ... + mn} and \\spad{n > 1},{} \"failed\" otherwise.")) (|multivariate| ((|#5| (|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#2|) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|SparseUnivariatePolynomial| |#5|) |#5| |#2| (|SparseUnivariatePolynomial| |#5|)) "\\spad{univariate(f, x, p)} returns \\spad{f} viewed as a univariate polynomial in \\spad{x},{} using the side-condition \\spad{p(x) = 0}.") (((|Fraction| (|SparseUnivariatePolynomial| |#5|)) |#5| |#2|) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| |#2| "failed") |#5|) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| |#2|) |#5|) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-971 E |Vars| R P S) +(-970 E |Vars| R P S) ((|constructor| (NIL "This package provides a very general map function,{} which given a set \\spad{S} and polynomials over \\spad{R} with maps from the variables into \\spad{S} and the coefficients into \\spad{S},{} maps polynomials into \\spad{S}. \\spad{S} is assumed to support \\spad{+},{} \\spad{*} and \\spad{**}.")) (|map| ((|#5| (|Mapping| |#5| |#2|) (|Mapping| |#5| |#3|) |#4|) "\\spad{map(varmap, coefmap, p)} takes a \\spad{varmap},{} a mapping from the variables of polynomial \\spad{p} into \\spad{S},{} \\spad{coefmap},{} a mapping from coefficients of \\spad{p} into \\spad{S},{} and \\spad{p},{} and produces a member of \\spad{S} using the corresponding arithmetic. in \\spad{S}"))) NIL NIL -(-972 E V R P -3495) +(-971 E V R P -3494) ((|constructor| (NIL "computes \\spad{n}-th roots of quotients of multivariate polynomials")) (|nthr| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#4|) (|:| |radicand| (|List| |#4|))) |#4| (|NonNegativeInteger|)) "\\spad{nthr(p,n)} should be local but conditional")) (|froot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#5| (|NonNegativeInteger|)) "\\spad{froot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|qroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) (|Fraction| (|Integer|)) (|NonNegativeInteger|)) "\\spad{qroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|rroot| (((|Record| (|:| |exponent| (|NonNegativeInteger|)) (|:| |coef| |#5|) (|:| |radicand| |#5|)) |#3| (|NonNegativeInteger|)) "\\spad{rroot(f, n)} returns \\spad{[m,c,r]} such that \\spad{f**(1/n) = c * r**(1/m)}.")) (|denom| ((|#4| $) "\\spad{denom(x)} \\undocumented")) (|numer| ((|#4| $) "\\spad{numer(x)} \\undocumented"))) NIL ((|HasCategory| |#3| (QUOTE (-464)))) -(-973) +(-972) ((|constructor| (NIL "This domain represents network port numbers (notable TCP and UDP).")) (|port| (($ (|SingleInteger|)) "\\spad{port(n)} constructs a PortNumber from the integer `n'."))) NIL NIL -(-974) +(-973) ((|constructor| (NIL "PlottablePlaneCurveCategory is the category of curves in the plane which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the \\spad{x}-coordinates and \\spad{y}-coordinates of the points on the curve.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-975 R E) +(-974 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and terms indexed by their exponents (from an arbitrary ordered abelian monoid). This type is used,{} for example,{} by the \\spadtype{DistributedMultivariatePolynomial} domain where the exponent domain is a direct product of non negative integers.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (|fmecg| (($ $ |#2| |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4423))) -(-976 R L) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4422))) +(-975 R L) ((|constructor| (NIL "\\spadtype{PrecomputedAssociatedEquations} stores some generic precomputations which speed up the computations of the associated equations needed for factoring operators.")) (|firstUncouplingMatrix| (((|Union| (|Matrix| |#1|) "failed") |#2| (|PositiveInteger|)) "\\spad{firstUncouplingMatrix(op, m)} returns the matrix A such that \\spad{A w = (W',W'',...,W^N)} in the corresponding associated equations for right-factors of order \\spad{m} of \\spad{op}. Returns \"failed\" if the matrix A has not been precomputed for the particular combination \\spad{degree(L), m}."))) NIL NIL -(-977 S) +(-976 S) ((|constructor| (NIL "\\indented{1}{This provides a fast array type with no bound checking on elt's.} Minimum index is 0 in this type,{} cannot be changed"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-978 A B) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-977 A B) ((|constructor| (NIL "\\indented{1}{This package provides tools for operating on primitive arrays} with unary and binary functions involving different underlying types")) (|map| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1|) (|PrimitiveArray| |#1|)) "\\spad{map(f,a)} applies function \\spad{f} to each member of primitive array \\spad{a} resulting in a new primitive array over a possibly different underlying domain.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{reduce(f,a,r)} applies function \\spad{f} to each successive element of the primitive array \\spad{a} and an accumulant initialized to \\spad{r}. For example,{} \\spad{reduce(_+\\$Integer,[1,2,3],0)} does \\spad{3+(2+(1+0))}. Note: third argument \\spad{r} may be regarded as the identity element for the function \\spad{f}.")) (|scan| (((|PrimitiveArray| |#2|) (|Mapping| |#2| |#1| |#2|) (|PrimitiveArray| |#1|) |#2|) "\\spad{scan(f,a,r)} successively applies \\spad{reduce(f,x,r)} to more and more leading sub-arrays \\spad{x} of primitive array \\spad{a}. More precisely,{} if \\spad{a} is \\spad{[a1,a2,...]},{} then \\spad{scan(f,a,r)} returns \\spad{[reduce(f,[a1],r),reduce(f,[a1,a2],r),...]}."))) NIL NIL -(-979) +(-978) ((|constructor| (NIL "Category for the functions defined by integrals.")) (|integral| (($ $ (|SegmentBinding| $)) "\\spad{integral(f, x = a..b)} returns the formal definite integral of \\spad{f} dx for \\spad{x} between \\spad{a} and \\spad{b}.") (($ $ (|Symbol|)) "\\spad{integral(f, x)} returns the formal integral of \\spad{f} dx."))) NIL NIL -(-980 -3495) +(-979 -3494) ((|constructor| (NIL "PrimitiveElement provides functions to compute primitive elements in algebraic extensions.")) (|primitiveElement| (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|Symbol|)) "\\spad{primitiveElement([p1,...,pn], [a1,...,an], a)} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef| (|List| (|Integer|))) (|:| |poly| (|List| (|SparseUnivariatePolynomial| |#1|))) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|List| (|Polynomial| |#1|)) (|List| (|Symbol|))) "\\spad{primitiveElement([p1,...,pn], [a1,...,an])} returns \\spad{[[c1,...,cn], [q1,...,qn], q]} such that then \\spad{k(a1,...,an) = k(a)},{} where \\spad{a = a1 c1 + ... + an cn},{} \\spad{ai = qi(a)},{} and \\spad{q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. This operation uses the technique of \\spadglossSee{groebner bases}{Groebner basis}.") (((|Record| (|:| |coef1| (|Integer|)) (|:| |coef2| (|Integer|)) (|:| |prim| (|SparseUnivariatePolynomial| |#1|))) (|Polynomial| |#1|) (|Symbol|) (|Polynomial| |#1|) (|Symbol|)) "\\spad{primitiveElement(p1, a1, p2, a2)} returns \\spad{[c1, c2, q]} such that \\spad{k(a1, a2) = k(a)} where \\spad{a = c1 a1 + c2 a2, and q(a) = 0}. The \\spad{pi}'s are the defining polynomials for the \\spad{ai}'s. The \\spad{p2} may involve \\spad{a1},{} but \\spad{p1} must not involve \\spad{a2}. This operation uses \\spadfun{resultant}."))) NIL NIL -(-981 I) +(-980 I) ((|constructor| (NIL "The \\spadtype{IntegerPrimesPackage} implements a modification of Rabin's probabilistic primality test and the utility functions \\spadfun{nextPrime},{} \\spadfun{prevPrime} and \\spadfun{primes}.")) (|primes| (((|List| |#1|) |#1| |#1|) "\\spad{primes(a,b)} returns a list of all primes \\spad{p} with \\spad{a <= p <= b}")) (|prevPrime| ((|#1| |#1|) "\\spad{prevPrime(n)} returns the largest prime strictly smaller than \\spad{n}")) (|nextPrime| ((|#1| |#1|) "\\spad{nextPrime(n)} returns the smallest prime strictly larger than \\spad{n}")) (|prime?| (((|Boolean|) |#1|) "\\spad{prime?(n)} returns \\spad{true} if \\spad{n} is prime and \\spad{false} if not. The algorithm used is Rabin's probabilistic primality test (reference: Knuth Volume 2 Semi Numerical Algorithms). If \\spad{prime? n} returns \\spad{false},{} \\spad{n} is proven composite. If \\spad{prime? n} returns \\spad{true},{} prime? may be in error however,{} the probability of error is very low. and is zero below 25*10**9 (due to a result of Pomerance et al),{} below 10**12 and 10**13 due to results of Pinch,{} and below 341550071728321 due to a result of Jaeschke. Specifically,{} this implementation does at least 10 pseudo prime tests and so the probability of error is \\spad{< 4**(-10)}. The running time of this method is cubic in the length of the input \\spad{n},{} that is \\spad{O( (log n)**3 )},{} for \\spad{n<10**20}. beyond that,{} the algorithm is quartic,{} \\spad{O( (log n)**4 )}. Two improvements due to Davenport have been incorporated which catches some trivial strong pseudo-primes,{} such as [Jaeschke,{} 1991] 1377161253229053 * 413148375987157,{} which the original algorithm regards as prime"))) NIL NIL -(-982) +(-981) ((|constructor| (NIL "PrintPackage provides a print function for output forms.")) (|print| (((|Void|) (|OutputForm|)) "\\spad{print(o)} writes the output form \\spad{o} on standard output using the two-dimensional formatter."))) NIL NIL -(-983 A B) +(-982 A B) ((|constructor| (NIL "This domain implements cartesian product")) (|selectsecond| ((|#2| $) "\\spad{selectsecond(x)} \\undocumented")) (|selectfirst| ((|#1| $) "\\spad{selectfirst(x)} \\undocumented")) (|makeprod| (($ |#1| |#2|) "\\spad{makeprod(a,b)} \\undocumented"))) -((-4422 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-815))) (|HasCategory| |#2| (QUOTE (-815)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746))))) (-12 (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-746)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-861))))) -(-984) +((-4421 -12 (|has| |#2| (-485)) (|has| |#1| (-485)))) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21))))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23))))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-745))))) (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-381)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-814))) (|HasCategory| |#2| (QUOTE (-814)))) (-12 (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-21)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-485))) (|HasCategory| |#2| (QUOTE (-485)))) (-12 (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-745))))) (-12 (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-745)))) (-12 (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-23)))) (-12 (|HasCategory| |#1| (QUOTE (-133))) (|HasCategory| |#2| (QUOTE (-133)))) (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-860))))) +(-983) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. An `Property' is a pair of name and value.")) (|property| (($ (|Identifier|) (|SExpression|)) "\\spad{property(n,val)} constructs a property with name `n' and value `val'.")) (|value| (((|SExpression|) $) "\\spad{value(p)} returns value of property \\spad{p}")) (|name| (((|Identifier|) $) "\\spad{name(p)} returns the name of property \\spad{p}"))) NIL NIL -(-985 T$) +(-984 T$) ((|constructor| (NIL "This domain implements propositional formula build over a term domain,{} that itself belongs to PropositionalLogic")) (|disjunction| (($ $ $) "\\spad{disjunction(p,q)} returns a formula denoting the disjunction of \\spad{p} and \\spad{q}.")) (|conjunction| (($ $ $) "\\spad{conjunction(p,q)} returns a formula denoting the conjunction of \\spad{p} and \\spad{q}.")) (|isEquiv| (((|Maybe| (|Pair| $ $)) $) "\\spad{isEquiv f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an equivalence formula.")) (|isImplies| (((|Maybe| (|Pair| $ $)) $) "\\spad{isImplies f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is an implication formula.")) (|isOr| (((|Maybe| (|Pair| $ $)) $) "\\spad{isOr f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a disjunction formula.")) (|isAnd| (((|Maybe| (|Pair| $ $)) $) "\\spad{isAnd f} returns a value \\spad{v} such that \\spad{v case Pair(\\%,\\%)} holds if the formula \\spad{f} is a conjunction formula.")) (|isNot| (((|Maybe| $) $) "\\spad{isNot f} returns a value \\spad{v} such that \\spad{v case \\%} holds if the formula \\spad{f} is a negation.")) (|isAtom| (((|Maybe| |#1|) $) "\\spad{isAtom f} returns a value \\spad{v} such that \\spad{v case T} holds if the formula \\spad{f} is a term."))) NIL NIL -(-986 T$) +(-985 T$) ((|constructor| (NIL "This package collects unary functions operating on propositional formulae.")) (|simplify| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{simplify f} returns a formula logically equivalent to \\spad{f} where obvious tautologies have been removed.")) (|atoms| (((|Set| |#1|) (|PropositionalFormula| |#1|)) "\\spad{atoms f} ++ returns the set of atoms appearing in the formula \\spad{f}.")) (|dual| (((|PropositionalFormula| |#1|) (|PropositionalFormula| |#1|)) "\\spad{dual f} returns the dual of the proposition \\spad{f}."))) NIL NIL -(-987 S T$) +(-986 S T$) ((|constructor| (NIL "This package collects binary functions operating on propositional formulae.")) (|map| (((|PropositionalFormula| |#2|) (|Mapping| |#2| |#1|) (|PropositionalFormula| |#1|)) "\\spad{map(f,x)} returns a propositional formula where all atoms in \\spad{x} have been replaced by the result of applying the function \\spad{f} to them."))) NIL NIL -(-988) +(-987) ((|constructor| (NIL "This category declares the connectives of Propositional Logic.")) (|equiv| (($ $ $) "\\spad{equiv(p,q)} returns the logical equivalence of `p',{} `q'.")) (|implies| (($ $ $) "\\spad{implies(p,q)} returns the logical implication of `q' by `p'.")) (|false| (($) "\\spad{false} is a logical constant.")) (|true| (($) "\\spad{true} is a logical constant."))) NIL NIL -(-989 S) +(-988 S) ((|constructor| (NIL "A priority queue is a bag of items from an ordered set where the item extracted is always the maximum element.")) (|merge!| (($ $ $) "\\spad{merge!(q,q1)} destructively changes priority queue \\spad{q} to include the values from priority queue \\spad{q1}.")) (|merge| (($ $ $) "\\spad{merge(q1,q2)} returns combines priority queues \\spad{q1} and \\spad{q2} to return a single priority queue \\spad{q}.")) (|max| ((|#1| $) "\\spad{max(q)} returns the maximum element of priority queue \\spad{q}."))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL -(-990 R |polR|) +(-989 R |polR|) ((|constructor| (NIL "This package contains some functions: \\axiomOpFrom{discriminant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultant}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcd}{PseudoRemainderSequence},{} \\axiomOpFrom{chainSubResultants}{PseudoRemainderSequence},{} \\axiomOpFrom{degreeSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{lastSubResultant}{PseudoRemainderSequence},{} \\axiomOpFrom{resultantEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{subResultantGcdEuclidean}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean1}}{PseudoRemainderSequence},{} \\axiomOpFrom{\\spad{semiSubResultantGcdEuclidean2}}{PseudoRemainderSequence},{} etc. This procedures are coming from improvements of the subresultants algorithm. \\indented{2}{Version : 7} \\indented{2}{References : Lionel Ducos \"Optimizations of the subresultant algorithm\"} \\indented{2}{to appear in the Journal of Pure and Applied Algebra.} \\indented{2}{Author : Ducos Lionel \\axiom{Lionel.Ducos@mathlabo.univ-poitiers.fr}}")) (|semiResultantEuclideannaif| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the semi-extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantEuclideannaif| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the extended resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|resultantnaif| ((|#1| |#2| |#2|) "\\axiom{resultantEuclidean_naif(\\spad{P},{}\\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}} computed by means of the naive algorithm.")) (|nextsousResultant2| ((|#2| |#2| |#2| |#2| |#1|) "\\axiom{\\spad{nextsousResultant2}(\\spad{P},{} \\spad{Q},{} \\spad{Z},{} \\spad{s})} returns the subresultant \\axiom{S_{\\spad{e}-1}} where \\axiom{\\spad{P} ~ S_d,{} \\spad{Q} = S_{\\spad{d}-1},{} \\spad{Z} = S_e,{} \\spad{s} = lc(S_d)}")) (|Lazard2| ((|#2| |#2| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{\\spad{Lazard2}(\\spad{F},{} \\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{(x/y)**(\\spad{n}-1) * \\spad{F}}")) (|Lazard| ((|#1| |#1| |#1| (|NonNegativeInteger|)) "\\axiom{Lazard(\\spad{x},{} \\spad{y},{} \\spad{n})} computes \\axiom{x**n/y**(\\spad{n}-1)}")) (|divide| (((|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{divide(\\spad{F},{}\\spad{G})} computes quotient and rest of the exact euclidean division of \\axiom{\\spad{F}} by \\axiom{\\spad{G}}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| |#2|) (|:| |remainder| |#2|)) |#2| |#2|) "\\axiom{pseudoDivide(\\spad{P},{}\\spad{Q})} computes the pseudoDivide of \\axiom{\\spad{P}} by \\axiom{\\spad{Q}}.")) (|exquo| (((|Vector| |#2|) (|Vector| |#2|) |#1|) "\\axiom{\\spad{v} exquo \\spad{r}} computes the exact quotient of \\axiom{\\spad{v}} by \\axiom{\\spad{r}}")) (* (((|Vector| |#2|) |#1| (|Vector| |#2|)) "\\axiom{\\spad{r} * \\spad{v}} computes the product of \\axiom{\\spad{r}} and \\axiom{\\spad{v}}")) (|gcd| ((|#2| |#2| |#2|) "\\axiom{gcd(\\spad{P},{} \\spad{Q})} returns the gcd of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiResultantReduitEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{semiResultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduitEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultantReduit| |#1|)) |#2| |#2|) "\\axiom{resultantReduitEuclidean(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" and carries out the equality \\axiom{coef1*P + coef2*Q = resultantReduit(\\spad{P},{}\\spad{Q})}.")) (|resultantReduit| ((|#1| |#2| |#2|) "\\axiom{resultantReduit(\\spad{P},{}\\spad{Q})} returns the \"reduce resultant\" of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|schema| (((|List| (|NonNegativeInteger|)) |#2| |#2|) "\\axiom{schema(\\spad{P},{}\\spad{Q})} returns the list of degrees of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|chainSubResultants| (((|List| |#2|) |#2| |#2|) "\\axiom{chainSubResultants(\\spad{P},{} \\spad{Q})} computes the list of non zero subresultants of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiDiscriminantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{...\\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|discriminantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |discriminant| |#1|)) |#2|) "\\axiom{discriminantEuclidean(\\spad{P})} carries out the equality \\axiom{\\spad{coef1} * \\spad{P} + \\spad{coef2} * \\spad{D}(\\spad{P}) = discriminant(\\spad{P})}.")) (|discriminant| ((|#1| |#2|) "\\axiom{discriminant(\\spad{P},{} \\spad{Q})} returns the discriminant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiSubResultantGcdEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + ? \\spad{Q} = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|semiSubResultantGcdEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{\\spad{semiSubResultantGcdEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|subResultantGcdEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |gcd| |#2|)) |#2| |#2|) "\\axiom{subResultantGcdEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = +/- S_i(\\spad{P},{}\\spad{Q})} where the degree (not the indice) of the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} is the smaller as possible.")) (|subResultantGcd| ((|#2| |#2| |#2|) "\\axiom{subResultantGcd(\\spad{P},{} \\spad{Q})} returns the gcd of two primitive polynomials \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}.")) (|semiLastSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{semiLastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = \\spad{S}}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|lastSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) "\\axiom{lastSubResultantEuclidean(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant \\axiom{\\spad{S}} and carries out the equality \\axiom{coef1*P + coef2*Q = \\spad{S}}.")) (|lastSubResultant| ((|#2| |#2| |#2|) "\\axiom{lastSubResultant(\\spad{P},{} \\spad{Q})} computes the last non zero subresultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}")) (|semiDegreeSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|degreeSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns a subresultant \\axiom{\\spad{S}} of degree \\axiom{\\spad{d}} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i}.")) (|degreeSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{degreeSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{d})} computes a subresultant of degree \\axiom{\\spad{d}}.")) (|semiIndiceSubResultantEuclidean| (((|Record| (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{semiIndiceSubResultantEuclidean(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{...\\spad{P} + coef2*Q = S_i(\\spad{P},{}\\spad{Q})} Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|indiceSubResultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant \\axiom{S_i(\\spad{P},{}\\spad{Q})} and carries out the equality \\axiom{coef1*P + coef2*Q = S_i(\\spad{P},{}\\spad{Q})}")) (|indiceSubResultant| ((|#2| |#2| |#2| (|NonNegativeInteger|)) "\\axiom{indiceSubResultant(\\spad{P},{} \\spad{Q},{} \\spad{i})} returns the subresultant of indice \\axiom{\\spad{i}}")) (|semiResultantEuclidean1| (((|Record| (|:| |coef1| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean1}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{\\spad{coef1}.\\spad{P} + ? \\spad{Q} = resultant(\\spad{P},{}\\spad{Q})}.")) (|semiResultantEuclidean2| (((|Record| (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{\\spad{semiResultantEuclidean2}(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{...\\spad{P} + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}. Warning: \\axiom{degree(\\spad{P}) >= degree(\\spad{Q})}.")) (|resultantEuclidean| (((|Record| (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |resultant| |#1|)) |#2| |#2|) "\\axiom{resultantEuclidean(\\spad{P},{}\\spad{Q})} carries out the equality \\axiom{coef1*P + coef2*Q = resultant(\\spad{P},{}\\spad{Q})}")) (|resultant| ((|#1| |#2| |#2|) "\\axiom{resultant(\\spad{P},{} \\spad{Q})} returns the resultant of \\axiom{\\spad{P}} and \\axiom{\\spad{Q}}"))) NIL ((|HasCategory| |#1| (QUOTE (-464)))) -(-991) +(-990) ((|constructor| (NIL "This domain represents `pretend' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-992) +(-991) ((|constructor| (NIL "Partition is an OrderedCancellationAbelianMonoid which is used as the basis for symmetric polynomial representation of the sums of powers in SymmetricPolynomial. Thus,{} \\spad{(5 2 2 1)} will represent \\spad{s5 * s2**2 * s1}.")) (|conjugate| (($ $) "\\spad{conjugate(p)} returns the conjugate partition of a partition \\spad{p}")) (|pdct| (((|PositiveInteger|) $) "\\spad{pdct(a1**n1 a2**n2 ...)} returns \\spad{n1! * a1**n1 * n2! * a2**n2 * ...}. This function is used in the package \\spadtype{CycleIndicators}.")) (|powers| (((|List| (|Pair| (|PositiveInteger|) (|PositiveInteger|))) $) "\\spad{powers(x)} returns a list of pairs. The second component of each pair is the multiplicity with which the first component occurs in \\spad{li}.")) (|partitions| (((|Stream| $) (|NonNegativeInteger|)) "\\spad{partitions n} returns the stream of all partitions of size \\spad{n}.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\#x} returns the sum of all parts of the partition \\spad{x}.")) (|parts| (((|List| (|PositiveInteger|)) $) "\\spad{parts x} returns the list of decreasing integer sequence making up the partition \\spad{x}.")) (|partition| (($ (|List| (|PositiveInteger|))) "\\spad{partition(li)} converts a list of integers \\spad{li} to a partition"))) NIL NIL -(-993 S |Coef| |Expon| |Var|) +(-992 S |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#4|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#3| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#2| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#4|) (|List| |#3|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#4| |#3|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) NIL NIL -(-994 |Coef| |Expon| |Var|) +(-993 |Coef| |Expon| |Var|) ((|constructor| (NIL "\\spadtype{PowerSeriesCategory} is the most general power series category with exponents in an ordered abelian monoid.")) (|complete| (($ $) "\\spad{complete(f)} causes all terms of \\spad{f} to be computed. Note: this results in an infinite loop if \\spad{f} has infinitely many terms.")) (|pole?| (((|Boolean|) $) "\\spad{pole?(f)} determines if the power series \\spad{f} has a pole.")) (|variables| (((|List| |#3|) $) "\\spad{variables(f)} returns a list of the variables occuring in the power series \\spad{f}.")) (|degree| ((|#2| $) "\\spad{degree(f)} returns the exponent of the lowest order term of \\spad{f}.")) (|leadingCoefficient| ((|#1| $) "\\spad{leadingCoefficient(f)} returns the coefficient of the lowest order term of \\spad{f}")) (|leadingMonomial| (($ $) "\\spad{leadingMonomial(f)} returns the monomial of \\spad{f} of lowest order.")) (|monomial| (($ $ (|List| |#3|) (|List| |#2|)) "\\spad{monomial(a,[x1,..,xk],[n1,..,nk])} computes \\spad{a * x1**n1 * .. * xk**nk}.") (($ $ |#3| |#2|) "\\spad{monomial(a,x,n)} computes \\spad{a*x**n}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-995) +(-994) ((|constructor| (NIL "PlottableSpaceCurveCategory is the category of curves in 3-space which may be plotted via the graphics facilities. Functions are provided for obtaining lists of lists of points,{} representing the branches of the curve,{} and for determining the ranges of the x-,{} y-,{} and \\spad{z}-coordinates of the points on the curve.")) (|zRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{zRange(c)} returns the range of the \\spad{z}-coordinates of the points on the curve \\spad{c}.")) (|yRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{yRange(c)} returns the range of the \\spad{y}-coordinates of the points on the curve \\spad{c}.")) (|xRange| (((|Segment| (|DoubleFloat|)) $) "\\spad{xRange(c)} returns the range of the \\spad{x}-coordinates of the points on the curve \\spad{c}.")) (|listBranches| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listBranches(c)} returns a list of lists of points,{} representing the branches of the curve \\spad{c}."))) NIL NIL -(-996 S R E |VarSet| P) +(-995 S R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#5|) (|List| |#5|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#4|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#4|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#4|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#4|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#4| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#4|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#4|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#4| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#5|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#5|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) NIL ((|HasCategory| |#2| (QUOTE (-569)))) -(-997 R E |VarSet| P) +(-996 R E |VarSet| P) ((|constructor| (NIL "A category for finite subsets of a polynomial ring. Such a set is only regarded as a set of polynomials and not identified to the ideal it generates. So two distinct sets may generate the same the ideal. Furthermore,{} for \\spad{R} being an integral domain,{} a set of polynomials may be viewed as a representation of the ideal it generates in the polynomial ring \\spad{(R)^(-1) P},{} or the set of its zeros (described for instance by the radical of the previous ideal,{} or a split of the associated affine variety) and so on. So this category provides operations about those different notions.")) (|triangular?| (((|Boolean|) $) "\\axiom{triangular?(ps)} returns \\spad{true} iff \\axiom{ps} is a triangular set,{} \\spadignore{i.e.} two distinct polynomials have distinct main variables and no constant lies in \\axiom{ps}.")) (|rewriteIdealWithRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithRemainder(lp,{}cs)} returns \\axiom{lr} such that every polynomial in \\axiom{lr} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|rewriteIdealWithHeadRemainder| (((|List| |#4|) (|List| |#4|) $) "\\axiom{rewriteIdealWithHeadRemainder(lp,{}cs)} returns \\axiom{lr} such that the leading monomial of every polynomial in \\axiom{lr} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{cs} and \\axiom{(lp,{}cs)} and \\axiom{(lr,{}cs)} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}.")) (|remainder| (((|Record| (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{remainder(a,{}ps)} returns \\axiom{[\\spad{c},{}\\spad{b},{}\\spad{r}]} such that \\axiom{\\spad{b}} is fully reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps},{} \\axiom{r*a - c*b} lies in the ideal generated by \\axiom{ps}. Furthermore,{} if \\axiom{\\spad{R}} is a gcd-domain,{} \\axiom{\\spad{b}} is primitive.")) (|headRemainder| (((|Record| (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) "\\axiom{headRemainder(a,{}ps)} returns \\axiom{[\\spad{b},{}\\spad{r}]} such that the leading monomial of \\axiom{\\spad{b}} is reduced in the sense of Groebner bases \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ps} and \\axiom{r*a - \\spad{b}} lies in the ideal generated by \\axiom{ps}.")) (|roughUnitIdeal?| (((|Boolean|) $) "\\axiom{roughUnitIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} contains some non null element lying in the base ring \\axiom{\\spad{R}}.")) (|roughEqualIdeals?| (((|Boolean|) $ $) "\\axiom{roughEqualIdeals?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that \\axiom{\\spad{ps1}} and \\axiom{\\spad{ps2}} generate the same ideal in \\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}} without computing Groebner bases.")) (|roughSubIdeal?| (((|Boolean|) $ $) "\\axiom{roughSubIdeal?(\\spad{ps1},{}\\spad{ps2})} returns \\spad{true} iff it can proved that all polynomials in \\axiom{\\spad{ps1}} lie in the ideal generated by \\axiom{\\spad{ps2}} in \\axiom{\\axiom{(\\spad{R})^(\\spad{-1}) \\spad{P}}} without computing Groebner bases.")) (|roughBase?| (((|Boolean|) $) "\\axiom{roughBase?(ps)} returns \\spad{true} iff for every pair \\axiom{{\\spad{p},{}\\spad{q}}} of polynomials in \\axiom{ps} their leading monomials are relatively prime.")) (|trivialIdeal?| (((|Boolean|) $) "\\axiom{trivialIdeal?(ps)} returns \\spad{true} iff \\axiom{ps} does not contain non-zero elements.")) (|sort| (((|Record| (|:| |under| $) (|:| |floor| $) (|:| |upper| $)) $ |#3|) "\\axiom{sort(\\spad{v},{}ps)} returns \\axiom{us,{}vs,{}ws} such that \\axiom{us} is \\axiom{collectUnder(ps,{}\\spad{v})},{} \\axiom{vs} is \\axiom{collect(ps,{}\\spad{v})} and \\axiom{ws} is \\axiom{collectUpper(ps,{}\\spad{v})}.")) (|collectUpper| (($ $ |#3|) "\\axiom{collectUpper(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable greater than \\axiom{\\spad{v}}.")) (|collect| (($ $ |#3|) "\\axiom{collect(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with \\axiom{\\spad{v}} as main variable.")) (|collectUnder| (($ $ |#3|) "\\axiom{collectUnder(ps,{}\\spad{v})} returns the set consisting of the polynomials of \\axiom{ps} with main variable less than \\axiom{\\spad{v}}.")) (|mainVariable?| (((|Boolean|) |#3| $) "\\axiom{mainVariable?(\\spad{v},{}ps)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ps}.")) (|mainVariables| (((|List| |#3|) $) "\\axiom{mainVariables(ps)} returns the decreasingly sorted list of the variables which are main variables of some polynomial in \\axiom{ps}.")) (|variables| (((|List| |#3|) $) "\\axiom{variables(ps)} returns the decreasingly sorted list of the variables which are variables of some polynomial in \\axiom{ps}.")) (|mvar| ((|#3| $) "\\axiom{mvar(ps)} returns the main variable of the non constant polynomial with the greatest main variable,{} if any,{} else an error is returned.")) (|retract| (($ (|List| |#4|)) "\\axiom{retract(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{retractIfCan(lp)} returns an element of the domain whose elements are the members of \\axiom{lp} if such an element exists,{} otherwise \\axiom{\"failed\"} is returned."))) -((-4425 . T)) +((-4424 . T)) NIL -(-998 R E V P) +(-997 R E V P) ((|constructor| (NIL "This package provides modest routines for polynomial system solving. The aim of many of the operations of this package is to remove certain factors in some polynomials in order to avoid unnecessary computations in algorithms involving splitting techniques by partial factorization.")) (|removeIrreducibleRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeIrreducibleRedundantFactors(lp,{}lq)} returns the same as \\axiom{irreducibleFactors(concat(lp,{}lq))} assuming that \\axiom{irreducibleFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.")) (|lazyIrreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{lazyIrreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct. The algorithm tries to avoid factorization into irreducible factors as far as possible and makes previously use of gcd techniques over \\axiom{\\spad{R}}.")) (|irreducibleFactors| (((|List| |#4|) (|List| |#4|)) "\\axiom{irreducibleFactors(lp)} returns \\axiom{lf} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lf = [\\spad{f1},{}...,{}fm]} then \\axiom{p1*p2*...\\spad{*pn=0}} means \\axiom{f1*f2*...\\spad{*fm=0}},{} and the \\axiom{\\spad{fi}} are irreducible over \\axiom{\\spad{R}} and are pairwise distinct.")) (|removeRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in every polynomial \\axiom{lp}.")) (|removeRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp} where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any non trivial factor of any polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|removeRoughlyRedundantFactorsInContents| (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInContents(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in the content of every polynomial of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. Moreover,{} squares over \\axiom{\\spad{R}} are first removed in the content of every polynomial of \\axiom{lp}.")) (|univariatePolynomialsGcds| (((|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{univariatePolynomialsGcds(lp,{}opt)} returns the same as \\axiom{univariatePolynomialsGcds(lp)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|)) "\\axiom{univariatePolynomialsGcds(lp)} returns \\axiom{lg} where \\axiom{lg} is a list of the gcds of every pair in \\axiom{lp} of univariate polynomials in the same main variable.")) (|squareFreeFactors| (((|List| |#4|) |#4|) "\\axiom{squareFreeFactors(\\spad{p})} returns the square-free factors of \\axiom{\\spad{p}} over \\axiom{\\spad{R}}")) (|rewriteIdealWithQuasiMonicGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteIdealWithQuasiMonicGenerators(lp,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} and \\axiom{lp} generate the same ideal in \\axiom{R^(\\spad{-1}) \\spad{P}} and \\axiom{lq} has rank not higher than the one of \\axiom{lp}. Moreover,{} \\axiom{lq} is computed by reducing \\axiom{lp} \\spad{w}.\\spad{r}.\\spad{t}. some basic set of the ideal generated by the quasi-monic polynomials in \\axiom{lp}.")) (|rewriteSetByReducingWithParticularGenerators| (((|List| |#4|) (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{rewriteSetByReducingWithParticularGenerators(lp,{}pred?,{}redOp?,{}redOp)} returns \\axiom{lq} where \\axiom{lq} is computed by the following algorithm. Chose a basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-test \\axiom{redOp?} among the polynomials satisfying property \\axiom{pred?},{} if it is empty then leave,{} else reduce the other polynomials by this basic set \\spad{w}.\\spad{r}.\\spad{t}. the reduction-operation \\axiom{redOp}. Repeat while another basic set with smaller rank can be computed. See code. If \\axiom{pred?} is \\axiom{quasiMonic?} the ideal is unchanged.")) (|crushedSet| (((|List| |#4|) (|List| |#4|)) "\\axiom{crushedSet(lp)} returns \\axiom{lq} such that \\axiom{lp} and and \\axiom{lq} generate the same ideal and no rough basic sets reduce (in the sense of Groebner bases) the other polynomials in \\axiom{lq}.")) (|roughBasicSet| (((|Union| (|Record| (|:| |bas| (|GeneralTriangularSet| |#1| |#2| |#3| |#4|)) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|)) "\\axiom{roughBasicSet(lp)} returns the smallest (with Ritt-Wu ordering) triangular set contained in \\axiom{lp}.")) (|interReduce| (((|List| |#4|) (|List| |#4|)) "\\axiom{interReduce(lp)} returns \\axiom{lq} such that \\axiom{lp} and \\axiom{lq} generate the same ideal and no polynomial in \\axiom{lq} is reducuble by the others in the sense of Groebner bases. Since no assumptions are required the result may depend on the ordering the reductions are performed.")) (|removeRoughlyRedundantFactorsInPol| ((|#4| |#4| (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPol(\\spad{p},{}lf)} returns the same as removeRoughlyRedundantFactorsInPols([\\spad{p}],{}lf,{}\\spad{true})")) (|removeRoughlyRedundantFactorsInPols| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Boolean|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf,{}opt)} returns the same as \\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} if \\axiom{opt} is \\axiom{\\spad{false}} and if the previous operation does not return any non null and constant polynomial,{} else return \\axiom{[1]}.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRoughlyRedundantFactorsInPols(lp,{}lf)} returns \\axiom{newlp}where \\axiom{newlp} is obtained from \\axiom{lp} by removing in every polynomial \\axiom{\\spad{p}} of \\axiom{lp} any occurence of a polynomial \\axiom{\\spad{f}} in \\axiom{lf}. This may involve a lot of exact-quotients computations.")) (|bivariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{bivariatePolynomials(lp)} returns \\axiom{bps,{}nbps} where \\axiom{bps} is a list of the bivariate polynomials,{} and \\axiom{nbps} are the other ones.")) (|bivariate?| (((|Boolean|) |#4|) "\\axiom{bivariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves two and only two variables.")) (|linearPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{linearPolynomials(lp)} returns \\axiom{lps,{}nlps} where \\axiom{lps} is a list of the linear polynomials in lp,{} and \\axiom{nlps} are the other ones.")) (|linear?| (((|Boolean|) |#4|) "\\axiom{linear?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} does not lie in the base ring \\axiom{\\spad{R}} and has main degree \\axiom{1}.")) (|univariatePolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{univariatePolynomials(lp)} returns \\axiom{ups,{}nups} where \\axiom{ups} is a list of the univariate polynomials,{} and \\axiom{nups} are the other ones.")) (|univariate?| (((|Boolean|) |#4|) "\\axiom{univariate?(\\spad{p})} returns \\spad{true} iff \\axiom{\\spad{p}} involves one and only one variable.")) (|quasiMonicPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| |#4|)) "\\axiom{quasiMonicPolynomials(lp)} returns \\axiom{qmps,{}nqmps} where \\axiom{qmps} is a list of the quasi-monic polynomials in \\axiom{lp} and \\axiom{nqmps} are the other ones.")) (|selectAndPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectAndPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for every \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectOrPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|List| (|Mapping| (|Boolean|) |#4|)) (|List| |#4|)) "\\axiom{selectOrPolynomials(lpred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds for some \\axiom{pred?} in \\axiom{lpred?} and \\axiom{bps} are the other ones.")) (|selectPolynomials| (((|Record| (|:| |goodPols| (|List| |#4|)) (|:| |badPols| (|List| |#4|))) (|Mapping| (|Boolean|) |#4|) (|List| |#4|)) "\\axiom{selectPolynomials(pred?,{}ps)} returns \\axiom{gps,{}bps} where \\axiom{gps} is a list of the polynomial \\axiom{\\spad{p}} in \\axiom{ps} such that \\axiom{pred?(\\spad{p})} holds and \\axiom{bps} are the other ones.")) (|probablyZeroDim?| (((|Boolean|) (|List| |#4|)) "\\axiom{probablyZeroDim?(lp)} returns \\spad{true} iff the number of polynomials in \\axiom{lp} is not smaller than the number of variables occurring in these polynomials.")) (|possiblyNewVariety?| (((|Boolean|) (|List| |#4|) (|List| (|List| |#4|))) "\\axiom{possiblyNewVariety?(newlp,{}llp)} returns \\spad{true} iff for every \\axiom{lp} in \\axiom{llp} certainlySubVariety?(newlp,{}lp) does not hold.")) (|certainlySubVariety?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{certainlySubVariety?(newlp,{}lp)} returns \\spad{true} iff for every \\axiom{\\spad{p}} in \\axiom{lp} the remainder of \\axiom{\\spad{p}} by \\axiom{newlp} using the division algorithm of Groebner techniques is zero.")) (|unprotectedRemoveRedundantFactors| (((|List| |#4|) |#4| |#4|) "\\axiom{unprotectedRemoveRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} but does assume that neither \\axiom{\\spad{p}} nor \\axiom{\\spad{q}} lie in the base ring \\axiom{\\spad{R}} and assumes that \\axiom{infRittWu?(\\spad{p},{}\\spad{q})} holds. Moreover,{} if \\axiom{\\spad{R}} is gcd-domain,{} then \\axiom{\\spad{p}} and \\axiom{\\spad{q}} are assumed to be square free.")) (|removeSquaresIfCan| (((|List| |#4|) (|List| |#4|)) "\\axiom{removeSquaresIfCan(lp)} returns \\axiom{removeDuplicates [squareFreePart(\\spad{p})\\$\\spad{P} for \\spad{p} in lp]} if \\axiom{\\spad{R}} is gcd-domain else returns \\axiom{lp}.")) (|removeRedundantFactors| (((|List| |#4|) (|List| |#4|) (|List| |#4|) (|Mapping| (|List| |#4|) (|List| |#4|))) "\\axiom{removeRedundantFactors(lp,{}lq,{}remOp)} returns the same as \\axiom{concat(remOp(removeRoughlyRedundantFactorsInPols(lp,{}lq)),{}lq)} assuming that \\axiom{remOp(lq)} returns \\axiom{lq} up to similarity.") (((|List| |#4|) (|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp,{}lq)} returns the same as \\axiom{removeRedundantFactors(concat(lp,{}lq))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) (|List| |#4|) |#4|) "\\axiom{removeRedundantFactors(lp,{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors(cons(\\spad{q},{}lp))} assuming that \\axiom{removeRedundantFactors(lp)} returns \\axiom{lp} up to replacing some polynomial \\axiom{pj} in \\axiom{lp} by some some polynomial \\axiom{qj} associated to \\axiom{pj}.") (((|List| |#4|) |#4| |#4|) "\\axiom{removeRedundantFactors(\\spad{p},{}\\spad{q})} returns the same as \\axiom{removeRedundantFactors([\\spad{p},{}\\spad{q}])}") (((|List| |#4|) (|List| |#4|)) "\\axiom{removeRedundantFactors(lp)} returns \\axiom{lq} such that if \\axiom{lp = [\\spad{p1},{}...,{}pn]} and \\axiom{lq = [\\spad{q1},{}...,{}qm]} then the product \\axiom{p1*p2*...*pn} vanishes iff the product \\axiom{q1*q2*...*qm} vanishes,{} and the product of degrees of the \\axiom{\\spad{qi}} is not greater than the one of the \\axiom{pj},{} and no polynomial in \\axiom{lq} divides another polynomial in \\axiom{lq}. In particular,{} polynomials lying in the base ring \\axiom{\\spad{R}} are removed. Moreover,{} \\axiom{lq} is sorted \\spad{w}.\\spad{r}.\\spad{t} \\axiom{infRittWu?}. Furthermore,{} if \\spad{R} is gcd-domain,{} the polynomials in \\axiom{lq} are pairwise without common non trivial factor."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-464)))) -(-999 K) +(-998 K) ((|constructor| (NIL "PseudoLinearNormalForm provides a function for computing a block-companion form for pseudo-linear operators.")) (|companionBlocks| (((|List| (|Record| (|:| C (|Matrix| |#1|)) (|:| |g| (|Vector| |#1|)))) (|Matrix| |#1|) (|Vector| |#1|)) "\\spad{companionBlocks(m, v)} returns \\spad{[[C_1, g_1],...,[C_k, g_k]]} such that each \\spad{C_i} is a companion block and \\spad{m = diagonal(C_1,...,C_k)}.")) (|changeBase| (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{changeBase(M, A, sig, der)}: computes the new matrix of a pseudo-linear transform given by the matrix \\spad{M} under the change of base A")) (|normalForm| (((|Record| (|:| R (|Matrix| |#1|)) (|:| A (|Matrix| |#1|)) (|:| |Ainv| (|Matrix| |#1|))) (|Matrix| |#1|) (|Automorphism| |#1|) (|Mapping| |#1| |#1|)) "\\spad{normalForm(M, sig, der)} returns \\spad{[R, A, A^{-1}]} such that the pseudo-linear operator whose matrix in the basis \\spad{y} is \\spad{M} had matrix \\spad{R} in the basis \\spad{z = A y}. \\spad{der} is a \\spad{sig}-derivation."))) NIL NIL -(-1000 |VarSet| E RC P) +(-999 |VarSet| E RC P) ((|constructor| (NIL "This package computes square-free decomposition of multivariate polynomials over a coefficient ring which is an arbitrary gcd domain. The requirement on the coefficient domain guarantees that the \\spadfun{content} can be removed so that factors will be primitive as well as square-free. Over an infinite ring of finite characteristic,{}it may not be possible to guarantee that the factors are square-free.")) (|squareFree| (((|Factored| |#4|) |#4|) "\\spad{squareFree(p)} returns the square-free factorization of the polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime."))) NIL NIL -(-1001 R) +(-1000 R) ((|constructor| (NIL "PointCategory is the category of points in space which may be plotted via the graphics facilities. Functions are provided for defining points and handling elements of points.")) (|extend| (($ $ (|List| |#1|)) "\\spad{extend(x,l,r)} \\undocumented")) (|cross| (($ $ $) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q}. Error if the \\spad{p} and \\spad{q} are not 3 dimensional")) (|dimension| (((|PositiveInteger|) $) "\\spad{dimension(s)} returns the dimension of the point category \\spad{s}.")) (|point| (($ (|List| |#1|)) "\\spad{point(l)} returns a point category defined by a list \\spad{l} of elements from the domain \\spad{R}."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1002 R1 R2) +(-1001 R1 R2) ((|constructor| (NIL "This package \\undocumented")) (|map| (((|Point| |#2|) (|Mapping| |#2| |#1|) (|Point| |#1|)) "\\spad{map(f,p)} \\undocumented"))) NIL NIL -(-1003 R) +(-1002 R) ((|constructor| (NIL "This package \\undocumented")) (|shade| ((|#1| (|Point| |#1|)) "\\spad{shade(pt)} returns the fourth element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} shade to express a fourth dimension.")) (|hue| ((|#1| (|Point| |#1|)) "\\spad{hue(pt)} returns the third element of the two dimensional point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} hue to express a third dimension.")) (|color| ((|#1| (|Point| |#1|)) "\\spad{color(pt)} returns the fourth element of the point,{} \\spad{pt},{} although no assumptions are made with regards as to how the components of higher dimensional points are interpreted. This function is defined for the convenience of the user using specifically,{} color to express a fourth dimension.")) (|phiCoord| ((|#1| (|Point| |#1|)) "\\spad{phiCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical coordinate system.")) (|thetaCoord| ((|#1| (|Point| |#1|)) "\\spad{thetaCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|rCoord| ((|#1| (|Point| |#1|)) "\\spad{rCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a spherical or a cylindrical coordinate system.")) (|zCoord| ((|#1| (|Point| |#1|)) "\\spad{zCoord(pt)} returns the third element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian or a cylindrical coordinate system.")) (|yCoord| ((|#1| (|Point| |#1|)) "\\spad{yCoord(pt)} returns the second element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system.")) (|xCoord| ((|#1| (|Point| |#1|)) "\\spad{xCoord(pt)} returns the first element of the point,{} \\spad{pt},{} although no assumptions are made as to the coordinate system being used. This function is defined for the convenience of the user dealing with a Cartesian coordinate system."))) NIL NIL -(-1004 K) +(-1003 K) ((|constructor| (NIL "This is the description of any package which provides partial functions on a domain belonging to TranscendentalFunctionCategory.")) (|acschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acschIfCan(z)} returns acsch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asechIfCan(z)} returns asech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acothIfCan(z)} returns acoth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanhIfCan(z)} returns atanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acoshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acoshIfCan(z)} returns acosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinhIfCan(z)} returns asinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cschIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cschIfCan(z)} returns csch(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sechIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sechIfCan(z)} returns sech(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cothIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cothIfCan(z)} returns coth(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanhIfCan(z)} returns tanh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|coshIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{coshIfCan(z)} returns cosh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinhIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinhIfCan(z)} returns sinh(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acscIfCan(z)} returns acsc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asecIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asecIfCan(z)} returns asec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acotIfCan(z)} returns acot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|atanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{atanIfCan(z)} returns atan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|acosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{acosIfCan(z)} returns acos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|asinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{asinIfCan(z)} returns asin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cscIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cscIfCan(z)} returns csc(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|secIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{secIfCan(z)} returns sec(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cotIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cotIfCan(z)} returns cot(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|tanIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{tanIfCan(z)} returns tan(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|cosIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{cosIfCan(z)} returns cos(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|sinIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{sinIfCan(z)} returns sin(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|logIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{logIfCan(z)} returns log(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|expIfCan| (((|Union| |#1| "failed") |#1|) "\\spad{expIfCan(z)} returns exp(\\spad{z}) if possible,{} and \"failed\" otherwise.")) (|nthRootIfCan| (((|Union| |#1| "failed") |#1| (|NonNegativeInteger|)) "\\spad{nthRootIfCan(z,n)} returns the \\spad{n}th root of \\spad{z} if possible,{} and \"failed\" otherwise."))) NIL NIL -(-1005 R E OV PPR) +(-1004 R E OV PPR) ((|constructor| (NIL "This package \\undocumented{}")) (|map| ((|#4| (|Mapping| |#4| (|Polynomial| |#1|)) |#4|) "\\spad{map(f,p)} \\undocumented{}")) (|pushup| ((|#4| |#4| (|List| |#3|)) "\\spad{pushup(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushup(p,v)} \\undocumented{}")) (|pushdown| ((|#4| |#4| (|List| |#3|)) "\\spad{pushdown(p,lv)} \\undocumented{}") ((|#4| |#4| |#3|) "\\spad{pushdown(p,v)} \\undocumented{}")) (|variable| (((|Union| $ "failed") (|Symbol|)) "\\spad{variable(s)} makes an element from symbol \\spad{s} or fails")) (|convert| (((|Symbol|) $) "\\spad{convert(x)} converts \\spad{x} to a symbol"))) NIL NIL -(-1006 K R UP -3495) +(-1005 K R UP -3494) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a monogenic algebra over \\spad{R}. We require that \\spad{F} is monogenic,{} \\spadignore{i.e.} that \\spad{F = K[x,y]/(f(x,y))},{} because the integral basis algorithm used will factor the polynomial \\spad{f(x,y)}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|reducedDiscriminant| ((|#2| |#3|) "\\spad{reducedDiscriminant(up)} \\undocumented")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv] } containing information regarding the integral closure of \\spad{R} in the quotient field of the framed algebra \\spad{F}. \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If 'basis' is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of 'basis' contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix 'basisInv' contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if 'basisInv' is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1007 R |Var| |Expon| |Dpoly|) +(-1006 R |Var| |Expon| |Dpoly|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet} constructs a domain representing quasi-algebraic sets,{} which is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). This domain provides simplification of a user-given representation using groebner basis computations. There are two simplification routines: the first function \\spadfun{idealSimplify} uses groebner basis of ideals alone,{} while the second,{} \\spadfun{simplify} uses both groebner basis and factorization. The resulting defining equations \\spad{L} always form a groebner basis,{} and the resulting defining inequation \\spad{f} is always reduced. The function \\spadfun{simplify} may be applied several times if desired. A third simplification routine \\spadfun{radicalSimplify} is provided in \\spadtype{QuasiAlgebraicSet2} for comparison study only,{} as it is inefficient compared to the other two,{} as well as is restricted to only certain coefficient domains. For detail analysis and a comparison of the three methods,{} please consult the reference cited. \\blankline A polynomial function \\spad{q} defined on the quasi-algebraic set is equivalent to its reduced form with respect to \\spad{L}. While this may be obtained using the usual normal form algorithm,{} there is no canonical form for \\spad{q}. \\blankline The ordering in groebner basis computation is determined by the data type of the input polynomials. If it is possible we suggest to use refinements of total degree orderings.")) (|simplify| (($ $) "\\spad{simplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using a heuristic algorithm based on factoring.")) (|idealSimplify| (($ $) "\\spad{idealSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using Buchberger's algorithm.")) (|definingInequation| ((|#4| $) "\\spad{definingInequation(s)} returns a single defining polynomial for the inequation,{} that is,{} the Zariski open part of \\spad{s}.")) (|definingEquations| (((|List| |#4|) $) "\\spad{definingEquations(s)} returns a list of defining polynomials for equations,{} that is,{} for the Zariski closed part of \\spad{s}.")) (|empty?| (((|Boolean|) $) "\\spad{empty?(s)} returns \\spad{true} if the quasialgebraic set \\spad{s} has no points,{} and \\spad{false} otherwise.")) (|setStatus| (($ $ (|Union| (|Boolean|) #1="failed")) "\\spad{setStatus(s,t)} returns the same representation for \\spad{s},{} but asserts the following: if \\spad{t} is \\spad{true},{} then \\spad{s} is empty,{} if \\spad{t} is \\spad{false},{} then \\spad{s} is non-empty,{} and if \\spad{t} = \"failed\",{} then no assertion is made (that is,{} \"don't know\"). Note: for internal use only,{} with care.")) (|status| (((|Union| (|Boolean|) #1#) $) "\\spad{status(s)} returns \\spad{true} if the quasi-algebraic set is empty,{} \\spad{false} if it is not,{} and \"failed\" if not yet known")) (|quasiAlgebraicSet| (($ (|List| |#4|) |#4|) "\\spad{quasiAlgebraicSet(pl,q)} returns the quasi-algebraic set with defining equations \\spad{p} = 0 for \\spad{p} belonging to the list \\spad{pl},{} and defining inequation \\spad{q} ~= 0.")) (|empty| (($) "\\spad{empty()} returns the empty quasi-algebraic set"))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-319))))) -(-1008 |vl| |nv|) +(-1007 |vl| |nv|) ((|constructor| (NIL "\\spadtype{QuasiAlgebraicSet2} adds a function \\spadfun{radicalSimplify} which uses \\spadtype{IdealDecompositionPackage} to simplify the representation of a quasi-algebraic set. A quasi-algebraic set is the intersection of a Zariski closed set,{} defined as the common zeros of a given list of polynomials (the defining polynomials for equations),{} and a principal Zariski open set,{} defined as the complement of the common zeros of a polynomial \\spad{f} (the defining polynomial for the inequation). Quasi-algebraic sets are implemented in the domain \\spadtype{QuasiAlgebraicSet},{} where two simplification routines are provided: \\spadfun{idealSimplify} and \\spadfun{simplify}. The function \\spadfun{radicalSimplify} is added for comparison study only. Because the domain \\spadtype{IdealDecompositionPackage} provides facilities for computing with radical ideals,{} it is necessary to restrict the ground ring to the domain \\spadtype{Fraction Integer},{} and the polynomial ring to be of type \\spadtype{DistributedMultivariatePolynomial}. The routine \\spadfun{radicalSimplify} uses these to compute groebner basis of radical ideals and is inefficient and restricted when compared to the two in \\spadtype{QuasiAlgebraicSet}.")) (|radicalSimplify| (((|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|)))) (|QuasiAlgebraicSet| (|Fraction| (|Integer|)) (|OrderedVariableList| |#1|) (|DirectProduct| |#2| (|NonNegativeInteger|)) (|DistributedMultivariatePolynomial| |#1| (|Fraction| (|Integer|))))) "\\spad{radicalSimplify(s)} returns a different and presumably simpler representation of \\spad{s} with the defining polynomials for the equations forming a groebner basis,{} and the defining polynomial for the inequation reduced with respect to the basis,{} using using groebner basis of radical ideals"))) NIL NIL -(-1009 R E V P TS) +(-1008 R E V P TS) ((|constructor| (NIL "A package for removing redundant quasi-components and redundant branches when decomposing a variety by means of quasi-components of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact that the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu?}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1010) +(-1009) ((|constructor| (NIL "This domain implements simple database queries")) (|value| (((|String|) $) "\\spad{value(q)} returns the value (\\spadignore{i.e.} right hand side) of \\axiom{\\spad{q}}.")) (|variable| (((|Symbol|) $) "\\spad{variable(q)} returns the variable (\\spadignore{i.e.} left hand side) of \\axiom{\\spad{q}}.")) (|equation| (($ (|Symbol|) (|String|)) "\\spad{equation(s,\"a\")} creates a new equation."))) NIL NIL -(-1011 A S) +(-1010 A S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#2| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#2| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#2| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#2| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#2| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#2| |#2|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) NIL -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1041))) (|HasCategory| |#2| (QUOTE (-842))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1173)))) -(-1012 S) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-1040))) (|HasCategory| |#2| (QUOTE (-841))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-1172)))) +(-1011 S) ((|constructor| (NIL "QuotientField(\\spad{S}) is the category of fractions of an Integral Domain \\spad{S}.")) (|floor| ((|#1| $) "\\spad{floor(x)} returns the largest integral element below \\spad{x}.")) (|ceiling| ((|#1| $) "\\spad{ceiling(x)} returns the smallest integral element above \\spad{x}.")) (|random| (($) "\\spad{random()} returns a random fraction.")) (|fractionPart| (($ $) "\\spad{fractionPart(x)} returns the fractional part of \\spad{x}. \\spad{x} = wholePart(\\spad{x}) + fractionPart(\\spad{x})")) (|wholePart| ((|#1| $) "\\spad{wholePart(x)} returns the whole part of the fraction \\spad{x} \\spadignore{i.e.} the truncated quotient of the numerator by the denominator.")) (|denominator| (($ $) "\\spad{denominator(x)} is the denominator of the fraction \\spad{x} converted to \\%.")) (|numerator| (($ $) "\\spad{numerator(x)} is the numerator of the fraction \\spad{x} converted to \\%.")) (|denom| ((|#1| $) "\\spad{denom(x)} returns the denominator of the fraction \\spad{x}.")) (|numer| ((|#1| $) "\\spad{numer(x)} returns the numerator of the fraction \\spad{x}.")) (/ (($ |#1| |#1|) "\\spad{d1 / d2} returns the fraction \\spad{d1} divided by \\spad{d2}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1013 A B R S) +(-1012 A B R S) ((|constructor| (NIL "This package extends a function between integral domains to a mapping between their quotient fields.")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(func,frac)} applies the function \\spad{func} to the numerator and denominator of \\spad{frac}."))) NIL NIL -(-1014 |n| K) +(-1013 |n| K) ((|constructor| (NIL "This domain provides modest support for quadratic forms.")) (|matrix| (((|SquareMatrix| |#1| |#2|) $) "\\spad{matrix(qf)} creates a square matrix from the quadratic form \\spad{qf}.")) (|quadraticForm| (($ (|SquareMatrix| |#1| |#2|)) "\\spad{quadraticForm(m)} creates a quadratic form from a symmetric,{} square matrix \\spad{m}."))) NIL NIL -(-1015) +(-1014) ((|constructor| (NIL "This domain represents the syntax of a quasiquote \\indented{2}{expression.}")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the syntax for the expression being quoted."))) NIL NIL -(-1016 S) +(-1015 S) ((|constructor| (NIL "A queue is a bag where the first item inserted is the first item extracted.")) (|back| ((|#1| $) "\\spad{back(q)} returns the element at the back of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|front| ((|#1| $) "\\spad{front(q)} returns the element at the front of the queue. The queue \\spad{q} is unchanged by this operation. Error: if \\spad{q} is empty.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(q)} returns the number of elements in the queue. Note: \\axiom{length(\\spad{q}) = \\#q}.")) (|rotate!| (($ $) "\\spad{rotate! q} rotates queue \\spad{q} so that the element at the front of the queue goes to the back of the queue. Note: rotate! \\spad{q} is equivalent to enqueue!(dequeue!(\\spad{q})).")) (|dequeue!| ((|#1| $) "\\spad{dequeue! s} destructively extracts the first (top) element from queue \\spad{q}. The element previously second in the queue becomes the first element. Error: if \\spad{q} is empty.")) (|enqueue!| ((|#1| |#1| $) "\\spad{enqueue!(x,q)} inserts \\spad{x} into the queue \\spad{q} at the back end."))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL -(-1017 R) +(-1016 R) ((|constructor| (NIL "\\spadtype{Quaternion} implements quaternions over a \\indented{2}{commutative ring. The main constructor function is \\spadfun{quatern}} \\indented{2}{which takes 4 arguments: the real part,{} the \\spad{i} imaginary part,{} the \\spad{j}} \\indented{2}{imaginary part and the \\spad{k} imaginary part.}"))) -((-4418 |has| |#1| (-302)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1081))) (|HasCategory| |#1| (QUOTE (-557)))) -(-1018 S R) +((-4417 |has| |#1| (-302)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-302))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))) (|HasCategory| |#1| (|%list| (QUOTE -298) (|devaluate| |#1|) (|devaluate| |#1|))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-1080))) (|HasCategory| |#1| (QUOTE (-557)))) +(-1017 S R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#2| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#2| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#2| |#2| |#2| |#2|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#2| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#2| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#2| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#2| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) NIL -((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1081))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-302)))) -(-1019 R) +((|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (QUOTE (-1080))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-302)))) +(-1018 R) ((|constructor| (NIL "\\spadtype{QuaternionCategory} describes the category of quaternions and implements functions that are not representation specific.")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") $) "\\spad{rationalIfCan(q)} returns \\spad{q} as a rational number,{} or \"failed\" if this is not possible. Note: if \\spad{rational?(q)} is \\spad{true},{} the conversion can be done and the rational number will be returned.")) (|rational| (((|Fraction| (|Integer|)) $) "\\spad{rational(q)} tries to convert \\spad{q} into a rational number. Error: if this is not possible. If \\spad{rational?(q)} is \\spad{true},{} the conversion will be done and the rational number returned.")) (|rational?| (((|Boolean|) $) "\\spad{rational?(q)} returns {\\it \\spad{true}} if all the imaginary parts of \\spad{q} are zero and the real part can be converted into a rational number,{} and {\\it \\spad{false}} otherwise.")) (|abs| ((|#1| $) "\\spad{abs(q)} computes the absolute value of quaternion \\spad{q} (sqrt of norm).")) (|real| ((|#1| $) "\\spad{real(q)} extracts the real part of quaternion \\spad{q}.")) (|quatern| (($ |#1| |#1| |#1| |#1|) "\\spad{quatern(r,i,j,k)} constructs a quaternion from scalars.")) (|norm| ((|#1| $) "\\spad{norm(q)} computes the norm of \\spad{q} (the sum of the squares of the components).")) (|imagK| ((|#1| $) "\\spad{imagK(q)} extracts the imaginary \\spad{k} part of quaternion \\spad{q}.")) (|imagJ| ((|#1| $) "\\spad{imagJ(q)} extracts the imaginary \\spad{j} part of quaternion \\spad{q}.")) (|imagI| ((|#1| $) "\\spad{imagI(q)} extracts the imaginary \\spad{i} part of quaternion \\spad{q}.")) (|conjugate| (($ $) "\\spad{conjugate(q)} negates the imaginary parts of quaternion \\spad{q}."))) -((-4418 |has| |#1| (-302)) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 |has| |#1| (-302)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1020 QR R QS S) +(-1019 QR R QS S) ((|constructor| (NIL "\\spadtype{QuaternionCategoryFunctions2} implements functions between two quaternion domains. The function \\spadfun{map} is used by the system interpreter to coerce between quaternion types.")) (|map| ((|#3| (|Mapping| |#4| |#2|) |#1|) "\\spad{map(f,u)} maps \\spad{f} onto the component parts of the quaternion \\spad{u}."))) NIL NIL -(-1021 S) +(-1020 S) ((|constructor| (NIL "Linked List implementation of a Queue")) (|queue| (($ (|List| |#1|)) "\\spad{queue([x,y,...,z])} creates a queue with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last (bottom) element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1022 S) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1021 S) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1023) +(-1022) ((|constructor| (NIL "The \\spad{RadicalCategory} is a model for the rational numbers.")) (** (($ $ (|Fraction| (|Integer|))) "\\spad{x ** y} is the rational exponentiation of \\spad{x} by the power \\spad{y}.")) (|nthRoot| (($ $ (|Integer|)) "\\spad{nthRoot(x,n)} returns the \\spad{n}th root of \\spad{x}.")) (|sqrt| (($ $) "\\spad{sqrt(x)} returns the square root of \\spad{x}."))) NIL NIL -(-1024 -3495 UP UPUP |radicnd| |n|) +(-1023 -3494 UP UPUP |radicnd| |n|) ((|constructor| (NIL "Function field defined by y**n = \\spad{f}(\\spad{x})."))) -((-4418 |has| (-419 |#2|) (-376)) (-4423 |has| (-419 |#2|) (-376)) (-4417 |has| (-419 |#2|) (-376)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-3957 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -919) (QUOTE (-1198)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -658) (QUOTE (-558)))) (-3957 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -917) (QUOTE (-1198)))))) -(-1025 |bb|) +((-4417 |has| (-419 |#2|) (-376)) (-4422 |has| (-419 |#2|) (-376)) (-4416 |has| (-419 |#2|) (-376)) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-419 |#2|) (QUOTE (-147))) (|HasCategory| (-419 |#2|) (QUOTE (-149))) (|HasCategory| (-419 |#2|) (QUOTE (-363))) (-3956 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (QUOTE (-381))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (QUOTE (-363)))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-363))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -918) (QUOTE (-1197)))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -657) (QUOTE (-558)))) (-3956 (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-239))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-240))) (|HasCategory| (-419 |#2|) (QUOTE (-376)))) (-12 (|HasCategory| (-419 |#2|) (QUOTE (-376))) (|HasCategory| (-419 |#2|) (|%list| (QUOTE -916) (QUOTE (-1197)))))) +(-1024 |bb|) ((|constructor| (NIL "This domain allows rational numbers to be presented as repeating decimal expansions or more generally as repeating expansions in any base.")) (|fractRadix| (($ (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{fractRadix(pre,cyc)} creates a fractional radix expansion from a list of prefix ragits and a list of cyclic ragits. For example,{} \\spad{fractRadix([1],[6])} will return \\spad{0.16666666...}.")) (|wholeRadix| (($ (|List| (|Integer|))) "\\spad{wholeRadix(l)} creates an integral radix expansion from a list of ragits. For example,{} \\spad{wholeRadix([1,3,4])} will return \\spad{134}.")) (|cycleRagits| (((|List| (|Integer|)) $) "\\spad{cycleRagits(rx)} returns the cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{cycleRagits(x) = [7,1,4,2,8,5]}.")) (|prefixRagits| (((|List| (|Integer|)) $) "\\spad{prefixRagits(rx)} returns the non-cyclic part of the ragits of the fractional part of a radix expansion. For example,{} if \\spad{x = 3/28 = 0.10 714285 714285 ...},{} then \\spad{prefixRagits(x)=[1,0]}.")) (|fractRagits| (((|Stream| (|Integer|)) $) "\\spad{fractRagits(rx)} returns the ragits of the fractional part of a radix expansion.")) (|wholeRagits| (((|List| (|Integer|)) $) "\\spad{wholeRagits(rx)} returns the ragits of the integer part of a radix expansion.")) (|fractionPart| (((|Fraction| (|Integer|)) $) "\\spad{fractionPart(rx)} returns the fractional part of a radix expansion."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-558) (QUOTE (-929))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1041))) (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861))) (-3957 (|HasCategory| (-558) (QUOTE (-842))) (|HasCategory| (-558) (QUOTE (-861)))) (|HasCategory| (-558) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1173))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1198)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -658) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-929)))) (|HasCategory| (-558) (QUOTE (-147))))) -(-1026) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-558) (QUOTE (-928))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-149))) (|HasCategory| (-558) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-1040))) (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860))) (-3956 (|HasCategory| (-558) (QUOTE (-841))) (|HasCategory| (-558) (QUOTE (-860)))) (|HasCategory| (-558) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-1172))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-558) (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-558) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-558) (QUOTE (-239))) (|HasCategory| (-558) (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| (-558) (QUOTE (-240))) (|HasCategory| (-558) (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| (-558) (|%list| (QUOTE -526) (QUOTE (-1197)) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -321) (QUOTE (-558)))) (|HasCategory| (-558) (|%list| (QUOTE -298) (QUOTE (-558)) (QUOTE (-558)))) (|HasCategory| (-558) (QUOTE (-319))) (|HasCategory| (-558) (QUOTE (-557))) (|HasCategory| (-558) (|%list| (QUOTE -657) (QUOTE (-558)))) (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-558) (QUOTE (-928)))) (|HasCategory| (-558) (QUOTE (-147))))) +(-1025) ((|constructor| (NIL "This package provides tools for creating radix expansions.")) (|radix| (((|Any|) (|Fraction| (|Integer|)) (|Integer|)) "\\spad{radix(x,b)} converts \\spad{x} to a radix expansion in base \\spad{b}."))) NIL NIL -(-1027) +(-1026) ((|constructor| (NIL "Random number generators \\indented{2}{All random numbers used in the system should originate from} \\indented{2}{the same generator.\\space{2}This package is intended to be the source.}")) (|seed| (((|Integer|)) "\\spad{seed()} returns the current seed value.")) (|reseed| (((|Void|) (|Integer|)) "\\spad{reseed(n)} restarts the random number generator at \\spad{n}.")) (|size| (((|Integer|)) "\\spad{size()} is the base of the random number generator")) (|randnum| (((|Integer|) (|Integer|)) "\\spad{randnum(n)} is a random number between 0 and \\spad{n}.") (((|Integer|)) "\\spad{randnum()} is a random number between 0 and size()."))) NIL NIL -(-1028 RP) +(-1027 RP) ((|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(p)} factors an extended squareFree polynomial \\spad{p} over the rational numbers.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} factors an extended polynomial \\spad{p} over the rational numbers."))) NIL NIL -(-1029 S) +(-1028 S) ((|constructor| (NIL "rational number testing and retraction functions. Date Created: March 1990 Date Last Updated: 9 April 1991")) (|rationalIfCan| (((|Union| (|Fraction| (|Integer|)) "failed") |#1|) "\\spad{rationalIfCan(x)} returns \\spad{x} as a rational number,{} \"failed\" if \\spad{x} is not a rational number.")) (|rational?| (((|Boolean|) |#1|) "\\spad{rational?(x)} returns \\spad{true} if \\spad{x} is a rational number,{} \\spad{false} otherwise.")) (|rational| (((|Fraction| (|Integer|)) |#1|) "\\spad{rational(x)} returns \\spad{x} as a rational number; error if \\spad{x} is not a rational number."))) NIL NIL -(-1030 A S) +(-1029 A S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#2| $ |#2|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#2| $ "value" |#2|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#2|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#2| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#2| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426)) (|HasCategory| |#2| (QUOTE (-1122)))) -(-1031 S) +((|HasAttribute| |#1| (QUOTE -4425)) (|HasCategory| |#2| (QUOTE (-1121)))) +(-1030 S) ((|constructor| (NIL "A recursive aggregate over a type \\spad{S} is a model for a a directed graph containing values of type \\spad{S}. Recursively,{} a recursive aggregate is a {\\em node} consisting of a \\spadfun{value} from \\spad{S} and 0 or more \\spadfun{children} which are recursive aggregates. A node with no children is called a \\spadfun{leaf} node. A recursive aggregate may be cyclic for which some operations as noted may go into an infinite loop.")) (|setvalue!| ((|#1| $ |#1|) "\\spad{setvalue!(u,x)} sets the value of node \\spad{u} to \\spad{x}.")) (|setelt| ((|#1| $ "value" |#1|) "\\spad{setelt(a,\"value\",x)} (also written \\axiom{a . value := \\spad{x}}) is equivalent to \\axiom{setvalue!(a,{}\\spad{x})}")) (|setchildren!| (($ $ (|List| $)) "\\spad{setchildren!(u,v)} replaces the current children of node \\spad{u} with the members of \\spad{v} in left-to-right order.")) (|node?| (((|Boolean|) $ $) "\\spad{node?(u,v)} tests if node \\spad{u} is contained in node \\spad{v} (either as a child,{} a child of a child,{} etc.).")) (|child?| (((|Boolean|) $ $) "\\spad{child?(u,v)} tests if node \\spad{u} is a child of node \\spad{v}.")) (|distance| (((|Integer|) $ $) "\\spad{distance(u,v)} returns the path length (an integer) from node \\spad{u} to \\spad{v}.")) (|leaves| (((|List| |#1|) $) "\\spad{leaves(t)} returns the list of values in obtained by visiting the nodes of tree \\axiom{\\spad{t}} in left-to-right order.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(u)} tests if \\spad{u} has a cycle.")) (|elt| ((|#1| $ "value") "\\spad{elt(u,\"value\")} (also written: \\axiom{a. value}) is equivalent to \\axiom{value(a)}.")) (|value| ((|#1| $) "\\spad{value(u)} returns the value of the node \\spad{u}.")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(u)} tests if \\spad{u} is a terminal node.")) (|nodes| (((|List| $) $) "\\spad{nodes(u)} returns a list of all of the nodes of aggregate \\spad{u}.")) (|children| (((|List| $) $) "\\spad{children(u)} returns a list of the children of aggregate \\spad{u}."))) NIL NIL -(-1032 S) +(-1031 S) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) NIL NIL -(-1033) +(-1032) ((|constructor| (NIL "\\axiomType{RealClosedField} provides common acces functions for all real closed fields.")) (|approximate| (((|Fraction| (|Integer|)) $ $) "\\axiom{approximate(\\spad{n},{}\\spad{p})} gives an approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|rename| (($ $ (|OutputForm|)) "\\axiom{rename(\\spad{x},{}name)} gives a new number that prints as name")) (|rename!| (($ $ (|OutputForm|)) "\\axiom{rename!(\\spad{x},{}name)} changes the way \\axiom{\\spad{x}} is printed")) (|sqrt| (($ (|Integer|)) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ (|Fraction| (|Integer|))) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $) "\\axiom{sqrt(\\spad{x})} is \\axiom{\\spad{x} ** (1/2)}") (($ $ (|PositiveInteger|)) "\\axiom{sqrt(\\spad{x},{}\\spad{n})} is \\axiom{\\spad{x} ** (1/n)}")) (|allRootsOf| (((|List| $) (|Polynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|Polynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Integer|))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| (|Fraction| (|Integer|)))) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely") (((|List| $) (|SparseUnivariatePolynomial| $)) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} naming each uniquely")) (|rootOf| (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} creates the \\spad{n}th root for the order of \\axiom{pol} and gives it unique name") (((|Union| $ "failed") (|SparseUnivariatePolynomial| $) (|PositiveInteger|) (|OutputForm|)) "\\axiom{rootOf(pol,{}\\spad{n},{}name)} creates the \\spad{n}th root for the order of \\axiom{pol} and names it \\axiom{name}")) (|mainValue| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainValue(\\spad{x})} is the expression of \\axiom{\\spad{x}} in terms of \\axiom{SparseUnivariatePolynomial(\\$)}")) (|mainDefiningPolynomial| (((|Union| (|SparseUnivariatePolynomial| $) "failed") $) "\\axiom{mainDefiningPolynomial(\\spad{x})} is the defining polynomial for the main algebraic quantity of \\axiom{\\spad{x}}")) (|mainForm| (((|Union| (|OutputForm|) "failed") $) "\\axiom{mainForm(\\spad{x})} is the main algebraic quantity name of \\axiom{\\spad{x}}"))) -((-4418 . T) (-4423 . T) (-4417 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4422 . T)) +((-4417 . T) (-4422 . T) (-4416 . T) (-4419 . T) (-4418 . T) ((-4426 "*") . T) (-4421 . T)) NIL -(-1034 R -3495) +(-1033 R -3494) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 1 February 1988 Date Last Updated: 2 November 1995 Keywords: elementary,{} function,{} integration.")) (|rischDE| (((|Record| (|:| |ans| |#2|) (|:| |right| |#2|) (|:| |sol?| (|Boolean|))) (|Integer|) |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDE(n, f, g, x, lim, ext)} returns \\spad{[y, h, b]} such that \\spad{dy/dx + n df/dx y = h} and \\spad{b := h = g}. The equation \\spad{dy/dx + n df/dx y = g} has no solution if \\spad{h \\~~= g} (\\spad{y} is a partial solution in that case). Notes: \\spad{lim} is a limited integration function,{} and ext is an extended integration function."))) NIL NIL -(-1035 R -3495) +(-1034 R -3494) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} elementary case.} Author: Manuel Bronstein Date Created: 12 August 1992 Date Last Updated: 17 August 1992 Keywords: elementary,{} function,{} integration.")) (|rischDEsys| (((|Union| (|List| |#2|) "failed") (|Integer|) |#2| |#2| |#2| (|Symbol|) (|Mapping| (|Union| (|Record| (|:| |mainpart| |#2|) (|:| |limitedlogs| (|List| (|Record| (|:| |coeff| |#2|) (|:| |logand| |#2|))))) "failed") |#2| (|List| |#2|)) (|Mapping| (|Union| (|Record| (|:| |ratpart| |#2|) (|:| |coeff| |#2|)) "failed") |#2| |#2|)) "\\spad{rischDEsys(n, f, g_1, g_2, x,lim,ext)} returns \\spad{y_1.y_2} such that \\spad{(dy1/dx,dy2/dx) + ((0, - n df/dx),(n df/dx,0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise. \\spad{lim} is a limited integration function,{} \\spad{ext} is an extended integration function."))) NIL NIL -(-1036 -3495 UP) +(-1035 -3494 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation,{} transcendental case.} Author: Manuel Bronstein Date Created: Jan 1988 Date Last Updated: 2 November 1995")) (|polyRDE| (((|Union| (|:| |ans| (|Record| (|:| |ans| |#2|) (|:| |nosol| (|Boolean|)))) (|:| |eq| (|Record| (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (|Integer|)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (|Integer|) (|Mapping| |#2| |#2|)) "\\spad{polyRDE(a, B, C, n, D)} returns either: 1. \\spad{[Q, b]} such that \\spad{degree(Q) <= n} and \\indented{3}{\\spad{a Q'+ B Q = C} if \\spad{b = true},{} \\spad{Q} is a partial solution} \\indented{3}{otherwise.} 2. \\spad{[B1, C1, m, \\alpha, \\beta]} such that any polynomial solution \\indented{3}{of degree at most \\spad{n} of \\spad{A Q' + BQ = C} must be of the form} \\indented{3}{\\spad{Q = \\alpha H + \\beta} where \\spad{degree(H) <= m} and} \\indented{3}{\\spad{H} satisfies \\spad{H' + B1 H = C1}.} \\spad{D} is the derivation to use.")) (|baseRDE| (((|Record| (|:| |ans| (|Fraction| |#2|)) (|:| |nosol| (|Boolean|))) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDE(f, g)} returns a \\spad{[y, b]} such that \\spad{y' + fy = g} if \\spad{b = true},{} \\spad{y} is a partial solution otherwise (no solution in that case). \\spad{D} is the derivation to use.")) (|monomRDE| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |c| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDE(f,g,D)} returns \\spad{[A, B, C, T]} such that \\spad{y' + f y = g} has a solution if and only if \\spad{y = Q / T},{} where \\spad{Q} satisfies \\spad{A Q' + B Q = C} and has no normal pole. A and \\spad{T} are polynomials and \\spad{B} and \\spad{C} have no normal poles. \\spad{D} is the derivation to use."))) NIL NIL -(-1037 -3495 UP) +(-1036 -3494 UP) ((|constructor| (NIL "\\indented{1}{Risch differential equation system,{} transcendental case.} Author: Manuel Bronstein Date Created: 17 August 1992 Date Last Updated: 3 February 1994")) (|baseRDEsys| (((|Union| (|List| (|Fraction| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|)) "\\spad{baseRDEsys(f, g1, g2)} returns fractions \\spad{y_1.y_2} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} if \\spad{y_1,y_2} exist,{} \"failed\" otherwise.")) (|monomRDEsys| (((|Union| (|Record| (|:| |a| |#2|) (|:| |b| (|Fraction| |#2|)) (|:| |h| |#2|) (|:| |c1| (|Fraction| |#2|)) (|:| |c2| (|Fraction| |#2|)) (|:| |t| |#2|)) "failed") (|Fraction| |#2|) (|Fraction| |#2|) (|Fraction| |#2|) (|Mapping| |#2| |#2|)) "\\spad{monomRDEsys(f,g1,g2,D)} returns \\spad{[A, B, H, C1, C2, T]} such that \\spad{(y1', y2') + ((0, -f), (f, 0)) (y1,y2) = (g1,g2)} has a solution if and only if \\spad{y1 = Q1 / T, y2 = Q2 / T},{} where \\spad{B,C1,C2,Q1,Q2} have no normal poles and satisfy A \\spad{(Q1', Q2') + ((H, -B), (B, H)) (Q1,Q2) = (C1,C2)} \\spad{D} is the derivation to use."))) NIL NIL -(-1038 S) +(-1037 S) ((|constructor| (NIL "This package exports random distributions")) (|rdHack1| (((|Mapping| |#1|) (|Vector| |#1|) (|Vector| (|Integer|)) (|Integer|)) "\\spad{rdHack1(v,u,n)} \\undocumented")) (|weighted| (((|Mapping| |#1|) (|List| (|Record| (|:| |value| |#1|) (|:| |weight| (|Integer|))))) "\\spad{weighted(l)} \\undocumented")) (|uniform| (((|Mapping| |#1|) (|Set| |#1|)) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1039 F1 UP UPUP R F2) +(-1038 F1 UP UPUP R F2) ((|constructor| (NIL "\\indented{1}{Finds the order of a divisor over a finite field} Author: Manuel Bronstein Date Created: 1988 Date Last Updated: 8 November 1994")) (|order| (((|NonNegativeInteger|) (|FiniteDivisor| |#1| |#2| |#3| |#4|) |#3| (|Mapping| |#5| |#1|)) "\\spad{order(f,u,g)} \\undocumented"))) NIL NIL -(-1040) +(-1039) ((|constructor| (NIL "This domain represents list reduction syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} return the list of expressions being redcued.")) (|operator| (((|SpadAst|) $) "\\spad{operator(e)} returns the magma operation being applied."))) NIL NIL -(-1041) +(-1040) ((|constructor| (NIL "The category of real numeric domains,{} \\spadignore{i.e.} convertible to floats."))) NIL NIL -(-1042 |Pol|) +(-1041 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the integers to arbitrary user-specified precision. The results are returned as a list of isolating intervals which are expressed as records with \"left\" and \"right\" rational number components.")) (|midpoints| (((|List| (|Fraction| (|Integer|))) (|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))))) "\\spad{midpoints(isolist)} returns the list of midpoints for the list of intervals \\spad{isolist}.")) (|midpoint| (((|Fraction| (|Integer|)) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{midpoint(int)} returns the midpoint of the interval \\spad{int}.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} containing exactly one real root of \\spad{pol}; the operation returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1043 |Pol|) +(-1042 |Pol|) ((|constructor| (NIL "\\indented{2}{This package provides functions for finding the real zeros} of univariate polynomials over the rational numbers to arbitrary user-specified precision. The results are returned as a list of isolating intervals,{} expressed as records with \"left\" and \"right\" rational number components.")) (|refine| (((|Union| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) "failed") |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{refine(pol, int, range)} takes a univariate polynomial \\spad{pol} and and isolating interval \\spad{int} which must contain exactly one real root of \\spad{pol},{} and returns an isolating interval which is contained within range,{} or \"failed\" if no such isolating interval exists.") (((|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{refine(pol, int, eps)} refines the interval \\spad{int} containing exactly one root of the univariate polynomial \\spad{pol} to size less than the rational number eps.")) (|realZeros| (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|)))) (|Fraction| (|Integer|))) "\\spad{realZeros(pol, int, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol} which lie in the interval expressed by the record \\spad{int}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Fraction| (|Integer|))) "\\spad{realZeros(pol, eps)} returns a list of intervals of length less than the rational number eps for all the real roots of the polynomial \\spad{pol}.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) "\\spad{realZeros(pol, range)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol} which lie in the interval expressed by the record range.") (((|List| (|Record| (|:| |left| (|Fraction| (|Integer|))) (|:| |right| (|Fraction| (|Integer|))))) |#1|) "\\spad{realZeros(pol)} returns a list of isolating intervals for all the real zeros of the univariate polynomial \\spad{pol}."))) NIL NIL -(-1044) +(-1043) ((|constructor| (NIL "\\indented{1}{This package provides numerical solutions of systems of polynomial} equations for use in ACPLOT.")) (|realSolve| (((|List| (|List| (|Float|))) (|List| (|Polynomial| (|Integer|))) (|List| (|Symbol|)) (|Float|)) "\\spad{realSolve(lp,lv,eps)} = compute the list of the real solutions of the list \\spad{lp} of polynomials with integer coefficients with respect to the variables in \\spad{lv},{} with precision \\spad{eps}.")) (|solve| (((|List| (|Float|)) (|Polynomial| (|Integer|)) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate integer polynomial \\spad{p} with precision \\spad{eps}.") (((|List| (|Float|)) (|Polynomial| (|Fraction| (|Integer|))) (|Float|)) "\\spad{solve(p,eps)} finds the real zeroes of a univariate rational polynomial \\spad{p} with precision \\spad{eps}."))) NIL NIL -(-1045 |TheField|) +(-1044 |TheField|) ((|constructor| (NIL "This domain implements the real closure of an ordered field.")) (|relativeApprox| (((|Fraction| (|Integer|)) $ $) "\\axiom{relativeApprox(\\spad{n},{}\\spad{p})} gives a relative approximation of \\axiom{\\spad{n}} that has precision \\axiom{\\spad{p}}")) (|mainCharacterization| (((|Union| (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) "failed") $) "\\axiom{mainCharacterization(\\spad{x})} is the main algebraic quantity of \\axiom{\\spad{x}} (\\axiom{SEG})")) (|algebraicOf| (($ (|RightOpenIntervalRootCharacterization| $ (|SparseUnivariatePolynomial| $)) (|OutputForm|)) "\\axiom{algebraicOf(char)} is the external number"))) -((-4418 . T) (-4423 . T) (-4417 . T) (-4420 . T) (-4419 . T) ((-4427 "*") . T) (-4422 . T)) -((-3957 (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1059) (QUOTE (-558))))) -(-1046 -3495 L) +((-4417 . T) (-4422 . T) (-4416 . T) (-4419 . T) (-4418 . T) ((-4426 "*") . T) (-4421 . T)) +((-3956 (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-419 (-558)) (|%list| (QUOTE -1058) (QUOTE (-558))))) +(-1045 -3494 L) ((|constructor| (NIL "\\spadtype{ReductionOfOrder} provides functions for reducing the order of linear ordinary differential equations once some solutions are known.")) (|ReduceOrder| (((|Record| (|:| |eq| |#2|) (|:| |op| (|List| |#1|))) |#2| (|List| |#1|)) "\\spad{ReduceOrder(op, [f1,...,fk])} returns \\spad{[op1,[g1,...,gk]]} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = gk \\int(g_{k-1} \\int(... \\int(g1 \\int z)...)} is a solution of \\spad{op y = 0}. Each \\spad{fi} must satisfy \\spad{op fi = 0}.") ((|#2| |#2| |#1|) "\\spad{ReduceOrder(op, s)} returns \\spad{op1} such that for any solution \\spad{z} of \\spad{op1 z = 0},{} \\spad{y = s \\int z} is a solution of \\spad{op y = 0}. \\spad{s} must satisfy \\spad{op s = 0}."))) NIL NIL -(-1047 S) +(-1046 S) ((|constructor| (NIL "\\indented{1}{\\spadtype{Reference} is for making a changeable instance} of something.")) (= (((|Boolean|) $ $) "\\spad{a=b} tests if \\spad{a} and \\spad{b} are equal.")) (|setref| ((|#1| $ |#1|) "\\spad{setref(n,m)} same as \\spad{setelt(n,m)}.")) (|deref| ((|#1| $) "\\spad{deref(n)} is equivalent to \\spad{elt(n)}.")) (|setelt| ((|#1| $ |#1|) "\\spad{setelt(n,m)} changes the value of the object \\spad{n} to \\spad{m}.")) (|elt| ((|#1| $) "\\spad{elt(n)} returns the object \\spad{n}.")) (|ref| (($ |#1|) "\\spad{ref(n)} creates a pointer (reference) to the object \\spad{n}."))) NIL -((|HasCategory| |#1| (QUOTE (-1122)))) -(-1048 R E V P) +((|HasCategory| |#1| (QUOTE (-1121)))) +(-1047 R E V P) ((|constructor| (NIL "This domain provides an implementation of regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}. Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1049) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1048) ((|constructor| (NIL "Package for the computation of eigenvalues and eigenvectors. This package works for matrices with coefficients which are rational functions over the integers. (see \\spadtype{Fraction Polynomial Integer}). The eigenvalues and eigenvectors are expressed in terms of radicals.")) (|orthonormalBasis| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{orthonormalBasis(m)} returns the orthogonal matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal. Error: if \\spad{m} is not a symmetric matrix.")) (|gramschmidt| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|List| (|Matrix| (|Expression| (|Integer|))))) "\\spad{gramschmidt(lv)} converts the list of column vectors \\spad{lv} into a set of orthogonal column vectors of euclidean length 1 using the Gram-Schmidt algorithm.")) (|normalise| (((|Matrix| (|Expression| (|Integer|))) (|Matrix| (|Expression| (|Integer|)))) "\\spad{normalise(v)} returns the column vector \\spad{v} divided by its euclidean norm; when possible,{} the vector \\spad{v} is expressed in terms of radicals.")) (|eigenMatrix| (((|Union| (|Matrix| (|Expression| (|Integer|))) "failed") (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{eigenMatrix(m)} returns the matrix \\spad{b} such that \\spad{b*m*(inverse b)} is diagonal,{} or \"failed\" if no such \\spad{b} exists.")) (|radicalEigenvalues| (((|List| (|Expression| (|Integer|))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvalues(m)} computes the eigenvalues of the matrix \\spad{m}; when possible,{} the eigenvalues are expressed in terms of radicals.")) (|radicalEigenvector| (((|List| (|Matrix| (|Expression| (|Integer|)))) (|Expression| (|Integer|)) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvector(c,m)} computes the eigenvector(\\spad{s}) of the matrix \\spad{m} corresponding to the eigenvalue \\spad{c}; when possible,{} values are expressed in terms of radicals.")) (|radicalEigenvectors| (((|List| (|Record| (|:| |radval| (|Expression| (|Integer|))) (|:| |radmult| (|Integer|)) (|:| |radvect| (|List| (|Matrix| (|Expression| (|Integer|))))))) (|Matrix| (|Fraction| (|Polynomial| (|Integer|))))) "\\spad{radicalEigenvectors(m)} computes the eigenvalues and the corresponding eigenvectors of the matrix \\spad{m}; when possible,{} values are expressed in terms of radicals."))) NIL NIL -(-1050 R) +(-1049 R) ((|constructor| (NIL "\\spad{RepresentationPackage1} provides functions for representation theory for finite groups and algebras. The package creates permutation representations and uses tensor products and its symmetric and antisymmetric components to create new representations of larger degree from given ones. Note: instead of having parameters from \\spadtype{Permutation} this package allows list notation of permutations as well: \\spadignore{e.g.} \\spad{[1,4,3,2]} denotes permutes 2 and 4 and fixes 1 and 3.")) (|permutationRepresentation| (((|List| (|Matrix| (|Integer|))) (|List| (|List| (|Integer|)))) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} if the permutations {\\em pi1},{}...,{}{\\em pik} are in list notation and are permuting {\\em {1,2,...,n}}.") (((|List| (|Matrix| (|Integer|))) (|List| (|Permutation| (|Integer|))) (|Integer|)) "\\spad{permutationRepresentation([pi1,...,pik],n)} returns the list of matrices {\\em [(deltai,pi1(i)),...,(deltai,pik(i))]} (Kronecker delta) for the permutations {\\em pi1,...,pik} of {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|List| (|Integer|))) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) if the permutation {\\em pi} is in list notation and permutes {\\em {1,2,...,n}}.") (((|Matrix| (|Integer|)) (|Permutation| (|Integer|)) (|Integer|)) "\\spad{permutationRepresentation(pi,n)} returns the matrix {\\em (deltai,pi(i))} (Kronecker delta) for a permutation {\\em pi} of {\\em {1,2,...,n}}.")) (|tensorProduct| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...ak])} calculates the list of Kronecker products of each matrix {\\em ai} with itself for {1 <= \\spad{i} <= \\spad{k}}. Note: If the list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the representation with itself.") (((|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a)} calculates the Kronecker product of the matrix {\\em a} with itself.") (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{tensorProduct([a1,...,ak],[b1,...,bk])} calculates the list of Kronecker products of the matrices {\\em ai} and {\\em bi} for {1 <= \\spad{i} <= \\spad{k}}. Note: If each list of matrices corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.") (((|Matrix| |#1|) (|Matrix| |#1|) (|Matrix| |#1|)) "\\spad{tensorProduct(a,b)} calculates the Kronecker product of the matrices {\\em a} and \\spad{b}. Note: if each matrix corresponds to a group representation (repr. of generators) of one group,{} then these matrices correspond to the tensor product of the two representations.")) (|symmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{symmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if the matrices in {\\em la} are not square matrices. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{symmetricTensors(a,n)} applies to the \\spad{m}-by-\\spad{m} square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (n,0,...,0)} of \\spad{n}. Error: if {\\em a} is not a square matrix. Note: this corresponds to the symmetrization of the representation with the trivial representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the symmetric tensors of the \\spad{n}-fold tensor product.")) (|createGenericMatrix| (((|Matrix| (|Polynomial| |#1|)) (|NonNegativeInteger|)) "\\spad{createGenericMatrix(m)} creates a square matrix of dimension \\spad{k} whose entry at the \\spad{i}-th row and \\spad{j}-th column is the indeterminate {\\em x[i,j]} (double subscripted).")) (|antisymmetricTensors| (((|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{antisymmetricTensors(la,n)} applies to each \\spad{m}-by-\\spad{m} square matrix in the list {\\em la} the irreducible,{} polynomial representation of the general linear group {\\em GLm} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product.") (((|Matrix| |#1|) (|Matrix| |#1|) (|PositiveInteger|)) "\\spad{antisymmetricTensors(a,n)} applies to the square matrix {\\em a} the irreducible,{} polynomial representation of the general linear group {\\em GLm},{} where \\spad{m} is the number of rows of {\\em a},{} which corresponds to the partition {\\em (1,1,...,1,0,0,...,0)} of \\spad{n}. Error: if \\spad{n} is greater than \\spad{m}. Note: this corresponds to the symmetrization of the representation with the sign representation of the symmetric group {\\em Sn}. The carrier spaces of the representation are the antisymmetric tensors of the \\spad{n}-fold tensor product."))) NIL -((|HasAttribute| |#1| (QUOTE (-4427 "*")))) -(-1051 R) +((|HasAttribute| |#1| (QUOTE (-4426 "*")))) +(-1050 R) ((|constructor| (NIL "\\spad{RepresentationPackage2} provides functions for working with modular representations of finite groups and algebra. The routines in this package are created,{} using ideas of \\spad{R}. Parker,{} (the meat-Axe) to get smaller representations from bigger ones,{} \\spadignore{i.e.} finding sub- and factormodules,{} or to show,{} that such the representations are irreducible. Note: most functions are randomized functions of Las Vegas type \\spadignore{i.e.} every answer is correct,{} but with small probability the algorithm fails to get an answer.")) (|scanOneDimSubspaces| (((|Vector| |#1|) (|List| (|Vector| |#1|)) (|Integer|)) "\\spad{scanOneDimSubspaces(basis,n)} gives a canonical representative of the {\\em n}\\spad{-}th one-dimensional subspace of the vector space generated by the elements of {\\em basis},{} all from {\\em R**n}. The coefficients of the representative are of shape {\\em (0,...,0,1,*,...,*)},{} {\\em *} in \\spad{R}. If the size of \\spad{R} is \\spad{q},{} then there are {\\em (q**n-1)/(q-1)} of them. We first reduce \\spad{n} modulo this number,{} then find the largest \\spad{i} such that {\\em +/[q**i for i in 0..i-1] <= n}. Subtracting this sum of powers from \\spad{n} results in an \\spad{i}-digit number to \\spad{basis} \\spad{q}. This fills the positions of the stars.")) (|meatAxe| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|PositiveInteger|)) "\\spad{meatAxe(aG, numberOfTries)} calls {\\em meatAxe(aG,true,numberOfTries,7)}. Notes: 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|)) "\\spad{meatAxe(aG, randomElements)} calls {\\em meatAxe(aG,false,6,7)},{} only using Parker's fingerprints,{} if {\\em randomElemnts} is \\spad{false}. If it is \\spad{true},{} it calls {\\em meatAxe(aG,true,25,7)},{} only using random elements. Note: the choice of 25 was rather arbitrary. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|))) "\\spad{meatAxe(aG)} calls {\\em meatAxe(aG,false,25,7)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG}) creates at most 25 random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most 7 elements of its kernel to generate a proper submodule. If successful a list which contains first the list of the representations of the submodule,{} then a list of the representations of the factor module is returned. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. Notes: the first 6 tries use Parker's fingerprints. Also,{} 7 covers the case of three-dimensional kernels over the field with 2 elements.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|) (|Integer|)) "\\spad{meatAxe(aG,randomElements,numberOfTries, maxTests)} returns a 2-list of representations as follows. All matrices of argument \\spad{aG} are assumed to be square and of equal size. Then \\spad{aG} generates a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an A-module in the usual way. meatAxe(\\spad{aG},{}\\spad{numberOfTries},{} maxTests) creates at most {\\em numberOfTries} random elements of the algebra,{} tests them for singularity. If singular,{} it tries at most {\\em maxTests} elements of its kernel to generate a proper submodule. If successful,{} a 2-list is returned: first,{} a list containing first the list of the representations of the submodule,{} then a list of the representations of the factor module. Otherwise,{} if we know that all the kernel is already scanned,{} Norton's irreducibility test can be used either to prove irreducibility or to find the splitting. If {\\em randomElements} is {\\em false},{} the first 6 tries use Parker's fingerprints.")) (|split| (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| (|Vector| |#1|))) "\\spad{split(aG,submodule)} uses a proper \\spad{submodule} of {\\em R**n} to create the representations of the \\spad{submodule} and of the factor module.") (((|List| (|List| (|Matrix| |#1|))) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{split(aG, vector)} returns a subalgebra \\spad{A} of all square matrix of dimension \\spad{n} as a list of list of matrices,{} generated by the list of matrices \\spad{aG},{} where \\spad{n} denotes both the size of vector as well as the dimension of each of the square matrices. {\\em V R} is an A-module in the natural way. split(\\spad{aG},{} vector) then checks whether the cyclic submodule generated by {\\em vector} is a proper submodule of {\\em V R}. If successful,{} it returns a two-element list,{} which contains first the list of the representations of the submodule,{} then the list of the representations of the factor module. If the vector generates the whole module,{} a one-element list of the old representation is given. Note: a later version this should call the other split.")) (|isAbsolutelyIrreducible?| (((|Boolean|) (|List| (|Matrix| |#1|))) "\\spad{isAbsolutelyIrreducible?(aG)} calls {\\em isAbsolutelyIrreducible?(aG,25)}. Note: the choice of 25 was rather arbitrary.") (((|Boolean|) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{isAbsolutelyIrreducible?(aG, numberOfTries)} uses Norton's irreducibility test to check for absolute irreduciblity,{} assuming if a one-dimensional kernel is found. As no field extension changes create \"new\" elements in a one-dimensional space,{} the criterium stays \\spad{true} for every extension. The method looks for one-dimensionals only by creating random elements (no fingerprints) since a run of {\\em meatAxe} would have proved absolute irreducibility anyway.")) (|areEquivalent?| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,numberOfTries)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{areEquivalent?(aG0,aG1)} calls {\\em areEquivalent?(aG0,aG1,true,25)}. Note: the choice of 25 was rather arbitrary.") (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|List| (|Matrix| |#1|)) (|Boolean|) (|Integer|)) "\\spad{areEquivalent?(aG0,aG1,randomelements,numberOfTries)} tests whether the two lists of matrices,{} all assumed of same square shape,{} can be simultaneously conjugated by a non-singular matrix. If these matrices represent the same group generators,{} the representations are equivalent. The algorithm tries {\\em numberOfTries} times to create elements in the generated algebras in the same fashion. If their ranks differ,{} they are not equivalent. If an isomorphism is assumed,{} then the kernel of an element of the first algebra is mapped to the kernel of the corresponding element in the second algebra. Now consider the one-dimensional ones. If they generate the whole space (\\spadignore{e.g.} irreducibility !) we use {\\em standardBasisOfCyclicSubmodule} to create the only possible transition matrix. The method checks whether the matrix conjugates all corresponding matrices from {\\em aGi}. The way to choose the singular matrices is as in {\\em meatAxe}. If the two representations are equivalent,{} this routine returns the transformation matrix {\\em TM} with {\\em aG0.i * TM = TM * aG1.i} for all \\spad{i}. If the representations are not equivalent,{} a small 0-matrix is returned. Note: the case with different sets of group generators cannot be handled.")) (|standardBasisOfCyclicSubmodule| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{standardBasisOfCyclicSubmodule(lm,v)} returns a matrix as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. standardBasisOfCyclicSubmodule(\\spad{lm},{}\\spad{v}) calculates a matrix whose non-zero column vectors are the \\spad{R}-Basis of {\\em Av} achieved in the way as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to {\\em cyclicSubmodule},{} the result is not in echelon form.")) (|cyclicSubmodule| (((|Vector| (|Vector| |#1|)) (|List| (|Matrix| |#1|)) (|Vector| |#1|)) "\\spad{cyclicSubmodule(lm,v)} generates a basis as follows. It is assumed that the size \\spad{n} of the vector equals the number of rows and columns of the matrices. Then the matrices generate a subalgebra,{} say \\spad{A},{} of the algebra of all square matrices of dimension \\spad{n}. {\\em V R} is an \\spad{A}-module in the natural way. cyclicSubmodule(\\spad{lm},{}\\spad{v}) generates the \\spad{R}-Basis of {\\em Av} as described in section 6 of \\spad{R}. A. Parker's \"The Meat-Axe\". Note: in contrast to the description in \"The Meat-Axe\" and to {\\em standardBasisOfCyclicSubmodule} the result is in echelon form.")) (|createRandomElement| (((|Matrix| |#1|) (|List| (|Matrix| |#1|)) (|Matrix| |#1|)) "\\spad{createRandomElement(aG,x)} creates a random element of the group algebra generated by {\\em aG}.")) (|completeEchelonBasis| (((|Matrix| |#1|) (|Vector| (|Vector| |#1|))) "\\spad{completeEchelonBasis(lv)} completes the basis {\\em lv} assumed to be in echelon form of a subspace of {\\em R**n} (\\spad{n} the length of all the vectors in {\\em lv}) with unit vectors to a basis of {\\em R**n}. It is assumed that the argument is not an empty vector and that it is not the basis of the 0-subspace. Note: the rows of the result correspond to the vectors of the basis."))) NIL ((-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-319)))) -(-1052 S) +(-1051 S) ((|constructor| (NIL "Implements multiplication by repeated addition")) (|double| ((|#1| (|PositiveInteger|) |#1|) "\\spad{double(i, r)} multiplies \\spad{r} by \\spad{i} using repeated doubling.")) (+ (($ $ $) "\\spad{x+y} returns the sum of \\spad{x} and \\spad{y}"))) NIL NIL -(-1053 S) +(-1052 S) ((|constructor| (NIL "Implements exponentiation by repeated squaring")) (|expt| ((|#1| |#1| (|PositiveInteger|)) "\\spad{expt(r, i)} computes r**i by repeated squaring")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}"))) NIL NIL -(-1054 S) +(-1053 S) ((|constructor| (NIL "This package provides coercions for the special types \\spadtype{Exit} and \\spadtype{Void}.")) (|coerce| ((|#1| (|Exit|)) "\\spad{coerce(e)} is never really evaluated. This coercion is used for formal type correctness when a function will not return directly to its caller.") (((|Void|) |#1|) "\\spad{coerce(s)} throws all information about \\spad{s} away. This coercion allows values of any type to appear in contexts where they will not be used. For example,{} it allows the resolution of different types in the \\spad{then} and \\spad{else} branches when an \\spad{if} is in a context where the resulting value is not used."))) NIL NIL -(-1055 -3495 |Expon| |VarSet| |FPol| |LFPol|) +(-1054 -3494 |Expon| |VarSet| |FPol| |LFPol|) ((|constructor| (NIL "ResidueRing is the quotient of a polynomial ring by an ideal. The ideal is given as a list of generators. The elements of the domain are equivalence classes expressed in terms of reduced elements")) (|lift| ((|#4| $) "\\spad{lift(x)} return the canonical representative of the equivalence class \\spad{x}")) (|coerce| (($ |#4|) "\\spad{coerce(f)} produces the equivalence class of \\spad{f} in the residue ring")) (|reduce| (($ |#4|) "\\spad{reduce(f)} produces the equivalence class of \\spad{f} in the residue ring"))) -(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1056) +(-1055) ((|constructor| (NIL "A domain used to return the results from a call to the NAG Library. It prints as a list of names and types,{} though the user may choose to display values automatically if he or she wishes.")) (|showArrayValues| (((|Boolean|) (|Boolean|)) "\\spad{showArrayValues(true)} forces the values of array components to be \\indented{1}{displayed rather than just their types.}")) (|showScalarValues| (((|Boolean|) (|Boolean|)) "\\spad{showScalarValues(true)} forces the values of scalar components to be \\indented{1}{displayed rather than just their types.}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (QUOTE (-1198))) (|%list| (QUOTE |:|) (QUOTE -2286) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122))) (|HasCategory| (-1198) (QUOTE (-861))) (|HasCategory| (-51) (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-102)))) -(-1057) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (QUOTE (-1197))) (|%list| (QUOTE |:|) (QUOTE -2285) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-860))) (|HasCategory| (-51) (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-102)))) +(-1056) ((|constructor| (NIL "This domain represents `return' expressions.")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression returned by `e'."))) NIL NIL -(-1058 A S) +(-1057 A S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#2| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#2| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1059 S) +(-1058 S) ((|constructor| (NIL "A is retractable to \\spad{B} means that some elementsif A can be converted into elements of \\spad{B} and any element of \\spad{B} can be converted into an element of A.")) (|retract| ((|#1| $) "\\spad{retract(a)} transforms a into an element of \\spad{S} if possible. Error: if a cannot be made into an element of \\spad{S}.")) (|retractIfCan| (((|Union| |#1| "failed") $) "\\spad{retractIfCan(a)} transforms a into an element of \\spad{S} if possible. Returns \"failed\" if a cannot be made into an element of \\spad{S}."))) NIL NIL -(-1060 Q R) +(-1059 Q R) ((|constructor| (NIL "RetractSolvePackage is an interface to \\spadtype{SystemSolvePackage} that attempts to retract the coefficients of the equations before solving.")) (|solveRetract| (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#2|))))) (|List| (|Polynomial| |#2|)) (|List| (|Symbol|))) "\\spad{solveRetract(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}. The function tries to retract all the coefficients of the equations to \\spad{Q} before solving if possible."))) NIL NIL -(-1061 R) +(-1060 R) ((|constructor| (NIL "Utilities that provide the same top-level manipulations on fractions than on polynomials.")) (|coerce| (((|Fraction| (|Polynomial| |#1|)) |#1|) "\\spad{coerce(r)} returns \\spad{r} viewed as a rational function over \\spad{R}.")) (|eval| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{eval(f, [v1 = g1,...,vn = gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced. Error: if any \\spad{vi} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, v = g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}. Error: if \\spad{v} is not a symbol.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|List| (|Symbol|)) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{eval(f, [v1,...,vn], [g1,...,gn])} returns \\spad{f} with each \\spad{vi} replaced by \\spad{gi} in parallel,{} \\spadignore{i.e.} \\spad{vi}'s appearing inside the \\spad{gi}'s are not replaced.") (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|))) "\\spad{eval(f, v, g)} returns \\spad{f} with \\spad{v} replaced by \\spad{g}.")) (|multivariate| (((|Fraction| (|Polynomial| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Symbol|)) "\\spad{multivariate(f, v)} applies both the numerator and denominator of \\spad{f} to \\spad{v}.")) (|univariate| (((|Fraction| (|SparseUnivariatePolynomial| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{univariate(f, v)} returns \\spad{f} viewed as a univariate rational function in \\spad{v}.")) (|mainVariable| (((|Union| (|Symbol|) "failed") (|Fraction| (|Polynomial| |#1|))) "\\spad{mainVariable(f)} returns the highest variable appearing in the numerator or the denominator of \\spad{f},{} \"failed\" if \\spad{f} has no variables.")) (|variables| (((|List| (|Symbol|)) (|Fraction| (|Polynomial| |#1|))) "\\spad{variables(f)} returns the list of variables appearing in the numerator or the denominator of \\spad{f}."))) NIL NIL -(-1062) +(-1061) ((|t| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{t(n)} \\undocumented")) (F (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{F(n,m)} \\undocumented")) (|Beta| (((|Mapping| (|Float|)) (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{Beta(n,m)} \\undocumented")) (|chiSquare| (((|Mapping| (|Float|)) (|NonNegativeInteger|)) "\\spad{chiSquare(n)} \\undocumented")) (|exponential| (((|Mapping| (|Float|)) (|Float|)) "\\spad{exponential(f)} \\undocumented")) (|normal| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{normal(f,g)} \\undocumented")) (|uniform| (((|Mapping| (|Float|)) (|Float|) (|Float|)) "\\spad{uniform(f,g)} \\undocumented")) (|chiSquare1| (((|Float|) (|NonNegativeInteger|)) "\\spad{chiSquare1(n)} \\undocumented")) (|exponential1| (((|Float|)) "\\spad{exponential1()} \\undocumented")) (|normal01| (((|Float|)) "\\spad{normal01()} \\undocumented")) (|uniform01| (((|Float|)) "\\spad{uniform01()} \\undocumented"))) NIL NIL -(-1063 UP) +(-1062 UP) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients which are rational functions with integer coefficients.")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1064 R) +(-1063 R) ((|constructor| (NIL "\\spadtype{RationalFunctionFactorizer} contains the factor function (called factorFraction) which factors fractions of polynomials by factoring the numerator and denominator. Since any non zero fraction is a unit the usual factor operation will just return the original fraction.")) (|factorFraction| (((|Fraction| (|Factored| (|Polynomial| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{factorFraction(r)} factors the numerator and the denominator of the polynomial fraction \\spad{r}."))) NIL NIL -(-1065 T$) +(-1064 T$) ((|constructor| (NIL "This category defines the common interface for RGB color models.")) (|componentUpperBound| ((|#1|) "componentUpperBound is an upper bound for all component values.")) (|blue| ((|#1| $) "\\spad{blue(c)} returns the `blue' component of `c'.")) (|green| ((|#1| $) "\\spad{green(c)} returns the `green' component of `c'.")) (|red| ((|#1| $) "\\spad{red(c)} returns the `red' component of `c'."))) NIL NIL -(-1066 T$) +(-1065 T$) ((|constructor| (NIL "This category defines the common interface for RGB color spaces.")) (|whitePoint| (($) "whitePoint is the contant indicating the white point of this color space."))) NIL NIL -(-1067 R |ls|) +(-1066 R |ls|) ((|constructor| (NIL "A domain for regular chains (\\spadignore{i.e.} regular triangular sets) over a Gcd-Domain and with a fix list of variables. This is just a front-end for the \\spadtype{RegularTriangularSet} domain constructor.")) (|zeroSetSplit| (((|List| $) (|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) (|Boolean|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?,info?)} returns a list \\spad{lts} of regular chains such that the union of the closures of their regular zero sets equals the affine variety associated with \\spad{lp}. Moreover,{} if \\spad{clos?} is \\spad{false} then the union of the regular zero set of the \\spad{ts} (for \\spad{ts} in \\spad{lts}) equals this variety. If \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSet}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| (-800 |#1| (-878 |#2|)) (QUOTE (-1122))) (|HasCategory| (-800 |#1| (-878 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -800) (|devaluate| |#1|) (|%list| (QUOTE -878) (|devaluate| |#2|)))))) (|HasCategory| (-800 |#1| (-878 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-800 |#1| (-878 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-878 |#2|) (QUOTE (-381))) (|HasCategory| (-800 |#1| (-878 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-800 |#1| (-878 |#2|)) (QUOTE (-102)))) -(-1068) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| (-799 |#1| (-877 |#2|)) (QUOTE (-1121))) (|HasCategory| (-799 |#1| (-877 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -799) (|devaluate| |#1|) (|%list| (QUOTE -877) (|devaluate| |#2|)))))) (|HasCategory| (-799 |#1| (-877 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-799 |#1| (-877 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-877 |#2|) (QUOTE (-381))) (|HasCategory| (-799 |#1| (-877 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-799 |#1| (-877 |#2|)) (QUOTE (-102)))) +(-1067) ((|constructor| (NIL "This package exports integer distributions")) (|ridHack1| (((|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Integer|)) "\\spad{ridHack1(i,j,k,l)} \\undocumented")) (|geometric| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{geometric(f)} \\undocumented")) (|poisson| (((|Mapping| (|Integer|)) |RationalNumber|) "\\spad{poisson(f)} \\undocumented")) (|binomial| (((|Mapping| (|Integer|)) (|Integer|) |RationalNumber|) "\\spad{binomial(n,f)} \\undocumented")) (|uniform| (((|Mapping| (|Integer|)) (|Segment| (|Integer|))) "\\spad{uniform(s)} \\undocumented"))) NIL NIL -(-1069 S) +(-1068 S) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) NIL NIL -(-1070) +(-1069) ((|constructor| (NIL "The category of rings with unity,{} always associative,{} but not necessarily commutative.")) (|unitsKnown| ((|attribute|) "recip truly yields reciprocal or \"failed\" if not a unit. Note: \\spad{recip(0) = \"failed\"}.")) (|characteristic| (((|NonNegativeInteger|)) "\\spad{characteristic()} returns the characteristic of the ring this is the smallest positive integer \\spad{n} such that \\spad{n*x=0} for all \\spad{x} in the ring,{} or zero if no such \\spad{n} exists."))) -((-4422 . T)) +((-4421 . T)) NIL -(-1071 |xx| -3495) +(-1070 |xx| -3494) ((|constructor| (NIL "This package exports rational interpolation algorithms"))) NIL NIL -(-1072 S) +(-1071 S) ((|constructor| (NIL "\\indented{2}{A set is an \\spad{S}-right linear set if it is stable by right-dilation} \\indented{2}{by elements in the semigroup \\spad{S}.} See Also: LeftLinearSet.")) (* (($ $ |#1|) "\\spad{x*s} is the right-dilation of \\spad{x} by \\spad{s}."))) NIL NIL -(-1073 S |m| |n| R |Row| |Col|) +(-1072 S |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#6|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#4|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#4|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#4| |#4| |#4|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#4| |#4|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#6| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#5| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#4| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#4| $ (|Integer|) (|Integer|) |#4|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#4| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#4|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#4|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) NIL ((|HasCategory| |#4| (QUOTE (-319))) (|HasCategory| |#4| (QUOTE (-376))) (|HasCategory| |#4| (QUOTE (-569))) (|HasCategory| |#4| (QUOTE (-175)))) -(-1074 |m| |n| R |Row| |Col|) +(-1073 |m| |n| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategory} is a category of matrices of fixed dimensions. The dimensions of the matrix will be parameters of the domain. Domains in this category will be \\spad{R}-modules and will be non-mutable.")) (|nullSpace| (((|List| |#5|) $) "\\spad{nullSpace(m)}+ returns a basis for the null space of the matrix \\spad{m}.")) (|nullity| (((|NonNegativeInteger|) $) "\\spad{nullity(m)} returns the nullity of the matrix \\spad{m}. This is the dimension of the null space of the matrix \\spad{m}.")) (|rank| (((|NonNegativeInteger|) $) "\\spad{rank(m)} returns the rank of the matrix \\spad{m}.")) (|rowEchelon| (($ $) "\\spad{rowEchelon(m)} returns the row echelon form of the matrix \\spad{m}.")) (/ (($ $ |#3|) "\\spad{m/r} divides the elements of \\spad{m} by \\spad{r}. Error: if \\spad{r = 0}.")) (|exquo| (((|Union| $ "failed") $ |#3|) "\\spad{exquo(m,r)} computes the exact quotient of the elements of \\spad{m} by \\spad{r},{} returning \\axiom{\"failed\"} if this is not possible.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(f,a,b)} returns \\spad{c},{} where \\spad{c} is such that \\spad{c(i,j) = f(a(i,j),b(i,j))} for all \\spad{i},{} \\spad{j}.") (($ (|Mapping| |#3| |#3|) $) "\\spad{map(f,a)} returns \\spad{b},{} where \\spad{b(i,j) = a(i,j)} for all \\spad{i},{} \\spad{j}.")) (|column| ((|#5| $ (|Integer|)) "\\spad{column(m,j)} returns the \\spad{j}th column of the matrix \\spad{m}. Error: if the index outside the proper range.")) (|row| ((|#4| $ (|Integer|)) "\\spad{row(m,i)} returns the \\spad{i}th row of the matrix \\spad{m}. Error: if the index is outside the proper range.")) (|qelt| ((|#3| $ (|Integer|) (|Integer|)) "\\spad{qelt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Note: there is NO error check to determine if indices are in the proper ranges.")) (|elt| ((|#3| $ (|Integer|) (|Integer|) |#3|) "\\spad{elt(m,i,j,r)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m},{} if \\spad{m} has an \\spad{i}th row and a \\spad{j}th column,{} and returns \\spad{r} otherwise.") ((|#3| $ (|Integer|) (|Integer|)) "\\spad{elt(m,i,j)} returns the element in the \\spad{i}th row and \\spad{j}th column of the matrix \\spad{m}. Error: if indices are outside the proper ranges.")) (|listOfLists| (((|List| (|List| |#3|)) $) "\\spad{listOfLists(m)} returns the rows of the matrix \\spad{m} as a list of lists.")) (|ncols| (((|NonNegativeInteger|) $) "\\spad{ncols(m)} returns the number of columns in the matrix \\spad{m}.")) (|nrows| (((|NonNegativeInteger|) $) "\\spad{nrows(m)} returns the number of rows in the matrix \\spad{m}.")) (|maxColIndex| (((|Integer|) $) "\\spad{maxColIndex(m)} returns the index of the 'last' column of the matrix \\spad{m}.")) (|minColIndex| (((|Integer|) $) "\\spad{minColIndex(m)} returns the index of the 'first' column of the matrix \\spad{m}.")) (|maxRowIndex| (((|Integer|) $) "\\spad{maxRowIndex(m)} returns the index of the 'last' row of the matrix \\spad{m}.")) (|minRowIndex| (((|Integer|) $) "\\spad{minRowIndex(m)} returns the index of the 'first' row of the matrix \\spad{m}.")) (|antisymmetric?| (((|Boolean|) $) "\\spad{antisymmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and antisymmetric (\\spadignore{i.e.} \\spad{m[i,j] = -m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|symmetric?| (((|Boolean|) $) "\\spad{symmetric?(m)} returns \\spad{true} if the matrix \\spad{m} is square and symmetric (\\spadignore{i.e.} \\spad{m[i,j] = m[j,i]} for all \\spad{i} and \\spad{j}) and \\spad{false} otherwise.")) (|diagonal?| (((|Boolean|) $) "\\spad{diagonal?(m)} returns \\spad{true} if the matrix \\spad{m} is square and diagonal (\\spadignore{i.e.} all entries of \\spad{m} not on the diagonal are zero) and \\spad{false} otherwise.")) (|square?| (((|Boolean|) $) "\\spad{square?(m)} returns \\spad{true} if \\spad{m} is a square matrix (\\spadignore{i.e.} if \\spad{m} has the same number of rows as columns) and \\spad{false} otherwise.")) (|matrix| (($ (|List| (|List| |#3|))) "\\spad{matrix(l)} converts the list of lists \\spad{l} to a matrix,{} where the list of lists is viewed as a list of the rows of the matrix.")) (|finiteAggregate| ((|attribute|) "matrices are finite"))) -((-4425 . T) (-4420 . T) (-4419 . T)) +((-4424 . T) (-4419 . T) (-4418 . T)) NIL -(-1075 |m| |n| R) +(-1074 |m| |n| R) ((|constructor| (NIL "\\spadtype{RectangularMatrix} is a matrix domain where the number of rows and the number of columns are parameters of the domain.")) (|rectangularMatrix| (($ (|Matrix| |#3|)) "\\spad{rectangularMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spad{RectangularMatrix}."))) -((-4425 . T) (-4420 . T) (-4419 . T)) -((|HasCategory| |#3| (QUOTE (-175))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-877))))) -(-1076 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) +((-4424 . T) (-4419 . T) (-4418 . T)) +((|HasCategory| |#3| (QUOTE (-175))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (QUOTE (-319))) (|HasCategory| |#3| (QUOTE (-569))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-876))))) +(-1075 |m| |n| R1 |Row1| |Col1| M1 R2 |Row2| |Col2| M2) ((|constructor| (NIL "\\spadtype{RectangularMatrixCategoryFunctions2} provides functions between two matrix domains. The functions provided are \\spadfun{map} and \\spadfun{reduce}.")) (|reduce| ((|#7| (|Mapping| |#7| |#3| |#7|) |#6| |#7|) "\\spad{reduce(f,m,r)} returns a matrix \\spad{n} where \\spad{n[i,j] = f(m[i,j],r)} for all indices spad{\\spad{i}} and \\spad{j}.")) (|map| ((|#10| (|Mapping| |#7| |#3|) |#6|) "\\spad{map(f,m)} applies the function \\spad{f} to the elements of the matrix \\spad{m}."))) NIL NIL -(-1077 R) +(-1076 R) ((|constructor| (NIL "The category of right modules over an rng (ring not necessarily with unit). This is an abelian group which supports right multiplation by elements of the rng. \\blankline"))) NIL NIL -(-1078) +(-1077) ((|constructor| (NIL "The category of associative rings,{} not necessarily commutative,{} and not necessarily with a 1. This is a combination of an abelian group and a semigroup,{} with multiplication distributing over addition. \\blankline"))) NIL NIL -(-1079 S T$) +(-1078 S T$) ((|constructor| (NIL "This domain represents the notion of binding a variable to range over a specific segment (either bounded,{} or half bounded).")) (|segment| ((|#1| $) "\\spad{segment(x)} returns the segment from the right hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{segment(x)} returns \\spad{s}.")) (|variable| (((|Symbol|) $) "\\spad{variable(x)} returns the variable from the left hand side of the \\spadtype{RangeBinding}. For example,{} if \\spad{x} is \\spad{v=s},{} then \\spad{variable(x)} returns \\spad{v}.")) (|equation| (($ (|Symbol|) |#1|) "\\spad{equation(v,s)} creates a segment binding value with variable \\spad{v} and segment \\spad{s}. Note that the interpreter parses \\spad{v=s} to this form."))) NIL -((|HasCategory| |#1| (QUOTE (-1122)))) -(-1080 S) +((|HasCategory| |#1| (QUOTE (-1121)))) +(-1079 S) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) NIL NIL -(-1081) +(-1080) ((|constructor| (NIL "The real number system category is intended as a model for the real numbers. The real numbers form an ordered normed field. Note that we have purposely not included \\spadtype{DifferentialRing} or the elementary functions (see \\spadtype{TranscendentalFunctionCategory}) in the definition.")) (|round| (($ $) "\\spad{round x} computes the integer closest to \\spad{x}.")) (|truncate| (($ $) "\\spad{truncate x} returns the integer between \\spad{x} and 0 closest to \\spad{x}.")) (|fractionPart| (($ $) "\\spad{fractionPart x} returns the fractional part of \\spad{x}.")) (|wholePart| (((|Integer|) $) "\\spad{wholePart x} returns the integer part of \\spad{x}.")) (|floor| (($ $) "\\spad{floor x} returns the largest integer \\spad{<= x}.")) (|ceiling| (($ $) "\\spad{ceiling x} returns the small integer \\spad{>= x}.")) (|norm| (($ $) "\\spad{norm x} returns the same as absolute value."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1082 |TheField| |ThePolDom|) +(-1081 |TheField| |ThePolDom|) ((|constructor| (NIL "\\axiomType{RightOpenIntervalRootCharacterization} provides work with interval root coding.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{relativeApprox(exp,{}\\spad{c},{}\\spad{p}) = a} is relatively close to exp as a polynomial in \\spad{c} ip to precision \\spad{p}")) (|mightHaveRoots| (((|Boolean|) |#2| $) "\\axiom{mightHaveRoots(\\spad{p},{}\\spad{r})} is \\spad{false} if \\axiom{\\spad{p}.\\spad{r}} is not 0")) (|refine| (($ $) "\\axiom{refine(rootChar)} shrinks isolating interval around \\axiom{rootChar}")) (|middle| ((|#1| $) "\\axiom{middle(rootChar)} is the middle of the isolating interval")) (|size| ((|#1| $) "The size of the isolating interval")) (|right| ((|#1| $) "\\axiom{right(rootChar)} is the right bound of the isolating interval")) (|left| ((|#1| $) "\\axiom{left(rootChar)} is the left bound of the isolating interval"))) NIL NIL -(-1083) +(-1082) ((|constructor| (NIL "\\spadtype{RomanNumeral} provides functions for converting \\indented{1}{integers to roman numerals.}")) (|roman| (($ (|Integer|)) "\\spad{roman(n)} creates a roman numeral for \\spad{n}.") (($ (|Symbol|)) "\\spad{roman(n)} creates a roman numeral for symbol \\spad{n}.")) (|noetherian| ((|attribute|) "ascending chain condition on ideals.")) (|canonicalsClosed| ((|attribute|) "two positives multiply to give positive.")) (|canonical| ((|attribute|) "mathematical equality is data structure equality."))) -((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4412 . T) (-4416 . T) (-4411 . T) (-4422 . T) (-4423 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1084) +(-1083) ((|constructor| (NIL "\\axiomType{RoutinesTable} implements a database and associated tuning mechanisms for a set of known NAG routines")) (|recoverAfterFail| (((|Union| (|String|) "failed") $ (|String|) (|Integer|)) "\\spad{recoverAfterFail(routs,routineName,ifailValue)} acts on the instructions given by the ifail list")) (|showTheRoutinesTable| (($) "\\spad{showTheRoutinesTable()} returns the current table of NAG routines.")) (|deleteRoutine!| (($ $ (|Symbol|)) "\\spad{deleteRoutine!(R,s)} destructively deletes the given routine from the current database of NAG routines")) (|getExplanations| (((|List| (|String|)) $ (|String|)) "\\spad{getExplanations(R,s)} gets the explanations of the output parameters for the given NAG routine.")) (|getMeasure| (((|Float|) $ (|Symbol|)) "\\spad{getMeasure(R,s)} gets the current value of the maximum measure for the given NAG routine.")) (|changeMeasure| (($ $ (|Symbol|) (|Float|)) "\\spad{changeMeasure(R,s,newValue)} changes the maximum value for a measure of the given NAG routine.")) (|changeThreshhold| (($ $ (|Symbol|) (|Float|)) "\\spad{changeThreshhold(R,s,newValue)} changes the value below which,{} given a NAG routine generating a higher measure,{} the routines will make no attempt to generate a measure.")) (|selectMultiDimensionalRoutines| (($ $) "\\spad{selectMultiDimensionalRoutines(R)} chooses only those routines from the database which are designed for use with multi-dimensional expressions")) (|selectNonFiniteRoutines| (($ $) "\\spad{selectNonFiniteRoutines(R)} chooses only those routines from the database which are designed for use with non-finite expressions.")) (|selectSumOfSquaresRoutines| (($ $) "\\spad{selectSumOfSquaresRoutines(R)} chooses only those routines from the database which are designed for use with sums of squares")) (|selectFiniteRoutines| (($ $) "\\spad{selectFiniteRoutines(R)} chooses only those routines from the database which are designed for use with finite expressions")) (|selectODEIVPRoutines| (($ $) "\\spad{selectODEIVPRoutines(R)} chooses only those routines from the database which are for the solution of ODE's")) (|selectPDERoutines| (($ $) "\\spad{selectPDERoutines(R)} chooses only those routines from the database which are for the solution of PDE's")) (|selectOptimizationRoutines| (($ $) "\\spad{selectOptimizationRoutines(R)} chooses only those routines from the database which are for integration")) (|selectIntegrationRoutines| (($ $) "\\spad{selectIntegrationRoutines(R)} chooses only those routines from the database which are for integration")) (|routines| (($) "\\spad{routines()} initialises a database of known NAG routines")) (|concat| (($ $ $) "\\spad{concat(x,y)} merges two tables \\spad{x} and \\spad{y}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (QUOTE (-1198))) (|%list| (QUOTE |:|) (QUOTE -2286) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1122))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-1122))) (|HasCategory| (-1198) (QUOTE (-861))) (|HasCategory| (-51) (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (QUOTE (-102)))) -(-1085 S R E V) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (QUOTE (-1197))) (|%list| (QUOTE |:|) (QUOTE -2285) (QUOTE (-51)))))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| (-51) (QUOTE (-1121))) (|HasCategory| (-51) (|%list| (QUOTE -321) (QUOTE (-51))))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-1121))) (|HasCategory| (-1197) (QUOTE (-860))) (|HasCategory| (-51) (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-102)))) (|HasCategory| (-51) (QUOTE (-102))) (|HasCategory| (-51) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (QUOTE (-102)))) +(-1084 S R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#2| |#2| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#2|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#2|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#2|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#2|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#2|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#4|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#4|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#4|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#4|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#4|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#4|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#4|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#4| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) NIL -((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1012) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-1198))))) -(-1086 R E V) +((|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-557))) (|HasCategory| |#2| (|%list| (QUOTE -38) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1011) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-1197))))) +(-1085 R E V) ((|constructor| (NIL "A category for general multi-variate polynomials with coefficients in a ring,{} variables in an ordered set,{} and exponents from an ordered abelian monoid,{} with a \\axiomOp{sup} operation. When not constant,{} such a polynomial is viewed as a univariate polynomial in its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in the ordered set,{} so that some operations usually defined for univariate polynomials make sense here.")) (|mainSquareFreePart| (($ $) "\\axiom{mainSquareFreePart(\\spad{p})} returns the square free part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainPrimitivePart| (($ $) "\\axiom{mainPrimitivePart(\\spad{p})} returns the primitive part of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|mainContent| (($ $) "\\axiom{mainContent(\\spad{p})} returns the content of \\axiom{\\spad{p}} viewed as a univariate polynomial in its main variable and with coefficients in the polynomial ring generated by its other variables over \\axiom{\\spad{R}}.")) (|primitivePart!| (($ $) "\\axiom{primitivePart!(\\spad{p})} replaces \\axiom{\\spad{p}} by its primitive part.")) (|gcd| ((|#1| |#1| $) "\\axiom{gcd(\\spad{r},{}\\spad{p})} returns the gcd of \\axiom{\\spad{r}} and the content of \\axiom{\\spad{p}}.")) (|nextsubResultant2| (($ $ $ $ $) "\\axiom{\\spad{nextsubResultant2}(\\spad{p},{}\\spad{q},{}\\spad{z},{}\\spad{s})} is the multivariate version of the operation \\axiomOpFrom{\\spad{next_sousResultant2}}{PseudoRemainderSequence} from the \\axiomType{PseudoRemainderSequence} constructor.")) (|LazardQuotient2| (($ $ $ $ (|NonNegativeInteger|)) "\\axiom{\\spad{LazardQuotient2}(\\spad{p},{}a,{}\\spad{b},{}\\spad{n})} returns \\axiom{(a**(\\spad{n}-1) * \\spad{p}) exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|LazardQuotient| (($ $ $ (|NonNegativeInteger|)) "\\axiom{LazardQuotient(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a**n exquo b**(\\spad{n}-1)} assuming that this quotient does not fail.")) (|lastSubResultant| (($ $ $) "\\axiom{lastSubResultant(a,{}\\spad{b})} returns the last non-zero subresultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|subResultantChain| (((|List| $) $ $) "\\axiom{subResultantChain(a,{}\\spad{b})},{} where \\axiom{a} and \\axiom{\\spad{b}} are not contant polynomials with the same main variable,{} returns the subresultant chain of \\axiom{a} and \\axiom{\\spad{b}}.")) (|resultant| (($ $ $) "\\axiom{resultant(a,{}\\spad{b})} computes the resultant of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}}.")) (|halfExtendedSubResultantGcd2| (((|Record| (|:| |gcd| $) (|:| |coef2| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd2}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}cb]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|halfExtendedSubResultantGcd1| (((|Record| (|:| |gcd| $) (|:| |coef1| $)) $ $) "\\axiom{\\spad{halfExtendedSubResultantGcd1}(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca]} if \\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[\\spad{g},{}ca,{}cb]} otherwise produces an error.")) (|extendedSubResultantGcd| (((|Record| (|:| |gcd| $) (|:| |coef1| $) (|:| |coef2| $)) $ $) "\\axiom{extendedSubResultantGcd(a,{}\\spad{b})} returns \\axiom{[ca,{}cb,{}\\spad{r}]} such that \\axiom{\\spad{r}} is \\axiom{subResultantGcd(a,{}\\spad{b})} and we have \\axiom{ca * a + cb * cb = \\spad{r}} .")) (|subResultantGcd| (($ $ $) "\\axiom{subResultantGcd(a,{}\\spad{b})} computes a gcd of \\axiom{a} and \\axiom{\\spad{b}} where \\axiom{a} and \\axiom{\\spad{b}} are assumed to have the same main variable \\axiom{\\spad{v}} and are viewed as univariate polynomials in \\axiom{\\spad{v}} with coefficients in the fraction field of the polynomial ring generated by their other variables over \\axiom{\\spad{R}}.")) (|exactQuotient!| (($ $ $) "\\axiom{exactQuotient!(a,{}\\spad{b})} replaces \\axiom{a} by \\axiom{exactQuotient(a,{}\\spad{b})}") (($ $ |#1|) "\\axiom{exactQuotient!(\\spad{p},{}\\spad{r})} replaces \\axiom{\\spad{p}} by \\axiom{exactQuotient(\\spad{p},{}\\spad{r})}.")) (|exactQuotient| (($ $ $) "\\axiom{exactQuotient(a,{}\\spad{b})} computes the exact quotient of \\axiom{a} by \\axiom{\\spad{b}},{} which is assumed to be a divisor of \\axiom{a}. No error is returned if this exact quotient fails!") (($ $ |#1|) "\\axiom{exactQuotient(\\spad{p},{}\\spad{r})} computes the exact quotient of \\axiom{\\spad{p}} by \\axiom{\\spad{r}},{} which is assumed to be a divisor of \\axiom{\\spad{p}}. No error is returned if this exact quotient fails!")) (|primPartElseUnitCanonical!| (($ $) "\\axiom{primPartElseUnitCanonical!(\\spad{p})} replaces \\axiom{\\spad{p}} by \\axiom{primPartElseUnitCanonical(\\spad{p})}.")) (|primPartElseUnitCanonical| (($ $) "\\axiom{primPartElseUnitCanonical(\\spad{p})} returns \\axiom{primitivePart(\\spad{p})} if \\axiom{\\spad{R}} is a gcd-domain,{} otherwise \\axiom{unitCanonical(\\spad{p})}.")) (|convert| (($ (|Polynomial| |#1|)) "\\axiom{convert(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}},{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.") (($ (|Polynomial| (|Integer|))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{convert(\\spad{p})} returns the same as \\axiom{retract(\\spad{p})}.")) (|retract| (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| |#1|)) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Integer|))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.") (($ (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retract(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if \\axiom{retractIfCan(\\spad{p})} does not return \"failed\",{} otherwise an error is produced.")) (|retractIfCan| (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| |#1|)) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Integer|))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.") (((|Union| $ "failed") (|Polynomial| (|Fraction| (|Integer|)))) "\\axiom{retractIfCan(\\spad{p})} returns \\axiom{\\spad{p}} as an element of the current domain if all its variables belong to \\axiom{\\spad{V}}.")) (|initiallyReduce| (($ $ $) "\\axiom{initiallyReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|headReduce| (($ $ $) "\\axiom{headReduce(a,{}\\spad{b})} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduced?(\\spad{r},{}\\spad{b})} holds and there exists an integer \\axiom{\\spad{e}} such that \\axiom{init(\\spad{b})^e a - \\spad{r}} is zero modulo \\axiom{\\spad{b}}.")) (|lazyResidueClass| (((|Record| (|:| |polnum| $) (|:| |polden| $) (|:| |power| (|NonNegativeInteger|))) $ $) "\\axiom{lazyResidueClass(a,{}\\spad{b})} returns \\axiom{[\\spad{p},{}\\spad{q},{}\\spad{n}]} where \\axiom{\\spad{p} / q**n} represents the residue class of \\axiom{a} modulo \\axiom{\\spad{b}} and \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and \\axiom{\\spad{q}} is \\axiom{init(\\spad{b})}.")) (|monicModulo| (($ $ $) "\\axiom{monicModulo(a,{}\\spad{b})} computes \\axiom{a mod \\spad{b}},{} if \\axiom{\\spad{b}} is monic as univariate polynomial in its main variable.")) (|pseudoDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{pseudoDivide(a,{}\\spad{b})} computes \\axiom{[pquo(a,{}\\spad{b}),{}prem(a,{}\\spad{b})]},{} both polynomials viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}},{} if \\axiom{\\spad{b}} is not a constant polynomial.")) (|lazyPseudoDivide| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})},{} \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]} such that \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}] = lazyPremWithDefault(a,{}\\spad{b})} and \\axiom{\\spad{q}} is the pseudo-quotient computed in this lazy pseudo-division.")) (|lazyPremWithDefault| (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $ |#3|) "\\axiom{lazyPremWithDefault(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b},{}\\spad{v})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b},{}\\spad{v})}.") (((|Record| (|:| |coef| $) (|:| |gap| (|NonNegativeInteger|)) (|:| |remainder| $)) $ $) "\\axiom{lazyPremWithDefault(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{r}]} such that \\axiom{\\spad{r} = lazyPrem(a,{}\\spad{b})} and \\axiom{(c**g)*r = prem(a,{}\\spad{b})}.")) (|lazyPquo| (($ $ $ |#3|) "\\axiom{lazyPquo(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b},{}\\spad{v})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.") (($ $ $) "\\axiom{lazyPquo(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{q}} such that \\axiom{lazyPseudoDivide(a,{}\\spad{b})} returns \\axiom{[\\spad{c},{}\\spad{g},{}\\spad{q},{}\\spad{r}]}.")) (|lazyPrem| (($ $ $ |#3|) "\\axiom{lazyPrem(a,{}\\spad{b},{}\\spad{v})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} viewed as univariate polynomials in the variable \\axiom{\\spad{v}} such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.") (($ $ $) "\\axiom{lazyPrem(a,{}\\spad{b})} returns the polynomial \\axiom{\\spad{r}} reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{\\spad{b}} and such that \\axiom{\\spad{b}} divides \\axiom{init(\\spad{b})^e a - \\spad{r}} where \\axiom{\\spad{e}} is the number of steps of this pseudo-division.")) (|pquo| (($ $ $ |#3|) "\\axiom{pquo(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{pquo(a,{}\\spad{b})} computes the pseudo-quotient of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|prem| (($ $ $ |#3|) "\\axiom{prem(a,{}\\spad{b},{}\\spad{v})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in \\axiom{\\spad{v}}.") (($ $ $) "\\axiom{prem(a,{}\\spad{b})} computes the pseudo-remainder of \\axiom{a} by \\axiom{\\spad{b}},{} both viewed as univariate polynomials in the main variable of \\axiom{\\spad{b}}.")) (|normalized?| (((|Boolean|) $ (|List| $)) "\\axiom{normalized?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{normalized?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{normalized?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{a} and its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variable of \\axiom{\\spad{b}}")) (|initiallyReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{initiallyReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{initiallyReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{initiallyReduced?(a,{}\\spad{b})} returns \\spad{false} iff there exists an iterated initial of \\axiom{a} which is not reduced \\spad{w}.\\spad{r}.\\spad{t} \\axiom{\\spad{b}}.")) (|headReduced?| (((|Boolean|) $ (|List| $)) "\\axiom{headReduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{headReduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{headReduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(head(a),{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|reduced?| (((|Boolean|) $ (|List| $)) "\\axiom{reduced?(\\spad{q},{}lp)} returns \\spad{true} iff \\axiom{reduced?(\\spad{q},{}\\spad{p})} holds for every \\axiom{\\spad{p}} in \\axiom{lp}.") (((|Boolean|) $ $) "\\axiom{reduced?(a,{}\\spad{b})} returns \\spad{true} iff \\axiom{degree(a,{}mvar(\\spad{b})) < mdeg(\\spad{b})}.")) (|supRittWu?| (((|Boolean|) $ $) "\\axiom{supRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is greater than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(a,{}\\spad{b})} returns \\spad{true} if \\axiom{a} is less than \\axiom{\\spad{b}} \\spad{w}.\\spad{r}.\\spad{t}. the Ritt and Wu Wen Tsun ordering using the refinement of Lazard.")) (|RittWuCompare| (((|Union| (|Boolean|) "failed") $ $) "\\axiom{RittWuCompare(a,{}\\spad{b})} returns \\axiom{\"failed\"} if \\axiom{a} and \\axiom{\\spad{b}} have same rank \\spad{w}.\\spad{r}.\\spad{t}. Ritt and Wu Wen Tsun ordering using the refinement of Lazard,{} otherwise returns \\axiom{infRittWu?(a,{}\\spad{b})}.")) (|mainMonomials| (((|List| $) $) "\\axiom{mainMonomials(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [1],{} otherwise returns the list of the monomials of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainCoefficients| (((|List| $) $) "\\axiom{mainCoefficients(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns [\\spad{p}],{} otherwise returns the list of the coefficients of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|leastMonomial| (($ $) "\\axiom{leastMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} the monomial of \\axiom{\\spad{p}} with lowest degree,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mainMonomial| (($ $) "\\axiom{mainMonomial(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{\\spad{O}},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{1},{} otherwise,{} \\axiom{mvar(\\spad{p})} raised to the power \\axiom{mdeg(\\spad{p})}.")) (|quasiMonic?| (((|Boolean|) $) "\\axiom{quasiMonic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff the initial of \\axiom{\\spad{p}} lies in the base ring \\axiom{\\spad{R}}.")) (|monic?| (((|Boolean|) $) "\\axiom{monic?(\\spad{p})} returns \\spad{false} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns \\spad{true} iff \\axiom{\\spad{p}} is monic as a univariate polynomial in its main variable.")) (|reductum| (($ $ |#3|) "\\axiom{reductum(\\spad{p},{}\\spad{v})} returns the reductum of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in \\axiom{\\spad{v}}.")) (|leadingCoefficient| (($ $ |#3|) "\\axiom{leadingCoefficient(\\spad{p},{}\\spad{v})} returns the leading coefficient of \\axiom{\\spad{p}},{} where \\axiom{\\spad{p}} is viewed as A univariate polynomial in \\axiom{\\spad{v}}.")) (|deepestInitial| (($ $) "\\axiom{deepestInitial(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the last term of \\axiom{iteratedInitials(\\spad{p})}.")) (|iteratedInitials| (((|List| $) $) "\\axiom{iteratedInitials(\\spad{p})} returns \\axiom{[]} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns the list of the iterated initials of \\axiom{\\spad{p}}.")) (|deepestTail| (($ $) "\\axiom{deepestTail(\\spad{p})} returns \\axiom{0} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns tail(\\spad{p}),{} if \\axiom{tail(\\spad{p})} belongs to \\axiom{\\spad{R}} or \\axiom{mvar(tail(\\spad{p})) < mvar(\\spad{p})},{} otherwise returns \\axiom{deepestTail(tail(\\spad{p}))}.")) (|tail| (($ $) "\\axiom{tail(\\spad{p})} returns its reductum,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|head| (($ $) "\\axiom{head(\\spad{p})} returns \\axiom{\\spad{p}} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading term (monomial in the AXIOM sense),{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|init| (($ $) "\\axiom{init(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its leading coefficient,{} where \\axiom{\\spad{p}} is viewed as a univariate polynomial in its main variable.")) (|mdeg| (((|NonNegativeInteger|) $) "\\axiom{mdeg(\\spad{p})} returns an error if \\axiom{\\spad{p}} is \\axiom{0},{} otherwise,{} if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}} returns \\axiom{0},{} otherwise,{} returns the degree of \\axiom{\\spad{p}} in its main variable.")) (|mvar| ((|#3| $) "\\axiom{mvar(\\spad{p})} returns an error if \\axiom{\\spad{p}} belongs to \\axiom{\\spad{R}},{} otherwise returns its main variable \\spad{w}. \\spad{r}. \\spad{t}. to the total ordering on the elements in \\axiom{\\spad{V}}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL -(-1087) +(-1086) ((|constructor| (NIL "This domain represents the `repeat' iterator syntax.")) (|body| (((|SpadAst|) $) "\\spad{body(e)} returns the body of the loop `e'.")) (|iterators| (((|List| (|SpadAst|)) $) "\\spad{iterators(e)} returns the list of iterators controlling the loop `e'."))) NIL NIL -(-1088 S |TheField| |ThePols|) +(-1087 S |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#2| |#3| $ |#2|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#3| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#3|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#3| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#3| "failed") |#3| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#3| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#3| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#3| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#3| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1089 |TheField| |ThePols|) +(-1088 |TheField| |ThePols|) ((|constructor| (NIL "\\axiomType{RealRootCharacterizationCategory} provides common acces functions for all real root codings.")) (|relativeApprox| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|approximate| ((|#1| |#2| $ |#1|) "\\axiom{approximate(term,{}root,{}prec)} gives an approximation of \\axiom{term} over \\axiom{root} with precision \\axiom{prec}")) (|rootOf| (((|Union| $ "failed") |#2| (|PositiveInteger|)) "\\axiom{rootOf(pol,{}\\spad{n})} gives the \\spad{n}th root for the order of the Real Closure")) (|allRootsOf| (((|List| $) |#2|) "\\axiom{allRootsOf(pol)} creates all the roots of \\axiom{pol} in the Real Closure,{} assumed in order.")) (|definingPolynomial| ((|#2| $) "\\axiom{definingPolynomial(aRoot)} gives a polynomial such that \\axiom{definingPolynomial(aRoot).aRoot = 0}")) (|recip| (((|Union| |#2| "failed") |#2| $) "\\axiom{recip(pol,{}aRoot)} tries to inverse \\axiom{pol} interpreted as \\axiom{aRoot}")) (|positive?| (((|Boolean|) |#2| $) "\\axiom{positive?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is positive")) (|negative?| (((|Boolean|) |#2| $) "\\axiom{negative?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is negative")) (|zero?| (((|Boolean|) |#2| $) "\\axiom{zero?(pol,{}aRoot)} answers if \\axiom{pol} interpreted as \\axiom{aRoot} is \\axiom{0}")) (|sign| (((|Integer|) |#2| $) "\\axiom{sign(pol,{}aRoot)} gives the sign of \\axiom{pol} interpreted as \\axiom{aRoot}"))) NIL NIL -(-1090 R E V P TS) +(-1089 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are proposed: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\axiomType{QCMPACK}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS) and \\axiomType{RSETGCD}(\\spad{R},{}\\spad{E},{}\\spad{V},{}\\spad{P},{}TS). The same way it does not care about the way univariate polynomial gcd (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcd need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiom{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1091 S R E V P) +(-1090 S R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#5|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#5| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#5|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#5| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#5|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#5|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#5| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#5| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#5| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#5|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#5|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#5| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#5|) (|:| |tower| $))) |#5| |#5| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#5| (|List| $)) |#5| |#5| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#5| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#5| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#5| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#5| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#5| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#5| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#5| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) NIL NIL -(-1092 R E V P) +(-1091 R E V P) ((|constructor| (NIL "The category of regular triangular sets,{} introduced under the name regular chains in [1] (and other papers). In [3] it is proved that regular triangular sets and towers of simple extensions of a field are equivalent notions. In the following definitions,{} all polynomials and ideals are taken from the polynomial ring \\spad{k[x1,...,xn]} where \\spad{k} is the fraction field of \\spad{R}. The triangular set \\spad{[t1,...,tm]} is regular iff for every \\spad{i} the initial of \\spad{ti+1} is invertible in the tower of simple extensions associated with \\spad{[t1,...,ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given ideal \\spad{I} iff the radical of \\spad{I} is equal to the intersection of the radical ideals generated by the saturated ideals of the \\spad{[T1,...,Ti]}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Kalkbrener of a given triangular set \\spad{T} iff it is a split of Kalkbrener of the saturated ideal of \\spad{T}. Let \\spad{K} be an algebraic closure of \\spad{k}. Assume that \\spad{V} is finite with cardinality \\spad{n} and let \\spad{A} be the affine space \\spad{K^n}. For a regular triangular set \\spad{T} let denote by \\spad{W(T)} the set of regular zeros of \\spad{T}. A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given subset \\spad{S} of \\spad{A} iff the union of the \\spad{W(Ti)} contains \\spad{S} and is contained in the closure of \\spad{S} (\\spad{w}.\\spad{r}.\\spad{t}. Zariski topology). A family \\spad{[T1,...,Ts]} of regular triangular sets is a split of Lazard of a given triangular set \\spad{T} if it is a split of Lazard of \\spad{W(T)}. Note that if \\spad{[T1,...,Ts]} is a split of Lazard of \\spad{T} then it is also a split of Kalkbrener of \\spad{T}. The converse is \\spad{false}. This category provides operations related to both kinds of splits,{} the former being related to ideals decomposition whereas the latter deals with varieties decomposition. See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets. \\newline References : \\indented{1}{[1] \\spad{M}. KALKBRENER \"Three contributions to elimination theory\"} \\indented{5}{Phd Thesis,{} University of Linz,{} Austria,{} 1991.} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Journal of Symbol. Comp. 1998} \\indented{1}{[3] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)} \\indented{1}{[4] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|)) "\\spad{zeroSetSplit(lp,clos?)} returns \\spad{lts} a split of Kalkbrener of the radical ideal associated with \\spad{lp}. If \\spad{clos?} is \\spad{false},{} it is also a decomposition of the variety associated with \\spad{lp} into the regular zero set of the \\spad{ts} in \\spad{lts} (or,{} in other words,{} a split of Lazard of this variety). See the example illustrating the \\spadtype{RegularTriangularSet} constructor for more explanations about decompositions by means of regular triangular sets.")) (|extend| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{extend(lp,lts)} returns the same as \\spad{concat([extend(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{extend(lp,ts)} returns \\spad{ts} if \\spad{empty? lp} \\spad{extend(p,ts)} if \\spad{lp = [p]} else \\spad{extend(first lp, extend(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{extend(p,lts)} returns the same as \\spad{concat([extend(p,ts) for ts in lts])|}") (((|List| $) |#4| $) "\\spad{extend(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is not a regular triangular set.")) (|internalAugment| (($ (|List| |#4|) $) "\\spad{internalAugment(lp,ts)} returns \\spad{ts} if \\spad{lp} is empty otherwise returns \\spad{internalAugment(rest lp, internalAugment(first lp, ts))}") (($ |#4| $) "\\spad{internalAugment(p,ts)} assumes that \\spad{augment(p,ts)} returns a singleton and returns it.")) (|augment| (((|List| $) (|List| |#4|) (|List| $)) "\\spad{augment(lp,lts)} returns the same as \\spad{concat([augment(lp,ts) for ts in lts])}") (((|List| $) (|List| |#4|) $) "\\spad{augment(lp,ts)} returns \\spad{ts} if \\spad{empty? lp},{} \\spad{augment(p,ts)} if \\spad{lp = [p]},{} otherwise \\spad{augment(first lp, augment(rest lp, ts))}") (((|List| $) |#4| (|List| $)) "\\spad{augment(p,lts)} returns the same as \\spad{concat([augment(p,ts) for ts in lts])}") (((|List| $) |#4| $) "\\spad{augment(p,ts)} assumes that \\spad{p} is a non-constant polynomial whose main variable is greater than any variable of \\spad{ts}. This operation assumes also that if \\spad{p} is added to \\spad{ts} the resulting set,{} say \\spad{ts+p},{} is a regular triangular set. Then it returns a split of Kalkbrener of \\spad{ts+p}. This may not be \\spad{ts+p} itself,{} if for instance \\spad{ts+p} is required to be square-free.")) (|intersect| (((|List| $) |#4| (|List| $)) "\\spad{intersect(p,lts)} returns the same as \\spad{intersect([p],lts)}") (((|List| $) (|List| |#4|) (|List| $)) "\\spad{intersect(lp,lts)} returns the same as \\spad{concat([intersect(lp,ts) for ts in lts])|}") (((|List| $) (|List| |#4|) $) "\\spad{intersect(lp,ts)} returns \\spad{lts} a split of Lazard of the intersection of the affine variety associated with \\spad{lp} and the regular zero set of \\spad{ts}.") (((|List| $) |#4| $) "\\spad{intersect(p,ts)} returns the same as \\spad{intersect([p],ts)}")) (|squareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| $) "\\spad{squareFreePart(p,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a square-free polynomial \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} this polynomial being associated with \\spad{p} modulo \\spad{lpwt.i.tower},{} for every \\spad{i}. Moreover,{} the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. WARNING: This assumes that \\spad{p} is a non-constant polynomial such that if \\spad{p} is added to \\spad{ts},{} then the resulting set is a regular triangular set.")) (|lastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| $))) |#4| |#4| $) "\\spad{lastSubResultant(p1,p2,ts)} returns \\spad{lpwt} such that \\spad{lpwt.i.val} is a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower},{} for every \\spad{i},{} and such that the list of the \\spad{lpwt.i.tower} is a split of Kalkbrener of \\spad{ts}. Moreover,{} if \\spad{p1} and \\spad{p2} do not have a non-trivial gcd \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower} then \\spad{lpwt.i.val} is the resultant of these polynomials \\spad{w}.\\spad{r}.\\spad{t}. \\spad{lpwt.i.tower}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|lastSubResultantElseSplit| (((|Union| |#4| (|List| $)) |#4| |#4| $) "\\spad{lastSubResultantElseSplit(p1,p2,ts)} returns either \\spad{g} a quasi-monic gcd of \\spad{p1} and \\spad{p2} \\spad{w}.\\spad{r}.\\spad{t}. the \\spad{ts} or a split of Kalkbrener of \\spad{ts}. This assumes that \\spad{p1} and \\spad{p2} have the same maim variable and that this variable is greater that any variable occurring in \\spad{ts}.")) (|invertibleSet| (((|List| $) |#4| $) "\\spad{invertibleSet(p,ts)} returns a split of Kalkbrener of the quotient ideal of the ideal \\axiom{\\spad{I}} by \\spad{p} where \\spad{I} is the radical of saturated of \\spad{ts}.")) (|invertible?| (((|Boolean|) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{true} iff \\spad{p} is invertible in the tower associated with \\spad{ts}.") (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| $))) |#4| $) "\\spad{invertible?(p,ts)} returns \\spad{lbwt} where \\spad{lbwt.i} is the result of \\spad{invertibleElseSplit?(p,lbwt.i.tower)} and the list of the \\spad{(lqrwt.i).tower} is a split of Kalkbrener of \\spad{ts}.")) (|invertibleElseSplit?| (((|Union| (|Boolean|) (|List| $)) |#4| $) "\\spad{invertibleElseSplit?(p,ts)} returns \\spad{true} (resp. \\spad{false}) if \\spad{p} is invertible in the tower associated with \\spad{ts} or returns a split of Kalkbrener of \\spad{ts}.")) (|purelyAlgebraicLeadingMonomial?| (((|Boolean|) |#4| $) "\\spad{purelyAlgebraicLeadingMonomial?(p,ts)} returns \\spad{true} iff the main variable of any non-constant iterarted initial of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|algebraicCoefficients?| (((|Boolean|) |#4| $) "\\spad{algebraicCoefficients?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} which is not the main one of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}.")) (|purelyTranscendental?| (((|Boolean|) |#4| $) "\\spad{purelyTranscendental?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is not algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}")) (|purelyAlgebraic?| (((|Boolean|) $) "\\spad{purelyAlgebraic?(ts)} returns \\spad{true} iff for every algebraic variable \\spad{v} of \\spad{ts} we have \\spad{algebraicCoefficients?(t_v,ts_v_-)} where \\spad{ts_v} is \\axiomOpFrom{select}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}) and \\spad{ts_v_-} is \\axiomOpFrom{collectUnder}{TriangularSetCategory}(\\spad{ts},{}\\spad{v}).") (((|Boolean|) |#4| $) "\\spad{purelyAlgebraic?(p,ts)} returns \\spad{true} iff every variable of \\spad{p} is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ts}."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1093 R E V P TS) +(-1092 R E V P TS) ((|constructor| (NIL "An internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|toseSquareFreePart| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseSquareFreePart(\\spad{p},{}ts)} has the same specifications as \\axiomOpFrom{squareFreePart}{RegularTriangularSetCategory}.")) (|toseInvertibleSet| (((|List| |#5|) |#4| |#5|) "\\axiom{toseInvertibleSet(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertibleSet}{RegularTriangularSetCategory}.")) (|toseInvertible?| (((|List| (|Record| (|:| |val| (|Boolean|)) (|:| |tower| |#5|))) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.") (((|Boolean|) |#4| |#5|) "\\axiom{toseInvertible?(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{invertible?}{RegularTriangularSetCategory}.")) (|toseLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{toseLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} has the same specifications as \\axiomOpFrom{lastSubResultant}{RegularTriangularSetCategory}.")) (|integralLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{integralLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|internalLastSubResultant| (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#3| (|Boolean|)) "\\axiom{internalLastSubResultant(lpwt,{}\\spad{v},{}flag)} is an internal subroutine,{} exported only for developement.") (((|List| (|Record| (|:| |val| |#4|) (|:| |tower| |#5|))) |#4| |#4| |#5| (|Boolean|) (|Boolean|)) "\\axiom{internalLastSubResultant(\\spad{p1},{}\\spad{p2},{}ts,{}inv?,{}break?)} is an internal subroutine,{} exported only for developement.")) (|prepareSubResAlgo| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) |#4| |#4| |#5|) "\\axiom{prepareSubResAlgo(\\spad{p1},{}\\spad{p2},{}ts)} is an internal subroutine,{} exported only for developement.")) (|stopTableInvSet!| (((|Void|)) "\\axiom{stopTableInvSet!()} is an internal subroutine,{} exported only for developement.")) (|startTableInvSet!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableInvSet!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement.")) (|stopTableGcd!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTableGcd!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1094) +(-1093) ((|constructor| (NIL "This domain represents `restrict' expressions.")) (|target| (((|TypeAst|) $) "\\spad{target(e)} returns the target type of the conversion..")) (|expression| (((|SpadAst|) $) "\\spad{expression(e)} returns the expression being converted."))) NIL NIL -(-1095) +(-1094) ((|constructor| (NIL "This is the datatype of OpenAxiom runtime values. It exists solely for internal purposes.")) (|eq| (((|Boolean|) $ $) "\\spad{eq(x,y)} holds if both values \\spad{x} and \\spad{y} resides at the same address in memory."))) NIL NIL -(-1096 |Base| R -3495) +(-1095 |Base| R -3494) ((|constructor| (NIL "\\indented{1}{Rules for the pattern matcher} Author: Manuel Bronstein Date Created: 24 Oct 1988 Date Last Updated: 26 October 1993 Keywords: pattern,{} matching,{} rule.")) (|quotedOperators| (((|List| (|Symbol|)) $) "\\spad{quotedOperators(r)} returns the list of operators on the right hand side of \\spad{r} that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies the rule \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rhs| ((|#3| $) "\\spad{rhs(r)} returns the right hand side of the rule \\spad{r}.")) (|lhs| ((|#3| $) "\\spad{lhs(r)} returns the left hand side of the rule \\spad{r}.")) (|pattern| (((|Pattern| |#1|) $) "\\spad{pattern(r)} returns the pattern corresponding to the left hand side of the rule \\spad{r}.")) (|suchThat| (($ $ (|List| (|Symbol|)) (|Mapping| (|Boolean|) (|List| |#3|))) "\\spad{suchThat(r, [a1,...,an], f)} returns the rewrite rule \\spad{r} with the predicate \\spad{f(a1,...,an)} attached to it.")) (|rule| (($ |#3| |#3| (|List| (|Symbol|))) "\\spad{rule(f, g, [f1,...,fn])} creates the rewrite rule \\spad{f == eval(eval(g, g is f), [f1,...,fn])},{} that is a rule with left-hand side \\spad{f} and right-hand side \\spad{g}; The symbols \\spad{f1},{}...,{}fn are the operators that are considered quoted,{} that is they are not evaluated during any rewrite,{} but just applied formally to their arguments.") (($ |#3| |#3|) "\\spad{rule(f, g)} creates the rewrite rule: \\spad{f == eval(g, g is f)},{} with left-hand side \\spad{f} and right-hand side \\spad{g}."))) NIL NIL -(-1097 |f|) +(-1096 |f|) ((|constructor| (NIL "This domain implements named rules")) (|name| (((|Symbol|) $) "\\spad{name(x)} returns the symbol"))) NIL NIL -(-1098 |Base| R -3495) +(-1097 |Base| R -3494) ((|constructor| (NIL "A ruleset is a set of pattern matching rules grouped together.")) (|elt| ((|#3| $ |#3| (|PositiveInteger|)) "\\spad{elt(r,f,n)} or \\spad{r}(\\spad{f},{} \\spad{n}) applies all the rules of \\spad{r} to \\spad{f} at most \\spad{n} times.")) (|rules| (((|List| (|RewriteRule| |#1| |#2| |#3|)) $) "\\spad{rules(r)} returns the rules contained in \\spad{r}.")) (|ruleset| (($ (|List| (|RewriteRule| |#1| |#2| |#3|))) "\\spad{ruleset([r1,...,rn])} creates the rule set \\spad{{r1,...,rn}}."))) NIL NIL -(-1099 R |ls|) +(-1098 R |ls|) ((|constructor| (NIL "\\indented{1}{A package for computing the rational univariate representation} \\indented{1}{of a zero-dimensional algebraic variety given by a regular} \\indented{1}{triangular set. This package is essentially an interface for the} \\spadtype{InternalRationalUnivariateRepresentationPackage} constructor. It is used in the \\spadtype{ZeroDimensionalSolvePackage} for solving polynomial systems with finitely many solutions.")) (|rur| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{rur(lp,univ?,check?)} returns the same as \\spad{rur(lp,true)}. Moreover,{} if \\spad{check?} is \\spad{true} then the result is checked.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{rur(lp)} returns the same as \\spad{rur(lp,true)}") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{rur(lp,univ?)} returns a rational univariate representation of \\spad{lp}. This assumes that \\spad{lp} defines a regular triangular \\spad{ts} whose associated variety is zero-dimensional over \\spad{R}. \\spad{rur(lp,univ?)} returns a list of items \\spad{[u,lc]} where \\spad{u} is an irreducible univariate polynomial and each \\spad{c} in \\spad{lc} involves two variables: one from \\spad{ls},{} called the coordinate of \\spad{c},{} and an extra variable which represents any root of \\spad{u}. Every root of \\spad{u} leads to a tuple of values for the coordinates of \\spad{lc}. Moreover,{} a point \\spad{x} belongs to the variety associated with \\spad{lp} iff there exists an item \\spad{[u,lc]} in \\spad{rur(lp,univ?)} and a root \\spad{r} of \\spad{u} such that \\spad{x} is given by the tuple of values for the coordinates of \\spad{lc} evaluated at \\spad{r}. If \\spad{univ?} is \\spad{true} then each polynomial \\spad{c} will have a constant leading coefficient \\spad{w}.\\spad{r}.\\spad{t}. its coordinate. See the example which illustrates the \\spadtype{ZeroDimensionalSolvePackage} package constructor."))) NIL NIL -(-1100 R UP M) +(-1099 R UP M) ((|constructor| (NIL "Domain which represents simple algebraic extensions of arbitrary rings. The first argument to the domain,{} \\spad{R},{} is the underlying ring,{} the second argument is a domain of univariate polynomials over \\spad{K},{} while the last argument specifies the defining minimal polynomial. The elements of the domain are canonically represented as polynomials of degree less than that of the minimal polynomial with coefficients in \\spad{R}. The second argument is both the type of the third argument and the underlying representation used by \\spadtype{SAE} itself."))) -((-4418 |has| |#1| (-376)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))))) -(-1101 UP SAE UPA) +((-4417 |has| |#1| (-376)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-363))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-363)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-363))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (|HasCategory| |#1| (QUOTE (-363)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-376)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))))) +(-1100 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of the rational numbers (\\spadtype{Fraction Integer}).")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1102 UP SAE UPA) +(-1101 UP SAE UPA) ((|constructor| (NIL "Factorization of univariate polynomials with coefficients in an algebraic extension of \\spadtype{Fraction Polynomial Integer}.")) (|factor| (((|Factored| |#3|) |#3|) "\\spad{factor(p)} returns a prime factorisation of \\spad{p}."))) NIL NIL -(-1103) +(-1102) ((|constructor| (NIL "This trivial domain lets us build Univariate Polynomials in an anonymous variable"))) NIL NIL -(-1104) +(-1103) ((|constructor| (NIL "This is the category of Spad syntax objects."))) NIL NIL -(-1105 S) +(-1104 S) ((|constructor| (NIL "\\indented{1}{Cache of elements in a set} Author: Manuel Bronstein Date Created: 31 Oct 1988 Date Last Updated: 14 May 1991 \\indented{2}{A sorted cache of a cachable set \\spad{S} is a dynamic structure that} \\indented{2}{keeps the elements of \\spad{S} sorted and assigns an integer to each} \\indented{2}{element of \\spad{S} once it is in the cache. This way,{} equality and ordering} \\indented{2}{on \\spad{S} are tested directly on the integers associated with the elements} \\indented{2}{of \\spad{S},{} once they have been entered in the cache.}")) (|enterInCache| ((|#1| |#1| (|Mapping| (|Integer|) |#1| |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(x, y)} to determine whether \\spad{x < y (f(x,y) < 0), x = y (f(x,y) = 0)},{} or \\spad{x > y (f(x,y) > 0)}. It returns \\spad{x} with an integer associated with it.") ((|#1| |#1| (|Mapping| (|Boolean|) |#1|)) "\\spad{enterInCache(x, f)} enters \\spad{x} in the cache,{} calling \\spad{f(y)} to determine whether \\spad{x} is equal to \\spad{y}. It returns \\spad{x} with an integer associated with it.")) (|cache| (((|List| |#1|)) "\\spad{cache()} returns the current cache as a list.")) (|clearCache| (((|Void|)) "\\spad{clearCache()} empties the cache."))) NIL NIL -(-1106) +(-1105) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: October 24,{} 2007 Date Last Modified: January 18,{} 2008. A `Scope' is a sequence of contours.")) (|currentCategoryFrame| (($) "\\spad{currentCategoryFrame()} returns the category frame currently in effect.")) (|currentScope| (($) "\\spad{currentScope()} returns the scope currently in effect")) (|pushNewContour| (($ (|Binding|) $) "\\spad{pushNewContour(b,s)} pushs a new contour with sole binding `b'.")) (|findBinding| (((|Maybe| (|Binding|)) (|Identifier|) $) "\\spad{findBinding(n,s)} returns the first binding of `n' in `s'; otherwise `nothing'.")) (|contours| (((|List| (|Contour|)) $) "\\spad{contours(s)} returns the list of contours in scope \\spad{s}.")) (|empty| (($) "\\spad{empty()} returns an empty scope."))) NIL NIL -(-1107 R) +(-1106 R) ((|constructor| (NIL "StructuralConstantsPackage provides functions creating structural constants from a multiplication tables or a basis of a matrix algebra and other useful functions in this context.")) (|coordinates| (((|Vector| |#1|) (|Matrix| |#1|) (|List| (|Matrix| |#1|))) "\\spad{coordinates(a,[v1,...,vn])} returns the coordinates of \\spad{a} with respect to the \\spad{R}-module basis \\spad{v1},{}...,{}\\spad{vn}.")) (|structuralConstants| (((|Vector| (|Matrix| |#1|)) (|List| (|Matrix| |#1|))) "\\spad{structuralConstants(basis)} takes the \\spad{basis} of a matrix algebra,{} \\spadignore{e.g.} the result of \\spadfun{basisOfCentroid} and calculates the structural constants. Note,{} that the it is not checked,{} whether \\spad{basis} really is a \\spad{basis} of a matrix algebra.") (((|Vector| (|Matrix| (|Polynomial| |#1|))) (|List| (|Symbol|)) (|Matrix| (|Polynomial| |#1|))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}") (((|Vector| (|Matrix| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|)) (|Matrix| (|Fraction| (|Polynomial| |#1|)))) "\\spad{structuralConstants(ls,mt)} determines the structural constants of an algebra with generators \\spad{ls} and multiplication table \\spad{mt},{} the entries of which must be given as linear polynomials in the indeterminates given by \\spad{ls}. The result is in particular useful \\indented{1}{as fourth argument for \\spadtype{AlgebraGivenByStructuralConstants}} \\indented{1}{and \\spadtype{GenericNonAssociativeAlgebra}.}"))) NIL NIL -(-1108 R) +(-1107 R) ((|constructor| (NIL "\\spadtype{SequentialDifferentialPolynomial} implements an ordinary differential polynomial ring in arbitrary number of differential indeterminates,{} with coefficients in a ring. The ranking on the differential indeterminate is sequential. \\blankline"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1109 (-1198)) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1109 (-1198)) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1109 (-1198)) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1109 (-1198)) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1109 (-1198)) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1109 S) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1108 (-1197)) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1108 (-1197)) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1108 (-1197)) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1108 (-1197)) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1108 (-1197)) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-240))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1108 S) ((|constructor| (NIL "\\spadtype{OrderlyDifferentialVariable} adds a commonly used sequential ranking to the set of derivatives of an ordered list of differential indeterminates. A sequential ranking is a ranking \\spadfun{<} of the derivatives with the property that for any derivative \\spad{v},{} there are only a finite number of derivatives \\spad{u} with \\spad{u} \\spadfun{<} \\spad{v}. This domain belongs to \\spadtype{DifferentialVariableCategory}. It defines \\spadfun{weight} to be just \\spadfun{order},{} and it defines a sequential ranking \\spadfun{<} on derivatives \\spad{u} by the lexicographic order on the pair (\\spadfun{variable}(\\spad{u}),{} \\spadfun{order}(\\spad{u}))."))) NIL NIL -(-1110 S) +(-1109 S) ((|constructor| (NIL "This type is used to specify a range of values from type \\spad{S}."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1122)))) -(-1111 R S) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1121)))) +(-1110 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|List| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value. For example,{} if \\spad{s = l..h by k},{} then the list \\spad{[f(l), f(l+k),..., f(lN)]} is computed,{} where \\spad{lN <= h < lN+k}.") (((|Segment| |#2|) (|Mapping| |#2| |#1|) (|Segment| |#1|)) "\\spad{map(f,l..h)} returns a new segment \\spad{f(l)..f(h)}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1112) +((|HasCategory| |#1| (QUOTE (-859)))) +(-1111) ((|constructor| (NIL "This domain represents segement expressions.")) (|bounds| (((|List| (|SpadAst|)) $) "\\spad{bounds(s)} returns the bounds of the segment `s'. If `s' designates an infinite interval,{} then the returns list a singleton list."))) NIL NIL -(-1113 S) +(-1112 S) ((|constructor| (NIL "This domain is used to provide the function argument syntax \\spad{v=a..b}. This is used,{} for example,{} by the top-level \\spadfun{draw} functions."))) NIL -((|HasCategory| (-1110 |#1|) (QUOTE (-1122)))) -(-1114 R S) +((|HasCategory| (-1109 |#1|) (QUOTE (-1121)))) +(-1113 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto \\spadtype{SegmentBinding}\\spad{s}.")) (|map| (((|SegmentBinding| |#2|) (|Mapping| |#2| |#1|) (|SegmentBinding| |#1|)) "\\spad{map(f,v=a..b)} returns the value given by \\spad{v=f(a)..f(b)}."))) NIL NIL -(-1115 S) +(-1114 S) ((|constructor| (NIL "This category provides operations on ranges,{} or {\\em segments} as they are called.")) (|segment| (($ |#1| |#1|) "\\spad{segment(i,j)} is an alternate way to create the segment \\spad{i..j}.")) (|incr| (((|Integer|) $) "\\spad{incr(s)} returns \\spad{n},{} where \\spad{s} is a segment in which every \\spad{n}\\spad{-}th element is used. Note: \\spad{incr(l..h by n) = n}.")) (|high| ((|#1| $) "\\spad{high(s)} returns the second endpoint of \\spad{s}. Note: \\spad{high(l..h) = h}.")) (|low| ((|#1| $) "\\spad{low(s)} returns the first endpoint of \\spad{s}. Note: \\spad{low(l..h) = l}.")) (|hi| ((|#1| $) "\\spad{hi(s)} returns the second endpoint of \\spad{s}. Note: \\spad{hi(l..h) = h}.")) (|lo| ((|#1| $) "\\spad{lo(s)} returns the first endpoint of \\spad{s}. Note: \\spad{lo(l..h) = l}.")) (BY (($ $ (|Integer|)) "\\spad{s by n} creates a new segment in which only every \\spad{n}\\spad{-}th element is used.")) (SEGMENT (($ |#1| |#1|) "\\spad{l..h} creates a segment with \\spad{l} and \\spad{h} as the endpoints."))) NIL NIL -(-1116 S L) +(-1115 S L) ((|constructor| (NIL "This category provides an interface for expanding segments to a stream of elements.")) (|map| ((|#2| (|Mapping| |#1| |#1|) $) "\\spad{map(f,l..h by k)} produces a value of type \\spad{L} by applying \\spad{f} to each of the succesive elements of the segment,{} that is,{} \\spad{[f(l), f(l+k), ..., f(lN)]},{} where \\spad{lN <= h < lN+k}.")) (|expand| ((|#2| $) "\\spad{expand(l..h by k)} creates value of type \\spad{L} with elements \\spad{l, l+k, ... lN} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand(1..5 by 2) = [1,3,5]}.") ((|#2| (|List| $)) "\\spad{expand(l)} creates a new value of type \\spad{L} in which each segment \\spad{l..h by k} is replaced with \\spad{l, l+k, ... lN},{} where \\spad{lN <= h < lN+k}. For example,{} \\spad{expand [1..4, 7..9] = [1,2,3,4,7,8,9]}."))) NIL NIL -(-1117) +(-1116) ((|constructor| (NIL "This domain represents a block of expressions.")) (|last| (((|SpadAst|) $) "\\spad{last(e)} returns the last instruction in `e'.")) (|body| (((|List| (|SpadAst|)) $) "\\spad{body(e)} returns the list of expressions in the sequence of instruction `e'."))) NIL NIL -(-1118 S) +(-1117 S) ((|constructor| (NIL "A set over a domain \\spad{D} models the usual mathematical notion of a finite set of elements from \\spad{D}. Sets are unordered collections of distinct elements (that is,{} order and duplication does not matter). The notation \\spad{set [a,b,c]} can be used to create a set and the usual operations such as union and intersection are available to form new sets. In our implementation,{} \\Language{} maintains the entries in sorted order. Specifically,{} the parts function returns the entries as a list in ascending order and the extract operation returns the maximum entry. Given two sets \\spad{s} and \\spad{t} where \\spad{\\#s = m} and \\spad{\\#t = n},{} the complexity of \\indented{2}{\\spad{s = t} is \\spad{O(min(n,m))}} \\indented{2}{\\spad{s < t} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{union(s,t)},{} \\spad{intersect(s,t)},{} \\spad{minus(s,t)},{} \\spad{symmetricDifference(s,t)} is \\spad{O(max(n,m))}} \\indented{2}{\\spad{member(x,t)} is \\spad{O(n log n)}} \\indented{2}{\\spad{insert(x,t)} and \\spad{remove(x,t)} is \\spad{O(n)}}"))) -((-4425 . T) (-4415 . T) (-4426 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-1119 A S) +((-4424 . T) (-4414 . T) (-4425 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#1| (QUOTE (-381))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-1118 A S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#2| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#2|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#2|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#2|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#2|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) NIL NIL -(-1120 S) +(-1119 S) ((|constructor| (NIL "A set category lists a collection of set-theoretic operations useful for both finite sets and multisets. Note however that finite sets are distinct from multisets. Although the operations defined for set categories are common to both,{} the relationship between the two cannot be described by inclusion or inheritance.")) (|union| (($ |#1| $) "\\spad{union(x,u)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{x},{}\\spad{u})} returns a copy of \\spad{u}.") (($ $ |#1|) "\\spad{union(u,x)} returns the set aggregate \\spad{u} with the element \\spad{x} added. If \\spad{u} already contains \\spad{x},{} \\axiom{union(\\spad{u},{}\\spad{x})} returns a copy of \\spad{u}.") (($ $ $) "\\spad{union(u,v)} returns the set aggregate of elements which are members of either set aggregate \\spad{u} or \\spad{v}.")) (|subset?| (((|Boolean|) $ $) "\\spad{subset?(u,v)} tests if \\spad{u} is a subset of \\spad{v}. Note: equivalent to \\axiom{reduce(and,{}{member?(\\spad{x},{}\\spad{v}) for \\spad{x} in \\spad{u}},{}\\spad{true},{}\\spad{false})}.")) (|symmetricDifference| (($ $ $) "\\spad{symmetricDifference(u,v)} returns the set aggregate of elements \\spad{x} which are members of set aggregate \\spad{u} or set aggregate \\spad{v} but not both. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{symmetricDifference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: \\axiom{symmetricDifference(\\spad{u},{}\\spad{v}) = union(difference(\\spad{u},{}\\spad{v}),{}difference(\\spad{v},{}\\spad{u}))}")) (|difference| (($ $ |#1|) "\\spad{difference(u,x)} returns the set aggregate \\spad{u} with element \\spad{x} removed. If \\spad{u} does not contain \\spad{x},{} a copy of \\spad{u} is returned. Note: \\axiom{difference(\\spad{s},{} \\spad{x}) = difference(\\spad{s},{} {\\spad{x}})}.") (($ $ $) "\\spad{difference(u,v)} returns the set aggregate \\spad{w} consisting of elements in set aggregate \\spad{u} but not in set aggregate \\spad{v}. If \\spad{u} and \\spad{v} have no elements in common,{} \\axiom{difference(\\spad{u},{}\\spad{v})} returns a copy of \\spad{u}. Note: equivalent to the notation (not currently supported) \\axiom{{\\spad{x} for \\spad{x} in \\spad{u} | not member?(\\spad{x},{}\\spad{v})}}.")) (|intersect| (($ $ $) "\\spad{intersect(u,v)} returns the set aggregate \\spad{w} consisting of elements common to both set aggregates \\spad{u} and \\spad{v}. Note: equivalent to the notation (not currently supported) {\\spad{x} for \\spad{x} in \\spad{u} | member?(\\spad{x},{}\\spad{v})}.")) (|set| (($ (|List| |#1|)) "\\spad{set([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}.") (($) "\\spad{set()}\\$\\spad{D} creates an empty set aggregate of type \\spad{D}.")) (|brace| (($ (|List| |#1|)) "\\spad{brace([x,y,...,z])} creates a set aggregate containing items \\spad{x},{}\\spad{y},{}...,{}\\spad{z}. This form is considered obsolete. Use \\axiomFun{set} instead.") (($) "\\spad{brace()}\\$\\spad{D} (otherwise written {}\\$\\spad{D}) creates an empty set aggregate of type \\spad{D}. This form is considered obsolete. Use \\axiomFun{set} instead.")) (|part?| (((|Boolean|) $ $) "\\spad{s} < \\spad{t} returns \\spad{true} if all elements of set aggregate \\spad{s} are also elements of set aggregate \\spad{t}."))) -((-4415 . T)) +((-4414 . T)) NIL -(-1121 S) +(-1120 S) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1122) +(-1121) ((|constructor| (NIL "\\spadtype{SetCategory} is the basic category for describing a collection of elements with \\spadop{=} (equality) and \\spadfun{coerce} to output form. \\blankline Conditional Attributes: \\indented{3}{canonical\\tab{15}data structure equality is the same as \\spadop{=}}")) (|latex| (((|String|) $) "\\spad{latex(s)} returns a LaTeX-printable output representation of \\spad{s}.")) (|hash| (((|SingleInteger|) $) "\\spad{hash(s)} calculates a hash code for \\spad{s}."))) NIL NIL -(-1123 |m| |n|) +(-1122 |m| |n|) ((|constructor| (NIL "\\spadtype{SetOfMIntegersInOneToN} implements the subsets of \\spad{M} integers in the interval \\spad{[1..n]}")) (|delta| (((|NonNegativeInteger|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{delta(S,k,p)} returns the number of elements of \\spad{S} which are strictly between \\spad{p} and the k^{th} element of \\spad{S}.")) (|member?| (((|Boolean|) (|PositiveInteger|) $) "\\spad{member?(p, s)} returns \\spad{true} is \\spad{p} is in \\spad{s},{} \\spad{false} otherwise.")) (|enumerate| (((|Vector| $)) "\\spad{enumerate()} returns a vector of all the sets of \\spad{M} integers in \\spad{1..n}.")) (|setOfMinN| (($ (|List| (|PositiveInteger|))) "\\spad{setOfMinN([a_1,...,a_m])} returns the set {\\spad{a_1},{}...,{}a_m}. Error if {\\spad{a_1},{}...,{}a_m} is not a set of \\spad{M} integers in \\spad{1..n}.")) (|elements| (((|List| (|PositiveInteger|)) $) "\\spad{elements(S)} returns the list of the elements of \\spad{S} in increasing order.")) (|replaceKthElement| (((|Union| $ #1="failed") $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{replaceKthElement(S,k,p)} replaces the k^{th} element of \\spad{S} by \\spad{p},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more.")) (|incrementKthElement| (((|Union| $ #1#) $ (|PositiveInteger|)) "\\spad{incrementKthElement(S,k)} increments the k^{th} element of \\spad{S},{} and returns \"failed\" if the result is not a set of \\spad{M} integers in \\spad{1..n} any more."))) NIL NIL -(-1124) +(-1123) ((|constructor| (NIL "This domain allows the manipulation of the usual Lisp values."))) NIL NIL -(-1125 |Str| |Sym| |Int| |Flt| |Expr|) +(-1124 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This category allows the manipulation of Lisp values while keeping the grunge fairly localized.")) (|#| (((|Integer|) $) "\\spad{\\#((a1,...,an))} returns \\spad{n}.")) (|cdr| (($ $) "\\spad{cdr((a1,...,an))} returns \\spad{(a2,...,an)}.")) (|car| (($ $) "\\spad{car((a1,...,an))} returns \\spad{a1}.")) (|expr| ((|#5| $) "\\spad{expr(s)} returns \\spad{s} as an element of Expr; Error: if \\spad{s} is not an atom that also belongs to Expr.")) (|float| ((|#4| $) "\\spad{float(s)} returns \\spad{s} as an element of Flt; Error: if \\spad{s} is not an atom that also belongs to Flt.")) (|integer| ((|#3| $) "\\spad{integer(s)} returns \\spad{s} as an element of Int. Error: if \\spad{s} is not an atom that also belongs to Int.")) (|symbol| ((|#2| $) "\\spad{symbol(s)} returns \\spad{s} as an element of Sym. Error: if \\spad{s} is not an atom that also belongs to Sym.")) (|string| ((|#1| $) "\\spad{string(s)} returns \\spad{s} as an element of Str. Error: if \\spad{s} is not an atom that also belongs to Str.")) (|destruct| (((|List| $) $) "\\spad{destruct((a1,...,an))} returns the list [\\spad{a1},{}...,{}an].")) (|float?| (((|Boolean|) $) "\\spad{float?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Flt.")) (|integer?| (((|Boolean|) $) "\\spad{integer?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Int.")) (|symbol?| (((|Boolean|) $) "\\spad{symbol?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Sym.")) (|string?| (((|Boolean|) $) "\\spad{string?(s)} is \\spad{true} if \\spad{s} is an atom and belong to Str.")) (|list?| (((|Boolean|) $) "\\spad{list?(s)} is \\spad{true} if \\spad{s} is a Lisp list,{} possibly ().")) (|pair?| (((|Boolean|) $) "\\spad{pair?(s)} is \\spad{true} if \\spad{s} has is a non-null Lisp list.")) (|atom?| (((|Boolean|) $) "\\spad{atom?(s)} is \\spad{true} if \\spad{s} is a Lisp atom.")) (|null?| (((|Boolean|) $) "\\spad{null?(s)} is \\spad{true} if \\spad{s} is the \\spad{S}-expression ().")) (|eq| (((|Boolean|) $ $) "\\spad{eq(s, t)} is \\spad{true} if \\%peq(\\spad{s},{}\\spad{t}) is \\spad{true} for pointers."))) NIL NIL -(-1126 |Str| |Sym| |Int| |Flt| |Expr|) +(-1125 |Str| |Sym| |Int| |Flt| |Expr|) ((|constructor| (NIL "This domain allows the manipulation of Lisp values over arbitrary atomic types."))) NIL NIL -(-1127 R FS) +(-1126 R FS) ((|constructor| (NIL "\\axiomType{SimpleFortranProgram(\\spad{f},{}type)} provides a simple model of some FORTRAN subprograms,{} making it possible to coerce objects of various domains into a FORTRAN subprogram called \\axiom{\\spad{f}}. These can then be translated into legal FORTRAN code.")) (|fortran| (($ (|Symbol|) (|FortranScalarType|) |#2|) "\\spad{fortran(fname,ftype,body)} builds an object of type \\axiomType{FortranProgramCategory}. The three arguments specify the name,{} the type and the \\spad{body} of the program."))) NIL NIL -(-1128 R E V P TS) +(-1127 R E V P TS) ((|constructor| (NIL "\\indented{2}{A internal package for removing redundant quasi-components and redundant} \\indented{2}{branches when decomposing a variety by means of quasi-components} \\indented{2}{of regular triangular sets. \\newline} References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{5}{Tech. Report (PoSSo project)} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}")) (|branchIfCan| (((|Union| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|))) "failed") (|List| |#4|) |#5| (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{branchIfCan(leq,{}ts,{}lineq,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement.")) (|prepareDecompose| (((|List| (|Record| (|:| |eq| (|List| |#4|)) (|:| |tower| |#5|) (|:| |ineq| (|List| |#4|)))) (|List| |#4|) (|List| |#5|) (|Boolean|) (|Boolean|)) "\\axiom{prepareDecompose(lp,{}lts,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousCases| (((|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) (|List| (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)))) "\\axiom{removeSuperfluousCases(llpwt)} is an internal subroutine,{} exported only for developement.")) (|subCase?| (((|Boolean|) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|)) (|Record| (|:| |val| (|List| |#4|)) (|:| |tower| |#5|))) "\\axiom{subCase?(\\spad{lpwt1},{}\\spad{lpwt2})} is an internal subroutine,{} exported only for developement.")) (|removeSuperfluousQuasiComponents| (((|List| |#5|) (|List| |#5|)) "\\axiom{removeSuperfluousQuasiComponents(lts)} removes from \\axiom{lts} any \\spad{ts} such that \\axiom{subQuasiComponent?(ts,{}us)} holds for another \\spad{us} in \\axiom{lts}.")) (|subQuasiComponent?| (((|Boolean|) |#5| (|List| |#5|)) "\\axiom{subQuasiComponent?(ts,{}lus)} returns \\spad{true} iff \\axiom{subQuasiComponent?(ts,{}us)} holds for one \\spad{us} in \\spad{lus}.") (((|Boolean|) |#5| |#5|) "\\axiom{subQuasiComponent?(ts,{}us)} returns \\spad{true} iff \\axiomOpFrom{internalSubQuasiComponent?(ts,{}us)}{QuasiComponentPackage} returs \\spad{true}.")) (|internalSubQuasiComponent?| (((|Union| (|Boolean|) "failed") |#5| |#5|) "\\axiom{internalSubQuasiComponent?(ts,{}us)} returns a boolean \\spad{b} value if the fact the regular zero set of \\axiom{us} contains that of \\axiom{ts} can be decided (and in that case \\axiom{\\spad{b}} gives this inclusion) otherwise returns \\axiom{\"failed\"}.")) (|infRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{infRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalInfRittWu?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalInfRittWu?(\\spad{lp1},{}\\spad{lp2})} is an internal subroutine,{} exported only for developement.")) (|internalSubPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{internalSubPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}} assuming that these lists are sorted increasingly \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{infRittWu?}{RecursivePolynomialCategory}.")) (|subPolSet?| (((|Boolean|) (|List| |#4|) (|List| |#4|)) "\\axiom{subPolSet?(\\spad{lp1},{}\\spad{lp2})} returns \\spad{true} iff \\axiom{\\spad{lp1}} is a sub-set of \\axiom{\\spad{lp2}}.")) (|subTriSet?| (((|Boolean|) |#5| |#5|) "\\axiom{subTriSet?(ts,{}us)} returns \\spad{true} iff \\axiom{ts} is a sub-set of \\axiom{us}.")) (|moreAlgebraic?| (((|Boolean|) |#5| |#5|) "\\axiom{moreAlgebraic?(ts,{}us)} returns \\spad{false} iff \\axiom{ts} and \\axiom{us} are both empty,{} or \\axiom{ts} has less elements than \\axiom{us},{} or some variable is algebraic \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{us} and is not \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|algebraicSort| (((|List| |#5|) (|List| |#5|)) "\\axiom{algebraicSort(lts)} sorts \\axiom{lts} \\spad{w}.\\spad{r}.\\spad{t} \\axiomOpFrom{supDimElseRittWu}{QuasiComponentPackage}.")) (|supDimElseRittWu?| (((|Boolean|) |#5| |#5|) "\\axiom{supDimElseRittWu(ts,{}us)} returns \\spad{true} iff \\axiom{ts} has less elements than \\axiom{us} otherwise if \\axiom{ts} has higher rank than \\axiom{us} \\spad{w}.\\spad{r}.\\spad{t}. Riit and Wu ordering.")) (|stopTable!| (((|Void|)) "\\axiom{stopTableGcd!()} is an internal subroutine,{} exported only for developement.")) (|startTable!| (((|Void|) (|String|) (|String|) (|String|)) "\\axiom{startTableGcd!(\\spad{s1},{}\\spad{s2},{}\\spad{s3})} is an internal subroutine,{} exported only for developement."))) NIL NIL -(-1129 R E V P TS) +(-1128 R E V P TS) ((|constructor| (NIL "A internal package for computing gcds and resultants of univariate polynomials with coefficients in a tower of simple extensions of a field. There is no need to use directly this package since its main operations are available from \\spad{TS}. \\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA and \\spad{R}. RIOBOO \"Computations of gcd over} \\indented{5}{algebraic towers of simple extensions\" In proceedings of \\spad{AAECC11}} \\indented{5}{Paris,{} 1995.} \\indented{1}{[2] \\spad{M}. MORENO MAZA \"Calculs de pgcd au-dessus des tours} \\indented{5}{d'extensions simples et resolution des systemes d'equations} \\indented{5}{algebriques\" These,{} Universite \\spad{P}.etM. Curie,{} Paris,{} 1997.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1130 R E V P) +(-1129 R E V P) ((|constructor| (NIL "The category of square-free regular triangular sets. A regular triangular set \\spad{ts} is square-free if the gcd of any polynomial \\spad{p} in \\spad{ts} and \\spad{differentiate(p,mvar(p))} \\spad{w}.\\spad{r}.\\spad{t}. \\axiomOpFrom{collectUnder}{TriangularSetCategory}(ts,{}\\axiomOpFrom{mvar}{RecursivePolynomialCategory}(\\spad{p})) has degree zero \\spad{w}.\\spad{r}.\\spad{t}. \\spad{mvar(p)}. Thus any square-free regular set defines a tower of square-free simple extensions.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991} \\indented{1}{[2] \\spad{M}. KALKBRENER \"Algorithmic properties of polynomial rings\"} \\indented{5}{Habilitation Thesis,{} ETZH,{} Zurich,{} 1995.} \\indented{1}{[3] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1131) +(-1130) ((|constructor| (NIL "SymmetricGroupCombinatoricFunctions contains combinatoric functions concerning symmetric groups and representation theory: list young tableaus,{} improper partitions,{} subsets bijection of Coleman.")) (|unrankImproperPartitions1| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions1(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in at most \\spad{m} nonnegative parts ordered as follows: first,{} in reverse lexicographically according to their non-zero parts,{} then according to their positions (\\spadignore{i.e.} lexicographical order using {\\em subSet}: {\\em [3,0,0] < [0,3,0] < [0,0,3] < [2,1,0] < [2,0,1] < [0,2,1] < [1,2,0] < [1,0,2] < [0,1,2] < [1,1,1]}). Note: counting of subtrees is done by {\\em numberOfImproperPartitionsInternal}.")) (|unrankImproperPartitions0| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{unrankImproperPartitions0(n,m,k)} computes the {\\em k}\\spad{-}th improper partition of nonnegative \\spad{n} in \\spad{m} nonnegative parts in reverse lexicographical order. Example: {\\em [0,0,3] < [0,1,2] < [0,2,1] < [0,3,0] < [1,0,2] < [1,1,1] < [1,2,0] < [2,0,1] < [2,1,0] < [3,0,0]}. Error: if \\spad{k} is negative or too big. Note: counting of subtrees is done by \\spadfunFrom{numberOfImproperPartitions}{SymmetricGroupCombinatoricFunctions}.")) (|subSet| (((|List| (|Integer|)) (|Integer|) (|Integer|) (|Integer|)) "\\spad{subSet(n,m,k)} calculates the {\\em k}\\spad{-}th {\\em m}-subset of the set {\\em 0,1,...,(n-1)} in the lexicographic order considered as a decreasing map from {\\em 0,...,(m-1)} into {\\em 0,...,(n-1)}. See \\spad{S}.\\spad{G}. Williamson: Theorem 1.60. Error: if not {\\em (0 <= m <= n and 0 < = k < (n choose m))}.")) (|numberOfImproperPartitions| (((|Integer|) (|Integer|) (|Integer|)) "\\spad{numberOfImproperPartitions(n,m)} computes the number of partitions of the nonnegative integer \\spad{n} in \\spad{m} nonnegative parts with regarding the order (improper partitions). Example: {\\em numberOfImproperPartitions (3,3)} is 10,{} since {\\em [0,0,3], [0,1,2], [0,2,1], [0,3,0], [1,0,2], [1,1,1], [1,2,0], [2,0,1], [2,1,0], [3,0,0]} are the possibilities. Note: this operation has a recursive implementation.")) (|nextPartition| (((|Vector| (|Integer|)) (|List| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. the first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.") (((|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Vector| (|Integer|)) (|Integer|)) "\\spad{nextPartition(gamma,part,number)} generates the partition of {\\em number} which follows {\\em part} according to the right-to-left lexicographical order. The partition has the property that its components do not exceed the corresponding components of {\\em gamma}. The first partition is achieved by {\\em part=[]}. Also,{} {\\em []} indicates that {\\em part} is the last partition.")) (|nextLatticePermutation| (((|List| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|)) (|Boolean|)) "\\spad{nextLatticePermutation(lambda,lattP,constructNotFirst)} generates the lattice permutation according to the proper partition {\\em lambda} succeeding the lattice permutation {\\em lattP} in lexicographical order as long as {\\em constructNotFirst} is \\spad{true}. If {\\em constructNotFirst} is \\spad{false},{} the first lattice permutation is returned. The result {\\em nil} indicates that {\\em lattP} has no successor.")) (|nextColeman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{nextColeman(alpha,beta,C)} generates the next Coleman matrix of column sums {\\em alpha} and row sums {\\em beta} according to the lexicographical order from bottom-to-top. The first Coleman matrix is achieved by {\\em C=new(1,1,0)}. Also,{} {\\em new(1,1,0)} indicates that \\spad{C} is the last Coleman matrix.")) (|makeYoungTableau| (((|Matrix| (|Integer|)) (|List| (|PositiveInteger|)) (|List| (|Integer|))) "\\spad{makeYoungTableau(lambda,gitter)} computes for a given lattice permutation {\\em gitter} and for an improper partition {\\em lambda} the corresponding standard tableau of shape {\\em lambda}. Notes: see {\\em listYoungTableaus}. The entries are from {\\em 0,...,n-1}.")) (|listYoungTableaus| (((|List| (|Matrix| (|Integer|))) (|List| (|PositiveInteger|))) "\\spad{listYoungTableaus(lambda)} where {\\em lambda} is a proper partition generates the list of all standard tableaus of shape {\\em lambda} by means of lattice permutations. The numbers of the lattice permutation are interpreted as column labels. Hence the contents of these lattice permutations are the conjugate of {\\em lambda}. Notes: the functions {\\em nextLatticePermutation} and {\\em makeYoungTableau} are used. The entries are from {\\em 0,...,n-1}.")) (|inverseColeman| (((|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|Matrix| (|Integer|))) "\\spad{inverseColeman(alpha,beta,C)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For such a matrix \\spad{C},{} inverseColeman(\\spad{alpha},{}\\spad{beta},{}\\spad{C}) calculates the lexicographical smallest {\\em pi} in the corresponding double coset. Note: the resulting permutation {\\em pi} of {\\em {1,2,...,n}} is given in list form. Notes: the inverse of this map is {\\em coleman}. For details,{} see James/Kerber.")) (|coleman| (((|Matrix| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|)) (|List| (|Integer|))) "\\spad{coleman(alpha,beta,pi)}: there is a bijection from the set of matrices having nonnegative entries and row sums {\\em alpha},{} column sums {\\em beta} to the set of {\\em Salpha - Sbeta} double cosets of the symmetric group {\\em Sn}. ({\\em Salpha} is the Young subgroup corresponding to the improper partition {\\em alpha}). For a representing element {\\em pi} of such a double coset,{} coleman(\\spad{alpha},{}\\spad{beta},{}\\spad{pi}) generates the Coleman-matrix corresponding to {\\em alpha, beta, pi}. Note: The permutation {\\em pi} of {\\em {1,2,...,n}} has to be given in list form. Note: the inverse of this map is {\\em inverseColeman} (if {\\em pi} is the lexicographical smallest permutation in the coset). For details see James/Kerber."))) NIL NIL -(-1132 S) +(-1131 S) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1133) +(-1132) ((|constructor| (NIL "the class of all multiplicative semigroups,{} \\spadignore{i.e.} a set with an associative operation \\spadop{*}. \\blankline")) (** (($ $ (|PositiveInteger|)) "\\spad{x**n} returns the repeated product of \\spad{x} \\spad{n} times,{} \\spadignore{i.e.} exponentiation.")) (* (($ $ $) "\\spad{x*y} returns the product of \\spad{x} and \\spad{y}."))) NIL NIL -(-1134 |dimtot| |dim1| S) +(-1133 |dimtot| |dim1| S) ((|constructor| (NIL "\\indented{2}{This type represents the finite direct or cartesian product of an} underlying ordered component type. The vectors are ordered as if they were split into two blocks. The \\spad{dim1} parameter specifies the length of the first block. The ordering is lexicographic between the blocks but acts like \\spadtype{HomogeneousDirectProduct} within each block. This type is a suitable third argument for \\spadtype{GeneralDistributedMultivariatePolynomial}."))) -((-4419 |has| |#3| (-1070)) (-4420 |has| |#3| (-1070)) (-4422 |has| |#3| (-6 -4422)) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1070)))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#3| (QUOTE (-376))) (-3957 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3957 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (-3957 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-861)))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-381))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (-3957 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-3957 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-240))) (-3957 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1070))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -919) (QUOTE (-1198))))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-1122))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-746))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-815))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-861))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-861))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-3957 (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#3| (QUOTE -4422)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1070)))) (-12 (|HasCategory| |#3| (QUOTE (-1070))) (|HasCategory| |#3| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1122))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) -(-1135 R |x|) +((-4418 |has| |#3| (-1069)) (-4419 |has| |#3| (-1069)) (-4421 |has| |#3| (-6 -4421)) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1069)))) (|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#3| (QUOTE (-376))) (-3956 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3956 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-376)))) (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (QUOTE (-814))) (-3956 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-860)))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-381))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (-3956 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-102))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-3956 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-240))) (-3956 (|HasCategory| |#3| (QUOTE (-240))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1069))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -918) (QUOTE (-1197))))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-1121))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-21))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-376))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-745))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-814))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-860))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558)))))) (|HasCategory| (-558) (QUOTE (-860))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-239))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-3956 (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasAttribute| |#3| (QUOTE -4421)) (-12 (|HasCategory| |#3| (QUOTE (-240))) (|HasCategory| |#3| (QUOTE (-1069)))) (-12 (|HasCategory| |#3| (QUOTE (-1069))) (|HasCategory| |#3| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#3| (QUOTE (-175))) (|HasCategory| |#3| (QUOTE (-23))) (|HasCategory| |#3| (QUOTE (-133))) (|HasCategory| |#3| (QUOTE (-25))) (|HasCategory| |#3| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#3| (QUOTE (-102))) (-12 (|HasCategory| |#3| (QUOTE (-1121))) (|HasCategory| |#3| (|%list| (QUOTE -321) (|devaluate| |#3|))))) +(-1134 R |x|) ((|constructor| (NIL "This package produces functions for counting etc. real roots of univariate polynomials in \\spad{x} over \\spad{R},{} which must be an OrderedIntegralDomain")) (|countRealRootsMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRootsMultiple(p)} says how many real roots \\spad{p} has,{} counted with multiplicity")) (|SturmHabichtMultiple| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtMultiple(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|countRealRoots| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{countRealRoots(p)} says how many real roots \\spad{p} has")) (|SturmHabicht| (((|Integer|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabicht(p1,p2)} computes c_{+}-c_{-} where c_{+} is the number of real roots of \\spad{p1} with \\spad{p2>0} and c_{-} is the number of real roots of \\spad{p1} with \\spad{p2<0}. If \\spad{p2=1} what you get is the number of real roots of \\spad{p1}.")) (|SturmHabichtCoefficients| (((|List| |#1|) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtCoefficients(p1,p2)} computes the principal Sturm-Habicht coefficients of \\spad{p1} and \\spad{p2}")) (|SturmHabichtSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{SturmHabichtSequence(p1,p2)} computes the Sturm-Habicht sequence of \\spad{p1} and \\spad{p2}")) (|subresultantSequence| (((|List| (|UnivariatePolynomial| |#2| |#1|)) (|UnivariatePolynomial| |#2| |#1|) (|UnivariatePolynomial| |#2| |#1|)) "\\spad{subresultantSequence(p1,p2)} computes the (standard) subresultant sequence of \\spad{p1} and \\spad{p2}"))) NIL ((|HasCategory| |#1| (QUOTE (-464)))) -(-1136) +(-1135) ((|constructor| (NIL "This is the datatype for operation signatures as \\indented{2}{used by the compiler and the interpreter.\\space{2}Note that this domain} \\indented{2}{differs from SignatureAst.} See also: ConstructorCall,{} Domain.")) (|source| (((|List| (|Syntax|)) $) "\\spad{source(s)} returns the list of parameter types of `s'.")) (|target| (((|Syntax|) $) "\\spad{target(s)} returns the target type of the signature `s'.")) (|signature| (($ (|List| (|Syntax|)) (|Syntax|)) "\\spad{signature(s,t)} constructs a Signature object with parameter types indicaded by `s',{} and return type indicated by `t'."))) NIL NIL -(-1137) +(-1136) ((|constructor| (NIL "This domain represents a signature AST. A signature AST \\indented{2}{is a description of an exported operation,{} \\spadignore{e.g.} its name,{} result} \\indented{2}{type,{} and the list of its argument types.}")) (|signature| (((|Signature|) $) "\\spad{signature(s)} returns AST of the declared signature for `s'.")) (|name| (((|Identifier|) $) "\\spad{name(s)} returns the name of the signature `s'.")) (|signatureAst| (($ (|Identifier|) (|Signature|)) "\\spad{signatureAst(n,s,t)} builds the signature AST n: \\spad{s} -> \\spad{t}"))) NIL NIL -(-1138 R -3495) +(-1137 R -3494) ((|constructor| (NIL "This package provides functions to determine the sign of an elementary function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") |#2| (|Symbol|) |#2| (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from below if \\spad{s} is \"left\",{} or above if \\spad{s} is \"right\".") (((|Union| (|Integer|) #1#) |#2| (|Symbol|) (|OrderedCompletion| |#2|)) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) |#2|) "\\spad{sign(f)} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1139 R) +(-1138 R) ((|constructor| (NIL "Find the sign of a rational function around a point or infinity.")) (|sign| (((|Union| (|Integer|) #1="failed") (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|Fraction| (|Polynomial| |#1|)) (|String|)) "\\spad{sign(f, x, a, s)} returns the sign of \\spad{f} as \\spad{x} nears \\spad{a} from the left (below) if \\spad{s} is the string \\spad{\"left\"},{} or from the right (above) if \\spad{s} is the string \\spad{\"right\"}.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|)) (|Symbol|) (|OrderedCompletion| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sign(f, x, a)} returns the sign of \\spad{f} as \\spad{x} approaches \\spad{a},{} from both sides if \\spad{a} is finite.") (((|Union| (|Integer|) #1#) (|Fraction| (|Polynomial| |#1|))) "\\spad{sign f} returns the sign of \\spad{f} if it is constant everywhere."))) NIL NIL -(-1140) +(-1139) ((|constructor| (NIL "\\indented{1}{Package to allow simplify to be called on AlgebraicNumbers} by converting to EXPR(INT)")) (|simplify| (((|Expression| (|Integer|)) (|AlgebraicNumber|)) "\\spad{simplify(an)} applies simplifications to \\spad{an}"))) NIL NIL -(-1141) +(-1140) ((|constructor| (NIL "SingleInteger is intended to support machine integer arithmetic.")) (|Or| (($ $ $) "\\spad{Or(n,m)} returns the bit-by-bit logical {\\em or} of the single integers \\spad{n} and \\spad{m}.")) (|And| (($ $ $) "\\spad{And(n,m)} returns the bit-by-bit logical {\\em and} of the single integers \\spad{n} and \\spad{m}.")) (|Not| (($ $) "\\spad{Not(n)} returns the bit-by-bit logical {\\em not} of the single integer \\spad{n}.")) (|xor| (($ $ $) "\\spad{xor(n,m)} returns the bit-by-bit logical {\\em xor} of the single integers \\spad{n} and \\spad{m}.")) (|noetherian| ((|attribute|) "\\spad{noetherian} all ideals are finitely generated (in fact principal).")) (|canonicalsClosed| ((|attribute|) "\\spad{canonicalClosed} means two positives multiply to give positive.")) (|canonical| ((|attribute|) "\\spad{canonical} means that mathematical equality is implied by data structure equality."))) -((-4413 . T) (-4417 . T) (-4412 . T) (-4423 . T) (-4424 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4412 . T) (-4416 . T) (-4411 . T) (-4422 . T) (-4423 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1142 S) +(-1141 S) ((|constructor| (NIL "A stack is a bag where the last item inserted is the first item extracted.")) (|depth| (((|NonNegativeInteger|) $) "\\spad{depth(s)} returns the number of elements of stack \\spad{s}. Note: \\axiom{depth(\\spad{s}) = \\#s}.")) (|top| ((|#1| $) "\\spad{top(s)} returns the top element \\spad{x} from \\spad{s}; \\spad{s} remains unchanged. Note: Use \\axiom{pop!(\\spad{s})} to obtain \\spad{x} and remove it from \\spad{s}.")) (|pop!| ((|#1| $) "\\spad{pop!(s)} returns the top element \\spad{x},{} destructively removing \\spad{x} from \\spad{s}. Note: Use \\axiom{top(\\spad{s})} to obtain \\spad{x} without removing it from \\spad{s}. Error: if \\spad{s} is empty.")) (|push!| ((|#1| |#1| $) "\\spad{push!(x,s)} pushes \\spad{x} onto stack \\spad{s},{} \\spadignore{i.e.} destructively changing \\spad{s} so as to have a new first (top) element \\spad{x}. Afterwards,{} pop!(\\spad{s}) produces \\spad{x} and pop!(\\spad{s}) produces the original \\spad{s}."))) -((-4425 . T) (-4426 . T)) +((-4424 . T) (-4425 . T)) NIL -(-1143 S |ndim| R |Row| |Col|) +(-1142 S |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#3| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#3| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#4| |#4| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#5| $ |#5|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#3| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#3| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#4| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#3|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#3|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) NIL -((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4427 "*"))) (|HasCategory| |#3| (QUOTE (-175)))) -(-1144 |ndim| R |Row| |Col|) +((|HasCategory| |#3| (QUOTE (-376))) (|HasAttribute| |#3| (QUOTE (-4426 "*"))) (|HasCategory| |#3| (QUOTE (-175)))) +(-1143 |ndim| R |Row| |Col|) ((|constructor| (NIL "\\spadtype{SquareMatrixCategory} is a general square matrix category which allows different representations and indexing schemes. Rows and columns may be extracted with rows returned as objects of type Row and colums returned as objects of type Col.")) (** (($ $ (|Integer|)) "\\spad{m**n} computes an integral power of the matrix \\spad{m}. Error: if the matrix is not invertible.")) (|inverse| (((|Union| $ "failed") $) "\\spad{inverse(m)} returns the inverse of the matrix \\spad{m},{} if that matrix is invertible and returns \"failed\" otherwise.")) (|minordet| ((|#2| $) "\\spad{minordet(m)} computes the determinant of the matrix \\spad{m} using minors.")) (|determinant| ((|#2| $) "\\spad{determinant(m)} returns the determinant of the matrix \\spad{m}.")) (* ((|#3| |#3| $) "\\spad{r * x} is the product of the row vector \\spad{r} and the matrix \\spad{x}. Error: if the dimensions are incompatible.") ((|#4| $ |#4|) "\\spad{x * c} is the product of the matrix \\spad{x} and the column vector \\spad{c}. Error: if the dimensions are incompatible.")) (|diagonalProduct| ((|#2| $) "\\spad{diagonalProduct(m)} returns the product of the elements on the diagonal of the matrix \\spad{m}.")) (|trace| ((|#2| $) "\\spad{trace(m)} returns the trace of the matrix \\spad{m}. this is the sum of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonal| ((|#3| $) "\\spad{diagonal(m)} returns a row consisting of the elements on the diagonal of the matrix \\spad{m}.")) (|diagonalMatrix| (($ (|List| |#2|)) "\\spad{diagonalMatrix(l)} returns a diagonal matrix with the elements of \\spad{l} on the diagonal.")) (|scalarMatrix| (($ |#2|) "\\spad{scalarMatrix(r)} returns an \\spad{n}-by-\\spad{n} matrix with \\spad{r}'s on the diagonal and zeroes elsewhere."))) -((-4425 . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4424 . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1145 R |Row| |Col| M) +(-1144 R |Row| |Col| M) ((|constructor| (NIL "\\spadtype{SmithNormalForm} is a package which provides some standard canonical forms for matrices.")) (|diophantineSystem| (((|Record| (|:| |particular| (|Union| |#3| "failed")) (|:| |basis| (|List| |#3|))) |#4| |#3|) "\\spad{diophantineSystem(A,B)} returns a particular integer solution and an integer basis of the equation \\spad{AX = B}.")) (|completeSmith| (((|Record| (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) "\\spad{completeSmith} returns a record that contains the Smith normal form \\spad{H} of the matrix and the left and right equivalence matrices \\spad{U} and \\spad{V} such that U*m*v = \\spad{H}")) (|smith| ((|#4| |#4|) "\\spad{smith(m)} returns the Smith Normal form of the matrix \\spad{m}.")) (|completeHermite| (((|Record| (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) "\\spad{completeHermite} returns a record that contains the Hermite normal form \\spad{H} of the matrix and the equivalence matrix \\spad{U} such that U*m = \\spad{H}")) (|hermite| ((|#4| |#4|) "\\spad{hermite(m)} returns the Hermite normal form of the matrix \\spad{m}."))) NIL NIL -(-1146 R |VarSet|) +(-1145 R |VarSet|) ((|constructor| (NIL "\\indented{2}{This type is the basic representation of sparse recursive multivariate} polynomials. It is parameterized by the coefficient ring and the variable set which may be infinite. The variable ordering is determined by the variable set parameter. The coefficient ring may be non-commutative,{} but the variables are assumed to commute."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1147 |Coef| |Var| SMP) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1146 |Coef| |Var| SMP) ((|constructor| (NIL "This domain provides multivariate Taylor series with variables from an arbitrary ordered set. A Taylor series is represented by a stream of polynomials from the polynomial domain SMP. The \\spad{n}th element of the stream is a form of degree \\spad{n}. SMTS is an internal domain.")) (|fintegrate| (($ (|Mapping| $) |#2| |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ |#2| |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|csubst| (((|Mapping| (|Stream| |#3|) |#3|) (|List| |#2|) (|List| (|Stream| |#3|))) "\\spad{csubst(a,b)} is for internal use only")) (* (($ |#3| $) "\\spad{smp*ts} multiplies a TaylorSeries by a monomial SMP.")) (|coerce| (($ |#3|) "\\spad{coerce(poly)} regroups the terms by total degree and forms a series.") (($ |#2|) "\\spad{coerce(var)} converts a variable to a Taylor series")) (|coefficient| ((|#3| $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1148 R E V P) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1147 R E V P) ((|constructor| (NIL "The category of square-free and normalized triangular sets. Thus,{} up to the primitivity axiom of [1],{} these sets are Lazard triangular sets.\\newline References : \\indented{1}{[1] \\spad{D}. LAZARD \"A new method for solving algebraic systems of} \\indented{5}{positive dimension\" Discr. App. Math. 33:147-160,{}1991}"))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1149 UP -3495) +(-1148 UP -3494) ((|constructor| (NIL "This package factors the formulas out of the general solve code,{} allowing their recursive use over different domains. Care is taken to introduce few radicals so that radical extension domains can more easily simplify the results.")) (|aQuartic| ((|#2| |#2| |#2| |#2| |#2| |#2|) "\\spad{aQuartic(f,g,h,i,k)} \\undocumented")) (|aCubic| ((|#2| |#2| |#2| |#2| |#2|) "\\spad{aCubic(f,g,h,j)} \\undocumented")) (|aQuadratic| ((|#2| |#2| |#2| |#2|) "\\spad{aQuadratic(f,g,h)} \\undocumented")) (|aLinear| ((|#2| |#2| |#2|) "\\spad{aLinear(f,g)} \\undocumented")) (|quartic| (((|List| |#2|) |#2| |#2| |#2| |#2| |#2|) "\\spad{quartic(f,g,h,i,j)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quartic(u)} \\undocumented")) (|cubic| (((|List| |#2|) |#2| |#2| |#2| |#2|) "\\spad{cubic(f,g,h,i)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{cubic(u)} \\undocumented")) (|quadratic| (((|List| |#2|) |#2| |#2| |#2|) "\\spad{quadratic(f,g,h)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{quadratic(u)} \\undocumented")) (|linear| (((|List| |#2|) |#2| |#2|) "\\spad{linear(f,g)} \\undocumented") (((|List| |#2|) |#1|) "\\spad{linear(u)} \\undocumented")) (|mapSolve| (((|Record| (|:| |solns| (|List| |#2|)) (|:| |maps| (|List| (|Record| (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (|Mapping| |#2| |#2|)) "\\spad{mapSolve(u,f)} \\undocumented")) (|particularSolution| ((|#2| |#1|) "\\spad{particularSolution(u)} \\undocumented")) (|solve| (((|List| |#2|) |#1|) "\\spad{solve(u)} \\undocumented"))) NIL NIL -(-1150 R) +(-1149 R) ((|constructor| (NIL "This package tries to find solutions expressed in terms of radicals for systems of equations of rational functions with coefficients in an integral domain \\spad{R}.")) (|contractSolve| (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{contractSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function. The result contains new symbols for common subexpressions in order to reduce the size of the output.") (((|SuchThat| (|List| (|Expression| |#1|)) (|List| (|Equation| (|Expression| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{contractSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}. The result contains new symbols for common subexpressions in order to reduce the size of the output.")) (|radicalRoots| (((|List| (|List| (|Expression| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalRoots(lrf,lvar)} finds the roots expressed in terms of radicals of the list of rational functions \\spad{lrf} with respect to the list of symbols \\spad{lvar}.") (((|List| (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalRoots(rf,x)} finds the roots expressed in terms of radicals of the rational function \\spad{rf} with respect to the symbol \\spad{x}.")) (|radicalSolve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{radicalSolve(leq)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the unique symbol \\spad{x} appearing in \\spad{leq}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{radicalSolve(leq,lvar)} finds the solutions expressed in terms of radicals of the system of equations of rational functions \\spad{leq} with respect to the list of symbols \\spad{lvar}.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(lrf)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0,{} where \\spad{lrf} is a system of univariate rational functions.") (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{radicalSolve(lrf,lvar)} finds the solutions expressed in terms of radicals of the system of equations \\spad{lrf} = 0 with respect to the list of symbols \\spad{lvar},{} where \\spad{lrf} is a list of rational functions.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{radicalSolve(eq)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{radicalSolve(eq,x)} finds the solutions expressed in terms of radicals of the equation of rational functions \\spad{eq} with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|))) "\\spad{radicalSolve(rf)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0,{} where \\spad{rf} is a univariate rational function.") (((|List| (|Equation| (|Expression| |#1|))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{radicalSolve(rf,x)} finds the solutions expressed in terms of radicals of the equation \\spad{rf} = 0 with respect to the symbol \\spad{x},{} where \\spad{rf} is a rational function."))) NIL NIL -(-1151 R) +(-1150 R) ((|constructor| (NIL "This package finds the function \\spad{func3} where \\spad{func1} and \\spad{func2} \\indented{1}{are given and\\space{2}\\spad{func1} = \\spad{func3}(\\spad{func2}) .\\space{2}If there is no solution then} \\indented{1}{function \\spad{func1} will be returned.} \\indented{1}{An example would be\\space{2}\\spad{func1:= 8*X**3+32*X**2-14*X ::EXPR INT} and} \\indented{1}{\\spad{func2:=2*X ::EXPR INT} convert them via univariate} \\indented{1}{to FRAC SUP EXPR INT and then the solution is \\spad{func3:=X**3+X**2-X}} \\indented{1}{of type FRAC SUP EXPR INT}")) (|unvectorise| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Vector| (|Expression| |#1|)) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Integer|)) "\\spad{unvectorise(vect, var, n)} returns \\spad{vect(1) + vect(2)*var + ... + vect(n+1)*var**(n)} where \\spad{vect} is the vector of the coefficients of the polynomail ,{} \\spad{var} the new variable and \\spad{n} the degree.")) (|decomposeFunc| (((|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|))) (|Fraction| (|SparseUnivariatePolynomial| (|Expression| |#1|)))) "\\spad{decomposeFunc(func1, func2, newvar)} returns a function \\spad{func3} where \\spad{func1} = \\spad{func3}(\\spad{func2}) and expresses it in the new variable newvar. If there is no solution then \\spad{func1} will be returned."))) NIL NIL -(-1152 R) +(-1151 R) ((|constructor| (NIL "This package tries to find solutions of equations of type Expression(\\spad{R}). This means expressions involving transcendental,{} exponential,{} logarithmic and nthRoot functions. After trying to transform different kernels to one kernel by applying several rules,{} it calls zerosOf for the SparseUnivariatePolynomial in the remaining kernel. For example the expression \\spad{sin(x)*cos(x)-2} will be transformed to \\indented{3}{\\spad{-2 tan(x/2)**4 -2 tan(x/2)**3 -4 tan(x/2)**2 +2 tan(x/2) -2}} by using the function normalize and then to \\indented{3}{\\spad{-2 tan(x)**2 + tan(x) -2}} with help of subsTan. This function tries to express the given function in terms of \\spad{tan(x/2)} to express in terms of \\spad{tan(x)} . Other examples are the expressions \\spad{sqrt(x+1)+sqrt(x+7)+1} or \\indented{1}{\\spad{sqrt(sin(x))+1} .}")) (|solve| (((|List| (|List| (|Equation| (|Expression| |#1|)))) (|List| (|Equation| (|Expression| |#1|))) (|List| (|Symbol|))) "\\spad{solve(leqs, lvar)} returns a list of solutions to the list of equations \\spad{leqs} with respect to the list of symbols lvar.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|) (|Symbol|)) "\\spad{solve(expr,x)} finds the solutions of the equation \\spad{expr} = 0 with respect to the symbol \\spad{x} where \\spad{expr} is a function of type Expression(\\spad{R}).") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|)) (|Symbol|)) "\\spad{solve(eq,x)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the symbol \\spad{x}.") (((|List| (|Equation| (|Expression| |#1|))) (|Equation| (|Expression| |#1|))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} where \\spad{eq} is an equation of functions of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in \\spad{eq}.") (((|List| (|Equation| (|Expression| |#1|))) (|Expression| |#1|)) "\\spad{solve(expr)} finds the solutions of the equation \\spad{expr} = 0 where \\spad{expr} is a function of type Expression(\\spad{R}) with respect to the unique symbol \\spad{x} appearing in eq."))) NIL NIL -(-1153 S A) +(-1152 S A) ((|constructor| (NIL "This package exports sorting algorithnms")) (|insertionSort!| ((|#2| |#2|) "\\spad{insertionSort! }\\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{insertionSort!(a,f)} \\undocumented")) (|bubbleSort!| ((|#2| |#2|) "\\spad{bubbleSort!(a)} \\undocumented") ((|#2| |#2| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{bubbleSort!(a,f)} \\undocumented"))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-1154 R) +((|HasCategory| |#1| (QUOTE (-860)))) +(-1153 R) ((|constructor| (NIL "The domain ThreeSpace is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them."))) NIL NIL -(-1155 R) +(-1154 R) ((|constructor| (NIL "The category ThreeSpaceCategory is used for creating three dimensional objects using functions for defining points,{} curves,{} polygons,{} constructs and the subspaces containing them.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(s)} returns the \\spadtype{ThreeSpace} \\spad{s} to Output format.")) (|subspace| (((|SubSpace| 3 |#1|) $) "\\spad{subspace(s)} returns the \\spadtype{SubSpace} which holds all the point information in the \\spadtype{ThreeSpace},{} \\spad{s}.")) (|check| (($ $) "\\spad{check(s)} returns lllpt,{} list of lists of lists of point information about the \\spadtype{ThreeSpace} \\spad{s}.")) (|objects| (((|Record| (|:| |points| (|NonNegativeInteger|)) (|:| |curves| (|NonNegativeInteger|)) (|:| |polygons| (|NonNegativeInteger|)) (|:| |constructs| (|NonNegativeInteger|))) $) "\\spad{objects(s)} returns the \\spadtype{ThreeSpace},{} \\spad{s},{} in the form of a 3D object record containing information on the number of points,{} curves,{} polygons and constructs comprising the \\spadtype{ThreeSpace}..")) (|lprop| (((|List| (|SubSpaceComponentProperty|)) $) "\\spad{lprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of subspace component properties,{} and if so,{} returns the list; An error is signaled otherwise.")) (|llprop| (((|List| (|List| (|SubSpaceComponentProperty|))) $) "\\spad{llprop(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of curves which are lists of the subspace component properties of the curves,{} and if so,{} returns the list of lists; An error is signaled otherwise.")) (|lllp| (((|List| (|List| (|List| (|Point| |#1|)))) $) "\\spad{lllp(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lllip| (((|List| (|List| (|List| (|NonNegativeInteger|)))) $) "\\spad{lllip(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a list of components,{} which are lists of curves,{} which are lists of indices to points,{} and if so,{} returns the list of lists of lists; An error is signaled otherwise.")) (|lp| (((|List| (|Point| |#1|)) $) "\\spad{lp(s)} returns the list of points component which the \\spadtype{ThreeSpace},{} \\spad{s},{} contains; these points are used by reference,{} \\spadignore{i.e.} the component holds indices referring to the points rather than the points themselves. This allows for sharing of the points.")) (|mesh?| (((|Boolean|) $) "\\spad{mesh?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} is composed of one component,{} a mesh comprising a list of curves which are lists of points,{} or returns \\spad{false} if otherwise")) (|mesh| (((|List| (|List| (|Point| |#1|))) $) "\\spad{mesh(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single surface component defined by a list curves which contain lists of points,{} and if so,{} returns the list of lists of points; An error is signaled otherwise.") (($ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh([[p0],[p1],...,[pn]], close1, close2)} creates a surface defined over a list of curves,{} \\spad{p0} through pn,{} which are lists of points; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: \\spad{close1} set to \\spad{true} means that each individual list (a curve) is to be closed (that is,{} the last point of the list is to be connected to the first point); \\spad{close2} set to \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)); the \\spadtype{ThreeSpace} containing this surface is returned.") (($ (|List| (|List| (|Point| |#1|)))) "\\spad{mesh([[p0],[p1],...,[pn]])} creates a surface defined by a list of curves which are lists,{} \\spad{p0} through pn,{} of points,{} and returns a \\spadtype{ThreeSpace} whose component is the surface.") (($ $ (|List| (|List| (|List| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; the booleans \\spad{close1} and \\spad{close2} indicate how the surface is to be closed: if \\spad{close1} is \\spad{true} this means that each individual list (a curve) is to be closed (\\spadignore{i.e.} the last point of the list is to be connected to the first point); if \\spad{close2} is \\spad{true},{} this means that the boundary at one end of the surface is to be connected to the boundary at the other end (the boundaries are defined as the first list of points (curve) and the last list of points (curve)).") (($ $ (|List| (|List| (|Point| |#1|))) (|Boolean|) (|Boolean|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]], close1, close2)} adds a surface component to the \\spadtype{ThreeSpace},{} which is defined over a list of curves,{} in which each of these curves is a list of points. The boolean arguments \\spad{close1} and \\spad{close2} indicate how the surface is to be closed. Argument \\spad{close1} equal \\spad{true} means that each individual list (a curve) is to be closed,{} \\spadignore{i.e.} the last point of the list is to be connected to the first point. Argument \\spad{close2} equal \\spad{true} means that the boundary at one end of the surface is to be connected to the boundary at the other end,{} \\spadignore{i.e.} the boundaries are defined as the first list of points (curve) and the last list of points (curve).") (($ $ (|List| (|List| (|List| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[ [[r10]...,[r1m]], [[r20]...,[r2m]],..., [[rn0]...,[rnm]] ], [props], prop)} adds a surface component to the \\spadtype{ThreeSpace} \\spad{s},{} which is defined over a rectangular domain of size WxH where \\spad{W} is the number of lists of points from the domain \\spad{PointDomain(R)} and \\spad{H} is the number of elements in each of those lists; lprops is the list of the subspace component properties for each curve list,{} and prop is the subspace component property by which the points are defined.") (($ $ (|List| (|List| (|Point| |#1|))) (|List| (|SubSpaceComponentProperty|)) (|SubSpaceComponentProperty|)) "\\spad{mesh(s,[[p0],[p1],...,[pn]],[props],prop)} adds a surface component,{} defined over a list curves which contains lists of points,{} to the \\spadtype{ThreeSpace} \\spad{s}; props is a list which contains the subspace component properties for each surface parameter,{} and \\spad{prop} is the subspace component property by which the points are defined.")) (|polygon?| (((|Boolean|) $) "\\spad{polygon?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single polygon component,{} or \\spad{false} otherwise.")) (|polygon| (((|List| (|Point| |#1|)) $) "\\spad{polygon(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single polygon component defined by a list of points,{} and if so,{} returns the list of points; An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{polygon([p0,p1,...,pn])} creates a polygon defined by a list of points,{} \\spad{p0} through pn,{} and returns a \\spadtype{ThreeSpace} whose component is the polygon.") (($ $ (|List| (|List| |#1|))) "\\spad{polygon(s,[[r0],[r1],...,[rn]])} adds a polygon component defined by a list of points \\spad{r0} through \\spad{rn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)} to the \\spadtype{ThreeSpace} \\spad{s},{} where \\spad{m} is the dimension of the points and \\spad{R} is the \\spadtype{Ring} over which the points are defined.") (($ $ (|List| (|Point| |#1|))) "\\spad{polygon(s,[p0,p1,...,pn])} adds a polygon component defined by a list of points,{} \\spad{p0} throught pn,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|closedCurve?| (((|Boolean|) $) "\\spad{closedCurve?(s)} returns \\spad{true} if the \\spadtype{ThreeSpace} \\spad{s} contains a single closed curve component,{} \\spadignore{i.e.} the first element of the curve is also the last element,{} or \\spad{false} otherwise.")) (|closedCurve| (((|List| (|Point| |#1|)) $) "\\spad{closedCurve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single closed curve component defined by a list of points in which the first point is also the last point,{} all of which are from the domain \\spad{PointDomain(m,R)} and if so,{} returns the list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{closedCurve(lp)} sets a list of points defined by the first element of \\spad{lp} through the last element of \\spad{lp} and back to the first elelment again and returns a \\spadtype{ThreeSpace} whose component is the closed curve defined by \\spad{lp}.") (($ $ (|List| (|List| |#1|))) "\\spad{closedCurve(s,[[lr0],[lr1],...,[lrn],[lr0]])} adds a closed curve component defined by a list of points \\spad{lr0} through \\spad{lrn},{} which are lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} in which the last element of the list of points contains a copy of the first element list,{} \\spad{lr0}. The closed curve is added to the \\spadtype{ThreeSpace},{} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{closedCurve(s,[p0,p1,...,pn,p0])} adds a closed curve component which is a list of points defined by the first element \\spad{p0} through the last element \\spad{pn} and back to the first element \\spad{p0} again,{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|curve?| (((|Boolean|) $) "\\spad{curve?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is a curve,{} \\spadignore{i.e.} has one component,{} a list of list of points,{} and returns \\spad{true} if it is,{} or \\spad{false} otherwise.")) (|curve| (((|List| (|Point| |#1|)) $) "\\spad{curve(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single curve defined by a list of points and if so,{} returns the curve,{} \\spadignore{i.e.} list of points. An error is signaled otherwise.") (($ (|List| (|Point| |#1|))) "\\spad{curve([p0,p1,p2,...,pn])} creates a space curve defined by the list of points \\spad{p0} through \\spad{pn},{} and returns the \\spadtype{ThreeSpace} whose component is the curve.") (($ $ (|List| (|List| |#1|))) "\\spad{curve(s,[[p0],[p1],...,[pn]])} adds a space curve which is a list of points \\spad{p0} through pn defined by lists of elements from the domain \\spad{PointDomain(m,R)},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined and \\spad{m} is the dimension of the points,{} to the \\spadtype{ThreeSpace} \\spad{s}.") (($ $ (|List| (|Point| |#1|))) "\\spad{curve(s,[p0,p1,...,pn])} adds a space curve component defined by a list of points \\spad{p0} through \\spad{pn},{} to the \\spadtype{ThreeSpace} \\spad{s}.")) (|point?| (((|Boolean|) $) "\\spad{point?(s)} queries whether the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of a single component which is a point and returns the boolean result.")) (|point| (((|Point| |#1|) $) "\\spad{point(s)} checks to see if the \\spadtype{ThreeSpace},{} \\spad{s},{} is composed of only a single point and if so,{} returns the point. An error is signaled otherwise.") (($ (|Point| |#1|)) "\\spad{point(p)} returns a \\spadtype{ThreeSpace} object which is composed of one component,{} the point \\spad{p}.") (($ $ (|NonNegativeInteger|)) "\\spad{point(s,i)} adds a point component which is placed into a component list of the \\spadtype{ThreeSpace},{} \\spad{s},{} at the index given by \\spad{i}.") (($ $ (|List| |#1|)) "\\spad{point(s,[x,y,z])} adds a point component defined by a list of elements which are from the \\spad{PointDomain(R)} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point elements are defined.") (($ $ (|Point| |#1|)) "\\spad{point(s,p)} adds a point component defined by the point,{} \\spad{p},{} specified as a list from \\spad{List(R)},{} to the \\spadtype{ThreeSpace},{} \\spad{s},{} where \\spad{R} is the \\spadtype{Ring} over which the point is defined.")) (|modifyPointData| (($ $ (|NonNegativeInteger|) (|Point| |#1|)) "\\spad{modifyPointData(s,i,p)} changes the point at the indexed location \\spad{i} in the \\spadtype{ThreeSpace},{} \\spad{s},{} to that of point \\spad{p}. This is useful for making changes to a point which has been transformed.")) (|enterPointData| (((|NonNegativeInteger|) $ (|List| (|Point| |#1|))) "\\spad{enterPointData(s,[p0,p1,...,pn])} adds a list of points from \\spad{p0} through pn to the \\spadtype{ThreeSpace},{} \\spad{s},{} and returns the index,{} to the starting point of the list.")) (|copy| (($ $) "\\spad{copy(s)} returns a new \\spadtype{ThreeSpace} that is an exact copy of \\spad{s}.")) (|composites| (((|List| $) $) "\\spad{composites(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single composite of \\spad{s}. If \\spad{s} has no composites defined (composites need to be explicitly created),{} the list returned is empty. Note that not all the components need to be part of a composite.")) (|components| (((|List| $) $) "\\spad{components(s)} takes the \\spadtype{ThreeSpace} \\spad{s},{} and creates a list containing a unique \\spadtype{ThreeSpace} for each single component of \\spad{s}. If \\spad{s} has no components defined,{} the list returned is empty.")) (|composite| (($ (|List| $)) "\\spad{composite([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that is a union of all the components from each \\spadtype{ThreeSpace} in the parameter list,{} grouped as a composite.")) (|merge| (($ $ $) "\\spad{merge(s1,s2)} will create a new \\spadtype{ThreeSpace} that has the components of \\spad{s1} and \\spad{s2}; Groupings of components into composites are maintained.") (($ (|List| $)) "\\spad{merge([s1,s2,...,sn])} will create a new \\spadtype{ThreeSpace} that has the components of all the ones in the list; Groupings of components into composites are maintained.")) (|numberOfComposites| (((|NonNegativeInteger|) $) "\\spad{numberOfComposites(s)} returns the number of supercomponents,{} or composites,{} in the \\spadtype{ThreeSpace},{} \\spad{s}; Composites are arbitrary groupings of otherwise distinct and unrelated components; A \\spadtype{ThreeSpace} need not have any composites defined at all and,{} outside of the requirement that no component can belong to more than one composite at a time,{} the definition and interpretation of composites are unrestricted.")) (|numberOfComponents| (((|NonNegativeInteger|) $) "\\spad{numberOfComponents(s)} returns the number of distinct object components in the indicated \\spadtype{ThreeSpace},{} \\spad{s},{} such as points,{} curves,{} polygons,{} and constructs.")) (|create3Space| (($ (|SubSpace| 3 |#1|)) "\\spad{create3Space(s)} creates a \\spadtype{ThreeSpace} object containing objects pre-defined within some \\spadtype{SubSpace} \\spad{s}.") (($) "\\spad{create3Space()} creates a \\spadtype{ThreeSpace} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1156) +(-1155) ((|constructor| (NIL "This domain represents a kind of base domain \\indented{2}{for Spad syntax domain.\\space{2}It merely exists as a kind of} \\indented{2}{of abstract base in object-oriented programming language.} \\indented{2}{However,{} this is not an abstract class.}"))) NIL NIL -(-1157) +(-1156) ((|constructor| (NIL "\\indented{1}{This package provides a simple Spad algebra parser.} Related Constructors: Syntax. See Also: Syntax.")) (|parse| (((|List| (|Syntax|)) (|String|)) "\\spad{parse(f)} parses the source file \\spad{f} (supposedly containing Spad algebras) and returns a List Syntax. The filename \\spad{f} is supposed to have the proper extension. Note that this function has the side effect of executing any system command contained in the file \\spad{f},{} even if it might not be meaningful."))) NIL NIL -(-1158) +(-1157) ((|constructor| (NIL "This category describes the exported \\indented{2}{signatures of the SpadAst domain.}")) (|autoCoerce| (((|Integer|) $) "\\spad{autoCoerce(s)} returns the Integer view of `s'. Left at the discretion of the compiler.") (((|String|) $) "\\spad{autoCoerce(s)} returns the String view of `s'. Left at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} returns the Identifier view of `s'. Left at the discretion of the compiler.") (((|IsAst|) $) "\\spad{autoCoerce(s)} returns the IsAst view of `s'. Left at the discretion of the compiler.") (((|HasAst|) $) "\\spad{autoCoerce(s)} returns the HasAst view of `s'. Left at the discretion of the compiler.") (((|CaseAst|) $) "\\spad{autoCoerce(s)} returns the CaseAst view of `s'. Left at the discretion of the compiler.") (((|ColonAst|) $) "\\spad{autoCoerce(s)} returns the ColoonAst view of `s'. Left at the discretion of the compiler.") (((|SuchThatAst|) $) "\\spad{autoCoerce(s)} returns the SuchThatAst view of `s'. Left at the discretion of the compiler.") (((|LetAst|) $) "\\spad{autoCoerce(s)} returns the LetAst view of `s'. Left at the discretion of the compiler.") (((|SequenceAst|) $) "\\spad{autoCoerce(s)} returns the SequenceAst view of `s'. Left at the discretion of the compiler.") (((|SegmentAst|) $) "\\spad{autoCoerce(s)} returns the SegmentAst view of `s'. Left at the discretion of the compiler.") (((|RestrictAst|) $) "\\spad{autoCoerce(s)} returns the RestrictAst view of `s'. Left at the discretion of the compiler.") (((|PretendAst|) $) "\\spad{autoCoerce(s)} returns the PretendAst view of `s'. Left at the discretion of the compiler.") (((|CoerceAst|) $) "\\spad{autoCoerce(s)} returns the CoerceAst view of `s'. Left at the discretion of the compiler.") (((|ReturnAst|) $) "\\spad{autoCoerce(s)} returns the ReturnAst view of `s'. Left at the discretion of the compiler.") (((|ExitAst|) $) "\\spad{autoCoerce(s)} returns the ExitAst view of `s'. Left at the discretion of the compiler.") (((|ConstructAst|) $) "\\spad{autoCoerce(s)} returns the ConstructAst view of `s'. Left at the discretion of the compiler.") (((|CollectAst|) $) "\\spad{autoCoerce(s)} returns the CollectAst view of `s'. Left at the discretion of the compiler.") (((|StepAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of \\spad{s}. Left at the discretion of the compiler.") (((|InAst|) $) "\\spad{autoCoerce(s)} returns the InAst view of `s'. Left at the discretion of the compiler.") (((|WhileAst|) $) "\\spad{autoCoerce(s)} returns the WhileAst view of `s'. Left at the discretion of the compiler.") (((|RepeatAst|) $) "\\spad{autoCoerce(s)} returns the RepeatAst view of `s'. Left at the discretion of the compiler.") (((|IfAst|) $) "\\spad{autoCoerce(s)} returns the IfAst view of `s'. Left at the discretion of the compiler.") (((|MappingAst|) $) "\\spad{autoCoerce(s)} returns the MappingAst view of `s'. Left at the discretion of the compiler.") (((|AttributeAst|) $) "\\spad{autoCoerce(s)} returns the AttributeAst view of `s'. Left at the discretion of the compiler.") (((|SignatureAst|) $) "\\spad{autoCoerce(s)} returns the SignatureAst view of `s'. Left at the discretion of the compiler.") (((|CapsuleAst|) $) "\\spad{autoCoerce(s)} returns the CapsuleAst view of `s'. Left at the discretion of the compiler.") (((|JoinAst|) $) "\\spad{autoCoerce(s)} returns the \\spadype{JoinAst} view of of the AST object \\spad{s}. Left at the discretion of the compiler.") (((|CategoryAst|) $) "\\spad{autoCoerce(s)} returns the CategoryAst view of `s'. Left at the discretion of the compiler.") (((|WhereAst|) $) "\\spad{autoCoerce(s)} returns the WhereAst view of `s'. Left at the discretion of the compiler.") (((|MacroAst|) $) "\\spad{autoCoerce(s)} returns the MacroAst view of `s'. Left at the discretion of the compiler.") (((|DefinitionAst|) $) "\\spad{autoCoerce(s)} returns the DefinitionAst view of `s'. Left at the discretion of the compiler.") (((|ImportAst|) $) "\\spad{autoCoerce(s)} returns the ImportAst view of `s'. Left at the discretion of the compiler.")) (|case| (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{s case Integer} holds if `s' represents an integer literal.") (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{s case String} holds if `s' represents a string literal.") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{s case Identifier} holds if `s' represents an identifier.") (((|Boolean|) $ (|[\|\|]| (|IsAst|))) "\\spad{s case IsAst} holds if `s' represents an is-expression.") (((|Boolean|) $ (|[\|\|]| (|HasAst|))) "\\spad{s case HasAst} holds if `s' represents a has-expression.") (((|Boolean|) $ (|[\|\|]| (|CaseAst|))) "\\spad{s case CaseAst} holds if `s' represents a case-expression.") (((|Boolean|) $ (|[\|\|]| (|ColonAst|))) "\\spad{s case ColonAst} holds if `s' represents a colon-expression.") (((|Boolean|) $ (|[\|\|]| (|SuchThatAst|))) "\\spad{s case SuchThatAst} holds if `s' represents a qualified-expression.") (((|Boolean|) $ (|[\|\|]| (|LetAst|))) "\\spad{s case LetAst} holds if `s' represents an assignment-expression.") (((|Boolean|) $ (|[\|\|]| (|SequenceAst|))) "\\spad{s case SequenceAst} holds if `s' represents a sequence-of-statements.") (((|Boolean|) $ (|[\|\|]| (|SegmentAst|))) "\\spad{s case SegmentAst} holds if `s' represents a segment-expression.") (((|Boolean|) $ (|[\|\|]| (|RestrictAst|))) "\\spad{s case RestrictAst} holds if `s' represents a restrict-expression.") (((|Boolean|) $ (|[\|\|]| (|PretendAst|))) "\\spad{s case PretendAst} holds if `s' represents a pretend-expression.") (((|Boolean|) $ (|[\|\|]| (|CoerceAst|))) "\\spad{s case ReturnAst} holds if `s' represents a coerce-expression.") (((|Boolean|) $ (|[\|\|]| (|ReturnAst|))) "\\spad{s case ReturnAst} holds if `s' represents a return-statement.") (((|Boolean|) $ (|[\|\|]| (|ExitAst|))) "\\spad{s case ExitAst} holds if `s' represents an exit-expression.") (((|Boolean|) $ (|[\|\|]| (|ConstructAst|))) "\\spad{s case ConstructAst} holds if `s' represents a list-expression.") (((|Boolean|) $ (|[\|\|]| (|CollectAst|))) "\\spad{s case CollectAst} holds if `s' represents a list-comprehension.") (((|Boolean|) $ (|[\|\|]| (|StepAst|))) "\\spad{s case StepAst} holds if \\spad{s} represents an arithmetic progression iterator.") (((|Boolean|) $ (|[\|\|]| (|InAst|))) "\\spad{s case InAst} holds if `s' represents a in-iterator") (((|Boolean|) $ (|[\|\|]| (|WhileAst|))) "\\spad{s case WhileAst} holds if `s' represents a while-iterator") (((|Boolean|) $ (|[\|\|]| (|RepeatAst|))) "\\spad{s case RepeatAst} holds if `s' represents an repeat-loop.") (((|Boolean|) $ (|[\|\|]| (|IfAst|))) "\\spad{s case IfAst} holds if `s' represents an if-statement.") (((|Boolean|) $ (|[\|\|]| (|MappingAst|))) "\\spad{s case MappingAst} holds if `s' represents a mapping type.") (((|Boolean|) $ (|[\|\|]| (|AttributeAst|))) "\\spad{s case AttributeAst} holds if `s' represents an attribute.") (((|Boolean|) $ (|[\|\|]| (|SignatureAst|))) "\\spad{s case SignatureAst} holds if `s' represents a signature export.") (((|Boolean|) $ (|[\|\|]| (|CapsuleAst|))) "\\spad{s case CapsuleAst} holds if `s' represents a domain capsule.") (((|Boolean|) $ (|[\|\|]| (|JoinAst|))) "\\spad{s case JoinAst} holds is the syntax object \\spad{s} denotes the join of several categories.") (((|Boolean|) $ (|[\|\|]| (|CategoryAst|))) "\\spad{s case CategoryAst} holds if `s' represents an unnamed category.") (((|Boolean|) $ (|[\|\|]| (|WhereAst|))) "\\spad{s case WhereAst} holds if `s' represents an expression with local definitions.") (((|Boolean|) $ (|[\|\|]| (|MacroAst|))) "\\spad{s case MacroAst} holds if `s' represents a macro definition.") (((|Boolean|) $ (|[\|\|]| (|DefinitionAst|))) "\\spad{s case DefinitionAst} holds if `s' represents a definition.") (((|Boolean|) $ (|[\|\|]| (|ImportAst|))) "\\spad{s case ImportAst} holds if `s' represents an `import' statement."))) NIL NIL -(-1159) +(-1158) ((|constructor| (NIL "SpecialOutputPackage allows FORTRAN,{} Tex and \\indented{2}{Script Formula Formatter output from programs.}")) (|outputAsTex| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsTex(l)} sends (for each expression in the list \\spad{l}) output in Tex format to the destination as defined by \\spadsyscom{set output tex}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsTex(o)} sends output \\spad{o} in Tex format to the destination defined by \\spadsyscom{set output tex}.")) (|outputAsScript| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsScript(l)} sends (for each expression in the list \\spad{l}) output in Script Formula Formatter format to the destination defined. by \\spadsyscom{set output forumula}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsScript(o)} sends output \\spad{o} in Script Formula Formatter format to the destination defined by \\spadsyscom{set output formula}.")) (|outputAsFortran| (((|Void|) (|List| (|OutputForm|))) "\\spad{outputAsFortran(l)} sends (for each expression in the list \\spad{l}) output in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}.") (((|Void|) (|OutputForm|)) "\\spad{outputAsFortran(o)} sends output \\spad{o} in FORTRAN format.") (((|Void|) (|String|) (|OutputForm|)) "\\spad{outputAsFortran(v,o)} sends output \\spad{v} = \\spad{o} in FORTRAN format to the destination defined by \\spadsyscom{set output fortran}."))) NIL NIL -(-1160) +(-1159) ((|constructor| (NIL "Category for the other special functions.")) (|airyBi| (($ $) "\\spad{airyBi(x)} is the Airy function \\spad{Bi(x)}.")) (|airyAi| (($ $) "\\spad{airyAi(x)} is the Airy function \\spad{Ai(x)}.")) (|besselK| (($ $ $) "\\spad{besselK(v,z)} is the modified Bessel function of the second kind.")) (|besselI| (($ $ $) "\\spad{besselI(v,z)} is the modified Bessel function of the first kind.")) (|besselY| (($ $ $) "\\spad{besselY(v,z)} is the Bessel function of the second kind.")) (|besselJ| (($ $ $) "\\spad{besselJ(v,z)} is the Bessel function of the first kind.")) (|polygamma| (($ $ $) "\\spad{polygamma(k,x)} is the \\spad{k-th} derivative of \\spad{digamma(x)},{} (often written \\spad{psi(k,x)} in the literature).")) (|digamma| (($ $) "\\spad{digamma(x)} is the logarithmic derivative of \\spad{Gamma(x)} (often written \\spad{psi(x)} in the literature).")) (|Beta| (($ $ $) "\\spad{Beta(x,y)} is \\spad{Gamma(x) * Gamma(y)/Gamma(x+y)}.")) (|Gamma| (($ $ $) "\\spad{Gamma(a,x)} is the incomplete Gamma function.") (($ $) "\\spad{Gamma(x)} is the Euler Gamma function.")) (|abs| (($ $) "\\spad{abs(x)} returns the absolute value of \\spad{x}."))) NIL NIL -(-1161 V C) +(-1160 V C) ((|constructor| (NIL "This domain exports a modest implementation for the vertices of splitting trees. These vertices are called here splitting nodes. Every of these nodes store 3 informations. The first one is its value,{} that is the current expression to evaluate. The second one is its condition,{} that is the hypothesis under which the value has to be evaluated. The last one is its status,{} that is a boolean flag which is \\spad{true} iff the value is the result of its evaluation under its condition. Two splitting vertices are equal iff they have the sane values and the same conditions (so their status do not matter).")) (|subNode?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNode?(\\spad{n1},{}\\spad{n2},{}\\spad{o2})} returns \\spad{true} iff \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}")) (|infLex?| (((|Boolean|) $ $ (|Mapping| (|Boolean|) |#1| |#1|) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{infLex?(\\spad{n1},{}\\spad{n2},{}\\spad{o1},{}\\spad{o2})} returns \\spad{true} iff \\axiom{\\spad{o1}(value(\\spad{n1}),{}value(\\spad{n2}))} or \\axiom{value(\\spad{n1}) = value(\\spad{n2})} and \\axiom{\\spad{o2}(condition(\\spad{n1}),{}condition(\\spad{n2}))}.")) (|setEmpty!| (($ $) "\\axiom{setEmpty!(\\spad{n})} replaces \\spad{n} by \\axiom{empty()\\$\\%}.")) (|setStatus!| (($ $ (|Boolean|)) "\\axiom{setStatus!(\\spad{n},{}\\spad{b})} returns \\spad{n} whose status has been replaced by \\spad{b} if it is not empty,{} else an error is produced.")) (|setCondition!| (($ $ |#2|) "\\axiom{setCondition!(\\spad{n},{}\\spad{t})} returns \\spad{n} whose condition has been replaced by \\spad{t} if it is not empty,{} else an error is produced.")) (|setValue!| (($ $ |#1|) "\\axiom{setValue!(\\spad{n},{}\\spad{v})} returns \\spad{n} whose value has been replaced by \\spad{v} if it is not empty,{} else an error is produced.")) (|copy| (($ $) "\\axiom{copy(\\spad{n})} returns a copy of \\spad{n}.")) (|construct| (((|List| $) |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v},{}lt)} returns the same as \\axiom{[construct(\\spad{v},{}\\spad{t}) for \\spad{t} in lt]}") (((|List| $) (|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|)))) "\\axiom{construct(lvt)} returns the same as \\axiom{[construct(vt.val,{}vt.tower) for vt in lvt]}") (($ (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) "\\axiom{construct(vt)} returns the same as \\axiom{construct(vt.val,{}vt.tower)}") (($ |#1| |#2|) "\\axiom{construct(\\spad{v},{}\\spad{t})} returns the same as \\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{false})}") (($ |#1| |#2| (|Boolean|)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}\\spad{b})} returns the non-empty node with value \\spad{v},{} condition \\spad{t} and flag \\spad{b}")) (|status| (((|Boolean|) $) "\\axiom{status(\\spad{n})} returns the status of the node \\spad{n}.")) (|condition| ((|#2| $) "\\axiom{condition(\\spad{n})} returns the condition of the node \\spad{n}.")) (|value| ((|#1| $) "\\axiom{value(\\spad{n})} returns the value of the node \\spad{n}.")) (|empty?| (((|Boolean|) $) "\\axiom{empty?(\\spad{n})} returns \\spad{true} iff the node \\spad{n} is \\axiom{empty()\\$\\%}.")) (|empty| (($) "\\axiom{empty()} returns the same as \\axiom{[empty()\\$\\spad{V},{}empty()\\$\\spad{C},{}\\spad{false}]\\$\\%}"))) NIL NIL -(-1162 V C) +(-1161 V C) ((|constructor| (NIL "This domain exports a modest implementation of splitting trees. Spliiting trees are needed when the evaluation of some quantity under some hypothesis requires to split the hypothesis into sub-cases. For instance by adding some new hypothesis on one hand and its negation on another hand. The computations are terminated is a splitting tree \\axiom{a} when \\axiom{status(value(a))} is \\axiom{\\spad{true}}. Thus,{} if for the splitting tree \\axiom{a} the flag \\axiom{status(value(a))} is \\axiom{\\spad{true}},{} then \\axiom{status(value(\\spad{d}))} is \\axiom{\\spad{true}} for any subtree \\axiom{\\spad{d}} of \\axiom{a}. This property of splitting trees is called the termination condition. If no vertex in a splitting tree \\axiom{a} is equal to another,{} \\axiom{a} is said to satisfy the no-duplicates condition. The splitting tree \\axiom{a} will satisfy this condition if nodes are added to \\axiom{a} by mean of \\axiom{splitNodeOf!} and if \\axiom{construct} is only used to create the root of \\axiom{a} with no children.")) (|splitNodeOf!| (($ $ $ (|List| (|SplittingNode| |#1| |#2|)) (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls,{}sub?)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not subNodeOf?(\\spad{s},{}a,{}sub?)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.") (($ $ $ (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{splitNodeOf!(\\spad{l},{}a,{}ls)} returns \\axiom{a} where the children list of \\axiom{\\spad{l}} has been set to \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls | not nodeOf?(\\spad{s},{}a)]}. Thus,{} if \\axiom{\\spad{l}} is not a node of \\axiom{a},{} this latter splitting tree is unchanged.")) (|remove!| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove!(\\spad{s},{}a)} replaces a by remove(\\spad{s},{}a)")) (|remove| (($ (|SplittingNode| |#1| |#2|) $) "\\axiom{remove(\\spad{s},{}a)} returns the splitting tree obtained from a by removing every sub-tree \\axiom{\\spad{b}} such that \\axiom{value(\\spad{b})} and \\axiom{\\spad{s}} have the same value,{} condition and status.")) (|subNodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $ (|Mapping| (|Boolean|) |#2| |#2|)) "\\axiom{subNodeOf?(\\spad{s},{}a,{}sub?)} returns \\spad{true} iff for some node \\axiom{\\spad{n}} in \\axiom{a} we have \\axiom{\\spad{s} = \\spad{n}} or \\axiom{status(\\spad{n})} and \\axiom{subNode?(\\spad{s},{}\\spad{n},{}sub?)}.")) (|nodeOf?| (((|Boolean|) (|SplittingNode| |#1| |#2|) $) "\\axiom{nodeOf?(\\spad{s},{}a)} returns \\spad{true} iff some node of \\axiom{a} is equal to \\axiom{\\spad{s}}")) (|result| (((|List| (|Record| (|:| |val| |#1|) (|:| |tower| |#2|))) $) "\\axiom{result(a)} where \\axiom{ls} is the leaves list of \\axiom{a} returns \\axiom{[[value(\\spad{s}),{}condition(\\spad{s})]\\$VT for \\spad{s} in ls]} if the computations are terminated in \\axiom{a} else an error is produced.")) (|conditions| (((|List| |#2|) $) "\\axiom{conditions(a)} returns the list of the conditions of the leaves of a")) (|construct| (($ |#1| |#2| |#1| (|List| |#2|)) "\\axiom{construct(\\spad{v1},{}\\spad{t},{}\\spad{v2},{}lt)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[[\\spad{v},{}\\spad{t}]\\$\\spad{S}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| (|SplittingNode| |#1| |#2|))) "\\axiom{construct(\\spad{v},{}\\spad{t},{}ls)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with children list given by \\axiom{[[\\spad{s}]\\$\\% for \\spad{s} in ls]}.") (($ |#1| |#2| (|List| $)) "\\axiom{construct(\\spad{v},{}\\spad{t},{}la)} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{[\\spad{v},{}\\spad{t}]\\$\\spad{S}} and with \\axiom{la} as children list.") (($ (|SplittingNode| |#1| |#2|)) "\\axiom{construct(\\spad{s})} creates a splitting tree with value (\\spadignore{i.e.} root vertex) given by \\axiom{\\spad{s}} and no children. Thus,{} if the status of \\axiom{\\spad{s}} is \\spad{false},{} \\axiom{[\\spad{s}]} represents the starting point of the evaluation \\axiom{value(\\spad{s})} under the hypothesis \\axiom{condition(\\spad{s})}.")) (|updateStatus!| (($ $) "\\axiom{updateStatus!(a)} returns a where the status of the vertices are updated to satisfy the \"termination condition\".")) (|extractSplittingLeaf| (((|Union| $ "failed") $) "\\axiom{extractSplittingLeaf(a)} returns the left most leaf (as a tree) whose status is \\spad{false} if any,{} else \"failed\" is returned."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-1161 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1122)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1122))) (-3957 (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| (-1161 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1161) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-1122)))) (|HasCategory| (-1161 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| (-1161 |#1| |#2|) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-1161 |#1| |#2|) (QUOTE (-102)))) -(-1163 |ndim| R) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-1160 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1121))) (-3956 (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-102))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| (-1160 |#1| |#2|) (|%list| (QUOTE -321) (|%list| (QUOTE -1160) (|devaluate| |#1|) (|devaluate| |#2|)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-1121)))) (|HasCategory| (-1160 |#1| |#2|) (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| (-1160 |#1| |#2|) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-1160 |#1| |#2|) (QUOTE (-102)))) +(-1162 |ndim| R) ((|constructor| (NIL "\\spadtype{SquareMatrix} is a matrix domain of square matrices,{} where the number of rows (= number of columns) is a parameter of the type.")) (|unitsKnown| ((|attribute|) "the invertible matrices are simply the matrices whose determinants are units in the Ring \\spad{R}.")) (|central| ((|attribute|) "the elements of the Ring \\spad{R},{} viewed as diagonal matrices,{} commute with all matrices and,{} indeed,{} are the only matrices which commute with all matrices.")) (|squareMatrix| (($ (|Matrix| |#2|)) "\\spad{squareMatrix(m)} converts a matrix of type \\spadtype{Matrix} to a matrix of type \\spadtype{SquareMatrix}.")) (|transpose| (($ $) "\\spad{transpose(m)} returns the transpose of the matrix \\spad{m}.")) (|new| (($ |#2|) "\\spad{new(c)} constructs a new \\spadtype{SquareMatrix} object of dimension \\spad{ndim} with initial entries equal to \\spad{c}."))) -((-4422 . T) (-4414 |has| |#2| (-6 (-4427 "*"))) (-4425 . T) (-4419 . T) (-4420 . T)) -((|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4427 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-376))) (-3957 (|HasAttribute| |#2| (QUOTE (-4427 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) -(-1164 S) +((-4421 . T) (-4413 |has| |#2| (-6 (-4426 "*"))) (-4424 . T) (-4418 . T) (-4419 . T)) +((|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (QUOTE (-239))) (|HasAttribute| |#2| (QUOTE (-4426 #1="*"))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#2| (QUOTE (-319))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-376))) (-3956 (|HasAttribute| |#2| (QUOTE (-4426 #1#))) (|HasCategory| |#2| (QUOTE (-240))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-102))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#2| (QUOTE (-175)))) +(-1163 S) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) NIL NIL -(-1165) +(-1164) ((|constructor| (NIL "A string aggregate is a category for strings,{} that is,{} one dimensional arrays of characters.")) (|elt| (($ $ $) "\\spad{elt(s,t)} returns the concatenation of \\spad{s} and \\spad{t}. It is provided to allow juxtaposition of strings to work as concatenation. For example,{} \\axiom{\"smoo\" \"shed\"} returns \\axiom{\"smooshed\"}.")) (|rightTrim| (($ $ (|CharacterClass|)) "\\spad{rightTrim(s,cc)} returns \\spad{s} with all trailing occurences of characters in \\spad{cc} deleted. For example,{} \\axiom{rightTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"(abc\"}.") (($ $ (|Character|)) "\\spad{rightTrim(s,c)} returns \\spad{s} with all trailing occurrences of \\spad{c} deleted. For example,{} \\axiom{rightTrim(\" abc \",{} char \" \")} returns \\axiom{\" abc\"}.")) (|leftTrim| (($ $ (|CharacterClass|)) "\\spad{leftTrim(s,cc)} returns \\spad{s} with all leading characters in \\spad{cc} deleted. For example,{} \\axiom{leftTrim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc)\"}.") (($ $ (|Character|)) "\\spad{leftTrim(s,c)} returns \\spad{s} with all leading characters \\spad{c} deleted. For example,{} \\axiom{leftTrim(\" abc \",{} char \" \")} returns \\axiom{\"abc \"}.")) (|trim| (($ $ (|CharacterClass|)) "\\spad{trim(s,cc)} returns \\spad{s} with all characters in \\spad{cc} deleted from right and left ends. For example,{} \\axiom{trim(\"(abc)\",{} charClass \"()\")} returns \\axiom{\"abc\"}.") (($ $ (|Character|)) "\\spad{trim(s,c)} returns \\spad{s} with all characters \\spad{c} deleted from right and left ends. For example,{} \\axiom{trim(\" abc \",{} char \" \")} returns \\axiom{\"abc\"}.")) (|split| (((|List| $) $ (|CharacterClass|)) "\\spad{split(s,cc)} returns a list of substrings delimited by characters in \\spad{cc}.") (((|List| $) $ (|Character|)) "\\spad{split(s,c)} returns a list of substrings delimited by character \\spad{c}.")) (|coerce| (($ (|Character|)) "\\spad{coerce(c)} returns \\spad{c} as a string \\spad{s} with the character \\spad{c}.")) (|position| (((|Integer|) (|CharacterClass|) $ (|Integer|)) "\\spad{position(cc,t,i)} returns the position \\axiom{\\spad{j} >= \\spad{i}} in \\spad{t} of the first character belonging to \\spad{cc}.") (((|Integer|) $ $ (|Integer|)) "\\spad{position(s,t,i)} returns the position \\spad{j} of the substring \\spad{s} in string \\spad{t},{} where \\axiom{\\spad{j} >= \\spad{i}} is required.")) (|replace| (($ $ (|UniversalSegment| (|Integer|)) $) "\\spad{replace(s,i..j,t)} replaces the substring \\axiom{\\spad{s}(\\spad{i}..\\spad{j})} of \\spad{s} by string \\spad{t}.")) (|match?| (((|Boolean|) $ $ (|Character|)) "\\spad{match?(s,t,c)} tests if \\spad{s} matches \\spad{t} except perhaps for multiple and consecutive occurrences of character \\spad{c}. Typically \\spad{c} is the blank character.")) (|match| (((|NonNegativeInteger|) $ $ (|Character|)) "\\spad{match(p,s,wc)} tests if pattern \\axiom{\\spad{p}} matches subject \\axiom{\\spad{s}} where \\axiom{\\spad{wc}} is a wild card character. If no match occurs,{} the index \\axiom{0} is returned; otheriwse,{} the value returned is the first index of the first character in the subject matching the subject (excluding that matched by an initial wild-card). For example,{} \\axiom{match(\"*to*\",{}\"yorktown\",{}\"*\")} returns \\axiom{5} indicating a successful match starting at index \\axiom{5} of \\axiom{\"yorktown\"}.")) (|substring?| (((|Boolean|) $ $ (|Integer|)) "\\spad{substring?(s,t,i)} tests if \\spad{s} is a substring of \\spad{t} beginning at index \\spad{i}. Note: \\axiom{substring?(\\spad{s},{}\\spad{t},{}0) = prefix?(\\spad{s},{}\\spad{t})}.")) (|suffix?| (((|Boolean|) $ $) "\\spad{suffix?(s,t)} tests if the string \\spad{s} is the final substring of \\spad{t}. Note: \\axiom{suffix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.(\\spad{n} - \\spad{m} + \\spad{i}) for \\spad{i} in 0..maxIndex \\spad{s}])} where \\spad{m} and \\spad{n} denote the maxIndex of \\spad{s} and \\spad{t} respectively.")) (|prefix?| (((|Boolean|) $ $) "\\spad{prefix?(s,t)} tests if the string \\spad{s} is the initial substring of \\spad{t}. Note: \\axiom{prefix?(\\spad{s},{}\\spad{t}) == reduce(and,{}[\\spad{s}.\\spad{i} = \\spad{t}.\\spad{i} for \\spad{i} in 0..maxIndex \\spad{s}])}.")) (|upperCase!| (($ $) "\\spad{upperCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by upper case characters.")) (|upperCase| (($ $) "\\spad{upperCase(s)} returns the string with all characters in upper case.")) (|lowerCase!| (($ $) "\\spad{lowerCase!(s)} destructively replaces the alphabetic characters in \\spad{s} by lower case.")) (|lowerCase| (($ $) "\\spad{lowerCase(s)} returns the string with all characters in lower case."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1166 R E V P TS) +(-1165 R E V P TS) ((|constructor| (NIL "A package providing a new algorithm for solving polynomial systems by means of regular chains. Two ways of solving are provided: in the sense of Zariski closure (like in Kalkbrener's algorithm) or in the sense of the regular zeros (like in Wu,{} Wang or Lazard- Moreno methods). This algorithm is valid for nay type of regular set. It does not care about the way a polynomial is added in an regular set,{} or how two quasi-components are compared (by an inclusion-test),{} or how the invertibility test is made in the tower of simple extensions associated with a regular set. These operations are realized respectively by the domain \\spad{TS} and the packages \\spad{QCMPPK(R,E,V,P,TS)} and \\spad{RSETGCD(R,E,V,P,TS)}. The same way it does not care about the way univariate polynomial gcds (with coefficients in the tower of simple extensions associated with a regular set) are computed. The only requirement is that these gcds need to have invertible initials (normalized or not). WARNING. There is no need for a user to call diectly any operation of this package since they can be accessed by the domain \\axiomType{TS}. Thus,{} the operations of this package are not documented.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.}"))) NIL NIL -(-1167 R E V P) +(-1166 R E V P) ((|constructor| (NIL "This domain provides an implementation of square-free regular chains. Moreover,{} the operation \\axiomOpFrom{zeroSetSplit}{SquareFreeRegularTriangularSetCategory} is an implementation of a new algorithm for solving polynomial systems by means of regular chains.\\newline References : \\indented{1}{[1] \\spad{M}. MORENO MAZA \"A new algorithm for computing triangular} \\indented{5}{decomposition of algebraic varieties\" NAG Tech. Rep. 4/98.} \\indented{2}{Version: 2}")) (|preprocess| (((|Record| (|:| |val| (|List| |#4|)) (|:| |towers| (|List| $))) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{pre_process(lp,{}\\spad{b1},{}\\spad{b2})} is an internal subroutine,{} exported only for developement.")) (|internalZeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalZeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3})} is an internal subroutine,{} exported only for developement.")) (|zeroSetSplit| (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}\\spad{b1},{}\\spad{b2}.\\spad{b3},{}\\spad{b4})} is an internal subroutine,{} exported only for developement.") (((|List| $) (|List| |#4|) (|Boolean|) (|Boolean|)) "\\axiom{zeroSetSplit(lp,{}clos?,{}info?)} has the same specifications as \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory} from \\spadtype{RegularTriangularSetCategory} Moreover,{} if \\axiom{clos?} then solves in the sense of the Zariski closure else solves in the sense of the regular zeros. If \\axiom{info?} then do print messages during the computations.")) (|internalAugment| (((|List| $) |#4| $ (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|) (|Boolean|)) "\\axiom{internalAugment(\\spad{p},{}ts,{}\\spad{b1},{}\\spad{b2},{}\\spad{b3},{}\\spad{b4},{}\\spad{b5})} is an internal subroutine,{} exported only for developement."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1168) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1167) ((|constructor| (NIL "The category of all semiring structures,{} \\spadignore{e.g.} triples (\\spad{D},{}+,{}*) such that (\\spad{D},{}+) is an Abelian monoid and (\\spad{D},{}*) is a monoid with the following laws:"))) NIL NIL -(-1169 S) +(-1168 S) ((|constructor| (NIL "Linked List implementation of a Stack")) (|stack| (($ (|List| |#1|)) "\\spad{stack([x,y,...,z])} creates a stack with first (top) element \\spad{x},{} second element \\spad{y},{}...,{}and last element \\spad{z}."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1170 A S) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1169 A S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1171 S) +(-1170 S) ((|constructor| (NIL "A stream aggregate is a linear aggregate which possibly has an infinite number of elements. A basic domain constructor which builds stream aggregates is \\spadtype{Stream}. From streams,{} a number of infinite structures such power series can be built. A stream aggregate may also be infinite since it may be cyclic. For example,{} see \\spadtype{DecimalExpansion}.")) (|size?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{size?(u,n)} tests if \\spad{u} has exactly \\spad{n} elements.")) (|more?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{more?(u,n)} tests if \\spad{u} has greater than \\spad{n} elements.")) (|less?| (((|Boolean|) $ (|NonNegativeInteger|)) "\\spad{less?(u,n)} tests if \\spad{u} has less than \\spad{n} elements.")) (|possiblyInfinite?| (((|Boolean|) $) "\\spad{possiblyInfinite?(s)} tests if the stream \\spad{s} could possibly have an infinite number of elements. Note: for many datatypes,{} \\axiom{possiblyInfinite?(\\spad{s}) = not explictlyFinite?(\\spad{s})}.")) (|explicitlyFinite?| (((|Boolean|) $) "\\spad{explicitlyFinite?(s)} tests if the stream has a finite number of elements,{} and \\spad{false} otherwise. Note: for many datatypes,{} \\axiom{explicitlyFinite?(\\spad{s}) = not possiblyInfinite?(\\spad{s})}."))) NIL NIL -(-1172 |Key| |Ent| |dent|) +(-1171 |Key| |Ent| |dent|) ((|constructor| (NIL "A sparse table has a default entry,{} which is returned if no other value has been explicitly stored for a key."))) -((-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) -(-1173) +((-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) +(-1172) ((|constructor| (NIL "A class of objects which can be 'stepped through'. Repeated applications of \\spadfun{nextItem} is guaranteed never to return duplicate items and only return \"failed\" after exhausting all elements of the domain. This assumes that the sequence starts with \\spad{init()}. For non-fiinite domains,{} repeated application of \\spadfun{nextItem} is not required to reach all possible domain elements starting from any initial element. \\blankline")) (|nextItem| (((|Maybe| $) $) "\\spad{nextItem(x)} returns the next item,{} or \\spad{failed} if domain is exhausted.")) (|init| (($) "\\spad{init()} chooses an initial object for stepping."))) NIL NIL -(-1174) +(-1173) ((|constructor| (NIL "This domain represents an arithmetic progression iterator syntax.")) (|step| (((|SpadAst|) $) "\\spad{step(i)} returns the Spad AST denoting the step of the arithmetic progression represented by the iterator \\spad{i}.")) (|upperBound| (((|Maybe| (|SpadAst|)) $) "If the set of values assumed by the iteration variable is bounded from above,{} \\spad{upperBound(i)} returns the upper bound. Otherwise,{} its returns \\spad{nothing}.")) (|lowerBound| (((|SpadAst|) $) "\\spad{lowerBound(i)} returns the lower bound on the values assumed by the iteration variable.")) (|iterationVar| (((|Identifier|) $) "\\spad{iterationVar(i)} returns the name of the iterating variable of the arithmetic progression iterator \\spad{i}."))) NIL NIL -(-1175 |Coef|) +(-1174 |Coef|) ((|constructor| (NIL "This package computes infinite products of Taylor series over an integral domain of characteristic 0. Here Taylor series are represented by streams of Taylor coefficients.")) (|generalInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalInfiniteProduct(f(x),a,d)} computes \\spad{product(n=a,a+d,a+2*d,...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|oddInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddInfiniteProduct(f(x))} computes \\spad{product(n=1,3,5...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|evenInfiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenInfiniteProduct(f(x))} computes \\spad{product(n=2,4,6...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1.")) (|infiniteProduct| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{infiniteProduct(f(x))} computes \\spad{product(n=1,2,3...,f(x**n))}. The series \\spad{f(x)} should have constant coefficient 1."))) NIL NIL -(-1176 S) +(-1175 S) ((|constructor| (NIL "A stream is an implementation of an infinite sequence using a list of terms that have been computed and a function closure to compute additional terms when needed.")) (|filterUntil| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterUntil(p,s)} returns \\spad{[x0,x1,...,x(n)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = true}.")) (|filterWhile| (($ (|Mapping| (|Boolean|) |#1|) $) "\\spad{filterWhile(p,s)} returns \\spad{[x0,x1,...,x(n-1)]} where \\spad{s = [x0,x1,x2,..]} and \\spad{n} is the smallest index such that \\spad{p(xn) = false}.")) (|generate| (($ (|Mapping| |#1| |#1|) |#1|) "\\spad{generate(f,x)} creates an infinite stream whose first element is \\spad{x} and whose \\spad{n}th element (\\spad{n > 1}) is \\spad{f} applied to the previous element. Note: \\spad{generate(f,x) = [x,f(x),f(f(x)),...]}.") (($ (|Mapping| |#1|)) "\\spad{generate(f)} creates an infinite stream all of whose elements are equal to \\spad{f()}. Note: \\spad{generate(f) = [f(),f(),f(),...]}.")) (|setrest!| (($ $ (|Integer|) $) "\\spad{setrest!(x,n,y)} sets rest(\\spad{x},{}\\spad{n}) to \\spad{y}. The function will expand cycles if necessary.")) (|showAll?| (((|Boolean|)) "\\spad{showAll?()} returns \\spad{true} if all computed entries of streams will be displayed.")) (|showAllElements| (((|OutputForm|) $) "\\spad{showAllElements(s)} creates an output form which displays all computed elements.")) (|output| (((|Void|) (|Integer|) $) "\\spad{output(n,st)} computes and displays the first \\spad{n} entries of \\spad{st}.")) (|cons| (($ |#1| $) "\\spad{cons(a,s)} returns a stream whose \\spad{first} is \\spad{a} and whose \\spad{rest} is \\spad{s}. Note: \\spad{cons(a,s) = concat(a,s)}.")) (|delay| (($ (|Mapping| $)) "\\spad{delay(f)} creates a stream with a lazy evaluation defined by function \\spad{f}. Caution: This function can only be called in compiled code.")) (|findCycle| (((|Record| (|:| |cycle?| (|Boolean|)) (|:| |prefix| (|NonNegativeInteger|)) (|:| |period| (|NonNegativeInteger|))) (|NonNegativeInteger|) $) "\\spad{findCycle(n,st)} determines if \\spad{st} is periodic within \\spad{n}.")) (|repeating?| (((|Boolean|) (|List| |#1|) $) "\\spad{repeating?(l,s)} returns \\spad{true} if a stream \\spad{s} is periodic with period \\spad{l},{} and \\spad{false} otherwise.")) (|repeating| (($ (|List| |#1|)) "\\spad{repeating(l)} is a repeating stream whose period is the list \\spad{l}.")) (|shallowlyMutable| ((|attribute|) "one may destructively alter a stream by assigning new values to its entries."))) -((-4426 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1177 S) +((-4425 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1176 S) ((|constructor| (NIL "Functions defined on streams with entries in one set.")) (|concat| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{concat(u)} returns the left-to-right concatentation of the streams in \\spad{u}. Note: \\spad{concat(u) = reduce(concat,u)}."))) NIL NIL -(-1178 A B) +(-1177 A B) ((|constructor| (NIL "Functions defined on streams with entries in two sets.")) (|reduce| ((|#2| |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{reduce(b,f,u)},{} where \\spad{u} is a finite stream \\spad{[x0,x1,...,xn]},{} returns the value \\spad{r(n)} computed as follows: \\spad{r0 = f(x0,b), r1 = f(x1,r0),..., r(n) = f(xn,r(n-1))}.")) (|scan| (((|Stream| |#2|) |#2| (|Mapping| |#2| |#1| |#2|) (|Stream| |#1|)) "\\spad{scan(b,h,[x0,x1,x2,...])} returns \\spad{[y0,y1,y2,...]},{} where \\spad{y0 = h(x0,b)},{} \\spad{y1 = h(x1,y0)},{}\\spad{...} \\spad{yn = h(xn,y(n-1))}.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|Stream| |#1|)) "\\spad{map(f,s)} returns a stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{s}. Note: \\spad{map(f,[x0,x1,x2,...]) = [f(x0),f(x1),f(x2),..]}."))) NIL NIL -(-1179 A B C) +(-1178 A B C) ((|constructor| (NIL "Functions defined on streams with entries in three sets.")) (|map| (((|Stream| |#3|) (|Mapping| |#3| |#1| |#2|) (|Stream| |#1|) (|Stream| |#2|)) "\\spad{map(f,st1,st2)} returns the stream whose elements are the function \\spad{f} applied to the corresponding elements of \\spad{st1} and \\spad{st2}. Note: \\spad{map(f,[x0,x1,x2,..],[y0,y1,y2,..]) = [f(x0,y0),f(x1,y1),..]}."))) NIL NIL -(-1180) -((|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-3957 (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| (-146) (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122)))) (|HasCategory| (-146) (QUOTE (-861))) (-3957 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1122))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) -(-1181 |Entry|) +(-1179) +((|constructor| (NIL "This is the domain of character strings.")) (|string| (($ (|Identifier|)) "\\spad{string id} is the string representation of the identifier \\spad{id}") (($ (|DoubleFloat|)) "\\spad{string f} returns the decimal representation of \\spad{f} in a string") (($ (|Integer|)) "\\spad{string i} returns the decimal representation of \\spad{i} in a string"))) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| (-146) (QUOTE (-860))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (-12 (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) (-3956 (-12 (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146))))) (|HasCategory| (-146) (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| (-146) (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| (-146) (QUOTE (-860))) (|HasCategory| (-146) (QUOTE (-1121)))) (|HasCategory| (-146) (QUOTE (-860))) (-3956 (|HasCategory| (-146) (QUOTE (-102))) (|HasCategory| (-146) (QUOTE (-860))) (|HasCategory| (-146) (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-146) (QUOTE (-102))) (-12 (|HasCategory| (-146) (QUOTE (-1121))) (|HasCategory| (-146) (|%list| (QUOTE -321) (QUOTE (-146)))))) +(-1180 |Entry|) ((|constructor| (NIL "This domain provides tables where the keys are strings. A specialized hash function for strings is used."))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (QUOTE (-1180))) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-1122))) (|HasCategory| (-1180) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (QUOTE (-102)))) -(-1182 A) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (QUOTE (-1179))) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#1|))))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-1121))) (|HasCategory| (-1179) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-102)))) (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (QUOTE (-102)))) +(-1181 A) ((|constructor| (NIL "StreamTaylorSeriesOperations implements Taylor series arithmetic,{} where a Taylor series is represented by a stream of its coefficients.")) (|power| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{power(a,f)} returns the power series \\spad{f} raised to the power \\spad{a}.")) (|lazyGintegrate| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyGintegrate(f,r,g)} is used for fixed point computations.")) (|mapdiv| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapdiv([a0,a1,..],[b0,b1,..])} returns \\spad{[a0/b0,a1/b1,..]}.")) (|powern| (((|Stream| |#1|) (|Fraction| (|Integer|)) (|Stream| |#1|)) "\\spad{powern(r,f)} raises power series \\spad{f} to the power \\spad{r}.")) (|nlde| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{nlde(u)} solves a first order non-linear differential equation described by \\spad{u} of the form \\spad{[[b<0,0>,b<0,1>,...],[b<1,0>,b<1,1>,.],...]}. the differential equation has the form \\spad{y' = sum(i=0 to infinity,j=0 to infinity,b<i,j>*(x**i)*(y**j))}.")) (|lazyIntegrate| (((|Stream| |#1|) |#1| (|Mapping| (|Stream| |#1|))) "\\spad{lazyIntegrate(r,f)} is a local function used for fixed point computations.")) (|integrate| (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{integrate(r,a)} returns the integral of the power series \\spad{a} with respect to the power series variableintegration where \\spad{r} denotes the constant of integration. Thus \\spad{integrate(a,[a0,a1,a2,...]) = [a,a0,a1/2,a2/3,...]}.")) (|invmultisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{invmultisect(a,b,st)} substitutes \\spad{x**((a+b)*n)} for \\spad{x**n} and multiplies by \\spad{x**b}.")) (|multisect| (((|Stream| |#1|) (|Integer|) (|Integer|) (|Stream| |#1|)) "\\spad{multisect(a,b,st)} selects the coefficients of \\spad{x**((a+b)*n+a)},{} and changes them to \\spad{x**n}.")) (|generalLambert| (((|Stream| |#1|) (|Stream| |#1|) (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x**a) + f(x**(a + d)) + f(x**(a + 2 d)) + ...}. \\spad{f(x)} should have zero constant coefficient and \\spad{a} and \\spad{d} should be positive.")) (|evenlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{evenlambert(st)} computes \\spad{f(x**2) + f(x**4) + f(x**6) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1,{} then \\spad{prod(f(x**(2*n)),n=1..infinity) = exp(evenlambert(log(f(x))))}.")) (|oddlambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{oddlambert(st)} computes \\spad{f(x) + f(x**3) + f(x**5) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f}(\\spad{x}) is a power series with constant coefficient 1 then \\spad{prod(f(x**(2*n-1)),n=1..infinity) = exp(oddlambert(log(f(x))))}.")) (|lambert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lambert(st)} computes \\spad{f(x) + f(x**2) + f(x**3) + ...} if \\spad{st} is a stream representing \\spad{f(x)}. This function is used for computing infinite products. If \\spad{f(x)} is a power series with constant coefficient 1 then \\spad{prod(f(x**n),n = 1..infinity) = exp(lambert(log(f(x))))}.")) (|addiag| (((|Stream| |#1|) (|Stream| (|Stream| |#1|))) "\\spad{addiag(x)} performs diagonal addition of a stream of streams. if \\spad{x} = \\spad{[[a<0,0>,a<0,1>,..],[a<1,0>,a<1,1>,..],[a<2,0>,a<2,1>,..],..]} and \\spad{addiag(x) = [b<0,b<1>,...], then b<k> = sum(i+j=k,a<i,j>)}.")) (|revert| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{revert(a)} computes the inverse of a power series \\spad{a} with respect to composition. the series should have constant coefficient 0 and first order coefficient should be invertible.")) (|lagrange| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{lagrange(g)} produces the power series for \\spad{f} where \\spad{f} is implicitly defined as \\spad{f(z) = z*g(f(z))}.")) (|compose| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{compose(a,b)} composes the power series \\spad{a} with the power series \\spad{b}.")) (|eval| (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{eval(a,r)} returns a stream of partial sums of the power series \\spad{a} evaluated at the power series variable equal to \\spad{r}.")) (|coerce| (((|Stream| |#1|) |#1|) "\\spad{coerce(r)} converts a ring element \\spad{r} to a stream with one element.")) (|gderiv| (((|Stream| |#1|) (|Mapping| |#1| (|Integer|)) (|Stream| |#1|)) "\\spad{gderiv(f,[a0,a1,a2,..])} returns \\spad{[f(0)*a0,f(1)*a1,f(2)*a2,..]}.")) (|deriv| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{deriv(a)} returns the derivative of the power series with respect to the power series variable. Thus \\spad{deriv([a0,a1,a2,...])} returns \\spad{[a1,2 a2,3 a3,...]}.")) (|mapmult| (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{mapmult([a0,a1,..],[b0,b1,..])} returns \\spad{[a0*b0,a1*b1,..]}.")) (|int| (((|Stream| |#1|) |#1|) "\\spad{int(r)} returns [\\spad{r},{}\\spad{r+1},{}\\spad{r+2},{}...],{} where \\spad{r} is a ring element.")) (|oddintegers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{oddintegers(n)} returns \\spad{[n,n+2,n+4,...]}.")) (|integers| (((|Stream| (|Integer|)) (|Integer|)) "\\spad{integers(n)} returns \\spad{[n,n+1,n+2,...]}.")) (|monom| (((|Stream| |#1|) |#1| (|Integer|)) "\\spad{monom(deg,coef)} is a monomial of degree \\spad{deg} with coefficient \\spad{coef}.")) (|recip| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|)) "\\spad{recip(a)} returns the power series reciprocal of \\spad{a},{} or \"failed\" if not possible.")) (/ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a / b} returns the power series quotient of \\spad{a} by \\spad{b}. An error message is returned if \\spad{b} is not invertible. This function is used in fixed point computations.")) (|exquo| (((|Union| (|Stream| |#1|) "failed") (|Stream| |#1|) (|Stream| |#1|)) "\\spad{exquo(a,b)} returns the power series quotient of \\spad{a} by \\spad{b},{} if the quotient exists,{} and \"failed\" otherwise")) (* (((|Stream| |#1|) (|Stream| |#1|) |#1|) "\\spad{a * r} returns the power series scalar multiplication of \\spad{a} by r: \\spad{[a0,a1,...] * r = [a0 * r,a1 * r,...]}") (((|Stream| |#1|) |#1| (|Stream| |#1|)) "\\spad{r * a} returns the power series scalar multiplication of \\spad{r} by \\spad{a}: \\spad{r * [a0,a1,...] = [r * a0,r * a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a * b} returns the power series (Cauchy) product of \\spad{a} and b: \\spad{[a0,a1,...] * [b0,b1,...] = [c0,c1,...]} where \\spad{ck = sum(i + j = k,ai * bk)}.")) (- (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{- a} returns the power series negative of \\spad{a}: \\spad{- [a0,a1,...] = [- a0,- a1,...]}") (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a - b} returns the power series difference of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] - [b0,b1,..] = [a0 - b0,a1 - b1,..]}")) (+ (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{a + b} returns the power series sum of \\spad{a} and \\spad{b}: \\spad{[a0,a1,..] + [b0,b1,..] = [a0 + b0,a1 + b1,..]}"))) NIL ((|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) -(-1183 |Coef|) +(-1182 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctions implements transcendental functions on Taylor series,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|sinhcosh| (((|Record| (|:| |sinh| (|Stream| |#1|)) (|:| |cosh| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sinhcosh(st)} returns a record containing the hyperbolic sine and cosine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (|sincos| (((|Record| (|:| |sin| (|Stream| |#1|)) (|:| |cos| (|Stream| |#1|))) (|Stream| |#1|)) "\\spad{sincos(st)} returns a record containing the sine and cosine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1184 |Coef|) +(-1183 |Coef|) ((|constructor| (NIL "StreamTranscendentalFunctionsNonCommutative implements transcendental functions on Taylor series over a non-commutative ring,{} where a Taylor series is represented by a stream of its coefficients.")) (|acsch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsch(st)} computes the inverse hyperbolic cosecant of a power series \\spad{st}.")) (|asech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asech(st)} computes the inverse hyperbolic secant of a power series \\spad{st}.")) (|acoth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acoth(st)} computes the inverse hyperbolic cotangent of a power series \\spad{st}.")) (|atanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atanh(st)} computes the inverse hyperbolic tangent of a power series \\spad{st}.")) (|acosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acosh(st)} computes the inverse hyperbolic cosine of a power series \\spad{st}.")) (|asinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asinh(st)} computes the inverse hyperbolic sine of a power series \\spad{st}.")) (|csch| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csch(st)} computes the hyperbolic cosecant of a power series \\spad{st}.")) (|sech| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sech(st)} computes the hyperbolic secant of a power series \\spad{st}.")) (|coth| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{coth(st)} computes the hyperbolic cotangent of a power series \\spad{st}.")) (|tanh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tanh(st)} computes the hyperbolic tangent of a power series \\spad{st}.")) (|cosh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cosh(st)} computes the hyperbolic cosine of a power series \\spad{st}.")) (|sinh| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sinh(st)} computes the hyperbolic sine of a power series \\spad{st}.")) (|acsc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acsc(st)} computes arccosecant of a power series \\spad{st}.")) (|asec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asec(st)} computes arcsecant of a power series \\spad{st}.")) (|acot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acot(st)} computes arccotangent of a power series \\spad{st}.")) (|atan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{atan(st)} computes arctangent of a power series \\spad{st}.")) (|acos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{acos(st)} computes arccosine of a power series \\spad{st}.")) (|asin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{asin(st)} computes arcsine of a power series \\spad{st}.")) (|csc| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{csc(st)} computes cosecant of a power series \\spad{st}.")) (|sec| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sec(st)} computes secant of a power series \\spad{st}.")) (|cot| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cot(st)} computes cotangent of a power series \\spad{st}.")) (|tan| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{tan(st)} computes tangent of a power series \\spad{st}.")) (|cos| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{cos(st)} computes cosine of a power series \\spad{st}.")) (|sin| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{sin(st)} computes sine of a power series \\spad{st}.")) (** (((|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) "\\spad{st1 ** st2} computes the power of a power series \\spad{st1} by another power series \\spad{st2}.")) (|log| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{log(st)} computes the log of a power series.")) (|exp| (((|Stream| |#1|) (|Stream| |#1|)) "\\spad{exp(st)} computes the exponential of a power series \\spad{st}."))) NIL NIL -(-1185 R UP) +(-1184 R UP) ((|constructor| (NIL "This package computes the subresultants of two polynomials which is needed for the `Lazard Rioboo' enhancement to Tragers integrations formula For efficiency reasons this has been rewritten to call Lionel Ducos package which is currently the best one. \\blankline")) (|primitivePart| ((|#2| |#2| |#1|) "\\spad{primitivePart(p, q)} reduces the coefficient of \\spad{p} modulo \\spad{q},{} takes the primitive part of the result,{} and ensures that the leading coefficient of that result is monic.")) (|subresultantVector| (((|PrimitiveArray| |#2|) |#2| |#2|) "\\spad{subresultantVector(p, q)} returns \\spad{[p0,...,pn]} where \\spad{pi} is the \\spad{i}-th subresultant of \\spad{p} and \\spad{q}. In particular,{} \\spad{p0 = resultant(p, q)}."))) NIL ((|HasCategory| |#1| (QUOTE (-319)))) -(-1186 |n| R) +(-1185 |n| R) ((|constructor| (NIL "This domain \\undocumented")) (|pointData| (((|List| (|Point| |#2|)) $) "\\spad{pointData(s)} returns the list of points from the point data field of the 3 dimensional subspace \\spad{s}.")) (|parent| (($ $) "\\spad{parent(s)} returns the subspace which is the parent of the indicated 3 dimensional subspace \\spad{s}. If \\spad{s} is the top level subspace an error message is returned.")) (|level| (((|NonNegativeInteger|) $) "\\spad{level(s)} returns a non negative integer which is the current level field of the indicated 3 dimensional subspace \\spad{s}.")) (|extractProperty| (((|SubSpaceComponentProperty|) $) "\\spad{extractProperty(s)} returns the property of domain \\spadtype{SubSpaceComponentProperty} of the indicated 3 dimensional subspace \\spad{s}.")) (|extractClosed| (((|Boolean|) $) "\\spad{extractClosed(s)} returns the \\spadtype{Boolean} value of the closed property for the indicated 3 dimensional subspace \\spad{s}. If the property is closed,{} \\spad{True} is returned,{} otherwise \\spad{False} is returned.")) (|extractIndex| (((|NonNegativeInteger|) $) "\\spad{extractIndex(s)} returns a non negative integer which is the current index of the 3 dimensional subspace \\spad{s}.")) (|extractPoint| (((|Point| |#2|) $) "\\spad{extractPoint(s)} returns the point which is given by the current index location into the point data field of the 3 dimensional subspace \\spad{s}.")) (|traverse| (($ $ (|List| (|NonNegativeInteger|))) "\\spad{traverse(s,li)} follows the branch list of the 3 dimensional subspace,{} \\spad{s},{} along the path dictated by the list of non negative integers,{} \\spad{li},{} which points to the component which has been traversed to. The subspace,{} \\spad{s},{} is returned,{} where \\spad{s} is now the subspace pointed to by \\spad{li}.")) (|defineProperty| (($ $ (|List| (|NonNegativeInteger|)) (|SubSpaceComponentProperty|)) "\\spad{defineProperty(s,li,p)} defines the component property in the 3 dimensional subspace,{} \\spad{s},{} to be that of \\spad{p},{} where \\spad{p} is of the domain \\spadtype{SubSpaceComponentProperty}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose property is being defined. The subspace,{} \\spad{s},{} is returned with the component property definition.")) (|closeComponent| (($ $ (|List| (|NonNegativeInteger|)) (|Boolean|)) "\\spad{closeComponent(s,li,b)} sets the property of the component in the 3 dimensional subspace,{} \\spad{s},{} to be closed if \\spad{b} is \\spad{true},{} or open if \\spad{b} is \\spad{false}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component whose closed property is to be set. The subspace,{} \\spad{s},{} is returned with the component property modification.")) (|modifyPoint| (($ $ (|NonNegativeInteger|) (|Point| |#2|)) "\\spad{modifyPoint(s,ind,p)} modifies the point referenced by the index location,{} \\spad{ind},{} by replacing it with the point,{} \\spad{p} in the 3 dimensional subspace,{} \\spad{s}. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{modifyPoint(s,li,i)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point indicated by the index location,{} \\spad{i}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{modifyPoint(s,li,p)} replaces an existing point in the 3 dimensional subspace,{} \\spad{s},{} with the 4 dimensional point,{} \\spad{p}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the existing point is to be modified. An error message occurs if \\spad{s} is empty,{} otherwise the subspace \\spad{s} is returned with the point modification.")) (|addPointLast| (($ $ $ (|Point| |#2|) (|NonNegativeInteger|)) "\\spad{addPointLast(s,s2,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. \\spad{s2} point to the end of the subspace \\spad{s}. \\spad{n} is the path in the \\spad{s2} component. The subspace \\spad{s} is returned with the additional point.")) (|addPoint2| (($ $ (|Point| |#2|)) "\\spad{addPoint2(s,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The subspace \\spad{s} is returned with the additional point.")) (|addPoint| (((|NonNegativeInteger|) $ (|Point| |#2|)) "\\spad{addPoint(s,p)} adds the point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s},{} and returns the new total number of points in \\spad{s}.") (($ $ (|List| (|NonNegativeInteger|)) (|NonNegativeInteger|)) "\\spad{addPoint(s,li,i)} adds the 4 dimensional point indicated by the index location,{} \\spad{i},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.") (($ $ (|List| (|NonNegativeInteger|)) (|Point| |#2|)) "\\spad{addPoint(s,li,p)} adds the 4 dimensional point,{} \\spad{p},{} to the 3 dimensional subspace,{} \\spad{s}. The list of non negative integers,{} \\spad{li},{} dictates the path to follow,{} or,{} to look at it another way,{} points to the component in which the point is to be added. It's length should range from 0 to \\spad{n - 1} where \\spad{n} is the dimension of the subspace. If the length is \\spad{n - 1},{} then a specific lowest level component is being referenced. If it is less than \\spad{n - 1},{} then some higher level component (0 indicates top level component) is being referenced and a component of that level with the desired point is created. The subspace \\spad{s} is returned with the additional point.")) (|separate| (((|List| $) $) "\\spad{separate(s)} makes each of the components of the \\spadtype{SubSpace},{} \\spad{s},{} into a list of separate and distinct subspaces and returns the list.")) (|merge| (($ (|List| $)) "\\spad{merge(ls)} a list of subspaces,{} \\spad{ls},{} into one subspace.") (($ $ $) "\\spad{merge(s1,s2)} the subspaces \\spad{s1} and \\spad{s2} into a single subspace.")) (|deepCopy| (($ $) "\\spad{deepCopy(x)} \\undocumented")) (|shallowCopy| (($ $) "\\spad{shallowCopy(x)} \\undocumented")) (|numberOfChildren| (((|NonNegativeInteger|) $) "\\spad{numberOfChildren(x)} \\undocumented")) (|children| (((|List| $) $) "\\spad{children(x)} \\undocumented")) (|child| (($ $ (|NonNegativeInteger|)) "\\spad{child(x,n)} \\undocumented")) (|birth| (($ $) "\\spad{birth(x)} \\undocumented")) (|subspace| (($) "\\spad{subspace()} \\undocumented")) (|new| (($) "\\spad{new()} \\undocumented")) (|internal?| (((|Boolean|) $) "\\spad{internal?(x)} \\undocumented")) (|root?| (((|Boolean|) $) "\\spad{root?(x)} \\undocumented")) (|leaf?| (((|Boolean|) $) "\\spad{leaf?(x)} \\undocumented"))) NIL NIL -(-1187 S1 S2) +(-1186 S1 S2) ((|constructor| (NIL "This domain implements \"such that\" forms")) (|rhs| ((|#2| $) "\\spad{rhs(f)} returns the right side of \\spad{f}")) (|lhs| ((|#1| $) "\\spad{lhs(f)} returns the left side of \\spad{f}")) (|construct| (($ |#1| |#2|) "\\spad{construct(s,t)} makes a form s:t"))) NIL NIL -(-1188) +(-1187) ((|constructor| (NIL "This domain represents the filter iterator syntax.")) (|predicate| (((|SpadAst|) $) "\\spad{predicate(e)} returns the syntax object for the predicate in the filter iterator syntax `e'."))) NIL NIL -(-1189 |Coef| |var| |cen|) +(-1188 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Laurent series in one variable \\indented{2}{\\spadtype{SparseUnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariateLaurentSeries(Integer,x,3)} represents Laurent} \\indented{2}{series in \\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4427 "*") -3957 (-2961 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2961 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-929)))) (-4418 -3957 (-2961 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-2961 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-929)))) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1173)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1133))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1041)))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-842)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -1196) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-861)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1196 |#1| |#2| |#3|) (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1190 R -3495) +(((-4426 "*") -3956 (-2960 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-841))) (|has| |#1| (-175)) (-2960 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4417 -3956 (-2960 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2960 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-928)))) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1172)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1132))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1040)))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-841)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-1172)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -1195) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-860)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1195 |#1| |#2| |#3|) (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1189 R -3494) ((|constructor| (NIL "computes sums of top-level expressions.")) (|sum| ((|#2| |#2| (|SegmentBinding| |#2|)) "\\spad{sum(f(n), n = a..b)} returns \\spad{f}(a) + \\spad{f}(\\spad{a+1}) + ... + \\spad{f}(\\spad{b}).") ((|#2| |#2| (|Symbol|)) "\\spad{sum(a(n), n)} returns A(\\spad{n}) such that A(\\spad{n+1}) - A(\\spad{n}) = a(\\spad{n})."))) NIL NIL -(-1191 R) +(-1190 R) ((|constructor| (NIL "Computes sums of rational functions.")) (|sum| (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|SegmentBinding| (|Fraction| (|Polynomial| |#1|)))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|SegmentBinding| (|Polynomial| |#1|))) "\\spad{sum(f(n), n = a..b)} returns \\spad{f(a) + f(a+1) + ... f(b)}.") (((|Union| (|Fraction| (|Polynomial| |#1|)) (|Expression| |#1|)) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}.") (((|Fraction| (|Polynomial| |#1|)) (|Polynomial| |#1|) (|Symbol|)) "\\spad{sum(a(n), n)} returns \\spad{A} which is the indefinite sum of \\spad{a} with respect to upward difference on \\spad{n},{} \\spadignore{i.e.} \\spad{A(n+1) - A(n) = a(n)}."))) NIL NIL -(-1192 R) +(-1191 R) ((|constructor| (NIL "This domain represents univariate polynomials over arbitrary (not necessarily commutative) coefficient rings. The variable is unspecified so that the variable displays as \\spad{?} on output. If it is necessary to specify the variable name,{} use type \\spadtype{UnivariatePolynomial}. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#1| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}")) (|outputForm| (((|OutputForm|) $ (|OutputForm|)) "\\spad{outputForm(p,var)} converts the SparseUnivariatePolynomial \\spad{p} to an output form (see \\spadtype{OutputForm}) printed as a polynomial in the output form variable."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4421 |has| |#1| (-376)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-929)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1173))) (|HasCategory| |#1| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4423)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1193 R S) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4420 |has| |#1| (-376)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#1| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-928)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (|HasCategory| |#1| (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-1172))) (|HasCategory| |#1| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#1| (QUOTE (-239))) (|HasCategory| |#1| (QUOTE (-240))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1192 R S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from sparse univariate polynomial over \\spad{R} to a sparse univariate polynomial over \\spad{S}. Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|SparseUnivariatePolynomial| |#2|) (|Mapping| |#2| |#1|) (|SparseUnivariatePolynomial| |#1|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1194 E OV R P) +(-1193 E OV R P) ((|constructor| (NIL "\\indented{1}{SupFractionFactorize} contains the factor function for univariate polynomials over the quotient field of a ring \\spad{S} such that the package MultivariateFactorize works for \\spad{S}")) (|squareFree| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{squareFree(p)} returns the square-free factorization of the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}. Each factor has no repeated roots and the factors are pairwise relatively prime.")) (|factor| (((|Factored| (|SparseUnivariatePolynomial| (|Fraction| |#4|))) (|SparseUnivariatePolynomial| (|Fraction| |#4|))) "\\spad{factor(p)} factors the univariate polynomial \\spad{p} with coefficients which are fractions of polynomials over \\spad{R}."))) NIL NIL -(-1195 |Coef| |var| |cen|) +(-1194 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Puiseux series in one variable \\indented{2}{\\spadtype{SparseUnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{SparseUnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1196 |Coef| |var| |cen|) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1195 |Coef| |var| |cen|) ((|constructor| (NIL "Sparse Taylor series in one variable \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries} is a domain representing Taylor} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spadtype{SparseUnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor} \\indented{2}{series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1197) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-790)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-790)) (|devaluate| |#1|)))) (|HasCategory| (-790) (QUOTE (-1132))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-790))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-790))))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1196) ((|constructor| (NIL "This domain builds representations of boolean expressions for use with the \\axiomType{FortranCode} domain.")) (NOT (($ $) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.") (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{NOT(x)} returns the \\axiomType{Switch} expression representing \\spad{\\~~x}.")) (AND (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{AND(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x and y}.")) (EQ (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{EQ(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x = y}.")) (OR (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{OR(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x or y}.")) (GE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>=y}.")) (LE (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LE(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<=y}.")) (GT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{GT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x>y}.")) (LT (($ (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $)) (|Union| (|:| I (|Expression| (|Integer|))) (|:| F (|Expression| (|Float|))) (|:| CF (|Expression| (|Complex| (|Float|)))) (|:| |switch| $))) "\\spad{LT(x,y)} returns the \\axiomType{Switch} expression representing \\spad{x<y}.")) (|coerce| (($ (|Symbol|)) "\\spad{coerce(s)} \\undocumented{}"))) NIL NIL -(-1198) +(-1197) ((|constructor| (NIL "Basic and scripted symbols.")) (|sample| (($) "\\spad{sample()} returns a sample of \\%")) (|list| (((|List| $) $) "\\spad{list(sy)} takes a scripted symbol and produces a list of the name followed by the scripts.")) (|string| (((|String|) $) "\\spad{string(s)} converts the symbol \\spad{s} to a string. Error: if the symbol is subscripted.")) (|elt| (($ $ (|List| (|OutputForm|))) "\\spad{elt(s,[a1,...,an])} or \\spad{s}([\\spad{a1},{}...,{}an]) returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|argscript| (($ $ (|List| (|OutputForm|))) "\\spad{argscript(s, [a1,...,an])} returns \\spad{s} arg-scripted by \\spad{[a1,...,an]}.")) (|superscript| (($ $ (|List| (|OutputForm|))) "\\spad{superscript(s, [a1,...,an])} returns \\spad{s} superscripted by \\spad{[a1,...,an]}.")) (|subscript| (($ $ (|List| (|OutputForm|))) "\\spad{subscript(s, [a1,...,an])} returns \\spad{s} subscripted by \\spad{[a1,...,an]}.")) (|script| (($ $ (|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|))))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}.") (($ $ (|List| (|List| (|OutputForm|)))) "\\spad{script(s, [a,b,c,d,e])} returns \\spad{s} with subscripts a,{} superscripts \\spad{b},{} pre-superscripts \\spad{c},{} pre-subscripts \\spad{d},{} and argument-scripts \\spad{e}. Omitted components are taken to be empty. For example,{} \\spad{script(s, [a,b,c])} is equivalent to \\spad{script(s,[a,b,c,[],[]])}.")) (|scripts| (((|Record| (|:| |sub| (|List| (|OutputForm|))) (|:| |sup| (|List| (|OutputForm|))) (|:| |presup| (|List| (|OutputForm|))) (|:| |presub| (|List| (|OutputForm|))) (|:| |args| (|List| (|OutputForm|)))) $) "\\spad{scripts(s)} returns all the scripts of \\spad{s}.")) (|scripted?| (((|Boolean|) $) "\\spad{scripted?(s)} is \\spad{true} if \\spad{s} has been given any scripts.")) (|name| (($ $) "\\spad{name(s)} returns \\spad{s} without its scripts.")) (|resetNew| (((|Void|)) "\\spad{resetNew()} resets the internals counters that new() and new(\\spad{s}) use to return distinct symbols every time.")) (|new| (($ $) "\\spad{new(s)} returns a new symbol whose name starts with \\%\\spad{s}.") (($) "\\spad{new()} returns a new symbol whose name starts with \\%."))) NIL NIL -(-1199 R) +(-1198 R) ((|constructor| (NIL "Computes all the symmetric functions in \\spad{n} variables.")) (|symFunc| (((|Vector| |#1|) |#1| (|PositiveInteger|)) "\\spad{symFunc(r, n)} returns the vector of the elementary symmetric functions in \\spad{[r,r,...,r]} \\spad{n} times.") (((|Vector| |#1|) (|List| |#1|)) "\\spad{symFunc([r1,...,rn])} returns the vector of the elementary symmetric functions in the \\spad{ri's}: \\spad{[r1 + ... + rn, r1 r2 + ... + r(n-1) rn, ..., r1 r2 ... rn]}."))) NIL NIL -(-1200 R) +(-1199 R) ((|constructor| (NIL "This domain implements symmetric polynomial"))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-6 -4423)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3957 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-992) (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4423))) -(-1201) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-6 -4422)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-3956 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-464))) (-12 (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| (-991) (QUOTE (-133)))) (|HasAttribute| |#1| (QUOTE -4422))) +(-1200) ((|constructor| (NIL "Creates and manipulates one global symbol table for FORTRAN code generation,{} containing details of types,{} dimensions,{} and argument lists.")) (|symbolTableOf| (((|SymbolTable|) (|Symbol|) $) "\\spad{symbolTableOf(f,tab)} returns the symbol table of \\spad{f}")) (|argumentListOf| (((|List| (|Symbol|)) (|Symbol|) $) "\\spad{argumentListOf(f,tab)} returns the argument list of \\spad{f}")) (|returnTypeOf| (((|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1="void")) (|Symbol|) $) "\\spad{returnTypeOf(f,tab)} returns the type of the object returned by \\spad{f}")) (|empty| (($) "\\spad{empty()} creates a new,{} empty symbol table.")) (|printTypes| (((|Void|) (|Symbol|)) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|printHeader| (((|Void|)) "\\spad{printHeader()} produces the FORTRAN header for the current subprogram in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|)) "\\spad{printHeader(f)} produces the FORTRAN header for subprogram \\spad{f} in the global symbol table on the current FORTRAN output stream.") (((|Void|) (|Symbol|) $) "\\spad{printHeader(f,tab)} produces the FORTRAN header for subprogram \\spad{f} in symbol table \\spad{tab} on the current FORTRAN output stream.")) (|returnType!| (((|Void|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(t)} declares that the return type of he current subprogram in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#))) "\\spad{returnType!(f,t)} declares that the return type of subprogram \\spad{f} in the global symbol table is \\spad{t}.") (((|Void|) (|Symbol|) (|Union| (|:| |fst| (|FortranScalarType|)) (|:| |void| #1#)) $) "\\spad{returnType!(f,t,tab)} declares that the return type of subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{t}.")) (|argumentList!| (((|Void|) (|List| (|Symbol|))) "\\spad{argumentList!(l)} declares that the argument list for the current subprogram in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|))) "\\spad{argumentList!(f,l)} declares that the argument list for subprogram \\spad{f} in the global symbol table is \\spad{l}.") (((|Void|) (|Symbol|) (|List| (|Symbol|)) $) "\\spad{argumentList!(f,l,tab)} declares that the argument list for subprogram \\spad{f} in symbol table \\spad{tab} is \\spad{l}.")) (|endSubProgram| (((|Symbol|)) "\\spad{endSubProgram()} asserts that we are no longer processing the current subprogram.")) (|currentSubProgram| (((|Symbol|)) "\\spad{currentSubProgram()} returns the name of the current subprogram being processed")) (|newSubProgram| (((|Void|) (|Symbol|)) "\\spad{newSubProgram(f)} asserts that from now on type declarations are part of subprogram \\spad{f}.")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|)) "\\spad{declare!(u,t,asp)} declares the parameter \\spad{u} to have type \\spad{t} in \\spad{asp}.") (((|FortranType|) (|Symbol|) (|FortranType|)) "\\spad{declare!(u,t)} declares the parameter \\spad{u} to have type \\spad{t} in the current level of the symbol table.") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameters \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.") (((|FortranType|) (|Symbol|) (|FortranType|) (|Symbol|) $) "\\spad{declare!(u,t,asp,tab)} declares the parameter \\spad{u} of subprogram \\spad{asp} to have type \\spad{t} in symbol table \\spad{tab}.")) (|clearTheSymbolTable| (((|Void|) (|Symbol|)) "\\spad{clearTheSymbolTable(x)} removes the symbol \\spad{x} from the table") (((|Void|)) "\\spad{clearTheSymbolTable()} clears the current symbol table.")) (|showTheSymbolTable| (($) "\\spad{showTheSymbolTable()} returns the current symbol table."))) NIL NIL -(-1202) +(-1201) ((|constructor| (NIL "Create and manipulate a symbol table for generated FORTRAN code")) (|symbolTable| (($ (|List| (|Record| (|:| |key| (|Symbol|)) (|:| |entry| (|FortranType|))))) "\\spad{symbolTable(l)} creates a symbol table from the elements of \\spad{l}.")) (|printTypes| (((|Void|) $) "\\spad{printTypes(tab)} produces FORTRAN type declarations from \\spad{tab},{} on the current FORTRAN output stream")) (|newTypeLists| (((|SExpression|) $) "\\spad{newTypeLists(x)} \\undocumented")) (|typeLists| (((|List| (|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|))))))))) $) "\\spad{typeLists(tab)} returns a list of lists of types of objects in \\spad{tab}")) (|externalList| (((|List| (|Symbol|)) $) "\\spad{externalList(tab)} returns a list of all the external symbols in \\spad{tab}")) (|typeList| (((|List| (|Union| (|:| |name| (|Symbol|)) (|:| |bounds| (|List| (|Union| (|:| S (|Symbol|)) (|:| P (|Polynomial| (|Integer|)))))))) (|FortranScalarType|) $) "\\spad{typeList(t,tab)} returns a list of all the objects of type \\spad{t} in \\spad{tab}")) (|parametersOf| (((|List| (|Symbol|)) $) "\\spad{parametersOf(tab)} returns a list of all the symbols declared in \\spad{tab}")) (|fortranTypeOf| (((|FortranType|) (|Symbol|) $) "\\spad{fortranTypeOf(u,tab)} returns the type of \\spad{u} in \\spad{tab}")) (|declare!| (((|FortranType|) (|Symbol|) (|FortranType|) $) "\\spad{declare!(u,t,tab)} creates a new entry in \\spad{tab},{} declaring \\spad{u} to be of type \\spad{t}") (((|FortranType|) (|List| (|Symbol|)) (|FortranType|) $) "\\spad{declare!(l,t,tab)} creates new entrys in \\spad{tab},{} declaring each of \\spad{l} to be of type \\spad{t}")) (|empty| (($) "\\spad{empty()} returns a new,{} empty symbol table")) (|coerce| (((|Table| (|Symbol|) (|FortranType|)) $) "\\spad{coerce(x)} returns a table view of \\spad{x}"))) NIL NIL -(-1203) +(-1202) ((|constructor| (NIL "\\indented{1}{This domain provides a simple domain,{} general enough for} \\indented{2}{building complete representation of Spad programs as objects} \\indented{2}{of a term algebra built from ground terms of type integers,{} foats,{}} \\indented{2}{identifiers,{} and strings.} \\indented{2}{This domain differs from InputForm in that it represents} \\indented{2}{any entity in a Spad program,{} not just expressions.\\space{2}Furthermore,{}} \\indented{2}{while InputForm may contain atoms like vectors and other Lisp} \\indented{2}{objects,{} the Syntax domain is supposed to contain only that} \\indented{2}{initial algebra build from the primitives listed above.} Related Constructors: \\indented{2}{Integer,{} DoubleFloat,{} Identifier,{} String,{} SExpression.} See Also: SExpression,{} InputForm. The equality supported by this domain is structural.")) (|case| (((|Boolean|) $ (|[\|\|]| (|String|))) "\\spad{x case String} is \\spad{true} if `x' really is a String") (((|Boolean|) $ (|[\|\|]| (|Identifier|))) "\\spad{x case Identifier} is \\spad{true} if `x' really is an Identifier") (((|Boolean|) $ (|[\|\|]| (|DoubleFloat|))) "\\spad{x case DoubleFloat} is \\spad{true} if `x' really is a DoubleFloat") (((|Boolean|) $ (|[\|\|]| (|Integer|))) "\\spad{x case Integer} is \\spad{true} if `x' really is an Integer")) (|compound?| (((|Boolean|) $) "\\spad{compound? x} is \\spad{true} when `x' is not an atomic syntax.")) (|getOperands| (((|List| $) $) "\\spad{getOperands(x)} returns the list of operands to the operator in `x'.")) (|getOperator| (((|Union| (|Integer|) (|DoubleFloat|) (|Identifier|) (|String|) $) $) "\\spad{getOperator(x)} returns the operator,{} or tag,{} of the syntax `x'. The value returned is itself a syntax if `x' really is an application of a function symbol as opposed to being an atomic ground term.")) (|nil?| (((|Boolean|) $) "\\spad{nil?(s)} is \\spad{true} when `s' is a syntax for the constant nil.")) (|buildSyntax| (($ $ (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).") (($ (|Identifier|) (|List| $)) "\\spad{buildSyntax(op, [a1, ..., an])} builds a syntax object for \\spad{op}(\\spad{a1},{}...,{}an).")) (|autoCoerce| (((|String|) $) "\\spad{autoCoerce(s)} forcibly extracts a string value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.") (((|Identifier|) $) "\\spad{autoCoerce(s)} forcibly extracts an identifier from the Syntax domain `s'; no check performed. To be called only at at the discretion of the compiler.") (((|DoubleFloat|) $) "\\spad{autoCoerce(s)} forcibly extracts a float value from the syntax `s'; no check performed. To be called only at the discretion of the compiler") (((|Integer|) $) "\\spad{autoCoerce(s)} forcibly extracts an integer value from the syntax `s'; no check performed. To be called only at the discretion of the compiler.")) (|coerce| (((|String|) $) "\\spad{coerce(s)} extracts a string value from the syntax `s'.") (((|Identifier|) $) "\\spad{coerce(s)} extracts an identifier from the syntax `s'.") (((|DoubleFloat|) $) "\\spad{coerce(s)} extracts a float value from the syntax `s'.") (((|Integer|) $) "\\spad{coerce(s)} extracts and integer value from the syntax `s'")) (|convert| (($ (|SExpression|)) "\\spad{convert(s)} converts an \\spad{s}-expression to Syntax. Note,{} when `s' is not an atom,{} it is expected that it designates a proper list,{} \\spadignore{e.g.} a sequence of cons cells ending with nil.") (((|SExpression|) $) "\\spad{convert(s)} returns the \\spad{s}-expression representation of a syntax."))) NIL NIL -(-1204 N) +(-1203 N) ((|constructor| (NIL "This domain implements sized (signed) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of this type."))) NIL NIL -(-1205 N) +(-1204 N) ((|constructor| (NIL "This domain implements sized (unsigned) integer datatypes parameterized by the precision (or width) of the underlying representation. The intent is that they map directly to the hosting hardware natural integer datatypes. Consequently,{} natural values for \\spad{N} are: 8,{} 16,{} 32,{} 64,{} etc. These datatypes are mostly useful for system programming tasks,{} \\spadignore{i.e.} interfacting with the hosting operating system,{} reading/writing external binary format files.")) (|sample| (($) "\\spad{sample} gives a sample datum of type Byte.")) (|bitior| (($ $ $) "\\spad{bitior(x,y)} returns the bitwise `inclusive or' of `x' and `y'.")) (|bitand| (($ $ $) "\\spad{bitand(x,y)} returns the bitwise `and' of `x' and `y'."))) NIL NIL -(-1206) +(-1205) ((|constructor| (NIL "This domain is a datatype system-level pointer values."))) NIL NIL -(-1207 R) +(-1206 R) ((|triangularSystems| (((|List| (|List| (|Polynomial| |#1|))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{triangularSystems(lf,lv)} solves the system of equations defined by \\spad{lf} with respect to the list of symbols \\spad{lv}; the system of equations is obtaining by equating to zero the list of rational functions \\spad{lf}. The output is a list of solutions where each solution is expressed as a \"reduced\" triangular system of polynomials.")) (|solve| (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(eq)} finds the solutions of the equation \\spad{eq} with respect to the unique variable appearing in \\spad{eq}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|))) "\\spad{solve(p)} finds the solution of a rational function \\spad{p} = 0 with respect to the unique variable appearing in \\spad{p}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Equation| (|Fraction| (|Polynomial| |#1|))) (|Symbol|)) "\\spad{solve(eq,v)} finds the solutions of the equation \\spad{eq} with respect to the variable \\spad{v}.") (((|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|Fraction| (|Polynomial| |#1|)) (|Symbol|)) "\\spad{solve(p,v)} solves the equation \\spad{p=0},{} where \\spad{p} is a rational function with respect to the variable \\spad{v}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) "\\spad{solve(le)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to all symbols appearing in \\spad{le}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|)))) "\\spad{solve(lp)} finds the solutions of the list \\spad{lp} of rational functions with respect to all symbols appearing in \\spad{lp}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Equation| (|Fraction| (|Polynomial| |#1|)))) (|List| (|Symbol|))) "\\spad{solve(le,lv)} finds the solutions of the list \\spad{le} of equations of rational functions with respect to the list of symbols \\spad{lv}.") (((|List| (|List| (|Equation| (|Fraction| (|Polynomial| |#1|))))) (|List| (|Fraction| (|Polynomial| |#1|))) (|List| (|Symbol|))) "\\spad{solve(lp,lv)} finds the solutions of the list \\spad{lp} of rational functions with respect to the list of symbols \\spad{lv}."))) NIL NIL -(-1208) +(-1207) ((|constructor| (NIL "The package \\spadtype{System} provides information about the runtime system and its characteristics.")) (|loadNativeModule| (((|Void|) (|String|)) "\\spad{loadNativeModule(path)} loads the native modile designated by \\spadvar{\\spad{path}}.")) (|nativeModuleExtension| (((|String|)) "\\spad{nativeModuleExtension} is a string representation of a filename extension for native modules.")) (|hostByteOrder| (((|ByteOrder|)) "\\sapd{hostByteOrder}")) (|hostPlatform| (((|String|)) "\\spad{hostPlatform} is a string `triplet' description of the platform hosting the running OpenAxiom system.")) (|rootDirectory| (((|String|)) "\\spad{rootDirectory()} returns the pathname of the root directory for the running OpenAxiom system."))) NIL NIL -(-1209 S) +(-1208 S) ((|constructor| (NIL "TableauBumpers implements the Schenstead-Knuth correspondence between sequences and pairs of Young tableaux. The 2 Young tableaux are represented as a single tableau with pairs as components.")) (|mr| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| (|List| (|List| |#1|)))) "\\spad{mr(t)} is an auxiliary function which finds the position of the maximum element of a tableau \\spad{t} which is in the lowest row,{} producing a record of results")) (|maxrow| (((|Record| (|:| |f1| (|List| |#1|)) (|:| |f2| (|List| (|List| (|List| |#1|)))) (|:| |f3| (|List| (|List| |#1|))) (|:| |f4| (|List| (|List| (|List| |#1|))))) (|List| |#1|) (|List| (|List| (|List| |#1|))) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|))) (|List| (|List| (|List| |#1|)))) "\\spad{maxrow(a,b,c,d,e)} is an auxiliary function for mr")) (|inverse| (((|List| |#1|) (|List| |#1|)) "\\spad{inverse(ls)} forms the inverse of a sequence \\spad{ls}")) (|slex| (((|List| (|List| |#1|)) (|List| |#1|)) "\\spad{slex(ls)} sorts the argument sequence \\spad{ls},{} then zips (see \\spadfunFrom{map}{\\spad{ListFunctions3}}) the original argument sequence with the sorted result to a list of pairs")) (|lex| (((|List| (|List| |#1|)) (|List| (|List| |#1|))) "\\spad{lex(ls)} sorts a list of pairs to lexicographic order")) (|tab| (((|Tableau| (|List| |#1|)) (|List| |#1|)) "\\spad{tab(ls)} creates a tableau from \\spad{ls} by first creating a list of pairs using \\spadfunFrom{slex}{TableauBumpers},{} then creating a tableau using \\spadfunFrom{\\spad{tab1}}{TableauBumpers}.")) (|tab1| (((|List| (|List| (|List| |#1|))) (|List| (|List| |#1|))) "\\spad{tab1(lp)} creates a tableau from a list of pairs \\spad{lp}")) (|bat| (((|List| (|List| |#1|)) (|Tableau| (|List| |#1|))) "\\spad{bat(ls)} unbumps a tableau \\spad{ls}")) (|bat1| (((|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{bat1(llp)} unbumps a tableau \\spad{llp}. Operation \\spad{bat1} is the inverse of \\spad{tab1}.")) (|untab| (((|List| (|List| |#1|)) (|List| (|List| |#1|)) (|List| (|List| (|List| |#1|)))) "\\spad{untab(lp,llp)} is an auxiliary function which unbumps a tableau \\spad{llp},{} using \\spad{lp} to accumulate pairs")) (|bumptab1| (((|List| (|List| (|List| |#1|))) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab1(pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spadfun{<},{} returning a new tableau")) (|bumptab| (((|List| (|List| (|List| |#1|))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| (|List| |#1|)))) "\\spad{bumptab(cf,pr,t)} bumps a tableau \\spad{t} with a pair \\spad{pr} using comparison function \\spad{cf},{} returning a new tableau")) (|bumprow| (((|Record| (|:| |fs| (|Boolean|)) (|:| |sd| (|List| |#1|)) (|:| |td| (|List| (|List| |#1|)))) (|Mapping| (|Boolean|) |#1| |#1|) (|List| |#1|) (|List| (|List| |#1|))) "\\spad{bumprow(cf,pr,r)} is an auxiliary function which bumps a row \\spad{r} with a pair \\spad{pr} using comparison function \\spad{cf},{} and returns a record"))) NIL NIL -(-1210 |Key| |Entry|) +(-1209 |Key| |Entry|) ((|constructor| (NIL "This is the general purpose table type. The keys are hashed to look up the entries. This creates a \\spadtype{HashTable} if equal for the Key domain is consistent with Lisp EQUAL otherwise an \\spadtype{AssociationList}"))) -((-4425 . T) (-4426 . T)) -((-12 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4290) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2286) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -631) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1122))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#2| (QUOTE (-1122))) (-3957 (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877))))) (-3957 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (QUOTE (-102)))) -(-1211 S) +((-4424 . T) (-4425 . T)) +((-12 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -321) (|%list| (QUOTE -2) (|%list| (QUOTE |:|) (QUOTE -4289) (|devaluate| |#1|)) (|%list| (QUOTE |:|) (QUOTE -2285) (|devaluate| |#2|))))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -630) (QUOTE (-547)))) (-12 (|HasCategory| |#2| (QUOTE (-1121))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#2| (QUOTE (-1121))) (-3956 (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876))))) (-3956 (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) (|HasCategory| |#2| (QUOTE (-102))) (|HasCategory| |#2| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (QUOTE (-102)))) +(-1210 S) ((|constructor| (NIL "\\indented{1}{The tableau domain is for printing Young tableaux,{} and} coercions to and from List List \\spad{S} where \\spad{S} is a set.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(t)} converts a tableau \\spad{t} to an output form.")) (|listOfLists| (((|List| (|List| |#1|)) $) "\\spad{listOfLists t} converts a tableau \\spad{t} to a list of lists.")) (|tableau| (($ (|List| (|List| |#1|))) "\\spad{tableau(ll)} converts a list of lists \\spad{ll} to a tableau."))) NIL NIL -(-1212 S) +(-1211 S) ((|constructor| (NIL "\\indented{1}{Author: Gabriel Dos Reis} Date Created: April 17,{} 2010 Date Last Modified: April 17,{} 2010")) (|operator| (($ |#1| (|Arity|)) "\\spad{operator(n,a)} returns an operator named \\spad{n} and with arity \\spad{a}."))) NIL NIL -(-1213 R) +(-1212 R) ((|constructor| (NIL "Expands tangents of sums and scalar products.")) (|tanNa| ((|#1| |#1| (|Integer|)) "\\spad{tanNa(a, n)} returns \\spad{f(a)} such that if \\spad{a = tan(u)} then \\spad{f(a) = tan(n * u)}.")) (|tanAn| (((|SparseUnivariatePolynomial| |#1|) |#1| (|PositiveInteger|)) "\\spad{tanAn(a, n)} returns \\spad{P(x)} such that if \\spad{a = tan(u)} then \\spad{P(tan(u/n)) = 0}.")) (|tanSum| ((|#1| (|List| |#1|)) "\\spad{tanSum([a1,...,an])} returns \\spad{f(a1,...,an)} such that if \\spad{ai = tan(ui)} then \\spad{f(a1,...,an) = tan(u1 + ... + un)}."))) NIL NIL -(-1214 S |Key| |Entry|) +(-1213 S |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#3| |#3| |#3|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#2|) (|:| |entry| |#3|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#3| $ |#2| |#3|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) NIL NIL -(-1215 |Key| |Entry|) +(-1214 |Key| |Entry|) ((|constructor| (NIL "A table aggregate is a model of a table,{} \\spadignore{i.e.} a discrete many-to-one mapping from keys to entries.")) (|map| (($ (|Mapping| |#2| |#2| |#2|) $ $) "\\spad{map(fn,t1,t2)} creates a new table \\spad{t} from given tables \\spad{t1} and \\spad{t2} with elements \\spad{fn}(\\spad{x},{}\\spad{y}) where \\spad{x} and \\spad{y} are corresponding elements from \\spad{t1} and \\spad{t2} respectively.")) (|table| (($ (|List| (|Record| (|:| |key| |#1|) (|:| |entry| |#2|)))) "\\spad{table([x,y,...,z])} creates a table consisting of entries \\axiom{\\spad{x},{}\\spad{y},{}...,{}\\spad{z}}.") (($) "\\spad{table()}\\$\\spad{T} creates an empty table of type \\spad{T}.")) (|setelt| ((|#2| $ |#1| |#2|) "\\spad{setelt(t,k,e)} (also written \\axiom{\\spad{t}.\\spad{k} := \\spad{e}}) is equivalent to \\axiom{(insert([\\spad{k},{}\\spad{e}],{}\\spad{t}); \\spad{e})}."))) -((-4426 . T)) +((-4425 . T)) NIL -(-1216 |Key| |Entry|) +(-1215 |Key| |Entry|) ((|constructor| (NIL "\\axiom{TabulatedComputationPackage(Key ,{}Entry)} provides some modest support for dealing with operations with type \\axiom{Key -> Entry}. The result of such operations can be stored and retrieved with this package by using a hash-table. The user does not need to worry about the management of this hash-table. However,{} onnly one hash-table is built by calling \\axiom{TabulatedComputationPackage(Key ,{}Entry)}.")) (|insert!| (((|Void|) |#1| |#2|) "\\axiom{insert!(\\spad{x},{}\\spad{y})} stores the item whose key is \\axiom{\\spad{x}} and whose entry is \\axiom{\\spad{y}}.")) (|extractIfCan| (((|Union| |#2| "failed") |#1|) "\\axiom{extractIfCan(\\spad{x})} searches the item whose key is \\axiom{\\spad{x}}.")) (|makingStats?| (((|Boolean|)) "\\axiom{makingStats?()} returns \\spad{true} iff the statisitics process is running.")) (|printingInfo?| (((|Boolean|)) "\\axiom{printingInfo?()} returns \\spad{true} iff messages are printed when manipulating items from the hash-table.")) (|usingTable?| (((|Boolean|)) "\\axiom{usingTable?()} returns \\spad{true} iff the hash-table is used")) (|clearTable!| (((|Void|)) "\\axiom{clearTable!()} clears the hash-table and assumes that it will no longer be used.")) (|printStats!| (((|Void|)) "\\axiom{printStats!()} prints the statistics.")) (|startStats!| (((|Void|) (|String|)) "\\axiom{startStats!(\\spad{x})} initializes the statisitics process and sets the comments to display when statistics are printed")) (|printInfo!| (((|Void|) (|String|) (|String|)) "\\axiom{printInfo!(\\spad{x},{}\\spad{y})} initializes the mesages to be printed when manipulating items from the hash-table. If a key is retrieved then \\axiom{\\spad{x}} is displayed. If an item is stored then \\axiom{\\spad{y}} is displayed.")) (|initTable!| (((|Void|)) "\\axiom{initTable!()} initializes the hash-table."))) NIL NIL -(-1217) +(-1216) ((|constructor| (NIL "This package provides functions for template manipulation")) (|stripCommentsAndBlanks| (((|String|) (|String|)) "\\spad{stripCommentsAndBlanks(s)} treats \\spad{s} as a piece of AXIOM input,{} and removes comments,{} and leading and trailing blanks.")) (|interpretString| (((|Any|) (|String|)) "\\spad{interpretString(s)} treats a string as a piece of AXIOM input,{} by parsing and interpreting it."))) NIL NIL -(-1218) +(-1217) ((|constructor| (NIL "\\spadtype{TexFormat} provides a coercion from \\spadtype{OutputForm} to \\TeX{} format. The particular dialect of \\TeX{} used is \\LaTeX{}. The basic object consists of three parts: a prologue,{} a tex part and an epilogue. The functions \\spadfun{prologue},{} \\spadfun{tex} and \\spadfun{epilogue} extract these parts,{} respectively. The main guts of the expression go into the tex part. The other parts can be set (\\spadfun{setPrologue!},{} \\spadfun{setEpilogue!}) so that contain the appropriate tags for printing. For example,{} the prologue and epilogue might simply contain ``\\verb+\\[+'' and ``\\verb+\\]+'',{} respectively,{} so that the TeX section will be printed in LaTeX display math mode.")) (|setPrologue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setPrologue!(t,strings)} sets the prologue section of a TeX form \\spad{t} to \\spad{strings}.")) (|setTex!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setTex!(t,strings)} sets the TeX section of a TeX form \\spad{t} to \\spad{strings}.")) (|setEpilogue!| (((|List| (|String|)) $ (|List| (|String|))) "\\spad{setEpilogue!(t,strings)} sets the epilogue section of a TeX form \\spad{t} to \\spad{strings}.")) (|prologue| (((|List| (|String|)) $) "\\spad{prologue(t)} extracts the prologue section of a TeX form \\spad{t}.")) (|new| (($) "\\spad{new()} create a new,{} empty object. Use \\spadfun{setPrologue!},{} \\spadfun{setTex!} and \\spadfun{setEpilogue!} to set the various components of this object.")) (|tex| (((|List| (|String|)) $) "\\spad{tex(t)} extracts the TeX section of a TeX form \\spad{t}.")) (|epilogue| (((|List| (|String|)) $) "\\spad{epilogue(t)} extracts the epilogue section of a TeX form \\spad{t}.")) (|display| (((|Void|) $) "\\spad{display(t)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to the value set by the system command \\spadsyscom{set output length}.") (((|Void|) $ (|Integer|)) "\\spad{display(t,width)} outputs the TeX formatted code \\spad{t} so that each line has length less than or equal to \\spadvar{\\spad{width}}.")) (|convert| (($ (|OutputForm|) (|Integer|) (|OutputForm|)) "\\spad{convert(o,step,type)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number and \\spad{type}. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers.") (($ (|OutputForm|) (|Integer|)) "\\spad{convert(o,step)} changes \\spad{o} in standard output format to TeX format and also adds the given \\spad{step} number. This is useful if you want to create equations with given numbers or have the equation numbers correspond to the interpreter \\spad{step} numbers."))) NIL NIL -(-1219 S) +(-1218 S) ((|constructor| (NIL "\\spadtype{TexFormat1} provides a utility coercion for changing to TeX format anything that has a coercion to the standard output format.")) (|coerce| (((|TexFormat|) |#1|) "\\spad{coerce(s)} provides a direct coercion from a domain \\spad{S} to TeX format. This allows the user to skip the step of first manually coercing the object to standard output format before it is coerced to TeX format."))) NIL NIL -(-1220) +(-1219) ((|constructor| (NIL "This domain provides an implementation of text files. Text is stored in these files using the native character set of the computer.")) (|endOfFile?| (((|Boolean|) $) "\\spad{endOfFile?(f)} tests whether the file \\spad{f} is positioned after the end of all text. If the file is open for output,{} then this test is always \\spad{true}.")) (|readIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLineIfCan!| (((|Union| (|String|) "failed") $) "\\spad{readLineIfCan!(f)} returns a string of the contents of a line from file \\spad{f},{} if possible. If \\spad{f} is not readable or if it is positioned at the end of file,{} then \\spad{\"failed\"} is returned.")) (|readLine!| (((|String|) $) "\\spad{readLine!(f)} returns a string of the contents of a line from the file \\spad{f}.")) (|writeLine!| (((|String|) $) "\\spad{writeLine!(f)} finishes the current line in the file \\spad{f}. An empty string is returned. The call \\spad{writeLine!(f)} is equivalent to \\spad{writeLine!(f,\"\")}.") (((|String|) $ (|String|)) "\\spad{writeLine!(f,s)} writes the contents of the string \\spad{s} and finishes the current line in the file \\spad{f}. The value of \\spad{s} is returned."))) NIL NIL -(-1221 R) +(-1220 R) ((|constructor| (NIL "Tools for the sign finding utilities.")) (|direction| (((|Integer|) (|String|)) "\\spad{direction(s)} \\undocumented")) (|nonQsign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{nonQsign(r)} \\undocumented")) (|sign| (((|Union| (|Integer|) "failed") |#1|) "\\spad{sign(r)} \\undocumented"))) NIL NIL -(-1222) +(-1221) ((|constructor| (NIL "This package exports a function for making a \\spadtype{ThreeSpace}")) (|createThreeSpace| (((|ThreeSpace| (|DoubleFloat|))) "\\spad{createThreeSpace()} creates a \\spadtype{ThreeSpace(DoubleFloat)} object capable of holding point,{} curve,{} mesh components and any combination."))) NIL NIL -(-1223 S) +(-1222 S) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1224) +(-1223) ((|constructor| (NIL "Category for the transcendental elementary functions.")) (|pi| (($) "\\spad{pi()} returns the constant \\spad{pi}."))) NIL NIL -(-1225 S) +(-1224 S) ((|constructor| (NIL "\\spadtype{Tree(S)} is a basic domains of tree structures. Each tree is either empty or else is a {\\it node} consisting of a value and a list of (sub)trees.")) (|cyclicParents| (((|List| $) $) "\\spad{cyclicParents(t)} returns a list of cycles that are parents of \\spad{t}.")) (|cyclicEqual?| (((|Boolean|) $ $) "\\spad{cyclicEqual?(t1, t2)} tests of two cyclic trees have the same structure.")) (|cyclicEntries| (((|List| $) $) "\\spad{cyclicEntries(t)} returns a list of top-level cycles in tree \\spad{t}.")) (|cyclicCopy| (($ $) "\\spad{cyclicCopy(l)} makes a copy of a (possibly) cyclic tree \\spad{l}.")) (|cyclic?| (((|Boolean|) $) "\\spad{cyclic?(t)} tests if \\spad{t} is a cyclic tree.")) (|tree| (($ |#1|) "\\spad{tree(nd)} creates a tree with value \\spad{nd},{} and no children") (($ (|List| |#1|)) "\\spad{tree(ls)} creates a tree from a list of elements of \\spad{s}.") (($ |#1| (|List| $)) "\\spad{tree(nd,ls)} creates a tree with value \\spad{nd},{} and children \\spad{ls}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1122))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1122)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102)))) -(-1226 S) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (QUOTE (-1121))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-1121)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102)))) +(-1225 S) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1227) +(-1226) ((|constructor| (NIL "Category for the trigonometric functions.")) (|tan| (($ $) "\\spad{tan(x)} returns the tangent of \\spad{x}.")) (|sin| (($ $) "\\spad{sin(x)} returns the sine of \\spad{x}.")) (|sec| (($ $) "\\spad{sec(x)} returns the secant of \\spad{x}.")) (|csc| (($ $) "\\spad{csc(x)} returns the cosecant of \\spad{x}.")) (|cot| (($ $) "\\spad{cot(x)} returns the cotangent of \\spad{x}.")) (|cos| (($ $) "\\spad{cos(x)} returns the cosine of \\spad{x}."))) NIL NIL -(-1228 R -3495) +(-1227 R -3494) ((|constructor| (NIL "\\spadtype{TrigonometricManipulations} provides transformations from trigonometric functions to complex exponentials and logarithms,{} and back.")) (|complexForm| (((|Complex| |#2|) |#2|) "\\spad{complexForm(f)} returns \\spad{[real f, imag f]}.")) (|real?| (((|Boolean|) |#2|) "\\spad{real?(f)} returns \\spad{true} if \\spad{f = real f}.")) (|imag| ((|#2| |#2|) "\\spad{imag(f)} returns the imaginary part of \\spad{f} where \\spad{f} is a complex function.")) (|real| ((|#2| |#2|) "\\spad{real(f)} returns the real part of \\spad{f} where \\spad{f} is a complex function.")) (|trigs| ((|#2| |#2|) "\\spad{trigs(f)} rewrites all the complex logs and exponentials appearing in \\spad{f} in terms of trigonometric functions.")) (|complexElementary| ((|#2| |#2| (|Symbol|)) "\\spad{complexElementary(f, x)} rewrites the kernels of \\spad{f} involving \\spad{x} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.") ((|#2| |#2|) "\\spad{complexElementary(f)} rewrites \\spad{f} in terms of the 2 fundamental complex transcendental elementary functions: \\spad{log, exp}.")) (|complexNormalize| ((|#2| |#2| (|Symbol|)) "\\spad{complexNormalize(f, x)} rewrites \\spad{f} using the least possible number of complex independent kernels involving \\spad{x}.") ((|#2| |#2|) "\\spad{complexNormalize(f)} rewrites \\spad{f} using the least possible number of complex independent kernels."))) NIL NIL -(-1229 R |Row| |Col| M) +(-1228 R |Row| |Col| M) ((|constructor| (NIL "This package provides functions that compute \"fraction-free\" inverses of upper and lower triangular matrices over a integral domain. By \"fraction-free inverses\" we mean the following: given a matrix \\spad{B} with entries in \\spad{R} and an element \\spad{d} of \\spad{R} such that \\spad{d} * inv(\\spad{B}) also has entries in \\spad{R},{} we return \\spad{d} * inv(\\spad{B}). Thus,{} it is not necessary to pass to the quotient field in any of our computations.")) (|LowTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{LowTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular lower triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}.")) (|UpTriBddDenomInv| ((|#4| |#4| |#1|) "\\spad{UpTriBddDenomInv(B,d)} returns \\spad{M},{} where \\spad{B} is a non-singular upper triangular matrix and \\spad{d} is an element of \\spad{R} such that \\spad{M = d * inv(B)} has entries in \\spad{R}."))) NIL NIL -(-1230 R -3495) +(-1229 R -3494) ((|constructor| (NIL "TranscendentalManipulations provides functions to simplify and expand expressions involving transcendental operators.")) (|expandTrigProducts| ((|#2| |#2|) "\\spad{expandTrigProducts(e)} replaces \\axiom{sin(\\spad{x})*sin(\\spad{y})} by \\spad{(cos(x-y)-cos(x+y))/2},{} \\axiom{cos(\\spad{x})*cos(\\spad{y})} by \\spad{(cos(x-y)+cos(x+y))/2},{} and \\axiom{sin(\\spad{x})*cos(\\spad{y})} by \\spad{(sin(x-y)+sin(x+y))/2}. Note that this operation uses the pattern matcher and so is relatively expensive. To avoid getting into an infinite loop the transformations are applied at most ten times.")) (|removeSinhSq| ((|#2| |#2|) "\\spad{removeSinhSq(f)} converts every \\spad{sinh(u)**2} appearing in \\spad{f} into \\spad{1 - cosh(x)**2},{} and also reduces higher powers of \\spad{sinh(u)} with that formula.")) (|removeCoshSq| ((|#2| |#2|) "\\spad{removeCoshSq(f)} converts every \\spad{cosh(u)**2} appearing in \\spad{f} into \\spad{1 - sinh(x)**2},{} and also reduces higher powers of \\spad{cosh(u)} with that formula.")) (|removeSinSq| ((|#2| |#2|) "\\spad{removeSinSq(f)} converts every \\spad{sin(u)**2} appearing in \\spad{f} into \\spad{1 - cos(x)**2},{} and also reduces higher powers of \\spad{sin(u)} with that formula.")) (|removeCosSq| ((|#2| |#2|) "\\spad{removeCosSq(f)} converts every \\spad{cos(u)**2} appearing in \\spad{f} into \\spad{1 - sin(x)**2},{} and also reduces higher powers of \\spad{cos(u)} with that formula.")) (|coth2tanh| ((|#2| |#2|) "\\spad{coth2tanh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{1/tanh(u)}.")) (|cot2tan| ((|#2| |#2|) "\\spad{cot2tan(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{1/tan(u)}.")) (|tanh2coth| ((|#2| |#2|) "\\spad{tanh2coth(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{1/coth(u)}.")) (|tan2cot| ((|#2| |#2|) "\\spad{tan2cot(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{1/cot(u)}.")) (|tanh2trigh| ((|#2| |#2|) "\\spad{tanh2trigh(f)} converts every \\spad{tanh(u)} appearing in \\spad{f} into \\spad{sinh(u)/cosh(u)}.")) (|tan2trig| ((|#2| |#2|) "\\spad{tan2trig(f)} converts every \\spad{tan(u)} appearing in \\spad{f} into \\spad{sin(u)/cos(u)}.")) (|sinh2csch| ((|#2| |#2|) "\\spad{sinh2csch(f)} converts every \\spad{sinh(u)} appearing in \\spad{f} into \\spad{1/csch(u)}.")) (|sin2csc| ((|#2| |#2|) "\\spad{sin2csc(f)} converts every \\spad{sin(u)} appearing in \\spad{f} into \\spad{1/csc(u)}.")) (|sech2cosh| ((|#2| |#2|) "\\spad{sech2cosh(f)} converts every \\spad{sech(u)} appearing in \\spad{f} into \\spad{1/cosh(u)}.")) (|sec2cos| ((|#2| |#2|) "\\spad{sec2cos(f)} converts every \\spad{sec(u)} appearing in \\spad{f} into \\spad{1/cos(u)}.")) (|csch2sinh| ((|#2| |#2|) "\\spad{csch2sinh(f)} converts every \\spad{csch(u)} appearing in \\spad{f} into \\spad{1/sinh(u)}.")) (|csc2sin| ((|#2| |#2|) "\\spad{csc2sin(f)} converts every \\spad{csc(u)} appearing in \\spad{f} into \\spad{1/sin(u)}.")) (|coth2trigh| ((|#2| |#2|) "\\spad{coth2trigh(f)} converts every \\spad{coth(u)} appearing in \\spad{f} into \\spad{cosh(u)/sinh(u)}.")) (|cot2trig| ((|#2| |#2|) "\\spad{cot2trig(f)} converts every \\spad{cot(u)} appearing in \\spad{f} into \\spad{cos(u)/sin(u)}.")) (|cosh2sech| ((|#2| |#2|) "\\spad{cosh2sech(f)} converts every \\spad{cosh(u)} appearing in \\spad{f} into \\spad{1/sech(u)}.")) (|cos2sec| ((|#2| |#2|) "\\spad{cos2sec(f)} converts every \\spad{cos(u)} appearing in \\spad{f} into \\spad{1/sec(u)}.")) (|expandLog| ((|#2| |#2|) "\\spad{expandLog(f)} converts every \\spad{log(a/b)} appearing in \\spad{f} into \\spad{log(a) - log(b)},{} and every \\spad{log(a*b)} into \\spad{log(a) + log(b)}..")) (|expandPower| ((|#2| |#2|) "\\spad{expandPower(f)} converts every power \\spad{(a/b)**c} appearing in \\spad{f} into \\spad{a**c * b**(-c)}.")) (|simplifyLog| ((|#2| |#2|) "\\spad{simplifyLog(f)} converts every \\spad{log(a) - log(b)} appearing in \\spad{f} into \\spad{log(a/b)},{} every \\spad{log(a) + log(b)} into \\spad{log(a*b)} and every \\spad{n*log(a)} into \\spad{log(a^n)}.")) (|simplifyExp| ((|#2| |#2|) "\\spad{simplifyExp(f)} converts every product \\spad{exp(a)*exp(b)} appearing in \\spad{f} into \\spad{exp(a+b)}.")) (|htrigs| ((|#2| |#2|) "\\spad{htrigs(f)} converts all the exponentials in \\spad{f} into hyperbolic sines and cosines.")) (|simplify| ((|#2| |#2|) "\\spad{simplify(f)} performs the following simplifications on f:\\begin{items} \\item 1. rewrites trigs and hyperbolic trigs in terms of \\spad{sin} ,{}\\spad{cos},{} \\spad{sinh},{} \\spad{cosh}. \\item 2. rewrites \\spad{sin**2} and \\spad{sinh**2} in terms of \\spad{cos} and \\spad{cosh},{} \\item 3. rewrites \\spad{exp(a)*exp(b)} as \\spad{exp(a+b)}. \\item 4. rewrites \\spad{(a**(1/n))**m * (a**(1/s))**t} as a single power of a single radical of \\spad{a}. \\end{items}")) (|expand| ((|#2| |#2|) "\\spad{expand(f)} performs the following expansions on f:\\begin{items} \\item 1. logs of products are expanded into sums of logs,{} \\item 2. trigonometric and hyperbolic trigonometric functions of sums are expanded into sums of products of trigonometric and hyperbolic trigonometric functions. \\item 3. formal powers of the form \\spad{(a/b)**c} are expanded into \\spad{a**c * b**(-c)}. \\end{items}"))) NIL -((-12 (|HasCategory| |#1| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -901) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -901) (|devaluate| |#1|))))) -(-1231 |Coef|) +((-12 (|HasCategory| |#1| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -900) (|devaluate| |#1|))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (|devaluate| |#1|)))) (|HasCategory| |#2| (|%list| (QUOTE -900) (|devaluate| |#1|))))) +(-1230 |Coef|) ((|constructor| (NIL "\\spadtype{TaylorSeries} is a general multivariate Taylor series domain over the ring Coef and with variables of type Symbol.")) (|fintegrate| (($ (|Mapping| $) (|Symbol|) |#1|) "\\spad{fintegrate(f,v,c)} is the integral of \\spad{f()} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.} \\indented{1}{The evaluation of \\spad{f()} is delayed.}")) (|integrate| (($ $ (|Symbol|) |#1|) "\\spad{integrate(s,v,c)} is the integral of \\spad{s} with respect \\indented{1}{to \\spad{v} and having \\spad{c} as the constant of integration.}")) (|coerce| (($ (|Polynomial| |#1|)) "\\spad{coerce(s)} regroups terms of \\spad{s} by total degree \\indented{1}{and forms a series.}") (($ (|Symbol|)) "\\spad{coerce(s)} converts a variable to a Taylor series")) (|coefficient| (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{coefficient(s, n)} gives the terms of total degree \\spad{n}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1232 S R E V P) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-149))) (|HasCategory| |#1| (QUOTE (-147))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-376)))) +(-1231 S R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#5|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#5|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#5| "failed") $ |#4|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#4| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#4|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#5| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#5| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#5|)))) (|List| |#5|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#5|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#5| |#5| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#5| |#5| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#5| |#5| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#5| |#5| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#5| |#5| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#5|) (|List| |#5|) $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#5| |#5| $ (|Mapping| |#5| |#5| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#5| (|List| |#5|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#5| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#5| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#5| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#5| $ (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#5| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#5|)) (|:| |open| (|List| |#5|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#5|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#5|))) "failed") (|List| |#5|) (|Mapping| (|Boolean|) |#5| |#5|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) NIL ((|HasCategory| |#4| (QUOTE (-381)))) -(-1233 R E V P) +(-1232 R E V P) ((|constructor| (NIL "The category of triangular sets of multivariate polynomials with coefficients in an integral domain. Let \\axiom{\\spad{R}} be an integral domain and \\axiom{\\spad{V}} a finite ordered set of variables,{} say \\axiom{\\spad{X1} < \\spad{X2} < ... < Xn}. A set \\axiom{\\spad{S}} of polynomials in \\axiom{\\spad{R}[\\spad{X1},{}\\spad{X2},{}...,{}Xn]} is triangular if no elements of \\axiom{\\spad{S}} lies in \\axiom{\\spad{R}},{} and if two distinct elements of \\axiom{\\spad{S}} have distinct main variables. Note that the empty set is a triangular set. A triangular set is not necessarily a (lexicographical) Groebner basis and the notion of reduction related to triangular sets is based on the recursive view of polynomials. We recall this notion here and refer to [1] for more details. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a non-constant polynomial \\axiom{\\spad{Q}} if the degree of \\axiom{\\spad{P}} in the main variable of \\axiom{\\spad{Q}} is less than the main degree of \\axiom{\\spad{Q}}. A polynomial \\axiom{\\spad{P}} is reduced \\spad{w}.\\spad{r}.\\spad{t} a triangular set \\axiom{\\spad{T}} if it is reduced \\spad{w}.\\spad{r}.\\spad{t}. every polynomial of \\axiom{\\spad{T}}. \\newline References : \\indented{1}{[1] \\spad{P}. AUBRY,{} \\spad{D}. LAZARD and \\spad{M}. MORENO MAZA \"On the Theories} \\indented{5}{of Triangular Sets\" Journal of Symbol. Comp. (to appear)}")) (|coHeight| (((|NonNegativeInteger|) $) "\\axiom{coHeight(ts)} returns \\axiom{size()\\$\\spad{V}} minus \\axiom{\\#ts}.")) (|extend| (($ $ |#4|) "\\axiom{extend(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current category If the required properties do not hold an error is returned.")) (|extendIfCan| (((|Union| $ "failed") $ |#4|) "\\axiom{extendIfCan(ts,{}\\spad{p})} returns a triangular set which encodes the simple extension by \\axiom{\\spad{p}} of the extension of the base field defined by \\axiom{ts},{} according to the properties of triangular sets of the current domain. If the required properties do not hold then \"failed\" is returned. This operation encodes in some sense the properties of the triangular sets of the current category. Is is used to implement the \\axiom{construct} operation to guarantee that every triangular set build from a list of polynomials has the required properties.")) (|select| (((|Union| |#4| "failed") $ |#3|) "\\axiom{select(ts,{}\\spad{v})} returns the polynomial of \\axiom{ts} with \\axiom{\\spad{v}} as main variable,{} if any.")) (|algebraic?| (((|Boolean|) |#3| $) "\\axiom{algebraic?(\\spad{v},{}ts)} returns \\spad{true} iff \\axiom{\\spad{v}} is the main variable of some polynomial in \\axiom{ts}.")) (|algebraicVariables| (((|List| |#3|) $) "\\axiom{algebraicVariables(ts)} returns the decreasingly sorted list of the main variables of the polynomials of \\axiom{ts}.")) (|rest| (((|Union| $ "failed") $) "\\axiom{rest(ts)} returns the polynomials of \\axiom{ts} with smaller main variable than \\axiom{mvar(ts)} if \\axiom{ts} is not empty,{} otherwise returns \"failed\"")) (|last| (((|Union| |#4| "failed") $) "\\axiom{last(ts)} returns the polynomial of \\axiom{ts} with smallest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|first| (((|Union| |#4| "failed") $) "\\axiom{first(ts)} returns the polynomial of \\axiom{ts} with greatest main variable if \\axiom{ts} is not empty,{} otherwise returns \\axiom{\"failed\"}.")) (|zeroSetSplitIntoTriangularSystems| (((|List| (|Record| (|:| |close| $) (|:| |open| (|List| |#4|)))) (|List| |#4|)) "\\axiom{zeroSetSplitIntoTriangularSystems(lp)} returns a list of triangular systems \\axiom{[[\\spad{ts1},{}\\spad{qs1}],{}...,{}[tsn,{}qsn]]} such that the zero set of \\axiom{lp} is the union of the closures of the \\axiom{W_i} where \\axiom{W_i} consists of the zeros of \\axiom{ts} which do not cancel any polynomial in \\axiom{qsi}.")) (|zeroSetSplit| (((|List| $) (|List| |#4|)) "\\axiom{zeroSetSplit(lp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{lp} is the union of the closures of the regular zero sets of the members of \\axiom{lts}.")) (|reduceByQuasiMonic| ((|#4| |#4| $) "\\axiom{reduceByQuasiMonic(\\spad{p},{}ts)} returns the same as \\axiom{remainder(\\spad{p},{}collectQuasiMonic(ts)).polnum}.")) (|collectQuasiMonic| (($ $) "\\axiom{collectQuasiMonic(ts)} returns the subset of \\axiom{ts} consisting of the polynomials with initial in \\axiom{\\spad{R}}.")) (|removeZero| ((|#4| |#4| $) "\\axiom{removeZero(\\spad{p},{}ts)} returns \\axiom{0} if \\axiom{\\spad{p}} reduces to \\axiom{0} by pseudo-division \\spad{w}.\\spad{r}.\\spad{t} \\axiom{ts} otherwise returns a polynomial \\axiom{\\spad{q}} computed from \\axiom{\\spad{p}} by removing any coefficient in \\axiom{\\spad{p}} reducing to \\axiom{0}.")) (|initiallyReduce| ((|#4| |#4| $) "\\axiom{initiallyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{initiallyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|headReduce| ((|#4| |#4| $) "\\axiom{headReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{headReduce?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|stronglyReduce| ((|#4| |#4| $) "\\axiom{stronglyReduce(\\spad{p},{}ts)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{stronglyReduced?(\\spad{r},{}ts)} holds and there exists some product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}.")) (|rewriteSetWithReduction| (((|List| |#4|) (|List| |#4|) $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{rewriteSetWithReduction(lp,{}ts,{}redOp,{}redOp?)} returns a list \\axiom{lq} of polynomials such that \\axiom{[reduce(\\spad{p},{}ts,{}redOp,{}redOp?) for \\spad{p} in lp]} and \\axiom{lp} have the same zeros inside the regular zero set of \\axiom{ts}. Moreover,{} for every polynomial \\axiom{\\spad{q}} in \\axiom{lq} and every polynomial \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{q},{}\\spad{t})} holds and there exists a polynomial \\axiom{\\spad{p}} in the ideal generated by \\axiom{lp} and a product \\axiom{\\spad{h}} of \\axiom{initials(ts)} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|reduce| ((|#4| |#4| $ (|Mapping| |#4| |#4| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduce(\\spad{p},{}ts,{}redOp,{}redOp?)} returns a polynomial \\axiom{\\spad{r}} such that \\axiom{redOp?(\\spad{r},{}\\spad{p})} holds for every \\axiom{\\spad{p}} of \\axiom{ts} and there exists some product \\axiom{\\spad{h}} of the initials of the members of \\axiom{ts} such that \\axiom{h*p - \\spad{r}} lies in the ideal generated by \\axiom{ts}. The operation \\axiom{redOp} must satisfy the following conditions. For every \\axiom{\\spad{p}} and \\axiom{\\spad{q}} we have \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|autoReduced?| (((|Boolean|) $ (|Mapping| (|Boolean|) |#4| (|List| |#4|))) "\\axiom{autoReduced?(ts,{}redOp?)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to every other in the sense of \\axiom{redOp?}")) (|initiallyReduced?| (((|Boolean|) $) "\\spad{initiallyReduced?(ts)} returns \\spad{true} iff for every element \\axiom{\\spad{p}} of \\axiom{\\spad{ts}} \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the other elements of \\axiom{\\spad{ts}} with the same main variable.") (((|Boolean|) |#4| $) "\\axiom{initiallyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials are reduced \\spad{w}.\\spad{r}.\\spad{t}. to the elements of \\axiom{ts} with the same main variable.")) (|headReduced?| (((|Boolean|) $) "\\spad{headReduced?(ts)} returns \\spad{true} iff the head of every element of \\axiom{\\spad{ts}} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{\\spad{ts}}.") (((|Boolean|) |#4| $) "\\axiom{headReduced?(\\spad{p},{}ts)} returns \\spad{true} iff the head of \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|stronglyReduced?| (((|Boolean|) $) "\\axiom{stronglyReduced?(ts)} returns \\spad{true} iff every element of \\axiom{ts} is reduced \\spad{w}.\\spad{r}.\\spad{t} to any other element of \\axiom{ts}.") (((|Boolean|) |#4| $) "\\axiom{stronglyReduced?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. \\axiom{ts}.")) (|reduced?| (((|Boolean|) |#4| $ (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{reduced?(\\spad{p},{}ts,{}redOp?)} returns \\spad{true} iff \\axiom{\\spad{p}} is reduced \\spad{w}.\\spad{r}.\\spad{t}. in the sense of the operation \\axiom{redOp?},{} that is if for every \\axiom{\\spad{t}} in \\axiom{ts} \\axiom{redOp?(\\spad{p},{}\\spad{t})} holds.")) (|normalized?| (((|Boolean|) $) "\\axiom{normalized?(ts)} returns \\spad{true} iff for every axiom{\\spad{p}} in axiom{ts} we have \\axiom{normalized?(\\spad{p},{}us)} where \\axiom{us} is \\axiom{collectUnder(ts,{}mvar(\\spad{p}))}.") (((|Boolean|) |#4| $) "\\axiom{normalized?(\\spad{p},{}ts)} returns \\spad{true} iff \\axiom{\\spad{p}} and all its iterated initials have degree zero \\spad{w}.\\spad{r}.\\spad{t}. the main variables of the polynomials of \\axiom{ts}")) (|quasiComponent| (((|Record| (|:| |close| (|List| |#4|)) (|:| |open| (|List| |#4|))) $) "\\axiom{quasiComponent(ts)} returns \\axiom{[lp,{}lq]} where \\axiom{lp} is the list of the members of \\axiom{ts} and \\axiom{lq}is \\axiom{initials(ts)}.")) (|degree| (((|NonNegativeInteger|) $) "\\axiom{degree(ts)} returns the product of main degrees of the members of \\axiom{ts}.")) (|initials| (((|List| |#4|) $) "\\axiom{initials(ts)} returns the list of the non-constant initials of the members of \\axiom{ts}.")) (|basicSet| (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}pred?,{}redOp?)} returns the same as \\axiom{basicSet(qs,{}redOp?)} where \\axiom{qs} consists of the polynomials of \\axiom{ps} satisfying property \\axiom{pred?}.") (((|Union| (|Record| (|:| |bas| $) (|:| |top| (|List| |#4|))) "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|)) "\\axiom{basicSet(ps,{}redOp?)} returns \\axiom{[bs,{}ts]} where \\axiom{concat(bs,{}ts)} is \\axiom{ps} and \\axiom{bs} is a basic set in Wu Wen Tsun sense of \\axiom{ps} \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?},{} if no non-zero constant polynomial lie in \\axiom{ps},{} otherwise \\axiom{\"failed\"} is returned.")) (|infRittWu?| (((|Boolean|) $ $) "\\axiom{infRittWu?(\\spad{ts1},{}\\spad{ts2})} returns \\spad{true} iff \\axiom{\\spad{ts2}} has higher rank than \\axiom{\\spad{ts1}} in Wu Wen Tsun sense."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1234 |Curve|) +(-1233 |Curve|) ((|constructor| (NIL "\\indented{2}{Package for constructing tubes around 3-dimensional parametric curves.} Domain of tubes around 3-dimensional parametric curves.")) (|tube| (($ |#1| (|List| (|List| (|Point| (|DoubleFloat|)))) (|Boolean|)) "\\spad{tube(c,ll,b)} creates a tube of the domain \\spadtype{TubePlot} from a space curve \\spad{c} of the category \\spadtype{PlottableSpaceCurveCategory},{} a list of lists of points (loops) \\spad{ll} and a boolean \\spad{b} which if \\spad{true} indicates a closed tube,{} or if \\spad{false} an open tube.")) (|setClosed| (((|Boolean|) $ (|Boolean|)) "\\spad{setClosed(t,b)} declares the given tube plot \\spad{t} to be closed if \\spad{b} is \\spad{true},{} or if \\spad{b} is \\spad{false},{} \\spad{t} is set to be open.")) (|open?| (((|Boolean|) $) "\\spad{open?(t)} tests whether the given tube plot \\spad{t} is open.")) (|closed?| (((|Boolean|) $) "\\spad{closed?(t)} tests whether the given tube plot \\spad{t} is closed.")) (|listLoops| (((|List| (|List| (|Point| (|DoubleFloat|)))) $) "\\spad{listLoops(t)} returns the list of lists of points,{} or the 'loops',{} of the given tube plot \\spad{t}.")) (|getCurve| ((|#1| $) "\\spad{getCurve(t)} returns the \\spadtype{PlottableSpaceCurveCategory} representing the parametric curve of the given tube plot \\spad{t}."))) NIL NIL -(-1235) +(-1234) ((|constructor| (NIL "Tools for constructing tubes around 3-dimensional parametric curves.")) (|loopPoints| (((|List| (|Point| (|DoubleFloat|))) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|DoubleFloat|) (|List| (|List| (|DoubleFloat|)))) "\\spad{loopPoints(p,n,b,r,lls)} creates and returns a list of points which form the loop with radius \\spad{r},{} around the center point indicated by the point \\spad{p},{} with the principal normal vector of the space curve at point \\spad{p} given by the point(vector) \\spad{n},{} and the binormal vector given by the point(vector) \\spad{b},{} and a list of lists,{} \\spad{lls},{} which is the \\spadfun{cosSinInfo} of the number of points defining the loop.")) (|cosSinInfo| (((|List| (|List| (|DoubleFloat|))) (|Integer|)) "\\spad{cosSinInfo(n)} returns the list of lists of values for \\spad{n},{} in the form: \\spad{[[cos(n - 1) a,sin(n - 1) a],...,[cos 2 a,sin 2 a],[cos a,sin a]]} where \\spad{a = 2 pi/n}. Note: \\spad{n} should be greater than 2.")) (|unitVector| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{unitVector(p)} creates the unit vector of the point \\spad{p} and returns the result as a point. Note: \\spad{unitVector(p) = p/|p|}.")) (|cross| (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{cross(p,q)} computes the cross product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and keeping the color of the first point \\spad{p}. The result is returned as a point.")) (|dot| (((|DoubleFloat|) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{dot(p,q)} computes the dot product of the two points \\spad{p} and \\spad{q} using only the first three coordinates,{} and returns the resulting \\spadtype{DoubleFloat}.")) (- (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p - q} computes and returns a point whose coordinates are the differences of the coordinates of two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (+ (((|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|)) (|Point| (|DoubleFloat|))) "\\spad{p + q} computes and returns a point whose coordinates are the sums of the coordinates of the two points \\spad{p} and \\spad{q},{} using the color,{} or fourth coordinate,{} of the first point \\spad{p} as the color also of the point \\spad{q}.")) (* (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|Point| (|DoubleFloat|))) "\\spad{s * p} returns a point whose coordinates are the scalar multiple of the point \\spad{p} by the scalar \\spad{s},{} preserving the color,{} or fourth coordinate,{} of \\spad{p}.")) (|point| (((|Point| (|DoubleFloat|)) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|)) "\\spad{point(x1,x2,x3,c)} creates and returns a point from the three specified coordinates \\spad{x1},{} \\spad{x2},{} \\spad{x3},{} and also a fourth coordinate,{} \\spad{c},{} which is generally used to specify the color of the point."))) NIL NIL -(-1236 S) +(-1235 S) ((|constructor| (NIL "\\indented{1}{This domain is used to interface with the interpreter's notion} of comma-delimited sequences of values.")) (|length| (((|NonNegativeInteger|) $) "\\spad{length(x)} returns the number of elements in tuple \\spad{x}")) (|select| ((|#1| $ (|NonNegativeInteger|)) "\\spad{select(x,n)} returns the \\spad{n}-th element of tuple \\spad{x}. tuples are 0-based"))) NIL -((|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) -(-1237 -3495) +((|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) +(-1236 -3494) ((|constructor| (NIL "A basic package for the factorization of bivariate polynomials over a finite field. The functions here represent the base step for the multivariate factorizer.")) (|twoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|)) (|Integer|)) "\\spad{twoFactor(p,n)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}. Also,{} \\spad{p} is assumed primitive and square-free and \\spad{n} is the degree of the inner variable of \\spad{p} (maximum of the degrees of the coefficients of \\spad{p}).")) (|generalSqFr| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalSqFr(p)} returns the square-free factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}.")) (|generalTwoFactor| (((|Factored| (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) (|SparseUnivariatePolynomial| (|SparseUnivariatePolynomial| |#1|))) "\\spad{generalTwoFactor(p)} returns the factorisation of polynomial \\spad{p},{} a sparse univariate polynomial (sup) over a sup over \\spad{F}."))) NIL NIL -(-1238) +(-1237) ((|constructor| (NIL "The fundamental Type."))) NIL NIL -(-1239) +(-1238) ((|constructor| (NIL "This domain represents a type AST."))) NIL NIL -(-1240 S) +(-1239 S) ((|constructor| (NIL "Provides functions to force a partial ordering on any set.")) (|more?| (((|Boolean|) |#1| |#1|) "\\spad{more?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and uses the ordering on \\spad{S} if \\spad{a} and \\spad{b} are not comparable in the partial ordering.")) (|userOrdered?| (((|Boolean|)) "\\spad{userOrdered?()} tests if the partial ordering induced by \\spadfunFrom{setOrder}{UserDefinedPartialOrdering} is not empty.")) (|largest| ((|#1| (|List| |#1|)) "\\spad{largest l} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by the ordering on \\spad{S}.") ((|#1| (|List| |#1|) (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{largest(l, fn)} returns the largest element of \\spad{l} where the partial ordering induced by setOrder is completed into a total one by fn.")) (|less?| (((|Boolean|) |#1| |#1| (|Mapping| (|Boolean|) |#1| |#1|)) "\\spad{less?(a, b, fn)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder,{} and returns \\spad{fn(a, b)} if \\spad{a} and \\spad{b} are not comparable in that ordering.") (((|Union| (|Boolean|) "failed") |#1| |#1|) "\\spad{less?(a, b)} compares \\spad{a} and \\spad{b} in the partial ordering induced by setOrder.")) (|getOrder| (((|Record| (|:| |low| (|List| |#1|)) (|:| |high| (|List| |#1|)))) "\\spad{getOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the partial ordering on \\spad{S} was given by \\spad{setOrder([b1,...,bm],[a1,...,an])}.")) (|setOrder| (((|Void|) (|List| |#1|) (|List| |#1|)) "\\spad{setOrder([b1,...,bm], [a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{b1 < b2 < ... < bm < a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{bj < c < ai}\\space{2}for \\spad{c} not among the \\spad{ai}'s and bj's.} \\indented{3}{(3)\\space{2}undefined on \\spad{(c,d)} if neither is among the \\spad{ai}'s,{}bj's.}") (((|Void|) (|List| |#1|)) "\\spad{setOrder([a1,...,an])} defines a partial ordering on \\spad{S} given by: \\indented{3}{(1)\\space{2}\\spad{a1 < a2 < ... < an}.} \\indented{3}{(2)\\space{2}\\spad{b < ai\\space{3}for i = 1..n} and \\spad{b} not among the \\spad{ai}'s.} \\indented{3}{(3)\\space{2}undefined on \\spad{(b, c)} if neither is among the \\spad{ai}'s.}"))) NIL -((|HasCategory| |#1| (QUOTE (-861)))) -(-1241) +((|HasCategory| |#1| (QUOTE (-860)))) +(-1240) ((|constructor| (NIL "This packages provides functions to allow the user to select the ordering on the variables and operators for displaying polynomials,{} fractions and expressions. The ordering affects the display only and not the computations.")) (|resetVariableOrder| (((|Void|)) "\\spad{resetVariableOrder()} cancels any previous use of setVariableOrder and returns to the default system ordering.")) (|getVariableOrder| (((|Record| (|:| |high| (|List| (|Symbol|))) (|:| |low| (|List| (|Symbol|))))) "\\spad{getVariableOrder()} returns \\spad{[[b1,...,bm], [a1,...,an]]} such that the ordering on the variables was given by \\spad{setVariableOrder([b1,...,bm], [a1,...,an])}.")) (|setVariableOrder| (((|Void|) (|List| (|Symbol|)) (|List| (|Symbol|))) "\\spad{setVariableOrder([b1,...,bm], [a1,...,an])} defines an ordering on the variables given by \\spad{b1 > b2 > ... > bm >} other variables \\spad{> a1 > a2 > ... > an}.") (((|Void|) (|List| (|Symbol|))) "\\spad{setVariableOrder([a1,...,an])} defines an ordering on the variables given by \\spad{a1 > a2 > ... > an > other variables}."))) NIL NIL -(-1242 S) +(-1241 S) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) NIL NIL -(-1243) +(-1242) ((|constructor| (NIL "A constructive unique factorization domain,{} \\spadignore{i.e.} where we can constructively factor members into a product of a finite number of irreducible elements.")) (|factor| (((|Factored| $) $) "\\spad{factor(x)} returns the factorization of \\spad{x} into irreducibles.")) (|squareFreePart| (($ $) "\\spad{squareFreePart(x)} returns a product of prime factors of \\spad{x} each taken with multiplicity one.")) (|squareFree| (((|Factored| $) $) "\\spad{squareFree(x)} returns the square-free factorization of \\spad{x} \\spadignore{i.e.} such that the factors are pairwise relatively prime and each has multiple prime factors.")) (|prime?| (((|Boolean|) $) "\\spad{prime?(x)} tests if \\spad{x} can never be written as the product of two non-units of the ring,{} \\spadignore{i.e.} \\spad{x} is an irreducible element."))) -((-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1244) +(-1243) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 16 bits."))) NIL NIL -(-1245) +(-1244) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 32 bits."))) NIL NIL -(-1246) +(-1245) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 64 bits."))) NIL NIL -(-1247) +(-1246) ((|constructor| (NIL "This domain is a datatype for (unsigned) integer values of precision 8 bits."))) NIL NIL -(-1248 |Coef| |var| |cen|) +(-1247 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Laurent series in one variable \\indented{2}{\\spadtype{UnivariateLaurentSeries} is a domain representing Laurent} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariateLaurentSeries(Integer,x,3)} represents Laurent series in} \\indented{2}{\\spad{(x - 3)} with integer coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a Laurent series."))) -(((-4427 "*") -3957 (-2961 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-842))) (|has| |#1| (-175)) (-2961 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-929)))) (-4418 -3957 (-2961 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-842))) (|has| |#1| (-569)) (-2961 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-929)))) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1173)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1133))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1041)))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-842)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-861))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1198)) (|%list| (QUOTE -1278) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -1059) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-842)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-861)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1278 |#1| |#2| |#3|) (QUOTE (-929)))) (|HasCategory| |#1| (QUOTE (-147))))) -(-1249 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4426 "*") -3956 (-2960 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-841))) (|has| |#1| (-175)) (-2960 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-928)))) (-4417 -3956 (-2960 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-841))) (|has| |#1| (-569)) (-2960 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-928)))) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1172)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-149)))) (|HasCategory| |#1| (QUOTE (-149)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-240)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-239)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|))))) (|HasCategory| (-558) (QUOTE (-1132))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1040)))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-841)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-860))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-1172)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -298) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|)) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -321) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -526) (QUOTE (-1197)) (|%list| (QUOTE -1277) (|devaluate| |#1|) (|devaluate| |#2|) (|devaluate| |#3|))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-319)))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-147))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -1058) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-841)))) (|HasCategory| |#1| (QUOTE (-175)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-239)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-860)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-147)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| $ (QUOTE (-147))) (|HasCategory| (-1277 |#1| |#2| |#3|) (QUOTE (-928)))) (|HasCategory| |#1| (QUOTE (-147))))) +(-1248 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Laurent series \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Laurent series.}")) (|map| (((|UnivariateLaurentSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariateLaurentSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Laurent series \\spad{g(x)}."))) NIL NIL -(-1250 |Coef|) +(-1249 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateLaurentSeriesCategory} is the category of Laurent series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by integers.")) (|rationalFunction| (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|) (|Integer|)) "\\spad{rationalFunction(f,k1,k2)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Fraction| (|Polynomial| |#1|)) $ (|Integer|)) "\\spad{rationalFunction(f,k)} returns a rational function consisting of the sum of all terms of \\spad{f} of degree <= \\spad{k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = n0..infinity,a[n] * x**n)) = sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Puiseux series are represented by a Laurent series and an exponent.")) (|series| (($ (|Stream| (|Record| (|:| |k| (|Integer|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1251 S |Coef| UTS) +(-1250 S |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#3| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#3| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#3| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#3|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) NIL ((|HasCategory| |#2| (QUOTE (-376)))) -(-1252 |Coef| UTS) +(-1251 |Coef| UTS) ((|constructor| (NIL "This is a category of univariate Laurent series constructed from univariate Taylor series. A Laurent series is represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}.")) (|taylorIfCan| (((|Union| |#2| "failed") $) "\\spad{taylorIfCan(f(x))} converts the Laurent series \\spad{f(x)} to a Taylor series,{} if possible. If this is not possible,{} \"failed\" is returned.")) (|taylor| ((|#2| $) "\\spad{taylor(f(x))} converts the Laurent series \\spad{f}(\\spad{x}) to a Taylor series,{} if possible. Error: if this is not possible.")) (|removeZeroes| (($ (|Integer|) $) "\\spad{removeZeroes(n,f(x))} removes up to \\spad{n} leading zeroes from the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable.") (($ $) "\\spad{removeZeroes(f(x))} removes leading zeroes from the representation of the Laurent series \\spad{f(x)}. A Laurent series is represented by (1) an exponent and (2) a Taylor series which may have leading zero coefficients. When the Taylor series has a leading zero coefficient,{} the 'leading zero' is removed from the Laurent series as follows: the series is rewritten by increasing the exponent by 1 and dividing the Taylor series by its variable. Note: \\spad{removeZeroes(f)} removes all leading zeroes from \\spad{f}")) (|taylorRep| ((|#2| $) "\\spad{taylorRep(f(x))} returns \\spad{g(x)},{} where \\spad{f = x**n * g(x)} is represented by \\spad{[n,g(x)]}.")) (|degree| (((|Integer|) $) "\\spad{degree(f(x))} returns the degree of the lowest order term of \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurent| (($ (|Integer|) |#2|) "\\spad{laurent(n,f(x))} returns \\spad{x**n * f(x)}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1253 |Coef| UTS) +(-1252 |Coef| UTS) ((|constructor| (NIL "This package enables one to construct a univariate Laurent series domain from a univariate Taylor series domain. Univariate Laurent series are represented by a pair \\spad{[n,f(x)]},{} where \\spad{n} is an arbitrary integer and \\spad{f(x)} is a Taylor series. This pair represents the Laurent series \\spad{x**n * f(x)}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1173)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-3957 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3957 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240))))) (-3957 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (|HasCategory| (-558) (QUOTE (-1133))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1041)))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-861))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-929)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-842)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-861)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1041)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1173)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1173)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1198)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-861)))) (|HasCategory| |#2| (QUOTE (-929))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-3957 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) -(-1254 ZP) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1172)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147))))) (-3956 (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-149))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-3956 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240))))) (-3956 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-240)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (|HasCategory| (-558) (QUOTE (-1132))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-376))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1040)))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-841)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-860))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-928)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-841)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-860)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1040)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1172)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1172)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -298) (|devaluate| |#2|) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -321) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -526) (QUOTE (-1197)) (|devaluate| |#2|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-558))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-860)))) (|HasCategory| |#2| (QUOTE (-928))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-557)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-319)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-147))) (-3956 (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-558)) (|devaluate| |#1|)))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-239)))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#1| (QUOTE (-147))) (-12 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-147)))))) +(-1253 ZP) ((|constructor| (NIL "Package for the factorization of univariate polynomials with integer coefficients. The factorization is done by \"lifting\" (HENSEL) the factorization over a finite field.")) (|henselFact| (((|Record| (|:| |contp| (|Integer|)) (|:| |factors| (|List| (|Record| (|:| |irr| |#1|) (|:| |pow| (|Integer|)))))) |#1| (|Boolean|)) "\\spad{henselFact(m,flag)} returns the factorization of \\spad{m},{} FinalFact is a Record \\spad{s}.\\spad{t}. FinalFact.contp=content \\spad{m},{} FinalFact.factors=List of irreducible factors of \\spad{m} with exponent ,{} if \\spad{flag} =true the polynomial is assumed square free.")) (|factorSquareFree| (((|Factored| |#1|) |#1|) "\\spad{factorSquareFree(m)} returns the factorization of \\spad{m} square free polynomial")) (|factor| (((|Factored| |#1|) |#1|) "\\spad{factor(m)} returns the factorization of \\spad{m}"))) NIL NIL -(-1255 S) +(-1254 S) ((|constructor| (NIL "This domain provides segments which may be half open. That is,{} ranges of the form \\spad{a..} or \\spad{a..b}.")) (|hasHi| (((|Boolean|) $) "\\spad{hasHi(s)} tests whether the segment \\spad{s} has an upper bound.")) (|coerce| (($ (|Segment| |#1|)) "\\spad{coerce(x)} allows \\spadtype{Segment} values to be used as \\%.")) (|segment| (($ |#1|) "\\spad{segment(l)} is an alternate way to construct the segment \\spad{l..}.")) (SEGMENT (($ |#1|) "\\spad{l..} produces a half open segment,{} that is,{} one with no upper bound."))) NIL -((|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1122)))) -(-1256 R S) +((|HasCategory| |#1| (QUOTE (-859))) (|HasCategory| |#1| (QUOTE (-1121)))) +(-1255 R S) ((|constructor| (NIL "This package provides operations for mapping functions onto segments.")) (|map| (((|Stream| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,s)} expands the segment \\spad{s},{} applying \\spad{f} to each value.") (((|UniversalSegment| |#2|) (|Mapping| |#2| |#1|) (|UniversalSegment| |#1|)) "\\spad{map(f,seg)} returns the new segment obtained by applying \\spad{f} to the endpoints of \\spad{seg}."))) NIL -((|HasCategory| |#1| (QUOTE (-860)))) -(-1257 |x| R) +((|HasCategory| |#1| (QUOTE (-859)))) +(-1256 |x| R) ((|constructor| (NIL "This domain represents univariate polynomials in some symbol over arbitrary (not necessarily commutative) coefficient rings. The representation is sparse in the sense that only non-zero terms are represented.")) (|fmecg| (($ $ (|NonNegativeInteger|) |#2| $) "\\spad{fmecg(p1,e,r,p2)} finds \\spad{X} : \\spad{p1} - \\spad{r} * X**e * \\spad{p2}"))) -(((-4427 "*") |has| |#2| (-175)) (-4418 |has| |#2| (-569)) (-4421 |has| |#2| (-376)) (-4423 |has| |#2| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-391)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -901) (QUOTE (-558)))) (|HasCategory| (-1103) (|%list| (QUOTE -901) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558))))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (|%list| (QUOTE -905) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| (-1103) (|%list| (QUOTE -631) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -658) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (QUOTE (-558)))) (-3957 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3957 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-929)))) (-3957 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-929)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1173))) (|HasCategory| |#2| (|%list| (QUOTE -919) (QUOTE (-1198)))) (|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4423)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (-3957 (-12 (|HasCategory| |#2| (QUOTE (-929))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) -(-1258 |x| R |y| S) +(((-4426 "*") |has| |#2| (-175)) (-4417 |has| |#2| (-569)) (-4420 |has| |#2| (-376)) (-4422 |has| |#2| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-569)))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-391)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-391))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -900) (QUOTE (-558)))) (|HasCategory| (-1102) (|%list| (QUOTE -900) (QUOTE (-558))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-391)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558))))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (|%list| (QUOTE -904) (QUOTE (-558)))))) (-12 (|HasCategory| |#2| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| (-1102) (|%list| (QUOTE -630) (QUOTE (-547))))) (|HasCategory| |#2| (|%list| (QUOTE -657) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-149))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (QUOTE (-558)))) (-3956 (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| |#2| (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (-3956 (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-928)))) (-3956 (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-928)))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-1172))) (|HasCategory| |#2| (|%list| (QUOTE -918) (QUOTE (-1197)))) (|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasCategory| |#2| (QUOTE (-239))) (|HasCategory| |#2| (QUOTE (-240))) (|HasAttribute| |#2| (QUOTE -4422)) (|HasCategory| |#2| (QUOTE (-464))) (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (-3956 (-12 (|HasCategory| |#2| (QUOTE (-928))) (|HasCategory| $ (QUOTE (-147)))) (|HasCategory| |#2| (QUOTE (-147))))) +(-1257 |x| R |y| S) ((|constructor| (NIL "This package lifts a mapping from coefficient rings \\spad{R} to \\spad{S} to a mapping from \\spadtype{UnivariatePolynomial}(\\spad{x},{}\\spad{R}) to \\spadtype{UnivariatePolynomial}(\\spad{y},{}\\spad{S}). Note that the mapping is assumed to send zero to zero,{} since it will only be applied to the non-zero coefficients of the polynomial.")) (|map| (((|UnivariatePolynomial| |#3| |#4|) (|Mapping| |#4| |#2|) (|UnivariatePolynomial| |#1| |#2|)) "\\spad{map(func, poly)} creates a new polynomial by applying \\spad{func} to every non-zero coefficient of the polynomial poly."))) NIL NIL -(-1259 R Q UP) +(-1258 R Q UP) ((|constructor| (NIL "UnivariatePolynomialCommonDenominator provides functions to compute the common denominator of the coefficients of univariate polynomials over the quotient field of a gcd domain.")) (|splitDenominator| (((|Record| (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) "\\spad{splitDenominator(q)} returns \\spad{[p, d]} such that \\spad{q = p/d} and \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|clearDenominator| ((|#3| |#3|) "\\spad{clearDenominator(q)} returns \\spad{p} such that \\spad{q = p/d} where \\spad{d} is a common denominator for the coefficients of \\spad{q}.")) (|commonDenominator| ((|#1| |#3|) "\\spad{commonDenominator(q)} returns a common denominator \\spad{d} for the coefficients of \\spad{q}."))) NIL NIL -(-1260 R UP) +(-1259 R UP) ((|constructor| (NIL "UnivariatePolynomialDecompositionPackage implements functional decomposition of univariate polynomial with coefficients in an \\spad{IntegralDomain} of \\spad{CharacteristicZero}.")) (|monicCompleteDecompose| (((|List| |#2|) |#2|) "\\spad{monicCompleteDecompose(f)} returns a list of factors of \\spad{f} for the functional decomposition ([ \\spad{f1},{} ...,{} fn ] means \\spad{f} = \\spad{f1} \\spad{o} ... \\spad{o} fn).")) (|monicDecomposeIfCan| (((|Union| (|Record| (|:| |left| |#2|) (|:| |right| |#2|)) "failed") |#2|) "\\spad{monicDecomposeIfCan(f)} returns a functional decomposition of the monic polynomial \\spad{f} of \"failed\" if it has not found any.")) (|leftFactorIfCan| (((|Union| |#2| "failed") |#2| |#2|) "\\spad{leftFactorIfCan(f,h)} returns the left factor (\\spad{g} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of the functional decomposition of the polynomial \\spad{f} with given \\spad{h} or \\spad{\"failed\"} if \\spad{g} does not exist.")) (|rightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|) |#1|) "\\spad{rightFactorIfCan(f,d,c)} returns a candidate to be the right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} with leading coefficient \\spad{c} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate.")) (|monicRightFactorIfCan| (((|Union| |#2| "failed") |#2| (|NonNegativeInteger|)) "\\spad{monicRightFactorIfCan(f,d)} returns a candidate to be the monic right factor (\\spad{h} in \\spad{f} = \\spad{g} \\spad{o} \\spad{h}) of degree \\spad{d} of a functional decomposition of the polynomial \\spad{f} or \\spad{\"failed\"} if no such candidate."))) NIL NIL -(-1261 R UP) +(-1260 R UP) ((|constructor| (NIL "UnivariatePolynomialDivisionPackage provides a division for non monic univarite polynomials with coefficients in an \\spad{IntegralDomain}.")) (|divideIfCan| (((|Union| (|Record| (|:| |quotient| |#2|) (|:| |remainder| |#2|)) "failed") |#2| |#2|) "\\spad{divideIfCan(f,g)} returns quotient and remainder of the division of \\spad{f} by \\spad{g} or \"failed\" if it has not succeeded."))) NIL NIL -(-1262 R U) +(-1261 R U) ((|constructor| (NIL "This package implements Karatsuba's trick for multiplying (large) univariate polynomials. It could be improved with a version doing the work on place and also with a special case for squares. We've done this in Basicmath,{} but we believe that this out of the scope of AXIOM.")) (|karatsuba| ((|#2| |#2| |#2| (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{karatsuba(a,b,l,k)} returns \\spad{a*b} by applying Karatsuba's trick provided that both \\spad{a} and \\spad{b} have at least \\spad{l} terms and \\spad{k > 0} holds and by calling \\spad{noKaratsuba} otherwise. The other multiplications are performed by recursive calls with the same third argument and \\spad{k-1} as fourth argument.")) (|karatsubaOnce| ((|#2| |#2| |#2|) "\\spad{karatsuba(a,b)} returns \\spad{a*b} by applying Karatsuba's trick once. The other multiplications are performed by calling \\spad{*} from \\spad{U}.")) (|noKaratsuba| ((|#2| |#2| |#2|) "\\spad{noKaratsuba(a,b)} returns \\spad{a*b} without using Karatsuba's trick at all."))) NIL NIL -(-1263 S R) +(-1262 S R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#2|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#2| (|Fraction| $) |#2|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#2| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#2| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#2| |#2|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#2|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#2|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#2|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1173)))) -(-1264 R) +((|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376))) (|HasCategory| |#2| (QUOTE (-464))) (|HasCategory| |#2| (QUOTE (-569))) (|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (QUOTE (-1172)))) +(-1263 R) ((|constructor| (NIL "The category of univariate polynomials over a ring \\spad{R}. No particular model is assumed - implementations can be either sparse or dense.")) (|integrate| (($ $) "\\spad{integrate(p)} integrates the univariate polynomial \\spad{p} with respect to its distinguished variable.")) (|additiveValuation| ((|attribute|) "euclideanSize(a*b) = euclideanSize(a) + euclideanSize(\\spad{b})")) (|separate| (((|Record| (|:| |primePart| $) (|:| |commonPart| $)) $ $) "\\spad{separate(p, q)} returns \\spad{[a, b]} such that polynomial \\spad{p = a b} and \\spad{a} is relatively prime to \\spad{q}.")) (|pseudoDivide| (((|Record| (|:| |coef| |#1|) (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{pseudoDivide(p,q)} returns \\spad{[c, q, r]},{} when \\spad{p' := p*lc(q)**(deg p - deg q + 1) = c * p} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|pseudoQuotient| (($ $ $) "\\spad{pseudoQuotient(p,q)} returns \\spad{r},{} the quotient when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|composite| (((|Union| (|Fraction| $) "failed") (|Fraction| $) $) "\\spad{composite(f, q)} returns \\spad{h} if \\spad{f} = \\spad{h}(\\spad{q}),{} and \"failed\" is no such \\spad{h} exists.") (((|Union| $ "failed") $ $) "\\spad{composite(p, q)} returns \\spad{h} if \\spad{p = h(q)},{} and \"failed\" no such \\spad{h} exists.")) (|subResultantGcd| (($ $ $) "\\spad{subResultantGcd(p,q)} computes the gcd of the polynomials \\spad{p} and \\spad{q} using the SubResultant GCD algorithm.")) (|order| (((|NonNegativeInteger|) $ $) "\\spad{order(p, q)} returns the largest \\spad{n} such that \\spad{q**n} divides polynomial \\spad{p} \\spadignore{i.e.} the order of \\spad{p(x)} at \\spad{q(x)=0}.")) (|elt| ((|#1| (|Fraction| $) |#1|) "\\spad{elt(a,r)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by the constant \\spad{r}.") (((|Fraction| $) (|Fraction| $) (|Fraction| $)) "\\spad{elt(a,b)} evaluates the fraction of univariate polynomials \\spad{a} with the distinguished variable replaced by \\spad{b}.")) (|resultant| ((|#1| $ $) "\\spad{resultant(p,q)} returns the resultant of the polynomials \\spad{p} and \\spad{q}.")) (|discriminant| ((|#1| $) "\\spad{discriminant(p)} returns the discriminant of the polynomial \\spad{p}.")) (|differentiate| (($ $ (|Mapping| |#1| |#1|) $) "\\spad{differentiate(p, d, x')} extends the \\spad{R}-derivation \\spad{d} to an extension \\spad{D} in \\spad{R[x]} where Dx is given by x',{} and returns \\spad{Dp}.")) (|pseudoRemainder| (($ $ $) "\\spad{pseudoRemainder(p,q)} = \\spad{r},{} for polynomials \\spad{p} and \\spad{q},{} returns the remainder when \\spad{p' := p*lc(q)**(deg p - deg q + 1)} is pseudo right-divided by \\spad{q},{} \\spadignore{i.e.} \\spad{p' = s q + r}.")) (|shiftLeft| (($ $ (|NonNegativeInteger|)) "\\spad{shiftLeft(p,n)} returns \\spad{p * monomial(1,n)}")) (|shiftRight| (($ $ (|NonNegativeInteger|)) "\\spad{shiftRight(p,n)} returns \\spad{monicDivide(p,monomial(1,n)).quotient}")) (|karatsubaDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ (|NonNegativeInteger|)) "\\spad{karatsubaDivide(p,n)} returns the same as \\spad{monicDivide(p,monomial(1,n))}")) (|monicDivide| (((|Record| (|:| |quotient| $) (|:| |remainder| $)) $ $) "\\spad{monicDivide(p,q)} divide the polynomial \\spad{p} by the monic polynomial \\spad{q},{} returning the pair \\spad{[quotient, remainder]}. Error: if \\spad{q} isn't monic.")) (|divideExponents| (((|Union| $ "failed") $ (|NonNegativeInteger|)) "\\spad{divideExponents(p,n)} returns a new polynomial resulting from dividing all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n},{} or \"failed\" if some exponent is not exactly divisible by \\spad{n}.")) (|multiplyExponents| (($ $ (|NonNegativeInteger|)) "\\spad{multiplyExponents(p,n)} returns a new polynomial resulting from multiplying all exponents of the polynomial \\spad{p} by the non negative integer \\spad{n}.")) (|unmakeSUP| (($ (|SparseUnivariatePolynomial| |#1|)) "\\spad{unmakeSUP(sup)} converts \\spad{sup} of type \\spadtype{SparseUnivariatePolynomial(R)} to be a member of the given type. Note: converse of makeSUP.")) (|makeSUP| (((|SparseUnivariatePolynomial| |#1|) $) "\\spad{makeSUP(p)} converts the polynomial \\spad{p} to be of type SparseUnivariatePolynomial over the same coefficients.")) (|vectorise| (((|Vector| |#1|) $ (|NonNegativeInteger|)) "\\spad{vectorise(p, n)} returns \\spad{[a0,...,a(n-1)]} where \\spad{p = a0 + a1*x + ... + a(n-1)*x**(n-1)} + higher order terms. The degree of polynomial \\spad{p} can be different from \\spad{n-1}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4421 |has| |#1| (-376)) (-4423 |has| |#1| (-6 -4423)) (-4420 . T) (-4419 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4420 |has| |#1| (-376)) (-4422 |has| |#1| (-6 -4422)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL -(-1265 R PR S PS) +(-1264 R PR S PS) ((|constructor| (NIL "Mapping from polynomials over \\spad{R} to polynomials over \\spad{S} given a map from \\spad{R} to \\spad{S} assumed to send zero to zero.")) (|map| ((|#4| (|Mapping| |#3| |#1|) |#2|) "\\spad{map(f, p)} takes a function \\spad{f} from \\spad{R} to \\spad{S},{} and applies it to each (non-zero) coefficient of a polynomial \\spad{p} over \\spad{R},{} getting a new polynomial over \\spad{S}. Note: since the map is not applied to zero elements,{} it may map zero to zero."))) NIL NIL -(-1266 S |Coef| |Expon|) +(-1265 S |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#2|) $ |#2|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#3|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#2| $ |#3|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#3| |#3|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#3|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#3| $ |#3|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#3| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#2| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#3|) (|:| |c| |#2|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1133))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#2|) (QUOTE (-1198)))))) -(-1267 |Coef| |Expon|) +((|HasCategory| |#2| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#2| (|%list| (QUOTE *) (|%list| (|devaluate| |#2|) (|devaluate| |#3|) (|devaluate| |#2|)))) (|HasCategory| |#3| (QUOTE (-1132))) (|HasSignature| |#2| (|%list| (QUOTE **) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (|devaluate| |#3|)))) (|HasSignature| |#2| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#2|) (QUOTE (-1197)))))) +(-1266 |Coef| |Expon|) ((|constructor| (NIL "\\spadtype{UnivariatePowerSeriesCategory} is the most general univariate power series category with exponents in an ordered abelian monoid. Note: this category exports a substitution function if it is possible to multiply exponents. Note: this category exports a derivative operation if it is possible to multiply coefficients by exponents.")) (|eval| (((|Stream| |#1|) $ |#1|) "\\spad{eval(f,a)} evaluates a power series at a value in the ground ring by returning a stream of partial sums.")) (|extend| (($ $ |#2|) "\\spad{extend(f,n)} causes all terms of \\spad{f} of degree <= \\spad{n} to be computed.")) (|approximate| ((|#1| $ |#2|) "\\spad{approximate(f)} returns a truncated power series with the series variable viewed as an element of the coefficient domain.")) (|truncate| (($ $ |#2| |#2|) "\\spad{truncate(f,k1,k2)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (($ $ |#2|) "\\spad{truncate(f,k)} returns a (finite) power series consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|order| ((|#2| $ |#2|) "\\spad{order(f,n) = min(m,n)},{} where \\spad{m} is the degree of the lowest order non-zero term in \\spad{f}.") ((|#2| $) "\\spad{order(f)} is the degree of the lowest order non-zero term in \\spad{f}. This will result in an infinite loop if \\spad{f} has no non-zero terms.")) (|multiplyExponents| (($ $ (|PositiveInteger|)) "\\spad{multiplyExponents(f,n)} multiplies all exponents of the power series \\spad{f} by the positive integer \\spad{n}.")) (|center| ((|#1| $) "\\spad{center(f)} returns the point about which the series \\spad{f} is expanded.")) (|variable| (((|Symbol|) $) "\\spad{variable(f)} returns the (unique) power series variable of the power series \\spad{f}.")) (|terms| (((|Stream| (|Record| (|:| |k| |#2|) (|:| |c| |#1|))) $) "\\spad{terms(f(x))} returns a stream of non-zero terms,{} where a a term is an exponent-coefficient pair. The terms in the stream are ordered by increasing order of exponents."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1268 RC P) +(-1267 RC P) ((|constructor| (NIL "This package provides for square-free decomposition of univariate polynomials over arbitrary rings,{} \\spadignore{i.e.} a partial factorization such that each factor is a product of irreducibles with multiplicity one and the factors are pairwise relatively prime. If the ring has characteristic zero,{} the result is guaranteed to satisfy this condition. If the ring is an infinite ring of finite characteristic,{} then it may not be possible to decide when polynomials contain factors which are \\spad{p}th powers. In this case,{} the flag associated with that polynomial is set to \"nil\" (meaning that that polynomials are not guaranteed to be square-free).")) (|BumInSepFFE| (((|Record| (|:| |flg| (|Union| #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|))) (|Record| (|:| |flg| (|Union| #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (|Integer|)))) "\\spad{BumInSepFFE(f)} is a local function,{} exported only because it has multiple conditional definitions.")) (|squareFreePart| ((|#2| |#2|) "\\spad{squareFreePart(p)} returns a polynomial which has the same irreducible factors as the univariate polynomial \\spad{p},{} but each factor has multiplicity one.")) (|squareFree| (((|Factored| |#2|) |#2|) "\\spad{squareFree(p)} computes the square-free factorization of the univariate polynomial \\spad{p}. Each factor has no repeated roots,{} and the factors are pairwise relatively prime.")) (|gcd| (($ $ $) "\\spad{gcd(p,q)} computes the greatest-common-divisor of \\spad{p} and \\spad{q}."))) NIL NIL -(-1269 |Coef| |var| |cen|) +(-1268 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Puiseux series in one variable \\indented{2}{\\spadtype{UnivariatePuiseuxSeries} is a domain representing Puiseux} \\indented{2}{series in one variable with coefficients in an arbitrary ring.\\space{2}The} \\indented{2}{parameters of the type specify the coefficient ring,{} the power series} \\indented{2}{variable,{} and the center of the power series expansion.\\space{2}For example,{}} \\indented{2}{\\spad{UnivariatePuiseuxSeries(Integer,x,3)} represents Puiseux series in} \\indented{2}{\\spad{(x - 3)} with \\spadtype{Integer} coefficients.}")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1270 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1269 |Coef1| |Coef2| |var1| |var2| |cen1| |cen2|) ((|constructor| (NIL "Mapping package for univariate Puiseux series. This package allows one to apply a function to the coefficients of a univariate Puiseux series.")) (|map| (((|UnivariatePuiseuxSeries| |#2| |#4| |#6|) (|Mapping| |#2| |#1|) (|UnivariatePuiseuxSeries| |#1| |#3| |#5|)) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of the Puiseux series \\spad{g(x)}."))) NIL NIL -(-1271 |Coef|) +(-1270 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariatePuiseuxSeriesCategory} is the category of Puiseux series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),var)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{var}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 1. We may integrate a series when we can divide coefficients by rational numbers.")) (|multiplyExponents| (($ $ (|Fraction| (|Integer|))) "\\spad{multiplyExponents(f,r)} multiplies all exponents of the power series \\spad{f} by the positive rational number \\spad{r}.")) (|series| (($ (|NonNegativeInteger|) (|Stream| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#1|)))) "\\spad{series(n,st)} creates a series from a common denomiator and a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents and \\spad{n} should be a common denominator for the exponents in the stream of terms."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1272 S |Coef| ULS) +(-1271 S |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#3| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#3| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#3| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#3|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) NIL NIL -(-1273 |Coef| ULS) +(-1272 |Coef| ULS) ((|constructor| (NIL "This is a category of univariate Puiseux series constructed from univariate Laurent series. A Puiseux series is represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}.")) (|laurentIfCan| (((|Union| |#2| "failed") $) "\\spad{laurentIfCan(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. If this is not possible,{} \"failed\" is returned.")) (|laurent| ((|#2| $) "\\spad{laurent(f(x))} converts the Puiseux series \\spad{f(x)} to a Laurent series if possible. Error: if this is not possible.")) (|degree| (((|Fraction| (|Integer|)) $) "\\spad{degree(f(x))} returns the degree of the leading term of the Puiseux series \\spad{f(x)},{} which may have zero as a coefficient.")) (|laurentRep| ((|#2| $) "\\spad{laurentRep(f(x))} returns \\spad{g(x)} where the Puiseux series \\spad{f(x) = g(x^r)} is represented by \\spad{[r,g(x)]}.")) (|rationalPower| (((|Fraction| (|Integer|)) $) "\\spad{rationalPower(f(x))} returns \\spad{r} where the Puiseux series \\spad{f(x) = g(x^r)}.")) (|puiseux| (($ (|Fraction| (|Integer|)) |#2|) "\\spad{puiseux(r,f(x))} returns \\spad{f(x^r)}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1274 |Coef| ULS) +(-1273 |Coef| ULS) ((|constructor| (NIL "This package enables one to construct a univariate Puiseux series domain from a univariate Laurent series domain. Univariate Puiseux series are represented by a pair \\spad{[r,f(x)]},{} where \\spad{r} is a positive rational number and \\spad{f(x)} is a Laurent series. This pair represents the Puiseux series \\spad{f(x^r)}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4423 |has| |#1| (-376)) (-4417 |has| |#1| (-376)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1133))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3957 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) -(-1275 R FE |var| |cen|) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4422 |has| |#1| (-376)) (-4416 |has| |#1| (-376)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#1| (QUOTE (-175))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558))) (|devaluate| |#1|)))) (|HasCategory| (-419 (-558)) (QUOTE (-1132))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-3956 (|HasCategory| |#1| (QUOTE (-376))) (|HasCategory| |#1| (QUOTE (-569)))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (|%list| (QUOTE -419) (QUOTE (-558)))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|)))))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558)))))) +(-1274 R FE |var| |cen|) ((|constructor| (NIL "UnivariatePuiseuxSeriesWithExponentialSingularity is a domain used to represent functions with essential singularities. Objects in this domain are sums,{} where each term in the sum is a univariate Puiseux series times the exponential of a univariate Puiseux series. Thus,{} the elements of this domain are sums of expressions of the form \\spad{g(x) * exp(f(x))},{} where \\spad{g}(\\spad{x}) is a univariate Puiseux series and \\spad{f}(\\spad{x}) is a univariate Puiseux series with no terms of non-negative degree.")) (|dominantTerm| (((|Union| (|Record| (|:| |%term| (|Record| (|:| |%coef| (|UnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expon| (|ExponentialOfUnivariatePuiseuxSeries| |#2| |#3| |#4|)) (|:| |%expTerms| (|List| (|Record| (|:| |k| (|Fraction| (|Integer|))) (|:| |c| |#2|)))))) (|:| |%type| (|String|))) "failed") $) "\\spad{dominantTerm(f(var))} returns the term that dominates the limiting behavior of \\spad{f(var)} as \\spad{var -> cen+} together with a \\spadtype{String} which briefly describes that behavior. The value of the \\spadtype{String} will be \\spad{\"zero\"} (resp. \\spad{\"infinity\"}) if the term tends to zero (resp. infinity) exponentially and will \\spad{\"series\"} if the term is a Puiseux series.")) (|limitPlus| (((|Union| (|OrderedCompletion| |#2|) "failed") $) "\\spad{limitPlus(f(var))} returns \\spad{limit(var -> cen+,f(var))}."))) -(((-4427 "*") |has| (-1269 |#2| |#3| |#4|) (-175)) (-4418 |has| (-1269 |#2| |#3| |#4|) (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| (-1269 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-175))) (-3957 (|HasCategory| (-1269 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (|%list| (QUOTE -1059) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1269 |#2| |#3| |#4|) (|%list| (QUOTE -1059) (QUOTE (-558)))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1269 |#2| |#3| |#4|) (QUOTE (-569)))) -(-1276 A S) +(((-4426 "*") |has| (-1268 |#2| |#3| |#4|) (-175)) (-4417 |has| (-1268 |#2| |#3| |#4|) (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| (-1268 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-147))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-149))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-175))) (-3956 (|HasCategory| (-1268 |#2| |#3| |#4|) (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558)))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (|%list| (QUOTE -1058) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| (-1268 |#2| |#3| |#4|) (|%list| (QUOTE -1058) (QUOTE (-558)))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-376))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-464))) (|HasCategory| (-1268 |#2| |#3| |#4|) (QUOTE (-569)))) +(-1275 A S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#2| $ |#2|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#2| $ "last" |#2|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#2| $ "first" |#2|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#2| $ |#2|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#2|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#2| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#2| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#2| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#2| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#2| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#2| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#2| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL -((|HasAttribute| |#1| (QUOTE -4426))) -(-1277 S) +((|HasAttribute| |#1| (QUOTE -4425))) +(-1276 S) ((|constructor| (NIL "A unary-recursive aggregate is a one where nodes may have either 0 or 1 children. This aggregate models,{} though not precisely,{} a linked list possibly with a single cycle. A node with one children models a non-empty list,{} with the \\spadfun{value} of the list designating the head,{} or \\spadfun{first},{} of the list,{} and the child designating the tail,{} or \\spadfun{rest},{} of the list. A node with no child then designates the empty list. Since these aggregates are recursive aggregates,{} they may be cyclic.")) (|split!| (($ $ (|Integer|)) "\\spad{split!(u,n)} splits \\spad{u} into two aggregates: \\axiom{\\spad{v} = rest(\\spad{u},{}\\spad{n})} and \\axiom{\\spad{w} = first(\\spad{u},{}\\spad{n})},{} returning \\axiom{\\spad{v}}. Note: afterwards \\axiom{rest(\\spad{u},{}\\spad{n})} returns \\axiom{empty()}.")) (|setlast!| ((|#1| $ |#1|) "\\spad{setlast!(u,x)} destructively changes the last element of \\spad{u} to \\spad{x}.")) (|setrest!| (($ $ $) "\\spad{setrest!(u,v)} destructively changes the rest of \\spad{u} to \\spad{v}.")) (|setelt| ((|#1| $ "last" |#1|) "\\spad{setelt(u,\"last\",x)} (also written: \\axiom{\\spad{u}.last := \\spad{b}}) is equivalent to \\axiom{setlast!(\\spad{u},{}\\spad{v})}.") (($ $ "rest" $) "\\spad{setelt(u,\"rest\",v)} (also written: \\axiom{\\spad{u}.rest := \\spad{v}}) is equivalent to \\axiom{setrest!(\\spad{u},{}\\spad{v})}.") ((|#1| $ "first" |#1|) "\\spad{setelt(u,\"first\",x)} (also written: \\axiom{\\spad{u}.first := \\spad{x}}) is equivalent to \\axiom{setfirst!(\\spad{u},{}\\spad{x})}.")) (|setfirst!| ((|#1| $ |#1|) "\\spad{setfirst!(u,x)} destructively changes the first element of a to \\spad{x}.")) (|cycleSplit!| (($ $) "\\spad{cycleSplit!(u)} splits the aggregate by dropping off the cycle. The value returned is the cycle entry,{} or nil if none exists. For example,{} if \\axiom{\\spad{w} = concat(\\spad{u},{}\\spad{v})} is the cyclic list where \\spad{v} is the head of the cycle,{} \\axiom{cycleSplit!(\\spad{w})} will drop \\spad{v} off \\spad{w} thus destructively changing \\spad{w} to \\spad{u},{} and returning \\spad{v}.")) (|concat!| (($ $ |#1|) "\\spad{concat!(u,x)} destructively adds element \\spad{x} to the end of \\spad{u}. Note: \\axiom{concat!(a,{}\\spad{x}) = setlast!(a,{}[\\spad{x}])}.") (($ $ $) "\\spad{concat!(u,v)} destructively concatenates \\spad{v} to the end of \\spad{u}. Note: \\axiom{concat!(\\spad{u},{}\\spad{v}) = setlast!(\\spad{u},{}\\spad{v})}.")) (|cycleTail| (($ $) "\\spad{cycleTail(u)} returns the last node in the cycle,{} or empty if none exists.")) (|cycleLength| (((|NonNegativeInteger|) $) "\\spad{cycleLength(u)} returns the length of a top-level cycle contained in aggregate \\spad{u},{} or 0 is \\spad{u} has no such cycle.")) (|cycleEntry| (($ $) "\\spad{cycleEntry(u)} returns the head of a top-level cycle contained in aggregate \\spad{u},{} or \\axiom{empty()} if none exists.")) (|third| ((|#1| $) "\\spad{third(u)} returns the third element of \\spad{u}. Note: \\axiom{third(\\spad{u}) = first(rest(rest(\\spad{u})))}.")) (|second| ((|#1| $) "\\spad{second(u)} returns the second element of \\spad{u}. Note: \\axiom{second(\\spad{u}) = first(rest(\\spad{u}))}.")) (|tail| (($ $) "\\spad{tail(u)} returns the last node of \\spad{u}. Note: if \\spad{u} is \\axiom{shallowlyMutable},{} \\axiom{setrest(tail(\\spad{u}),{}\\spad{v}) = concat(\\spad{u},{}\\spad{v})}.")) (|last| (($ $ (|NonNegativeInteger|)) "\\spad{last(u,n)} returns a copy of the last \\spad{n} (\\axiom{\\spad{n} >= 0}) nodes of \\spad{u}. Note: \\axiom{last(\\spad{u},{}\\spad{n})} is a list of \\spad{n} elements.") ((|#1| $) "\\spad{last(u)} resturn the last element of \\spad{u}. Note: for lists,{} \\axiom{last(\\spad{u}) = \\spad{u} . (maxIndex \\spad{u}) = \\spad{u} . (\\# \\spad{u} - 1)}.")) (|rest| (($ $ (|NonNegativeInteger|)) "\\spad{rest(u,n)} returns the \\axiom{\\spad{n}}th (\\spad{n} >= 0) node of \\spad{u}. Note: \\axiom{rest(\\spad{u},{}0) = \\spad{u}}.") (($ $) "\\spad{rest(u)} returns an aggregate consisting of all but the first element of \\spad{u} (equivalently,{} the next node of \\spad{u}).")) (|elt| ((|#1| $ "last") "\\spad{elt(u,\"last\")} (also written: \\axiom{\\spad{u} . last}) is equivalent to last \\spad{u}.") (($ $ "rest") "\\spad{elt(\\%,\"rest\")} (also written: \\axiom{\\spad{u}.rest}) is equivalent to \\axiom{rest \\spad{u}}.") ((|#1| $ "first") "\\spad{elt(u,\"first\")} (also written: \\axiom{\\spad{u} . first}) is equivalent to first \\spad{u}.")) (|first| (($ $ (|NonNegativeInteger|)) "\\spad{first(u,n)} returns a copy of the first \\spad{n} (\\axiom{\\spad{n} >= 0}) elements of \\spad{u}.") ((|#1| $) "\\spad{first(u)} returns the first element of \\spad{u} (equivalently,{} the value at the current node).")) (|concat| (($ |#1| $) "\\spad{concat(x,u)} returns aggregate consisting of \\spad{x} followed by the elements of \\spad{u}. Note: if \\axiom{\\spad{v} = concat(\\spad{x},{}\\spad{u})} then \\axiom{\\spad{x} = first \\spad{v}} and \\axiom{\\spad{u} = rest \\spad{v}}.") (($ $ $) "\\spad{concat(u,v)} returns an aggregate \\spad{w} consisting of the elements of \\spad{u} followed by the elements of \\spad{v}. Note: \\axiom{\\spad{v} = rest(\\spad{w},{}\\#a)}."))) NIL NIL -(-1278 |Coef| |var| |cen|) +(-1277 |Coef| |var| |cen|) ((|constructor| (NIL "Dense Taylor series in one variable \\spadtype{UnivariateTaylorSeries} is a domain representing Taylor series in one variable with coefficients in an arbitrary ring. The parameters of the type specify the coefficient ring,{} the power series variable,{} and the center of the power series expansion. For example,{} \\spadtype{UnivariateTaylorSeries}(Integer,{}\\spad{x},{}3) represents Taylor series in \\spad{(x - 3)} with \\spadtype{Integer} coefficients.")) (|integrate| (($ $ (|Variable| |#2|)) "\\spad{integrate(f(x),x)} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (|invmultisect| (($ (|Integer|) (|Integer|) $) "\\spad{invmultisect(a,b,f(x))} substitutes \\spad{x^((a+b)*n)} \\indented{1}{for \\spad{x^n} and multiples by \\spad{x^b}.}")) (|multisect| (($ (|Integer|) (|Integer|) $) "\\spad{multisect(a,b,f(x))} selects the coefficients of \\indented{1}{\\spad{x^((a+b)*n+a)},{} and changes this monomial to \\spad{x^n}.}")) (|revert| (($ $) "\\spad{revert(f(x))} returns a Taylor series \\spad{g(x)} such that \\spad{f(g(x)) = g(f(x)) = x}. Series \\spad{f(x)} should have constant coefficient 0 and invertible 1st order coefficient.")) (|generalLambert| (($ $ (|Integer|) (|Integer|)) "\\spad{generalLambert(f(x),a,d)} returns \\spad{f(x^a) + f(x^(a + d)) + \\indented{1}{f(x^(a + 2 d)) + ... }. \\spad{f(x)} should have zero constant} \\indented{1}{coefficient and \\spad{a} and \\spad{d} should be positive.}")) (|evenlambert| (($ $) "\\spad{evenlambert(f(x))} returns \\spad{f(x^2) + f(x^4) + f(x^6) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n))) = exp(log(evenlambert(f(x))))}.}")) (|oddlambert| (($ $) "\\spad{oddlambert(f(x))} returns \\spad{f(x) + f(x^3) + f(x^5) + ...}. \\indented{1}{\\spad{f(x)} should have a zero constant coefficient.} \\indented{1}{This function is used for computing infinite products.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n=1..infinity,f(x^(2*n-1)))=exp(log(oddlambert(f(x))))}.}")) (|lambert| (($ $) "\\spad{lambert(f(x))} returns \\spad{f(x) + f(x^2) + f(x^3) + ...}. \\indented{1}{This function is used for computing infinite products.} \\indented{1}{\\spad{f(x)} should have zero constant coefficient.} \\indented{1}{If \\spad{f(x)} is a Taylor series with constant term 1,{} then} \\indented{1}{\\spad{product(n = 1..infinity,f(x^n)) = exp(log(lambert(f(x))))}.}")) (|lagrange| (($ $) "\\spad{lagrange(g(x))} produces the Taylor series for \\spad{f(x)} \\indented{1}{where \\spad{f(x)} is implicitly defined as \\spad{f(x) = x*g(f(x))}.}")) (|univariatePolynomial| (((|UnivariatePolynomial| |#2| |#1|) $ (|NonNegativeInteger|)) "\\spad{univariatePolynomial(f,k)} returns a univariate polynomial \\indented{1}{consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.}")) (|coerce| (($ (|Variable| |#2|)) "\\spad{coerce(var)} converts the series variable \\spad{var} into a \\indented{1}{Taylor series.}") (($ (|UnivariatePolynomial| |#2| |#1|)) "\\spad{coerce(p)} converts a univariate polynomial \\spad{p} in the variable \\spad{var} to a univariate Taylor series in \\spad{var}."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) -((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3957 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -917) (QUOTE (-1198)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-791)) (|devaluate| |#1|)))) (|HasCategory| (-791) (QUOTE (-1133))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasSignature| |#1| (|%list| (QUOTE -4376) (|%list| (|devaluate| |#1|) (QUOTE (-1198)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-791))))) (|HasCategory| |#1| (QUOTE (-376))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-979))) (|HasCategory| |#1| (QUOTE (-1224))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1198))))) (|HasSignature| |#1| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#1|))))))) -(-1279 |Coef1| |Coef2| UTS1 UTS2) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) +((|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (QUOTE (-569))) (-3956 (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-569)))) (|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-147))) (|HasCategory| |#1| (QUOTE (-149))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -916) (QUOTE (-1197)))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-790)) (|devaluate| |#1|))))) (|HasSignature| |#1| (|%list| (QUOTE *) (|%list| (|devaluate| |#1|) (QUOTE (-790)) (|devaluate| |#1|)))) (|HasCategory| (-790) (QUOTE (-1132))) (-12 (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-790))))) (|HasSignature| |#1| (|%list| (QUOTE -4375) (|%list| (|devaluate| |#1|) (QUOTE (-1197)))))) (|HasSignature| |#1| (|%list| (QUOTE **) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-790))))) (|HasCategory| |#1| (QUOTE (-376))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-978))) (|HasCategory| |#1| (QUOTE (-1223))) (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#1| (|%list| (QUOTE -29) (QUOTE (-558))))) (-12 (|HasCategory| |#1| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasSignature| |#1| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#1|) (|devaluate| |#1|) (QUOTE (-1197))))) (|HasSignature| |#1| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#1|))))))) +(-1278 |Coef1| |Coef2| UTS1 UTS2) ((|constructor| (NIL "Mapping package for univariate Taylor series. \\indented{2}{This package allows one to apply a function to the coefficients of} \\indented{2}{a univariate Taylor series.}")) (|map| ((|#4| (|Mapping| |#2| |#1|) |#3|) "\\spad{map(f,g(x))} applies the map \\spad{f} to the coefficients of \\indented{1}{the Taylor series \\spad{g(x)}.}"))) NIL NIL -(-1280 S |Coef|) +(-1279 S |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#2|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#2|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#2|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#2| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#2|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#2|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#2|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) NIL -((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-979))) (|HasCategory| |#2| (QUOTE (-1224))) (|HasSignature| |#2| (|%list| (QUOTE -3484) (|%list| (|%list| (QUOTE -661) (QUOTE (-1198))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4242) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1198))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376)))) -(-1281 |Coef|) +((|HasCategory| |#2| (|%list| (QUOTE -29) (QUOTE (-558)))) (|HasCategory| |#2| (QUOTE (-978))) (|HasCategory| |#2| (QUOTE (-1223))) (|HasSignature| |#2| (|%list| (QUOTE -3483) (|%list| (|%list| (QUOTE -660) (QUOTE (-1197))) (|devaluate| |#2|)))) (|HasSignature| |#2| (|%list| (QUOTE -4241) (|%list| (|devaluate| |#2|) (|devaluate| |#2|) (QUOTE (-1197))))) (|HasCategory| |#2| (|%list| (QUOTE -38) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasCategory| |#2| (QUOTE (-376)))) +(-1280 |Coef|) ((|constructor| (NIL "\\spadtype{UnivariateTaylorSeriesCategory} is the category of Taylor series in one variable.")) (|integrate| (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $ (|Symbol|)) "\\spad{integrate(f(x),y)} returns an anti-derivative of the power series \\spad{f(x)} with respect to the variable \\spad{y}.") (($ $) "\\spad{integrate(f(x))} returns an anti-derivative of the power series \\spad{f(x)} with constant coefficient 0. We may integrate a series when we can divide coefficients by integers.")) (** (($ $ |#1|) "\\spad{f(x) ** a} computes a power of a power series. When the coefficient ring is a field,{} we may raise a series to an exponent from the coefficient ring provided that the constant coefficient of the series is 1.")) (|polynomial| (((|Polynomial| |#1|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{polynomial(f,k1,k2)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{d} with \\spad{k1 <= d <= k2}.") (((|Polynomial| |#1|) $ (|NonNegativeInteger|)) "\\spad{polynomial(f,k)} returns a polynomial consisting of the sum of all terms of \\spad{f} of degree \\spad{<= k}.")) (|multiplyCoefficients| (($ (|Mapping| |#1| (|Integer|)) $) "\\spad{multiplyCoefficients(f,sum(n = 0..infinity,a[n] * x**n))} returns \\spad{sum(n = 0..infinity,f(n) * a[n] * x**n)}. This function is used when Laurent series are represented by a Taylor series and an order.")) (|quoByVar| (($ $) "\\spad{quoByVar(a0 + a1 x + a2 x**2 + ...)} returns \\spad{a1 + a2 x + a3 x**2 + ...} Thus,{} this function substracts the constant term and divides by the series variable. This function is used when Laurent series are represented by a Taylor series and an order.")) (|coefficients| (((|Stream| |#1|) $) "\\spad{coefficients(a0 + a1 x + a2 x**2 + ...)} returns a stream of coefficients: \\spad{[a0,a1,a2,...]}. The entries of the stream may be zero.")) (|series| (($ (|Stream| |#1|)) "\\spad{series([a0,a1,a2,...])} is the Taylor series \\spad{a0 + a1 x + a2 x**2 + ...}.") (($ (|Stream| (|Record| (|:| |k| (|NonNegativeInteger|)) (|:| |c| |#1|)))) "\\spad{series(st)} creates a series from a stream of non-zero terms,{} where a term is an exponent-coefficient pair. The terms in the stream should be ordered by increasing order of exponents."))) -(((-4427 "*") |has| |#1| (-175)) (-4418 |has| |#1| (-569)) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") |has| |#1| (-175)) (-4417 |has| |#1| (-569)) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1282 |Coef| UTS) +(-1281 |Coef| UTS) ((|constructor| (NIL "\\indented{1}{This package provides Taylor series solutions to regular} linear or non-linear ordinary differential equations of arbitrary order.")) (|mpsode| (((|List| |#2|) (|List| |#1|) (|List| (|Mapping| |#2| (|List| |#2|)))) "\\spad{mpsode(r,f)} solves the system of differential equations \\spad{dy[i]/dx =f[i] [x,y[1],y[2],...,y[n]]},{} \\spad{y[i](a) = r[i]} for \\spad{i} in 1..\\spad{n}.")) (|ode| ((|#2| (|Mapping| |#2| (|List| |#2|)) (|List| |#1|)) "\\spad{ode(f,cl)} is the solution to \\spad{y<n>=f(y,y',..,y<n-1>)} such that \\spad{y<i>(a) = cl.i} for \\spad{i} in 1..\\spad{n}.")) (|ode2| ((|#2| (|Mapping| |#2| |#2| |#2|) |#1| |#1|) "\\spad{ode2(f,c0,c1)} is the solution to \\spad{y'' = f(y,y')} such that \\spad{y(a) = c0} and \\spad{y'(a) = c1}.")) (|ode1| ((|#2| (|Mapping| |#2| |#2|) |#1|) "\\spad{ode1(f,c)} is the solution to \\spad{y' = f(y)} such that \\spad{y(a) = c}.")) (|fixedPointExquo| ((|#2| |#2| |#2|) "\\spad{fixedPointExquo(f,g)} computes the exact quotient of \\spad{f} and \\spad{g} using a fixed point computation.")) (|stFuncN| (((|Mapping| (|Stream| |#1|) (|List| (|Stream| |#1|))) (|Mapping| |#2| (|List| |#2|))) "\\spad{stFuncN(f)} is a local function xported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc2| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2| |#2|)) "\\spad{stFunc2(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user.")) (|stFunc1| (((|Mapping| (|Stream| |#1|) (|Stream| |#1|)) (|Mapping| |#2| |#2|)) "\\spad{stFunc1(f)} is a local function exported due to compiler problem. This function is of no interest to the top-level user."))) NIL NIL -(-1283 -3495 UP L UTS) +(-1282 -3494 UP L UTS) ((|constructor| (NIL "\\spad{RUTSodetools} provides tools to interface with the series \\indented{1}{ODE solver when presented with linear ODEs.}")) (RF2UTS ((|#4| (|Fraction| |#2|)) "\\spad{RF2UTS(f)} converts \\spad{f} to a Taylor series.")) (LODO2FUN (((|Mapping| |#4| (|List| |#4|)) |#3|) "\\spad{LODO2FUN(op)} returns the function to pass to the series ODE solver in order to solve \\spad{op y = 0}.")) (UTS2UP ((|#2| |#4| (|NonNegativeInteger|)) "\\spad{UTS2UP(s, n)} converts the first \\spad{n} terms of \\spad{s} to a univariate polynomial.")) (UP2UTS ((|#4| |#2|) "\\spad{UP2UTS(p)} converts \\spad{p} to a Taylor series."))) NIL ((|HasCategory| |#1| (QUOTE (-569)))) -(-1284) +(-1283) ((|constructor| (NIL "The category of domains that act like unions. UnionType,{} like Type or Category,{} acts mostly as a take that communicates `union-like' intended semantics to the compiler. A domain \\spad{D} that satifies UnionType should provide definitions for `case' operators,{} with corresponding `autoCoerce' operators."))) NIL NIL -(-1285 |sym|) +(-1284 |sym|) ((|constructor| (NIL "This domain implements variables")) (|variable| (((|Symbol|)) "\\spad{variable()} returns the symbol")) (|coerce| (((|Symbol|) $) "\\spad{coerce(x)} returns the symbol"))) NIL NIL -(-1286 S R) +(-1285 S R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#2| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#2| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#2|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#2| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#2|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#2| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) NIL -((|HasCategory| |#2| (QUOTE (-1023))) (|HasCategory| |#2| (QUOTE (-1070))) (|HasCategory| |#2| (QUOTE (-746))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) -(-1287 R) +((|HasCategory| |#2| (QUOTE (-1022))) (|HasCategory| |#2| (QUOTE (-1069))) (|HasCategory| |#2| (QUOTE (-745))) (|HasCategory| |#2| (QUOTE (-21))) (|HasCategory| |#2| (QUOTE (-23))) (|HasCategory| |#2| (QUOTE (-25)))) +(-1286 R) ((|constructor| (NIL "\\spadtype{VectorCategory} represents the type of vector like objects,{} \\spadignore{i.e.} finite sequences indexed by some finite segment of the integers. The operations available on vectors depend on the structure of the underlying components. Many operations from the component domain are defined for vectors componentwise. It can by assumed that extraction or updating components can be done in constant time.")) (|magnitude| ((|#1| $) "\\spad{magnitude(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the length")) (|length| ((|#1| $) "\\spad{length(v)} computes the sqrt(dot(\\spad{v},{}\\spad{v})),{} \\spadignore{i.e.} the magnitude")) (|cross| (($ $ $) "vectorProduct(\\spad{u},{}\\spad{v}) constructs the cross product of \\spad{u} and \\spad{v}. Error: if \\spad{u} and \\spad{v} are not of length 3.")) (|outerProduct| (((|Matrix| |#1|) $ $) "\\spad{outerProduct(u,v)} constructs the matrix whose (\\spad{i},{}\\spad{j})\\spad{'}th element is \\spad{u}(\\spad{i})*v(\\spad{j}).")) (|dot| ((|#1| $ $) "\\spad{dot(x,y)} computes the inner product of the two vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.")) (* (($ $ |#1|) "\\spad{y * r} multiplies each component of the vector \\spad{y} by the element \\spad{r}.") (($ |#1| $) "\\spad{r * y} multiplies the element \\spad{r} times each component of the vector \\spad{y}.") (($ (|Integer|) $) "\\spad{n * y} multiplies each component of the vector \\spad{y} by the integer \\spad{n}.")) (- (($ $ $) "\\spad{x - y} returns the component-wise difference of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length.") (($ $) "\\spad{-x} negates all components of the vector \\spad{x}.")) (|zero| (($ (|NonNegativeInteger|)) "\\spad{zero(n)} creates a zero vector of length \\spad{n}.")) (+ (($ $ $) "\\spad{x + y} returns the component-wise sum of the vectors \\spad{x} and \\spad{y}. Error: if \\spad{x} and \\spad{y} are not of the same length."))) -((-4426 . T) (-4425 . T)) +((-4425 . T) (-4424 . T)) NIL -(-1288 R) +(-1287 R) ((|constructor| (NIL "This type represents vector like objects with varying lengths and indexed by a finite segment of integers starting at 1.")) (|vector| (($ (|List| |#1|)) "\\spad{vector(l)} converts the list \\spad{l} to a vector."))) -((-4426 . T) (-4425 . T)) -((-3957 (-12 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3957 (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877))))) (|HasCategory| |#1| (|%list| (QUOTE -631) (QUOTE (-547)))) (-3957 (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| |#1| (QUOTE (-861))) (-3957 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122)))) (|HasCategory| (-558) (QUOTE (-861))) (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-746))) (|HasCategory| |#1| (QUOTE (-1070))) (-12 (|HasCategory| |#1| (QUOTE (-1023))) (|HasCategory| |#1| (QUOTE (-1070)))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1122))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) -(-1289 A B) +((-4425 . T) (-4424 . T)) +((-3956 (-12 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) (-3956 (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876))))) (|HasCategory| |#1| (|%list| (QUOTE -630) (QUOTE (-547)))) (-3956 (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| |#1| (QUOTE (-860))) (-3956 (|HasCategory| |#1| (QUOTE (-102))) (|HasCategory| |#1| (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121)))) (|HasCategory| (-558) (QUOTE (-860))) (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-25))) (|HasCategory| |#1| (QUOTE (-23))) (|HasCategory| |#1| (QUOTE (-21))) (|HasCategory| |#1| (QUOTE (-745))) (|HasCategory| |#1| (QUOTE (-1069))) (-12 (|HasCategory| |#1| (QUOTE (-1022))) (|HasCategory| |#1| (QUOTE (-1069)))) (|HasCategory| |#1| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#1| (QUOTE (-102))) (-12 (|HasCategory| |#1| (QUOTE (-1121))) (|HasCategory| |#1| (|%list| (QUOTE -321) (|devaluate| |#1|))))) +(-1288 A B) ((|constructor| (NIL "\\indented{2}{This package provides operations which all take as arguments} vectors of elements of some type \\spad{A} and functions from \\spad{A} to another of type \\spad{B}. The operations all iterate over their vector argument and either return a value of type \\spad{B} or a vector over \\spad{B}.")) (|map| (((|Union| (|Vector| |#2|) "failed") (|Mapping| (|Union| |#2| "failed") |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values or \\spad{\"failed\"}.") (((|Vector| |#2|) (|Mapping| |#2| |#1|) (|Vector| |#1|)) "\\spad{map(f, v)} applies the function \\spad{f} to every element of the vector \\spad{v} producing a new vector containing the values.")) (|reduce| ((|#2| (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{reduce(func,vec,ident)} combines the elements in \\spad{vec} using the binary function \\spad{func}. Argument \\spad{ident} is returned if \\spad{vec} is empty.")) (|scan| (((|Vector| |#2|) (|Mapping| |#2| |#1| |#2|) (|Vector| |#1|) |#2|) "\\spad{scan(func,vec,ident)} creates a new vector whose elements are the result of applying reduce to the binary function \\spad{func},{} increasing initial subsequences of the vector \\spad{vec},{} and the element \\spad{ident}."))) NIL NIL -(-1290) +(-1289) ((|constructor| (NIL "ViewportPackage provides functions for creating GraphImages and TwoDimensionalViewports from lists of lists of points.")) (|coerce| (((|TwoDimensionalViewport|) (|GraphImage|)) "\\spad{coerce(gi)} converts the indicated \\spadtype{GraphImage},{} \\spad{gi},{} into the \\spadtype{TwoDimensionalViewport} form.")) (|drawCurves| (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|TwoDimensionalViewport|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{drawCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{TwoDimensionalViewport} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The point color is specified by \\spad{ptColor},{} the line color is specified by \\spad{lineColor},{} and the point size is specified by \\spad{ptSize}.")) (|graphCurves| (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|))))) "\\spad{graphCurves([[p0],[p1],...,[pn]])} creates a \\spadtype{GraphImage} from the list of lists of points indicated by \\spad{p0} through pn.") (((|GraphImage|) (|List| (|List| (|Point| (|DoubleFloat|)))) (|Palette|) (|Palette|) (|PositiveInteger|) (|List| (|DrawOption|))) "\\spad{graphCurves([[p0],[p1],...,[pn]],ptColor,lineColor,ptSize,[options])} creates a \\spadtype{GraphImage} from the list of lists of points,{} \\spad{p0} throught pn,{} using the options specified in the list \\spad{options}. The graph point color is specified by \\spad{ptColor},{} the graph line color is specified by \\spad{lineColor},{} and the size of the points is specified by \\spad{ptSize}."))) NIL NIL -(-1291) +(-1290) ((|constructor| (NIL "TwoDimensionalViewport creates viewports to display graphs.")) (|coerce| (((|OutputForm|) $) "\\spad{coerce(v)} returns the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport} as output of the domain \\spadtype{OutputForm}.")) (|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} back to their initial settings.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data files for \\spad{v}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|update| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{update(v,gr,n)} drops the graph \\spad{gr} in slot \\spad{n} of viewport \\spad{v}. The graph \\spad{gr} must have been transmitted already and acquired an integer key.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|show| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{show(v,n,s)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the graph if \\spad{s} is \"off\".")) (|translate| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{translate(v,n,dx,dy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} translated by \\spad{dx} in the \\spad{x}-coordinate direction from the center of the viewport,{} and by \\spad{dy} in the \\spad{y}-coordinate direction from the center. Setting \\spad{dx} and \\spad{dy} to \\spad{0} places the center of the graph at the center of the viewport.")) (|scale| (((|Void|) $ (|PositiveInteger|) (|Float|) (|Float|)) "\\spad{scale(v,n,sx,sy)} displays the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} scaled by the factor \\spad{sx} in the \\spad{x}-coordinate direction and by the factor \\spad{sy} in the \\spad{y}-coordinate direction.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport2D} is executed again for \\spad{v}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} and terminates the corresponding process ID.")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|connect| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{connect(v,n,s)} displays the lines connecting the graph points in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the lines if \\spad{s} is \"off\".")) (|region| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{region(v,n,s)} displays the bounding box of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the bounding box if \\spad{s} is \"off\".")) (|points| (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{points(v,n,s)} displays the points of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the points if \\spad{s} is \"off\".")) (|units| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{units(v,n,c)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the units color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{units(v,n,s)} displays the units of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the units if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|PositiveInteger|) (|Palette|)) "\\spad{axes(v,n,c)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} with the axes color set to the given palette color \\spad{c}.") (((|Void|) $ (|PositiveInteger|) (|String|)) "\\spad{axes(v,n,s)} displays the axes of the graph in field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|getGraph| (((|GraphImage|) $ (|PositiveInteger|)) "\\spad{getGraph(v,n)} returns the graph which is of the domain \\spadtype{GraphImage} which is located in graph field \\spad{n} of the given two-dimensional viewport,{} \\spad{v},{} which is of the domain \\spadtype{TwoDimensionalViewport}.")) (|putGraph| (((|Void|) $ (|GraphImage|) (|PositiveInteger|)) "\\spad{putGraph(v,gi,n)} sets the graph field indicated by \\spad{n},{} of the indicated two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport},{} to be the graph,{} \\spad{gi} of domain \\spadtype{GraphImage}. The contents of viewport,{} \\spad{v},{} will contain \\spad{gi} when the function \\spadfun{makeViewport2D} is called to create the an updated viewport \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the two-dimensional viewport window,{} \\spad{v} of domain \\spadtype{TwoDimensionalViewport}.")) (|graphs| (((|Vector| (|Union| (|GraphImage|) "undefined")) $) "\\spad{graphs(v)} returns a vector,{} or list,{} which is a union of all the graphs,{} of the domain \\spadtype{GraphImage},{} which are allocated for the two-dimensional viewport,{} \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport}. Those graphs which have no data are labeled \"undefined\",{} otherwise their contents are shown.")) (|graphStates| (((|Vector| (|Record| (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)) (|:| |points| (|Integer|)) (|:| |connect| (|Integer|)) (|:| |spline| (|Integer|)) (|:| |axes| (|Integer|)) (|:| |axesColor| (|Palette|)) (|:| |units| (|Integer|)) (|:| |unitsColor| (|Palette|)) (|:| |showing| (|Integer|)))) $) "\\spad{graphStates(v)} returns and shows a listing of a record containing the current state of the characteristics of each of the ten graph records in the given two-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{TwoDimensionalViewport}.")) (|graphState| (((|Void|) $ (|PositiveInteger|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|DoubleFloat|) (|Integer|) (|Integer|) (|Integer|) (|Integer|) (|Palette|) (|Integer|) (|Palette|) (|Integer|)) "\\spad{graphState(v,num,sX,sY,dX,dY,pts,lns,box,axes,axesC,un,unC,cP)} sets the state of the characteristics for the graph indicated by \\spad{num} in the given two-dimensional viewport \\spad{v},{} of domain \\spadtype{TwoDimensionalViewport},{} to the values given as parameters. The scaling of the graph in the \\spad{x} and \\spad{y} component directions is set to be \\spad{sX} and \\spad{sY}; the window translation in the \\spad{x} and \\spad{y} component directions is set to be \\spad{dX} and \\spad{dY}; The graph points,{} lines,{} bounding \\spad{box},{} \\spad{axes},{} or units will be shown in the viewport if their given parameters \\spad{pts},{} \\spad{lns},{} \\spad{box},{} \\spad{axes} or \\spad{un} are set to be \\spad{1},{} but will not be shown if they are set to \\spad{0}. The color of the \\spad{axes} and the color of the units are indicated by the palette colors \\spad{axesC} and \\spad{unC} respectively. To display the control panel when the viewport window is displayed,{} set \\spad{cP} to \\spad{1},{} otherwise set it to \\spad{0}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns \\spad{v} with it's draw options modified to be those which are indicated in the given list,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and returns a list containing the draw options from the domain \\spadtype{DrawOption} for \\spad{v}.")) (|makeViewport2D| (($ (|GraphImage|) (|List| (|DrawOption|))) "\\spad{makeViewport2D(gi,lopt)} creates and displays a viewport window of the domain \\spadtype{TwoDimensionalViewport} whose graph field is assigned to be the given graph,{} \\spad{gi},{} of domain \\spadtype{GraphImage},{} and whose options field is set to be the list of options,{} \\spad{lopt} of domain \\spadtype{DrawOption}.") (($ $) "\\spad{makeViewport2D(v)} takes the given two-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{TwoDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport2D| (($) "\\spad{viewport2D()} returns an undefined two-dimensional viewport of the domain \\spadtype{TwoDimensionalViewport} whose contents are empty.")) (|getPickedPoints| (((|List| (|Point| (|DoubleFloat|))) $) "\\spad{getPickedPoints(x)} returns a list of small floats for the points the user interactively picked on the viewport for full integration into the system,{} some design issues need to be addressed: \\spadignore{e.g.} how to go through the GraphImage interface,{} how to default to graphs,{} etc."))) NIL NIL -(-1292) +(-1291) ((|key| (((|Integer|) $) "\\spad{key(v)} returns the process ID number of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|close| (((|Void|) $) "\\spad{close(v)} closes the viewport window of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and terminates the corresponding process ID.")) (|write| (((|String|) $ (|String|) (|List| (|String|))) "\\spad{write(v,s,lf)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and the optional file types indicated by the list \\spad{lf}.") (((|String|) $ (|String|) (|String|)) "\\spad{write(v,s,f)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v} and an optional file type \\spad{f}.") (((|String|) $ (|String|)) "\\spad{write(v,s)} takes the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} and creates a directory indicated by \\spad{s},{} which contains the graph data file for \\spad{v}.")) (|colorDef| (((|Void|) $ (|Color|) (|Color|)) "\\spad{colorDef(v,c1,c2)} sets the range of colors along the colormap so that the lower end of the colormap is defined by \\spad{c1} and the top end of the colormap is defined by \\spad{c2},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|reset| (((|Void|) $) "\\spad{reset(v)} sets the current state of the graph characteristics of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} back to their initial settings.")) (|intensity| (((|Void|) $ (|Float|)) "\\spad{intensity(v,i)} sets the intensity of the light source to \\spad{i},{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|lighting| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{lighting(v,x,y,z)} sets the position of the light source to the coordinates \\spad{x},{} \\spad{y},{} and \\spad{z} and displays the graph for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|clipSurface| (((|Void|) $ (|String|)) "\\spad{clipSurface(v,s)} displays the graph with the specified clipping region removed if \\spad{s} is \"on\",{} or displays the graph without clipping implemented if \\spad{s} is \"off\",{} for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|showClipRegion| (((|Void|) $ (|String|)) "\\spad{showClipRegion(v,s)} displays the clipping region of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the region if \\spad{s} is \"off\".")) (|showRegion| (((|Void|) $ (|String|)) "\\spad{showRegion(v,s)} displays the bounding box of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the box if \\spad{s} is \"off\".")) (|hitherPlane| (((|Void|) $ (|Float|)) "\\spad{hitherPlane(v,h)} sets the hither clipping plane of the graph to \\spad{h},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|eyeDistance| (((|Void|) $ (|Float|)) "\\spad{eyeDistance(v,d)} sets the distance of the observer from the center of the graph to \\spad{d},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|perspective| (((|Void|) $ (|String|)) "\\spad{perspective(v,s)} displays the graph in perspective if \\spad{s} is \"on\",{} or does not display perspective if \\spad{s} is \"off\" for the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport}.")) (|translate| (((|Void|) $ (|Float|) (|Float|)) "\\spad{translate(v,dx,dy)} sets the horizontal viewport offset to \\spad{dx} and the vertical viewport offset to \\spad{dy},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|zoom| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{zoom(v,sx,sy,sz)} sets the graph scaling factors for the \\spad{x}-coordinate axis to \\spad{sx},{} the \\spad{y}-coordinate axis to \\spad{sy} and the \\spad{z}-coordinate axis to \\spad{sz} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.") (((|Void|) $ (|Float|)) "\\spad{zoom(v,s)} sets the graph scaling factor to \\spad{s},{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|rotate| (((|Void|) $ (|Integer|) (|Integer|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} degrees and the latitudinal view angle \\spad{phi} degrees for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new rotation position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{rotate(v,th,phi)} rotates the graph to the longitudinal view angle \\spad{th} radians and the latitudinal view angle \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}.")) (|drawStyle| (((|Void|) $ (|String|)) "\\spad{drawStyle(v,s)} displays the surface for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport} in the style of drawing indicated by \\spad{s}. If \\spad{s} is not a valid drawing style the style is wireframe by default. Possible styles are \\spad{\"shade\"},{} \\spad{\"solid\"} or \\spad{\"opaque\"},{} \\spad{\"smooth\"},{} and \\spad{\"wireMesh\"}.")) (|outlineRender| (((|Void|) $ (|String|)) "\\spad{outlineRender(v,s)} displays the polygon outline showing either triangularized surface or a quadrilateral surface outline depending on the whether the \\spadfun{diagonals} function has been set,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the polygon outline if \\spad{s} is \"off\".")) (|diagonals| (((|Void|) $ (|String|)) "\\spad{diagonals(v,s)} displays the diagonals of the polygon outline showing a triangularized surface instead of a quadrilateral surface outline,{} for the given three-dimensional viewport \\spad{v} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the diagonals if \\spad{s} is \"off\".")) (|axes| (((|Void|) $ (|String|)) "\\spad{axes(v,s)} displays the axes of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or does not display the axes if \\spad{s} is \"off\".")) (|controlPanel| (((|Void|) $ (|String|)) "\\spad{controlPanel(v,s)} displays the control panel of the given three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} if \\spad{s} is \"on\",{} or hides the control panel if \\spad{s} is \"off\".")) (|viewpoint| (((|Void|) $ (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,rotx,roty,rotz)} sets the rotation about the \\spad{x}-axis to be \\spad{rotx} radians,{} sets the rotation about the \\spad{y}-axis to be \\spad{roty} radians,{} and sets the rotation about the \\spad{z}-axis to be \\spad{rotz} radians,{} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and displays \\spad{v} with the new view position.") (((|Void|) $ (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi)} sets the longitudinal view angle to \\spad{th} radians and the latitudinal view angle to \\spad{phi} radians for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Integer|) (|Integer|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} degrees,{} the latitudinal view angle to \\spad{phi} degrees,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.") (((|Void|) $ (|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|)))) "\\spad{viewpoint(v,viewpt)} sets the viewpoint for the viewport. The viewport record consists of the latitudal and longitudal angles,{} the zoom factor,{} the \\spad{X},{} \\spad{Y},{} and \\spad{Z} scales,{} and the \\spad{X} and \\spad{Y} displacements.") (((|Record| (|:| |theta| (|DoubleFloat|)) (|:| |phi| (|DoubleFloat|)) (|:| |scale| (|DoubleFloat|)) (|:| |scaleX| (|DoubleFloat|)) (|:| |scaleY| (|DoubleFloat|)) (|:| |scaleZ| (|DoubleFloat|)) (|:| |deltaX| (|DoubleFloat|)) (|:| |deltaY| (|DoubleFloat|))) $) "\\spad{viewpoint(v)} returns the current viewpoint setting of the given viewport,{} \\spad{v}. This function is useful in the situation where the user has created a viewport,{} proceeded to interact with it via the control panel and desires to save the values of the viewpoint as the default settings for another viewport to be created using the system.") (((|Void|) $ (|Float|) (|Float|) (|Float|) (|Float|) (|Float|)) "\\spad{viewpoint(v,th,phi,s,dx,dy)} sets the longitudinal view angle to \\spad{th} radians,{} the latitudinal view angle to \\spad{phi} radians,{} the scale factor to \\spad{s},{} the horizontal viewport offset to \\spad{dx},{} and the vertical viewport offset to \\spad{dy} for the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport}. The new viewpoint position is not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|dimensions| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|) (|PositiveInteger|) (|PositiveInteger|)) "\\spad{dimensions(v,x,y,width,height)} sets the position of the upper left-hand corner of the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} to the window coordinate \\spad{x},{} \\spad{y},{} and sets the dimensions of the window to that of \\spad{width},{} \\spad{height}. The new dimensions are not displayed until the function \\spadfun{makeViewport3D} is executed again for \\spad{v}.")) (|title| (((|Void|) $ (|String|)) "\\spad{title(v,s)} changes the title which is shown in the three-dimensional viewport window,{} \\spad{v} of domain \\spadtype{ThreeDimensionalViewport}.")) (|resize| (((|Void|) $ (|PositiveInteger|) (|PositiveInteger|)) "\\spad{resize(v,w,h)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with a width of \\spad{w} and a height of \\spad{h},{} keeping the upper left-hand corner position unchanged.")) (|move| (((|Void|) $ (|NonNegativeInteger|) (|NonNegativeInteger|)) "\\spad{move(v,x,y)} displays the three-dimensional viewport,{} \\spad{v},{} which is of domain \\spadtype{ThreeDimensionalViewport},{} with the upper left-hand corner of the viewport window at the screen coordinate position \\spad{x},{} \\spad{y}.")) (|options| (($ $ (|List| (|DrawOption|))) "\\spad{options(v,lopt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and sets the draw options being used by \\spad{v} to those indicated in the list,{} \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (((|List| (|DrawOption|)) $) "\\spad{options(v)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport} and returns a list of all the draw options from the domain \\spad{DrawOption} which are being used by \\spad{v}.")) (|modifyPointData| (((|Void|) $ (|NonNegativeInteger|) (|Point| (|DoubleFloat|))) "\\spad{modifyPointData(v,ind,pt)} takes the viewport,{} \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} and places the data point,{} \\spad{pt} into the list of points database of \\spad{v} at the index location given by \\spad{ind}.")) (|subspace| (($ $ (|ThreeSpace| (|DoubleFloat|))) "\\spad{subspace(v,sp)} places the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} in the subspace \\spad{sp},{} which is of the domain \\spad{ThreeSpace}.") (((|ThreeSpace| (|DoubleFloat|)) $) "\\spad{subspace(v)} returns the contents of the viewport \\spad{v},{} which is of the domain \\spadtype{ThreeDimensionalViewport},{} as a subspace of the domain \\spad{ThreeSpace}.")) (|makeViewport3D| (($ (|ThreeSpace| (|DoubleFloat|)) (|List| (|DrawOption|))) "\\spad{makeViewport3D(sp,lopt)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose draw options are indicated by the list \\spad{lopt},{} which is a list of options from the domain \\spad{DrawOption}.") (($ (|ThreeSpace| (|DoubleFloat|)) (|String|)) "\\spad{makeViewport3D(sp,s)} takes the given space,{} \\spad{sp} which is of the domain \\spadtype{ThreeSpace} and displays a viewport window on the screen which contains the contents of \\spad{sp},{} and whose title is given by \\spad{s}.") (($ $) "\\spad{makeViewport3D(v)} takes the given three-dimensional viewport,{} \\spad{v},{} of the domain \\spadtype{ThreeDimensionalViewport} and displays a viewport window on the screen which contains the contents of \\spad{v}.")) (|viewport3D| (($) "\\spad{viewport3D()} returns an undefined three-dimensional viewport of the domain \\spadtype{ThreeDimensionalViewport} whose contents are empty.")) (|viewDeltaYDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaYDefault(dy)} sets the current default vertical offset from the center of the viewport window to be \\spad{dy} and returns \\spad{dy}.") (((|Float|)) "\\spad{viewDeltaYDefault()} returns the current default vertical offset from the center of the viewport window.")) (|viewDeltaXDefault| (((|Float|) (|Float|)) "\\spad{viewDeltaXDefault(dx)} sets the current default horizontal offset from the center of the viewport window to be \\spad{dx} and returns \\spad{dx}.") (((|Float|)) "\\spad{viewDeltaXDefault()} returns the current default horizontal offset from the center of the viewport window.")) (|viewZoomDefault| (((|Float|) (|Float|)) "\\spad{viewZoomDefault(s)} sets the current default graph scaling value to \\spad{s} and returns \\spad{s}.") (((|Float|)) "\\spad{viewZoomDefault()} returns the current default graph scaling value.")) (|viewPhiDefault| (((|Float|) (|Float|)) "\\spad{viewPhiDefault(p)} sets the current default latitudinal view angle in radians to the value \\spad{p} and returns \\spad{p}.") (((|Float|)) "\\spad{viewPhiDefault()} returns the current default latitudinal view angle in radians.")) (|viewThetaDefault| (((|Float|) (|Float|)) "\\spad{viewThetaDefault(t)} sets the current default longitudinal view angle in radians to the value \\spad{t} and returns \\spad{t}.") (((|Float|)) "\\spad{viewThetaDefault()} returns the current default longitudinal view angle in radians."))) NIL NIL -(-1293) +(-1292) ((|constructor| (NIL "ViewportDefaultsPackage describes default and user definable values for graphics")) (|tubeRadiusDefault| (((|DoubleFloat|)) "\\spad{tubeRadiusDefault()} returns the radius used for a 3D tube plot.") (((|DoubleFloat|) (|Float|)) "\\spad{tubeRadiusDefault(r)} sets the default radius for a 3D tube plot to \\spad{r}.")) (|tubePointsDefault| (((|PositiveInteger|)) "\\spad{tubePointsDefault()} returns the number of points to be used when creating the circle to be used in creating a 3D tube plot.") (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{tubePointsDefault(i)} sets the number of points to use when creating the circle to be used in creating a 3D tube plot to \\spad{i}.")) (|var2StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var2StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var2StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|var1StepsDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{var1StepsDefault(i)} sets the number of steps to take when creating a 3D mesh in the direction of the first defined free variable to \\spad{i} (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).") (((|PositiveInteger|)) "\\spad{var1StepsDefault()} is the current setting for the number of steps to take when creating a 3D mesh in the direction of the first defined free variable (a free variable is considered defined when its range is specified (\\spadignore{e.g.} \\spad{x=0}..10)).")) (|viewWriteAvailable| (((|List| (|String|))) "\\spad{viewWriteAvailable()} returns a list of available methods for writing,{} such as BITMAP,{} POSTSCRIPT,{} etc.")) (|viewWriteDefault| (((|List| (|String|)) (|List| (|String|))) "\\spad{viewWriteDefault(l)} sets the default list of things to write in a viewport data file to the strings in \\spad{l}; a viewAlone file is always genereated.") (((|List| (|String|))) "\\spad{viewWriteDefault()} returns the list of things to write in a viewport data file; a viewAlone file is always generated.")) (|viewDefaults| (((|Void|)) "\\spad{viewDefaults()} resets all the default graphics settings.")) (|viewSizeDefault| (((|List| (|PositiveInteger|)) (|List| (|PositiveInteger|))) "\\spad{viewSizeDefault([w,h])} sets the default viewport width to \\spad{w} and height to \\spad{h}.") (((|List| (|PositiveInteger|))) "\\spad{viewSizeDefault()} returns the default viewport width and height.")) (|viewPosDefault| (((|List| (|NonNegativeInteger|)) (|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault([x,y])} sets the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have th \\spad{X} and \\spad{Y} coordinates \\spad{x},{} \\spad{y}.") (((|List| (|NonNegativeInteger|))) "\\spad{viewPosDefault()} returns the default \\spad{X} and \\spad{Y} position of a viewport window unless overriden explicityly,{} newly created viewports will have this \\spad{X} and \\spad{Y} coordinate.")) (|pointSizeDefault| (((|PositiveInteger|) (|PositiveInteger|)) "\\spad{pointSizeDefault(i)} sets the default size of the points in a 2D viewport to \\spad{i}.") (((|PositiveInteger|)) "\\spad{pointSizeDefault()} returns the default size of the points in a 2D viewport.")) (|unitsColorDefault| (((|Palette|) (|Palette|)) "\\spad{unitsColorDefault(p)} sets the default color of the unit ticks in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{unitsColorDefault()} returns the default color of the unit ticks in a 2D viewport.")) (|axesColorDefault| (((|Palette|) (|Palette|)) "\\spad{axesColorDefault(p)} sets the default color of the axes in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{axesColorDefault()} returns the default color of the axes in a 2D viewport.")) (|lineColorDefault| (((|Palette|) (|Palette|)) "\\spad{lineColorDefault(p)} sets the default color of lines connecting points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{lineColorDefault()} returns the default color of lines connecting points in a 2D viewport.")) (|pointColorDefault| (((|Palette|) (|Palette|)) "\\spad{pointColorDefault(p)} sets the default color of points in a 2D viewport to the palette \\spad{p}.") (((|Palette|)) "\\spad{pointColorDefault()} returns the default color of points in a 2D viewport."))) NIL NIL -(-1294) +(-1293) ((|constructor| (NIL "This type is used when no value is needed,{} \\spadignore{e.g.} in the \\spad{then} part of a one armed \\spad{if}. All values can be coerced to type Void. Once a value has been coerced to Void,{} it cannot be recovered.")) (|void| (($) "\\spad{void()} produces a void object."))) NIL NIL -(-1295 A S) +(-1294 A S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#2|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) NIL NIL -(-1296 S) +(-1295 S) ((|constructor| (NIL "Vector Spaces (not necessarily finite dimensional) over a field.")) (|dimension| (((|CardinalNumber|)) "\\spad{dimension()} returns the dimensionality of the vector space.")) (/ (($ $ |#1|) "\\spad{x/y} divides the vector \\spad{x} by the scalar \\spad{y}."))) -((-4420 . T) (-4419 . T)) +((-4419 . T) (-4418 . T)) NIL -(-1297 R) +(-1296 R) ((|constructor| (NIL "This package implements the Weierstrass preparation theorem \\spad{f} or multivariate power series. weierstrass(\\spad{v},{}\\spad{p}) where \\spad{v} is a variable,{} and \\spad{p} is a TaylorSeries(\\spad{R}) in which the terms of lowest degree \\spad{s} must include c*v**s where \\spad{c} is a constant,{}\\spad{s>0},{} is a list of TaylorSeries coefficients A[\\spad{i}] of the equivalent polynomial A = A[0] + A[1]*v + A[2]\\spad{*v**2} + ... + A[\\spad{s}-1]*v**(\\spad{s}-1) + v**s such that p=A*B ,{} \\spad{B} being a TaylorSeries of minimum degree 0")) (|qqq| (((|Mapping| (|Stream| (|TaylorSeries| |#1|)) (|Stream| (|TaylorSeries| |#1|))) (|NonNegativeInteger|) (|TaylorSeries| |#1|) (|Stream| (|TaylorSeries| |#1|))) "\\spad{qqq(n,s,st)} is used internally.")) (|weierstrass| (((|List| (|TaylorSeries| |#1|)) (|Symbol|) (|TaylorSeries| |#1|)) "\\spad{weierstrass(v,ts)} where \\spad{v} is a variable and \\spad{ts} is \\indented{1}{a TaylorSeries,{} impements the Weierstrass Preparation} \\indented{1}{Theorem. The result is a list of TaylorSeries that} \\indented{1}{are the coefficients of the equivalent series.}")) (|clikeUniv| (((|Mapping| (|SparseUnivariatePolynomial| (|Polynomial| |#1|)) (|Polynomial| |#1|)) (|Symbol|)) "\\spad{clikeUniv(v)} is used internally.")) (|sts2stst| (((|Stream| (|Stream| (|Polynomial| |#1|))) (|Symbol|) (|Stream| (|Polynomial| |#1|))) "\\spad{sts2stst(v,s)} is used internally.")) (|cfirst| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{cfirst n} is used internally.")) (|crest| (((|Mapping| (|Stream| (|Polynomial| |#1|)) (|Stream| (|Polynomial| |#1|))) (|NonNegativeInteger|)) "\\spad{crest n} is used internally."))) NIL NIL -(-1298 K R UP -3495) +(-1297 K R UP -3494) ((|constructor| (NIL "In this package \\spad{K} is a finite field,{} \\spad{R} is a ring of univariate polynomials over \\spad{K},{} and \\spad{F} is a framed algebra over \\spad{R}. The package provides a function to compute the integral closure of \\spad{R} in the quotient field of \\spad{F} as well as a function to compute a \"local integral basis\" at a specific prime.")) (|localIntegralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|))) |#2|) "\\spad{integralBasis(p)} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the local integral closure of \\spad{R} at the prime \\spad{p} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the local integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}.")) (|integralBasis| (((|Record| (|:| |basis| (|Matrix| |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (|Matrix| |#2|)))) "\\spad{integralBasis()} returns a record \\spad{[basis,basisDen,basisInv]} containing information regarding the integral closure of \\spad{R} in the quotient field of \\spad{F},{} where \\spad{F} is a framed algebra with \\spad{R}-module basis \\spad{w1,w2,...,wn}. If \\spad{basis} is the matrix \\spad{(aij, i = 1..n, j = 1..n)},{} then the \\spad{i}th element of the integral basis is \\spad{vi = (1/basisDen) * sum(aij * wj, j = 1..n)},{} \\spadignore{i.e.} the \\spad{i}th row of \\spad{basis} contains the coordinates of the \\spad{i}th basis vector. Similarly,{} the \\spad{i}th row of the matrix \\spad{basisInv} contains the coordinates of \\spad{wi} with respect to the basis \\spad{v1,...,vn}: if \\spad{basisInv} is the matrix \\spad{(bij, i = 1..n, j = 1..n)},{} then \\spad{wi = sum(bij * vj, j = 1..n)}."))) NIL NIL -(-1299) +(-1298) ((|constructor| (NIL "This domain represents the syntax of a `where' expression.")) (|qualifier| (((|SpadAst|) $) "\\spad{qualifier(e)} returns the qualifier of the expression `e'.")) (|mainExpression| (((|SpadAst|) $) "\\spad{mainExpression(e)} returns the main expression of the `where' expression `e'."))) NIL NIL -(-1300) +(-1299) ((|constructor| (NIL "This domain represents the `while' iterator syntax.")) (|condition| (((|SpadAst|) $) "\\spad{condition(i)} returns the condition of the while iterator `i'."))) NIL NIL -(-1301 R |VarSet| E P |vl| |wl| |wtlevel|) +(-1300 R |VarSet| E P |vl| |wl| |wtlevel|) ((|constructor| (NIL "This domain represents truncated weighted polynomials over a general (not necessarily commutative) polynomial type. The variables must be specified,{} as must the weights. The representation is sparse in the sense that only non-zero terms are represented.")) (|changeWeightLevel| (((|Void|) (|NonNegativeInteger|)) "\\spad{changeWeightLevel(n)} changes the weight level to the new value given: NB: previously calculated terms are not affected")) (/ (((|Union| $ "failed") $ $) "\\spad{x/y} division (only works if minimum weight of divisor is zero,{} and if \\spad{R} is a Field)"))) -((-4420 |has| |#1| (-175)) (-4419 |has| |#1| (-175)) (-4422 . T)) +((-4419 |has| |#1| (-175)) (-4418 |has| |#1| (-175)) (-4421 . T)) ((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376)))) -(-1302 R E V P) +(-1301 R E V P) ((|constructor| (NIL "A domain constructor of the category \\axiomType{GeneralTriangularSet}. The only requirement for a list of polynomials to be a member of such a domain is the following: no polynomial is constant and two distinct polynomials have distinct main variables. Such a triangular set may not be auto-reduced or consistent. The \\axiomOpFrom{construct}{WuWenTsunTriangularSet} operation does not check the previous requirement. Triangular sets are stored as sorted lists \\spad{w}.\\spad{r}.\\spad{t}. the main variables of their members. Furthermore,{} this domain exports operations dealing with the characteristic set method of Wu Wen Tsun and some optimizations mainly proposed by Dong Ming Wang.\\newline References : \\indented{1}{[1] \\spad{W}. \\spad{T}. WU \"A Zero Structure Theorem for polynomial equations solving\"} \\indented{6}{MM Research Preprints,{} 1987.} \\indented{1}{[2] \\spad{D}. \\spad{M}. WANG \"An implementation of the characteristic set method in Maple\"} \\indented{6}{Proc. \\spad{DISCO'92}. Bath,{} England.}")) (|characteristicSerie| (((|List| $) (|List| |#4|)) "\\axiom{characteristicSerie(ps)} returns the same as \\axiom{characteristicSerie(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|List| $) (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSerie(ps,{}redOp?,{}redOp)} returns a list \\axiom{lts} of triangular sets such that the zero set of \\axiom{ps} is the union of the regular zero sets of the members of \\axiom{lts}. This is made by the Ritt and Wu Wen Tsun process applying the operation \\axiom{characteristicSet(ps,{}redOp?,{}redOp)} to compute characteristic sets in Wu Wen Tsun sense.")) (|characteristicSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{characteristicSet(ps)} returns the same as \\axiom{characteristicSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{characteristicSet(ps,{}redOp?,{}redOp)} returns a non-contradictory characteristic set of \\axiom{ps} in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?} (using \\axiom{redOp} to reduce polynomials \\spad{w}.\\spad{r}.\\spad{t} a \\axiom{redOp?} basic set),{} if no non-zero constant polynomial appear during those reductions,{} else \\axiom{\"failed\"} is returned. The operations \\axiom{redOp} and \\axiom{redOp?} must satisfy the following conditions: \\axiom{redOp?(redOp(\\spad{p},{}\\spad{q}),{}\\spad{q})} holds for every polynomials \\axiom{\\spad{p},{}\\spad{q}} and there exists an integer \\axiom{\\spad{e}} and a polynomial \\axiom{\\spad{f}} such that we have \\axiom{init(\\spad{q})^e*p = f*q + redOp(\\spad{p},{}\\spad{q})}.")) (|medialSet| (((|Union| $ "failed") (|List| |#4|)) "\\axiom{medial(ps)} returns the same as \\axiom{medialSet(ps,{}initiallyReduced?,{}initiallyReduce)}.") (((|Union| $ "failed") (|List| |#4|) (|Mapping| (|Boolean|) |#4| |#4|) (|Mapping| |#4| |#4| |#4|)) "\\axiom{medialSet(ps,{}redOp?,{}redOp)} returns \\axiom{bs} a basic set (in Wu Wen Tsun sense \\spad{w}.\\spad{r}.\\spad{t} the reduction-test \\axiom{redOp?}) of some set generating the same ideal as \\axiom{ps} (with rank not higher than any basic set of \\axiom{ps}),{} if no non-zero constant polynomials appear during the computatioms,{} else \\axiom{\"failed\"} is returned. In the former case,{} \\axiom{bs} has to be understood as a candidate for being a characteristic set of \\axiom{ps}. In the original algorithm,{} \\axiom{bs} is simply a basic set of \\axiom{ps}."))) -((-4426 . T) (-4425 . T)) -((-12 (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -631) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1122))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-877)))) (|HasCategory| |#4| (QUOTE (-102)))) -(-1303 R) +((-4425 . T) (-4424 . T)) +((-12 (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#4| (|%list| (QUOTE -321) (|devaluate| |#4|)))) (|HasCategory| |#4| (|%list| (QUOTE -630) (QUOTE (-547)))) (|HasCategory| |#4| (QUOTE (-1121))) (|HasCategory| |#1| (QUOTE (-569))) (|HasCategory| |#3| (QUOTE (-381))) (|HasCategory| |#4| (|%list| (QUOTE -629) (QUOTE (-876)))) (|HasCategory| |#4| (QUOTE (-102)))) +(-1302 R) ((|constructor| (NIL "This is the category of algebras over non-commutative rings. It is used by constructors of non-commutative algebras such as: \\indented{4}{\\spadtype{XPolynomialRing}.} \\indented{4}{\\spadtype{XFreeAlgebra}} Author: Michel Petitot (petitot@lifl.fr)"))) -((-4419 . T) (-4420 . T) (-4422 . T)) +((-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1304 |vl| R) +(-1303 |vl| R) ((|constructor| (NIL "\\indented{2}{This type supports distributed multivariate polynomials} whose variables do not commute. The coefficient ring may be non-commutative too. However,{} coefficients and variables commute."))) -((-4422 . T) (-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4418))) -(-1305 R |VarSet| XPOLY) +((-4421 . T) (-4417 |has| |#2| (-6 -4417)) (-4419 . T) (-4418 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4417))) +(-1304 R |VarSet| XPOLY) ((|constructor| (NIL "This package provides computations of logarithms and exponentials for polynomials in non-commutative variables. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|Hausdorff| ((|#3| |#3| |#3| (|NonNegativeInteger|)) "\\axiom{Hausdorff(a,{}\\spad{b},{}\\spad{n})} returns log(exp(a)*exp(\\spad{b})) truncated at order \\axiom{\\spad{n}}.")) (|log| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{} \\spad{n})} returns the logarithm of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}.")) (|exp| ((|#3| |#3| (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{} \\spad{n})} returns the exponential of \\axiom{\\spad{p}} truncated at order \\axiom{\\spad{n}}."))) NIL NIL -(-1306 S -3495) +(-1305 S -3494) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) NIL ((|HasCategory| |#2| (QUOTE (-381))) (|HasCategory| |#2| (QUOTE (-147))) (|HasCategory| |#2| (QUOTE (-149)))) -(-1307 -3495) +(-1306 -3494) ((|constructor| (NIL "ExtensionField {\\em F} is the category of fields which extend the field \\spad{F}")) (|Frobenius| (($ $ (|NonNegativeInteger|)) "\\spad{Frobenius(a,s)} returns \\spad{a**(q**s)} where \\spad{q} is the size()\\$\\spad{F}.") (($ $) "\\spad{Frobenius(a)} returns \\spad{a ** q} where \\spad{q} is the \\spad{size()\\$F}.")) (|transcendenceDegree| (((|NonNegativeInteger|)) "\\spad{transcendenceDegree()} returns the transcendence degree of the field extension,{} 0 if the extension is algebraic.")) (|extensionDegree| (((|OnePointCompletion| (|PositiveInteger|))) "\\spad{extensionDegree()} returns the degree of the field extension if the extension is algebraic,{} and \\spad{infinity} if it is not.")) (|degree| (((|OnePointCompletion| (|PositiveInteger|)) $) "\\spad{degree(a)} returns the degree of minimal polynomial of an element \\spad{a} if \\spad{a} is algebraic with respect to the ground field \\spad{F},{} and \\spad{infinity} otherwise.")) (|inGroundField?| (((|Boolean|) $) "\\spad{inGroundField?(a)} tests whether an element \\spad{a} is already in the ground field \\spad{F}.")) (|transcendent?| (((|Boolean|) $) "\\spad{transcendent?(a)} tests whether an element \\spad{a} is transcendent with respect to the ground field \\spad{F}.")) (|algebraic?| (((|Boolean|) $) "\\spad{algebraic?(a)} tests whether an element \\spad{a} is algebraic with respect to the ground field \\spad{F}."))) -((-4417 . T) (-4423 . T) (-4418 . T) ((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +((-4416 . T) (-4422 . T) (-4417 . T) ((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL -(-1308 |vl| R) +(-1307 |vl| R) ((|constructor| (NIL "This category specifies opeations for polynomials and formal series with non-commutative variables.")) (|varList| (((|List| |#1|) $) "\\spad{varList(x)} returns the list of variables which appear in \\spad{x}.")) (|map| (($ (|Mapping| |#2| |#2|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|sh| (($ $ (|NonNegativeInteger|)) "\\spad{sh(x,n)} returns the shuffle power of \\spad{x} to the \\spad{n}.") (($ $ $) "\\spad{sh(x,y)} returns the shuffle-product of \\spad{x} by \\spad{y}. This multiplication is associative and commutative.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(x)} is zero.")) (|constant| ((|#2| $) "\\spad{constant(x)} returns the constant term of \\spad{x}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(x)} returns \\spad{true} if \\spad{x} is constant.")) (|coerce| (($ |#1|) "\\spad{coerce(v)} returns \\spad{v}.")) (|mirror| (($ $) "\\spad{mirror(x)} returns \\spad{Sum(r_i mirror(w_i))} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|monomial?| (((|Boolean|) $) "\\spad{monomial?(x)} returns \\spad{true} if \\spad{x} is a monomial")) (|monom| (($ (|OrderedFreeMonoid| |#1|) |#2|) "\\spad{monom(w,r)} returns the product of the word \\spad{w} by the coefficient \\spad{r}.")) (|rquo| (($ $ $) "\\spad{rquo(x,y)} returns the right simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{rquo(x,w)} returns the right simplification of \\spad{x} by \\spad{w}.") (($ $ |#1|) "\\spad{rquo(x,v)} returns the right simplification of \\spad{x} by the variable \\spad{v}.")) (|lquo| (($ $ $) "\\spad{lquo(x,y)} returns the left simplification of \\spad{x} by \\spad{y}.") (($ $ (|OrderedFreeMonoid| |#1|)) "\\spad{lquo(x,w)} returns the left simplification of \\spad{x} by the word \\spad{w}.") (($ $ |#1|) "\\spad{lquo(x,v)} returns the left simplification of \\spad{x} by the variable \\spad{v}.")) (|coef| ((|#2| $ $) "\\spad{coef(x,y)} returns scalar product of \\spad{x} by \\spad{y},{} the set of words being regarded as an orthogonal basis.") ((|#2| $ (|OrderedFreeMonoid| |#1|)) "\\spad{coef(x,w)} returns the coefficient of the word \\spad{w} in \\spad{x}.")) (|mindegTerm| (((|Record| (|:| |k| (|OrderedFreeMonoid| |#1|)) (|:| |c| |#2|)) $) "\\spad{mindegTerm(x)} returns the term whose word is \\spad{mindeg(x)}.")) (|mindeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{mindeg(x)} returns the little word which appears in \\spad{x}. Error if \\spad{x=0}.")) (* (($ $ |#2|) "\\spad{x * r} returns the product of \\spad{x} by \\spad{r}. Usefull if \\spad{R} is a non-commutative Ring.") (($ |#1| $) "\\spad{v * x} returns the product of a variable \\spad{x} by \\spad{x}."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((-4417 |has| |#2| (-6 -4417)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL -(-1309 |VarSet| R) +(-1308 |VarSet| R) ((|constructor| (NIL "This domain constructor implements polynomials in non-commutative variables written in the Poincare-Birkhoff-Witt basis from the Lyndon basis. These polynomials can be used to compute Baker-Campbell-Hausdorff relations. \\newline Author: Michel Petitot (petitot@lifl.fr).")) (|log| (($ $ (|NonNegativeInteger|)) "\\axiom{log(\\spad{p},{}\\spad{n})} returns the logarithm of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|exp| (($ $ (|NonNegativeInteger|)) "\\axiom{exp(\\spad{p},{}\\spad{n})} returns the exponential of \\axiom{\\spad{p}} (truncated up to order \\axiom{\\spad{n}}).")) (|product| (($ $ $ (|NonNegativeInteger|)) "\\axiom{product(a,{}\\spad{b},{}\\spad{n})} returns \\axiom{a*b} (truncated up to order \\axiom{\\spad{n}}).")) (|LiePolyIfCan| (((|Union| (|LiePolynomial| |#1| |#2|) "failed") $) "\\axiom{LiePolyIfCan(\\spad{p})} return \\axiom{\\spad{p}} if \\axiom{\\spad{p}} is a Lie polynomial.")) (|coerce| (((|XRecursivePolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a recursive polynomial.") (((|XDistributedPolynomial| |#1| |#2|) $) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}} as a distributed polynomial.") (($ (|LiePolynomial| |#1| |#2|)) "\\axiom{coerce(\\spad{p})} returns \\axiom{\\spad{p}}."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -737) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4418))) -(-1310 R) +((-4417 |has| |#2| (-6 -4417)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasCategory| |#2| (|%list| (QUOTE -736) (|%list| (QUOTE -419) (QUOTE (-558))))) (|HasAttribute| |#2| (QUOTE -4417))) +(-1309 R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose set of variables is \\spadtype{Symbol}. The representation is recursive. The coefficient ring may be non-commutative and the variables do not commute. However,{} coefficients and variables commute."))) -((-4418 |has| |#1| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4418))) -(-1311 |vl| R) +((-4417 |has| |#1| (-6 -4417)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasAttribute| |#1| (QUOTE -4417))) +(-1310 |vl| R) ((|constructor| (NIL "The Category of polynomial rings with non-commutative variables. The coefficient ring may be non-commutative too. However coefficients commute with vaiables.")) (|trunc| (($ $ (|NonNegativeInteger|)) "\\spad{trunc(p,n)} returns the polynomial \\spad{p} truncated at order \\spad{n}.")) (|degree| (((|NonNegativeInteger|) $) "\\spad{degree(p)} returns the degree of \\spad{p}. \\indented{1}{Note that the degree of a word is its length.}")) (|maxdeg| (((|OrderedFreeMonoid| |#1|) $) "\\spad{maxdeg(p)} returns the greatest leading word in the support of \\spad{p}."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) +((-4417 |has| |#2| (-6 -4417)) (-4419 . T) (-4418 . T) (-4421 . T)) NIL -(-1312 R E) +(-1311 R E) ((|constructor| (NIL "This domain represents generalized polynomials with coefficients (from a not necessarily commutative ring),{} and words belonging to an arbitrary \\spadtype{OrderedMonoid}. This type is used,{} for instance,{} by the \\spadtype{XDistributedPolynomial} domain constructor where the Monoid is free.")) (|canonicalUnitNormal| ((|attribute|) "canonicalUnitNormal guarantees that the function unitCanonical returns the same representative for all associates of any particular element.")) (/ (($ $ |#1|) "\\spad{p/r} returns \\spad{p*(1/r)}.")) (|map| (($ (|Mapping| |#1| |#1|) $) "\\spad{map(fn,x)} returns \\spad{Sum(fn(r_i) w_i)} if \\spad{x} writes \\spad{Sum(r_i w_i)}.")) (|quasiRegular| (($ $) "\\spad{quasiRegular(x)} return \\spad{x} minus its constant term.")) (|quasiRegular?| (((|Boolean|) $) "\\spad{quasiRegular?(x)} return \\spad{true} if \\spad{constant(p)} is zero.")) (|constant| ((|#1| $) "\\spad{constant(p)} return the constant term of \\spad{p}.")) (|constant?| (((|Boolean|) $) "\\spad{constant?(p)} tests whether the polynomial \\spad{p} belongs to the coefficient ring.")) (|coef| ((|#1| $ |#2|) "\\spad{coef(p,e)} extracts the coefficient of the monomial \\spad{e}. Returns zero if \\spad{e} is not present.")) (|reductum| (($ $) "\\spad{reductum(p)} returns \\spad{p} minus its leading term. An error is produced if \\spad{p} is zero.")) (|mindeg| ((|#2| $) "\\spad{mindeg(p)} returns the smallest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|maxdeg| ((|#2| $) "\\spad{maxdeg(p)} returns the greatest word occurring in the polynomial \\spad{p} with a non-zero coefficient. An error is produced if \\spad{p} is zero.")) (|#| (((|NonNegativeInteger|) $) "\\spad{\\# p} returns the number of terms in \\spad{p}.")) (* (($ $ |#1|) "\\spad{p*r} returns the product of \\spad{p} by \\spad{r}."))) -((-4422 . T) (-4423 |has| |#1| (-6 -4423)) (-4418 |has| |#1| (-6 -4418)) (-4420 . T) (-4419 . T)) -((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4422)) (|HasAttribute| |#1| (QUOTE -4423)) (|HasAttribute| |#1| (QUOTE -4418))) -(-1313 |VarSet| R) +((-4421 . T) (-4422 |has| |#1| (-6 -4422)) (-4417 |has| |#1| (-6 -4417)) (-4419 . T) (-4418 . T)) +((|HasCategory| |#1| (QUOTE (-175))) (|HasCategory| |#1| (QUOTE (-376))) (|HasAttribute| |#1| (QUOTE -4421)) (|HasAttribute| |#1| (QUOTE -4422)) (|HasAttribute| |#1| (QUOTE -4417))) +(-1312 |VarSet| R) ((|constructor| (NIL "\\indented{2}{This type supports multivariate polynomials} whose variables do not commute. The representation is recursive. The coefficient ring may be non-commutative. Coefficients and variables commute.")) (|RemainderList| (((|List| (|Record| (|:| |k| |#1|) (|:| |c| $))) $) "\\spad{RemainderList(p)} returns the regular part of \\spad{p} as a list of terms.")) (|unexpand| (($ (|XDistributedPolynomial| |#1| |#2|)) "\\spad{unexpand(p)} returns \\spad{p} in recursive form.")) (|expand| (((|XDistributedPolynomial| |#1| |#2|) $) "\\spad{expand(p)} returns \\spad{p} in distributed form."))) -((-4418 |has| |#2| (-6 -4418)) (-4420 . T) (-4419 . T) (-4422 . T)) -((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4418))) -(-1314) +((-4417 |has| |#2| (-6 -4417)) (-4419 . T) (-4418 . T) (-4421 . T)) +((|HasCategory| |#2| (QUOTE (-175))) (|HasAttribute| |#2| (QUOTE -4417))) +(-1313) ((|constructor| (NIL "This domain provides representations of Young diagrams.")) (|shape| (((|Partition|) $) "\\spad{shape x} returns the partition shaping \\spad{x}.")) (|youngDiagram| (($ (|List| (|PositiveInteger|))) "\\spad{youngDiagram l} returns an object representing a Young diagram with shape given by the list of integers \\spad{l}"))) NIL NIL -(-1315 A) +(-1314 A) ((|constructor| (NIL "This package implements fixed-point computations on streams.")) (Y (((|List| (|Stream| |#1|)) (|Mapping| (|List| (|Stream| |#1|)) (|List| (|Stream| |#1|))) (|Integer|)) "\\spad{Y(g,n)} computes a fixed point of the function \\spad{g},{} where \\spad{g} takes a list of \\spad{n} streams and returns a list of \\spad{n} streams.") (((|Stream| |#1|) (|Mapping| (|Stream| |#1|) (|Stream| |#1|))) "\\spad{Y(f)} computes a fixed point of the function \\spad{f}."))) NIL NIL -(-1316 R |ls| |ls2|) +(-1315 R |ls| |ls2|) ((|constructor| (NIL "A package for computing symbolically the complex and real roots of zero-dimensional algebraic systems over the integer or rational numbers. Complex roots are given by means of univariate representations of irreducible regular chains. Real roots are given by means of tuples of coordinates lying in the \\spadtype{RealClosure} of the coefficient ring. This constructor takes three arguments. The first one \\spad{R} is the coefficient ring. The second one \\spad{ls} is the list of variables involved in the systems to solve. The third one must be \\spad{concat(ls,s)} where \\spad{s} is an additional symbol used for the univariate representations. WARNING: The third argument is not checked. All operations are based on triangular decompositions. The default is to compute these decompositions directly from the input system by using the \\spadtype{RegularChain} domain constructor. The lexTriangular algorithm can also be used for computing these decompositions (see the \\spadtype{LexTriangularPackage} package constructor). For that purpose,{} the operations \\axiomOpFrom{univariateSolve}{ZeroDimensionalSolvePackage},{} \\axiomOpFrom{realSolve}{ZeroDimensionalSolvePackage} and \\axiomOpFrom{positiveSolve}{ZeroDimensionalSolvePackage} admit an optional argument. \\newline Author: Marc Moreno Maza.")) (|convert| (((|List| (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) "\\spad{convert(st)} returns the members of \\spad{st}. ") (((|SparseUnivariatePolynomial| (|RealClosure| (|Fraction| |#1|))) (|SparseUnivariatePolynomial| |#1|)) "\\spad{convert(u)} converts \\spad{u}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|))) "\\spad{convert(q)} converts \\spad{q}.") (((|Polynomial| (|RealClosure| (|Fraction| |#1|))) (|Polynomial| |#1|)) "\\spad{convert(p)} converts \\spad{p}.") (((|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#2|))) "\\spad{convert(q)} converts \\spad{q}.")) (|squareFree| (((|List| (|SquareFreeRegularTriangularSet| |#1| (|IndexedExponents| (|OrderedVariableList| |#3|)) (|OrderedVariableList| |#3|) (|NewSparseMultivariatePolynomial| |#1| (|OrderedVariableList| |#3|)))) (|RegularChain| |#1| |#2|)) "\\spad{squareFree(ts)} returns the square-free factorization of \\spad{ts}. Moreover,{} each factor is a Lazard triangular set and the decomposition is a Kalkbrener split of \\spad{ts},{} which is enough here for the matter of solving zero-dimensional algebraic systems. WARNING: \\spad{ts} is not checked to be zero-dimensional.")) (|positiveSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{positiveSolve(lp)} returns the same as \\spad{positiveSolve(lp,info?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{positiveSolve(lp,info?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are (real) strictly positive. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{positiveSolve(lp,info?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{positiveSolve(ts)} returns the points of the regular set of \\spad{ts} with (real) strictly positive coordinates.")) (|realSolve| (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|))) "\\spad{realSolve(lp)} returns the same as \\spad{realSolve(ts,false,false,false)}") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{realSolve(ts,info?)} returns the same as \\spad{realSolve(ts,info?,false,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?)} returns the same as \\spad{realSolve(ts,info?,check?,false)}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{realSolve(ts,info?,check?,lextri?)} returns the set of the points in the variety associated with \\spad{lp} whose coordinates are all real. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(lp,{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}. WARNING: For each set of coordinates given by \\spad{realSolve(ts,info?,check?,lextri?)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.") (((|List| (|List| (|RealClosure| (|Fraction| |#1|)))) (|RegularChain| |#1| |#2|)) "\\spad{realSolve(ts)} returns the set of the points in the regular zero set of \\spad{ts} whose coordinates are all real. WARNING: For each set of coordinates given by \\spad{realSolve(ts)} the ordering of the indeterminates is reversed \\spad{w}.\\spad{r}.\\spad{t}. \\spad{ls}.")) (|univariateSolve| (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|))) "\\spad{univariateSolve(lp)} returns the same as \\spad{univariateSolve(lp,false,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{univariateSolve(lp,info?)} returns the same as \\spad{univariateSolve(lp,info?,false,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?)} returns the same as \\spad{univariateSolve(lp,info?,check?,false)}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|) (|Boolean|)) "\\spad{univariateSolve(lp,info?,check?,lextri?)} returns a univariate representation of the variety associated with \\spad{lp}. Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the decomposition into regular chains. If \\spad{check?} is \\spad{true} then the result is checked. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(\\spad{lp},{}\\spad{true}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}.") (((|List| (|Record| (|:| |complexRoots| (|SparseUnivariatePolynomial| |#1|)) (|:| |coordinates| (|List| (|Polynomial| |#1|))))) (|RegularChain| |#1| |#2|)) "\\spad{univariateSolve(ts)} returns a univariate representation of \\spad{ts}. See \\axiomOpFrom{rur}{RationalUnivariateRepresentationPackage}(lp,{}\\spad{true}).")) (|triangSolve| (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|))) "\\spad{triangSolve(lp)} returns the same as \\spad{triangSolve(lp,false,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|)) "\\spad{triangSolve(lp,info?)} returns the same as \\spad{triangSolve(lp,false)}") (((|List| (|RegularChain| |#1| |#2|)) (|List| (|Polynomial| |#1|)) (|Boolean|) (|Boolean|)) "\\spad{triangSolve(lp,info?,lextri?)} decomposes the variety associated with \\axiom{\\spad{lp}} into regular chains. Thus a point belongs to this variety iff it is a regular zero of a regular set in in the output. Note that \\axiom{\\spad{lp}} needs to generate a zero-dimensional ideal. If \\axiom{\\spad{lp}} is not zero-dimensional then the result is only a decomposition of its zero-set in the sense of the closure (\\spad{w}.\\spad{r}.\\spad{t}. Zarisky topology). Moreover,{} if \\spad{info?} is \\spad{true} then some information is displayed during the computations. See \\axiomOpFrom{zeroSetSplit}{RegularTriangularSetCategory}(\\spad{lp},{}\\spad{true},{}\\spad{info?}). If \\spad{lextri?} is \\spad{true} then the lexTriangular algorithm is called from the \\spadtype{LexTriangularPackage} constructor (see \\axiomOpFrom{zeroSetSplit}{LexTriangularPackage}(\\spad{lp},{}\\spad{false})). Otherwise,{} the triangular decomposition is computed directly from the input system by using the \\axiomOpFrom{zeroSetSplit}{RegularChain} from \\spadtype{RegularChain}."))) NIL NIL -(-1317 R) +(-1316 R) ((|constructor| (NIL "Test for linear dependence over the integers.")) (|solveLinearlyOverQ| (((|Union| (|Vector| (|Fraction| (|Integer|))) "failed") (|Vector| |#1|) |#1|) "\\spad{solveLinearlyOverQ([v1,...,vn], u)} returns \\spad{[c1,...,cn]} such that \\spad{c1*v1 + ... + cn*vn = u},{} \"failed\" if no such rational numbers \\spad{ci}'s exist.")) (|linearDependenceOverZ| (((|Union| (|Vector| (|Integer|)) "failed") (|Vector| |#1|)) "\\spad{linearlyDependenceOverZ([v1,...,vn])} returns \\spad{[c1,...,cn]} if \\spad{c1*v1 + ... + cn*vn = 0} and not all the \\spad{ci}'s are 0,{} \"failed\" if the \\spad{vi}'s are linearly independent over the integers.")) (|linearlyDependentOverZ?| (((|Boolean|) (|Vector| |#1|)) "\\spad{linearlyDependentOverZ?([v1,...,vn])} returns \\spad{true} if the \\spad{vi}'s are linearly dependent over the integers,{} \\spad{false} otherwise."))) NIL NIL -(-1318 |p|) +(-1317 |p|) ((|constructor| (NIL "IntegerMod(\\spad{n}) creates the ring of integers reduced modulo the integer \\spad{n}."))) -(((-4427 "*") . T) (-4419 . T) (-4420 . T) (-4422 . T)) +(((-4426 "*") . T) (-4418 . T) (-4419 . T) (-4421 . T)) NIL NIL NIL @@ -5220,4 +5216,4 @@ NIL NIL NIL NIL -((-3 NIL 2276986 2276991 2276996 2277001) (-2 NIL 2276966 2276971 2276976 2276981) (-1 NIL 2276946 2276951 2276956 2276961) (0 NIL 2276926 2276931 2276936 2276941) (-1318 "ZMOD.spad" 2276735 2276748 2276864 2276921) (-1317 "ZLINDEP.spad" 2275833 2275844 2276725 2276730) (-1316 "ZDSOLVE.spad" 2265793 2265815 2275823 2275828) (-1315 "YSTREAM.spad" 2265288 2265299 2265783 2265788) (-1314 "YDIAGRAM.spad" 2264922 2264931 2265278 2265283) (-1313 "XRPOLY.spad" 2264142 2264162 2264778 2264847) (-1312 "XPR.spad" 2261937 2261950 2263860 2263959) (-1311 "XPOLYC.spad" 2261256 2261272 2261863 2261932) (-1310 "XPOLY.spad" 2260811 2260822 2261112 2261181) (-1309 "XPBWPOLY.spad" 2259250 2259270 2260585 2260654) (-1308 "XFALG.spad" 2256298 2256314 2259176 2259245) (-1307 "XF.spad" 2254761 2254776 2256200 2256293) (-1306 "XF.spad" 2253204 2253221 2254645 2254650) (-1305 "XEXPPKG.spad" 2252463 2252489 2253194 2253199) (-1304 "XDPOLY.spad" 2252077 2252093 2252319 2252388) (-1303 "XALG.spad" 2251745 2251756 2252033 2252072) (-1302 "WUTSET.spad" 2247715 2247732 2251346 2251373) (-1301 "WP.spad" 2246922 2246966 2247573 2247640) (-1300 "WHILEAST.spad" 2246720 2246729 2246912 2246917) (-1299 "WHEREAST.spad" 2246391 2246400 2246710 2246715) (-1298 "WFFINTBS.spad" 2244054 2244076 2246381 2246386) (-1297 "WEIER.spad" 2242276 2242287 2244044 2244049) (-1296 "VSPACE.spad" 2241949 2241960 2242244 2242271) (-1295 "VSPACE.spad" 2241642 2241655 2241939 2241944) (-1294 "VOID.spad" 2241319 2241328 2241632 2241637) (-1293 "VIEWDEF.spad" 2236520 2236529 2241309 2241314) (-1292 "VIEW3D.spad" 2220481 2220490 2236510 2236515) (-1291 "VIEW2D.spad" 2208380 2208389 2220471 2220476) (-1290 "VIEW.spad" 2206100 2206109 2208370 2208375) (-1289 "VECTOR2.spad" 2204739 2204752 2206090 2206095) (-1288 "VECTOR.spad" 2203239 2203250 2203490 2203517) (-1287 "VECTCAT.spad" 2201151 2201162 2203207 2203234) (-1286 "VECTCAT.spad" 2198870 2198883 2200928 2200933) (-1285 "VARIABLE.spad" 2198650 2198665 2198860 2198865) (-1284 "UTYPE.spad" 2198294 2198303 2198640 2198645) (-1283 "UTSODETL.spad" 2197589 2197613 2198250 2198255) (-1282 "UTSODE.spad" 2195805 2195825 2197579 2197584) (-1281 "UTSCAT.spad" 2193284 2193300 2195703 2195800) (-1280 "UTSCAT.spad" 2190383 2190401 2192804 2192809) (-1279 "UTS2.spad" 2189978 2190013 2190373 2190378) (-1278 "UTS.spad" 2184856 2184884 2188376 2188473) (-1277 "URAGG.spad" 2179577 2179588 2184846 2184851) (-1276 "URAGG.spad" 2174262 2174275 2179533 2179538) (-1275 "UPXSSING.spad" 2171880 2171906 2173316 2173449) (-1274 "UPXSCONS.spad" 2169558 2169578 2169931 2170080) (-1273 "UPXSCCA.spad" 2168129 2168149 2169404 2169553) (-1272 "UPXSCCA.spad" 2166842 2166864 2168119 2168124) (-1271 "UPXSCAT.spad" 2165431 2165447 2166688 2166837) (-1270 "UPXS2.spad" 2164974 2165027 2165421 2165426) (-1269 "UPXS.spad" 2162189 2162217 2163025 2163174) (-1268 "UPSQFREE.spad" 2160604 2160618 2162179 2162184) (-1267 "UPSCAT.spad" 2158399 2158423 2160502 2160599) (-1266 "UPSCAT.spad" 2155879 2155905 2157984 2157989) (-1265 "UPOLYC2.spad" 2155350 2155369 2155869 2155874) (-1264 "UPOLYC.spad" 2150430 2150441 2155192 2155345) (-1263 "UPOLYC.spad" 2145396 2145409 2150160 2150165) (-1262 "UPMP.spad" 2144328 2144341 2145386 2145391) (-1261 "UPDIVP.spad" 2143893 2143907 2144318 2144323) (-1260 "UPDECOMP.spad" 2142154 2142168 2143883 2143888) (-1259 "UPCDEN.spad" 2141371 2141387 2142144 2142149) (-1258 "UP2.spad" 2140735 2140756 2141361 2141366) (-1257 "UP.spad" 2137763 2137778 2138150 2138303) (-1256 "UNISEG2.spad" 2137260 2137273 2137719 2137724) (-1255 "UNISEG.spad" 2136613 2136624 2137179 2137184) (-1254 "UNIFACT.spad" 2135716 2135728 2136603 2136608) (-1253 "ULSCONS.spad" 2126628 2126648 2126998 2127147) (-1252 "ULSCCAT.spad" 2124365 2124385 2126474 2126623) (-1251 "ULSCCAT.spad" 2122210 2122232 2124321 2124326) (-1250 "ULSCAT.spad" 2120450 2120466 2122056 2122205) (-1249 "ULS2.spad" 2119964 2120017 2120440 2120445) (-1248 "ULS.spad" 2109535 2109563 2110480 2110909) (-1247 "UINT8.spad" 2109412 2109421 2109525 2109530) (-1246 "UINT64.spad" 2109288 2109297 2109402 2109407) (-1245 "UINT32.spad" 2109164 2109173 2109278 2109283) (-1244 "UINT16.spad" 2109040 2109049 2109154 2109159) (-1243 "UFD.spad" 2108105 2108114 2108966 2109035) (-1242 "UFD.spad" 2107232 2107243 2108095 2108100) (-1241 "UDVO.spad" 2106113 2106122 2107222 2107227) (-1240 "UDPO.spad" 2103694 2103705 2106069 2106074) (-1239 "TYPEAST.spad" 2103613 2103622 2103684 2103689) (-1238 "TYPE.spad" 2103545 2103554 2103603 2103608) (-1237 "TWOFACT.spad" 2102197 2102212 2103535 2103540) (-1236 "TUPLE.spad" 2101688 2101699 2102093 2102098) (-1235 "TUBETOOL.spad" 2098555 2098564 2101678 2101683) (-1234 "TUBE.spad" 2097202 2097219 2098545 2098550) (-1233 "TSETCAT.spad" 2085273 2085290 2097170 2097197) (-1232 "TSETCAT.spad" 2073330 2073349 2085229 2085234) (-1231 "TS.spad" 2071923 2071939 2072889 2072986) (-1230 "TRMANIP.spad" 2066287 2066304 2071611 2071616) (-1229 "TRIMAT.spad" 2065250 2065275 2066277 2066282) (-1228 "TRIGMNIP.spad" 2063777 2063794 2065240 2065245) (-1227 "TRIGCAT.spad" 2063289 2063298 2063767 2063772) (-1226 "TRIGCAT.spad" 2062799 2062810 2063279 2063284) (-1225 "TREE.spad" 2061245 2061256 2062277 2062304) (-1224 "TRANFUN.spad" 2061084 2061093 2061235 2061240) (-1223 "TRANFUN.spad" 2060921 2060932 2061074 2061079) (-1222 "TOPSP.spad" 2060595 2060604 2060911 2060916) (-1221 "TOOLSIGN.spad" 2060258 2060269 2060585 2060590) (-1220 "TEXTFILE.spad" 2058819 2058828 2060248 2060253) (-1219 "TEX1.spad" 2058375 2058386 2058809 2058814) (-1218 "TEX.spad" 2055569 2055578 2058365 2058370) (-1217 "TEMUTL.spad" 2055124 2055133 2055559 2055564) (-1216 "TBCMPPK.spad" 2053225 2053248 2055114 2055119) (-1215 "TBAGG.spad" 2052283 2052306 2053205 2053220) (-1214 "TBAGG.spad" 2051349 2051374 2052273 2052278) (-1213 "TANEXP.spad" 2050757 2050768 2051339 2051344) (-1212 "TALGOP.spad" 2050481 2050492 2050747 2050752) (-1211 "TABLEAU.spad" 2049962 2049973 2050471 2050476) (-1210 "TABLE.spad" 2047895 2047918 2048165 2048192) (-1209 "TABLBUMP.spad" 2044674 2044685 2047885 2047890) (-1208 "SYSTEM.spad" 2043902 2043911 2044664 2044669) (-1207 "SYSSOLP.spad" 2041385 2041396 2043892 2043897) (-1206 "SYSPTR.spad" 2041284 2041293 2041375 2041380) (-1205 "SYSNNI.spad" 2040507 2040518 2041274 2041279) (-1204 "SYSINT.spad" 2039911 2039922 2040497 2040502) (-1203 "SYNTAX.spad" 2036245 2036254 2039901 2039906) (-1202 "SYMTAB.spad" 2034313 2034322 2036235 2036240) (-1201 "SYMS.spad" 2030342 2030351 2034303 2034308) (-1200 "SYMPOLY.spad" 2029322 2029333 2029404 2029531) (-1199 "SYMFUNC.spad" 2028823 2028834 2029312 2029317) (-1198 "SYMBOL.spad" 2026318 2026327 2028813 2028818) (-1197 "SWITCH.spad" 2023089 2023098 2026308 2026313) (-1196 "SUTS.spad" 2020068 2020096 2021487 2021584) (-1195 "SUPXS.spad" 2017270 2017298 2018119 2018268) (-1194 "SUPFRACF.spad" 2016375 2016393 2017260 2017265) (-1193 "SUP2.spad" 2015767 2015780 2016365 2016370) (-1192 "SUP.spad" 2012409 2012420 2013182 2013335) (-1191 "SUMRF.spad" 2011383 2011394 2012399 2012404) (-1190 "SUMFS.spad" 2011012 2011029 2011373 2011378) (-1189 "SULS.spad" 2000570 2000598 2001528 2001957) (-1188 "SUCHTAST.spad" 2000339 2000348 2000560 2000565) (-1187 "SUCH.spad" 2000029 2000044 2000329 2000334) (-1186 "SUBSPACE.spad" 1992160 1992175 2000019 2000024) (-1185 "SUBRESP.spad" 1991330 1991344 1992116 1992121) (-1184 "STTFNC.spad" 1987798 1987814 1991320 1991325) (-1183 "STTF.spad" 1983897 1983913 1987788 1987793) (-1182 "STTAYLOR.spad" 1976542 1976553 1983772 1983777) (-1181 "STRTBL.spad" 1974557 1974574 1974706 1974733) (-1180 "STRING.spad" 1973224 1973233 1973544 1973571) (-1179 "STREAM3.spad" 1972797 1972812 1973214 1973219) (-1178 "STREAM2.spad" 1971925 1971938 1972787 1972792) (-1177 "STREAM1.spad" 1971631 1971642 1971915 1971920) (-1176 "STREAM.spad" 1968417 1968428 1971024 1971039) (-1175 "STINPROD.spad" 1967353 1967369 1968407 1968412) (-1174 "STEPAST.spad" 1966587 1966596 1967343 1967348) (-1173 "STEP.spad" 1965904 1965913 1966577 1966582) (-1172 "STBL.spad" 1963952 1963980 1964119 1964134) (-1171 "STAGG.spad" 1962651 1962662 1963942 1963947) (-1170 "STAGG.spad" 1961348 1961361 1962641 1962646) (-1169 "STACK.spad" 1960576 1960587 1960826 1960853) (-1168 "SRING.spad" 1960336 1960345 1960566 1960571) (-1167 "SREGSET.spad" 1958035 1958052 1959937 1959964) (-1166 "SRDCMPK.spad" 1956612 1956632 1958025 1958030) (-1165 "SRAGG.spad" 1951795 1951804 1956580 1956607) (-1164 "SRAGG.spad" 1946998 1947009 1951785 1951790) (-1163 "SQMATRIX.spad" 1944490 1944508 1945406 1945493) (-1162 "SPLTREE.spad" 1938956 1938969 1943752 1943779) (-1161 "SPLNODE.spad" 1935576 1935589 1938946 1938951) (-1160 "SPFCAT.spad" 1934385 1934394 1935566 1935571) (-1159 "SPECOUT.spad" 1932937 1932946 1934375 1934380) (-1158 "SPADXPT.spad" 1925028 1925037 1932927 1932932) (-1157 "spad-parser.spad" 1924493 1924502 1925018 1925023) (-1156 "SPADAST.spad" 1924194 1924203 1924483 1924488) (-1155 "SPACEC.spad" 1908409 1908420 1924184 1924189) (-1154 "SPACE3.spad" 1908185 1908196 1908399 1908404) (-1153 "SORTPAK.spad" 1907734 1907747 1908141 1908146) (-1152 "SOLVETRA.spad" 1905497 1905508 1907724 1907729) (-1151 "SOLVESER.spad" 1903953 1903964 1905487 1905492) (-1150 "SOLVERAD.spad" 1899979 1899990 1903943 1903948) (-1149 "SOLVEFOR.spad" 1898441 1898459 1899969 1899974) (-1148 "SNTSCAT.spad" 1898041 1898058 1898409 1898436) (-1147 "SMTS.spad" 1896323 1896349 1897600 1897697) (-1146 "SMP.spad" 1893726 1893746 1894116 1894243) (-1145 "SMITH.spad" 1892571 1892596 1893716 1893721) (-1144 "SMATCAT.spad" 1890689 1890719 1892515 1892566) (-1143 "SMATCAT.spad" 1888739 1888771 1890567 1890572) (-1142 "SKAGG.spad" 1887708 1887719 1888707 1888734) (-1141 "SINT.spad" 1886648 1886657 1887574 1887703) (-1140 "SIMPAN.spad" 1886376 1886385 1886638 1886643) (-1139 "SIGNRF.spad" 1885501 1885512 1886366 1886371) (-1138 "SIGNEF.spad" 1884787 1884804 1885491 1885496) (-1137 "SIGAST.spad" 1884204 1884213 1884777 1884782) (-1136 "SIG.spad" 1883566 1883575 1884194 1884199) (-1135 "SHP.spad" 1881510 1881525 1883522 1883527) (-1134 "SHDP.spad" 1868865 1868892 1869382 1869481) (-1133 "SGROUP.spad" 1868473 1868482 1868855 1868860) (-1132 "SGROUP.spad" 1868079 1868090 1868463 1868468) (-1131 "SGCF.spad" 1861218 1861227 1868069 1868074) (-1130 "SFRTCAT.spad" 1860164 1860181 1861186 1861213) (-1129 "SFRGCD.spad" 1859227 1859247 1860154 1860159) (-1128 "SFQCMPK.spad" 1854040 1854060 1859217 1859222) (-1127 "SFORT.spad" 1853479 1853493 1854030 1854035) (-1126 "SEXOF.spad" 1853322 1853362 1853469 1853474) (-1125 "SEXCAT.spad" 1851150 1851190 1853312 1853317) (-1124 "SEX.spad" 1851042 1851051 1851140 1851145) (-1123 "SETMN.spad" 1849502 1849519 1851032 1851037) (-1122 "SETCAT.spad" 1848987 1848996 1849492 1849497) (-1121 "SETCAT.spad" 1848470 1848481 1848977 1848982) (-1120 "SETAGG.spad" 1845019 1845030 1848450 1848465) (-1119 "SETAGG.spad" 1841576 1841589 1845009 1845014) (-1118 "SET.spad" 1839849 1839860 1840946 1840985) (-1117 "SEQAST.spad" 1839552 1839561 1839839 1839844) (-1116 "SEGXCAT.spad" 1838708 1838721 1839542 1839547) (-1115 "SEGCAT.spad" 1837633 1837644 1838698 1838703) (-1114 "SEGBIND2.spad" 1837331 1837344 1837623 1837628) (-1113 "SEGBIND.spad" 1837089 1837100 1837278 1837283) (-1112 "SEGAST.spad" 1836819 1836828 1837079 1837084) (-1111 "SEG2.spad" 1836254 1836267 1836775 1836780) (-1110 "SEG.spad" 1836067 1836078 1836173 1836178) (-1109 "SDVAR.spad" 1835343 1835354 1836057 1836062) (-1108 "SDPOL.spad" 1832598 1832609 1832889 1833016) (-1107 "SCPKG.spad" 1830687 1830698 1832588 1832593) (-1106 "SCOPE.spad" 1829864 1829873 1830677 1830682) (-1105 "SCACHE.spad" 1828560 1828571 1829854 1829859) (-1104 "SASTCAT.spad" 1828469 1828478 1828550 1828555) (-1103 "SAOS.spad" 1828341 1828350 1828459 1828464) (-1102 "SAERFFC.spad" 1828054 1828074 1828331 1828336) (-1101 "SAEFACT.spad" 1827755 1827775 1828044 1828049) (-1100 "SAE.spad" 1825189 1825205 1825800 1825935) (-1099 "RURPK.spad" 1822848 1822864 1825179 1825184) (-1098 "RULESET.spad" 1822301 1822325 1822838 1822843) (-1097 "RULECOLD.spad" 1822153 1822166 1822291 1822296) (-1096 "RULE.spad" 1820401 1820425 1822143 1822148) (-1095 "RTVALUE.spad" 1820136 1820145 1820391 1820396) (-1094 "RSTRCAST.spad" 1819853 1819862 1820126 1820131) (-1093 "RSETGCD.spad" 1816295 1816315 1819843 1819848) (-1092 "RSETCAT.spad" 1806263 1806280 1816263 1816290) (-1091 "RSETCAT.spad" 1796251 1796270 1806253 1806258) (-1090 "RSDCMPK.spad" 1794751 1794771 1796241 1796246) (-1089 "RRCC.spad" 1793135 1793165 1794741 1794746) (-1088 "RRCC.spad" 1791517 1791549 1793125 1793130) (-1087 "RPTAST.spad" 1791219 1791228 1791507 1791512) (-1086 "RPOLCAT.spad" 1770723 1770738 1791087 1791214) (-1085 "RPOLCAT.spad" 1749922 1749939 1770288 1770293) (-1084 "ROUTINE.spad" 1745323 1745332 1748071 1748098) (-1083 "ROMAN.spad" 1744651 1744660 1745189 1745318) (-1082 "ROIRC.spad" 1743731 1743763 1744641 1744646) (-1081 "RNS.spad" 1742707 1742716 1743633 1743726) (-1080 "RNS.spad" 1741769 1741780 1742697 1742702) (-1079 "RNGBIND.spad" 1740929 1740943 1741724 1741729) (-1078 "RNG.spad" 1740664 1740673 1740919 1740924) (-1077 "RMODULE.spad" 1740445 1740456 1740654 1740659) (-1076 "RMCAT2.spad" 1739865 1739922 1740435 1740440) (-1075 "RMATRIX.spad" 1738635 1738654 1738978 1739017) (-1074 "RMATCAT.spad" 1734214 1734245 1738591 1738630) (-1073 "RMATCAT.spad" 1729683 1729716 1734062 1734067) (-1072 "RLINSET.spad" 1729387 1729398 1729673 1729678) (-1071 "RINTERP.spad" 1729275 1729295 1729377 1729382) (-1070 "RING.spad" 1728745 1728754 1729255 1729270) (-1069 "RING.spad" 1728223 1728234 1728735 1728740) (-1068 "RIDIST.spad" 1727615 1727624 1728213 1728218) (-1067 "RGCHAIN.spad" 1726136 1726152 1727030 1727057) (-1066 "RGBCSPC.spad" 1725925 1725937 1726126 1726131) (-1065 "RGBCMDL.spad" 1725487 1725499 1725915 1725920) (-1064 "RFFACTOR.spad" 1724949 1724960 1725477 1725482) (-1063 "RFFACT.spad" 1724684 1724696 1724939 1724944) (-1062 "RFDIST.spad" 1723680 1723689 1724674 1724679) (-1061 "RF.spad" 1721354 1721365 1723670 1723675) (-1060 "RETSOL.spad" 1720773 1720786 1721344 1721349) (-1059 "RETRACT.spad" 1720201 1720212 1720763 1720768) (-1058 "RETRACT.spad" 1719627 1719640 1720191 1720196) (-1057 "RETAST.spad" 1719439 1719448 1719617 1719622) (-1056 "RESULT.spad" 1717001 1717010 1717588 1717615) (-1055 "RESRING.spad" 1716348 1716395 1716939 1716996) (-1054 "RESLATC.spad" 1715672 1715683 1716338 1716343) (-1053 "REPSQ.spad" 1715403 1715414 1715662 1715667) (-1052 "REPDB.spad" 1715110 1715121 1715393 1715398) (-1051 "REP2.spad" 1704824 1704835 1714952 1714957) (-1050 "REP1.spad" 1699044 1699055 1704774 1704779) (-1049 "REP.spad" 1696598 1696607 1699034 1699039) (-1048 "REGSET.spad" 1694390 1694407 1696199 1696226) (-1047 "REF.spad" 1693725 1693736 1694345 1694350) (-1046 "REDORDER.spad" 1692931 1692948 1693715 1693720) (-1045 "RECLOS.spad" 1691690 1691710 1692394 1692487) (-1044 "REALSOLV.spad" 1690830 1690839 1691680 1691685) (-1043 "REAL0Q.spad" 1688128 1688143 1690820 1690825) (-1042 "REAL0.spad" 1684972 1684987 1688118 1688123) (-1041 "REAL.spad" 1684844 1684853 1684962 1684967) (-1040 "RDUCEAST.spad" 1684565 1684574 1684834 1684839) (-1039 "RDIV.spad" 1684220 1684245 1684555 1684560) (-1038 "RDIST.spad" 1683787 1683798 1684210 1684215) (-1037 "RDETRS.spad" 1682651 1682669 1683777 1683782) (-1036 "RDETR.spad" 1680790 1680808 1682641 1682646) (-1035 "RDEEFS.spad" 1679889 1679906 1680780 1680785) (-1034 "RDEEF.spad" 1678899 1678916 1679879 1679884) (-1033 "RCFIELD.spad" 1676117 1676126 1678801 1678894) (-1032 "RCFIELD.spad" 1673421 1673432 1676107 1676112) (-1031 "RCAGG.spad" 1671357 1671368 1673411 1673416) (-1030 "RCAGG.spad" 1669220 1669233 1671276 1671281) (-1029 "RATRET.spad" 1668580 1668591 1669210 1669215) (-1028 "RATFACT.spad" 1668272 1668284 1668570 1668575) (-1027 "RANDSRC.spad" 1667591 1667600 1668262 1668267) (-1026 "RADUTIL.spad" 1667347 1667356 1667581 1667586) (-1025 "RADIX.spad" 1664126 1664140 1665672 1665765) (-1024 "RADFF.spad" 1661829 1661866 1661948 1662104) (-1023 "RADCAT.spad" 1661424 1661433 1661819 1661824) (-1022 "RADCAT.spad" 1661017 1661028 1661414 1661419) (-1021 "QUEUE.spad" 1660236 1660247 1660495 1660522) (-1020 "QUATCT2.spad" 1659856 1659875 1660226 1660231) (-1019 "QUATCAT.spad" 1658026 1658037 1659786 1659851) (-1018 "QUATCAT.spad" 1655944 1655957 1657706 1657711) (-1017 "QUAT.spad" 1654396 1654407 1654739 1654804) (-1016 "QUAGG.spad" 1653229 1653240 1654364 1654391) (-1015 "QQUTAST.spad" 1652997 1653006 1653219 1653224) (-1014 "QFORM.spad" 1652615 1652630 1652987 1652992) (-1013 "QFCAT2.spad" 1652307 1652324 1652605 1652610) (-1012 "QFCAT.spad" 1651009 1651020 1652209 1652302) (-1011 "QFCAT.spad" 1649293 1649306 1650495 1650500) (-1010 "QEQUAT.spad" 1648851 1648860 1649283 1649288) (-1009 "QCMPACK.spad" 1643765 1643785 1648841 1648846) (-1008 "QALGSET2.spad" 1641760 1641779 1643755 1643760) (-1007 "QALGSET.spad" 1637864 1637897 1641674 1641679) (-1006 "PWFFINTB.spad" 1635279 1635301 1637854 1637859) (-1005 "PUSHVAR.spad" 1634617 1634637 1635269 1635274) (-1004 "PTRANFN.spad" 1630752 1630763 1634607 1634612) (-1003 "PTPACK.spad" 1627839 1627850 1630742 1630747) (-1002 "PTFUNC2.spad" 1627661 1627676 1627829 1627834) (-1001 "PTCAT.spad" 1626915 1626926 1627629 1627656) (-1000 "PSQFR.spad" 1626229 1626254 1626905 1626910) (-999 "PSEUDLIN.spad" 1625115 1625125 1626219 1626224) (-998 "PSETPK.spad" 1611820 1611836 1624993 1624998) (-997 "PSETCAT.spad" 1606220 1606243 1611800 1611815) (-996 "PSETCAT.spad" 1600594 1600619 1606176 1606181) (-995 "PSCURVE.spad" 1599593 1599601 1600584 1600589) (-994 "PSCAT.spad" 1598376 1598405 1599491 1599588) (-993 "PSCAT.spad" 1597249 1597280 1598366 1598371) (-992 "PRTITION.spad" 1595947 1595955 1597239 1597244) (-991 "PRTDAST.spad" 1595666 1595674 1595937 1595942) (-990 "PRS.spad" 1585284 1585301 1595622 1595627) (-989 "PRQAGG.spad" 1584719 1584729 1585252 1585279) (-988 "PROPLOG.spad" 1584323 1584331 1584709 1584714) (-987 "PROPFUN2.spad" 1583946 1583959 1584313 1584318) (-986 "PROPFUN1.spad" 1583352 1583363 1583936 1583941) (-985 "PROPFRML.spad" 1581920 1581931 1583342 1583347) (-984 "PROPERTY.spad" 1581416 1581424 1581910 1581915) (-983 "PRODUCT.spad" 1579098 1579110 1579382 1579437) (-982 "PRINT.spad" 1578850 1578858 1579088 1579093) (-981 "PRIMES.spad" 1577111 1577121 1578840 1578845) (-980 "PRIMELT.spad" 1575232 1575246 1577101 1577106) (-979 "PRIMCAT.spad" 1574875 1574883 1575222 1575227) (-978 "PRIMARR2.spad" 1573642 1573654 1574865 1574870) (-977 "PRIMARR.spad" 1572481 1572491 1572651 1572678) (-976 "PREASSOC.spad" 1571863 1571875 1572471 1572476) (-975 "PR.spad" 1570228 1570240 1570927 1571054) (-974 "PPCURVE.spad" 1569365 1569373 1570218 1570223) (-973 "PORTNUM.spad" 1569156 1569164 1569355 1569360) (-972 "POLYROOT.spad" 1568005 1568027 1569112 1569117) (-971 "POLYLIFT.spad" 1567270 1567293 1567995 1568000) (-970 "POLYCATQ.spad" 1565396 1565418 1567260 1567265) (-969 "POLYCAT.spad" 1558898 1558919 1565264 1565391) (-968 "POLYCAT.spad" 1551696 1551719 1558064 1558069) (-967 "POLY2UP.spad" 1551148 1551162 1551686 1551691) (-966 "POLY2.spad" 1550745 1550757 1551138 1551143) (-965 "POLY.spad" 1548008 1548018 1548523 1548650) (-964 "POLUTIL.spad" 1546973 1547002 1547964 1547969) (-963 "POLTOPOL.spad" 1545721 1545736 1546963 1546968) (-962 "POINT.spad" 1544385 1544395 1544472 1544499) (-961 "PNTHEORY.spad" 1541087 1541095 1544375 1544380) (-960 "PMTOOLS.spad" 1539862 1539876 1541077 1541082) (-959 "PMSYM.spad" 1539411 1539421 1539852 1539857) (-958 "PMQFCAT.spad" 1539002 1539016 1539401 1539406) (-957 "PMPREDFS.spad" 1538464 1538486 1538992 1538997) (-956 "PMPRED.spad" 1537951 1537965 1538454 1538459) (-955 "PMPLCAT.spad" 1537028 1537046 1537880 1537885) (-954 "PMLSAGG.spad" 1536613 1536627 1537018 1537023) (-953 "PMKERNEL.spad" 1536192 1536204 1536603 1536608) (-952 "PMINS.spad" 1535772 1535782 1536182 1536187) (-951 "PMFS.spad" 1535349 1535367 1535762 1535767) (-950 "PMDOWN.spad" 1534639 1534653 1535339 1535344) (-949 "PMASSFS.spad" 1533614 1533630 1534629 1534634) (-948 "PMASS.spad" 1532632 1532640 1533604 1533609) (-947 "PLOTTOOL.spad" 1532412 1532420 1532622 1532627) (-946 "PLOT3D.spad" 1528876 1528884 1532402 1532407) (-945 "PLOT1.spad" 1528049 1528059 1528866 1528871) (-944 "PLOT.spad" 1522972 1522980 1528039 1528044) (-943 "PLEQN.spad" 1510374 1510401 1522962 1522967) (-942 "PINTERPA.spad" 1510158 1510174 1510364 1510369) (-941 "PINTERP.spad" 1509780 1509799 1510148 1510153) (-940 "PID.spad" 1508754 1508762 1509706 1509775) (-939 "PICOERCE.spad" 1508411 1508421 1508744 1508749) (-938 "PI.spad" 1508028 1508036 1508385 1508406) (-937 "PGROEB.spad" 1506637 1506651 1508018 1508023) (-936 "PGE.spad" 1498310 1498318 1506627 1506632) (-935 "PGCD.spad" 1497264 1497281 1498300 1498305) (-934 "PFRPAC.spad" 1496413 1496423 1497254 1497259) (-933 "PFR.spad" 1493116 1493126 1496315 1496408) (-932 "PFOTOOLS.spad" 1492374 1492390 1493106 1493111) (-931 "PFOQ.spad" 1491744 1491762 1492364 1492369) (-930 "PFO.spad" 1491163 1491190 1491734 1491739) (-929 "PFECAT.spad" 1488873 1488881 1491089 1491158) (-928 "PFECAT.spad" 1486611 1486621 1488829 1488834) (-927 "PFBRU.spad" 1484499 1484511 1486601 1486606) (-926 "PFBR.spad" 1482059 1482082 1484489 1484494) (-925 "PF.spad" 1481633 1481645 1481864 1481957) (-924 "PERMGRP.spad" 1476403 1476413 1481623 1481628) (-923 "PERMCAT.spad" 1475064 1475074 1476383 1476398) (-922 "PERMAN.spad" 1473620 1473634 1475054 1475059) (-921 "PERM.spad" 1469427 1469437 1473450 1473465) (-920 "PENDTREE.spad" 1468647 1468657 1468927 1468932) (-919 "PDSPC.spad" 1467460 1467470 1468637 1468642) (-918 "PDSPC.spad" 1466271 1466283 1467450 1467455) (-917 "PDRING.spad" 1466113 1466123 1466251 1466266) (-916 "PDMOD.spad" 1465929 1465941 1466081 1466108) (-915 "PDEPROB.spad" 1464944 1464952 1465919 1465924) (-914 "PDEPACK.spad" 1459080 1459088 1464934 1464939) (-913 "PDECOMP.spad" 1458550 1458567 1459070 1459075) (-912 "PDECAT.spad" 1456906 1456914 1458540 1458545) (-911 "PDDOM.spad" 1456344 1456357 1456896 1456901) (-910 "PDDOM.spad" 1455780 1455795 1456334 1456339) (-909 "PCOMP.spad" 1455633 1455646 1455770 1455775) (-908 "PBWLB.spad" 1454229 1454246 1455623 1455628) (-907 "PATTERN2.spad" 1453967 1453979 1454219 1454224) (-906 "PATTERN1.spad" 1452311 1452327 1453957 1453962) (-905 "PATTERN.spad" 1446882 1446892 1452301 1452306) (-904 "PATRES2.spad" 1446554 1446568 1446872 1446877) (-903 "PATRES.spad" 1444137 1444149 1446544 1446549) (-902 "PATMATCH.spad" 1442325 1442356 1443836 1443841) (-901 "PATMAB.spad" 1441754 1441764 1442315 1442320) (-900 "PATLRES.spad" 1440840 1440854 1441744 1441749) (-899 "PATAB.spad" 1440604 1440614 1440830 1440835) (-898 "PARTPERM.spad" 1438660 1438668 1440594 1440599) (-897 "PARSURF.spad" 1438094 1438122 1438650 1438655) (-896 "PARSU2.spad" 1437891 1437907 1438084 1438089) (-895 "script-parser.spad" 1437411 1437419 1437881 1437886) (-894 "PARSCURV.spad" 1436845 1436873 1437401 1437406) (-893 "PARSC2.spad" 1436636 1436652 1436835 1436840) (-892 "PARPCURV.spad" 1436098 1436126 1436626 1436631) (-891 "PARPC2.spad" 1435889 1435905 1436088 1436093) (-890 "PARAMAST.spad" 1435017 1435025 1435879 1435884) (-889 "PAN2EXPR.spad" 1434429 1434437 1435007 1435012) (-888 "PALETTE.spad" 1433415 1433423 1434419 1434424) (-887 "PAIR.spad" 1432422 1432435 1432991 1432996) (-886 "PADICRC.spad" 1429626 1429644 1430789 1430882) (-885 "PADICRAT.spad" 1427485 1427497 1427698 1427791) (-884 "PADICCT.spad" 1426034 1426046 1427411 1427480) (-883 "PADIC.spad" 1425737 1425749 1425960 1426029) (-882 "PADEPAC.spad" 1424426 1424445 1425727 1425732) (-881 "PADE.spad" 1423178 1423194 1424416 1424421) (-880 "OWP.spad" 1422426 1422456 1423036 1423103) (-879 "OVERSET.spad" 1421999 1422007 1422416 1422421) (-878 "OVAR.spad" 1421780 1421803 1421989 1421994) (-877 "OUTFORM.spad" 1411188 1411196 1421770 1421775) (-876 "OUTBFILE.spad" 1410622 1410630 1411178 1411183) (-875 "OUTBCON.spad" 1409692 1409700 1410612 1410617) (-874 "OUTBCON.spad" 1408760 1408770 1409682 1409687) (-873 "OUT.spad" 1407878 1407886 1408750 1408755) (-872 "OSI.spad" 1407353 1407361 1407868 1407873) (-871 "OSGROUP.spad" 1407271 1407279 1407343 1407348) (-870 "ORTHPOL.spad" 1405750 1405760 1407182 1407187) (-869 "OREUP.spad" 1405194 1405222 1405421 1405460) (-868 "ORESUP.spad" 1404486 1404510 1404865 1404904) (-867 "OREPCTO.spad" 1402375 1402387 1404406 1404411) (-866 "OREPCAT.spad" 1396562 1396572 1402331 1402370) (-865 "OREPCAT.spad" 1390639 1390651 1396410 1396415) (-864 "ORDTYPE.spad" 1389876 1389884 1390629 1390634) (-863 "ORDTYPE.spad" 1389111 1389121 1389866 1389871) (-862 "ORDSTRCT.spad" 1388881 1388896 1389044 1389049) (-861 "ORDSET.spad" 1388581 1388589 1388871 1388876) (-860 "ORDRING.spad" 1388398 1388406 1388561 1388576) (-859 "ORDMON.spad" 1388253 1388261 1388388 1388393) (-858 "ORDFUNS.spad" 1387385 1387401 1388243 1388248) (-857 "ORDFIN.spad" 1387205 1387213 1387375 1387380) (-856 "ORDCOMP2.spad" 1386498 1386510 1387195 1387200) (-855 "ORDCOMP.spad" 1384951 1384961 1386033 1386062) (-854 "OPTPROB.spad" 1383589 1383597 1384941 1384946) (-853 "OPTPACK.spad" 1375998 1376006 1383579 1383584) (-852 "OPTCAT.spad" 1373677 1373685 1375988 1375993) (-851 "OPSIG.spad" 1373339 1373347 1373667 1373672) (-850 "OPQUERY.spad" 1372920 1372928 1373329 1373334) (-849 "OPERCAT.spad" 1372386 1372396 1372910 1372915) (-848 "OPERCAT.spad" 1371850 1371862 1372376 1372381) (-847 "OP.spad" 1371592 1371602 1371672 1371739) (-846 "ONECOMP2.spad" 1371016 1371028 1371582 1371587) (-845 "ONECOMP.spad" 1369749 1369759 1370551 1370580) (-844 "OMSAGG.spad" 1369537 1369547 1369705 1369744) (-843 "OMLO.spad" 1368970 1368982 1369423 1369462) (-842 "OINTDOM.spad" 1368733 1368741 1368896 1368965) (-841 "OFMONOID.spad" 1366872 1366882 1368689 1368694) (-840 "ODVAR.spad" 1366133 1366143 1366862 1366867) (-839 "ODR.spad" 1365777 1365803 1365945 1366094) (-838 "ODPOL.spad" 1362988 1362998 1363328 1363455) (-837 "ODP.spad" 1350487 1350507 1350860 1350959) (-836 "ODETOOLS.spad" 1349136 1349155 1350477 1350482) (-835 "ODESYS.spad" 1346830 1346847 1349126 1349131) (-834 "ODERTRIC.spad" 1342863 1342880 1346787 1346792) (-833 "ODERED.spad" 1342262 1342286 1342853 1342858) (-832 "ODERAT.spad" 1339895 1339912 1342252 1342257) (-831 "ODEPRRIC.spad" 1336988 1337010 1339885 1339890) (-830 "ODEPROB.spad" 1336245 1336253 1336978 1336983) (-829 "ODEPRIM.spad" 1333643 1333665 1336235 1336240) (-828 "ODEPAL.spad" 1333029 1333053 1333633 1333638) (-827 "ODEPACK.spad" 1319759 1319767 1333019 1333024) (-826 "ODEINT.spad" 1319194 1319210 1319749 1319754) (-825 "ODEIFTBL.spad" 1316597 1316605 1319184 1319189) (-824 "ODEEF.spad" 1312092 1312108 1316587 1316592) (-823 "ODECONST.spad" 1311637 1311655 1312082 1312087) (-822 "ODECAT.spad" 1310235 1310243 1311627 1311632) (-821 "OCTCT2.spad" 1309873 1309894 1310225 1310230) (-820 "OCT.spad" 1307961 1307971 1308675 1308714) (-819 "OCAMON.spad" 1307809 1307817 1307951 1307956) (-818 "OC.spad" 1305605 1305615 1307765 1307804) (-817 "OC.spad" 1303123 1303135 1305285 1305290) (-816 "OASGP.spad" 1302938 1302946 1303113 1303118) (-815 "OAMONS.spad" 1302460 1302468 1302928 1302933) (-814 "OAMON.spad" 1302218 1302226 1302450 1302455) (-813 "OAMON.spad" 1301974 1301984 1302208 1302213) (-812 "OAGROUP.spad" 1301512 1301520 1301964 1301969) (-811 "OAGROUP.spad" 1301048 1301058 1301502 1301507) (-810 "NUMTUBE.spad" 1300639 1300655 1301038 1301043) (-809 "NUMQUAD.spad" 1288615 1288623 1300629 1300634) (-808 "NUMODE.spad" 1279967 1279975 1288605 1288610) (-807 "NUMINT.spad" 1277533 1277541 1279957 1279962) (-806 "NUMFMT.spad" 1276373 1276381 1277523 1277528) (-805 "NUMERIC.spad" 1268487 1268497 1276178 1276183) (-804 "NTSCAT.spad" 1266995 1267011 1268455 1268482) (-803 "NTPOLFN.spad" 1266540 1266550 1266906 1266911) (-802 "NSUP2.spad" 1265932 1265944 1266530 1266535) (-801 "NSUP.spad" 1258927 1258937 1263347 1263500) (-800 "NSMP.spad" 1255026 1255045 1255318 1255445) (-799 "NREP.spad" 1253428 1253442 1255016 1255021) (-798 "NPCOEF.spad" 1252674 1252694 1253418 1253423) (-797 "NORMRETR.spad" 1252272 1252311 1252664 1252669) (-796 "NORMPK.spad" 1250214 1250233 1252262 1252267) (-795 "NORMMA.spad" 1249902 1249928 1250204 1250209) (-794 "NONE1.spad" 1249578 1249588 1249892 1249897) (-793 "NONE.spad" 1249319 1249327 1249568 1249573) (-792 "NODE1.spad" 1248806 1248822 1249309 1249314) (-791 "NNI.spad" 1247701 1247709 1248780 1248801) (-790 "NLINSOL.spad" 1246327 1246337 1247691 1247696) (-789 "NIPROB.spad" 1244868 1244876 1246317 1246322) (-788 "NFINTBAS.spad" 1242428 1242445 1244858 1244863) (-787 "NETCLT.spad" 1242402 1242413 1242418 1242423) (-786 "NCODIV.spad" 1240626 1240642 1242392 1242397) (-785 "NCNTFRAC.spad" 1240268 1240282 1240616 1240621) (-784 "NCEP.spad" 1238434 1238448 1240258 1240263) (-783 "NASRING.spad" 1238038 1238046 1238424 1238429) (-782 "NASRING.spad" 1237640 1237650 1238028 1238033) (-781 "NARNG.spad" 1237040 1237048 1237630 1237635) (-780 "NARNG.spad" 1236438 1236448 1237030 1237035) (-779 "NAGSP.spad" 1235515 1235523 1236428 1236433) (-778 "NAGS.spad" 1225232 1225240 1235505 1235510) (-777 "NAGF07.spad" 1223663 1223671 1225222 1225227) (-776 "NAGF04.spad" 1218065 1218073 1223653 1223658) (-775 "NAGF02.spad" 1212158 1212166 1218055 1218060) (-774 "NAGF01.spad" 1207927 1207935 1212148 1212153) (-773 "NAGE04.spad" 1201635 1201643 1207917 1207922) (-772 "NAGE02.spad" 1192287 1192295 1201625 1201630) (-771 "NAGE01.spad" 1188281 1188289 1192277 1192282) (-770 "NAGD03.spad" 1186277 1186285 1188271 1188276) (-769 "NAGD02.spad" 1179008 1179016 1186267 1186272) (-768 "NAGD01.spad" 1173293 1173301 1178998 1179003) (-767 "NAGC06.spad" 1169160 1169168 1173283 1173288) (-766 "NAGC05.spad" 1167653 1167661 1169150 1169155) (-765 "NAGC02.spad" 1166928 1166936 1167643 1167648) (-764 "NAALG.spad" 1166493 1166503 1166896 1166923) (-763 "NAALG.spad" 1166078 1166090 1166483 1166488) (-762 "MULTSQFR.spad" 1163036 1163053 1166068 1166073) (-761 "MULTFACT.spad" 1162419 1162436 1163026 1163031) (-760 "MTSCAT.spad" 1160513 1160534 1162317 1162414) (-759 "MTHING.spad" 1160172 1160182 1160503 1160508) (-758 "MSYSCMD.spad" 1159606 1159614 1160162 1160167) (-757 "MSETAGG.spad" 1159451 1159461 1159574 1159601) (-756 "MSET.spad" 1157364 1157374 1159112 1159151) (-755 "MRING.spad" 1154341 1154353 1157072 1157139) (-754 "MRF2.spad" 1153903 1153917 1154331 1154336) (-753 "MRATFAC.spad" 1153449 1153466 1153893 1153898) (-752 "MPRFF.spad" 1151489 1151508 1153439 1153444) (-751 "MPOLY.spad" 1148888 1148903 1149247 1149374) (-750 "MPCPF.spad" 1148152 1148171 1148878 1148883) (-749 "MPC3.spad" 1147969 1148009 1148142 1148147) (-748 "MPC2.spad" 1147622 1147655 1147959 1147964) (-747 "MONOTOOL.spad" 1145973 1145990 1147612 1147617) (-746 "MONOID.spad" 1145292 1145300 1145963 1145968) (-745 "MONOID.spad" 1144609 1144619 1145282 1145287) (-744 "MONOGEN.spad" 1143357 1143370 1144469 1144604) (-743 "MONOGEN.spad" 1142127 1142142 1143241 1143246) (-742 "MONADWU.spad" 1140205 1140213 1142117 1142122) (-741 "MONADWU.spad" 1138281 1138291 1140195 1140200) (-740 "MONAD.spad" 1137441 1137449 1138271 1138276) (-739 "MONAD.spad" 1136599 1136609 1137431 1137436) (-738 "MOEBIUS.spad" 1135335 1135349 1136579 1136594) (-737 "MODULE.spad" 1135205 1135215 1135303 1135330) (-736 "MODULE.spad" 1135095 1135107 1135195 1135200) (-735 "MODRING.spad" 1134430 1134469 1135075 1135090) (-734 "MODOP.spad" 1133087 1133099 1134252 1134319) (-733 "MODMONOM.spad" 1132818 1132836 1133077 1133082) (-732 "MODMON.spad" 1129442 1129458 1130161 1130314) (-731 "MODFIELD.spad" 1128804 1128843 1129344 1129437) (-730 "MMLFORM.spad" 1127664 1127672 1128794 1128799) (-729 "MMAP.spad" 1127406 1127440 1127654 1127659) (-728 "MLO.spad" 1125865 1125875 1127362 1127401) (-727 "MLIFT.spad" 1124477 1124494 1125855 1125860) (-726 "MKUCFUNC.spad" 1124012 1124030 1124467 1124472) (-725 "MKRECORD.spad" 1123600 1123613 1124002 1124007) (-724 "MKFUNC.spad" 1123007 1123017 1123590 1123595) (-723 "MKFLCFN.spad" 1121975 1121985 1122997 1123002) (-722 "MKBCFUNC.spad" 1121470 1121488 1121965 1121970) (-721 "MINT.spad" 1120909 1120917 1121372 1121465) (-720 "MHROWRED.spad" 1119420 1119430 1120899 1120904) (-719 "MFLOAT.spad" 1117940 1117948 1119310 1119415) (-718 "MFINFACT.spad" 1117340 1117362 1117930 1117935) (-717 "MESH.spad" 1115135 1115143 1117330 1117335) (-716 "MDDFACT.spad" 1113354 1113364 1115125 1115130) (-715 "MDAGG.spad" 1112645 1112655 1113334 1113349) (-714 "MCMPLX.spad" 1108010 1108018 1108624 1108825) (-713 "MCDEN.spad" 1107220 1107232 1108000 1108005) (-712 "MCALCFN.spad" 1104318 1104344 1107210 1107215) (-711 "MAYBE.spad" 1103618 1103629 1104308 1104313) (-710 "MATSTOR.spad" 1100934 1100944 1103608 1103613) (-709 "MATRIX.spad" 1099500 1099510 1099984 1100011) (-708 "MATLIN.spad" 1096868 1096892 1099384 1099389) (-707 "MATCAT2.spad" 1096150 1096198 1096858 1096863) (-706 "MATCAT.spad" 1087712 1087734 1096118 1096145) (-705 "MATCAT.spad" 1079146 1079170 1087554 1087559) (-704 "MAPPKG3.spad" 1078061 1078075 1079136 1079141) (-703 "MAPPKG2.spad" 1077399 1077411 1078051 1078056) (-702 "MAPPKG1.spad" 1076227 1076237 1077389 1077394) (-701 "MAPPAST.spad" 1075566 1075574 1076217 1076222) (-700 "MAPHACK3.spad" 1075378 1075392 1075556 1075561) (-699 "MAPHACK2.spad" 1075147 1075159 1075368 1075373) (-698 "MAPHACK1.spad" 1074791 1074801 1075137 1075142) (-697 "MAGMA.spad" 1072597 1072614 1074781 1074786) (-696 "MACROAST.spad" 1072192 1072200 1072587 1072592) (-695 "M3D.spad" 1069777 1069787 1071435 1071440) (-694 "LZSTAGG.spad" 1067031 1067041 1069767 1069772) (-693 "LZSTAGG.spad" 1064283 1064295 1067021 1067026) (-692 "LWORD.spad" 1061028 1061045 1064273 1064278) (-691 "LSTAST.spad" 1060812 1060820 1061018 1061023) (-690 "LSQM.spad" 1058921 1058935 1059315 1059366) (-689 "LSPP.spad" 1058456 1058473 1058911 1058916) (-688 "LSMP1.spad" 1056299 1056313 1058446 1058451) (-687 "LSMP.spad" 1055156 1055184 1056289 1056294) (-686 "LSAGG.spad" 1054825 1054835 1055124 1055151) (-685 "LSAGG.spad" 1054514 1054526 1054815 1054820) (-684 "LPOLY.spad" 1053476 1053495 1054370 1054439) (-683 "LPEFRAC.spad" 1052747 1052757 1053466 1053471) (-682 "LOGIC.spad" 1052349 1052357 1052737 1052742) (-681 "LOGIC.spad" 1051949 1051959 1052339 1052344) (-680 "LODOOPS.spad" 1050879 1050891 1051939 1051944) (-679 "LODOF.spad" 1049925 1049942 1050836 1050841) (-678 "LODOCAT.spad" 1048591 1048601 1049881 1049920) (-677 "LODOCAT.spad" 1047255 1047267 1048547 1048552) (-676 "LODO2.spad" 1046519 1046531 1046926 1046965) (-675 "LODO1.spad" 1045910 1045920 1046190 1046229) (-674 "LODO.spad" 1045285 1045301 1045581 1045620) (-673 "LODEEF.spad" 1044087 1044105 1045275 1045280) (-672 "LO.spad" 1043488 1043502 1044021 1044048) (-671 "LNAGG.spad" 1039675 1039685 1043478 1043483) (-670 "LNAGG.spad" 1035826 1035838 1039631 1039636) (-669 "LMOPS.spad" 1032594 1032611 1035816 1035821) (-668 "LMODULE.spad" 1032378 1032388 1032584 1032589) (-667 "LMDICT.spad" 1031549 1031559 1031797 1031824) (-666 "LLINSET.spad" 1031256 1031266 1031539 1031544) (-665 "LITERAL.spad" 1031162 1031173 1031246 1031251) (-664 "LIST3.spad" 1030473 1030487 1031152 1031157) (-663 "LIST2MAP.spad" 1027400 1027412 1030463 1030468) (-662 "LIST2.spad" 1026102 1026114 1027390 1027395) (-661 "LIST.spad" 1023699 1023709 1025111 1025138) (-660 "LINSET.spad" 1023478 1023488 1023689 1023694) (-659 "LINFORM.spad" 1022941 1022953 1023446 1023473) (-658 "LINEXP.spad" 1021684 1021694 1022931 1022936) (-657 "LINELT.spad" 1021055 1021067 1021567 1021594) (-656 "LINDEP.spad" 1019904 1019916 1020967 1020972) (-655 "LINBASIS.spad" 1019540 1019555 1019894 1019899) (-654 "LIMITRF.spad" 1017487 1017497 1019530 1019535) (-653 "LIMITPS.spad" 1016397 1016410 1017477 1017482) (-652 "LIECAT.spad" 1015881 1015891 1016323 1016392) (-651 "LIECAT.spad" 1015393 1015405 1015837 1015842) (-650 "LIE.spad" 1013388 1013400 1014662 1014807) (-649 "LIB.spad" 1011103 1011111 1011549 1011564) (-648 "LGROBP.spad" 1008456 1008475 1011093 1011098) (-647 "LFCAT.spad" 1007515 1007523 1008446 1008451) (-646 "LF.spad" 1006470 1006486 1007505 1007510) (-645 "LEXTRIPK.spad" 1002093 1002108 1006460 1006465) (-644 "LEXP.spad" 1000112 1000139 1002073 1002088) (-643 "LETAST.spad" 999811 999819 1000102 1000107) (-642 "LEADCDET.spad" 998217 998234 999801 999806) (-641 "LAZM3PK.spad" 996961 996983 998207 998212) (-640 "LAUPOL.spad" 995546 995559 996446 996515) (-639 "LAPLACE.spad" 995129 995145 995536 995541) (-638 "LALG.spad" 994905 994915 995109 995124) (-637 "LALG.spad" 994689 994701 994895 994900) (-636 "LA.spad" 994129 994143 994611 994650) (-635 "KVTFROM.spad" 993872 993882 994119 994124) (-634 "KTVLOGIC.spad" 993416 993424 993862 993867) (-633 "KRCFROM.spad" 993162 993172 993406 993411) (-632 "KOVACIC.spad" 991893 991910 993152 993157) (-631 "KONVERT.spad" 991615 991625 991883 991888) (-630 "KOERCE.spad" 991352 991362 991605 991610) (-629 "KERNEL2.spad" 991055 991067 991342 991347) (-628 "KERNEL.spad" 989695 989705 990824 990829) (-627 "KDAGG.spad" 988804 988826 989675 989690) (-626 "KDAGG.spad" 987921 987945 988794 988799) (-625 "KAFILE.spad" 986751 986767 986986 987013) (-624 "JVMOP.spad" 986664 986672 986741 986746) (-623 "JVMMDACC.spad" 985718 985726 986654 986659) (-622 "JVMFDACC.spad" 985034 985042 985708 985713) (-621 "JVMCSTTG.spad" 983763 983771 985024 985029) (-620 "JVMCFACC.spad" 983209 983217 983753 983758) (-619 "JVMBCODE.spad" 983120 983128 983199 983204) (-618 "JORDAN.spad" 980928 980940 982389 982534) (-617 "JOINAST.spad" 980630 980638 980918 980923) (-616 "IXAGG.spad" 978763 978787 980620 980625) (-615 "IXAGG.spad" 976751 976777 978610 978615) (-614 "IVECTOR.spad" 975347 975362 975502 975529) (-613 "ITUPLE.spad" 974523 974533 975337 975342) (-612 "ITRIGMNP.spad" 973370 973389 974513 974518) (-611 "ITFUN3.spad" 972876 972890 973360 973365) (-610 "ITFUN2.spad" 972620 972632 972866 972871) (-609 "ITFORM.spad" 971975 971983 972610 972615) (-608 "ITAYLOR.spad" 969969 969984 971839 971936) (-607 "ISUPS.spad" 962367 962382 968904 969001) (-606 "ISUMP.spad" 961868 961884 962357 962362) (-605 "ISTRING.spad" 960774 960787 960855 960882) (-604 "ISAST.spad" 960493 960501 960764 960769) (-603 "IRURPK.spad" 959210 959229 960483 960488) (-602 "IRSN.spad" 957214 957222 959200 959205) (-601 "IRRF2F.spad" 955707 955717 957170 957175) (-600 "IRREDFFX.spad" 955308 955319 955697 955702) (-599 "IROOT.spad" 953647 953657 955298 955303) (-598 "IRFORM.spad" 952971 952979 953637 953642) (-597 "IR2F.spad" 952185 952201 952961 952966) (-596 "IR2.spad" 951213 951229 952175 952180) (-595 "IR.spad" 949016 949030 951062 951089) (-594 "IPRNTPK.spad" 948776 948784 949006 949011) (-593 "IPF.spad" 948341 948353 948581 948674) (-592 "IPADIC.spad" 948110 948136 948267 948336) (-591 "IP4ADDR.spad" 947667 947675 948100 948105) (-590 "IOMODE.spad" 947189 947197 947657 947662) (-589 "IOBFILE.spad" 946574 946582 947179 947184) (-588 "IOBCON.spad" 946439 946447 946564 946569) (-587 "INVLAPLA.spad" 946088 946104 946429 946434) (-586 "INTTR.spad" 939482 939499 946078 946083) (-585 "INTTOOLS.spad" 937225 937241 939044 939049) (-584 "INTSLPE.spad" 936553 936561 937215 937220) (-583 "INTRVL.spad" 936119 936129 936467 936548) (-582 "INTRF.spad" 934551 934565 936109 936114) (-581 "INTRET.spad" 933983 933993 934541 934546) (-580 "INTRAT.spad" 932718 932735 933973 933978) (-579 "INTPM.spad" 931085 931101 932343 932348) (-578 "INTPAF.spad" 928961 928979 931014 931019) (-577 "INTPACK.spad" 919527 919535 928951 928956) (-576 "INTHERTR.spad" 918801 918818 919517 919522) (-575 "INTHERAL.spad" 918471 918495 918791 918796) (-574 "INTHEORY.spad" 914910 914918 918461 918466) (-573 "INTG0.spad" 908674 908692 914839 914844) (-572 "INTFTBL.spad" 904128 904136 908664 908669) (-571 "INTFACT.spad" 903195 903205 904118 904123) (-570 "INTEF.spad" 901606 901622 903185 903190) (-569 "INTDOM.spad" 900229 900237 901532 901601) (-568 "INTDOM.spad" 898914 898924 900219 900224) (-567 "INTCAT.spad" 897181 897191 898828 898909) (-566 "INTBIT.spad" 896688 896696 897171 897176) (-565 "INTALG.spad" 895876 895903 896678 896683) (-564 "INTAF.spad" 895376 895392 895866 895871) (-563 "INTABL.spad" 893416 893447 893579 893606) (-562 "INT8.spad" 893296 893304 893406 893411) (-561 "INT64.spad" 893175 893183 893286 893291) (-560 "INT32.spad" 893054 893062 893165 893170) (-559 "INT16.spad" 892933 892941 893044 893049) (-558 "INT.spad" 892459 892467 892799 892928) (-557 "INS.spad" 889962 889970 892361 892454) (-556 "INS.spad" 887551 887561 889952 889957) (-555 "INPSIGN.spad" 887021 887034 887541 887546) (-554 "INPRODPF.spad" 886117 886136 887011 887016) (-553 "INPRODFF.spad" 885205 885229 886107 886112) (-552 "INNMFACT.spad" 884180 884197 885195 885200) (-551 "INMODGCD.spad" 883684 883714 884170 884175) (-550 "INFSP.spad" 881981 882003 883674 883679) (-549 "INFPROD0.spad" 881061 881080 881971 881976) (-548 "INFORM1.spad" 880686 880696 881051 881056) (-547 "INFORM.spad" 877893 877901 880676 880681) (-546 "INFINITY.spad" 877445 877453 877883 877888) (-545 "INETCLTS.spad" 877422 877430 877435 877440) (-544 "INEP.spad" 875968 875990 877412 877417) (-543 "INDE.spad" 875617 875634 875878 875883) (-542 "INCRMAPS.spad" 875054 875064 875607 875612) (-541 "INBFILE.spad" 874150 874158 875044 875049) (-540 "INBFF.spad" 870000 870011 874140 874145) (-539 "INBCON.spad" 868266 868274 869990 869995) (-538 "INBCON.spad" 866530 866540 868256 868261) (-537 "INAST.spad" 866191 866199 866520 866525) (-536 "IMPTAST.spad" 865899 865907 866181 866186) (-535 "IMATRIX.spad" 864715 864741 865227 865254) (-534 "IMATQF.spad" 863809 863853 864671 864676) (-533 "IMATLIN.spad" 862430 862454 863765 863770) (-532 "ILIST.spad" 860914 860929 861439 861466) (-531 "IIARRAY2.spad" 860189 860227 860392 860419) (-530 "IFF.spad" 859599 859615 859870 859963) (-529 "IFAST.spad" 859213 859221 859589 859594) (-528 "IFARRAY.spad" 856524 856539 858222 858249) (-527 "IFAMON.spad" 856386 856403 856480 856485) (-526 "IEVALAB.spad" 855799 855811 856376 856381) (-525 "IEVALAB.spad" 855210 855224 855789 855794) (-524 "IDPOAMS.spad" 854888 854900 855122 855127) (-523 "IDPOAM.spad" 854530 854542 854800 854805) (-522 "IDPO.spad" 854265 854277 854442 854447) (-521 "IDPC.spad" 852994 853006 854255 854260) (-520 "IDPAM.spad" 852661 852673 852906 852911) (-519 "IDPAG.spad" 852330 852342 852573 852578) (-518 "IDENT.spad" 851982 851990 852320 852325) (-517 "IDECOMP.spad" 849221 849239 851972 851977) (-516 "IDEAL.spad" 844167 844206 849153 849158) (-515 "ICDEN.spad" 843380 843396 844157 844162) (-514 "ICARD.spad" 842571 842579 843370 843375) (-513 "IBPTOOLS.spad" 841178 841195 842561 842566) (-512 "IBITS.spad" 840334 840347 840767 840794) (-511 "IBATOOL.spad" 837319 837338 840324 840329) (-510 "IBACHIN.spad" 835826 835841 837309 837314) (-509 "IARRAY2.spad" 834693 834719 835304 835331) (-508 "IARRAY1.spad" 833556 833571 833702 833729) (-507 "IAN.spad" 831776 831784 833369 833462) (-506 "IALGFACT.spad" 831387 831420 831766 831771) (-505 "HYPCAT.spad" 830811 830819 831377 831382) (-504 "HYPCAT.spad" 830233 830243 830801 830806) (-503 "HOSTNAME.spad" 830049 830057 830223 830228) (-502 "HOMOTOP.spad" 829792 829802 830039 830044) (-501 "HOAGG.spad" 827074 827084 829782 829787) (-500 "HOAGG.spad" 824089 824101 826799 826804) (-499 "HEXADEC.spad" 822049 822057 822414 822507) (-498 "HEUGCD.spad" 821140 821151 822039 822044) (-497 "HELLFDIV.spad" 820746 820770 821130 821135) (-496 "HEAP.spad" 820009 820019 820224 820251) (-495 "HEADAST.spad" 819550 819558 819999 820004) (-494 "HDP.spad" 807045 807061 807422 807521) (-493 "HDMP.spad" 804187 804202 804803 804930) (-492 "HB.spad" 802462 802470 804177 804182) (-491 "HASHTBL.spad" 800454 800485 800665 800692) (-490 "HASAST.spad" 800170 800178 800444 800449) (-489 "HACKPI.spad" 799661 799669 800072 800165) (-488 "GTSET.spad" 798555 798571 799262 799289) (-487 "GSTBL.spad" 796596 796631 796770 796785) (-486 "GSERIES.spad" 793828 793855 794647 794796) (-485 "GROUP.spad" 793101 793109 793808 793823) (-484 "GROUP.spad" 792382 792392 793091 793096) (-483 "GROEBSOL.spad" 790876 790897 792372 792377) (-482 "GRMOD.spad" 789455 789467 790866 790871) (-481 "GRMOD.spad" 788032 788046 789445 789450) (-480 "GRIMAGE.spad" 780945 780953 788022 788027) (-479 "GRDEF.spad" 779324 779332 780935 780940) (-478 "GRAY.spad" 777795 777803 779314 779319) (-477 "GRALG.spad" 776888 776900 777785 777790) (-476 "GRALG.spad" 775979 775993 776878 776883) (-475 "GPOLSET.spad" 775404 775427 775616 775643) (-474 "GOSPER.spad" 774681 774699 775394 775399) (-473 "GMODPOL.spad" 773829 773856 774649 774676) (-472 "GHENSEL.spad" 772912 772926 773819 773824) (-471 "GENUPS.spad" 769205 769218 772902 772907) (-470 "GENUFACT.spad" 768782 768792 769195 769200) (-469 "GENPGCD.spad" 768384 768401 768772 768777) (-468 "GENMFACT.spad" 767836 767855 768374 768379) (-467 "GENEEZ.spad" 765795 765808 767826 767831) (-466 "GDMP.spad" 762779 762796 763553 763680) (-465 "GCNAALG.spad" 756702 756729 762573 762640) (-464 "GCDDOM.spad" 755894 755902 756628 756697) (-463 "GCDDOM.spad" 755148 755158 755884 755889) (-462 "GBINTERN.spad" 751168 751206 755138 755143) (-461 "GBF.spad" 746951 746989 751158 751163) (-460 "GBEUCLID.spad" 744833 744871 746941 746946) (-459 "GB.spad" 742359 742397 744789 744794) (-458 "GAUSSFAC.spad" 741672 741680 742349 742354) (-457 "GALUTIL.spad" 739998 740008 741628 741633) (-456 "GALPOLYU.spad" 738452 738465 739988 739993) (-455 "GALFACTU.spad" 736665 736684 738442 738447) (-454 "GALFACT.spad" 726878 726889 736655 736660) (-453 "FVFUN.spad" 723901 723909 726868 726873) (-452 "FVC.spad" 722953 722961 723891 723896) (-451 "FUNDESC.spad" 722631 722639 722943 722948) (-450 "FUNCTION.spad" 722480 722492 722621 722626) (-449 "FTEM.spad" 721645 721653 722470 722475) (-448 "FT.spad" 719945 719953 721635 721640) (-447 "FSUPFACT.spad" 718842 718861 719878 719883) (-446 "FST.spad" 716928 716936 718832 718837) (-445 "FSRED.spad" 716408 716424 716918 716923) (-444 "FSPRMELT.spad" 715274 715290 716365 716370) (-443 "FSPECF.spad" 713365 713381 715264 715269) (-442 "FSINT.spad" 713025 713041 713355 713360) (-441 "FSERIES.spad" 712216 712228 712845 712944) (-440 "FSCINT.spad" 711533 711549 712206 712211) (-439 "FSAGG2.spad" 710268 710284 711523 711528) (-438 "FSAGG.spad" 709385 709395 710224 710263) (-437 "FSAGG.spad" 708464 708476 709305 709310) (-436 "FS2UPS.spad" 702979 703013 708454 708459) (-435 "FS2EXPXP.spad" 702120 702143 702969 702974) (-434 "FS2.spad" 701775 701791 702110 702115) (-433 "FS.spad" 696043 696053 701550 701770) (-432 "FS.spad" 690083 690095 695592 695597) (-431 "FRUTIL.spad" 689037 689047 690073 690078) (-430 "FRNAALG.spad" 684314 684324 688979 689032) (-429 "FRNAALG.spad" 679603 679615 684270 684275) (-428 "FRNAAF2.spad" 679051 679069 679593 679598) (-427 "FRMOD.spad" 678458 678488 678979 678984) (-426 "FRIDEAL2.spad" 678062 678094 678448 678453) (-425 "FRIDEAL.spad" 677287 677308 678042 678057) (-424 "FRETRCT.spad" 676806 676816 677277 677282) (-423 "FRETRCT.spad" 676182 676194 676655 676660) (-422 "FRAMALG.spad" 674562 674575 676138 676177) (-421 "FRAMALG.spad" 672974 672989 674552 674557) (-420 "FRAC2.spad" 672579 672591 672964 672969) (-419 "FRAC.spad" 670365 670375 670752 670925) (-418 "FR2.spad" 669701 669713 670355 670360) (-417 "FR.spad" 663323 663333 668596 668665) (-416 "FPS.spad" 660162 660170 663213 663318) (-415 "FPS.spad" 657029 657039 660082 660087) (-414 "FPC.spad" 656075 656083 656931 657024) (-413 "FPC.spad" 655207 655217 656065 656070) (-412 "FPATMAB.spad" 654969 654979 655197 655202) (-411 "FPARFRAC.spad" 653811 653828 654959 654964) (-410 "FORTRAN.spad" 652317 652360 653801 653806) (-409 "FORTFN.spad" 649487 649495 652307 652312) (-408 "FORTCAT.spad" 649171 649179 649477 649482) (-407 "FORT.spad" 648120 648128 649161 649166) (-406 "FORDER.spad" 647811 647835 648110 648115) (-405 "FOP.spad" 647012 647020 647801 647806) (-404 "FNLA.spad" 646436 646458 646980 647007) (-403 "FNCAT.spad" 645031 645039 646426 646431) (-402 "FNAME.spad" 644923 644931 645021 645026) (-401 "FMTC.spad" 644721 644729 644849 644918) (-400 "FMONOID.spad" 644402 644412 644677 644682) (-399 "FMONCAT.spad" 641571 641581 644392 644397) (-398 "FMFUN.spad" 638601 638609 641561 641566) (-397 "FMCAT.spad" 636277 636295 638569 638596) (-396 "FMC.spad" 635329 635337 636267 636272) (-395 "FM1.spad" 634694 634706 635263 635290) (-394 "FM.spad" 634309 634321 634548 634575) (-393 "FLOATRP.spad" 632052 632066 634299 634304) (-392 "FLOATCP.spad" 629491 629505 632042 632047) (-391 "FLOAT.spad" 622805 622813 629357 629486) (-390 "FLINEXP.spad" 622527 622537 622795 622800) (-389 "FLINEXP.spad" 622190 622202 622460 622465) (-388 "FLASORT.spad" 621516 621528 622180 622185) (-387 "FLALG.spad" 619186 619205 621442 621511) (-386 "FLAGG2.spad" 617903 617919 619176 619181) (-385 "FLAGG.spad" 614969 614979 617883 617898) (-384 "FLAGG.spad" 611936 611948 614852 614857) (-383 "FINRALG.spad" 610021 610034 611892 611931) (-382 "FINRALG.spad" 608032 608047 609905 609910) (-381 "FINITE.spad" 607184 607192 608022 608027) (-380 "FINAALG.spad" 596369 596379 607126 607179) (-379 "FINAALG.spad" 585566 585578 596325 596330) (-378 "FILECAT.spad" 584100 584117 585556 585561) (-377 "FILE.spad" 583683 583693 584090 584095) (-376 "FIELD.spad" 583089 583097 583585 583678) (-375 "FIELD.spad" 582581 582591 583079 583084) (-374 "FGROUP.spad" 581244 581254 582561 582576) (-373 "FGLMICPK.spad" 580039 580054 581234 581239) (-372 "FFX.spad" 579422 579437 579755 579848) (-371 "FFSLPE.spad" 578933 578954 579412 579417) (-370 "FFPOLY2.spad" 577993 578010 578923 578928) (-369 "FFPOLY.spad" 569335 569346 577983 577988) (-368 "FFP.spad" 568740 568760 569051 569144) (-367 "FFNBX.spad" 567260 567280 568456 568549) (-366 "FFNBP.spad" 565781 565798 566976 567069) (-365 "FFNB.spad" 564246 564267 565462 565555) (-364 "FFINTBAS.spad" 561760 561779 564236 564241) (-363 "FFIELDC.spad" 559345 559353 561662 561755) (-362 "FFIELDC.spad" 557016 557026 559335 559340) (-361 "FFHOM.spad" 555788 555805 557006 557011) (-360 "FFF.spad" 553231 553242 555778 555783) (-359 "FFCGX.spad" 552086 552106 552947 553040) (-358 "FFCGP.spad" 550983 551003 551802 551895) (-357 "FFCG.spad" 549775 549796 550664 550757) (-356 "FFCAT2.spad" 549522 549562 549765 549770) (-355 "FFCAT.spad" 542687 542709 549361 549517) (-354 "FFCAT.spad" 535931 535955 542607 542612) (-353 "FF.spad" 535379 535395 535612 535705) (-352 "FEXPR.spad" 527079 527125 535126 535165) (-351 "FEVALAB.spad" 526787 526797 527069 527074) (-350 "FEVALAB.spad" 526271 526283 526555 526560) (-349 "FDIVCAT.spad" 524367 524391 526261 526266) (-348 "FDIVCAT.spad" 522461 522487 524357 524362) (-347 "FDIV2.spad" 522117 522157 522451 522456) (-346 "FDIV.spad" 521575 521599 522107 522112) (-345 "FCTRDATA.spad" 520583 520591 521565 521570) (-344 "FCPAK1.spad" 519118 519126 520573 520578) (-343 "FCOMP.spad" 518497 518507 519108 519113) (-342 "FC.spad" 508504 508512 518487 518492) (-341 "FAXF.spad" 501539 501553 508406 508499) (-340 "FAXF.spad" 494626 494642 501495 501500) (-339 "FARRAY.spad" 492602 492612 493635 493662) (-338 "FAMR.spad" 490746 490758 492500 492597) (-337 "FAMR.spad" 488874 488888 490630 490635) (-336 "FAMONOID.spad" 488558 488568 488828 488833) (-335 "FAMONC.spad" 486878 486890 488548 488553) (-334 "FAGROUP.spad" 486518 486528 486774 486801) (-333 "FACUTIL.spad" 484730 484747 486508 486513) (-332 "FACTFUNC.spad" 483932 483942 484720 484725) (-331 "EXPUPXS.spad" 480684 480707 481983 482132) (-330 "EXPRTUBE.spad" 477972 477980 480674 480679) (-329 "EXPRODE.spad" 475140 475156 477962 477967) (-328 "EXPR2UPS.spad" 471262 471275 475130 475135) (-327 "EXPR2.spad" 470967 470979 471252 471257) (-326 "EXPR.spad" 466052 466062 466766 467061) (-325 "EXPEXPAN.spad" 462796 462821 463428 463521) (-324 "EXITAST.spad" 462532 462540 462786 462791) (-323 "EXIT.spad" 462203 462211 462522 462527) (-322 "EVALCYC.spad" 461663 461677 462193 462198) (-321 "EVALAB.spad" 461243 461253 461653 461658) (-320 "EVALAB.spad" 460821 460833 461233 461238) (-319 "EUCDOM.spad" 458411 458419 460747 460816) (-318 "EUCDOM.spad" 456063 456073 458401 458406) (-317 "ESTOOLS2.spad" 455658 455672 456053 456058) (-316 "ESTOOLS1.spad" 455335 455346 455648 455653) (-315 "ESTOOLS.spad" 447213 447221 455325 455330) (-314 "ESCONT1.spad" 446954 446966 447203 447208) (-313 "ESCONT.spad" 443747 443755 446944 446949) (-312 "ES2.spad" 443260 443276 443737 443742) (-311 "ES1.spad" 442830 442846 443250 443255) (-310 "ES.spad" 435701 435709 442820 442825) (-309 "ES.spad" 428475 428485 435596 435601) (-308 "ERROR.spad" 425802 425810 428465 428470) (-307 "EQTBL.spad" 423796 423818 424005 424032) (-306 "EQ2.spad" 423514 423526 423786 423791) (-305 "EQ.spad" 418290 418300 421085 421197) (-304 "EP.spad" 414616 414626 418280 418285) (-303 "ENV.spad" 413294 413302 414606 414611) (-302 "ENTIRER.spad" 412962 412970 413238 413289) (-301 "EMR.spad" 412250 412291 412888 412957) (-300 "ELTAGG.spad" 410504 410523 412240 412245) (-299 "ELTAGG.spad" 408722 408743 410460 410465) (-298 "ELTAB.spad" 408197 408210 408712 408717) (-297 "ELFUTS.spad" 407632 407651 408187 408192) (-296 "ELEMFUN.spad" 407321 407329 407622 407627) (-295 "ELEMFUN.spad" 407008 407018 407311 407316) (-294 "ELAGG.spad" 404979 404989 406988 407003) (-293 "ELAGG.spad" 402887 402899 404898 404903) (-292 "ELABOR.spad" 402233 402241 402877 402882) (-291 "ELABEXPR.spad" 401165 401173 402223 402228) (-290 "EFUPXS.spad" 397941 397971 401121 401126) (-289 "EFULS.spad" 394777 394800 397897 397902) (-288 "EFSTRUC.spad" 392792 392808 394767 394772) (-287 "EF.spad" 387568 387584 392782 392787) (-286 "EAB.spad" 385868 385876 387558 387563) (-285 "E04UCFA.spad" 385404 385412 385858 385863) (-284 "E04NAFA.spad" 384981 384989 385394 385399) (-283 "E04MBFA.spad" 384561 384569 384971 384976) (-282 "E04JAFA.spad" 384097 384105 384551 384556) (-281 "E04GCFA.spad" 383633 383641 384087 384092) (-280 "E04FDFA.spad" 383169 383177 383623 383628) (-279 "E04DGFA.spad" 382705 382713 383159 383164) (-278 "E04AGNT.spad" 378579 378587 382695 382700) (-277 "DVARCAT.spad" 375469 375479 378569 378574) (-276 "DVARCAT.spad" 372357 372369 375459 375464) (-275 "DSMP.spad" 369653 369667 369958 370085) (-274 "DSEXT.spad" 368955 368965 369643 369648) (-273 "DSEXT.spad" 368161 368173 368851 368856) (-272 "DROPT1.spad" 367826 367836 368151 368156) (-271 "DROPT0.spad" 362691 362699 367816 367821) (-270 "DROPT.spad" 356650 356658 362681 362686) (-269 "DRAWPT.spad" 354823 354831 356640 356645) (-268 "DRAWHACK.spad" 354131 354141 354813 354818) (-267 "DRAWCX.spad" 351609 351617 354121 354126) (-266 "DRAWCURV.spad" 351156 351171 351599 351604) (-265 "DRAWCFUN.spad" 340688 340696 351146 351151) (-264 "DRAW.spad" 333564 333577 340678 340683) (-263 "DQAGG.spad" 331742 331752 333532 333559) (-262 "DPOLCAT.spad" 327099 327115 331610 331737) (-261 "DPOLCAT.spad" 322542 322560 327055 327060) (-260 "DPMO.spad" 314065 314081 314203 314416) (-259 "DPMM.spad" 305601 305619 305726 305939) (-258 "DOMTMPLT.spad" 305372 305380 305591 305596) (-257 "DOMCTOR.spad" 305127 305135 305362 305367) (-256 "DOMAIN.spad" 304238 304246 305117 305122) (-255 "DMP.spad" 301426 301441 301996 302123) (-254 "DMEXT.spad" 301293 301303 301394 301421) (-253 "DLP.spad" 300653 300663 301283 301288) (-252 "DLIST.spad" 299058 299068 299662 299689) (-251 "DLAGG.spad" 297475 297485 299048 299053) (-250 "DIVRING.spad" 297017 297025 297419 297470) (-249 "DIVRING.spad" 296603 296613 297007 297012) (-248 "DISPLAY.spad" 294793 294801 296593 296598) (-247 "DIRPROD2.spad" 293611 293629 294783 294788) (-246 "DIRPROD.spad" 280843 280859 281483 281582) (-245 "DIRPCAT.spad" 280036 280052 280739 280838) (-244 "DIRPCAT.spad" 278856 278874 279561 279566) (-243 "DIOSP.spad" 277681 277689 278846 278851) (-242 "DIOPS.spad" 276677 276687 277661 277676) (-241 "DIOPS.spad" 275647 275659 276633 276638) (-240 "DIFRING.spad" 275485 275493 275627 275642) (-239 "DIFFSPC.spad" 275064 275072 275475 275480) (-238 "DIFFSPC.spad" 274641 274651 275054 275059) (-237 "DIFFMOD.spad" 274130 274140 274609 274636) (-236 "DIFFDOM.spad" 273295 273306 274120 274125) (-235 "DIFFDOM.spad" 272458 272471 273285 273290) (-234 "DIFEXT.spad" 272277 272287 272438 272453) (-233 "DIAGG.spad" 271907 271917 272257 272272) (-232 "DIAGG.spad" 271545 271557 271897 271902) (-231 "DHMATRIX.spad" 269728 269738 270873 270900) (-230 "DFSFUN.spad" 263368 263376 269718 269723) (-229 "DFLOAT.spad" 259975 259983 263258 263363) (-228 "DFINTTLS.spad" 258206 258222 259965 259970) (-227 "DERHAM.spad" 256120 256152 258186 258201) (-226 "DEQUEUE.spad" 255315 255325 255598 255625) (-225 "DEGRED.spad" 254932 254946 255305 255310) (-224 "DEFINTRF.spad" 252514 252524 254922 254927) (-223 "DEFINTEF.spad" 251052 251068 252504 252509) (-222 "DEFAST.spad" 250436 250444 251042 251047) (-221 "DECIMAL.spad" 248400 248408 248761 248854) (-220 "DDFACT.spad" 246221 246238 248390 248395) (-219 "DBLRESP.spad" 245821 245845 246211 246216) (-218 "DBASIS.spad" 245447 245462 245811 245816) (-217 "DBASE.spad" 244111 244121 245437 245442) (-216 "DATAARY.spad" 243597 243610 244101 244106) (-215 "D03FAFA.spad" 243425 243433 243587 243592) (-214 "D03EEFA.spad" 243245 243253 243415 243420) (-213 "D03AGNT.spad" 242331 242339 243235 243240) (-212 "D02EJFA.spad" 241793 241801 242321 242326) (-211 "D02CJFA.spad" 241271 241279 241783 241788) (-210 "D02BHFA.spad" 240761 240769 241261 241266) (-209 "D02BBFA.spad" 240251 240259 240751 240756) (-208 "D02AGNT.spad" 235121 235129 240241 240246) (-207 "D01WGTS.spad" 233440 233448 235111 235116) (-206 "D01TRNS.spad" 233417 233425 233430 233435) (-205 "D01GBFA.spad" 232939 232947 233407 233412) (-204 "D01FCFA.spad" 232461 232469 232929 232934) (-203 "D01ASFA.spad" 231929 231937 232451 232456) (-202 "D01AQFA.spad" 231383 231391 231919 231924) (-201 "D01APFA.spad" 230823 230831 231373 231378) (-200 "D01ANFA.spad" 230317 230325 230813 230818) (-199 "D01AMFA.spad" 229827 229835 230307 230312) (-198 "D01ALFA.spad" 229367 229375 229817 229822) (-197 "D01AKFA.spad" 228893 228901 229357 229362) (-196 "D01AJFA.spad" 228416 228424 228883 228888) (-195 "D01AGNT.spad" 224483 224491 228406 228411) (-194 "CYCLOTOM.spad" 223989 223997 224473 224478) (-193 "CYCLES.spad" 220781 220789 223979 223984) (-192 "CVMP.spad" 220198 220208 220771 220776) (-191 "CTRIGMNP.spad" 218698 218714 220188 220193) (-190 "CTORKIND.spad" 218301 218309 218688 218693) (-189 "CTORCAT.spad" 217542 217550 218291 218296) (-188 "CTORCAT.spad" 216781 216791 217532 217537) (-187 "CTORCALL.spad" 216370 216380 216771 216776) (-186 "CTOR.spad" 216061 216069 216360 216365) (-185 "CSTTOOLS.spad" 215306 215319 216051 216056) (-184 "CRFP.spad" 209078 209091 215296 215301) (-183 "CRCEAST.spad" 208798 208806 209068 209073) (-182 "CRAPACK.spad" 207865 207875 208788 208793) (-181 "CPMATCH.spad" 207366 207381 207787 207792) (-180 "CPIMA.spad" 207071 207090 207356 207361) (-179 "COORDSYS.spad" 202080 202090 207061 207066) (-178 "CONTOUR.spad" 201507 201515 202070 202075) (-177 "CONTFRAC.spad" 197257 197267 201409 201502) (-176 "CONDUIT.spad" 197015 197023 197247 197252) (-175 "COMRING.spad" 196689 196697 196953 197010) (-174 "COMPPROP.spad" 196207 196215 196679 196684) (-173 "COMPLPAT.spad" 195974 195989 196197 196202) (-172 "COMPLEX2.spad" 195689 195701 195964 195969) (-171 "COMPLEX.spad" 191036 191046 191280 191541) (-170 "COMPILER.spad" 190585 190593 191026 191031) (-169 "COMPFACT.spad" 190187 190201 190575 190580) (-168 "COMPCAT.spad" 188259 188269 189921 190182) (-167 "COMPCAT.spad" 186056 186068 187720 187725) (-166 "COMMUPC.spad" 185804 185822 186046 186051) (-165 "COMMONOP.spad" 185337 185345 185794 185799) (-164 "COMMAAST.spad" 185100 185108 185327 185332) (-163 "COMM.spad" 184911 184919 185090 185095) (-162 "COMBOPC.spad" 183834 183842 184901 184906) (-161 "COMBINAT.spad" 182601 182611 183824 183829) (-160 "COMBF.spad" 180023 180039 182591 182596) (-159 "COLOR.spad" 178860 178868 180013 180018) (-158 "COLONAST.spad" 178526 178534 178850 178855) (-157 "CMPLXRT.spad" 178237 178254 178516 178521) (-156 "CLLCTAST.spad" 177899 177907 178227 178232) (-155 "CLIP.spad" 174007 174015 177889 177894) (-154 "CLIF.spad" 172662 172678 173963 174002) (-153 "CLAGG.spad" 169199 169209 172652 172657) (-152 "CLAGG.spad" 165604 165616 169059 169064) (-151 "CINTSLPE.spad" 164959 164972 165594 165599) (-150 "CHVAR.spad" 163097 163119 164949 164954) (-149 "CHARZ.spad" 163012 163020 163077 163092) (-148 "CHARPOL.spad" 162538 162548 163002 163007) (-147 "CHARNZ.spad" 162300 162308 162518 162533) (-146 "CHAR.spad" 159668 159676 162290 162295) (-145 "CFCAT.spad" 158996 159004 159658 159663) (-144 "CDEN.spad" 158216 158230 158986 158991) (-143 "CCLASS.spad" 156312 156320 157574 157613) (-142 "CATEGORY.spad" 155386 155394 156302 156307) (-141 "CATCTOR.spad" 155277 155285 155376 155381) (-140 "CATAST.spad" 154903 154911 155267 155272) (-139 "CASEAST.spad" 154617 154625 154893 154898) (-138 "CARTEN2.spad" 154007 154034 154607 154612) (-137 "CARTEN.spad" 149374 149398 153997 154002) (-136 "CARD.spad" 146669 146677 149348 149369) (-135 "CAPSLAST.spad" 146451 146459 146659 146664) (-134 "CACHSET.spad" 146075 146083 146441 146446) (-133 "CABMON.spad" 145630 145638 146065 146070) (-132 "BYTEORD.spad" 145305 145313 145620 145625) (-131 "BYTEBUF.spad" 143006 143014 144292 144319) (-130 "BYTE.spad" 142481 142489 142996 143001) (-129 "BTREE.spad" 141425 141435 141959 141986) (-128 "BTOURN.spad" 140301 140311 140903 140930) (-127 "BTCAT.spad" 139693 139703 140269 140296) (-126 "BTCAT.spad" 139105 139117 139683 139688) (-125 "BTAGG.spad" 138571 138579 139073 139100) (-124 "BTAGG.spad" 138057 138067 138561 138566) (-123 "BSTREE.spad" 136669 136679 137535 137562) (-122 "BRILL.spad" 134874 134885 136659 136664) (-121 "BRAGG.spad" 133830 133840 134864 134869) (-120 "BRAGG.spad" 132750 132762 133786 133791) (-119 "BPADICRT.spad" 130575 130587 130822 130915) (-118 "BPADIC.spad" 130247 130259 130501 130570) (-117 "BOUNDZRO.spad" 129903 129920 130237 130242) (-116 "BOP1.spad" 127361 127371 129893 129898) (-115 "BOP.spad" 122503 122511 127351 127356) (-114 "BOOLEAN.spad" 122051 122059 122493 122498) (-113 "BOOLE.spad" 121701 121709 122041 122046) (-112 "BOOLE.spad" 121349 121359 121691 121696) (-111 "BMODULE.spad" 121061 121073 121317 121344) (-110 "BITS.spad" 120435 120443 120650 120677) (-109 "BINDING.spad" 119856 119864 120425 120430) (-108 "BINARY.spad" 117825 117833 118181 118274) (-107 "BGAGG.spad" 117030 117040 117805 117820) (-106 "BGAGG.spad" 116243 116255 117020 117025) (-105 "BFUNCT.spad" 115807 115815 116223 116238) (-104 "BEZOUT.spad" 114947 114974 115757 115762) (-103 "BBTREE.spad" 111695 111705 114425 114452) (-102 "BASTYPE.spad" 111194 111202 111685 111690) (-101 "BASTYPE.spad" 110691 110701 111184 111189) (-100 "BALFACT.spad" 110150 110163 110681 110686) (-99 "AUTOMOR.spad" 109601 109610 110130 110145) (-98 "ATTREG.spad" 106324 106331 109353 109596) (-97 "ATTRBUT.spad" 102347 102354 106304 106319) (-96 "ATTRAST.spad" 102064 102071 102337 102342) (-95 "ATRIG.spad" 101534 101541 102054 102059) (-94 "ATRIG.spad" 101002 101011 101524 101529) (-93 "ASTCAT.spad" 100906 100913 100992 100997) (-92 "ASTCAT.spad" 100808 100817 100896 100901) (-91 "ASTACK.spad" 100018 100027 100286 100313) (-90 "ASSOCEQ.spad" 98852 98863 99974 99979) (-89 "ASP9.spad" 97933 97946 98842 98847) (-88 "ASP80.spad" 97255 97268 97923 97928) (-87 "ASP8.spad" 96298 96311 97245 97250) (-86 "ASP78.spad" 95749 95762 96288 96293) (-85 "ASP77.spad" 95118 95131 95739 95744) (-84 "ASP74.spad" 94210 94223 95108 95113) (-83 "ASP73.spad" 93481 93494 94200 94205) (-82 "ASP7.spad" 92641 92654 93471 93476) (-81 "ASP6.spad" 91508 91521 92631 92636) (-80 "ASP55.spad" 90017 90030 91498 91503) (-79 "ASP50.spad" 87834 87847 90007 90012) (-78 "ASP49.spad" 86833 86846 87824 87829) (-77 "ASP42.spad" 85248 85287 86823 86828) (-76 "ASP41.spad" 83835 83874 85238 85243) (-75 "ASP4.spad" 83130 83143 83825 83830) (-74 "ASP35.spad" 82118 82131 83120 83125) (-73 "ASP34.spad" 81419 81432 82108 82113) (-72 "ASP33.spad" 80979 80992 81409 81414) (-71 "ASP31.spad" 80119 80132 80969 80974) (-70 "ASP30.spad" 79011 79024 80109 80114) (-69 "ASP29.spad" 78477 78490 79001 79006) (-68 "ASP28.spad" 69750 69763 78467 78472) (-67 "ASP27.spad" 68647 68660 69740 69745) (-66 "ASP24.spad" 67734 67747 68637 68642) (-65 "ASP20.spad" 67198 67211 67724 67729) (-64 "ASP19.spad" 61884 61897 67188 67193) (-63 "ASP12.spad" 61298 61311 61874 61879) (-62 "ASP10.spad" 60569 60582 61288 61293) (-61 "ASP1.spad" 59950 59963 60559 60564) (-60 "ARRAY2.spad" 59189 59198 59428 59455) (-59 "ARRAY12.spad" 57902 57913 59179 59184) (-58 "ARRAY1.spad" 56565 56574 56911 56938) (-57 "ARR2CAT.spad" 52347 52368 56533 56560) (-56 "ARR2CAT.spad" 48149 48172 52337 52342) (-55 "ARITY.spad" 47521 47528 48139 48144) (-54 "APPRULE.spad" 46805 46827 47511 47516) (-53 "APPLYORE.spad" 46424 46437 46795 46800) (-52 "ANY1.spad" 45495 45504 46414 46419) (-51 "ANY.spad" 44346 44353 45485 45490) (-50 "ANTISYM.spad" 42791 42807 44326 44341) (-49 "ANON.spad" 42500 42507 42781 42786) (-48 "AN.spad" 40806 40813 42313 42406) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file +((-3 NIL 2275956 2275961 2275966 2275971) (-2 NIL 2275936 2275941 2275946 2275951) (-1 NIL 2275916 2275921 2275926 2275931) (0 NIL 2275896 2275901 2275906 2275911) (-1317 "ZMOD.spad" 2275705 2275718 2275834 2275891) (-1316 "ZLINDEP.spad" 2274803 2274814 2275695 2275700) (-1315 "ZDSOLVE.spad" 2264763 2264785 2274793 2274798) (-1314 "YSTREAM.spad" 2264258 2264269 2264753 2264758) (-1313 "YDIAGRAM.spad" 2263892 2263901 2264248 2264253) (-1312 "XRPOLY.spad" 2263112 2263132 2263748 2263817) (-1311 "XPR.spad" 2260907 2260920 2262830 2262929) (-1310 "XPOLYC.spad" 2260226 2260242 2260833 2260902) (-1309 "XPOLY.spad" 2259781 2259792 2260082 2260151) (-1308 "XPBWPOLY.spad" 2258220 2258240 2259555 2259624) (-1307 "XFALG.spad" 2255268 2255284 2258146 2258215) (-1306 "XF.spad" 2253731 2253746 2255170 2255263) (-1305 "XF.spad" 2252174 2252191 2253615 2253620) (-1304 "XEXPPKG.spad" 2251433 2251459 2252164 2252169) (-1303 "XDPOLY.spad" 2251047 2251063 2251289 2251358) (-1302 "XALG.spad" 2250715 2250726 2251003 2251042) (-1301 "WUTSET.spad" 2246685 2246702 2250316 2250343) (-1300 "WP.spad" 2245892 2245936 2246543 2246610) (-1299 "WHILEAST.spad" 2245690 2245699 2245882 2245887) (-1298 "WHEREAST.spad" 2245361 2245370 2245680 2245685) (-1297 "WFFINTBS.spad" 2243024 2243046 2245351 2245356) (-1296 "WEIER.spad" 2241246 2241257 2243014 2243019) (-1295 "VSPACE.spad" 2240919 2240930 2241214 2241241) (-1294 "VSPACE.spad" 2240612 2240625 2240909 2240914) (-1293 "VOID.spad" 2240289 2240298 2240602 2240607) (-1292 "VIEWDEF.spad" 2235490 2235499 2240279 2240284) (-1291 "VIEW3D.spad" 2219451 2219460 2235480 2235485) (-1290 "VIEW2D.spad" 2207350 2207359 2219441 2219446) (-1289 "VIEW.spad" 2205070 2205079 2207340 2207345) (-1288 "VECTOR2.spad" 2203709 2203722 2205060 2205065) (-1287 "VECTOR.spad" 2202209 2202220 2202460 2202487) (-1286 "VECTCAT.spad" 2200121 2200132 2202177 2202204) (-1285 "VECTCAT.spad" 2197840 2197853 2199898 2199903) (-1284 "VARIABLE.spad" 2197620 2197635 2197830 2197835) (-1283 "UTYPE.spad" 2197264 2197273 2197610 2197615) (-1282 "UTSODETL.spad" 2196559 2196583 2197220 2197225) (-1281 "UTSODE.spad" 2194775 2194795 2196549 2196554) (-1280 "UTSCAT.spad" 2192254 2192270 2194673 2194770) (-1279 "UTSCAT.spad" 2189353 2189371 2191774 2191779) (-1278 "UTS2.spad" 2188948 2188983 2189343 2189348) (-1277 "UTS.spad" 2183826 2183854 2187346 2187443) (-1276 "URAGG.spad" 2178547 2178558 2183816 2183821) (-1275 "URAGG.spad" 2173232 2173245 2178503 2178508) (-1274 "UPXSSING.spad" 2170850 2170876 2172286 2172419) (-1273 "UPXSCONS.spad" 2168528 2168548 2168901 2169050) (-1272 "UPXSCCA.spad" 2167099 2167119 2168374 2168523) (-1271 "UPXSCCA.spad" 2165812 2165834 2167089 2167094) (-1270 "UPXSCAT.spad" 2164401 2164417 2165658 2165807) (-1269 "UPXS2.spad" 2163944 2163997 2164391 2164396) (-1268 "UPXS.spad" 2161159 2161187 2161995 2162144) (-1267 "UPSQFREE.spad" 2159574 2159588 2161149 2161154) (-1266 "UPSCAT.spad" 2157369 2157393 2159472 2159569) (-1265 "UPSCAT.spad" 2154849 2154875 2156954 2156959) (-1264 "UPOLYC2.spad" 2154320 2154339 2154839 2154844) (-1263 "UPOLYC.spad" 2149400 2149411 2154162 2154315) (-1262 "UPOLYC.spad" 2144366 2144379 2149130 2149135) (-1261 "UPMP.spad" 2143298 2143311 2144356 2144361) (-1260 "UPDIVP.spad" 2142863 2142877 2143288 2143293) (-1259 "UPDECOMP.spad" 2141124 2141138 2142853 2142858) (-1258 "UPCDEN.spad" 2140341 2140357 2141114 2141119) (-1257 "UP2.spad" 2139705 2139726 2140331 2140336) (-1256 "UP.spad" 2136733 2136748 2137120 2137273) (-1255 "UNISEG2.spad" 2136230 2136243 2136689 2136694) (-1254 "UNISEG.spad" 2135583 2135594 2136149 2136154) (-1253 "UNIFACT.spad" 2134686 2134698 2135573 2135578) (-1252 "ULSCONS.spad" 2125598 2125618 2125968 2126117) (-1251 "ULSCCAT.spad" 2123335 2123355 2125444 2125593) (-1250 "ULSCCAT.spad" 2121180 2121202 2123291 2123296) (-1249 "ULSCAT.spad" 2119420 2119436 2121026 2121175) (-1248 "ULS2.spad" 2118934 2118987 2119410 2119415) (-1247 "ULS.spad" 2108505 2108533 2109450 2109879) (-1246 "UINT8.spad" 2108382 2108391 2108495 2108500) (-1245 "UINT64.spad" 2108258 2108267 2108372 2108377) (-1244 "UINT32.spad" 2108134 2108143 2108248 2108253) (-1243 "UINT16.spad" 2108010 2108019 2108124 2108129) (-1242 "UFD.spad" 2107075 2107084 2107936 2108005) (-1241 "UFD.spad" 2106202 2106213 2107065 2107070) (-1240 "UDVO.spad" 2105083 2105092 2106192 2106197) (-1239 "UDPO.spad" 2102664 2102675 2105039 2105044) (-1238 "TYPEAST.spad" 2102583 2102592 2102654 2102659) (-1237 "TYPE.spad" 2102515 2102524 2102573 2102578) (-1236 "TWOFACT.spad" 2101167 2101182 2102505 2102510) (-1235 "TUPLE.spad" 2100658 2100669 2101063 2101068) (-1234 "TUBETOOL.spad" 2097525 2097534 2100648 2100653) (-1233 "TUBE.spad" 2096172 2096189 2097515 2097520) (-1232 "TSETCAT.spad" 2084243 2084260 2096140 2096167) (-1231 "TSETCAT.spad" 2072300 2072319 2084199 2084204) (-1230 "TS.spad" 2070893 2070909 2071859 2071956) (-1229 "TRMANIP.spad" 2065257 2065274 2070581 2070586) (-1228 "TRIMAT.spad" 2064220 2064245 2065247 2065252) (-1227 "TRIGMNIP.spad" 2062747 2062764 2064210 2064215) (-1226 "TRIGCAT.spad" 2062259 2062268 2062737 2062742) (-1225 "TRIGCAT.spad" 2061769 2061780 2062249 2062254) (-1224 "TREE.spad" 2060215 2060226 2061247 2061274) (-1223 "TRANFUN.spad" 2060054 2060063 2060205 2060210) (-1222 "TRANFUN.spad" 2059891 2059902 2060044 2060049) (-1221 "TOPSP.spad" 2059565 2059574 2059881 2059886) (-1220 "TOOLSIGN.spad" 2059228 2059239 2059555 2059560) (-1219 "TEXTFILE.spad" 2057789 2057798 2059218 2059223) (-1218 "TEX1.spad" 2057345 2057356 2057779 2057784) (-1217 "TEX.spad" 2054539 2054548 2057335 2057340) (-1216 "TEMUTL.spad" 2054094 2054103 2054529 2054534) (-1215 "TBCMPPK.spad" 2052195 2052218 2054084 2054089) (-1214 "TBAGG.spad" 2051253 2051276 2052175 2052190) (-1213 "TBAGG.spad" 2050319 2050344 2051243 2051248) (-1212 "TANEXP.spad" 2049727 2049738 2050309 2050314) (-1211 "TALGOP.spad" 2049451 2049462 2049717 2049722) (-1210 "TABLEAU.spad" 2048932 2048943 2049441 2049446) (-1209 "TABLE.spad" 2046865 2046888 2047135 2047162) (-1208 "TABLBUMP.spad" 2043644 2043655 2046855 2046860) (-1207 "SYSTEM.spad" 2042872 2042881 2043634 2043639) (-1206 "SYSSOLP.spad" 2040355 2040366 2042862 2042867) (-1205 "SYSPTR.spad" 2040254 2040263 2040345 2040350) (-1204 "SYSNNI.spad" 2039477 2039488 2040244 2040249) (-1203 "SYSINT.spad" 2038881 2038892 2039467 2039472) (-1202 "SYNTAX.spad" 2035215 2035224 2038871 2038876) (-1201 "SYMTAB.spad" 2033283 2033292 2035205 2035210) (-1200 "SYMS.spad" 2029312 2029321 2033273 2033278) (-1199 "SYMPOLY.spad" 2028292 2028303 2028374 2028501) (-1198 "SYMFUNC.spad" 2027793 2027804 2028282 2028287) (-1197 "SYMBOL.spad" 2025288 2025297 2027783 2027788) (-1196 "SWITCH.spad" 2022059 2022068 2025278 2025283) (-1195 "SUTS.spad" 2019038 2019066 2020457 2020554) (-1194 "SUPXS.spad" 2016240 2016268 2017089 2017238) (-1193 "SUPFRACF.spad" 2015345 2015363 2016230 2016235) (-1192 "SUP2.spad" 2014737 2014750 2015335 2015340) (-1191 "SUP.spad" 2011379 2011390 2012152 2012305) (-1190 "SUMRF.spad" 2010353 2010364 2011369 2011374) (-1189 "SUMFS.spad" 2009982 2009999 2010343 2010348) (-1188 "SULS.spad" 1999540 1999568 2000498 2000927) (-1187 "SUCHTAST.spad" 1999309 1999318 1999530 1999535) (-1186 "SUCH.spad" 1998999 1999014 1999299 1999304) (-1185 "SUBSPACE.spad" 1991130 1991145 1998989 1998994) (-1184 "SUBRESP.spad" 1990300 1990314 1991086 1991091) (-1183 "STTFNC.spad" 1986768 1986784 1990290 1990295) (-1182 "STTF.spad" 1982867 1982883 1986758 1986763) (-1181 "STTAYLOR.spad" 1975512 1975523 1982742 1982747) (-1180 "STRTBL.spad" 1973527 1973544 1973676 1973703) (-1179 "STRING.spad" 1972129 1972138 1972514 1972541) (-1178 "STREAM3.spad" 1971702 1971717 1972119 1972124) (-1177 "STREAM2.spad" 1970830 1970843 1971692 1971697) (-1176 "STREAM1.spad" 1970536 1970547 1970820 1970825) (-1175 "STREAM.spad" 1967322 1967333 1969929 1969944) (-1174 "STINPROD.spad" 1966258 1966274 1967312 1967317) (-1173 "STEPAST.spad" 1965492 1965501 1966248 1966253) (-1172 "STEP.spad" 1964809 1964818 1965482 1965487) (-1171 "STBL.spad" 1962857 1962885 1963024 1963039) (-1170 "STAGG.spad" 1961556 1961567 1962847 1962852) (-1169 "STAGG.spad" 1960253 1960266 1961546 1961551) (-1168 "STACK.spad" 1959481 1959492 1959731 1959758) (-1167 "SRING.spad" 1959241 1959250 1959471 1959476) (-1166 "SREGSET.spad" 1956940 1956957 1958842 1958869) (-1165 "SRDCMPK.spad" 1955517 1955537 1956930 1956935) (-1164 "SRAGG.spad" 1950700 1950709 1955485 1955512) (-1163 "SRAGG.spad" 1945903 1945914 1950690 1950695) (-1162 "SQMATRIX.spad" 1943395 1943413 1944311 1944398) (-1161 "SPLTREE.spad" 1937861 1937874 1942657 1942684) (-1160 "SPLNODE.spad" 1934481 1934494 1937851 1937856) (-1159 "SPFCAT.spad" 1933290 1933299 1934471 1934476) (-1158 "SPECOUT.spad" 1931842 1931851 1933280 1933285) (-1157 "SPADXPT.spad" 1923933 1923942 1931832 1931837) (-1156 "spad-parser.spad" 1923398 1923407 1923923 1923928) (-1155 "SPADAST.spad" 1923099 1923108 1923388 1923393) (-1154 "SPACEC.spad" 1907314 1907325 1923089 1923094) (-1153 "SPACE3.spad" 1907090 1907101 1907304 1907309) (-1152 "SORTPAK.spad" 1906639 1906652 1907046 1907051) (-1151 "SOLVETRA.spad" 1904402 1904413 1906629 1906634) (-1150 "SOLVESER.spad" 1902858 1902869 1904392 1904397) (-1149 "SOLVERAD.spad" 1898884 1898895 1902848 1902853) (-1148 "SOLVEFOR.spad" 1897346 1897364 1898874 1898879) (-1147 "SNTSCAT.spad" 1896946 1896963 1897314 1897341) (-1146 "SMTS.spad" 1895228 1895254 1896505 1896602) (-1145 "SMP.spad" 1892631 1892651 1893021 1893148) (-1144 "SMITH.spad" 1891476 1891501 1892621 1892626) (-1143 "SMATCAT.spad" 1889594 1889624 1891420 1891471) (-1142 "SMATCAT.spad" 1887644 1887676 1889472 1889477) (-1141 "SKAGG.spad" 1886613 1886624 1887612 1887639) (-1140 "SINT.spad" 1885553 1885562 1886479 1886608) (-1139 "SIMPAN.spad" 1885281 1885290 1885543 1885548) (-1138 "SIGNRF.spad" 1884406 1884417 1885271 1885276) (-1137 "SIGNEF.spad" 1883692 1883709 1884396 1884401) (-1136 "SIGAST.spad" 1883109 1883118 1883682 1883687) (-1135 "SIG.spad" 1882471 1882480 1883099 1883104) (-1134 "SHP.spad" 1880415 1880430 1882427 1882432) (-1133 "SHDP.spad" 1867770 1867797 1868287 1868386) (-1132 "SGROUP.spad" 1867378 1867387 1867760 1867765) (-1131 "SGROUP.spad" 1866984 1866995 1867368 1867373) (-1130 "SGCF.spad" 1860123 1860132 1866974 1866979) (-1129 "SFRTCAT.spad" 1859069 1859086 1860091 1860118) (-1128 "SFRGCD.spad" 1858132 1858152 1859059 1859064) (-1127 "SFQCMPK.spad" 1852945 1852965 1858122 1858127) (-1126 "SFORT.spad" 1852384 1852398 1852935 1852940) (-1125 "SEXOF.spad" 1852227 1852267 1852374 1852379) (-1124 "SEXCAT.spad" 1850055 1850095 1852217 1852222) (-1123 "SEX.spad" 1849947 1849956 1850045 1850050) (-1122 "SETMN.spad" 1848407 1848424 1849937 1849942) (-1121 "SETCAT.spad" 1847892 1847901 1848397 1848402) (-1120 "SETCAT.spad" 1847375 1847386 1847882 1847887) (-1119 "SETAGG.spad" 1843924 1843935 1847355 1847370) (-1118 "SETAGG.spad" 1840481 1840494 1843914 1843919) (-1117 "SET.spad" 1838754 1838765 1839851 1839890) (-1116 "SEQAST.spad" 1838457 1838466 1838744 1838749) (-1115 "SEGXCAT.spad" 1837613 1837626 1838447 1838452) (-1114 "SEGCAT.spad" 1836538 1836549 1837603 1837608) (-1113 "SEGBIND2.spad" 1836236 1836249 1836528 1836533) (-1112 "SEGBIND.spad" 1835994 1836005 1836183 1836188) (-1111 "SEGAST.spad" 1835724 1835733 1835984 1835989) (-1110 "SEG2.spad" 1835159 1835172 1835680 1835685) (-1109 "SEG.spad" 1834972 1834983 1835078 1835083) (-1108 "SDVAR.spad" 1834248 1834259 1834962 1834967) (-1107 "SDPOL.spad" 1831503 1831514 1831794 1831921) (-1106 "SCPKG.spad" 1829592 1829603 1831493 1831498) (-1105 "SCOPE.spad" 1828769 1828778 1829582 1829587) (-1104 "SCACHE.spad" 1827465 1827476 1828759 1828764) (-1103 "SASTCAT.spad" 1827374 1827383 1827455 1827460) (-1102 "SAOS.spad" 1827246 1827255 1827364 1827369) (-1101 "SAERFFC.spad" 1826959 1826979 1827236 1827241) (-1100 "SAEFACT.spad" 1826660 1826680 1826949 1826954) (-1099 "SAE.spad" 1824094 1824110 1824705 1824840) (-1098 "RURPK.spad" 1821753 1821769 1824084 1824089) (-1097 "RULESET.spad" 1821206 1821230 1821743 1821748) (-1096 "RULECOLD.spad" 1821058 1821071 1821196 1821201) (-1095 "RULE.spad" 1819306 1819330 1821048 1821053) (-1094 "RTVALUE.spad" 1819041 1819050 1819296 1819301) (-1093 "RSTRCAST.spad" 1818758 1818767 1819031 1819036) (-1092 "RSETGCD.spad" 1815200 1815220 1818748 1818753) (-1091 "RSETCAT.spad" 1805168 1805185 1815168 1815195) (-1090 "RSETCAT.spad" 1795156 1795175 1805158 1805163) (-1089 "RSDCMPK.spad" 1793656 1793676 1795146 1795151) (-1088 "RRCC.spad" 1792040 1792070 1793646 1793651) (-1087 "RRCC.spad" 1790422 1790454 1792030 1792035) (-1086 "RPTAST.spad" 1790124 1790133 1790412 1790417) (-1085 "RPOLCAT.spad" 1769628 1769643 1789992 1790119) (-1084 "RPOLCAT.spad" 1748827 1748844 1769193 1769198) (-1083 "ROUTINE.spad" 1744228 1744237 1746976 1747003) (-1082 "ROMAN.spad" 1743556 1743565 1744094 1744223) (-1081 "ROIRC.spad" 1742636 1742668 1743546 1743551) (-1080 "RNS.spad" 1741612 1741621 1742538 1742631) (-1079 "RNS.spad" 1740674 1740685 1741602 1741607) (-1078 "RNGBIND.spad" 1739834 1739848 1740629 1740634) (-1077 "RNG.spad" 1739569 1739578 1739824 1739829) (-1076 "RMODULE.spad" 1739350 1739361 1739559 1739564) (-1075 "RMCAT2.spad" 1738770 1738827 1739340 1739345) (-1074 "RMATRIX.spad" 1737540 1737559 1737883 1737922) (-1073 "RMATCAT.spad" 1733119 1733150 1737496 1737535) (-1072 "RMATCAT.spad" 1728588 1728621 1732967 1732972) (-1071 "RLINSET.spad" 1728292 1728303 1728578 1728583) (-1070 "RINTERP.spad" 1728180 1728200 1728282 1728287) (-1069 "RING.spad" 1727650 1727659 1728160 1728175) (-1068 "RING.spad" 1727128 1727139 1727640 1727645) (-1067 "RIDIST.spad" 1726520 1726529 1727118 1727123) (-1066 "RGCHAIN.spad" 1725041 1725057 1725935 1725962) (-1065 "RGBCSPC.spad" 1724830 1724842 1725031 1725036) (-1064 "RGBCMDL.spad" 1724392 1724404 1724820 1724825) (-1063 "RFFACTOR.spad" 1723854 1723865 1724382 1724387) (-1062 "RFFACT.spad" 1723589 1723601 1723844 1723849) (-1061 "RFDIST.spad" 1722585 1722594 1723579 1723584) (-1060 "RF.spad" 1720259 1720270 1722575 1722580) (-1059 "RETSOL.spad" 1719678 1719691 1720249 1720254) (-1058 "RETRACT.spad" 1719106 1719117 1719668 1719673) (-1057 "RETRACT.spad" 1718532 1718545 1719096 1719101) (-1056 "RETAST.spad" 1718344 1718353 1718522 1718527) (-1055 "RESULT.spad" 1715906 1715915 1716493 1716520) (-1054 "RESRING.spad" 1715253 1715300 1715844 1715901) (-1053 "RESLATC.spad" 1714577 1714588 1715243 1715248) (-1052 "REPSQ.spad" 1714308 1714319 1714567 1714572) (-1051 "REPDB.spad" 1714015 1714026 1714298 1714303) (-1050 "REP2.spad" 1703729 1703740 1713857 1713862) (-1049 "REP1.spad" 1697949 1697960 1703679 1703684) (-1048 "REP.spad" 1695503 1695512 1697939 1697944) (-1047 "REGSET.spad" 1693295 1693312 1695104 1695131) (-1046 "REF.spad" 1692630 1692641 1693250 1693255) (-1045 "REDORDER.spad" 1691836 1691853 1692620 1692625) (-1044 "RECLOS.spad" 1690595 1690615 1691299 1691392) (-1043 "REALSOLV.spad" 1689735 1689744 1690585 1690590) (-1042 "REAL0Q.spad" 1687033 1687048 1689725 1689730) (-1041 "REAL0.spad" 1683877 1683892 1687023 1687028) (-1040 "REAL.spad" 1683749 1683758 1683867 1683872) (-1039 "RDUCEAST.spad" 1683470 1683479 1683739 1683744) (-1038 "RDIV.spad" 1683125 1683150 1683460 1683465) (-1037 "RDIST.spad" 1682692 1682703 1683115 1683120) (-1036 "RDETRS.spad" 1681556 1681574 1682682 1682687) (-1035 "RDETR.spad" 1679695 1679713 1681546 1681551) (-1034 "RDEEFS.spad" 1678794 1678811 1679685 1679690) (-1033 "RDEEF.spad" 1677804 1677821 1678784 1678789) (-1032 "RCFIELD.spad" 1675022 1675031 1677706 1677799) (-1031 "RCFIELD.spad" 1672326 1672337 1675012 1675017) (-1030 "RCAGG.spad" 1670262 1670273 1672316 1672321) (-1029 "RCAGG.spad" 1668125 1668138 1670181 1670186) (-1028 "RATRET.spad" 1667485 1667496 1668115 1668120) (-1027 "RATFACT.spad" 1667177 1667189 1667475 1667480) (-1026 "RANDSRC.spad" 1666496 1666505 1667167 1667172) (-1025 "RADUTIL.spad" 1666252 1666261 1666486 1666491) (-1024 "RADIX.spad" 1663031 1663045 1664577 1664670) (-1023 "RADFF.spad" 1660734 1660771 1660853 1661009) (-1022 "RADCAT.spad" 1660329 1660338 1660724 1660729) (-1021 "RADCAT.spad" 1659922 1659933 1660319 1660324) (-1020 "QUEUE.spad" 1659141 1659152 1659400 1659427) (-1019 "QUATCT2.spad" 1658761 1658780 1659131 1659136) (-1018 "QUATCAT.spad" 1656931 1656942 1658691 1658756) (-1017 "QUATCAT.spad" 1654849 1654862 1656611 1656616) (-1016 "QUAT.spad" 1653301 1653312 1653644 1653709) (-1015 "QUAGG.spad" 1652134 1652145 1653269 1653296) (-1014 "QQUTAST.spad" 1651902 1651911 1652124 1652129) (-1013 "QFORM.spad" 1651520 1651535 1651892 1651897) (-1012 "QFCAT2.spad" 1651212 1651229 1651510 1651515) (-1011 "QFCAT.spad" 1649914 1649925 1651114 1651207) (-1010 "QFCAT.spad" 1648198 1648211 1649400 1649405) (-1009 "QEQUAT.spad" 1647756 1647765 1648188 1648193) (-1008 "QCMPACK.spad" 1642670 1642690 1647746 1647751) (-1007 "QALGSET2.spad" 1640665 1640684 1642660 1642665) (-1006 "QALGSET.spad" 1636769 1636802 1640579 1640584) (-1005 "PWFFINTB.spad" 1634184 1634206 1636759 1636764) (-1004 "PUSHVAR.spad" 1633522 1633542 1634174 1634179) (-1003 "PTRANFN.spad" 1629657 1629668 1633512 1633517) (-1002 "PTPACK.spad" 1626744 1626755 1629647 1629652) (-1001 "PTFUNC2.spad" 1626566 1626581 1626734 1626739) (-1000 "PTCAT.spad" 1625820 1625831 1626534 1626561) (-999 "PSQFR.spad" 1625135 1625159 1625810 1625815) (-998 "PSEUDLIN.spad" 1624021 1624031 1625125 1625130) (-997 "PSETPK.spad" 1610726 1610742 1623899 1623904) (-996 "PSETCAT.spad" 1605126 1605149 1610706 1610721) (-995 "PSETCAT.spad" 1599500 1599525 1605082 1605087) (-994 "PSCURVE.spad" 1598499 1598507 1599490 1599495) (-993 "PSCAT.spad" 1597282 1597311 1598397 1598494) (-992 "PSCAT.spad" 1596155 1596186 1597272 1597277) (-991 "PRTITION.spad" 1594853 1594861 1596145 1596150) (-990 "PRTDAST.spad" 1594572 1594580 1594843 1594848) (-989 "PRS.spad" 1584190 1584207 1594528 1594533) (-988 "PRQAGG.spad" 1583625 1583635 1584158 1584185) (-987 "PROPLOG.spad" 1583229 1583237 1583615 1583620) (-986 "PROPFUN2.spad" 1582852 1582865 1583219 1583224) (-985 "PROPFUN1.spad" 1582258 1582269 1582842 1582847) (-984 "PROPFRML.spad" 1580826 1580837 1582248 1582253) (-983 "PROPERTY.spad" 1580322 1580330 1580816 1580821) (-982 "PRODUCT.spad" 1578004 1578016 1578288 1578343) (-981 "PRINT.spad" 1577756 1577764 1577994 1577999) (-980 "PRIMES.spad" 1576017 1576027 1577746 1577751) (-979 "PRIMELT.spad" 1574138 1574152 1576007 1576012) (-978 "PRIMCAT.spad" 1573781 1573789 1574128 1574133) (-977 "PRIMARR2.spad" 1572548 1572560 1573771 1573776) (-976 "PRIMARR.spad" 1571387 1571397 1571557 1571584) (-975 "PREASSOC.spad" 1570769 1570781 1571377 1571382) (-974 "PR.spad" 1569134 1569146 1569833 1569960) (-973 "PPCURVE.spad" 1568271 1568279 1569124 1569129) (-972 "PORTNUM.spad" 1568062 1568070 1568261 1568266) (-971 "POLYROOT.spad" 1566911 1566933 1568018 1568023) (-970 "POLYLIFT.spad" 1566176 1566199 1566901 1566906) (-969 "POLYCATQ.spad" 1564302 1564324 1566166 1566171) (-968 "POLYCAT.spad" 1557804 1557825 1564170 1564297) (-967 "POLYCAT.spad" 1550602 1550625 1556970 1556975) (-966 "POLY2UP.spad" 1550054 1550068 1550592 1550597) (-965 "POLY2.spad" 1549651 1549663 1550044 1550049) (-964 "POLY.spad" 1546914 1546924 1547429 1547556) (-963 "POLUTIL.spad" 1545879 1545908 1546870 1546875) (-962 "POLTOPOL.spad" 1544627 1544642 1545869 1545874) (-961 "POINT.spad" 1543291 1543301 1543378 1543405) (-960 "PNTHEORY.spad" 1539993 1540001 1543281 1543286) (-959 "PMTOOLS.spad" 1538768 1538782 1539983 1539988) (-958 "PMSYM.spad" 1538317 1538327 1538758 1538763) (-957 "PMQFCAT.spad" 1537908 1537922 1538307 1538312) (-956 "PMPREDFS.spad" 1537370 1537392 1537898 1537903) (-955 "PMPRED.spad" 1536857 1536871 1537360 1537365) (-954 "PMPLCAT.spad" 1535934 1535952 1536786 1536791) (-953 "PMLSAGG.spad" 1535519 1535533 1535924 1535929) (-952 "PMKERNEL.spad" 1535098 1535110 1535509 1535514) (-951 "PMINS.spad" 1534678 1534688 1535088 1535093) (-950 "PMFS.spad" 1534255 1534273 1534668 1534673) (-949 "PMDOWN.spad" 1533545 1533559 1534245 1534250) (-948 "PMASSFS.spad" 1532520 1532536 1533535 1533540) (-947 "PMASS.spad" 1531538 1531546 1532510 1532515) (-946 "PLOTTOOL.spad" 1531318 1531326 1531528 1531533) (-945 "PLOT3D.spad" 1527782 1527790 1531308 1531313) (-944 "PLOT1.spad" 1526955 1526965 1527772 1527777) (-943 "PLOT.spad" 1521878 1521886 1526945 1526950) (-942 "PLEQN.spad" 1509280 1509307 1521868 1521873) (-941 "PINTERPA.spad" 1509064 1509080 1509270 1509275) (-940 "PINTERP.spad" 1508686 1508705 1509054 1509059) (-939 "PID.spad" 1507660 1507668 1508612 1508681) (-938 "PICOERCE.spad" 1507317 1507327 1507650 1507655) (-937 "PI.spad" 1506934 1506942 1507291 1507312) (-936 "PGROEB.spad" 1505543 1505557 1506924 1506929) (-935 "PGE.spad" 1497216 1497224 1505533 1505538) (-934 "PGCD.spad" 1496170 1496187 1497206 1497211) (-933 "PFRPAC.spad" 1495319 1495329 1496160 1496165) (-932 "PFR.spad" 1492022 1492032 1495221 1495314) (-931 "PFOTOOLS.spad" 1491280 1491296 1492012 1492017) (-930 "PFOQ.spad" 1490650 1490668 1491270 1491275) (-929 "PFO.spad" 1490069 1490096 1490640 1490645) (-928 "PFECAT.spad" 1487779 1487787 1489995 1490064) (-927 "PFECAT.spad" 1485517 1485527 1487735 1487740) (-926 "PFBRU.spad" 1483405 1483417 1485507 1485512) (-925 "PFBR.spad" 1480965 1480988 1483395 1483400) (-924 "PF.spad" 1480539 1480551 1480770 1480863) (-923 "PERMGRP.spad" 1475309 1475319 1480529 1480534) (-922 "PERMCAT.spad" 1473970 1473980 1475289 1475304) (-921 "PERMAN.spad" 1472526 1472540 1473960 1473965) (-920 "PERM.spad" 1468333 1468343 1472356 1472371) (-919 "PENDTREE.spad" 1467553 1467563 1467833 1467838) (-918 "PDSPC.spad" 1466366 1466376 1467543 1467548) (-917 "PDSPC.spad" 1465177 1465189 1466356 1466361) (-916 "PDRING.spad" 1465019 1465029 1465157 1465172) (-915 "PDMOD.spad" 1464835 1464847 1464987 1465014) (-914 "PDEPROB.spad" 1463850 1463858 1464825 1464830) (-913 "PDEPACK.spad" 1457986 1457994 1463840 1463845) (-912 "PDECOMP.spad" 1457456 1457473 1457976 1457981) (-911 "PDECAT.spad" 1455812 1455820 1457446 1457451) (-910 "PDDOM.spad" 1455250 1455263 1455802 1455807) (-909 "PDDOM.spad" 1454686 1454701 1455240 1455245) (-908 "PCOMP.spad" 1454539 1454552 1454676 1454681) (-907 "PBWLB.spad" 1453135 1453152 1454529 1454534) (-906 "PATTERN2.spad" 1452873 1452885 1453125 1453130) (-905 "PATTERN1.spad" 1451217 1451233 1452863 1452868) (-904 "PATTERN.spad" 1445788 1445798 1451207 1451212) (-903 "PATRES2.spad" 1445460 1445474 1445778 1445783) (-902 "PATRES.spad" 1443043 1443055 1445450 1445455) (-901 "PATMATCH.spad" 1441231 1441262 1442742 1442747) (-900 "PATMAB.spad" 1440660 1440670 1441221 1441226) (-899 "PATLRES.spad" 1439746 1439760 1440650 1440655) (-898 "PATAB.spad" 1439510 1439520 1439736 1439741) (-897 "PARTPERM.spad" 1437566 1437574 1439500 1439505) (-896 "PARSURF.spad" 1437000 1437028 1437556 1437561) (-895 "PARSU2.spad" 1436797 1436813 1436990 1436995) (-894 "script-parser.spad" 1436317 1436325 1436787 1436792) (-893 "PARSCURV.spad" 1435751 1435779 1436307 1436312) (-892 "PARSC2.spad" 1435542 1435558 1435741 1435746) (-891 "PARPCURV.spad" 1435004 1435032 1435532 1435537) (-890 "PARPC2.spad" 1434795 1434811 1434994 1434999) (-889 "PARAMAST.spad" 1433923 1433931 1434785 1434790) (-888 "PAN2EXPR.spad" 1433335 1433343 1433913 1433918) (-887 "PALETTE.spad" 1432321 1432329 1433325 1433330) (-886 "PAIR.spad" 1431328 1431341 1431897 1431902) (-885 "PADICRC.spad" 1428532 1428550 1429695 1429788) (-884 "PADICRAT.spad" 1426391 1426403 1426604 1426697) (-883 "PADICCT.spad" 1424940 1424952 1426317 1426386) (-882 "PADIC.spad" 1424643 1424655 1424866 1424935) (-881 "PADEPAC.spad" 1423332 1423351 1424633 1424638) (-880 "PADE.spad" 1422084 1422100 1423322 1423327) (-879 "OWP.spad" 1421332 1421362 1421942 1422009) (-878 "OVERSET.spad" 1420905 1420913 1421322 1421327) (-877 "OVAR.spad" 1420686 1420709 1420895 1420900) (-876 "OUTFORM.spad" 1410094 1410102 1420676 1420681) (-875 "OUTBFILE.spad" 1409528 1409536 1410084 1410089) (-874 "OUTBCON.spad" 1408598 1408606 1409518 1409523) (-873 "OUTBCON.spad" 1407666 1407676 1408588 1408593) (-872 "OUT.spad" 1406784 1406792 1407656 1407661) (-871 "OSI.spad" 1406259 1406267 1406774 1406779) (-870 "OSGROUP.spad" 1406177 1406185 1406249 1406254) (-869 "ORTHPOL.spad" 1404656 1404666 1406088 1406093) (-868 "OREUP.spad" 1404100 1404128 1404327 1404366) (-867 "ORESUP.spad" 1403392 1403416 1403771 1403810) (-866 "OREPCTO.spad" 1401281 1401293 1403312 1403317) (-865 "OREPCAT.spad" 1395468 1395478 1401237 1401276) (-864 "OREPCAT.spad" 1389545 1389557 1395316 1395321) (-863 "ORDTYPE.spad" 1388782 1388790 1389535 1389540) (-862 "ORDTYPE.spad" 1388017 1388027 1388772 1388777) (-861 "ORDSTRCT.spad" 1387787 1387802 1387950 1387955) (-860 "ORDSET.spad" 1387487 1387495 1387777 1387782) (-859 "ORDRING.spad" 1387304 1387312 1387467 1387482) (-858 "ORDMON.spad" 1387159 1387167 1387294 1387299) (-857 "ORDFUNS.spad" 1386291 1386307 1387149 1387154) (-856 "ORDFIN.spad" 1386111 1386119 1386281 1386286) (-855 "ORDCOMP2.spad" 1385404 1385416 1386101 1386106) (-854 "ORDCOMP.spad" 1383857 1383867 1384939 1384968) (-853 "OPTPROB.spad" 1382495 1382503 1383847 1383852) (-852 "OPTPACK.spad" 1374904 1374912 1382485 1382490) (-851 "OPTCAT.spad" 1372583 1372591 1374894 1374899) (-850 "OPSIG.spad" 1372245 1372253 1372573 1372578) (-849 "OPQUERY.spad" 1371826 1371834 1372235 1372240) (-848 "OPERCAT.spad" 1371292 1371302 1371816 1371821) (-847 "OPERCAT.spad" 1370756 1370768 1371282 1371287) (-846 "OP.spad" 1370498 1370508 1370578 1370645) (-845 "ONECOMP2.spad" 1369922 1369934 1370488 1370493) (-844 "ONECOMP.spad" 1368655 1368665 1369457 1369486) (-843 "OMSAGG.spad" 1368443 1368453 1368611 1368650) (-842 "OMLO.spad" 1367876 1367888 1368329 1368368) (-841 "OINTDOM.spad" 1367639 1367647 1367802 1367871) (-840 "OFMONOID.spad" 1365778 1365788 1367595 1367600) (-839 "ODVAR.spad" 1365039 1365049 1365768 1365773) (-838 "ODR.spad" 1364683 1364709 1364851 1365000) (-837 "ODPOL.spad" 1361894 1361904 1362234 1362361) (-836 "ODP.spad" 1349393 1349413 1349766 1349865) (-835 "ODETOOLS.spad" 1348042 1348061 1349383 1349388) (-834 "ODESYS.spad" 1345736 1345753 1348032 1348037) (-833 "ODERTRIC.spad" 1341769 1341786 1345693 1345698) (-832 "ODERED.spad" 1341168 1341192 1341759 1341764) (-831 "ODERAT.spad" 1338801 1338818 1341158 1341163) (-830 "ODEPRRIC.spad" 1335894 1335916 1338791 1338796) (-829 "ODEPROB.spad" 1335151 1335159 1335884 1335889) (-828 "ODEPRIM.spad" 1332549 1332571 1335141 1335146) (-827 "ODEPAL.spad" 1331935 1331959 1332539 1332544) (-826 "ODEPACK.spad" 1318665 1318673 1331925 1331930) (-825 "ODEINT.spad" 1318100 1318116 1318655 1318660) (-824 "ODEIFTBL.spad" 1315503 1315511 1318090 1318095) (-823 "ODEEF.spad" 1310998 1311014 1315493 1315498) (-822 "ODECONST.spad" 1310543 1310561 1310988 1310993) (-821 "ODECAT.spad" 1309141 1309149 1310533 1310538) (-820 "OCTCT2.spad" 1308779 1308800 1309131 1309136) (-819 "OCT.spad" 1306867 1306877 1307581 1307620) (-818 "OCAMON.spad" 1306715 1306723 1306857 1306862) (-817 "OC.spad" 1304511 1304521 1306671 1306710) (-816 "OC.spad" 1302029 1302041 1304191 1304196) (-815 "OASGP.spad" 1301844 1301852 1302019 1302024) (-814 "OAMONS.spad" 1301366 1301374 1301834 1301839) (-813 "OAMON.spad" 1301124 1301132 1301356 1301361) (-812 "OAMON.spad" 1300880 1300890 1301114 1301119) (-811 "OAGROUP.spad" 1300418 1300426 1300870 1300875) (-810 "OAGROUP.spad" 1299954 1299964 1300408 1300413) (-809 "NUMTUBE.spad" 1299545 1299561 1299944 1299949) (-808 "NUMQUAD.spad" 1287521 1287529 1299535 1299540) (-807 "NUMODE.spad" 1278873 1278881 1287511 1287516) (-806 "NUMINT.spad" 1276439 1276447 1278863 1278868) (-805 "NUMFMT.spad" 1275279 1275287 1276429 1276434) (-804 "NUMERIC.spad" 1267393 1267403 1275084 1275089) (-803 "NTSCAT.spad" 1265901 1265917 1267361 1267388) (-802 "NTPOLFN.spad" 1265446 1265456 1265812 1265817) (-801 "NSUP2.spad" 1264838 1264850 1265436 1265441) (-800 "NSUP.spad" 1257833 1257843 1262253 1262406) (-799 "NSMP.spad" 1253932 1253951 1254224 1254351) (-798 "NREP.spad" 1252334 1252348 1253922 1253927) (-797 "NPCOEF.spad" 1251580 1251600 1252324 1252329) (-796 "NORMRETR.spad" 1251178 1251217 1251570 1251575) (-795 "NORMPK.spad" 1249120 1249139 1251168 1251173) (-794 "NORMMA.spad" 1248808 1248834 1249110 1249115) (-793 "NONE1.spad" 1248484 1248494 1248798 1248803) (-792 "NONE.spad" 1248225 1248233 1248474 1248479) (-791 "NODE1.spad" 1247712 1247728 1248215 1248220) (-790 "NNI.spad" 1246607 1246615 1247686 1247707) (-789 "NLINSOL.spad" 1245233 1245243 1246597 1246602) (-788 "NIPROB.spad" 1243774 1243782 1245223 1245228) (-787 "NFINTBAS.spad" 1241334 1241351 1243764 1243769) (-786 "NETCLT.spad" 1241308 1241319 1241324 1241329) (-785 "NCODIV.spad" 1239532 1239548 1241298 1241303) (-784 "NCNTFRAC.spad" 1239174 1239188 1239522 1239527) (-783 "NCEP.spad" 1237340 1237354 1239164 1239169) (-782 "NASRING.spad" 1236944 1236952 1237330 1237335) (-781 "NASRING.spad" 1236546 1236556 1236934 1236939) (-780 "NARNG.spad" 1235946 1235954 1236536 1236541) (-779 "NARNG.spad" 1235344 1235354 1235936 1235941) (-778 "NAGSP.spad" 1234421 1234429 1235334 1235339) (-777 "NAGS.spad" 1224138 1224146 1234411 1234416) (-776 "NAGF07.spad" 1222569 1222577 1224128 1224133) (-775 "NAGF04.spad" 1216971 1216979 1222559 1222564) (-774 "NAGF02.spad" 1211064 1211072 1216961 1216966) (-773 "NAGF01.spad" 1206833 1206841 1211054 1211059) (-772 "NAGE04.spad" 1200541 1200549 1206823 1206828) (-771 "NAGE02.spad" 1191193 1191201 1200531 1200536) (-770 "NAGE01.spad" 1187187 1187195 1191183 1191188) (-769 "NAGD03.spad" 1185183 1185191 1187177 1187182) (-768 "NAGD02.spad" 1177914 1177922 1185173 1185178) (-767 "NAGD01.spad" 1172199 1172207 1177904 1177909) (-766 "NAGC06.spad" 1168066 1168074 1172189 1172194) (-765 "NAGC05.spad" 1166559 1166567 1168056 1168061) (-764 "NAGC02.spad" 1165834 1165842 1166549 1166554) (-763 "NAALG.spad" 1165399 1165409 1165802 1165829) (-762 "NAALG.spad" 1164984 1164996 1165389 1165394) (-761 "MULTSQFR.spad" 1161942 1161959 1164974 1164979) (-760 "MULTFACT.spad" 1161325 1161342 1161932 1161937) (-759 "MTSCAT.spad" 1159419 1159440 1161223 1161320) (-758 "MTHING.spad" 1159078 1159088 1159409 1159414) (-757 "MSYSCMD.spad" 1158512 1158520 1159068 1159073) (-756 "MSETAGG.spad" 1158357 1158367 1158480 1158507) (-755 "MSET.spad" 1156270 1156280 1158018 1158057) (-754 "MRING.spad" 1153247 1153259 1155978 1156045) (-753 "MRF2.spad" 1152809 1152823 1153237 1153242) (-752 "MRATFAC.spad" 1152355 1152372 1152799 1152804) (-751 "MPRFF.spad" 1150395 1150414 1152345 1152350) (-750 "MPOLY.spad" 1147794 1147809 1148153 1148280) (-749 "MPCPF.spad" 1147058 1147077 1147784 1147789) (-748 "MPC3.spad" 1146875 1146915 1147048 1147053) (-747 "MPC2.spad" 1146528 1146561 1146865 1146870) (-746 "MONOTOOL.spad" 1144879 1144896 1146518 1146523) (-745 "MONOID.spad" 1144198 1144206 1144869 1144874) (-744 "MONOID.spad" 1143515 1143525 1144188 1144193) (-743 "MONOGEN.spad" 1142263 1142276 1143375 1143510) (-742 "MONOGEN.spad" 1141033 1141048 1142147 1142152) (-741 "MONADWU.spad" 1139111 1139119 1141023 1141028) (-740 "MONADWU.spad" 1137187 1137197 1139101 1139106) (-739 "MONAD.spad" 1136347 1136355 1137177 1137182) (-738 "MONAD.spad" 1135505 1135515 1136337 1136342) (-737 "MOEBIUS.spad" 1134241 1134255 1135485 1135500) (-736 "MODULE.spad" 1134111 1134121 1134209 1134236) (-735 "MODULE.spad" 1134001 1134013 1134101 1134106) (-734 "MODRING.spad" 1133336 1133375 1133981 1133996) (-733 "MODOP.spad" 1131993 1132005 1133158 1133225) (-732 "MODMONOM.spad" 1131724 1131742 1131983 1131988) (-731 "MODMON.spad" 1128348 1128364 1129067 1129220) (-730 "MODFIELD.spad" 1127710 1127749 1128250 1128343) (-729 "MMLFORM.spad" 1126570 1126578 1127700 1127705) (-728 "MMAP.spad" 1126312 1126346 1126560 1126565) (-727 "MLO.spad" 1124771 1124781 1126268 1126307) (-726 "MLIFT.spad" 1123383 1123400 1124761 1124766) (-725 "MKUCFUNC.spad" 1122918 1122936 1123373 1123378) (-724 "MKRECORD.spad" 1122506 1122519 1122908 1122913) (-723 "MKFUNC.spad" 1121913 1121923 1122496 1122501) (-722 "MKFLCFN.spad" 1120881 1120891 1121903 1121908) (-721 "MKBCFUNC.spad" 1120376 1120394 1120871 1120876) (-720 "MINT.spad" 1119815 1119823 1120278 1120371) (-719 "MHROWRED.spad" 1118326 1118336 1119805 1119810) (-718 "MFLOAT.spad" 1116846 1116854 1118216 1118321) (-717 "MFINFACT.spad" 1116246 1116268 1116836 1116841) (-716 "MESH.spad" 1114041 1114049 1116236 1116241) (-715 "MDDFACT.spad" 1112260 1112270 1114031 1114036) (-714 "MDAGG.spad" 1111551 1111561 1112240 1112255) (-713 "MCMPLX.spad" 1106916 1106924 1107530 1107731) (-712 "MCDEN.spad" 1106126 1106138 1106906 1106911) (-711 "MCALCFN.spad" 1103224 1103250 1106116 1106121) (-710 "MAYBE.spad" 1102524 1102535 1103214 1103219) (-709 "MATSTOR.spad" 1099840 1099850 1102514 1102519) (-708 "MATRIX.spad" 1098406 1098416 1098890 1098917) (-707 "MATLIN.spad" 1095774 1095798 1098290 1098295) (-706 "MATCAT2.spad" 1095056 1095104 1095764 1095769) (-705 "MATCAT.spad" 1086618 1086640 1095024 1095051) (-704 "MATCAT.spad" 1078052 1078076 1086460 1086465) (-703 "MAPPKG3.spad" 1076967 1076981 1078042 1078047) (-702 "MAPPKG2.spad" 1076305 1076317 1076957 1076962) (-701 "MAPPKG1.spad" 1075133 1075143 1076295 1076300) (-700 "MAPPAST.spad" 1074472 1074480 1075123 1075128) (-699 "MAPHACK3.spad" 1074284 1074298 1074462 1074467) (-698 "MAPHACK2.spad" 1074053 1074065 1074274 1074279) (-697 "MAPHACK1.spad" 1073697 1073707 1074043 1074048) (-696 "MAGMA.spad" 1071503 1071520 1073687 1073692) (-695 "MACROAST.spad" 1071098 1071106 1071493 1071498) (-694 "M3D.spad" 1068683 1068693 1070341 1070346) (-693 "LZSTAGG.spad" 1065937 1065947 1068673 1068678) (-692 "LZSTAGG.spad" 1063189 1063201 1065927 1065932) (-691 "LWORD.spad" 1059934 1059951 1063179 1063184) (-690 "LSTAST.spad" 1059718 1059726 1059924 1059929) (-689 "LSQM.spad" 1057827 1057841 1058221 1058272) (-688 "LSPP.spad" 1057362 1057379 1057817 1057822) (-687 "LSMP1.spad" 1055205 1055219 1057352 1057357) (-686 "LSMP.spad" 1054062 1054090 1055195 1055200) (-685 "LSAGG.spad" 1053731 1053741 1054030 1054057) (-684 "LSAGG.spad" 1053420 1053432 1053721 1053726) (-683 "LPOLY.spad" 1052382 1052401 1053276 1053345) (-682 "LPEFRAC.spad" 1051653 1051663 1052372 1052377) (-681 "LOGIC.spad" 1051255 1051263 1051643 1051648) (-680 "LOGIC.spad" 1050855 1050865 1051245 1051250) (-679 "LODOOPS.spad" 1049785 1049797 1050845 1050850) (-678 "LODOF.spad" 1048831 1048848 1049742 1049747) (-677 "LODOCAT.spad" 1047497 1047507 1048787 1048826) (-676 "LODOCAT.spad" 1046161 1046173 1047453 1047458) (-675 "LODO2.spad" 1045425 1045437 1045832 1045871) (-674 "LODO1.spad" 1044816 1044826 1045096 1045135) (-673 "LODO.spad" 1044191 1044207 1044487 1044526) (-672 "LODEEF.spad" 1042993 1043011 1044181 1044186) (-671 "LO.spad" 1042394 1042408 1042927 1042954) (-670 "LNAGG.spad" 1038581 1038591 1042384 1042389) (-669 "LNAGG.spad" 1034732 1034744 1038537 1038542) (-668 "LMOPS.spad" 1031500 1031517 1034722 1034727) (-667 "LMODULE.spad" 1031284 1031294 1031490 1031495) (-666 "LMDICT.spad" 1030455 1030465 1030703 1030730) (-665 "LLINSET.spad" 1030162 1030172 1030445 1030450) (-664 "LITERAL.spad" 1030068 1030079 1030152 1030157) (-663 "LIST3.spad" 1029379 1029393 1030058 1030063) (-662 "LIST2MAP.spad" 1026306 1026318 1029369 1029374) (-661 "LIST2.spad" 1025008 1025020 1026296 1026301) (-660 "LIST.spad" 1022605 1022615 1024017 1024044) (-659 "LINSET.spad" 1022384 1022394 1022595 1022600) (-658 "LINFORM.spad" 1021847 1021859 1022352 1022379) (-657 "LINEXP.spad" 1020590 1020600 1021837 1021842) (-656 "LINELT.spad" 1019961 1019973 1020473 1020500) (-655 "LINDEP.spad" 1018810 1018822 1019873 1019878) (-654 "LINBASIS.spad" 1018446 1018461 1018800 1018805) (-653 "LIMITRF.spad" 1016393 1016403 1018436 1018441) (-652 "LIMITPS.spad" 1015303 1015316 1016383 1016388) (-651 "LIECAT.spad" 1014787 1014797 1015229 1015298) (-650 "LIECAT.spad" 1014299 1014311 1014743 1014748) (-649 "LIE.spad" 1012294 1012306 1013568 1013713) (-648 "LIB.spad" 1010009 1010017 1010455 1010470) (-647 "LGROBP.spad" 1007362 1007381 1009999 1010004) (-646 "LFCAT.spad" 1006421 1006429 1007352 1007357) (-645 "LF.spad" 1005376 1005392 1006411 1006416) (-644 "LEXTRIPK.spad" 1000999 1001014 1005366 1005371) (-643 "LEXP.spad" 999018 999045 1000979 1000994) (-642 "LETAST.spad" 998717 998725 999008 999013) (-641 "LEADCDET.spad" 997123 997140 998707 998712) (-640 "LAZM3PK.spad" 995867 995889 997113 997118) (-639 "LAUPOL.spad" 994452 994465 995352 995421) (-638 "LAPLACE.spad" 994035 994051 994442 994447) (-637 "LALG.spad" 993811 993821 994015 994030) (-636 "LALG.spad" 993595 993607 993801 993806) (-635 "LA.spad" 993035 993049 993517 993556) (-634 "KVTFROM.spad" 992778 992788 993025 993030) (-633 "KTVLOGIC.spad" 992322 992330 992768 992773) (-632 "KRCFROM.spad" 992068 992078 992312 992317) (-631 "KOVACIC.spad" 990799 990816 992058 992063) (-630 "KONVERT.spad" 990521 990531 990789 990794) (-629 "KOERCE.spad" 990258 990268 990511 990516) (-628 "KERNEL2.spad" 989961 989973 990248 990253) (-627 "KERNEL.spad" 988601 988611 989730 989735) (-626 "KDAGG.spad" 987710 987732 988581 988596) (-625 "KDAGG.spad" 986827 986851 987700 987705) (-624 "KAFILE.spad" 985657 985673 985892 985919) (-623 "JVMOP.spad" 985570 985578 985647 985652) (-622 "JVMMDACC.spad" 984624 984632 985560 985565) (-621 "JVMFDACC.spad" 983940 983948 984614 984619) (-620 "JVMCSTTG.spad" 982669 982677 983930 983935) (-619 "JVMCFACC.spad" 982115 982123 982659 982664) (-618 "JVMBCODE.spad" 982026 982034 982105 982110) (-617 "JORDAN.spad" 979834 979846 981295 981440) (-616 "JOINAST.spad" 979536 979544 979824 979829) (-615 "IXAGG.spad" 977669 977693 979526 979531) (-614 "IXAGG.spad" 975657 975683 977516 977521) (-613 "IVECTOR.spad" 974253 974268 974408 974435) (-612 "ITUPLE.spad" 973429 973439 974243 974248) (-611 "ITRIGMNP.spad" 972276 972295 973419 973424) (-610 "ITFUN3.spad" 971782 971796 972266 972271) (-609 "ITFUN2.spad" 971526 971538 971772 971777) (-608 "ITFORM.spad" 970881 970889 971516 971521) (-607 "ITAYLOR.spad" 968875 968890 970745 970842) (-606 "ISUPS.spad" 961273 961288 967810 967907) (-605 "ISUMP.spad" 960774 960790 961263 961268) (-604 "ISAST.spad" 960493 960501 960764 960769) (-603 "IRURPK.spad" 959210 959229 960483 960488) (-602 "IRSN.spad" 957214 957222 959200 959205) (-601 "IRRF2F.spad" 955707 955717 957170 957175) (-600 "IRREDFFX.spad" 955308 955319 955697 955702) (-599 "IROOT.spad" 953647 953657 955298 955303) (-598 "IRFORM.spad" 952971 952979 953637 953642) (-597 "IR2F.spad" 952185 952201 952961 952966) (-596 "IR2.spad" 951213 951229 952175 952180) (-595 "IR.spad" 949016 949030 951062 951089) (-594 "IPRNTPK.spad" 948776 948784 949006 949011) (-593 "IPF.spad" 948341 948353 948581 948674) (-592 "IPADIC.spad" 948110 948136 948267 948336) (-591 "IP4ADDR.spad" 947667 947675 948100 948105) (-590 "IOMODE.spad" 947189 947197 947657 947662) (-589 "IOBFILE.spad" 946574 946582 947179 947184) (-588 "IOBCON.spad" 946439 946447 946564 946569) (-587 "INVLAPLA.spad" 946088 946104 946429 946434) (-586 "INTTR.spad" 939482 939499 946078 946083) (-585 "INTTOOLS.spad" 937225 937241 939044 939049) (-584 "INTSLPE.spad" 936553 936561 937215 937220) (-583 "INTRVL.spad" 936119 936129 936467 936548) (-582 "INTRF.spad" 934551 934565 936109 936114) (-581 "INTRET.spad" 933983 933993 934541 934546) (-580 "INTRAT.spad" 932718 932735 933973 933978) (-579 "INTPM.spad" 931085 931101 932343 932348) (-578 "INTPAF.spad" 928961 928979 931014 931019) (-577 "INTPACK.spad" 919527 919535 928951 928956) (-576 "INTHERTR.spad" 918801 918818 919517 919522) (-575 "INTHERAL.spad" 918471 918495 918791 918796) (-574 "INTHEORY.spad" 914910 914918 918461 918466) (-573 "INTG0.spad" 908674 908692 914839 914844) (-572 "INTFTBL.spad" 904128 904136 908664 908669) (-571 "INTFACT.spad" 903195 903205 904118 904123) (-570 "INTEF.spad" 901606 901622 903185 903190) (-569 "INTDOM.spad" 900229 900237 901532 901601) (-568 "INTDOM.spad" 898914 898924 900219 900224) (-567 "INTCAT.spad" 897181 897191 898828 898909) (-566 "INTBIT.spad" 896688 896696 897171 897176) (-565 "INTALG.spad" 895876 895903 896678 896683) (-564 "INTAF.spad" 895376 895392 895866 895871) (-563 "INTABL.spad" 893416 893447 893579 893606) (-562 "INT8.spad" 893296 893304 893406 893411) (-561 "INT64.spad" 893175 893183 893286 893291) (-560 "INT32.spad" 893054 893062 893165 893170) (-559 "INT16.spad" 892933 892941 893044 893049) (-558 "INT.spad" 892459 892467 892799 892928) (-557 "INS.spad" 889962 889970 892361 892454) (-556 "INS.spad" 887551 887561 889952 889957) (-555 "INPSIGN.spad" 887021 887034 887541 887546) (-554 "INPRODPF.spad" 886117 886136 887011 887016) (-553 "INPRODFF.spad" 885205 885229 886107 886112) (-552 "INNMFACT.spad" 884180 884197 885195 885200) (-551 "INMODGCD.spad" 883684 883714 884170 884175) (-550 "INFSP.spad" 881981 882003 883674 883679) (-549 "INFPROD0.spad" 881061 881080 881971 881976) (-548 "INFORM1.spad" 880686 880696 881051 881056) (-547 "INFORM.spad" 877893 877901 880676 880681) (-546 "INFINITY.spad" 877445 877453 877883 877888) (-545 "INETCLTS.spad" 877422 877430 877435 877440) (-544 "INEP.spad" 875968 875990 877412 877417) (-543 "INDE.spad" 875617 875634 875878 875883) (-542 "INCRMAPS.spad" 875054 875064 875607 875612) (-541 "INBFILE.spad" 874150 874158 875044 875049) (-540 "INBFF.spad" 870000 870011 874140 874145) (-539 "INBCON.spad" 868266 868274 869990 869995) (-538 "INBCON.spad" 866530 866540 868256 868261) (-537 "INAST.spad" 866191 866199 866520 866525) (-536 "IMPTAST.spad" 865899 865907 866181 866186) (-535 "IMATRIX.spad" 864715 864741 865227 865254) (-534 "IMATQF.spad" 863809 863853 864671 864676) (-533 "IMATLIN.spad" 862430 862454 863765 863770) (-532 "ILIST.spad" 860914 860929 861439 861466) (-531 "IIARRAY2.spad" 860189 860227 860392 860419) (-530 "IFF.spad" 859599 859615 859870 859963) (-529 "IFAST.spad" 859213 859221 859589 859594) (-528 "IFARRAY.spad" 856524 856539 858222 858249) (-527 "IFAMON.spad" 856386 856403 856480 856485) (-526 "IEVALAB.spad" 855799 855811 856376 856381) (-525 "IEVALAB.spad" 855210 855224 855789 855794) (-524 "IDPOAMS.spad" 854888 854900 855122 855127) (-523 "IDPOAM.spad" 854530 854542 854800 854805) (-522 "IDPO.spad" 854265 854277 854442 854447) (-521 "IDPC.spad" 852994 853006 854255 854260) (-520 "IDPAM.spad" 852661 852673 852906 852911) (-519 "IDPAG.spad" 852330 852342 852573 852578) (-518 "IDENT.spad" 851982 851990 852320 852325) (-517 "IDECOMP.spad" 849221 849239 851972 851977) (-516 "IDEAL.spad" 844167 844206 849153 849158) (-515 "ICDEN.spad" 843380 843396 844157 844162) (-514 "ICARD.spad" 842571 842579 843370 843375) (-513 "IBPTOOLS.spad" 841178 841195 842561 842566) (-512 "IBITS.spad" 840334 840347 840767 840794) (-511 "IBATOOL.spad" 837319 837338 840324 840329) (-510 "IBACHIN.spad" 835826 835841 837309 837314) (-509 "IARRAY2.spad" 834693 834719 835304 835331) (-508 "IARRAY1.spad" 833556 833571 833702 833729) (-507 "IAN.spad" 831776 831784 833369 833462) (-506 "IALGFACT.spad" 831387 831420 831766 831771) (-505 "HYPCAT.spad" 830811 830819 831377 831382) (-504 "HYPCAT.spad" 830233 830243 830801 830806) (-503 "HOSTNAME.spad" 830049 830057 830223 830228) (-502 "HOMOTOP.spad" 829792 829802 830039 830044) (-501 "HOAGG.spad" 827074 827084 829782 829787) (-500 "HOAGG.spad" 824089 824101 826799 826804) (-499 "HEXADEC.spad" 822049 822057 822414 822507) (-498 "HEUGCD.spad" 821140 821151 822039 822044) (-497 "HELLFDIV.spad" 820746 820770 821130 821135) (-496 "HEAP.spad" 820009 820019 820224 820251) (-495 "HEADAST.spad" 819550 819558 819999 820004) (-494 "HDP.spad" 807045 807061 807422 807521) (-493 "HDMP.spad" 804187 804202 804803 804930) (-492 "HB.spad" 802462 802470 804177 804182) (-491 "HASHTBL.spad" 800454 800485 800665 800692) (-490 "HASAST.spad" 800170 800178 800444 800449) (-489 "HACKPI.spad" 799661 799669 800072 800165) (-488 "GTSET.spad" 798555 798571 799262 799289) (-487 "GSTBL.spad" 796596 796631 796770 796785) (-486 "GSERIES.spad" 793828 793855 794647 794796) (-485 "GROUP.spad" 793101 793109 793808 793823) (-484 "GROUP.spad" 792382 792392 793091 793096) (-483 "GROEBSOL.spad" 790876 790897 792372 792377) (-482 "GRMOD.spad" 789455 789467 790866 790871) (-481 "GRMOD.spad" 788032 788046 789445 789450) (-480 "GRIMAGE.spad" 780945 780953 788022 788027) (-479 "GRDEF.spad" 779324 779332 780935 780940) (-478 "GRAY.spad" 777795 777803 779314 779319) (-477 "GRALG.spad" 776888 776900 777785 777790) (-476 "GRALG.spad" 775979 775993 776878 776883) (-475 "GPOLSET.spad" 775404 775427 775616 775643) (-474 "GOSPER.spad" 774681 774699 775394 775399) (-473 "GMODPOL.spad" 773829 773856 774649 774676) (-472 "GHENSEL.spad" 772912 772926 773819 773824) (-471 "GENUPS.spad" 769205 769218 772902 772907) (-470 "GENUFACT.spad" 768782 768792 769195 769200) (-469 "GENPGCD.spad" 768384 768401 768772 768777) (-468 "GENMFACT.spad" 767836 767855 768374 768379) (-467 "GENEEZ.spad" 765795 765808 767826 767831) (-466 "GDMP.spad" 762779 762796 763553 763680) (-465 "GCNAALG.spad" 756702 756729 762573 762640) (-464 "GCDDOM.spad" 755894 755902 756628 756697) (-463 "GCDDOM.spad" 755148 755158 755884 755889) (-462 "GBINTERN.spad" 751168 751206 755138 755143) (-461 "GBF.spad" 746951 746989 751158 751163) (-460 "GBEUCLID.spad" 744833 744871 746941 746946) (-459 "GB.spad" 742359 742397 744789 744794) (-458 "GAUSSFAC.spad" 741672 741680 742349 742354) (-457 "GALUTIL.spad" 739998 740008 741628 741633) (-456 "GALPOLYU.spad" 738452 738465 739988 739993) (-455 "GALFACTU.spad" 736665 736684 738442 738447) (-454 "GALFACT.spad" 726878 726889 736655 736660) (-453 "FVFUN.spad" 723901 723909 726868 726873) (-452 "FVC.spad" 722953 722961 723891 723896) (-451 "FUNDESC.spad" 722631 722639 722943 722948) (-450 "FUNCTION.spad" 722480 722492 722621 722626) (-449 "FTEM.spad" 721645 721653 722470 722475) (-448 "FT.spad" 719945 719953 721635 721640) (-447 "FSUPFACT.spad" 718842 718861 719878 719883) (-446 "FST.spad" 716928 716936 718832 718837) (-445 "FSRED.spad" 716408 716424 716918 716923) (-444 "FSPRMELT.spad" 715274 715290 716365 716370) (-443 "FSPECF.spad" 713365 713381 715264 715269) (-442 "FSINT.spad" 713025 713041 713355 713360) (-441 "FSERIES.spad" 712216 712228 712845 712944) (-440 "FSCINT.spad" 711533 711549 712206 712211) (-439 "FSAGG2.spad" 710268 710284 711523 711528) (-438 "FSAGG.spad" 709385 709395 710224 710263) (-437 "FSAGG.spad" 708464 708476 709305 709310) (-436 "FS2UPS.spad" 702979 703013 708454 708459) (-435 "FS2EXPXP.spad" 702120 702143 702969 702974) (-434 "FS2.spad" 701775 701791 702110 702115) (-433 "FS.spad" 696043 696053 701550 701770) (-432 "FS.spad" 690083 690095 695592 695597) (-431 "FRUTIL.spad" 689037 689047 690073 690078) (-430 "FRNAALG.spad" 684314 684324 688979 689032) (-429 "FRNAALG.spad" 679603 679615 684270 684275) (-428 "FRNAAF2.spad" 679051 679069 679593 679598) (-427 "FRMOD.spad" 678458 678488 678979 678984) (-426 "FRIDEAL2.spad" 678062 678094 678448 678453) (-425 "FRIDEAL.spad" 677287 677308 678042 678057) (-424 "FRETRCT.spad" 676806 676816 677277 677282) (-423 "FRETRCT.spad" 676182 676194 676655 676660) (-422 "FRAMALG.spad" 674562 674575 676138 676177) (-421 "FRAMALG.spad" 672974 672989 674552 674557) (-420 "FRAC2.spad" 672579 672591 672964 672969) (-419 "FRAC.spad" 670365 670375 670752 670925) (-418 "FR2.spad" 669701 669713 670355 670360) (-417 "FR.spad" 663323 663333 668596 668665) (-416 "FPS.spad" 660162 660170 663213 663318) (-415 "FPS.spad" 657029 657039 660082 660087) (-414 "FPC.spad" 656075 656083 656931 657024) (-413 "FPC.spad" 655207 655217 656065 656070) (-412 "FPATMAB.spad" 654969 654979 655197 655202) (-411 "FPARFRAC.spad" 653811 653828 654959 654964) (-410 "FORTRAN.spad" 652317 652360 653801 653806) (-409 "FORTFN.spad" 649487 649495 652307 652312) (-408 "FORTCAT.spad" 649171 649179 649477 649482) (-407 "FORT.spad" 648120 648128 649161 649166) (-406 "FORDER.spad" 647811 647835 648110 648115) (-405 "FOP.spad" 647012 647020 647801 647806) (-404 "FNLA.spad" 646436 646458 646980 647007) (-403 "FNCAT.spad" 645031 645039 646426 646431) (-402 "FNAME.spad" 644923 644931 645021 645026) (-401 "FMTC.spad" 644721 644729 644849 644918) (-400 "FMONOID.spad" 644402 644412 644677 644682) (-399 "FMONCAT.spad" 641571 641581 644392 644397) (-398 "FMFUN.spad" 638601 638609 641561 641566) (-397 "FMCAT.spad" 636277 636295 638569 638596) (-396 "FMC.spad" 635329 635337 636267 636272) (-395 "FM1.spad" 634694 634706 635263 635290) (-394 "FM.spad" 634309 634321 634548 634575) (-393 "FLOATRP.spad" 632052 632066 634299 634304) (-392 "FLOATCP.spad" 629491 629505 632042 632047) (-391 "FLOAT.spad" 622805 622813 629357 629486) (-390 "FLINEXP.spad" 622527 622537 622795 622800) (-389 "FLINEXP.spad" 622190 622202 622460 622465) (-388 "FLASORT.spad" 621516 621528 622180 622185) (-387 "FLALG.spad" 619186 619205 621442 621511) (-386 "FLAGG2.spad" 617903 617919 619176 619181) (-385 "FLAGG.spad" 614969 614979 617883 617898) (-384 "FLAGG.spad" 611936 611948 614852 614857) (-383 "FINRALG.spad" 610021 610034 611892 611931) (-382 "FINRALG.spad" 608032 608047 609905 609910) (-381 "FINITE.spad" 607184 607192 608022 608027) (-380 "FINAALG.spad" 596369 596379 607126 607179) (-379 "FINAALG.spad" 585566 585578 596325 596330) (-378 "FILECAT.spad" 584100 584117 585556 585561) (-377 "FILE.spad" 583683 583693 584090 584095) (-376 "FIELD.spad" 583089 583097 583585 583678) (-375 "FIELD.spad" 582581 582591 583079 583084) (-374 "FGROUP.spad" 581244 581254 582561 582576) (-373 "FGLMICPK.spad" 580039 580054 581234 581239) (-372 "FFX.spad" 579422 579437 579755 579848) (-371 "FFSLPE.spad" 578933 578954 579412 579417) (-370 "FFPOLY2.spad" 577993 578010 578923 578928) (-369 "FFPOLY.spad" 569335 569346 577983 577988) (-368 "FFP.spad" 568740 568760 569051 569144) (-367 "FFNBX.spad" 567260 567280 568456 568549) (-366 "FFNBP.spad" 565781 565798 566976 567069) (-365 "FFNB.spad" 564246 564267 565462 565555) (-364 "FFINTBAS.spad" 561760 561779 564236 564241) (-363 "FFIELDC.spad" 559345 559353 561662 561755) (-362 "FFIELDC.spad" 557016 557026 559335 559340) (-361 "FFHOM.spad" 555788 555805 557006 557011) (-360 "FFF.spad" 553231 553242 555778 555783) (-359 "FFCGX.spad" 552086 552106 552947 553040) (-358 "FFCGP.spad" 550983 551003 551802 551895) (-357 "FFCG.spad" 549775 549796 550664 550757) (-356 "FFCAT2.spad" 549522 549562 549765 549770) (-355 "FFCAT.spad" 542687 542709 549361 549517) (-354 "FFCAT.spad" 535931 535955 542607 542612) (-353 "FF.spad" 535379 535395 535612 535705) (-352 "FEXPR.spad" 527079 527125 535126 535165) (-351 "FEVALAB.spad" 526787 526797 527069 527074) (-350 "FEVALAB.spad" 526271 526283 526555 526560) (-349 "FDIVCAT.spad" 524367 524391 526261 526266) (-348 "FDIVCAT.spad" 522461 522487 524357 524362) (-347 "FDIV2.spad" 522117 522157 522451 522456) (-346 "FDIV.spad" 521575 521599 522107 522112) (-345 "FCTRDATA.spad" 520583 520591 521565 521570) (-344 "FCPAK1.spad" 519118 519126 520573 520578) (-343 "FCOMP.spad" 518497 518507 519108 519113) (-342 "FC.spad" 508504 508512 518487 518492) (-341 "FAXF.spad" 501539 501553 508406 508499) (-340 "FAXF.spad" 494626 494642 501495 501500) (-339 "FARRAY.spad" 492602 492612 493635 493662) (-338 "FAMR.spad" 490746 490758 492500 492597) (-337 "FAMR.spad" 488874 488888 490630 490635) (-336 "FAMONOID.spad" 488558 488568 488828 488833) (-335 "FAMONC.spad" 486878 486890 488548 488553) (-334 "FAGROUP.spad" 486518 486528 486774 486801) (-333 "FACUTIL.spad" 484730 484747 486508 486513) (-332 "FACTFUNC.spad" 483932 483942 484720 484725) (-331 "EXPUPXS.spad" 480684 480707 481983 482132) (-330 "EXPRTUBE.spad" 477972 477980 480674 480679) (-329 "EXPRODE.spad" 475140 475156 477962 477967) (-328 "EXPR2UPS.spad" 471262 471275 475130 475135) (-327 "EXPR2.spad" 470967 470979 471252 471257) (-326 "EXPR.spad" 466052 466062 466766 467061) (-325 "EXPEXPAN.spad" 462796 462821 463428 463521) (-324 "EXITAST.spad" 462532 462540 462786 462791) (-323 "EXIT.spad" 462203 462211 462522 462527) (-322 "EVALCYC.spad" 461663 461677 462193 462198) (-321 "EVALAB.spad" 461243 461253 461653 461658) (-320 "EVALAB.spad" 460821 460833 461233 461238) (-319 "EUCDOM.spad" 458411 458419 460747 460816) (-318 "EUCDOM.spad" 456063 456073 458401 458406) (-317 "ESTOOLS2.spad" 455658 455672 456053 456058) (-316 "ESTOOLS1.spad" 455335 455346 455648 455653) (-315 "ESTOOLS.spad" 447213 447221 455325 455330) (-314 "ESCONT1.spad" 446954 446966 447203 447208) (-313 "ESCONT.spad" 443747 443755 446944 446949) (-312 "ES2.spad" 443260 443276 443737 443742) (-311 "ES1.spad" 442830 442846 443250 443255) (-310 "ES.spad" 435701 435709 442820 442825) (-309 "ES.spad" 428475 428485 435596 435601) (-308 "ERROR.spad" 425802 425810 428465 428470) (-307 "EQTBL.spad" 423796 423818 424005 424032) (-306 "EQ2.spad" 423514 423526 423786 423791) (-305 "EQ.spad" 418290 418300 421085 421197) (-304 "EP.spad" 414616 414626 418280 418285) (-303 "ENV.spad" 413294 413302 414606 414611) (-302 "ENTIRER.spad" 412962 412970 413238 413289) (-301 "EMR.spad" 412250 412291 412888 412957) (-300 "ELTAGG.spad" 410504 410523 412240 412245) (-299 "ELTAGG.spad" 408722 408743 410460 410465) (-298 "ELTAB.spad" 408197 408210 408712 408717) (-297 "ELFUTS.spad" 407632 407651 408187 408192) (-296 "ELEMFUN.spad" 407321 407329 407622 407627) (-295 "ELEMFUN.spad" 407008 407018 407311 407316) (-294 "ELAGG.spad" 404979 404989 406988 407003) (-293 "ELAGG.spad" 402887 402899 404898 404903) (-292 "ELABOR.spad" 402233 402241 402877 402882) (-291 "ELABEXPR.spad" 401165 401173 402223 402228) (-290 "EFUPXS.spad" 397941 397971 401121 401126) (-289 "EFULS.spad" 394777 394800 397897 397902) (-288 "EFSTRUC.spad" 392792 392808 394767 394772) (-287 "EF.spad" 387568 387584 392782 392787) (-286 "EAB.spad" 385868 385876 387558 387563) (-285 "E04UCFA.spad" 385404 385412 385858 385863) (-284 "E04NAFA.spad" 384981 384989 385394 385399) (-283 "E04MBFA.spad" 384561 384569 384971 384976) (-282 "E04JAFA.spad" 384097 384105 384551 384556) (-281 "E04GCFA.spad" 383633 383641 384087 384092) (-280 "E04FDFA.spad" 383169 383177 383623 383628) (-279 "E04DGFA.spad" 382705 382713 383159 383164) (-278 "E04AGNT.spad" 378579 378587 382695 382700) (-277 "DVARCAT.spad" 375469 375479 378569 378574) (-276 "DVARCAT.spad" 372357 372369 375459 375464) (-275 "DSMP.spad" 369653 369667 369958 370085) (-274 "DSEXT.spad" 368955 368965 369643 369648) (-273 "DSEXT.spad" 368161 368173 368851 368856) (-272 "DROPT1.spad" 367826 367836 368151 368156) (-271 "DROPT0.spad" 362691 362699 367816 367821) (-270 "DROPT.spad" 356650 356658 362681 362686) (-269 "DRAWPT.spad" 354823 354831 356640 356645) (-268 "DRAWHACK.spad" 354131 354141 354813 354818) (-267 "DRAWCX.spad" 351609 351617 354121 354126) (-266 "DRAWCURV.spad" 351156 351171 351599 351604) (-265 "DRAWCFUN.spad" 340688 340696 351146 351151) (-264 "DRAW.spad" 333564 333577 340678 340683) (-263 "DQAGG.spad" 331742 331752 333532 333559) (-262 "DPOLCAT.spad" 327099 327115 331610 331737) (-261 "DPOLCAT.spad" 322542 322560 327055 327060) (-260 "DPMO.spad" 314065 314081 314203 314416) (-259 "DPMM.spad" 305601 305619 305726 305939) (-258 "DOMTMPLT.spad" 305372 305380 305591 305596) (-257 "DOMCTOR.spad" 305127 305135 305362 305367) (-256 "DOMAIN.spad" 304238 304246 305117 305122) (-255 "DMP.spad" 301426 301441 301996 302123) (-254 "DMEXT.spad" 301293 301303 301394 301421) (-253 "DLP.spad" 300653 300663 301283 301288) (-252 "DLIST.spad" 299058 299068 299662 299689) (-251 "DLAGG.spad" 297475 297485 299048 299053) (-250 "DIVRING.spad" 297017 297025 297419 297470) (-249 "DIVRING.spad" 296603 296613 297007 297012) (-248 "DISPLAY.spad" 294793 294801 296593 296598) (-247 "DIRPROD2.spad" 293611 293629 294783 294788) (-246 "DIRPROD.spad" 280843 280859 281483 281582) (-245 "DIRPCAT.spad" 280036 280052 280739 280838) (-244 "DIRPCAT.spad" 278856 278874 279561 279566) (-243 "DIOSP.spad" 277681 277689 278846 278851) (-242 "DIOPS.spad" 276677 276687 277661 277676) (-241 "DIOPS.spad" 275647 275659 276633 276638) (-240 "DIFRING.spad" 275485 275493 275627 275642) (-239 "DIFFSPC.spad" 275064 275072 275475 275480) (-238 "DIFFSPC.spad" 274641 274651 275054 275059) (-237 "DIFFMOD.spad" 274130 274140 274609 274636) (-236 "DIFFDOM.spad" 273295 273306 274120 274125) (-235 "DIFFDOM.spad" 272458 272471 273285 273290) (-234 "DIFEXT.spad" 272277 272287 272438 272453) (-233 "DIAGG.spad" 271907 271917 272257 272272) (-232 "DIAGG.spad" 271545 271557 271897 271902) (-231 "DHMATRIX.spad" 269728 269738 270873 270900) (-230 "DFSFUN.spad" 263368 263376 269718 269723) (-229 "DFLOAT.spad" 259975 259983 263258 263363) (-228 "DFINTTLS.spad" 258206 258222 259965 259970) (-227 "DERHAM.spad" 256120 256152 258186 258201) (-226 "DEQUEUE.spad" 255315 255325 255598 255625) (-225 "DEGRED.spad" 254932 254946 255305 255310) (-224 "DEFINTRF.spad" 252514 252524 254922 254927) (-223 "DEFINTEF.spad" 251052 251068 252504 252509) (-222 "DEFAST.spad" 250436 250444 251042 251047) (-221 "DECIMAL.spad" 248400 248408 248761 248854) (-220 "DDFACT.spad" 246221 246238 248390 248395) (-219 "DBLRESP.spad" 245821 245845 246211 246216) (-218 "DBASIS.spad" 245447 245462 245811 245816) (-217 "DBASE.spad" 244111 244121 245437 245442) (-216 "DATAARY.spad" 243597 243610 244101 244106) (-215 "D03FAFA.spad" 243425 243433 243587 243592) (-214 "D03EEFA.spad" 243245 243253 243415 243420) (-213 "D03AGNT.spad" 242331 242339 243235 243240) (-212 "D02EJFA.spad" 241793 241801 242321 242326) (-211 "D02CJFA.spad" 241271 241279 241783 241788) (-210 "D02BHFA.spad" 240761 240769 241261 241266) (-209 "D02BBFA.spad" 240251 240259 240751 240756) (-208 "D02AGNT.spad" 235121 235129 240241 240246) (-207 "D01WGTS.spad" 233440 233448 235111 235116) (-206 "D01TRNS.spad" 233417 233425 233430 233435) (-205 "D01GBFA.spad" 232939 232947 233407 233412) (-204 "D01FCFA.spad" 232461 232469 232929 232934) (-203 "D01ASFA.spad" 231929 231937 232451 232456) (-202 "D01AQFA.spad" 231383 231391 231919 231924) (-201 "D01APFA.spad" 230823 230831 231373 231378) (-200 "D01ANFA.spad" 230317 230325 230813 230818) (-199 "D01AMFA.spad" 229827 229835 230307 230312) (-198 "D01ALFA.spad" 229367 229375 229817 229822) (-197 "D01AKFA.spad" 228893 228901 229357 229362) (-196 "D01AJFA.spad" 228416 228424 228883 228888) (-195 "D01AGNT.spad" 224483 224491 228406 228411) (-194 "CYCLOTOM.spad" 223989 223997 224473 224478) (-193 "CYCLES.spad" 220781 220789 223979 223984) (-192 "CVMP.spad" 220198 220208 220771 220776) (-191 "CTRIGMNP.spad" 218698 218714 220188 220193) (-190 "CTORKIND.spad" 218301 218309 218688 218693) (-189 "CTORCAT.spad" 217542 217550 218291 218296) (-188 "CTORCAT.spad" 216781 216791 217532 217537) (-187 "CTORCALL.spad" 216370 216380 216771 216776) (-186 "CTOR.spad" 216061 216069 216360 216365) (-185 "CSTTOOLS.spad" 215306 215319 216051 216056) (-184 "CRFP.spad" 209078 209091 215296 215301) (-183 "CRCEAST.spad" 208798 208806 209068 209073) (-182 "CRAPACK.spad" 207865 207875 208788 208793) (-181 "CPMATCH.spad" 207366 207381 207787 207792) (-180 "CPIMA.spad" 207071 207090 207356 207361) (-179 "COORDSYS.spad" 202080 202090 207061 207066) (-178 "CONTOUR.spad" 201507 201515 202070 202075) (-177 "CONTFRAC.spad" 197257 197267 201409 201502) (-176 "CONDUIT.spad" 197015 197023 197247 197252) (-175 "COMRING.spad" 196689 196697 196953 197010) (-174 "COMPPROP.spad" 196207 196215 196679 196684) (-173 "COMPLPAT.spad" 195974 195989 196197 196202) (-172 "COMPLEX2.spad" 195689 195701 195964 195969) (-171 "COMPLEX.spad" 191036 191046 191280 191541) (-170 "COMPILER.spad" 190585 190593 191026 191031) (-169 "COMPFACT.spad" 190187 190201 190575 190580) (-168 "COMPCAT.spad" 188259 188269 189921 190182) (-167 "COMPCAT.spad" 186056 186068 187720 187725) (-166 "COMMUPC.spad" 185804 185822 186046 186051) (-165 "COMMONOP.spad" 185337 185345 185794 185799) (-164 "COMMAAST.spad" 185100 185108 185327 185332) (-163 "COMM.spad" 184911 184919 185090 185095) (-162 "COMBOPC.spad" 183834 183842 184901 184906) (-161 "COMBINAT.spad" 182601 182611 183824 183829) (-160 "COMBF.spad" 180023 180039 182591 182596) (-159 "COLOR.spad" 178860 178868 180013 180018) (-158 "COLONAST.spad" 178526 178534 178850 178855) (-157 "CMPLXRT.spad" 178237 178254 178516 178521) (-156 "CLLCTAST.spad" 177899 177907 178227 178232) (-155 "CLIP.spad" 174007 174015 177889 177894) (-154 "CLIF.spad" 172662 172678 173963 174002) (-153 "CLAGG.spad" 169199 169209 172652 172657) (-152 "CLAGG.spad" 165604 165616 169059 169064) (-151 "CINTSLPE.spad" 164959 164972 165594 165599) (-150 "CHVAR.spad" 163097 163119 164949 164954) (-149 "CHARZ.spad" 163012 163020 163077 163092) (-148 "CHARPOL.spad" 162538 162548 163002 163007) (-147 "CHARNZ.spad" 162300 162308 162518 162533) (-146 "CHAR.spad" 159668 159676 162290 162295) (-145 "CFCAT.spad" 158996 159004 159658 159663) (-144 "CDEN.spad" 158216 158230 158986 158991) (-143 "CCLASS.spad" 156312 156320 157574 157613) (-142 "CATEGORY.spad" 155386 155394 156302 156307) (-141 "CATCTOR.spad" 155277 155285 155376 155381) (-140 "CATAST.spad" 154903 154911 155267 155272) (-139 "CASEAST.spad" 154617 154625 154893 154898) (-138 "CARTEN2.spad" 154007 154034 154607 154612) (-137 "CARTEN.spad" 149374 149398 153997 154002) (-136 "CARD.spad" 146669 146677 149348 149369) (-135 "CAPSLAST.spad" 146451 146459 146659 146664) (-134 "CACHSET.spad" 146075 146083 146441 146446) (-133 "CABMON.spad" 145630 145638 146065 146070) (-132 "BYTEORD.spad" 145305 145313 145620 145625) (-131 "BYTEBUF.spad" 143006 143014 144292 144319) (-130 "BYTE.spad" 142481 142489 142996 143001) (-129 "BTREE.spad" 141425 141435 141959 141986) (-128 "BTOURN.spad" 140301 140311 140903 140930) (-127 "BTCAT.spad" 139693 139703 140269 140296) (-126 "BTCAT.spad" 139105 139117 139683 139688) (-125 "BTAGG.spad" 138571 138579 139073 139100) (-124 "BTAGG.spad" 138057 138067 138561 138566) (-123 "BSTREE.spad" 136669 136679 137535 137562) (-122 "BRILL.spad" 134874 134885 136659 136664) (-121 "BRAGG.spad" 133830 133840 134864 134869) (-120 "BRAGG.spad" 132750 132762 133786 133791) (-119 "BPADICRT.spad" 130575 130587 130822 130915) (-118 "BPADIC.spad" 130247 130259 130501 130570) (-117 "BOUNDZRO.spad" 129903 129920 130237 130242) (-116 "BOP1.spad" 127361 127371 129893 129898) (-115 "BOP.spad" 122503 122511 127351 127356) (-114 "BOOLEAN.spad" 122051 122059 122493 122498) (-113 "BOOLE.spad" 121701 121709 122041 122046) (-112 "BOOLE.spad" 121349 121359 121691 121696) (-111 "BMODULE.spad" 121061 121073 121317 121344) (-110 "BITS.spad" 120435 120443 120650 120677) (-109 "BINDING.spad" 119856 119864 120425 120430) (-108 "BINARY.spad" 117825 117833 118181 118274) (-107 "BGAGG.spad" 117030 117040 117805 117820) (-106 "BGAGG.spad" 116243 116255 117020 117025) (-105 "BFUNCT.spad" 115807 115815 116223 116238) (-104 "BEZOUT.spad" 114947 114974 115757 115762) (-103 "BBTREE.spad" 111695 111705 114425 114452) (-102 "BASTYPE.spad" 111194 111202 111685 111690) (-101 "BASTYPE.spad" 110691 110701 111184 111189) (-100 "BALFACT.spad" 110150 110163 110681 110686) (-99 "AUTOMOR.spad" 109601 109610 110130 110145) (-98 "ATTREG.spad" 106324 106331 109353 109596) (-97 "ATTRBUT.spad" 102347 102354 106304 106319) (-96 "ATTRAST.spad" 102064 102071 102337 102342) (-95 "ATRIG.spad" 101534 101541 102054 102059) (-94 "ATRIG.spad" 101002 101011 101524 101529) (-93 "ASTCAT.spad" 100906 100913 100992 100997) (-92 "ASTCAT.spad" 100808 100817 100896 100901) (-91 "ASTACK.spad" 100018 100027 100286 100313) (-90 "ASSOCEQ.spad" 98852 98863 99974 99979) (-89 "ASP9.spad" 97933 97946 98842 98847) (-88 "ASP80.spad" 97255 97268 97923 97928) (-87 "ASP8.spad" 96298 96311 97245 97250) (-86 "ASP78.spad" 95749 95762 96288 96293) (-85 "ASP77.spad" 95118 95131 95739 95744) (-84 "ASP74.spad" 94210 94223 95108 95113) (-83 "ASP73.spad" 93481 93494 94200 94205) (-82 "ASP7.spad" 92641 92654 93471 93476) (-81 "ASP6.spad" 91508 91521 92631 92636) (-80 "ASP55.spad" 90017 90030 91498 91503) (-79 "ASP50.spad" 87834 87847 90007 90012) (-78 "ASP49.spad" 86833 86846 87824 87829) (-77 "ASP42.spad" 85248 85287 86823 86828) (-76 "ASP41.spad" 83835 83874 85238 85243) (-75 "ASP4.spad" 83130 83143 83825 83830) (-74 "ASP35.spad" 82118 82131 83120 83125) (-73 "ASP34.spad" 81419 81432 82108 82113) (-72 "ASP33.spad" 80979 80992 81409 81414) (-71 "ASP31.spad" 80119 80132 80969 80974) (-70 "ASP30.spad" 79011 79024 80109 80114) (-69 "ASP29.spad" 78477 78490 79001 79006) (-68 "ASP28.spad" 69750 69763 78467 78472) (-67 "ASP27.spad" 68647 68660 69740 69745) (-66 "ASP24.spad" 67734 67747 68637 68642) (-65 "ASP20.spad" 67198 67211 67724 67729) (-64 "ASP19.spad" 61884 61897 67188 67193) (-63 "ASP12.spad" 61298 61311 61874 61879) (-62 "ASP10.spad" 60569 60582 61288 61293) (-61 "ASP1.spad" 59950 59963 60559 60564) (-60 "ARRAY2.spad" 59189 59198 59428 59455) (-59 "ARRAY12.spad" 57902 57913 59179 59184) (-58 "ARRAY1.spad" 56565 56574 56911 56938) (-57 "ARR2CAT.spad" 52347 52368 56533 56560) (-56 "ARR2CAT.spad" 48149 48172 52337 52342) (-55 "ARITY.spad" 47521 47528 48139 48144) (-54 "APPRULE.spad" 46805 46827 47511 47516) (-53 "APPLYORE.spad" 46424 46437 46795 46800) (-52 "ANY1.spad" 45495 45504 46414 46419) (-51 "ANY.spad" 44346 44353 45485 45490) (-50 "ANTISYM.spad" 42791 42807 44326 44341) (-49 "ANON.spad" 42500 42507 42781 42786) (-48 "AN.spad" 40806 40813 42313 42406) (-47 "AMR.spad" 38991 39002 40704 40801) (-46 "AMR.spad" 37007 37020 38722 38727) (-45 "ALIST.spad" 33847 33868 34197 34224) (-44 "ALGSC.spad" 32982 33008 33719 33772) (-43 "ALGPKG.spad" 28765 28776 32938 32943) (-42 "ALGMFACT.spad" 27958 27972 28755 28760) (-41 "ALGMANIP.spad" 25442 25457 27785 27790) (-40 "ALGFF.spad" 23047 23074 23264 23420) (-39 "ALGFACT.spad" 22166 22176 23037 23042) (-38 "ALGEBRA.spad" 21999 22008 22122 22161) (-37 "ALGEBRA.spad" 21864 21875 21989 21994) (-36 "ALAGG.spad" 21376 21397 21832 21859) (-35 "AHYP.spad" 20757 20764 21366 21371) (-34 "AGG.spad" 19466 19473 20747 20752) (-33 "AGG.spad" 18139 18148 19422 19427) (-32 "AF.spad" 16567 16582 18071 18076) (-31 "ADDAST.spad" 16253 16260 16557 16562) (-30 "ACPLOT.spad" 14844 14851 16243 16248) (-29 "ACFS.spad" 12701 12710 14746 14839) (-28 "ACFS.spad" 10644 10655 12691 12696) (-27 "ACF.spad" 7398 7405 10546 10639) (-26 "ACF.spad" 4238 4247 7388 7393) (-25 "ABELSG.spad" 3779 3786 4228 4233) (-24 "ABELSG.spad" 3318 3327 3769 3774) (-23 "ABELMON.spad" 2861 2868 3308 3313) (-22 "ABELMON.spad" 2402 2411 2851 2856) (-21 "ABELGRP.spad" 2067 2074 2392 2397) (-20 "ABELGRP.spad" 1730 1739 2057 2062) (-19 "A1AGG.spad" 870 879 1698 1725) (-18 "A1AGG.spad" 30 41 860 865))
\ No newline at end of file diff --git a/src/share/algebra/category.daase b/src/share/algebra/category.daase index 7312a121..dc21210a 100644 --- a/src/share/algebra/category.daase +++ b/src/share/algebra/category.daase @@ -1,17 +1,17 @@ -(207264 . 3524522247) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +(207056 . 3524556583) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-419 |#2|) |#3|) . T)) -((((-419 (-558))) |has| (-419 |#2|) (-1059 (-419 (-558)))) (((-558)) |has| (-419 |#2|) (-1059 (-558))) (((-419 |#2|)) . T)) +((((-419 (-558))) |has| (-419 |#2|) (-1058 (-419 (-558)))) (((-558)) |has| (-419 |#2|) (-1058 (-558))) (((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) -((((-558)) |has| (-419 |#2|) (-658 (-558))) (((-419 |#2|)) . T)) +((((-558)) |has| (-419 |#2|) (-657 (-558))) (((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|) |#3|) . T)) (|has| (-419 |#2|) (-149)) @@ -21,54 +21,54 @@ ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) (|has| (-419 |#2|) (-240)) -((($) -3957 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) -(-3957 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) +((($) -3956 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) +(-3956 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) ((((-419 |#2|)) . T)) -((($ (-1198)) -3957 (|has| (-419 |#2|) (-917 (-1198))) (|has| (-419 |#2|) (-919 (-1198))))) -((((-1198)) -3957 (|has| (-419 |#2|) (-917 (-1198))) (|has| (-419 |#2|) (-919 (-1198))))) -((((-1198)) |has| (-419 |#2|) (-917 (-1198)))) +((($ (-1197)) -3956 (|has| (-419 |#2|) (-916 (-1197))) (|has| (-419 |#2|) (-918 (-1197))))) +((((-1197)) -3956 (|has| (-419 |#2|) (-916 (-1197))) (|has| (-419 |#2|) (-918 (-1197))))) +((((-1197)) |has| (-419 |#2|) (-916 (-1197)))) ((((-419 |#2|)) . T)) (((|#3|) . T)) ((((-419 |#2|) (-419 |#2|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-558)) |has| (-419 |#2|) (-658 (-558))) (((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-558)) |has| (-419 |#2|) (-657 (-558))) (((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (((|#1| |#2| |#3|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1163 |#2| |#1|)) . T) ((|#1|) . T)) -((((-877)) . T)) -((((-1163 |#2| |#1|)) . T) ((|#1|) . T) (((-558)) . T)) +((((-1162 |#2| |#1|)) . T) ((|#1|) . T)) +((((-876)) . T)) +((((-1162 |#2| |#1|)) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-877)) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-876)) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((|#1| |#2|) . T)) -((((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) (((-1255 (-558)) $) . T) ((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((|#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -((((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((|#1| |#2|) . T)) +((((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((|#1| |#2|) . T)) +((((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) (((-1254 (-558)) $) . T) ((|#1| |#2|) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((|#2|) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) ((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) ((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +((((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((|#1| |#2|) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T)) @@ -82,100 +82,100 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-628 $) $) . T)) -((((-419 (-558))) . T) (((-558)) . T) (((-628 $)) . T)) -((($) . T) (((-558)) . T) (((-419 (-558))) . T) (((-628 $)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((($ $) . T) (((-627 $) $) . T)) +((((-419 (-558))) . T) (((-558)) . T) (((-627 $)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T) (((-627 $)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-791)) . T)) -((((-791)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-876)) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1| (-58 |#1|) (-58 |#1|)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-709 (-352 (-3950) (-3950 (QUOTE X) (QUOTE HESS)) (-719)))) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719)))) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-708 (-352 (-3949) (-3949 (QUOTE X) (QUOTE HESS)) (-718)))) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718)))) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +(((|#1|) . T)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) (((|#1| |#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-1025 2)) . T) (((-419 (-558))) . T) (((-877)) . T)) +((((-876)) . T)) +((((-1024 2)) . T) (((-419 (-558))) . T) (((-876)) . T)) ((((-558)) . T)) ((((-558)) . T)) ((($) . T)) @@ -193,27 +193,27 @@ ((((-558)) . T)) ((((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-419 (-558))) . T) (((-558)) . T)) ((((-558)) . T) (($) . T) (((-419 (-558))) . T)) ((((-558)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-114)) . T)) ((((-114)) . T)) ((((-558) (-114)) . T)) ((((-558) (-114)) . T)) -((((-558) (-114)) . T) (((-1255 (-558)) $) . T)) +((((-558) (-114)) . T) (((-1254 (-558)) $) . T)) ((((-547)) . T)) ((((-114)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-114)) . T)) ((((-114)) . T)) ((((-547)) . T)) -((((-877)) . T)) -((((-1198)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-1197)) . T)) +((((-876)) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($ $) . T)) @@ -223,7 +223,7 @@ ((($) . T)) ((((-558)) . T) (($) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-118 |#1|)) . T)) ((((-118 |#1|)) . T)) ((((-118 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) @@ -234,7 +234,7 @@ ((((-118 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-118 |#1|) (-118 |#1|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) ((((-118 |#1|)) . T)) -((((-1198) (-118 |#1|)) |has| (-118 |#1|) (-526 (-1198) (-118 |#1|))) (((-118 |#1|) (-118 |#1|)) |has| (-118 |#1|) (-321 (-118 |#1|)))) +((((-1197) (-118 |#1|)) |has| (-118 |#1|) (-526 (-1197) (-118 |#1|))) (((-118 |#1|) (-118 |#1|)) |has| (-118 |#1|) (-321 (-118 |#1|)))) ((((-118 |#1|)) |has| (-118 |#1|) (-321 (-118 |#1|)))) ((((-118 |#1|) $) |has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|)))) ((((-118 |#1|)) . T)) @@ -247,63 +247,63 @@ ((((-118 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-130)) . T)) ((((-130)) . T)) -((((-1180)) . T) (((-977 (-130))) . T) (((-877)) . T)) +((((-1179)) . T) (((-976 (-130))) . T) (((-876)) . T)) ((((-130)) . T)) ((((-558) (-130)) . T)) -((((-1255 (-558)) $) . T) (((-558) (-130)) . T)) +((((-1254 (-558)) $) . T) (((-558) (-130)) . T)) ((((-558) (-130)) . T)) ((((-130)) . T)) ((((-130)) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-791)) . T)) -((((-791)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-790)) . T)) +((((-790)) . T)) +((((-876)) . T)) ((((-558) |#3|) . T)) -((((-558) (-791)) . T) ((|#3| (-791)) . T)) -((((-877)) . T)) +((((-558) (-790)) . T) ((|#3| (-790)) . T)) +((((-876)) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| (-791)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +(((|#3| (-790)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-518)) . T)) -((((-186)) . T) (((-877)) . T)) -((((-877)) . T)) +((((-186)) . T) (((-876)) . T)) +((((-876)) . T)) ((((-146)) . T)) ((((-146)) . T)) ((((-146)) . T)) @@ -311,9 +311,9 @@ ((((-146)) . T)) ((((-146)) . T)) ((((-146)) . T)) -((((-661 (-146))) . T) (((-1180)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-660 (-146))) . T) (((-1179)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -323,79 +323,79 @@ (((|#2|) . T)) (((|#2|) . T) (((-558)) . T)) (((|#2|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#2|) . T) (($) . T) (((-558)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-363))) -((((-877)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-363))) +((((-876)) . T)) (|has| |#1| (-149)) (((|#1|) . T)) -((((-1198)) |has| |#1| (-917 (-1198)))) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) -(((|#1|) . T)) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +((((-1197)) |has| |#1| (-916 (-1197)))) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) +(((|#1|) . T)) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)) (|has| |#1| (-363)))) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(((|#1|) . T)) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) (((|#1|) . T)) -((($) . T) (((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T)) -((((-558)) |has| |#1| (-901 (-558))) (((-391)) |has| |#1| (-901 (-391)))) -(((|#1|) . T)) -((((-558)) . T) (($) -3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1059 (-419 (-558))))) ((|#1|) . T)) -(((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(((|#1| (-1192 |#1|)) . T)) -(((|#1| (-1192 |#1|)) . T)) -((($) -3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($ $) . T) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) -((($) -3957 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -(((|#1| (-1192 |#1|)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T)) +((((-558)) |has| |#1| (-900 (-558))) (((-391)) |has| |#1| (-900 (-391)))) +(((|#1|) . T)) +((((-558)) . T) (($) -3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1058 (-419 (-558))))) ((|#1|) . T)) +(((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(((|#1| (-1191 |#1|)) . T)) +(((|#1| (-1191 |#1|)) . T)) +((($) -3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($ $) . T) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) +((($) -3956 (|has| |#1| (-319)) (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +(((|#1| (-1191 |#1|)) . T)) (|has| |#1| (-363)) (|has| |#1| (-363)) (|has| |#1| (-363)) -(-3957 (|has| |#1| (-381)) (|has| |#1| (-363))) -(((|#1|) . T)) -((((-171 (-229))) |has| |#1| (-1041)) (((-171 (-391))) |has| |#1| (-1041)) (((-547)) |has| |#1| (-631 (-547))) (((-1192 |#1|)) . T) (((-905 (-558))) |has| |#1| (-631 (-905 (-558)))) (((-905 (-391))) |has| |#1| (-631 (-905 (-391))))) -(-12 (|has| |#1| (-319)) (|has| |#1| (-929))) -(-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -(|has| |#1| (-1224)) -(((|#1|) . T)) -((((-877)) . T)) +(-3956 (|has| |#1| (-381)) (|has| |#1| (-363))) +(((|#1|) . T)) +((((-171 (-229))) |has| |#1| (-1040)) (((-171 (-391))) |has| |#1| (-1040)) (((-547)) |has| |#1| (-630 (-547))) (((-1191 |#1|)) . T) (((-904 (-558))) |has| |#1| (-630 (-904 (-558)))) (((-904 (-391))) |has| |#1| (-630 (-904 (-391))))) +(-12 (|has| |#1| (-319)) (|has| |#1| (-928))) +(-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) +(|has| |#1| (-1223)) +(((|#1|) . T)) +((((-876)) . T)) ((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((($) . T) (((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T)) ((($ $) . T) (((-419 (-558)) (-419 (-558))) . T) (((-419 |#1|) (-419 |#1|)) . T) ((|#1| |#1|) . T)) @@ -403,36 +403,36 @@ ((((-419 (-558))) . T) (((-419 |#1|)) . T) ((|#1|) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T) (((-558)) . T)) ((((-419 (-558))) . T) (($) . T) (((-419 |#1|)) . T) ((|#1|) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-518)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-661 |#1|)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1025 10)) . T) (((-419 (-558))) . T) (((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-660 |#1|)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1024 10)) . T) (((-419 (-558))) . T) (((-876)) . T)) ((((-558)) . T)) ((((-558)) . T)) ((($) . T)) @@ -450,25 +450,25 @@ ((((-558)) . T)) ((((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-419 (-558))) . T) (((-558)) . T)) ((((-558)) . T) (($) . T) (((-419 (-558))) . T)) ((((-558)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-326 |#1|)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-326 |#1|)) . T) (((-558)) . T) (($) . T)) ((((-326 |#1|)) . T) (($) . T)) ((((-326 |#1|)) . T) (((-558)) . T)) @@ -482,330 +482,330 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) -((((-547)) . T) (((-229)) . T) (((-391)) . T) (((-905 (-391))) . T)) -((((-877)) . T)) +((((-547)) . T) (((-229)) . T) (((-391)) . T) (((-904 (-391))) . T)) +((((-876)) . T)) ((((-419 (-558))) . T) (((-558)) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T) (((-558)) . T)) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) -(((|#1|) . T)) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(((|#2| |#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1070)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070)))) -((((-877)) -3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-630 (-877))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) (((-1288 |#2|)) . T)) -(((|#2|) |has| |#2| (-1070))) -((((-1198)) -12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070)))) -((((-1198)) -3957 (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))))) -((($ (-1198)) -3957 (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))))) -(((|#2|) |has| |#2| (-1070))) -(-3957 (-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1070)))) -((($) -3957 (-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))))) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -((((-558)) -3957 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) ((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) +(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) +(((|#1|) . T)) +(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(((|#2| |#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)) (|has| |#2| (-1069)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069)))) +((((-876)) -3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-629 (-876))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) (((-1287 |#2|)) . T)) +(((|#2|) |has| |#2| (-1069))) +((((-1197)) -12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069)))) +((((-1197)) -3956 (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))))) +((($ (-1197)) -3956 (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))))) +(((|#2|) |has| |#2| (-1069))) +(-3956 (-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1069)))) +((($) -3956 (-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))))) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +((((-558)) -3956 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) ((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069))) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1070))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070)))) -(((|#2|) |has| |#2| (-1070)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070)))) -(((|#2|) |has| |#2| (-1122))) -((((-558)) -3957 (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1122)) (((-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122)))) -(((|#2|) |has| |#2| (-1122)) (((-558)) -12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (((-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122)))) +(((|#2|) |has| |#2| (-1069))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069)) (((-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1069)) (((-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1121))) +((((-558)) -3956 (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ((|#2|) |has| |#2| (-1121)) (((-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121)))) +(((|#2|) |has| |#2| (-1121)) (((-558)) -12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (((-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121)))) ((((-558) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) ((((-558) |#2|) . T)) ((((-558) |#2|) . T)) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-815)) -(|has| |#2| (-815)) -(-3957 (|has| |#2| (-815)) (|has| |#2| (-861))) -(-3957 (|has| |#2| (-815)) (|has| |#2| (-861))) -(|has| |#2| (-815)) -(|has| |#2| (-815)) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +(-3956 (|has| |#2| (-814)) (|has| |#2| (-860))) +(-3956 (|has| |#2| (-814)) (|has| |#2| (-860))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (((|#2|) |has| |#2| (-376))) (((|#1| |#2|) . T)) -((((-661 |#1|)) . T)) -((((-661 |#1|)) . T)) +((((-660 |#1|)) . T)) +((((-660 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-661 |#1|)) . T) (((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-660 |#1|)) . T) (((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-547)) |has| |#2| (-631 (-547))) (((-905 (-391))) |has| |#2| (-631 (-905 (-391)))) (((-905 (-558))) |has| |#2| (-631 (-905 (-558))))) +((((-547)) |has| |#2| (-630 (-547))) (((-904 (-391))) |has| |#2| (-630 (-904 (-391)))) (((-904 (-558))) |has| |#2| (-630 (-904 (-558))))) ((($) . T)) -(((|#2| (-246 (-4387 |#1|) (-791))) . T)) +(((|#2| (-246 (-4386 |#1|) (-790))) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(((|#2| (-246 (-4387 |#1|) (-791))) . T)) +(-3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(((|#2| (-246 (-4386 |#1|) (-790))) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-929))) -((($ $) . T) (((-878 |#1|) $) . T) (((-878 |#1|) |#2|) . T)) -((((-878 |#1|)) . T)) -((($ (-878 |#1|)) . T)) -((((-878 |#1|)) . T)) -(|has| |#2| (-929)) -(|has| |#2| (-929)) -((((-419 (-558))) |has| |#2| (-1059 (-419 (-558)))) (((-558)) |has| |#2| (-1059 (-558))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-558)) . T) (((-419 (-558))) -3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ((|#2|) . T) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) (((-878 |#1|)) . T)) -(((|#2| (-246 (-4387 |#1|) (-791)) (-878 |#1|)) . T)) -((((-877)) . T)) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-928))) +((($ $) . T) (((-877 |#1|) $) . T) (((-877 |#1|) |#2|) . T)) +((((-877 |#1|)) . T)) +((($ (-877 |#1|)) . T)) +((((-877 |#1|)) . T)) +(|has| |#2| (-928)) +(|has| |#2| (-928)) +((((-419 (-558))) |has| |#2| (-1058 (-419 (-558)))) (((-558)) |has| |#2| (-1058 (-558))) ((|#2|) . T) (((-877 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ((|#2|) . T) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) (((-877 |#1|)) . T)) +(((|#2| (-246 (-4386 |#1|) (-790)) (-877 |#1|)) . T)) +((((-876)) . T)) ((((-518)) . T)) -((((-186)) . T) (((-877)) . T)) -((((-791) (-1203)) . T)) -((((-877)) . T)) -(((|#4| |#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1070)))) -(((|#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-746)) (|has| |#4| (-1070)))) -(((|#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1070)))) -((((-877)) . T) (((-1288 |#4|)) . T)) -(((|#4|) |has| |#4| (-1070))) -((((-1198)) -12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070)))) -((((-1198)) -3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070))))) -((($ (-1198)) -3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070))))) -(((|#4|) |has| |#4| (-1070))) -(-3957 (-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1070)))) -((($) -3957 (-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1070))))) -(|has| |#4| (-1070)) -(|has| |#4| (-1070)) -(|has| |#4| (-1070)) -(|has| |#4| (-1070)) -(((|#3|) . T) ((|#2|) . T) (((-558)) . T) ((|#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-746)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070))) -(-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) +((((-186)) . T) (((-876)) . T)) +((((-790) (-1202)) . T)) +((((-876)) . T)) +(((|#4| |#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1069)))) +(((|#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-745)) (|has| |#4| (-1069)))) +(((|#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1069)))) +((((-876)) . T) (((-1287 |#4|)) . T)) +(((|#4|) |has| |#4| (-1069))) +((((-1197)) -12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069)))) +((((-1197)) -3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069))))) +((($ (-1197)) -3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069))))) +(((|#4|) |has| |#4| (-1069))) +(-3956 (-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1069)))) +((($) -3956 (-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1069))))) +(|has| |#4| (-1069)) +(|has| |#4| (-1069)) +(|has| |#4| (-1069)) +(|has| |#4| (-1069)) +(((|#3|) . T) ((|#2|) . T) (((-558)) . T) ((|#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-745)) (|has| |#4| (-1069))) (($) |has| |#4| (-1069))) +(-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (|has| |#4| (-381)) -(((|#4|) |has| |#4| (-1070))) -(((|#3|) . T) ((|#2|) . T) ((|#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1070))) (($) |has| |#4| (-1070)) (((-558)) -12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1070)))) -(((|#4|) |has| |#4| (-1070)) (((-558)) -12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1070)))) -(((|#4|) |has| |#4| (-1122))) -((((-558)) -3957 (-12 (|has| |#4| (-1059 (-558))) (|has| |#4| (-1122))) (|has| |#4| (-1070))) ((|#4|) |has| |#4| (-1122)) (((-419 (-558))) -12 (|has| |#4| (-1059 (-419 (-558)))) (|has| |#4| (-1122)))) -(((|#4|) |has| |#4| (-1122)) (((-558)) -12 (|has| |#4| (-1059 (-558))) (|has| |#4| (-1122))) (((-419 (-558))) -12 (|has| |#4| (-1059 (-419 (-558)))) (|has| |#4| (-1122)))) +(((|#4|) |has| |#4| (-1069))) +(((|#3|) . T) ((|#2|) . T) ((|#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-1069))) (($) |has| |#4| (-1069)) (((-558)) -12 (|has| |#4| (-657 (-558))) (|has| |#4| (-1069)))) +(((|#4|) |has| |#4| (-1069)) (((-558)) -12 (|has| |#4| (-657 (-558))) (|has| |#4| (-1069)))) +(((|#4|) |has| |#4| (-1121))) +((((-558)) -3956 (-12 (|has| |#4| (-1058 (-558))) (|has| |#4| (-1121))) (|has| |#4| (-1069))) ((|#4|) |has| |#4| (-1121)) (((-419 (-558))) -12 (|has| |#4| (-1058 (-419 (-558)))) (|has| |#4| (-1121)))) +(((|#4|) |has| |#4| (-1121)) (((-558)) -12 (|has| |#4| (-1058 (-558))) (|has| |#4| (-1121))) (((-419 (-558))) -12 (|has| |#4| (-1058 (-419 (-558)))) (|has| |#4| (-1121)))) ((((-558) |#4|) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) (((|#4|) . T)) ((((-558) |#4|) . T)) ((((-558) |#4|) . T)) -(((|#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-746)))) -(((|#4|) -3957 (|has| |#4| (-175)) (|has| |#4| (-376)))) -(|has| |#4| (-815)) -(|has| |#4| (-815)) -(-3957 (|has| |#4| (-815)) (|has| |#4| (-861))) -(-3957 (|has| |#4| (-815)) (|has| |#4| (-861))) -(|has| |#4| (-815)) -(|has| |#4| (-815)) +(((|#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)) (|has| |#4| (-745)))) +(((|#4|) -3956 (|has| |#4| (-175)) (|has| |#4| (-376)))) +(|has| |#4| (-814)) +(|has| |#4| (-814)) +(-3956 (|has| |#4| (-814)) (|has| |#4| (-860))) +(-3956 (|has| |#4| (-814)) (|has| |#4| (-860))) +(|has| |#4| (-814)) +(|has| |#4| (-814)) (((|#4|) |has| |#4| (-376))) (((|#1| |#4|) . T)) -(((|#3| |#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1070)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070)))) -((((-877)) . T) (((-1288 |#3|)) . T)) -(((|#3|) |has| |#3| (-1070))) -((((-1198)) -12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070)))) -((((-1198)) -3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))))) -((($ (-1198)) -3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))))) -(((|#3|) |has| |#3| (-1070))) -(-3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070)))) -((($) -3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070))))) -(|has| |#3| (-1070)) -(|has| |#3| (-1070)) -(|has| |#3| (-1070)) -(|has| |#3| (-1070)) -(((|#2|) . T) (((-558)) . T) ((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) -(-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) +(((|#3| |#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-745)) (|has| |#3| (-1069)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069)))) +((((-876)) . T) (((-1287 |#3|)) . T)) +(((|#3|) |has| |#3| (-1069))) +((((-1197)) -12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069)))) +((((-1197)) -3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))))) +((($ (-1197)) -3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))))) +(((|#3|) |has| |#3| (-1069))) +(-3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069)))) +((($) -3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069))))) +(|has| |#3| (-1069)) +(|has| |#3| (-1069)) +(|has| |#3| (-1069)) +(|has| |#3| (-1069)) +(((|#2|) . T) (((-558)) . T) ((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-745)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069))) +(-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (|has| |#3| (-381)) -(((|#3|) |has| |#3| (-1070))) -(((|#2|) . T) ((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070)))) -(((|#3|) |has| |#3| (-1070)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070)))) -(((|#3|) |has| |#3| (-1122))) -((((-558)) -3957 (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1122)) (((-419 (-558))) -12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122)))) -(((|#3|) |has| |#3| (-1122)) (((-558)) -12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) (((-419 (-558))) -12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122)))) +(((|#3|) |has| |#3| (-1069))) +(((|#2|) . T) ((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069)) (((-558)) -12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069)))) +(((|#3|) |has| |#3| (-1069)) (((-558)) -12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069)))) +(((|#3|) |has| |#3| (-1121))) +((((-558)) -3956 (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) (|has| |#3| (-1069))) ((|#3|) |has| |#3| (-1121)) (((-419 (-558))) -12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121)))) +(((|#3|) |has| |#3| (-1121)) (((-558)) -12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) (((-419 (-558))) -12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121)))) ((((-558) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122)))) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122)))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121)))) (((|#3|) . T)) ((((-558) |#3|) . T)) ((((-558) |#3|) . T)) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(|has| |#3| (-815)) -(|has| |#3| (-815)) -(-3957 (|has| |#3| (-815)) (|has| |#3| (-861))) -(-3957 (|has| |#3| (-815)) (|has| |#3| (-861))) -(|has| |#3| (-815)) -(|has| |#3| (-815)) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-745)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(|has| |#3| (-814)) +(|has| |#3| (-814)) +(-3956 (|has| |#3| (-814)) (|has| |#3| (-860))) +(-3956 (|has| |#3| (-814)) (|has| |#3| (-860))) +(|has| |#3| (-814)) +(|has| |#3| (-814)) (((|#3|) |has| |#3| (-376))) (((|#1| |#3|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-877)) . T)) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-876)) . T)) (|has| |#1| (-240)) ((($) . T)) (((|#1| (-543 |#3|) |#3|) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-558)) -12 (|has| |#1| (-901 (-558))) (|has| |#3| (-901 (-558)))) (((-391)) -12 (|has| |#1| (-901 (-391))) (|has| |#3| (-901 (-391))))) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) ((|#3|) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (($ |#3|) . T)) -((((-1198)) |has| |#1| (-917 (-1198))) ((|#3|) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-558)) -12 (|has| |#1| (-900 (-558))) (|has| |#3| (-900 (-558)))) (((-391)) -12 (|has| |#1| (-900 (-391))) (|has| |#3| (-900 (-391))))) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) ((|#3|) . T)) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (($ |#3|) . T)) +((((-1197)) |has| |#1| (-916 (-1197))) ((|#3|) . T)) ((($ $) . T) ((|#2| $) |has| |#1| (-240)) ((|#2| |#1|) |has| |#1| (-240)) ((|#3| |#1|) . T) ((|#3| $) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| (-543 |#3|)) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T)) (((|#1| (-543 |#3|)) . T)) -((((-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#3| (-631 (-905 (-558))))) (((-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#3| (-631 (-905 (-391))))) (((-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547))))) -((((-1146 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((|#2|) . T)) -((((-1146 |#1| |#2|)) . T) (((-558)) . T) ((|#3|) . T) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ((|#2|) . T)) +((((-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#3| (-630 (-904 (-558))))) (((-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#3| (-630 (-904 (-391))))) (((-547)) -12 (|has| |#1| (-630 (-547))) (|has| |#3| (-630 (-547))))) +((((-1145 |#1| |#2|)) . T) ((|#3|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((|#2|) . T)) +((((-1145 |#1| |#2|)) . T) (((-558)) . T) ((|#3|) . T) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ((|#2|) . T)) (((|#1| |#2| |#3| (-543 |#3|)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#2| |#2|) . T)) ((($) . T)) ((($) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) ((($ $) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) |has| |#1| (-376))) -((((-1198)) |has| |#1| (-917 (-1198)))) -((($ (-1198)) |has| |#1| (-917 (-1198)))) -((((-1198)) |has| |#1| (-917 (-1198)))) -(((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)))) -(((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)))) -(((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1070)))) -(((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1070)))) -(((|#1| |#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1070)))) -((((-558)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)))) -(((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1070))) (($) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)))) -(-3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) +((((-1197)) |has| |#1| (-916 (-1197)))) +((($ (-1197)) |has| |#1| (-916 (-1197)))) +((((-1197)) |has| |#1| (-916 (-1197)))) +(((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)))) +(((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)))) +(((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1069)))) +(((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1069)))) +(((|#1| |#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1069)))) +((((-558)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)))) +(((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1069))) (($) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)))) +(-3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) (|has| |#1| (-485)) -(-3957 (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) -(((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1070))) (($) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) (((-558)) -3957 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1122))) -((((-114)) |has| |#1| (-1122)) (((-877)) -3957 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-746)) (|has| |#1| (-917 (-1198))) (|has| |#1| (-1070)) (|has| |#1| (-1133)) (|has| |#1| (-1122))) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|))) +(-3956 (|has| |#1| (-485)) (|has| |#1| (-745)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-485)) (|has| |#1| (-745)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)) (|has| |#1| (-1132))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) +(((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-1069))) (($) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) (((-558)) -3956 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-745)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)) (|has| |#1| (-1132)) (|has| |#1| (-1121))) +((((-114)) |has| |#1| (-1121)) (((-876)) -3956 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-745)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)) (|has| |#1| (-1132)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-485)) (|has| |#1| (-745)) (|has| |#1| (-916 (-1197))) (|has| |#1| (-1069)) (|has| |#1| (-1132)) (|has| |#1| (-1121))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -(|has| (-1275 |#1| |#2| |#3| |#4|) (-147)) -(|has| (-1275 |#1| |#2| |#3| |#4|) (-149)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) -((($) . T) (((-558)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1198) (-1275 |#1| |#2| |#3| |#4|)) |has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|))) (((-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) |has| (-1275 |#1| |#2| |#3| |#4|) (-321 (-1275 |#1| |#2| |#3| |#4|)))) -((((-1275 |#1| |#2| |#3| |#4|)) |has| (-1275 |#1| |#2| |#3| |#4|) (-321 (-1275 |#1| |#2| |#3| |#4|)))) -((((-1275 |#1| |#2| |#3| |#4|) $) |has| (-1275 |#1| |#2| |#3| |#4|) (-298 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)))) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((($) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1269 |#2| |#3| |#4|)) . T) (((-558)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-1269 |#2| |#3| |#4|)) . T) (((-1275 |#1| |#2| |#3| |#4|)) . T)) -((((-1275 |#1| |#2| |#3| |#4|)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +(|has| (-1274 |#1| |#2| |#3| |#4|) (-147)) +(|has| (-1274 |#1| |#2| |#3| |#4|) (-149)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1197) (-1274 |#1| |#2| |#3| |#4|)) |has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))) (((-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) |has| (-1274 |#1| |#2| |#3| |#4|) (-321 (-1274 |#1| |#2| |#3| |#4|)))) +((((-1274 |#1| |#2| |#3| |#4|)) |has| (-1274 |#1| |#2| |#3| |#4|) (-321 (-1274 |#1| |#2| |#3| |#4|)))) +((((-1274 |#1| |#2| |#3| |#4|) $) |has| (-1274 |#1| |#2| |#3| |#4|) (-298 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)))) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((($) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (((-419 (-558))) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1268 |#2| |#3| |#4|)) . T) (((-558)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-1268 |#2| |#3| |#4|)) . T) (((-1274 |#1| |#2| |#3| |#4|)) . T)) +((((-1274 |#1| |#2| |#3| |#4|)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) (|has| |#1| (-569)) @@ -820,18 +820,18 @@ (|has| |#1| (-569)) (|has| |#1| (-569)) (((|#1|) |has| |#1| (-569))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) -((((-877)) . T)) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-569)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-569)) (|has| |#1| (-1070)) (|has| |#1| (-1133))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) +((((-876)) . T)) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-25)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-569)) (|has| |#1| (-1069)) (|has| |#1| (-1132))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-485)) (|has| |#1| (-569)) (|has| |#1| (-1069)) (|has| |#1| (-1132))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) (|has| |#1| (-147)) (|has| |#1| (-149)) -((((-628 $) $) . T) (($ $) . T)) +((((-627 $) $) . T) (($ $) . T)) ((($) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) @@ -841,7 +841,7 @@ (|has| |#1| (-569)) (|has| |#1| (-569)) (((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569)) (((-419 (-558))) |has| |#1| (-569))) -((((-558)) -3957 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) (($) -3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) ((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-1070))) (((-419 (-558))) |has| |#1| (-569))) +((((-558)) -3956 (|has| |#1| (-21)) (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) (($) -3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) ((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-1069))) (((-419 (-558))) |has| |#1| (-569))) (((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569)) (((-419 (-558))) |has| |#1| (-569))) (((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569)) (((-419 (-558))) |has| |#1| (-569))) (|has| |#1| (-569)) @@ -849,30 +849,30 @@ (((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-569)) (($) |has| |#1| (-569))) (((|#1| |#1|) |has| |#1| (-175)) (((-419 (-558)) (-419 (-558))) |has| |#1| (-569)) (($ $) |has| |#1| (-569))) (|has| |#1| (-569)) -(((|#1|) |has| |#1| (-1070))) -((($) -3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1070))) ((|#1|) -3957 (|has| |#1| (-175)) (|has| |#1| (-1070))) (((-419 (-558))) |has| |#1| (-569)) (((-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) -(((|#1|) |has| |#1| (-1070)) (((-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) +(((|#1|) |has| |#1| (-1069))) +((($) -3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1069))) ((|#1|) -3956 (|has| |#1| (-175)) (|has| |#1| (-1069))) (((-419 (-558))) |has| |#1| (-569)) (((-558)) -12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) +(((|#1|) |has| |#1| (-1069)) (((-558)) -12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) (((|#1|) . T)) -((((-558)) |has| |#1| (-901 (-558))) (((-391)) |has| |#1| (-901 (-391)))) +((((-558)) |has| |#1| (-900 (-558))) (((-391)) |has| |#1| (-900 (-391)))) (((|#1|) . T)) (|has| |#1| (-485)) -((((-1198)) |has| |#1| (-1070))) -((($ (-1198)) |has| |#1| (-1070))) -((((-1198)) |has| |#1| (-1070))) +((((-1197)) |has| |#1| (-1069))) +((($ (-1197)) |has| |#1| (-1069))) +((((-1197)) |has| |#1| (-1069))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547))) (((-905 (-558))) |has| |#1| (-631 (-905 (-558)))) (((-905 (-391))) |has| |#1| (-631 (-905 (-391))))) -((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) (((-628 $)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) -3957 (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) (((-419 (-965 |#1|))) |has| |#1| (-569)) (((-965 |#1|)) |has| |#1| (-1070)) (((-1198)) . T)) -((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) (((-558)) -3957 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1059 (-558))) (|has| |#1| (-1070))) ((|#1|) . T) (((-628 $)) . T) (($) |has| |#1| (-569)) (((-419 (-558))) -3957 (|has| |#1| (-569)) (|has| |#1| (-1059 (-419 (-558))))) (((-419 (-965 |#1|))) |has| |#1| (-569)) (((-965 |#1|)) |has| |#1| (-1070)) (((-1198)) . T)) +((((-547)) |has| |#1| (-630 (-547))) (((-904 (-558))) |has| |#1| (-630 (-904 (-558)))) (((-904 (-391))) |has| |#1| (-630 (-904 (-391))))) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) (((-627 $)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) -3956 (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) (((-419 (-964 |#1|))) |has| |#1| (-569)) (((-964 |#1|)) |has| |#1| (-1069)) (((-1197)) . T)) +((((-48)) -12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) (((-558)) -3956 (|has| |#1| (-147)) (|has| |#1| (-149)) (|has| |#1| (-175)) (|has| |#1| (-569)) (|has| |#1| (-1058 (-558))) (|has| |#1| (-1069))) ((|#1|) . T) (((-627 $)) . T) (($) |has| |#1| (-569)) (((-419 (-558))) -3956 (|has| |#1| (-569)) (|has| |#1| (-1058 (-419 (-558))))) (((-419 (-964 |#1|))) |has| |#1| (-569)) (((-964 |#1|)) |has| |#1| (-1069)) (((-1197)) . T)) (((|#1|) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -((((-877)) . T)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-876)) . T)) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) @@ -885,26 +885,26 @@ (((|#1| (-419 (-558))) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) -((($) . T) (((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) -((((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -(((|#1| (-419 (-558)) (-1103)) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1| (-419 (-558)) (-1102)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) ((((-419 (-558)) |#1|) . T) (($ $) . T)) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| (-558)) . T)) @@ -914,38 +914,38 @@ ((((-558)) . T)) ((((-558)) . T)) ((((-558)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-791)) . T)) +(((|#1| (-790)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-558)) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1198)) . T)) -((($ (-1198)) . T)) -((((-1198)) . T)) +((((-1197)) . T)) +((($ (-1197)) . T)) +((((-1197)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) @@ -955,54 +955,54 @@ (((|#3|) . T) (($) . T)) (((|#3|) . T)) ((($) . T)) -((($ $) . T) (((-628 $) $) . T)) -(((|#3|) . T) (((-628 $)) . T)) -(((|#3|) . T) (((-558)) . T) (((-628 $)) . T)) -((((-877)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-925 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-925 |#1|) (-925 |#1|)) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) +((($ $) . T) (((-627 $) $) . T)) +(((|#3|) . T) (((-627 $)) . T)) +(((|#3|) . T) (((-558)) . T) (((-627 $)) . T)) +((((-876)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-924 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-924 |#1|) (-924 |#1|)) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-876)) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-925 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-925 |#1|) (-925 |#1|)) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-924 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-924 |#1|) (-924 |#1|)) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-876)) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-925 |#1|)) . T)) +((((-924 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1017,15 +1017,15 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1037,34 +1037,34 @@ ((($) |has| |#1| (-381))) (|has| |#1| (-381)) (((|#1|) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T)) -((((-925 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-925 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-925 |#1|) (-925 |#1|)) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T)) +((((-924 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-924 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-924 |#1|) (-924 |#1|)) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-925 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-876)) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-924 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (|has| $ (-149)) ((($) . T)) -((((-925 |#1|)) . T)) +((((-924 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1079,15 +1079,15 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1102,15 +1102,15 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1125,15 +1125,15 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1147,8 +1147,8 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-402) |#1|) . T)) ((((-229)) . T)) ((($) . T)) @@ -1160,8 +1160,8 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) -((((-547)) . T) (((-1180)) . T) (((-229)) . T) (((-391)) . T) (((-905 (-391))) . T)) -((((-229)) . T) (((-877)) . T)) +((((-547)) . T) (((-1179)) . T) (((-229)) . T) (((-391)) . T) (((-904 (-391))) . T)) +((((-229)) . T) (((-876)) . T)) ((((-419 (-558))) . T) (((-558)) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1169,7 +1169,7 @@ (((|#1|) |has| |#1| (-175))) (((|#1| |#2|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1177,7 +1177,7 @@ (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) @@ -1185,66 +1185,66 @@ (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +((((-876)) . T)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1180)) . T)) -((((-1180)) . T)) -((((-1180)) . T) (((-877)) . T)) +((((-1179)) . T)) +((((-1179)) . T)) +((((-1179)) . T) (((-876)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#3|) . T) (((-558)) . T)) (((|#3|) . T)) (((|#3|) . T)) (((|#3| |#3|) . T)) (((|#3|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-419 |#2|)) . T)) ((($) . T)) -((((-877)) . T)) -(|has| |#1| (-1243)) -((((-547)) |has| |#1| (-631 (-547))) (((-229)) |has| |#1| (-1041)) (((-391)) |has| |#1| (-1041))) -(|has| |#1| (-1041)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-1243))) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) +((((-876)) . T)) +(|has| |#1| (-1242)) +((((-547)) |has| |#1| (-630 (-547))) (((-229)) |has| |#1| (-1040)) (((-391)) |has| |#1| (-1040))) +(|has| |#1| (-1040)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-1242))) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) (((|#1|) . T)) ((($ $) |has| |#1| (-298 $ $)) ((|#1| $) |has| |#1| (-298 |#1| |#1|))) ((($) |has| |#1| (-321 $)) ((|#1|) |has| |#1| (-321 |#1|))) -((((-1198) $) |has| |#1| (-526 (-1198) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|))) +((((-1197) $) |has| |#1| (-526 (-1197) $)) (($ $) |has| |#1| (-321 $)) ((|#1| |#1|) |has| |#1| (-321 |#1|)) (((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|))) (((|#1|) . T)) (|has| |#1| (-240)) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)))) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239))) (((|#1|) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) -((((-1198)) |has| |#1| (-917 (-1198)))) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) +((((-1197)) |has| |#1| (-916 (-1197)))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((|#1|) . T) (((-558)) . T) (($) . T)) -((((-877)) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((|#1|) . T) (((-558)) . T) (($) . T)) +((((-876)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) (((|#1|) . T)) -((((-1198)) |has| |#1| (-917 (-1198)))) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) +((((-1197)) |has| |#1| (-916 (-1197)))) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) (((|#1|) . T)) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)))) (|has| |#1| (-240)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) ((($) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) . T)) @@ -1254,35 +1254,35 @@ (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) (((|#1|) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-558))) . T) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +((($) . T) ((|#1|) . T) (((-419 (-558))) . T) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) (((|#1|) . T)) -((((-558)) |has| |#1| (-901 (-558))) (((-391)) |has| |#1| (-901 (-391)))) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(-3957 (|has| |#1| (-842)) (|has| |#1| (-861))) -(-3957 (|has| |#1| (-842)) (|has| |#1| (-861))) -(|has| |#1| (-842)) -(|has| |#1| (-842)) -(|has| |#1| (-842)) +((((-558)) |has| |#1| (-900 (-558))) (((-391)) |has| |#1| (-900 (-391)))) +(|has| |#1| (-841)) +(|has| |#1| (-841)) +(|has| |#1| (-841)) +(-3956 (|has| |#1| (-841)) (|has| |#1| (-860))) +(-3956 (|has| |#1| (-841)) (|has| |#1| (-860))) +(|has| |#1| (-841)) +(|has| |#1| (-841)) +(|has| |#1| (-841)) (((|#1|) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-1041)) -((((-547)) |has| |#1| (-631 (-547))) (((-905 (-558))) |has| |#1| (-631 (-905 (-558)))) (((-905 (-391))) |has| |#1| (-631 (-905 (-391)))) (((-391)) |has| |#1| (-1041)) (((-229)) |has| |#1| (-1041))) -((((-558)) . T) ((|#1|) . T) (($) . T) (((-419 (-558))) . T) (((-1198)) |has| |#1| (-1059 (-1198)))) -((((-419 (-558))) |has| |#1| (-1059 (-558))) (((-558)) |has| |#1| (-1059 (-558))) (((-1198)) |has| |#1| (-1059 (-1198))) ((|#1|) . T)) -(|has| |#1| (-1173)) +(|has| |#1| (-928)) +(|has| |#1| (-1040)) +((((-547)) |has| |#1| (-630 (-547))) (((-904 (-558))) |has| |#1| (-630 (-904 (-558)))) (((-904 (-391))) |has| |#1| (-630 (-904 (-391)))) (((-391)) |has| |#1| (-1040)) (((-229)) |has| |#1| (-1040))) +((((-558)) . T) ((|#1|) . T) (($) . T) (((-419 (-558))) . T) (((-1197)) |has| |#1| (-1058 (-1197)))) +((((-419 (-558))) |has| |#1| (-1058 (-558))) (((-558)) |has| |#1| (-1058 (-558))) (((-1197)) |has| |#1| (-1058 (-1197))) ((|#1|) . T)) +(|has| |#1| (-1172)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) @@ -1290,80 +1290,80 @@ (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-402) (-1180)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-558) (-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|))) . T)) -((((-1163 |#2| (-419 (-965 |#1|)))) . T) (((-419 (-965 |#1|))) . T)) -((((-877)) . T)) -((((-1163 |#2| (-419 (-965 |#1|)))) . T) (((-419 (-965 |#1|))) . T) (((-558)) . T)) -((((-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|)) (-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|))) . T)) -((((-419 (-965 |#1|))) . T)) -((((-547)) |has| |#2| (-631 (-547))) (((-905 (-391))) |has| |#2| (-631 (-905 (-391)))) (((-905 (-558))) |has| |#2| (-631 (-905 (-558))))) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-402) (-1179)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-558) (-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|))) . T)) +((((-1162 |#2| (-419 (-964 |#1|)))) . T) (((-419 (-964 |#1|))) . T)) +((((-876)) . T)) +((((-1162 |#2| (-419 (-964 |#1|)))) . T) (((-419 (-964 |#1|))) . T) (((-558)) . T)) +((((-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|)) (-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|))) . T)) +((((-419 (-964 |#1|))) . T)) +((((-547)) |has| |#2| (-630 (-547))) (((-904 (-391))) |has| |#2| (-630 (-904 (-391)))) (((-904 (-558))) |has| |#2| (-630 (-904 (-558))))) ((($) . T)) (((|#2| |#3|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) +(-3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) (((|#2| |#3|) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-929))) -((($ $) . T) (((-878 |#1|) $) . T) (((-878 |#1|) |#2|) . T)) -((((-878 |#1|)) . T)) -((($ (-878 |#1|)) . T)) -((((-878 |#1|)) . T)) -(|has| |#2| (-929)) -(|has| |#2| (-929)) -((((-419 (-558))) |has| |#2| (-1059 (-419 (-558)))) (((-558)) |has| |#2| (-1059 (-558))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-558)) . T) (((-419 (-558))) -3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ((|#2|) . T) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) (((-878 |#1|)) . T)) -(((|#2| |#3| (-878 |#1|)) . T)) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-928))) +((($ $) . T) (((-877 |#1|) $) . T) (((-877 |#1|) |#2|) . T)) +((((-877 |#1|)) . T)) +((($ (-877 |#1|)) . T)) +((((-877 |#1|)) . T)) +(|has| |#2| (-928)) +(|has| |#2| (-928)) +((((-419 (-558))) |has| |#2| (-1058 (-419 (-558)))) (((-558)) |has| |#2| (-1058 (-558))) ((|#2|) . T) (((-877 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ((|#2|) . T) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) (((-877 |#1|)) . T)) +(((|#2| |#3| (-877 |#1|)) . T)) (((|#2| |#2|) . T) ((|#6| |#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#2|) . T) (((-558)) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#2|) . T) ((|#6|) . T)) (((|#4|) . T)) -((((-661 |#4|)) . T) (((-877)) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) +((((-660 |#4|)) . T) (((-876)) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) (((|#4|) . T)) -((((-547)) |has| |#4| (-631 (-547)))) +((((-547)) |has| |#4| (-630 (-547)))) (((|#1| |#2| |#3| |#4|) . T)) -((((-877)) . T)) +((((-876)) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -((((-877)) . T)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-876)) . T)) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) @@ -1376,48 +1376,48 @@ (((|#1| (-419 (-558))) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) -((($) . T) (((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) -((((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) -(((|#1| (-419 (-558)) (-1103)) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1|) . T)) +((((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#1| |#1|) . T)) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#1|) |has| |#1| (-175))) +(((|#1| (-419 (-558)) (-1102)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) ((((-419 (-558)) |#1|) . T) (($ $) . T)) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-547)) |has| |#4| (-631 (-547)))) +((((-547)) |has| |#4| (-630 (-547)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) (((|#4|) . T)) -((((-877)) . T) (((-661 |#4|)) . T)) +((((-876)) . T) (((-660 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-547)) . T) (((-419 (-1192 (-558)))) . T) (((-229)) . T) (((-391)) . T)) +((((-547)) . T) (((-419 (-1191 (-558)))) . T) (((-229)) . T) (((-391)) . T)) ((((-419 (-558))) . T) (((-558)) . T)) -((((-391)) . T) (((-229)) . T) (((-877)) . T)) +((((-391)) . T) (((-229)) . T) (((-876)) . T)) ((($) . T) (((-419 (-558))) . T)) ((($) . T) (((-419 (-558))) . T)) ((($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) @@ -1427,114 +1427,114 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-547)) |has| |#2| (-631 (-547))) (((-905 (-391))) |has| |#2| (-631 (-905 (-391)))) (((-905 (-558))) |has| |#2| (-631 (-905 (-558))))) +((((-547)) |has| |#2| (-630 (-547))) (((-904 (-391))) |has| |#2| (-630 (-904 (-391)))) (((-904 (-558))) |has| |#2| (-630 (-904 (-558))))) ((($) . T)) -(((|#2| (-494 (-4387 |#1|) (-791))) . T)) +(((|#2| (-494 (-4386 |#1|) (-790))) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(((|#2| (-494 (-4387 |#1|) (-791))) . T)) +(-3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(((|#2| (-494 (-4386 |#1|) (-790))) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-929))) -((($ $) . T) (((-878 |#1|) $) . T) (((-878 |#1|) |#2|) . T)) -((((-878 |#1|)) . T)) -((($ (-878 |#1|)) . T)) -((((-878 |#1|)) . T)) -(|has| |#2| (-929)) -(|has| |#2| (-929)) -((((-419 (-558))) |has| |#2| (-1059 (-419 (-558)))) (((-558)) |has| |#2| (-1059 (-558))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-558)) . T) (((-419 (-558))) -3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ((|#2|) . T) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) (((-878 |#1|)) . T)) -(((|#2| (-494 (-4387 |#1|) (-791)) (-878 |#1|)) . T)) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(((|#2| |#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1070)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070)))) -((((-877)) -3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-630 (-877))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) (((-1288 |#2|)) . T)) -(((|#2|) |has| |#2| (-1070))) -((((-1198)) -12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070)))) -((((-1198)) -3957 (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))))) -((($ (-1198)) -3957 (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))))) -(((|#2|) |has| |#2| (-1070))) -(-3957 (-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1070)))) -((($) -3957 (-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))))) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -((((-558)) -3957 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) ((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-928))) +((($ $) . T) (((-877 |#1|) $) . T) (((-877 |#1|) |#2|) . T)) +((((-877 |#1|)) . T)) +((($ (-877 |#1|)) . T)) +((((-877 |#1|)) . T)) +(|has| |#2| (-928)) +(|has| |#2| (-928)) +((((-419 (-558))) |has| |#2| (-1058 (-419 (-558)))) (((-558)) |has| |#2| (-1058 (-558))) ((|#2|) . T) (((-877 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ((|#2|) . T) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) (((-877 |#1|)) . T)) +(((|#2| (-494 (-4386 |#1|) (-790)) (-877 |#1|)) . T)) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(((|#2| |#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)) (|has| |#2| (-1069)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069)))) +((((-876)) -3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-629 (-876))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) (((-1287 |#2|)) . T)) +(((|#2|) |has| |#2| (-1069))) +((((-1197)) -12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069)))) +((((-1197)) -3956 (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))))) +((($ (-1197)) -3956 (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))))) +(((|#2|) |has| |#2| (-1069))) +(-3956 (-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1069)))) +((($) -3956 (-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))))) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +((((-558)) -3956 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) ((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069))) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1070))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070)))) -(((|#2|) |has| |#2| (-1070)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070)))) -(((|#2|) |has| |#2| (-1122))) -((((-558)) -3957 (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1122)) (((-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122)))) -(((|#2|) |has| |#2| (-1122)) (((-558)) -12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (((-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122)))) +(((|#2|) |has| |#2| (-1069))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069)) (((-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1069)) (((-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1121))) +((((-558)) -3956 (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ((|#2|) |has| |#2| (-1121)) (((-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121)))) +(((|#2|) |has| |#2| (-1121)) (((-558)) -12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (((-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121)))) ((((-558) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) ((((-558) |#2|) . T)) ((((-558) |#2|) . T)) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-815)) -(|has| |#2| (-815)) -(-3957 (|has| |#2| (-815)) (|has| |#2| (-861))) -(-3957 (|has| |#2| (-815)) (|has| |#2| (-861))) -(|has| |#2| (-815)) -(|has| |#2| (-815)) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +(-3956 (|has| |#2| (-814)) (|has| |#2| (-860))) +(-3956 (|has| |#2| (-814)) (|has| |#2| (-860))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (((|#2|) |has| |#2| (-376))) (((|#1| |#2|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) (((|#1|) . T)) (((|#1|) . T)) ((((-558)) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-1025 16)) . T) (((-419 (-558))) . T) (((-877)) . T)) +((((-1024 16)) . T) (((-419 (-558))) . T) (((-876)) . T)) ((((-558)) . T)) ((((-558)) . T)) ((($) . T)) @@ -1552,11 +1552,11 @@ ((((-558)) . T)) ((((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-419 (-558))) . T) (((-558)) . T)) ((((-558)) . T) (($) . T) (((-419 (-558))) . T)) ((((-558)) . T)) -((((-1180)) . T) (((-877)) . T)) +((((-1179)) . T) (((-876)) . T)) ((($) . T)) ((((-171 (-391))) . T) (((-229)) . T) (((-391)) . T)) ((((-419 (-558))) . T) (((-558)) . T)) @@ -1569,82 +1569,82 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) ((($) . T)) -((($ $) . T) (((-628 $) $) . T)) -((((-419 (-558))) . T) (((-558)) . T) (((-628 $)) . T)) -((($) . T) (((-558)) . T) (((-419 (-558))) . T) (((-628 $)) . T)) -((((-877)) . T)) +((($ $) . T) (((-627 $) $) . T)) +((((-419 (-558))) . T) (((-558)) . T) (((-627 $)) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) . T) (((-627 $)) . T)) +((((-876)) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) . T)) ((((-114)) . T)) ((((-114)) . T)) ((((-558) (-114)) . T)) ((((-558) (-114)) . T)) -((((-558) (-114)) . T) (((-1255 (-558)) $) . T)) +((((-558) (-114)) . T) (((-1254 (-558)) $) . T)) ((((-547)) . T)) ((((-114)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-114)) . T)) ((((-114)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) -((((-877)) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))) +((((-876)) . T)) +(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) +((((-876)) -12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-593 |#1|)) . T)) ((((-593 |#1|)) . T)) ((((-593 |#1|)) . T)) @@ -1654,7 +1654,7 @@ ((((-419 (-558))) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-593 |#1|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-593 |#1|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) @@ -1662,57 +1662,57 @@ ((($) . T)) ((((-593 |#1|)) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1| |#4| |#5|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) +(((|#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) . T)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) (((|#1|) . T)) -(((|#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-791) |#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) +(((|#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +((((-790) |#1|) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-591)) . T)) -((((-1124)) . T)) -((((-661 $)) . T) (((-1180)) . T) (((-1198)) . T) (((-558)) . T) (((-229)) . T) (((-877)) . T)) -((((-558) $) . T) (((-661 (-558)) $) . T)) -((((-877)) . T)) -((((-1180) (-1198) (-558) (-229) (-877)) . T)) -((((-877)) . T)) +((((-1123)) . T)) +((((-660 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-558)) . T) (((-229)) . T) (((-876)) . T)) +((((-558) $) . T) (((-660 (-558)) $) . T)) +((((-876)) . T)) +((((-1179) (-1197) (-558) (-229) (-876)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) @@ -1725,30 +1725,30 @@ ((((-558)) . T)) ((($) . T) (((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-558)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-558)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-558)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) ((($) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T) (($) . T)) ((($) . T)) ((($) . T)) @@ -1756,11 +1756,11 @@ ((((-558)) . T) (($) . T)) ((((-558)) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($ $) . T)) @@ -1776,7 +1776,7 @@ ((($) . T)) (|has| $ (-149)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T)) ((($) . T) (((-419 (-558))) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) . T)) @@ -1792,43 +1792,34 @@ ((((-419 (-558)) (-419 (-558))) . T)) ((((-419 (-558))) . T)) ((((-419 (-558))) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T) (((-419 (-558))) . T)) ((((-419 (-558))) . T)) ((((-419 (-558))) . T)) ((((-419 (-558))) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T) (((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-146)) . T)) -((((-146)) . T)) -((((-558) (-146)) . T)) -((((-558) (-146)) . T)) -((((-558) (-146)) . T) (((-1255 (-558)) $) . T)) -((((-146)) . T)) -((((-877)) . T)) -((((-146)) . T)) -((((-146)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T) (((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (|has| |#1| (-15 * (|#1| (-558) |#1|))) -((((-877)) . T)) +((((-876)) . T)) ((($) |has| |#1| (-15 * (|#1| (-558) |#1|)))) (|has| |#1| (-15 * (|#1| (-558) |#1|))) ((($ $) . T) (((-558) |#1|) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) -((($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) -(((|#1| (-558) (-1103)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +((($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(((|#1| (-558) (-1102)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) ((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) -((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) (|has| |#1| (-569)) (|has| |#1| (-569)) ((((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) @@ -1848,39 +1839,39 @@ ((($ $) |has| |#1| (-569)) ((|#1| |#1|) . T)) ((($) |has| |#1| (-569)) (((-558)) . T)) (((|#1|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (($) . T) (((-558)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T) (((-877)) . T)) -((((-877)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T) (((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-558) |#1|) . T)) ((((-558) |#1|) . T)) -((((-558) |#1|) . T) (((-1255 (-558)) $) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-558) |#1|) . T) (((-1254 (-558)) $) . T)) +((((-547)) |has| |#1| (-630 (-547)))) (((|#1|) . T)) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) -((((-1203)) . T)) -((((-1239)) . T) (((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +((((-1238)) . T) (((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-558) |#1|) |has| |#2| (-430 |#1|))) -(((|#1|) -3957 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) -3956 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) (((|#1|) |has| |#2| (-430 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-877)) . T)) +(((|#2|) . T) (((-876)) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -1888,42 +1879,42 @@ (((|#1|) . T)) ((((-130)) . T)) ((((-130)) . T)) -((((-130)) . T) (((-877)) . T)) -((((-877)) . T)) -((((-130)) . T) (((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-130)) . T) (((-619)) . T)) -((((-130)) . T) (((-619)) . T)) -((((-130)) . T) (((-619)) . T) (((-877)) . T)) -((((-1180) |#1|) . T)) -((((-1180) |#1|) . T)) -((((-1180) |#1|) . T)) -((((-1180) |#1|) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) |has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) |has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))))) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-1180) |#1|) . T)) -((((-877)) . T)) -((((-402) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-547)) |has| |#1| (-631 (-547))) (((-905 (-391))) |has| |#1| (-631 (-905 (-391)))) (((-905 (-558))) |has| |#1| (-631 (-905 (-558))))) -(((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) +((((-130)) . T) (((-876)) . T)) +((((-876)) . T)) +((((-130)) . T) (((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-130)) . T) (((-618)) . T)) +((((-130)) . T) (((-618)) . T)) +((((-130)) . T) (((-618)) . T) (((-876)) . T)) +((((-1179) |#1|) . T)) +((((-1179) |#1|) . T)) +((((-1179) |#1|) . T)) +((((-1179) |#1|) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) |has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) |has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))))) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-1179) |#1|) . T)) +((((-876)) . T)) +((((-402) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-547)) |has| |#1| (-630 (-547))) (((-904 (-391))) |has| |#1| (-630 (-904 (-391)))) (((-904 (-558))) |has| |#1| (-630 (-904 (-558))))) +(((|#1|) . T)) +((((-876)) . T)) +((((-876)) . T)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) @@ -1936,7 +1927,7 @@ (|has| |#1| (-376)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(((|#2|) . T) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) +(((|#2|) . T) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|)) . T)) ((($) . T)) @@ -1946,64 +1937,64 @@ ((($) . T)) ((($) . T)) (|has| |#2| (-240)) -(((|#2|) . T) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((|#1|) . T) (($) . T) (((-558)) . T)) +(((|#2|) . T) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((|#1|) . T) (($) . T) (((-558)) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) -((($) -3957 (|has| |#2| (-240)) (|has| |#2| (-239)))) -(-3957 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -3956 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-3956 (|has| |#2| (-240)) (|has| |#2| (-239))) (((|#2|) . T)) -((($ (-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) -((((-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) -((((-1198)) |has| |#2| (-917 (-1198)))) +((($ (-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) +((((-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) +((((-1197)) |has| |#2| (-916 (-1197)))) (((|#2|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-1180) (-51)) . T)) -((((-877)) . T)) -((((-1198) (-51)) . T) (((-1180) (-51)) . T)) -((((-1180) (-51)) . T)) -((((-1180) (-51)) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) |has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))))) -((((-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) |has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))))) -((((-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) . T)) -((((-1180) (-51)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +((((-1179) (-51)) . T)) +((((-876)) . T)) +((((-1197) (-51)) . T) (((-1179) (-51)) . T)) +((((-1179) (-51)) . T)) +((((-1179) (-51)) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) |has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))))) +((((-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) |has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))))) +((((-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) . T)) +((((-1179) (-51)) . T)) ((((-558) |#1|) |has| |#2| (-430 |#1|))) -(((|#1|) -3957 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) +(((|#1|) -3956 (|has| |#2| (-380 |#1|)) (|has| |#2| (-430 |#1|)))) (((|#1|) |has| |#2| (-430 |#1|))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#2|) . T) (((-877)) . T)) +(((|#2|) . T) (((-876)) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-878 |#1|)) . T)) -((((-877)) . T)) -(((|#1| (-655 |#2|)) . T)) -((((-655 |#2|)) . T)) +((((-877 |#1|)) . T)) +((((-876)) . T)) +(((|#1| (-654 |#2|)) . T)) +((((-654 |#2|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-657 |#1| |#2|) |#1|) . T)) +((((-656 |#1| |#2|) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2011,108 +2002,108 @@ (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-1203)) . T)) -(((|#1|) . T) (((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +(((|#1|) . T) (((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -(|has| |#1| (-812)) -(|has| |#1| (-812)) -(|has| |#1| (-812)) -(|has| |#1| (-812)) -(|has| |#1| (-812)) -(|has| |#1| (-812)) +((((-876)) . T)) +(|has| |#1| (-811)) +(|has| |#1| (-811)) +(|has| |#1| (-811)) +(|has| |#1| (-811)) +(|has| |#1| (-811)) +(|has| |#1| (-811)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#2| |#2|) . T) ((|#1| |#1|) . T)) (((|#1|) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) -((((-692 |#1|)) . T)) -((((-692 |#1|)) . T)) -(((|#2| (-692 |#1|)) . T)) +((((-691 |#1|)) . T)) +((((-691 |#1|)) . T)) +(((|#2| (-691 |#1|)) . T)) (((|#2|) . T)) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) @@ -2122,91 +2113,91 @@ (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -(((|#2|) |has| |#2| (-6 (-4427 "*")))) +(((|#2|) |has| |#2| (-6 (-4426 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-709 |#2|)) . T) (((-877)) . T)) +((((-708 |#2|)) . T) (((-876)) . T)) ((($) . T) (((-558)) . T) ((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-1198)) |has| |#2| (-917 (-1198)))) -((((-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) -((($ (-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) +((((-1197)) |has| |#2| (-916 (-1197)))) +((((-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) +((($ (-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) (((|#2|) . T)) -(-3957 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -3957 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-3956 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -3956 (|has| |#2| (-240)) (|has| |#2| (-239)))) (|has| |#2| (-240)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +((($) . T) ((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) (((|#2|) . T)) -((((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) -(((|#2|) . T) (((-558)) |has| |#2| (-1059 (-558))) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) +((((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) +(((|#2|) . T) (((-558)) |has| |#2| (-1058 (-558))) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-877)) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) -(((|#1|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-1239)) . T) (((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-547)) |has| |#1| (-631 (-547)))) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) -(((|#1|) . T)) -(((|#1| (-1288 |#1|) (-1288 |#1|)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-719)) . T)) -((((-719)) . T)) -((((-719)) . T)) -((((-719)) . T)) -((((-719)) . T)) -((((-719)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-876)) . T)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) +(((|#1|) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-1238)) . T) (((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-547)) |has| |#1| (-630 (-547)))) +(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) +(((|#1|) . T)) +(((|#1| (-1287 |#1|) (-1287 |#1|)) . T)) +((((-876)) . T)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-718)) . T)) +((((-718)) . T)) +((((-718)) . T)) +((((-718)) . T)) +((((-718)) . T)) +((((-718)) . T)) ((((-391)) . T)) -((((-719)) . T)) -((((-719) (-1192 (-719))) . T)) -((((-719) (-1192 (-719))) . T)) -((((-719) (-1192 (-719))) . T)) -((((-719)) . T)) -((((-171 (-229))) . T) (((-171 (-391))) . T) (((-1192 (-719))) . T) (((-905 (-391))) . T)) -((((-719)) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T)) -((((-877)) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T) (((-558)) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T)) -((((-419 (-558)) (-419 (-558))) . T) (((-719) (-719)) . T) (($ $) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T) (((-558)) . T)) -((((-419 (-558))) . T) (((-719)) . T) (($) . T)) -((((-719)) . T) (((-419 (-558))) . T) (((-558)) . T)) +((((-718)) . T)) +((((-718) (-1191 (-718))) . T)) +((((-718) (-1191 (-718))) . T)) +((((-718) (-1191 (-718))) . T)) +((((-718)) . T)) +((((-171 (-229))) . T) (((-171 (-391))) . T) (((-1191 (-718))) . T) (((-904 (-391))) . T)) +((((-718)) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T)) +((((-876)) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T) (((-558)) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T)) +((((-419 (-558)) (-419 (-558))) . T) (((-718) (-718)) . T) (($ $) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T) (((-558)) . T)) +((((-419 (-558))) . T) (((-718)) . T) (($) . T)) +((((-718)) . T) (((-419 (-558))) . T) (((-558)) . T)) ((((-391)) . T) (((-558)) . T) (((-419 (-558))) . T)) ((((-391)) . T)) ((($) . T) (((-419 (-558))) . T)) @@ -2215,19 +2206,19 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) -((((-229)) . T) (((-391)) . T) (((-905 (-391))) . T)) -((((-877)) . T)) +((((-229)) . T) (((-391)) . T) (((-904 (-391))) . T)) +((((-876)) . T)) ((((-419 (-558))) . T) (((-558)) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-391)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) ((($) . T)) ((((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-558)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-558)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((($) . T)) ((($) . T)) ((((-558)) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) @@ -2235,8 +2226,8 @@ ((($) . T) (((-558)) . T)) ((($) . T)) ((((-558)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((($) . T) (((-419 (-558))) . T)) ((($) . T) (((-419 (-558))) . T)) ((($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) @@ -2250,44 +2241,44 @@ (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-419 $) (-419 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-376)) -(((|#1| (-791) (-1103)) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (((-1103)) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (($ (-1103)) . T)) -((((-1198)) |has| |#1| (-917 (-1198))) (((-1103)) . T)) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-791)) . T)) +(((|#1| (-790) (-1102)) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (((-1102)) . T)) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (($ (-1102)) . T)) +((((-1197)) |has| |#1| (-916 (-1197))) (((-1102)) . T)) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-790)) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -(((|#2|) . T) (((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) (((-1103)) . T) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558)))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#2|) . T) (((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (((-1102)) . T) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558)))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1|) . T)) -((((-1103)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(((|#1| (-791)) . T)) -((((-1103) |#1|) . T) (((-1103) $) . T) (($ $) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1102)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(((|#1| (-790)) . T)) +((((-1102) |#1|) . T) (((-1102) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1173)) +(|has| |#1| (-1172)) (((|#1|) . T)) -((((-2 (|:| -2631 |#1|) (|:| -2632 |#2|))) . T)) -((((-2 (|:| -2631 |#1|) (|:| -2632 |#2|))) . T)) -((((-2 (|:| -2631 |#1|) (|:| -2632 |#2|))) . T) (((-877)) . T)) +((((-2 (|:| -2630 |#1|) (|:| -2631 |#2|))) . T)) +((((-2 (|:| -2630 |#1|) (|:| -2631 |#2|))) . T)) +((((-2 (|:| -2630 |#1|) (|:| -2631 |#2|))) . T) (((-876)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -2300,44 +2291,44 @@ ((((-115)) . T) ((|#1|) . T)) ((((-115)) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) ((((-558)) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) -((((-877)) . T)) -((((-547)) |has| |#2| (-631 (-547))) (((-905 (-391))) |has| |#2| (-631 (-905 (-391)))) (((-905 (-558))) |has| |#2| (-631 (-905 (-558))))) +((((-876)) . T)) +((((-547)) |has| |#2| (-630 (-547))) (((-904 (-391))) |has| |#2| (-630 (-904 (-391)))) (((-904 (-558))) |has| |#2| (-630 (-904 (-558))))) ((($) . T)) -(((|#2| (-543 (-878 |#1|))) . T)) +(((|#2| (-543 (-877 |#1|))) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) -(-3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3957 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929)))) -(((|#2| (-543 (-878 |#1|))) . T)) +(-3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (($) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2| |#2|) . T) (($ $) -3956 (|has| |#2| (-175)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +((((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) |has| |#2| (-175)) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928)))) +(((|#2| (-543 (-877 |#1|))) . T)) (((|#2|) . T)) -((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(-3957 (|has| |#2| (-464)) (|has| |#2| (-929))) -((($ $) . T) (((-878 |#1|) $) . T) (((-878 |#1|) |#2|) . T)) -((((-878 |#1|)) . T)) -((($ (-878 |#1|)) . T)) -((((-878 |#1|)) . T)) -(|has| |#2| (-929)) -(|has| |#2| (-929)) -((((-419 (-558))) |has| |#2| (-1059 (-419 (-558)))) (((-558)) |has| |#2| (-1059 (-558))) ((|#2|) . T) (((-878 |#1|)) . T)) -((((-558)) . T) (((-419 (-558))) -3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ((|#2|) . T) (($) -3957 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) (((-878 |#1|)) . T)) -(((|#2| (-543 (-878 |#1|)) (-878 |#1|)) . T)) +((($) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558)))) ((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(-3956 (|has| |#2| (-464)) (|has| |#2| (-928))) +((($ $) . T) (((-877 |#1|) $) . T) (((-877 |#1|) |#2|) . T)) +((((-877 |#1|)) . T)) +((($ (-877 |#1|)) . T)) +((((-877 |#1|)) . T)) +(|has| |#2| (-928)) +(|has| |#2| (-928)) +((((-419 (-558))) |has| |#2| (-1058 (-419 (-558)))) (((-558)) |has| |#2| (-1058 (-558))) ((|#2|) . T) (((-877 |#1|)) . T)) +((((-558)) . T) (((-419 (-558))) -3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ((|#2|) . T) (($) -3956 (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) (((-877 |#1|)) . T)) +(((|#2| (-543 (-877 |#1|)) (-877 |#1|)) . T)) (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -2350,199 +2341,199 @@ (((|#1|) . T) ((|#2|) . T)) (((|#1|) . T) ((|#2|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) +((((-876)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| (-543 |#2|) |#2|) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-558)) -12 (|has| |#1| (-901 (-558))) (|has| |#2| (-901 (-558)))) (((-391)) -12 (|has| |#1| (-901 (-391))) (|has| |#2| (-901 (-391))))) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-558)) -12 (|has| |#1| (-900 (-558))) (|has| |#2| (-900 (-558)))) (((-391)) -12 (|has| |#1| (-900 (-391))) (|has| |#2| (-900 (-391))))) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) (((|#1|) . T)) (((|#1| (-543 |#2|)) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((((-1146 |#1| |#2|)) . T) (((-965 |#1|)) |has| |#2| (-631 (-1198))) (((-877)) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-1145 |#1| |#2|)) . T) (((-964 |#1|)) |has| |#2| (-630 (-1197))) (((-876)) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) -((((-1146 |#1| |#2|)) . T) ((|#2|) . T) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) (((-558)) . T)) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) +((((-1145 |#1| |#2|)) . T) ((|#2|) . T) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) (((-558)) . T)) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T)) -((((-1146 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) +((((-1145 |#1| |#2|)) . T) ((|#2|) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) (((|#1| (-543 |#2|)) . T)) (((|#2| |#1|) . T) ((|#2| $) . T) (($ $) . T)) ((($) . T)) -((((-965 |#1|)) |has| |#2| (-631 (-1198))) (((-1180)) -12 (|has| |#1| (-1059 (-558))) (|has| |#2| (-631 (-1198)))) (((-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) (((-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) (((-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547))))) +((((-964 |#1|)) |has| |#2| (-630 (-1197))) (((-1179)) -12 (|has| |#1| (-1058 (-558))) (|has| |#2| (-630 (-1197)))) (((-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) (((-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) (((-547)) -12 (|has| |#1| (-630 (-547))) (|has| |#2| (-630 (-547))))) (((|#1| (-543 |#2|) |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-1192 |#1|)) . T) (((-877)) . T)) +((((-1191 |#1|)) . T) (((-876)) . T)) ((((-419 $) (-419 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-376)) -(((|#1| (-791) (-1103)) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (((-1103)) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (($ (-1103)) . T)) -((((-1198)) |has| |#1| (-917 (-1198))) (((-1103)) . T)) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-791)) . T)) +(((|#1| (-790) (-1102)) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (((-1102)) . T)) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (($ (-1102)) . T)) +((((-1197)) |has| |#1| (-916 (-1197))) (((-1102)) . T)) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-790)) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((((-1192 |#1|)) . T) (((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) (((-1103)) . T) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558)))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-1191 |#1|)) . T) (((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (((-1102)) . T) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558)))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1|) . T)) -((((-1192 |#1|)) . T) (((-1103)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(((|#1| (-791)) . T)) -((((-1103) |#1|) . T) (((-1103) $) . T) (($ $) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1191 |#1|)) . T) (((-1102)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(((|#1| (-790)) . T)) +((((-1102) |#1|) . T) (((-1102) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1173)) +(|has| |#1| (-1172)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) (|has| |#1| (-381)) (((|#1|) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) -((((-1017 |#1|)) . T) ((|#1|) . T)) -((((-1017 |#1|)) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| (-1017 |#1|) (-1059 (-419 (-558)))))) -((((-1017 |#1|)) . T) ((|#1|) . T) (((-558)) -3957 (|has| |#1| (-1059 (-558))) (|has| (-1017 |#1|) (-1059 (-558)))) (((-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| (-1017 |#1|) (-1059 (-419 (-558)))))) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -(((|#1|) . T)) -((((-877)) . T)) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(-3957 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-815)) (|has| |#2| (-1070))) -(((|#2| |#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1070)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070)))) -((((-877)) -3957 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-630 (-877))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-746)) (|has| |#2| (-815)) (|has| |#2| (-861)) (|has| |#2| (-1070)) (|has| |#2| (-1122))) (((-1288 |#2|)) . T)) -(((|#2|) |has| |#2| (-1070))) -((((-1198)) -12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070)))) -((((-1198)) -3957 (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))))) -((($ (-1198)) -3957 (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))))) -(((|#2|) |has| |#2| (-1070))) -(-3957 (-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1070)))) -((($) -3957 (-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))))) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -(|has| |#2| (-1070)) -((((-558)) -3957 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) ((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070))) -(-12 (|has| |#2| (-240)) (|has| |#2| (-1070))) +((((-1016 |#1|)) . T) ((|#1|) . T)) +((((-1016 |#1|)) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| (-1016 |#1|) (-1058 (-419 (-558)))))) +((((-1016 |#1|)) . T) ((|#1|) . T) (((-558)) -3956 (|has| |#1| (-1058 (-558))) (|has| (-1016 |#1|) (-1058 (-558)))) (((-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| (-1016 |#1|) (-1058 (-419 (-558)))))) +(|has| |#1| (-860)) +(|has| |#1| (-860)) +(((|#1|) . T)) +((((-876)) . T)) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-102)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(-3956 (|has| |#2| (-21)) (|has| |#2| (-133)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-814)) (|has| |#2| (-1069))) +(((|#2| |#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)) (|has| |#2| (-1069)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069)))) +((((-876)) -3956 (|has| |#2| (-21)) (|has| |#2| (-23)) (|has| |#2| (-25)) (|has| |#2| (-133)) (|has| |#2| (-629 (-876))) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-381)) (|has| |#2| (-745)) (|has| |#2| (-814)) (|has| |#2| (-860)) (|has| |#2| (-1069)) (|has| |#2| (-1121))) (((-1287 |#2|)) . T)) +(((|#2|) |has| |#2| (-1069))) +((((-1197)) -12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069)))) +((((-1197)) -3956 (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))))) +((($ (-1197)) -3956 (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))))) +(((|#2|) |has| |#2| (-1069))) +(-3956 (-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1069)))) +((($) -3956 (-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))))) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +(|has| |#2| (-1069)) +((((-558)) -3956 (|has| |#2| (-21)) (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) ((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069))) +(-12 (|has| |#2| (-240)) (|has| |#2| (-1069))) (|has| |#2| (-381)) -(((|#2|) |has| |#2| (-1070))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1070))) (($) |has| |#2| (-1070)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070)))) -(((|#2|) |has| |#2| (-1070)) (((-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070)))) -(((|#2|) |has| |#2| (-1122))) -((((-558)) -3957 (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ((|#2|) |has| |#2| (-1122)) (((-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122)))) -(((|#2|) |has| |#2| (-1122)) (((-558)) -12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (((-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122)))) +(((|#2|) |has| |#2| (-1069))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-1069))) (($) |has| |#2| (-1069)) (((-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1069)) (((-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069)))) +(((|#2|) |has| |#2| (-1121))) +((((-558)) -3956 (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ((|#2|) |has| |#2| (-1121)) (((-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121)))) +(((|#2|) |has| |#2| (-1121)) (((-558)) -12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (((-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121)))) ((((-558) |#2|) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) ((((-558) |#2|) . T)) ((((-558) |#2|) . T)) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-746)))) -(((|#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)))) -(|has| |#2| (-815)) -(|has| |#2| (-815)) -(-3957 (|has| |#2| (-815)) (|has| |#2| (-861))) -(-3957 (|has| |#2| (-815)) (|has| |#2| (-861))) -(|has| |#2| (-815)) -(|has| |#2| (-815)) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-745)))) +(((|#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) +(-3956 (|has| |#2| (-814)) (|has| |#2| (-860))) +(-3956 (|has| |#2| (-814)) (|has| |#2| (-860))) +(|has| |#2| (-814)) +(|has| |#2| (-814)) (((|#2|) |has| |#2| (-376))) (((|#1| |#2|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-877)) . T)) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-876)) . T)) (|has| |#1| (-240)) ((($) . T)) -(((|#1| (-543 (-840 (-1198))) (-840 (-1198))) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (((-840 (-1198))) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (($ (-840 (-1198))) . T)) -((((-1198)) |has| |#1| (-917 (-1198))) (((-840 (-1198))) . T)) -((($ $) . T) (((-1198) $) |has| |#1| (-240)) (((-1198) |#1|) |has| |#1| (-240)) (((-840 (-1198)) |#1|) . T) (((-840 (-1198)) $) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-543 (-840 (-1198)))) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(((|#1| (-543 (-839 (-1197))) (-839 (-1197))) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (((-839 (-1197))) . T)) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (($ (-839 (-1197))) . T)) +((((-1197)) |has| |#1| (-916 (-1197))) (((-839 (-1197))) . T)) +((($ $) . T) (((-1197) $) |has| |#1| (-240)) (((-1197) |#1|) |has| |#1| (-240)) (((-839 (-1197)) |#1|) . T) (((-839 (-1197)) $) . T)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-543 (-839 (-1197)))) . T)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1|) . T)) -(((|#1| (-543 (-840 (-1198)))) . T)) -((((-1146 |#1| (-1198))) . T) (((-840 (-1198))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-1198)) . T)) -((((-1146 |#1| (-1198))) . T) (((-558)) . T) (((-840 (-1198))) . T) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) (((-1198)) . T)) -(((|#1| (-1198) (-840 (-1198)) (-543 (-840 (-1198)))) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1| (-543 (-839 (-1197)))) . T)) +((((-1145 |#1| (-1197))) . T) (((-839 (-1197))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-1197)) . T)) +((((-1145 |#1| (-1197))) . T) (((-558)) . T) (((-839 (-1197))) . T) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) (((-1197)) . T)) +(((|#1| (-1197) (-839 (-1197)) (-543 (-839 (-1197)))) . T)) (|has| |#2| (-376)) (|has| |#2| (-376)) (|has| |#2| (-376)) @@ -2559,17 +2550,17 @@ ((($) . T)) ((((-419 (-558))) |has| |#2| (-376)) (($) |has| |#2| (-376)) ((|#2|) . T) (((-558)) . T)) ((((-419 (-558))) |has| |#2| (-376)) (($) . T)) -(((|#2|) . T) (((-877)) . T)) +(((|#2|) . T) (((-876)) . T)) ((((-419 (-558))) |has| |#2| (-376)) (($) . T) (((-558)) . T)) ((((-419 (-558))) |has| |#2| (-376)) (($) . T)) ((((-419 (-558))) |has| |#2| (-376)) (($) . T)) ((((-419 (-558)) (-419 (-558))) |has| |#2| (-376)) (($ $) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -2580,34 +2571,34 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2|) |has| |#2| (-175))) ((((-558)) . T) ((|#2|) |has| |#2| (-175))) (((|#2|) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((($) |has| |#1| (-860))) -(|has| |#1| (-860)) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($) |has| |#1| (-860)) (((-558)) -3957 (|has| |#1| (-21)) (|has| |#1| (-860)))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) -3957 (|has| |#1| (-860)) (|has| |#1| (-1059 (-558)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-877)) . T)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +((($) |has| |#1| (-859))) +(|has| |#1| (-859)) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +((($) |has| |#1| (-859)) (((-558)) -3956 (|has| |#1| (-21)) (|has| |#1| (-859)))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) -3956 (|has| |#1| (-859)) (|has| |#1| (-1058 (-558)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-876)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -2620,80 +2611,80 @@ ((((-115)) . T) ((|#1|) . T)) ((((-115)) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-518)) . T)) -((((-877)) . T)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -(|has| |#1| (-860)) -((($) |has| |#1| (-860))) -(|has| |#1| (-860)) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -((($) |has| |#1| (-860)) (((-558)) -3957 (|has| |#1| (-21)) (|has| |#1| (-860)))) -(-3957 (|has| |#1| (-21)) (|has| |#1| (-860))) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) -3957 (|has| |#1| (-860)) (|has| |#1| (-1059 (-558)))) ((|#1|) . T)) -(((|#1|) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-877)) |has| |#1| (-630 (-877))) ((|#1|) . T)) +((((-876)) . T)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +(|has| |#1| (-859)) +((($) |has| |#1| (-859))) +(|has| |#1| (-859)) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +((($) |has| |#1| (-859)) (((-558)) -3956 (|has| |#1| (-21)) (|has| |#1| (-859)))) +(-3956 (|has| |#1| (-21)) (|has| |#1| (-859))) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) -3956 (|has| |#1| (-859)) (|has| |#1| (-1058 (-558)))) ((|#1|) . T)) +(((|#1|) . T)) +((((-876)) . T)) +(((|#1|) . T)) +((((-876)) |has| |#1| (-629 (-876))) ((|#1|) . T)) (((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1| |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) ((|#1|) . T)) ((($) . T) ((|#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) -((((-558)) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) +((((-558)) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) (((|#1|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2|) |has| |#2| (-175))) (((|#2|) . T)) -((((-1285 |#1|)) . T) (((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) -(((|#2|) . T) (((-558)) |has| |#2| (-1059 (-558))) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) +((((-1284 |#1|)) . T) (((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) +(((|#2|) . T) (((-558)) |has| |#2| (-1058 (-558))) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) (((|#2|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-905 (-558))) . T) (((-905 (-391))) . T) (((-547)) . T) (((-1198)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-904 (-558))) . T) (((-904 (-391))) . T) (((-547)) . T) (((-1197)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1| |#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) -((((-965 |#1|)) . T)) -(((|#1|) |has| |#1| (-175)) (((-965 |#1|)) . T) (((-558)) . T)) +((((-964 |#1|)) . T)) +(((|#1|) |has| |#1| (-175)) (((-964 |#1|)) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -((((-965 |#1|)) . T) (((-877)) . T)) +((((-964 |#1|)) . T) (((-876)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($ $) . T)) @@ -2703,38 +2694,38 @@ ((($) . T)) ((((-558)) . T) (($) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((($) . T) (((-558)) . T) (((-883 |#1|)) . T) (((-419 (-558))) . T)) -((((-883 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-883 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-883 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-883 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-883 |#1|) (-883 |#1|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) -((((-883 |#1|)) . T)) -((((-1198) (-883 |#1|)) |has| (-883 |#1|) (-526 (-1198) (-883 |#1|))) (((-883 |#1|) (-883 |#1|)) |has| (-883 |#1|) (-321 (-883 |#1|)))) -((((-883 |#1|)) |has| (-883 |#1|) (-321 (-883 |#1|)))) -((((-883 |#1|) $) |has| (-883 |#1|) (-298 (-883 |#1|) (-883 |#1|)))) -((((-883 |#1|)) . T)) -((($) . T) (((-883 |#1|)) . T) (((-419 (-558))) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T)) -((((-558)) . T) (((-883 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) -((((-883 |#1|)) . T)) -((((-883 |#1|)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((($) . T) (((-558)) . T) (((-882 |#1|)) . T) (((-419 (-558))) . T)) +((((-882 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-882 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-882 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-882 |#1|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-882 |#1|) (-882 |#1|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) +((((-882 |#1|)) . T)) +((((-1197) (-882 |#1|)) |has| (-882 |#1|) (-526 (-1197) (-882 |#1|))) (((-882 |#1|) (-882 |#1|)) |has| (-882 |#1|) (-321 (-882 |#1|)))) +((((-882 |#1|)) |has| (-882 |#1|) (-321 (-882 |#1|)))) +((((-882 |#1|) $) |has| (-882 |#1|) (-298 (-882 |#1|) (-882 |#1|)))) +((((-882 |#1|)) . T)) +((($) . T) (((-882 |#1|)) . T) (((-419 (-558))) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-558)) . T) (((-882 |#1|)) . T) (($) . T) (((-419 (-558))) . T)) +((((-882 |#1|)) . T)) +((((-882 |#1|)) . T)) +((((-876)) . T)) (|has| |#2| (-147)) (|has| |#2| (-149)) (((|#2|) . T)) -((((-1198)) |has| |#2| (-917 (-1198)))) -((((-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) -((($ (-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) +((((-1197)) |has| |#2| (-916 (-1197)))) +((((-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) +((($ (-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) (((|#2|) . T)) -(-3957 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -3957 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-3956 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -3956 (|has| |#2| (-240)) (|has| |#2| (-239)))) (|has| |#2| (-240)) (((|#2|) . T) (($) . T) (((-419 (-558))) . T)) ((($) . T) (((-558)) . T) ((|#2|) . T) (((-419 (-558))) . T)) @@ -2744,67 +2735,67 @@ (((|#2|) . T) (((-419 (-558))) . T) (($) . T)) (((|#2| |#2|) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) (((|#2|) . T)) -((((-1198) |#2|) |has| |#2| (-526 (-1198) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|))) +((((-1197) |#2|) |has| |#2| (-526 (-1197) |#2|)) ((|#2| |#2|) |has| |#2| (-321 |#2|))) (((|#2|) |has| |#2| (-321 |#2|))) (((|#2| $) |has| |#2| (-298 |#2| |#2|))) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-419 (-558))) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +((($) . T) ((|#2|) . T) (((-419 (-558))) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) (((|#2|) . T)) -((((-558)) |has| |#2| (-901 (-558))) (((-391)) |has| |#2| (-901 (-391)))) -(|has| |#2| (-842)) -(|has| |#2| (-842)) -(|has| |#2| (-842)) -(-3957 (|has| |#2| (-842)) (|has| |#2| (-861))) -(-3957 (|has| |#2| (-842)) (|has| |#2| (-861))) -(|has| |#2| (-842)) -(|has| |#2| (-842)) -(|has| |#2| (-842)) +((((-558)) |has| |#2| (-900 (-558))) (((-391)) |has| |#2| (-900 (-391)))) +(|has| |#2| (-841)) +(|has| |#2| (-841)) +(|has| |#2| (-841)) +(-3956 (|has| |#2| (-841)) (|has| |#2| (-860))) +(-3956 (|has| |#2| (-841)) (|has| |#2| (-860))) +(|has| |#2| (-841)) +(|has| |#2| (-841)) +(|has| |#2| (-841)) (((|#2|) . T)) -(|has| |#2| (-929)) -(|has| |#2| (-1041)) -((((-547)) |has| |#2| (-631 (-547))) (((-905 (-558))) |has| |#2| (-631 (-905 (-558)))) (((-905 (-391))) |has| |#2| (-631 (-905 (-391)))) (((-391)) |has| |#2| (-1041)) (((-229)) |has| |#2| (-1041))) -((((-558)) . T) ((|#2|) . T) (($) . T) (((-419 (-558))) . T) (((-1198)) |has| |#2| (-1059 (-1198)))) -((((-419 (-558))) |has| |#2| (-1059 (-558))) (((-558)) |has| |#2| (-1059 (-558))) (((-1198)) |has| |#2| (-1059 (-1198))) ((|#2|) . T)) -(|has| |#2| (-1173)) +(|has| |#2| (-928)) +(|has| |#2| (-1040)) +((((-547)) |has| |#2| (-630 (-547))) (((-904 (-558))) |has| |#2| (-630 (-904 (-558)))) (((-904 (-391))) |has| |#2| (-630 (-904 (-391)))) (((-391)) |has| |#2| (-1040)) (((-229)) |has| |#2| (-1040))) +((((-558)) . T) ((|#2|) . T) (($) . T) (((-419 (-558))) . T) (((-1197)) |has| |#2| (-1058 (-1197)))) +((((-419 (-558))) |has| |#2| (-1058 (-558))) (((-558)) |has| |#2| (-1058 (-558))) (((-1197)) |has| |#2| (-1058 (-1197))) ((|#2|) . T)) +(|has| |#2| (-1172)) (((|#2|) . T)) -(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) -(-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) -((((-877)) -3957 (-12 (|has| |#1| (-630 (-877))) (|has| |#2| (-630 (-877)))) (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))))) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1198)) . T) ((|#1|) . T)) -((((-1198)) . T) ((|#1|) . T)) -((((-877)) . T)) -((((-692 |#1|)) . T)) -((((-692 |#1|)) . T)) -((((-877)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-1225 |#1|)) . T) (((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) +(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) +(-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) +((((-876)) -3956 (-12 (|has| |#1| (-629 (-876))) (|has| |#2| (-629 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))))) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1197)) . T) ((|#1|) . T)) +((((-1197)) . T) ((|#1|) . T)) +((((-876)) . T)) +((((-691 |#1|)) . T)) +((((-691 |#1|)) . T)) +((((-876)) . T)) +((((-876)) . T)) +(((|#1|) . T)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-1224 |#1|)) . T) (((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#1|) . T)) -((((-877)) . T)) -(-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) -(-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) +((((-876)) . T)) +(-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) +(-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T)) ((($) . T)) ((($) . T)) ((($) . T)) (|has| $ (-149)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T)) ((($) . T) (((-419 (-558))) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) . T)) @@ -2815,7 +2806,7 @@ ((((-419 (-558))) . T) (($) . T)) ((((-419 (-558))) . T) (($) . T)) ((((-558)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T)) (((|#1| |#1|) . T) (($ $) . T) (((-419 (-558)) (-419 (-558))) . T)) @@ -2825,173 +2816,173 @@ (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-661 |#1|)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-660 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547))) (((-905 (-391))) |has| |#1| (-631 (-905 (-391)))) (((-905 (-558))) |has| |#1| (-631 (-905 (-558))))) +((((-547)) |has| |#1| (-630 (-547))) (((-904 (-391))) |has| |#1| (-630 (-904 (-391)))) (((-904 (-558))) |has| |#1| (-630 (-904 (-558))))) ((($) . T)) -(((|#1| (-543 (-1198))) . T)) +(((|#1| (-543 (-1197))) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -(((|#1| (-543 (-1198))) . T)) -(((|#1|) . T)) -((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-929))) -((($ $) . T) (((-1198) $) . T) (((-1198) |#1|) . T)) -((((-1198)) . T)) -((($ (-1198)) . T)) -((((-1198)) . T)) -((((-391)) |has| |#1| (-901 (-391))) (((-558)) |has| |#1| (-901 (-558)))) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T) (((-1198)) . T)) -((((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ((|#1|) . T) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) (((-1198)) . T)) -(((|#1| (-543 (-1198)) (-1198)) . T)) -((((-1141)) . T) (((-877)) . T)) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +(((|#1| (-543 (-1197))) . T)) +(((|#1|) . T)) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-928))) +((($ $) . T) (((-1197) $) . T) (((-1197) |#1|) . T)) +((((-1197)) . T)) +((($ (-1197)) . T)) +((((-1197)) . T)) +((((-391)) |has| |#1| (-900 (-391))) (((-558)) |has| |#1| (-900 (-558)))) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T) (((-1197)) . T)) +((((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ((|#1|) . T) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (((-1197)) . T)) +(((|#1| (-543 (-1197)) (-1197)) . T)) +((((-1140)) . T) (((-876)) . T)) (((|#1| |#2|) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((((-877)) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-876)) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) -((($) |has| |#1| (-569)) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) (((-558)) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) (((-558)) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T)) -(((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) +(((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) (((|#1| |#2|) . T)) (((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) -(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) -(-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) -(-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) -(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) -(-12 (|has| |#1| (-815)) (|has| |#2| (-815))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) +(-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) +(-12 (|has| |#1| (-814)) (|has| |#2| (-814))) ((((-558)) -12 (|has| |#1| (-21)) (|has| |#2| (-21)))) (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) -(-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) -(-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) -(-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) -(-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) -(-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) +(-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) +(-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) +(-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) +(-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) +(-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) -((((-877)) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-661 (-938))) . T) (((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) +(((|#1|) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-660 (-937))) . T) (((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) ((((-246 |#1| |#2|) |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) (((|#1|) . T)) -((((-1198)) |has| |#1| (-917 (-1198)))) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198))))) +((((-1197)) |has| |#1| (-916 (-1197)))) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197))))) (((|#1|) . T)) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)))) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)))) (|has| |#1| (-240)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-302)) (|has| |#1| (-376))) -((((-558)) . T) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558)))))) +(-3956 (|has| |#1| (-302)) (|has| |#1| (-376))) +((((-558)) . T) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558)))))) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) ((($) . T) (((-558)) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) -(((|#1|) . T) (($) -3957 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558))) |has| |#1| (-376))) -(((|#1|) . T) (($) -3957 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558))) |has| |#1| (-376))) -(((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558)) (-419 (-558))) |has| |#1| (-376))) +(((|#1|) . T) (($) -3956 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558))) |has| |#1| (-376))) +(((|#1|) . T) (($) -3956 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558))) |has| |#1| (-376))) +(((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-302)) (|has| |#1| (-376))) (((-419 (-558)) (-419 (-558))) |has| |#1| (-376))) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-376))) (((|#1|) . T)) -((((-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) +((((-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((|#1| |#1|) |has| |#1| (-321 |#1|))) (((|#1|) |has| |#1| (-321 |#1|))) (((|#1| $) |has| |#1| (-298 |#1| |#1|))) (((|#1|) . T)) -((($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-376)) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +((($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-376)) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) (((|#1|) . T)) -(((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(|has| |#1| (-861)) -(|has| |#1| (-861)) +(((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(|has| |#1| (-860)) +(|has| |#1| (-860)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) (((|#1|) . T)) (((|#1|) . T)) ((((-419 |#2|) |#3|) . T)) -((((-419 (-558))) |has| (-419 |#2|) (-1059 (-419 (-558)))) (((-558)) |has| (-419 |#2|) (-1059 (-558))) (((-419 |#2|)) . T)) +((((-419 (-558))) |has| (-419 |#2|) (-1058 (-419 (-558)))) (((-558)) |has| (-419 |#2|) (-1058 (-558))) (((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) -((((-558)) |has| (-419 |#2|) (-658 (-558))) (((-419 |#2|)) . T)) +((((-558)) |has| (-419 |#2|) (-657 (-558))) (((-419 |#2|)) . T)) ((((-419 |#2|)) . T)) ((((-419 |#2|) |#3|) . T)) (|has| (-419 |#2|) (-149)) @@ -3001,23 +2992,23 @@ ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) (|has| (-419 |#2|) (-240)) -((($) -3957 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) -(-3957 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) +((($) -3956 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239)))) +(-3956 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-239))) ((((-419 |#2|)) . T)) -((($ (-1198)) -3957 (|has| (-419 |#2|) (-917 (-1198))) (|has| (-419 |#2|) (-919 (-1198))))) -((((-1198)) -3957 (|has| (-419 |#2|) (-917 (-1198))) (|has| (-419 |#2|) (-919 (-1198))))) -((((-1198)) |has| (-419 |#2|) (-917 (-1198)))) +((($ (-1197)) -3956 (|has| (-419 |#2|) (-916 (-1197))) (|has| (-419 |#2|) (-918 (-1197))))) +((((-1197)) -3956 (|has| (-419 |#2|) (-916 (-1197))) (|has| (-419 |#2|) (-918 (-1197))))) +((((-1197)) |has| (-419 |#2|) (-916 (-1197)))) ((((-419 |#2|)) . T)) (((|#3|) . T)) ((((-419 |#2|) (-419 |#2|)) . T) (((-419 (-558)) (-419 (-558))) . T) (($ $) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) -((((-558)) |has| (-419 |#2|) (-658 (-558))) (((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) +((((-558)) |has| (-419 |#2|) (-657 (-558))) (((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T)) ((((-419 |#2|)) . T) (((-419 (-558))) . T) (($) . T) (((-558)) . T)) (((|#1| |#2| |#3|) . T)) -((((-419 (-558))) . T) (((-877)) . T)) +((((-419 (-558))) . T) (((-876)) . T)) ((((-558)) . T)) ((((-558)) . T)) ((($) . T)) @@ -3035,14 +3026,14 @@ ((((-558)) . T)) ((((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-419 (-558))) . T) (((-558)) . T)) ((((-558)) . T) (($) . T) (((-419 (-558))) . T)) ((((-558)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) (((|#1|) . T) (($) . T) (((-558)) . T) (((-419 (-558))) . T)) (((|#1|) . T) (($) . T) (((-419 (-558))) . T) (((-558)) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) @@ -3053,17 +3044,17 @@ (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) . T)) -(((|#1|) . T) (((-558)) -3957 (|has| |#1| (-1059 (-558))) (|has| (-419 (-558)) (-1059 (-558)))) (((-419 (-558))) . T)) -(|has| |#1| (-1122)) -((((-877)) |has| |#1| (-1122))) -(|has| |#1| (-1122)) +(((|#1|) . T) (((-558)) -3956 (|has| |#1| (-1058 (-558))) (|has| (-419 (-558)) (-1058 (-558)))) (((-419 (-558))) . T)) +(|has| |#1| (-1121)) +((((-876)) |has| |#1| (-1121))) +(|has| |#1| (-1121)) (((|#1| |#2| |#3| |#4|) . T)) (((|#4|) . T)) -((((-661 |#4|)) . T) (((-877)) . T)) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) +((((-660 |#4|)) . T) (((-876)) . T)) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) (((|#4|) . T)) -((((-547)) |has| |#4| (-631 (-547)))) +((((-547)) |has| |#4| (-630 (-547)))) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) @@ -3072,56 +3063,56 @@ (((|#1| |#1|) . T) (($ $) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (((-558)) . T) (($) . T)) (((|#1|) . T) (($) . T)) (((|#1|) . T) (((-558)) . T)) -((((-1198) (-51)) . T)) -((((-877)) . T)) -((((-1198) (-51)) . T)) -((((-1198) (-51)) . T)) -((((-1198) (-51)) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) |has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))))) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) |has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))))) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-1198) (-51)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|))) . T)) -((((-800 |#1| (-878 |#2|))) . T)) -((((-661 (-800 |#1| (-878 |#2|)))) . T) (((-877)) . T)) -((((-800 |#1| (-878 |#2|))) |has| (-800 |#1| (-878 |#2|)) (-321 (-800 |#1| (-878 |#2|))))) -((((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) |has| (-800 |#1| (-878 |#2|)) (-321 (-800 |#1| (-878 |#2|))))) -((((-800 |#1| (-878 |#2|))) . T)) -((((-547)) |has| (-800 |#1| (-878 |#2|)) (-631 (-547)))) -(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|))) . T)) -(((|#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|))) . T)) -((((-547)) |has| |#3| (-631 (-547)))) +((((-1197) (-51)) . T)) +((((-876)) . T)) +((((-1197) (-51)) . T)) +((((-1197) (-51)) . T)) +((((-1197) (-51)) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) |has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))))) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) |has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))))) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-1197) (-51)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +(((|#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|))) . T)) +((((-799 |#1| (-877 |#2|))) . T)) +((((-660 (-799 |#1| (-877 |#2|)))) . T) (((-876)) . T)) +((((-799 |#1| (-877 |#2|))) |has| (-799 |#1| (-877 |#2|)) (-321 (-799 |#1| (-877 |#2|))))) +((((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) |has| (-799 |#1| (-877 |#2|)) (-321 (-799 |#1| (-877 |#2|))))) +((((-799 |#1| (-877 |#2|))) . T)) +((((-547)) |has| (-799 |#1| (-877 |#2|)) (-630 (-547)))) +(((|#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|))) . T)) +(((|#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|))) . T)) +((((-547)) |has| |#3| (-630 (-547)))) (((|#3|) |has| |#3| (-376))) (((|#3| |#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -((((-709 |#3|)) . T) (((-877)) . T)) +((((-708 |#3|)) . T) (((-876)) . T)) ((((-558)) . T) ((|#3|) . T)) (((|#3|) . T)) (((|#3|) . T)) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122)))) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121)))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)))) (((|#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) . T)) -(|has| |#1| (-1122)) -((((-877)) |has| |#1| (-1122))) -(|has| |#1| (-1122)) -((((-877)) . T)) +(|has| |#1| (-1121)) +((((-876)) |has| |#1| (-1121))) +(|has| |#1| (-1121)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-1198)) . T)) -((((-877)) . T)) +((((-1197)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) @@ -3134,207 +3125,207 @@ ((((-558)) . T)) ((($) . T) (((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-558)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-558)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-558)) . T)) -((((-1198) (-51)) . T)) -((((-877)) . T)) -((((-1198) (-51)) . T)) -((((-1198) (-51)) . T)) -((((-1198) (-51)) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-51)) . T) (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) |has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))))) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) |has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))))) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) . T)) -((((-1198) (-51)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1197) (-51)) . T)) +((((-876)) . T)) +((((-1197) (-51)) . T)) +((((-1197) (-51)) . T)) +((((-1197) (-51)) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-51)) . T) (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) |has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))))) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) |has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))))) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) . T)) +((((-1197) (-51)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) ((((-305 |#3|)) . T)) ((((-305 |#3|)) . T)) (((|#3| |#3|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#3| |#3|) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#2|) . T)) (((|#1|) |has| |#1| (-376))) -((((-1198)) -12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))))) -((($ (-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))))) +((((-1197)) -12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))))) +((($ (-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))))) (((|#1|) |has| |#1| (-376))) -(-3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) -((($) -3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))) -(-3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-363))) -(-3957 (|has| |#1| (-381)) (|has| |#1| (-363))) +(-3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) +((($) -3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363)))) +(-3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-381)) (|has| |#1| (-363))) (|has| |#1| (-363)) (|has| |#1| (-363)) -(-3957 (|has| |#1| (-147)) (|has| |#1| (-363))) +(-3956 (|has| |#1| (-147)) (|has| |#1| (-363))) (|has| |#1| (-363)) (((|#1| |#2|) . T)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($ $) . T) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) . T) (((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) -((((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1059 (-419 (-558))))) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($ $) . T) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1| |#1|) . T)) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) . T) (((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T)) +((((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363)) (|has| |#1| (-1058 (-419 (-558))))) ((|#1|) . T)) (|has| |#1| (-149)) (((|#1| |#2|) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) +((($) . T) (((-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-363))) ((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) (((|#1|) . T)) -(((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) +(((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) (((|#1| |#2|) . T)) -((((-1198)) . T)) -((((-877)) . T)) -((((-877)) . T)) +((((-1197)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-240)) (|has| |#1| (-239))) -((($) -3957 (|has| |#1| (-240)) (|has| |#1| (-239)))) -((((-877)) . T)) +(-3956 (|has| |#1| (-240)) (|has| |#1| (-239))) +((($) -3956 (|has| |#1| (-240)) (|has| |#1| (-239)))) +((((-876)) . T)) (|has| |#1| (-240)) ((($) . T)) -(((|#1| (-543 (-1109 (-1198))) (-1109 (-1198))) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (((-1109 (-1198))) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (($ (-1109 (-1198))) . T)) -((((-1198)) |has| |#1| (-917 (-1198))) (((-1109 (-1198))) . T)) -((($ $) . T) (((-1198) $) |has| |#1| (-240)) (((-1198) |#1|) |has| |#1| (-240)) (((-1109 (-1198)) |#1|) . T) (((-1109 (-1198)) $) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-929))) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-543 (-1109 (-1198)))) . T)) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(((|#1| (-543 (-1108 (-1197))) (-1108 (-1197))) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (((-1108 (-1197))) . T)) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (($ (-1108 (-1197))) . T)) +((((-1197)) |has| |#1| (-916 (-1197))) (((-1108 (-1197))) . T)) +((($ $) . T) (((-1197) $) |has| |#1| (-240)) (((-1197) |#1|) |has| |#1| (-240)) (((-1108 (-1197)) |#1|) . T) (((-1108 (-1197)) $) . T)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-928))) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-543 (-1108 (-1197)))) . T)) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-149)) (|has| |#1| (-147)) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1|) . T)) -(((|#1| (-543 (-1109 (-1198)))) . T)) -((((-1146 |#1| (-1198))) . T) (((-1109 (-1198))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-1198)) . T)) -((((-1146 |#1| (-1198))) . T) (((-558)) . T) (((-1109 (-1198))) . T) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) (((-1198)) . T)) -(((|#1| (-1198) (-1109 (-1198)) (-543 (-1109 (-1198)))) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +(((|#1| (-543 (-1108 (-1197)))) . T)) +((((-1145 |#1| (-1197))) . T) (((-1108 (-1197))) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-1197)) . T)) +((((-1145 |#1| (-1197))) . T) (((-558)) . T) (((-1108 (-1197))) . T) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) (((-1197)) . T)) +(((|#1| (-1197) (-1108 (-1197)) (-543 (-1108 (-1197)))) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(((|#1| (-661 |#1|)) |has| |#1| (-860))) -(|has| |#1| (-1122)) -(|has| |#1| (-1122)) -((((-877)) |has| |#1| (-1122))) -(|has| |#1| (-1122)) +(((|#1| (-660 |#1|)) |has| |#1| (-859))) +(|has| |#1| (-1121)) +(|has| |#1| (-1121)) +((((-876)) |has| |#1| (-1121))) +(|has| |#1| (-1121)) (((|#1|) . T)) (((|#1|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -(|has| (-1110 |#1|) (-1122)) -((((-877)) |has| (-1110 |#1|) (-1122))) -(|has| (-1110 |#1|) (-1122)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +(|has| (-1109 |#1|) (-1121)) +((((-876)) |has| (-1109 |#1|) (-1121))) +(|has| (-1109 |#1|) (-1121)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) +((((-876)) . T)) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) (((|#1|) . T)) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) (((|#1|) . T)) (|has| |#1| (-381)) (((|#1|) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-661 $)) . T) (((-1180)) . T) (((-1198)) . T) (((-558)) . T) (((-229)) . T) (((-877)) . T)) -((((-558) $) . T) (((-661 (-558)) $) . T)) -((((-877)) . T)) -((((-1180) (-1198) (-558) (-229) (-877)) . T)) -((((-661 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) -((((-558) $) . T) (((-661 (-558)) $) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-660 $)) . T) (((-1179)) . T) (((-1197)) . T) (((-558)) . T) (((-229)) . T) (((-876)) . T)) +((((-558) $) . T) (((-660 (-558)) $) . T)) +((((-876)) . T)) +((((-1179) (-1197) (-558) (-229) (-876)) . T)) +((((-660 $)) . T) ((|#1|) . T) ((|#2|) . T) ((|#3|) . T) ((|#4|) . T) ((|#5|) . T)) +((((-558) $) . T) (((-660 (-558)) $) . T)) +((((-876)) . T)) (((|#1| |#2| |#3| |#4| |#5|) . T)) -((((-877)) . T)) -(-3957 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070))) -(-3957 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1070))) -(-3957 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-746)) (|has| |#3| (-815)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1122))) -(-3957 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-746)) (|has| |#3| (-815)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1122))) -(-3957 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1070))) -(-3957 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-815)) (|has| |#3| (-1070))) -(((|#3| |#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1070)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070)))) -((((-877)) -3957 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-630 (-877))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-746)) (|has| |#3| (-815)) (|has| |#3| (-861)) (|has| |#3| (-1070)) (|has| |#3| (-1122))) (((-1288 |#3|)) . T)) -(((|#3|) |has| |#3| (-1070))) -((((-1198)) -12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070)))) -((((-1198)) -3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))))) -((($ (-1198)) -3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))))) -(((|#3|) |has| |#3| (-1070))) -(-3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070)))) -((($) -3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070))))) -(|has| |#3| (-1070)) -(|has| |#3| (-1070)) -(|has| |#3| (-1070)) -(|has| |#3| (-1070)) -((((-558)) -3957 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070))) ((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070))) -(-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) +((((-876)) . T)) +(-3956 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069))) +(-3956 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-814)) (|has| |#3| (-1069))) +(-3956 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-745)) (|has| |#3| (-814)) (|has| |#3| (-860)) (|has| |#3| (-1069)) (|has| |#3| (-1121))) +(-3956 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-102)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-745)) (|has| |#3| (-814)) (|has| |#3| (-860)) (|has| |#3| (-1069)) (|has| |#3| (-1121))) +(-3956 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-814)) (|has| |#3| (-1069))) +(-3956 (|has| |#3| (-21)) (|has| |#3| (-133)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-814)) (|has| |#3| (-1069))) +(((|#3| |#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-745)) (|has| |#3| (-1069)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069)))) +((((-876)) -3956 (|has| |#3| (-21)) (|has| |#3| (-23)) (|has| |#3| (-25)) (|has| |#3| (-133)) (|has| |#3| (-629 (-876))) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-381)) (|has| |#3| (-745)) (|has| |#3| (-814)) (|has| |#3| (-860)) (|has| |#3| (-1069)) (|has| |#3| (-1121))) (((-1287 |#3|)) . T)) +(((|#3|) |has| |#3| (-1069))) +((((-1197)) -12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069)))) +((((-1197)) -3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))))) +((($ (-1197)) -3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))))) +(((|#3|) |has| |#3| (-1069))) +(-3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069)))) +((($) -3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069))))) +(|has| |#3| (-1069)) +(|has| |#3| (-1069)) +(|has| |#3| (-1069)) +(|has| |#3| (-1069)) +((((-558)) -3956 (|has| |#3| (-21)) (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069))) ((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-745)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069))) +(-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (|has| |#3| (-381)) -(((|#3|) |has| |#3| (-1070))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1070))) (($) |has| |#3| (-1070)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070)))) -(((|#3|) |has| |#3| (-1070)) (((-558)) -12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070)))) -(((|#3|) |has| |#3| (-1122))) -((((-558)) -3957 (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) (|has| |#3| (-1070))) ((|#3|) |has| |#3| (-1122)) (((-419 (-558))) -12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122)))) -(((|#3|) |has| |#3| (-1122)) (((-558)) -12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) (((-419 (-558))) -12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122)))) +(((|#3|) |has| |#3| (-1069))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-1069))) (($) |has| |#3| (-1069)) (((-558)) -12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069)))) +(((|#3|) |has| |#3| (-1069)) (((-558)) -12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069)))) +(((|#3|) |has| |#3| (-1121))) +((((-558)) -3956 (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) (|has| |#3| (-1069))) ((|#3|) |has| |#3| (-1121)) (((-419 (-558))) -12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121)))) +(((|#3|) |has| |#3| (-1121)) (((-558)) -12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) (((-419 (-558))) -12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121)))) ((((-558) |#3|) . T)) -(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122)))) -(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122)))) +(((|#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121)))) +(((|#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121)))) (((|#3|) . T)) ((((-558) |#3|) . T)) ((((-558) |#3|) . T)) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-746)))) -(((|#3|) -3957 (|has| |#3| (-175)) (|has| |#3| (-376)))) -(|has| |#3| (-815)) -(|has| |#3| (-815)) -(-3957 (|has| |#3| (-815)) (|has| |#3| (-861))) -(-3957 (|has| |#3| (-815)) (|has| |#3| (-861))) -(|has| |#3| (-815)) -(|has| |#3| (-815)) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)) (|has| |#3| (-745)))) +(((|#3|) -3956 (|has| |#3| (-175)) (|has| |#3| (-376)))) +(|has| |#3| (-814)) +(|has| |#3| (-814)) +(-3956 (|has| |#3| (-814)) (|has| |#3| (-860))) +(-3956 (|has| |#3| (-814)) (|has| |#3| (-860))) +(|has| |#3| (-814)) +(|has| |#3| (-814)) (((|#3|) |has| |#3| (-376))) (((|#1| |#3|) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T)) ((($) . T)) ((($) . T)) @@ -3347,44 +3338,44 @@ ((((-558)) . T)) ((($) . T) (((-558)) . T)) ((((-558)) . T)) -((((-547)) . T) (((-558)) . T) (((-905 (-558))) . T) (((-391)) . T) (((-229)) . T)) +((((-547)) . T) (((-558)) . T) (((-904 (-558))) . T) (((-391)) . T) (((-229)) . T)) ((((-558)) . T)) -((((-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547)))) (((-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) (((-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558)))))) +((((-547)) -12 (|has| |#1| (-630 (-547))) (|has| |#2| (-630 (-547)))) (((-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) (((-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558)))))) ((($) . T)) (((|#1| (-543 |#2|)) . T)) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928)))) (((|#1| (-543 |#2|)) . T)) (((|#1|) . T)) -((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(((|#1|) . T) (((-558)) |has| |#1| (-658 (-558)))) -(-3957 (|has| |#1| (-464)) (|has| |#1| (-929))) +((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(((|#1|) . T) (((-558)) |has| |#1| (-657 (-558)))) +(-3956 (|has| |#1| (-464)) (|has| |#1| (-928))) ((($ $) . T) ((|#2| $) . T) ((|#2| |#1|) . T)) (((|#2|) . T)) ((($ |#2|) . T)) (((|#2|) . T)) -((((-391)) -12 (|has| |#1| (-901 (-391))) (|has| |#2| (-901 (-391)))) (((-558)) -12 (|has| |#1| (-901 (-558))) (|has| |#2| (-901 (-558))))) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) (((-558)) |has| |#1| (-1059 (-558))) ((|#1|) . T) ((|#2|) . T)) -((((-558)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ((|#1|) . T) (($) -3957 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#2|) . T)) +((((-391)) -12 (|has| |#1| (-900 (-391))) (|has| |#2| (-900 (-391)))) (((-558)) -12 (|has| |#1| (-900 (-558))) (|has| |#2| (-900 (-558))))) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) (((-558)) |has| |#1| (-1058 (-558))) ((|#1|) . T) ((|#2|) . T)) +((((-558)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ((|#1|) . T) (($) -3956 (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#2|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) ((($) . T)) ((($ $) . T) ((|#2| $) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($ |#2|) . T)) (((|#2|) . T)) (((|#1| (-543 |#2|) |#2|) . T)) @@ -3392,10 +3383,10 @@ ((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) -((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) (|has| |#1| (-569)) (|has| |#1| (-569)) ((((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) @@ -3411,93 +3402,93 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (((|#1| |#2|) . T)) -((((-877)) . T)) -(((|#1|) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T) (((-877)) . T)) -((((-877)) . T)) -((((-1161 |#1| |#2|)) . T)) -((((-1161 |#1| |#2|) (-1161 |#1| |#2|)) |has| (-1161 |#1| |#2|) (-321 (-1161 |#1| |#2|)))) -((((-1161 |#1| |#2|)) |has| (-1161 |#1| |#2|) (-321 (-1161 |#1| |#2|)))) -((((-877)) . T)) -((((-1161 |#1| |#2|)) . T)) -((((-547)) |has| |#2| (-631 (-547)))) -(((|#2|) |has| |#2| (-6 (-4427 "*")))) +((((-876)) . T)) +(((|#1|) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T) (((-876)) . T)) +((((-876)) . T)) +((((-1160 |#1| |#2|)) . T)) +((((-1160 |#1| |#2|) (-1160 |#1| |#2|)) |has| (-1160 |#1| |#2|) (-321 (-1160 |#1| |#2|)))) +((((-1160 |#1| |#2|)) |has| (-1160 |#1| |#2|) (-321 (-1160 |#1| |#2|)))) +((((-876)) . T)) +((((-1160 |#1| |#2|)) . T)) +((((-547)) |has| |#2| (-630 (-547)))) +(((|#2|) |has| |#2| (-6 (-4426 "*")))) (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-709 |#2|)) . T) (((-877)) . T)) +((((-708 |#2|)) . T) (((-876)) . T)) ((($) . T) (((-558)) . T) ((|#2|) . T)) -(((|#2|) -3957 (|has| |#2| (-6 (-4427 "*"))) (|has| |#2| (-175)))) -(((|#2|) -3957 (|has| |#2| (-6 (-4427 "*"))) (|has| |#2| (-175)))) +(((|#2|) -3956 (|has| |#2| (-6 (-4426 "*"))) (|has| |#2| (-175)))) +(((|#2|) -3956 (|has| |#2| (-6 (-4426 "*"))) (|has| |#2| (-175)))) (((|#2|) . T)) -((((-1198)) |has| |#2| (-917 (-1198)))) -((((-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) -((($ (-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198))))) +((((-1197)) |has| |#2| (-916 (-1197)))) +((((-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) +((($ (-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197))))) (((|#2|) . T)) -(-3957 (|has| |#2| (-240)) (|has| |#2| (-239))) -((($) -3957 (|has| |#2| (-240)) (|has| |#2| (-239)))) +(-3956 (|has| |#2| (-240)) (|has| |#2| (-239))) +((($) -3956 (|has| |#2| (-240)) (|has| |#2| (-239)))) (|has| |#2| (-240)) (((|#2|) . T)) -((($) . T) ((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) -(((|#2|) . T) (((-558)) |has| |#2| (-658 (-558)))) +((($) . T) ((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) +(((|#2|) . T) (((-558)) |has| |#2| (-657 (-558)))) (((|#2|) . T)) -((((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) -(((|#2|) . T) (((-558)) |has| |#2| (-1059 (-558))) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) +((((-558)) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) +(((|#2|) . T) (((-558)) |has| |#2| (-1058 (-558))) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) (((|#1| |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122)))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121)))) (((|#2|) . T)) (((|#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-547)) |has| |#4| (-631 (-547)))) +((((-547)) |has| |#4| (-630 (-547)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) (((|#4|) . T)) -((((-877)) . T) (((-661 |#4|)) . T)) +((((-876)) . T) (((-660 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) (((|#1|) . T)) (((|#1|) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-661 |#1|)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-660 |#1|)) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(|has| |#1| (-1122)) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(|has| |#1| (-1121)) (((|#1|) . T)) -((((-547)) |has| |#1| (-631 (-547)))) +((((-547)) |has| |#1| (-630 (-547)))) ((((-558) |#1|) . T)) -((((-1255 (-558)) $) . T) (((-558) |#1|) . T)) +((((-1254 (-558)) $) . T) (((-558) |#1|) . T)) ((((-558) |#1|) . T)) (((|#1|) . T)) (((|#1|) . T)) @@ -3505,70 +3496,70 @@ ((((-146)) . T)) ((((-558) (-146)) . T)) ((((-558) (-146)) . T)) -((((-558) (-146)) . T) (((-1255 (-558)) $) . T)) +((((-558) (-146)) . T) (((-1254 (-558)) $) . T)) ((((-146)) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-146)) . T)) ((((-146)) . T)) -((((-1180) |#1|) . T)) -((((-877)) . T)) -((((-1180) |#1|) . T)) -((((-1180) |#1|) . T)) -((((-1180) |#1|) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -(((|#1|) . T) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) |has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) |has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))))) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) . T)) -((((-1180) |#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1196 |#1| |#2| |#3|)) . T)) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1196 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-321 (-1196 |#1| |#2| |#3|))))) -((((-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-321 (-1196 |#1| |#2| |#3|)))) (((-1198) (-1196 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1179) |#1|) . T)) +((((-876)) . T)) +((((-1179) |#1|) . T)) +((((-1179) |#1|) . T)) +((((-1179) |#1|) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +(((|#1|) . T) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) |has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) |has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))))) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) . T)) +((((-1179) |#1|) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1195 |#1| |#2| |#3|)) . T)) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1195 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-321 (-1195 |#1| |#2| |#3|))))) +((((-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-321 (-1195 |#1| |#2| |#3|)))) (((-1197) (-1195 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) -((($) -3957 (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) -(-3957 (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1196 |#1| |#2| |#3|)) |has| |#1| (-376))) -(-3957 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-149)))) -(-3957 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-147)))) -((((-877)) . T)) -(((|#1|) . T)) -((((-1196 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1196 |#1| |#2| |#3|) (-298 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)))) (($ $) . T) (((-558) |#1|) . T)) -(((|#1| (-558) (-1103)) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1196 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-1196 |#1| |#2| |#3|)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) +(-3956 (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((($) -3956 (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(-3956 (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1195 |#1| |#2| |#3|)) |has| |#1| (-376))) +(-3956 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-149)))) +(-3956 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-147)))) +((((-876)) . T)) +(((|#1|) . T)) +((((-1195 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1195 |#1| |#2| |#3|) (-298 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)))) (($ $) . T) (((-558) |#1|) . T)) +(((|#1| (-558) (-1102)) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1| |#1|) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1195 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-1195 |#1| |#2| |#3|)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) (((|#1| (-558)) . T)) (((|#1| (-558)) . T)) (|has| |#1| (-38 (-419 (-558)))) @@ -3578,55 +3569,55 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) -(((|#1| (-1196 |#1| |#2| |#3|)) . T)) +(((|#1| (-1195 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-419 $) (-419 $)) |has| |#1| (-569)) (($ $) . T) ((|#1| |#1|) . T)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (|has| |#1| (-376)) -(((|#1| (-791) (-1103)) . T)) -(|has| |#1| (-929)) -(|has| |#1| (-929)) -((((-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (((-1103)) . T)) -((($ (-1198)) -3957 (|has| |#1| (-917 (-1198))) (|has| |#1| (-919 (-1198)))) (($ (-1103)) . T)) -((((-1198)) |has| |#1| (-917 (-1198))) (((-1103)) . T)) -((((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T)) -(((|#1|) . T)) -(((|#1| (-791)) . T)) +(((|#1| (-790) (-1102)) . T)) +(|has| |#1| (-928)) +(|has| |#1| (-928)) +((((-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (((-1102)) . T)) +((($ (-1197)) -3956 (|has| |#1| (-916 (-1197))) (|has| |#1| (-918 (-1197)))) (($ (-1102)) . T)) +((((-1197)) |has| |#1| (-916 (-1197))) (((-1102)) . T)) +((((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T)) +(((|#1|) . T)) +(((|#1| (-790)) . T)) (|has| |#1| (-149)) (|has| |#1| (-147)) -((((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) (((-1103)) . T) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558)))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#1| (-658 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) (((-1102)) . T) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558)))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#1| (-657 (-558))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-929))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1|) . T)) -((((-1103)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(((|#1| (-791)) . T)) -((((-1103) |#1|) . T) (((-1103) $) . T) (($ $) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-376)) (|has| |#1| (-464)) (|has| |#1| (-569)) (|has| |#1| (-928))) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +(((|#1|) . T)) +((((-1102)) . T) ((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(((|#1| (-790)) . T)) +((((-1102) |#1|) . T) (((-1102) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#1| (-1173)) +(|has| |#1| (-1172)) (((|#1|) . T)) -((((-1196 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T)) +((((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($ $) . T) (((-419 (-558)) |#1|) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -(((|#1| (-419 (-558)) (-1103)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +(((|#1| (-419 (-558)) (-1102)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) (((|#1| (-419 (-558))) . T)) @@ -3639,25 +3630,25 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) -((((-877)) . T)) -(((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-876)) . T)) +(((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -((((-1285 |#2|)) . T) (((-1196 |#1| |#2| |#3|)) . T) (((-1189 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +((((-1284 |#2|)) . T) (((-1195 |#1| |#2| |#3|)) . T) (((-1188 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1| (-1189 |#1| |#2| |#3|)) . T)) +(((|#1| (-1188 |#1| |#2| |#3|)) . T)) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) @@ -3665,113 +3656,113 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) -(((|#1| (-791)) . T)) -(((|#1| (-791)) . T)) +(((|#1| (-790)) . T)) +(((|#1| (-790)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1| (-791) (-1103)) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) -((((-791) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-791) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-791) |#1|)))) -((((-877)) . T)) +(((|#1| (-790) (-1102)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|))))) +((((-790) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-790) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-790) |#1|)))) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T)) -(|has| |#1| (-15 * (|#1| (-791) |#1|))) +(|has| |#1| (-15 * (|#1| (-790) |#1|))) (((|#1|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-391)) . T) (((-558)) . T)) ((((-518)) . T)) -((((-518)) . T) (((-1180)) . T)) -((((-905 (-391))) . T) (((-905 (-558))) . T) (((-1198)) . T) (((-547)) . T)) -((((-877)) . T)) -(((|#1| (-992)) . T)) +((((-518)) . T) (((-1179)) . T)) +((((-904 (-391))) . T) (((-904 (-558))) . T) (((-1197)) . T) (((-547)) . T)) +((((-876)) . T)) +(((|#1| (-991)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((((-877)) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((((-876)) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) -((($) |has| |#1| (-569)) ((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) (((-558)) . T)) +((($) |has| |#1| (-569)) ((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) (((-558)) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) (((|#1|) . T)) -(((|#1|) . T) (((-558)) |has| |#1| (-1059 (-558))) (((-419 (-558))) |has| |#1| (-1059 (-419 (-558))))) -(((|#1| (-992)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1180)) . T) (((-518)) . T) (((-229)) . T) (((-558)) . T)) -((((-1180)) . T) (((-518)) . T) (((-229)) . T) (((-558)) . T)) -((((-547)) . T) (((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) +(((|#1|) . T) (((-558)) |has| |#1| (-1058 (-558))) (((-419 (-558))) |has| |#1| (-1058 (-419 (-558))))) +(((|#1| (-991)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1179)) . T) (((-518)) . T) (((-229)) . T) (((-558)) . T)) +((((-1179)) . T) (((-518)) . T) (((-229)) . T) (((-558)) . T)) +((((-547)) . T) (((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) (((|#1| |#2|) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2|) . T) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((((-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2|) . T) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +(((|#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +(((|#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((((-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) (((|#1| |#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-402) (-1180)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-402) (-1179)) . T)) (((|#1|) . T)) -(|has| |#1| (-1122)) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-1122))) +(|has| |#1| (-1121)) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-1121))) (((|#1|) . T)) ((($) . T)) -((($ $) . T) (((-1198) $) . T)) -((((-1198)) . T)) -((((-877)) . T)) -((($ (-1198)) . T)) -((((-1198)) . T)) -(((|#1| (-543 (-1198)) (-1198)) . T)) +((($ $) . T) (((-1197) $) . T)) +((((-1197)) . T)) +((((-876)) . T)) +((($ (-1197)) . T)) +((((-1197)) . T)) +(((|#1| (-543 (-1197)) (-1197)) . T)) ((($) . T) (((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) ((($) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) -((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) -((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) +((((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569)))) (|has| |#1| (-569)) (|has| |#1| (-569)) ((((-558)) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) ((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) ((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) ((((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((|#1|) |has| |#1| (-175)) (($) |has| |#1| (-569))) -(((|#1| (-543 (-1198))) . T)) +(((|#1| (-543 (-1197))) . T)) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) @@ -3779,61 +3770,61 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) -(((|#1| (-1198)) . T)) -(|has| |#1| (-1122)) -(|has| |#1| (-1122)) -(|has| |#1| (-1122)) -((((-977 |#1|)) . T)) -((((-877)) |has| |#1| (-630 (-877))) (((-977 |#1|)) . T)) -((((-977 |#1|)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1278 |#1| |#2| |#3|)) . T)) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -((((-1278 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-321 (-1278 |#1| |#2| |#3|))))) -((((-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-321 (-1278 |#1| |#2| |#3|)))) (((-1198) (-1278 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-526 (-1198) (-1278 |#1| |#2| |#3|))))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) +(((|#1| (-1197)) . T)) +(|has| |#1| (-1121)) +(|has| |#1| (-1121)) +(|has| |#1| (-1121)) +((((-976 |#1|)) . T)) +((((-876)) |has| |#1| (-629 (-876))) (((-976 |#1|)) . T)) +((((-976 |#1|)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1277 |#1| |#2| |#3|)) . T)) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +((((-1277 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-321 (-1277 |#1| |#2| |#3|))))) +((((-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-321 (-1277 |#1| |#2| |#3|)))) (((-1197) (-1277 |#1| |#2| |#3|)) -12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-526 (-1197) (-1277 |#1| |#2| |#3|))))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) -((($) -3957 (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) -(-3957 (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1278 |#1| |#2| |#3|)) |has| |#1| (-376))) -(-3957 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-149)))) -(-3957 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-147)))) -((((-877)) . T)) -(((|#1|) . T)) -((((-1278 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1278 |#1| |#2| |#3|) (-298 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)))) (($ $) . T) (((-558) |#1|) . T)) -(((|#1| (-558) (-1103)) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1278 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-1278 |#1| |#2| |#3|)) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) +(-3956 (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((($) -3956 (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(-3956 (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-240))) (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1277 |#1| |#2| |#3|)) |has| |#1| (-376))) +(-3956 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-149)))) +(-3956 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-147)))) +((((-876)) . T)) +(((|#1|) . T)) +((((-1277 |#1| |#2| |#3|) $) -12 (|has| |#1| (-376)) (|has| (-1277 |#1| |#2| |#3|) (-298 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)))) (($ $) . T) (((-558) |#1|) . T)) +(((|#1| (-558) (-1102)) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1| |#1|) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-1277 |#1| |#2| |#3|)) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-1277 |#1| |#2| |#3|)) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) (((|#1| (-558)) . T)) (((|#1| (-558)) . T)) (|has| |#1| (-38 (-419 (-558)))) @@ -3843,61 +3834,61 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) -(((|#1| (-1278 |#1| |#2| |#3|)) . T)) +(((|#1| (-1277 |#1| |#2| |#3|)) . T)) (((|#2|) |has| |#1| (-376))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-1173))) -(((|#2|) . T) (((-1198)) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) (((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) (((-419 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558))))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-1041))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-929))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-1172))) +(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) (((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) (((-419 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558))))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-1040))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-928))) (((|#2|) |has| |#1| (-376))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) -(-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-861)))) -(-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) (-12 (|has| |#1| (-376)) (|has| |#2| (-861)))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) -(-12 (|has| |#1| (-376)) (|has| |#2| (-842))) -((((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-901 (-391)))) (((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-901 (-558))))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-841))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-841))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-841))) +(-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-841))) (-12 (|has| |#1| (-376)) (|has| |#2| (-860)))) +(-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-841))) (-12 (|has| |#1| (-376)) (|has| |#2| (-860)))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-841))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-841))) +(-12 (|has| |#1| (-376)) (|has| |#2| (-841))) +((((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-900 (-391)))) (((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-900 (-558))))) (((|#2|) |has| |#1| (-376))) -((((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ((|#2|) |has| |#1| (-376))) +((((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ((|#2|) |has| |#1| (-376))) (((|#2|) |has| |#1| (-376))) (((|#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|)))) -(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1198) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1198) |#2|)))) +(((|#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) (((-1197) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1197) |#2|)))) (((|#2|) |has| |#1| (-376))) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) -((($) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) -(-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +(-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) +((($) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) +(-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-240))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (((|#2|) |has| |#1| (-376))) -((($ (-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) -((((-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1198)))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((($ (-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-916 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) +((((-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-916 (-1197)))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))))) (((|#2|) |has| |#1| (-376))) -((((-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1041))) (((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1041))) (((-905 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-905 (-391))))) (((-905 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-905 (-558))))) (((-547)) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-547))))) -(-3957 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149)))) -(-3957 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) -((((-877)) . T)) +((((-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1040))) (((-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1040))) (((-904 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-630 (-904 (-391))))) (((-904 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-630 (-904 (-558))))) (((-547)) -12 (|has| |#1| (-376)) (|has| |#2| (-630 (-547))))) +(-3956 (|has| |#1| (-149)) (-12 (|has| |#1| (-376)) (|has| |#2| (-149)))) +(-3956 (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) +((((-876)) . T)) (((|#1|) . T)) (((|#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) (($ $) . T) (((-558) |#1|) . T)) -(((|#1| (-558) (-1103)) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) -((((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -((((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) -(((|#2|) . T) (((-1198)) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) +(((|#1| (-558) (-1102)) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2| |#2|) |has| |#1| (-376)) ((|#1| |#1|) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (((-558)) . T) (($) . T) ((|#1|) . T)) +((((-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) ((|#2|) |has| |#1| (-376)) (($) . T) ((|#1|) . T)) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +((((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) ((|#2|) |has| |#1| (-376)) ((|#1|) |has| |#1| (-175))) +(((|#2|) . T) (((-1197)) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (((-558)) . T) ((|#1|) |has| |#1| (-175))) (((|#1| (-558)) . T)) (((|#1| (-558)) . T)) (|has| |#1| (-38 (-419 (-558)))) @@ -3908,61 +3899,61 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (((|#1| |#2|) . T)) -(((|#1| (-1176 |#1|)) |has| |#1| (-860))) -(|has| |#1| (-1122)) -(|has| |#1| (-1122)) -((((-877)) |has| |#1| (-1122))) -(|has| |#1| (-1122)) +(((|#1| (-1175 |#1|)) |has| |#1| (-859))) +(|has| |#1| (-1121)) +(|has| |#1| (-1121)) +((((-876)) |has| |#1| (-1121))) +(|has| |#1| (-1121)) (((|#1|) . T)) (((|#1|) . T)) (((|#2|) . T)) (((|#2|) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-419 $) (-419 $)) |has| |#2| (-569)) (($ $) . T) ((|#2| |#2|) . T)) (|has| |#2| (-376)) -(-3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) -(-3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) +(-3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) +(-3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) (|has| |#2| (-376)) -(((|#2| (-791) (-1103)) . T)) -(|has| |#2| (-929)) -(|has| |#2| (-929)) -((((-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198)))) (((-1103)) . T)) -((($ (-1198)) -3957 (|has| |#2| (-917 (-1198))) (|has| |#2| (-919 (-1198)))) (($ (-1103)) . T)) -((((-1198)) |has| |#2| (-917 (-1198))) (((-1103)) . T)) -((((-558)) |has| |#2| (-658 (-558))) ((|#2|) . T)) +(((|#2| (-790) (-1102)) . T)) +(|has| |#2| (-928)) +(|has| |#2| (-928)) +((((-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197)))) (((-1102)) . T)) +((($ (-1197)) -3956 (|has| |#2| (-916 (-1197))) (|has| |#2| (-918 (-1197)))) (($ (-1102)) . T)) +((((-1197)) |has| |#2| (-916 (-1197))) (((-1102)) . T)) +((((-558)) |has| |#2| (-657 (-558))) ((|#2|) . T)) (((|#2|) . T)) -(((|#2| (-791)) . T)) +(((|#2| (-790)) . T)) (|has| |#2| (-149)) (|has| |#2| (-147)) -((((-1285 |#1|)) . T) (((-558)) . T) (($) -3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) (((-1103)) . T) ((|#2|) . T) (((-419 (-558))) -3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558)))))) -((($) -3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) -((($) -3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) -((($) . T) (((-558)) |has| |#2| (-658 (-558))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((((-1284 |#1|)) . T) (((-558)) . T) (($) -3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) (((-1102)) . T) ((|#2|) . T) (((-419 (-558))) -3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558)))))) +((($) -3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) . T) (((-558)) |has| |#2| (-657 (-558))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) ((((-558)) . T) (($) . T) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) -((($) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) -((($) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) ((|#2| |#2|) . T) (((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558))))) -((($) -3957 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-929))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) ((|#2|) . T) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#2| (-175)) (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) ((|#2| |#2|) . T) (((-419 (-558)) (-419 (-558))) |has| |#2| (-38 (-419 (-558))))) +((($) -3956 (|has| |#2| (-376)) (|has| |#2| (-464)) (|has| |#2| (-569)) (|has| |#2| (-928))) ((|#2|) |has| |#2| (-175)) (((-419 (-558))) |has| |#2| (-38 (-419 (-558))))) (((|#2|) . T)) -((((-1103)) . T) ((|#2|) . T) (((-558)) |has| |#2| (-1059 (-558))) (((-419 (-558))) |has| |#2| (-1059 (-419 (-558))))) -(((|#2| (-791)) . T)) -((((-1103) |#2|) . T) (((-1103) $) . T) (($ $) . T)) +((((-1102)) . T) ((|#2|) . T) (((-558)) |has| |#2| (-1058 (-558))) (((-419 (-558))) |has| |#2| (-1058 (-419 (-558))))) +(((|#2| (-790)) . T)) +((((-1102) |#2|) . T) (((-1102) $) . T) (($ $) . T)) ((($) . T)) -(|has| |#2| (-1173)) +(|has| |#2| (-1172)) (((|#2|) . T)) -((((-1278 |#1| |#2| |#3|)) . T) (((-1248 |#1| |#2| |#3|)) . T)) +((((-1277 |#1| |#2| |#3|)) . T) (((-1247 |#1| |#2| |#3|)) . T)) (((|#1|) . T)) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($ $) . T) (((-419 (-558)) |#1|) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -(((|#1| (-419 (-558)) (-1103)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +(((|#1| (-419 (-558)) (-1102)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) (((|#1| (-419 (-558))) . T)) @@ -3975,35 +3966,35 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) -((((-877)) . T)) -(((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-876)) . T)) +(((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -((((-1285 |#2|)) . T) (((-1278 |#1| |#2| |#3|)) . T) (((-1248 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +((((-1284 |#2|)) . T) (((-1277 |#1| |#2| |#3|)) . T) (((-1247 |#1| |#2| |#3|)) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1| (-1248 |#1| |#2| |#3|)) . T)) +(((|#1| (-1247 |#1| |#2| |#3|)) . T)) (((|#2|) . T)) (((|#1|) . T)) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((($ $) . T) (((-419 (-558)) |#1|) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) -(((|#1| (-419 (-558)) (-1103)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))))) +(((|#1| (-419 (-558)) (-1102)) . T)) (|has| |#1| (-147)) (|has| |#1| (-149)) (((|#1| (-419 (-558))) . T)) @@ -4016,41 +4007,41 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) -((((-877)) . T)) -(((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1|) . T) (($) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1| |#1|) . T) (($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) -(((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) -(((|#1|) . T) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) +((((-876)) . T)) +(((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (($) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1| |#1|) . T) (($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) (((-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376)))) +(((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) . T)) +(((|#1|) . T) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) . T)) (|has| |#1| (-376)) (|has| |#1| (-376)) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -3957 (|has| |#1| (-376)) (|has| |#1| (-569)))) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) -(-3957 (|has| |#1| (-376)) (|has| |#1| (-569))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(((|#2|) . T) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) -3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-376))) (((-558)) . T) (($) -3956 (|has| |#1| (-376)) (|has| |#1| (-569)))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-376)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-376)) (|has| |#1| (-569))) (|has| |#1| (-376)) (|has| |#1| (-376)) (|has| |#1| (-376)) (((|#1| |#2|) . T)) -((((-1269 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) -(|has| (-1269 |#2| |#3| |#4|) (-149)) -(|has| (-1269 |#2| |#3| |#4|) (-147)) -((($) . T) (((-1269 |#2| |#3| |#4|)) |has| (-1269 |#2| |#3| |#4|) (-175)) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) -((($) . T) (((-1269 |#2| |#3| |#4|)) |has| (-1269 |#2| |#3| |#4|) (-175)) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) -((((-877)) . T)) -((($) . T) (((-1269 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) -((($) . T) (((-1269 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) -((($ $) . T) (((-1269 |#2| |#3| |#4|) (-1269 |#2| |#3| |#4|)) . T) (((-419 (-558)) (-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) -((((-1269 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) -((((-1269 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558)))) (($) . T)) -((($) . T) (((-1269 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558)))) (((-558)) . T)) -((($) . T) (((-1269 |#2| |#3| |#4|)) |has| (-1269 |#2| |#3| |#4|) (-175)) (((-419 (-558))) |has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) -((((-1269 |#2| |#3| |#4|)) . T)) -((((-1269 |#2| |#3| |#4|)) . T)) -((((-1269 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) +((((-1268 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) +(|has| (-1268 |#2| |#3| |#4|) (-149)) +(|has| (-1268 |#2| |#3| |#4|) (-147)) +((($) . T) (((-1268 |#2| |#3| |#4|)) |has| (-1268 |#2| |#3| |#4|) (-175)) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) +((($) . T) (((-1268 |#2| |#3| |#4|)) |has| (-1268 |#2| |#3| |#4|) (-175)) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) +((((-876)) . T)) +((($) . T) (((-1268 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) +((($) . T) (((-1268 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) +((($ $) . T) (((-1268 |#2| |#3| |#4|) (-1268 |#2| |#3| |#4|)) . T) (((-419 (-558)) (-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) +((((-1268 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) +((((-1268 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558)))) (($) . T)) +((($) . T) (((-1268 |#2| |#3| |#4|)) . T) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558)))) (((-558)) . T)) +((($) . T) (((-1268 |#2| |#3| |#4|)) |has| (-1268 |#2| |#3| |#4|) (-175)) (((-419 (-558))) |has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) +((((-1268 |#2| |#3| |#4|)) . T)) +((((-1268 |#2| |#3| |#4|)) . T)) +((((-1268 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) . T)) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) @@ -4058,59 +4049,59 @@ (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558)))) -(((|#1| (-791)) . T)) -(((|#1| (-791)) . T)) +(((|#1| (-790)) . T)) +(((|#1| (-790)) . T)) (|has| |#1| (-569)) (|has| |#1| (-569)) -(-3957 (|has| |#1| (-175)) (|has| |#1| (-569))) +(-3956 (|has| |#1| (-175)) (|has| |#1| (-569))) (|has| |#1| (-149)) (|has| |#1| (-147)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -((($ $) -3957 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) +((($ $) -3956 (|has| |#1| (-175)) (|has| |#1| (-569))) ((|#1| |#1|) . T) (((-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558))))) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558))))) -(((|#1| (-791) (-1103)) . T)) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) -((($ (-1285 |#2|)) . T) (($ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) -((((-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|))))) -((((-791) |#1|) . T) (($ $) . T)) -(|has| |#1| (-15 * (|#1| (-791) |#1|))) -((($) |has| |#1| (-15 * (|#1| (-791) |#1|)))) -((((-877)) . T)) +(((|#1| (-790) (-1102)) . T)) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|))))) +((($ (-1284 |#2|)) . T) (($ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|))))) +((((-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|))))) +((((-790) |#1|) . T) (($ $) . T)) +(|has| |#1| (-15 * (|#1| (-790) |#1|))) +((($) |has| |#1| (-15 * (|#1| (-790) |#1|)))) +((((-876)) . T)) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T) (($) . T)) (((|#1|) . T) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (($) . T)) ((($) |has| |#1| (-569)) ((|#1|) |has| |#1| (-175)) (((-419 (-558))) |has| |#1| (-38 (-419 (-558)))) (((-558)) . T)) -(|has| |#1| (-15 * (|#1| (-791) |#1|))) +(|has| |#1| (-15 * (|#1| (-790) |#1|))) (((|#1|) . T)) -((((-1198)) . T) (((-877)) . T)) +((((-1197)) . T) (((-876)) . T)) (((|#1|) . T)) (((|#1|) . T)) ((((-558) |#1|) . T)) ((((-558) |#1|) . T)) -((((-558) |#1|) . T) (((-1255 (-558)) $) . T)) -((((-547)) |has| |#1| (-631 (-547)))) -(((|#1|) . T)) -(-3957 (|has| |#1| (-861)) (|has| |#1| (-1122))) -(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122)))) -((((-877)) -3957 (|has| |#1| (-630 (-877))) (|has| |#1| (-861)) (|has| |#1| (-1122)))) -(-3957 (|has| |#1| (-102)) (|has| |#1| (-861)) (|has| |#1| (-1122))) -(((|#1|) . T)) -(|has| |#1| (-861)) -(|has| |#1| (-861)) -(((|#1|) . T)) -(((|#1|) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-877)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) -((((-1203)) . T)) -((((-877)) . T) (((-1203)) . T)) -((((-1203)) . T)) +((((-558) |#1|) . T) (((-1254 (-558)) $) . T)) +((((-547)) |has| |#1| (-630 (-547)))) +(((|#1|) . T)) +(-3956 (|has| |#1| (-860)) (|has| |#1| (-1121))) +(((|#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +(((|#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121)))) +((((-876)) -3956 (|has| |#1| (-629 (-876))) (|has| |#1| (-860)) (|has| |#1| (-1121)))) +(-3956 (|has| |#1| (-102)) (|has| |#1| (-860)) (|has| |#1| (-1121))) +(((|#1|) . T)) +(|has| |#1| (-860)) +(|has| |#1| (-860)) +(((|#1|) . T)) +(((|#1|) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-876)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) +((((-1202)) . T)) +((((-876)) . T) (((-1202)) . T)) +((((-1202)) . T)) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) (((|#1|) |has| |#1| (-175))) @@ -4120,15 +4111,15 @@ (((|#4|) . T)) (((|#1|) |has| |#1| (-175)) ((|#4|) . T) (((-558)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T)) -(((|#4|) . T) (((-877)) . T)) +(((|#4|) . T) (((-876)) . T)) (((|#1|) |has| |#1| (-175)) (($) . T) (((-558)) . T)) (((|#1| |#2| |#3| |#4|) . T)) -((((-547)) |has| |#4| (-631 (-547)))) +((((-547)) |has| |#4| (-630 (-547)))) (((|#4|) . T)) -(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) -(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122)))) +(((|#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) +(((|#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121)))) (((|#4|) . T)) -((((-877)) . T) (((-661 |#4|)) . T)) +((((-876)) . T) (((-660 |#4|)) . T)) (((|#1| |#2| |#3| |#4|) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-175))) @@ -4137,15 +4128,15 @@ (((|#2| |#2|) . T)) (((|#2|) . T)) (((|#2|) . T)) -((((-877)) . T)) +((((-876)) . T)) ((($) . T) (((-558)) . T) ((|#2|) . T)) ((($) . T) ((|#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2|) |has| |#2| (-175))) -((((-841 |#1|)) . T)) -(((|#2|) . T) (((-558)) . T) (((-841 |#1|)) . T)) -(((|#2| (-841 |#1|)) . T)) -(((|#2| (-908 |#1|)) . T)) +((((-840 |#1|)) . T)) +(((|#2|) . T) (((-558)) . T) (((-840 |#1|)) . T)) +(((|#2| (-840 |#1|)) . T)) +(((|#2| (-907 |#1|)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-175))) (((|#2| |#2|) . T)) @@ -4155,12 +4146,12 @@ (((|#2|) |has| |#2| (-175))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#2|) . T) (($) . T) (((-558)) . T)) -((((-908 |#1|)) . T) ((|#2|) . T) (((-558)) . T) (((-841 |#1|)) . T)) -((((-908 |#1|)) . T) (((-841 |#1|)) . T)) +((((-907 |#1|)) . T) ((|#2|) . T) (((-558)) . T) (((-840 |#1|)) . T)) +((((-907 |#1|)) . T) (((-840 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-1198) |#1|) . T)) +((((-1197) |#1|) . T)) (((|#1|) |has| |#1| (-175))) (((|#1| |#1|) . T)) (((|#1|) . T)) @@ -4169,11 +4160,11 @@ (((|#1|) |has| |#1| (-175))) (((|#1|) . T)) (((|#1|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (($) . T) (((-558)) . T)) -(((|#1|) . T) (((-558)) . T) (((-841 (-1198))) . T)) -((((-841 (-1198))) . T)) -((((-1198) |#1|) . T)) +(((|#1|) . T) (((-558)) . T) (((-840 (-1197))) . T)) +((((-840 (-1197))) . T)) +((((-1197) |#1|) . T)) (((|#2|) . T)) (((|#1| |#2|) . T)) (((|#1|) |has| |#1| (-175))) @@ -4185,7 +4176,7 @@ (((|#1|) . T)) (((|#2|) . T) ((|#1|) . T) (((-558)) . T)) (((|#1|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#1|) . T) (($) . T) (((-558)) . T)) (((|#1| |#2|) . T)) (((|#2|) |has| |#2| (-175))) @@ -4196,20 +4187,20 @@ (((|#2|) |has| |#2| (-175))) (((|#2|) . T)) (((|#2|) . T) (($) . T)) -((((-877)) . T)) +((((-876)) . T)) (((|#2|) . T) (($) . T) (((-558)) . T)) -(((|#2|) . T) (((-558)) . T) (((-841 |#1|)) . T)) -((((-841 |#1|)) . T)) +(((|#2|) . T) (((-558)) . T) (((-840 |#1|)) . T)) +((((-840 |#1|)) . T)) (((|#1| |#2|) . T)) -((((-992)) . T)) -((((-992)) . T)) -((((-992)) . T) (((-877)) . T)) +((((-991)) . T)) +((((-991)) . T)) +((((-991)) . T) (((-876)) . T)) ((((-558)) . T)) ((($ $) . T)) ((($) . T)) ((($) . T)) -((((-877)) . T)) +((((-876)) . T)) ((((-558)) . T) (($) . T)) ((($) . T)) ((((-558)) . T)) -(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1318 . -175) T) ((-1318 . -633) 207246) ((-1318 . -746) T) ((-1318 . -1133) T) ((-1318 . -1078) T) ((-1318 . -1070) T) ((-1318 . -668) 207233) ((-1318 . -666) 207205) ((-1318 . -133) T) ((-1318 . -25) T) ((-1318 . -102) T) ((-1318 . -1238) T) ((-1318 . -630) 207187) ((-1318 . -1122) T) ((-1318 . -23) T) ((-1318 . -21) T) ((-1318 . -1077) 207174) ((-1318 . -1072) 207161) ((-1318 . -111) 207146) ((-1318 . -381) T) ((-1318 . -631) 207128) ((-1318 . -1173) T) ((-1314 . -1122) T) ((-1314 . -630) 207095) ((-1314 . -1238) T) ((-1314 . -102) T) ((-1314 . -502) 207077) ((-1314 . -633) 207059) ((-1313 . -1311) 207038) ((-1313 . -1059) 207015) ((-1313 . -633) 206964) ((-1313 . -1070) T) ((-1313 . -1078) T) ((-1313 . -1133) T) ((-1313 . -746) T) ((-1313 . -21) T) ((-1313 . -666) 206923) ((-1313 . -23) T) ((-1313 . -1122) T) ((-1313 . -630) 206905) ((-1313 . -1238) T) ((-1313 . -102) T) ((-1313 . -25) T) ((-1313 . -133) T) ((-1313 . -668) 206879) ((-1313 . -1303) 206863) ((-1313 . -737) 206833) ((-1313 . -660) 206803) ((-1313 . -1077) 206787) ((-1313 . -1072) 206771) ((-1313 . -111) 206750) ((-1313 . -38) 206720) ((-1313 . -1308) 206699) ((-1312 . -1070) T) ((-1312 . -1078) T) ((-1312 . -1133) T) ((-1312 . -746) T) ((-1312 . -21) T) ((-1312 . -666) 206658) ((-1312 . -23) T) ((-1312 . -1122) T) ((-1312 . -630) 206640) ((-1312 . -1238) T) ((-1312 . -102) T) ((-1312 . -25) T) ((-1312 . -133) T) ((-1312 . -668) 206614) ((-1312 . -633) 206570) ((-1312 . -1303) 206554) ((-1312 . -737) 206524) ((-1312 . -660) 206494) ((-1312 . -1077) 206478) ((-1312 . -1072) 206462) ((-1312 . -111) 206441) ((-1312 . -38) 206411) ((-1312 . -397) 206390) ((-1312 . -1059) 206374) ((-1310 . -1311) 206350) ((-1310 . -1059) 206324) ((-1310 . -633) 206270) ((-1310 . -1070) T) ((-1310 . -1078) T) ((-1310 . -1133) T) ((-1310 . -746) T) ((-1310 . -21) T) ((-1310 . -666) 206229) ((-1310 . -23) T) ((-1310 . -1122) T) ((-1310 . -630) 206211) ((-1310 . -1238) T) ((-1310 . -102) T) ((-1310 . -25) T) ((-1310 . -133) T) ((-1310 . -668) 206185) ((-1310 . -1303) 206169) ((-1310 . -737) 206139) ((-1310 . -660) 206109) ((-1310 . -1077) 206093) ((-1310 . -1072) 206077) ((-1310 . -111) 206056) ((-1310 . -38) 206026) ((-1310 . -1308) 206002) ((-1309 . -1311) 205981) ((-1309 . -1059) 205938) ((-1309 . -633) 205867) ((-1309 . -1070) T) ((-1309 . -1078) T) ((-1309 . -1133) T) ((-1309 . -746) T) ((-1309 . -21) T) ((-1309 . -666) 205826) ((-1309 . -23) T) ((-1309 . -1122) T) ((-1309 . -630) 205808) ((-1309 . -1238) T) ((-1309 . -102) T) ((-1309 . -25) T) ((-1309 . -133) T) ((-1309 . -668) 205782) ((-1309 . -1303) 205766) ((-1309 . -737) 205736) ((-1309 . -660) 205706) ((-1309 . -1077) 205690) ((-1309 . -1072) 205674) ((-1309 . -111) 205653) ((-1309 . -38) 205623) ((-1309 . -1308) 205602) ((-1309 . -397) 205574) ((-1304 . -397) 205546) ((-1304 . -633) 205495) ((-1304 . -1059) 205472) ((-1304 . -660) 205442) ((-1304 . -737) 205412) ((-1304 . -668) 205386) ((-1304 . -666) 205345) ((-1304 . -133) T) ((-1304 . -25) T) ((-1304 . -102) T) ((-1304 . -1238) T) ((-1304 . -630) 205327) ((-1304 . -1122) T) ((-1304 . -23) T) ((-1304 . -21) T) ((-1304 . -1077) 205311) ((-1304 . -1072) 205295) ((-1304 . -111) 205274) ((-1304 . -1311) 205253) ((-1304 . -1070) T) ((-1304 . -1078) T) ((-1304 . -1133) T) ((-1304 . -746) T) ((-1304 . -1303) 205237) ((-1304 . -38) 205207) ((-1304 . -1308) 205186) ((-1302 . -1233) 205155) ((-1302 . -630) 205117) ((-1302 . -153) 205101) ((-1302 . -34) T) ((-1302 . -1238) T) ((-1302 . -102) T) ((-1302 . -321) 205039) ((-1302 . -526) 204972) ((-1302 . -1122) T) ((-1302 . -501) 204956) ((-1302 . -631) 204917) ((-1302 . -997) 204886) ((-1301 . -1070) T) ((-1301 . -1078) T) ((-1301 . -1133) T) ((-1301 . -746) T) ((-1301 . -21) T) ((-1301 . -666) 204831) ((-1301 . -23) T) ((-1301 . -1122) T) ((-1301 . -630) 204800) ((-1301 . -1238) T) ((-1301 . -102) T) ((-1301 . -25) T) ((-1301 . -133) T) ((-1301 . -668) 204760) ((-1301 . -633) 204702) ((-1301 . -502) 204686) ((-1301 . -38) 204656) ((-1301 . -111) 204621) ((-1301 . -1072) 204591) ((-1301 . -1077) 204561) ((-1301 . -660) 204531) ((-1301 . -737) 204501) ((-1300 . -1104) T) ((-1300 . -502) 204482) ((-1300 . -630) 204448) ((-1300 . -633) 204429) ((-1300 . -1122) T) ((-1300 . -1238) T) ((-1300 . -102) T) ((-1300 . -93) T) ((-1299 . -1104) T) ((-1299 . -502) 204410) ((-1299 . -630) 204376) ((-1299 . -633) 204357) ((-1299 . -1122) T) ((-1299 . -1238) T) ((-1299 . -102) T) ((-1299 . -93) T) ((-1294 . -630) 204339) ((-1292 . -1122) T) ((-1292 . -630) 204321) ((-1292 . -1238) T) ((-1292 . -102) T) ((-1291 . -1122) T) ((-1291 . -630) 204303) ((-1291 . -1238) T) ((-1291 . -102) T) ((-1288 . -1287) 204287) ((-1288 . -385) 204271) ((-1288 . -864) 204250) ((-1288 . -861) 204229) ((-1288 . -153) 204213) ((-1288 . -34) T) ((-1288 . -1238) T) ((-1288 . -102) 204143) ((-1288 . -630) 204055) ((-1288 . -321) 203993) ((-1288 . -526) 203926) ((-1288 . -1122) 203876) ((-1288 . -501) 203860) ((-1288 . -631) 203821) ((-1288 . -298) 203773) ((-1288 . -616) 203750) ((-1288 . -300) 203727) ((-1288 . -671) 203711) ((-1288 . -19) 203695) ((-1285 . -1122) T) ((-1285 . -630) 203661) ((-1285 . -1238) T) ((-1285 . -102) T) ((-1278 . -1281) 203645) ((-1278 . -240) 203604) ((-1278 . -633) 203486) ((-1278 . -668) 203411) ((-1278 . -666) 203321) ((-1278 . -133) T) ((-1278 . -25) T) ((-1278 . -102) T) ((-1278 . -630) 203303) ((-1278 . -1122) T) ((-1278 . -23) T) ((-1278 . -21) T) ((-1278 . -746) T) ((-1278 . -1133) T) ((-1278 . -1078) T) ((-1278 . -1070) T) ((-1278 . -236) 203256) ((-1278 . -1238) T) ((-1278 . -239) 203215) ((-1278 . -298) 203180) ((-1278 . -917) 203093) ((-1278 . -911) 202981) ((-1278 . -919) 202894) ((-1278 . -994) 202863) ((-1278 . -38) 202760) ((-1278 . -111) 202622) ((-1278 . -1072) 202505) ((-1278 . -1077) 202388) ((-1278 . -660) 202285) ((-1278 . -737) 202182) ((-1278 . -147) 202161) ((-1278 . -149) 202140) ((-1278 . -175) 202091) ((-1278 . -569) 202070) ((-1278 . -302) 202049) ((-1278 . -47) 202026) ((-1278 . -1267) 202003) ((-1278 . -35) 201969) ((-1278 . -95) 201935) ((-1278 . -296) 201901) ((-1278 . -505) 201867) ((-1278 . -1227) 201833) ((-1278 . -1224) 201799) ((-1278 . -1023) 201765) ((-1275 . -338) 201709) ((-1275 . -1059) 201675) ((-1275 . -424) 201641) ((-1275 . -38) 201498) ((-1275 . -633) 201372) ((-1275 . -668) 201261) ((-1275 . -666) 201135) ((-1275 . -746) T) ((-1275 . -1133) T) ((-1275 . -1078) T) ((-1275 . -1070) T) ((-1275 . -111) 200985) ((-1275 . -1072) 200874) ((-1275 . -1077) 200763) ((-1275 . -21) T) ((-1275 . -23) T) ((-1275 . -1122) T) ((-1275 . -630) 200745) ((-1275 . -1238) T) ((-1275 . -102) T) ((-1275 . -25) T) ((-1275 . -133) T) ((-1275 . -660) 200602) ((-1275 . -737) 200459) ((-1275 . -147) 200420) ((-1275 . -149) 200381) ((-1275 . -175) T) ((-1275 . -569) T) ((-1275 . -302) T) ((-1275 . -47) 200325) ((-1274 . -1273) 200304) ((-1274 . -376) 200283) ((-1274 . -1243) 200262) ((-1274 . -940) 200241) ((-1274 . -569) 200192) ((-1274 . -175) 200123) ((-1274 . -633) 199936) ((-1274 . -737) 199777) ((-1274 . -660) 199618) ((-1274 . -38) 199459) ((-1274 . -464) 199438) ((-1274 . -319) 199417) ((-1274 . -668) 199314) ((-1274 . -666) 199196) ((-1274 . -746) T) ((-1274 . -1133) T) ((-1274 . -1078) T) ((-1274 . -1070) T) ((-1274 . -111) 199010) ((-1274 . -1072) 198845) ((-1274 . -1077) 198680) ((-1274 . -21) T) ((-1274 . -23) T) ((-1274 . -1122) T) ((-1274 . -630) 198662) ((-1274 . -1238) T) ((-1274 . -102) T) ((-1274 . -25) T) ((-1274 . -133) T) ((-1274 . -302) 198613) ((-1274 . -250) 198592) ((-1274 . -1023) 198558) ((-1274 . -1224) 198524) ((-1274 . -1227) 198490) ((-1274 . -505) 198456) ((-1274 . -296) 198422) ((-1274 . -95) 198388) ((-1274 . -35) 198354) ((-1274 . -1267) 198324) ((-1274 . -47) 198294) ((-1274 . -149) 198273) ((-1274 . -147) 198252) ((-1274 . -994) 198214) ((-1274 . -919) 198120) ((-1274 . -911) 198024) ((-1274 . -917) 197930) ((-1274 . -298) 197888) ((-1274 . -239) 197840) ((-1274 . -236) 197786) ((-1274 . -240) 197738) ((-1274 . -1271) 197722) ((-1274 . -1059) 197706) ((-1269 . -1273) 197667) ((-1269 . -376) 197646) ((-1269 . -1243) 197625) ((-1269 . -940) 197604) ((-1269 . -569) 197555) ((-1269 . -175) 197486) ((-1269 . -633) 197229) ((-1269 . -737) 197070) ((-1269 . -660) 196911) ((-1269 . -38) 196752) ((-1269 . -464) 196731) ((-1269 . -319) 196710) ((-1269 . -668) 196607) ((-1269 . -666) 196489) ((-1269 . -746) T) ((-1269 . -1133) T) ((-1269 . -1078) T) ((-1269 . -1070) T) ((-1269 . -111) 196303) ((-1269 . -1072) 196138) ((-1269 . -1077) 195973) ((-1269 . -21) T) ((-1269 . -23) T) ((-1269 . -1122) T) ((-1269 . -630) 195955) ((-1269 . -1238) T) ((-1269 . -102) T) ((-1269 . -25) T) ((-1269 . -133) T) ((-1269 . -302) 195906) ((-1269 . -250) 195885) ((-1269 . -1023) 195851) ((-1269 . -1224) 195817) ((-1269 . -1227) 195783) ((-1269 . -505) 195749) ((-1269 . -296) 195715) ((-1269 . -95) 195681) ((-1269 . -35) 195647) ((-1269 . -1267) 195617) ((-1269 . -47) 195587) ((-1269 . -149) 195566) ((-1269 . -147) 195545) ((-1269 . -994) 195507) ((-1269 . -919) 195413) ((-1269 . -911) 195294) ((-1269 . -917) 195200) ((-1269 . -298) 195158) ((-1269 . -239) 195110) ((-1269 . -236) 195056) ((-1269 . -240) 195008) ((-1269 . -1271) 194992) ((-1269 . -1059) 194927) ((-1257 . -1264) 194911) ((-1257 . -1173) 194889) ((-1257 . -631) NIL) ((-1257 . -321) 194876) ((-1257 . -526) 194822) ((-1257 . -338) 194799) ((-1257 . -1059) 194679) ((-1257 . -424) 194663) ((-1257 . -38) 194492) ((-1257 . -111) 194294) ((-1257 . -1072) 194117) ((-1257 . -1077) 193940) ((-1257 . -666) 193850) ((-1257 . -668) 193739) ((-1257 . -660) 193568) ((-1257 . -737) 193397) ((-1257 . -633) 193145) ((-1257 . -147) 193124) ((-1257 . -149) 193103) ((-1257 . -47) 193080) ((-1257 . -390) 193064) ((-1257 . -658) 193012) ((-1257 . -917) 192955) ((-1257 . -911) 192858) ((-1257 . -919) 192765) ((-1257 . -901) NIL) ((-1257 . -929) 192744) ((-1257 . -1243) 192723) ((-1257 . -969) 192692) ((-1257 . -940) 192671) ((-1257 . -569) 192582) ((-1257 . -302) 192493) ((-1257 . -175) 192384) ((-1257 . -464) 192315) ((-1257 . -319) 192294) ((-1257 . -298) 192221) ((-1257 . -240) T) ((-1257 . -133) T) ((-1257 . -25) T) ((-1257 . -102) T) ((-1257 . -630) 192203) ((-1257 . -1122) T) ((-1257 . -23) T) ((-1257 . -21) T) ((-1257 . -746) T) ((-1257 . -1133) T) ((-1257 . -1078) T) ((-1257 . -1070) T) ((-1257 . -236) 192190) ((-1257 . -1238) T) ((-1257 . -239) T) ((-1257 . -274) 192174) ((-1257 . -234) 192158) ((-1255 . -1115) 192142) ((-1255 . -635) 192126) ((-1255 . -1122) 192104) ((-1255 . -630) 192071) ((-1255 . -1238) 192049) ((-1255 . -102) 192027) ((-1255 . -1116) 191984) ((-1253 . -1252) 191963) ((-1253 . -1023) 191929) ((-1253 . -1224) 191895) ((-1253 . -1227) 191861) ((-1253 . -505) 191827) ((-1253 . -296) 191793) ((-1253 . -95) 191759) ((-1253 . -35) 191725) ((-1253 . -1267) 191702) ((-1253 . -47) 191679) ((-1253 . -633) 191427) ((-1253 . -737) 191241) ((-1253 . -660) 191055) ((-1253 . -668) 190863) ((-1253 . -666) 190718) ((-1253 . -1077) 190526) ((-1253 . -1072) 190334) ((-1253 . -111) 190116) ((-1253 . -38) 189930) ((-1253 . -994) 189899) ((-1253 . -298) 189799) ((-1253 . -1250) 189783) ((-1253 . -746) T) ((-1253 . -1133) T) ((-1253 . -1078) T) ((-1253 . -1070) T) ((-1253 . -21) T) ((-1253 . -23) T) ((-1253 . -1122) T) ((-1253 . -630) 189765) ((-1253 . -1238) T) ((-1253 . -102) T) ((-1253 . -25) T) ((-1253 . -133) T) ((-1253 . -147) 189690) ((-1253 . -149) 189615) ((-1253 . -631) 189286) ((-1253 . -234) 189256) ((-1253 . -917) 189107) ((-1253 . -919) 188904) ((-1253 . -911) 188699) ((-1253 . -274) 188669) ((-1253 . -239) 188528) ((-1253 . -236) 188381) ((-1253 . -240) 188286) ((-1253 . -376) 188265) ((-1253 . -1243) 188244) ((-1253 . -940) 188223) ((-1253 . -569) 188174) ((-1253 . -175) 188105) ((-1253 . -464) 188084) ((-1253 . -319) 188063) ((-1253 . -302) 188014) ((-1253 . -250) 187993) ((-1253 . -351) 187963) ((-1253 . -526) 187823) ((-1253 . -321) 187762) ((-1253 . -390) 187732) ((-1253 . -658) 187640) ((-1253 . -412) 187610) ((-1253 . -901) 187483) ((-1253 . -842) 187436) ((-1253 . -812) 187389) ((-1253 . -814) 187342) ((-1253 . -861) 187241) ((-1253 . -864) 187140) ((-1253 . -816) 187093) ((-1253 . -819) 187046) ((-1253 . -860) 186999) ((-1253 . -899) 186969) ((-1253 . -929) 186922) ((-1253 . -1041) 186874) ((-1253 . -1059) 186660) ((-1253 . -1173) 186612) ((-1253 . -1012) 186582) ((-1248 . -1252) 186543) ((-1248 . -1023) 186509) ((-1248 . -1224) 186475) ((-1248 . -1227) 186441) ((-1248 . -505) 186407) ((-1248 . -296) 186373) ((-1248 . -95) 186339) ((-1248 . -35) 186305) ((-1248 . -1267) 186282) ((-1248 . -47) 186259) ((-1248 . -633) 186054) ((-1248 . -737) 185850) ((-1248 . -660) 185646) ((-1248 . -668) 185498) ((-1248 . -666) 185335) ((-1248 . -1077) 185125) ((-1248 . -1072) 184915) ((-1248 . -111) 184661) ((-1248 . -38) 184457) ((-1248 . -994) 184426) ((-1248 . -298) 184254) ((-1248 . -1250) 184238) ((-1248 . -746) T) ((-1248 . -1133) T) ((-1248 . -1078) T) ((-1248 . -1070) T) ((-1248 . -21) T) ((-1248 . -23) T) ((-1248 . -1122) T) ((-1248 . -630) 184220) ((-1248 . -1238) T) ((-1248 . -102) T) ((-1248 . -25) T) ((-1248 . -133) T) ((-1248 . -147) 184127) ((-1248 . -149) 184034) ((-1248 . -631) NIL) ((-1248 . -234) 183986) ((-1248 . -917) 183819) ((-1248 . -919) 183580) ((-1248 . -911) 183316) ((-1248 . -274) 183268) ((-1248 . -239) 183091) ((-1248 . -236) 182908) ((-1248 . -240) 182795) ((-1248 . -376) 182774) ((-1248 . -1243) 182753) ((-1248 . -940) 182732) ((-1248 . -569) 182683) ((-1248 . -175) 182614) ((-1248 . -464) 182593) ((-1248 . -319) 182572) ((-1248 . -302) 182523) ((-1248 . -250) 182502) ((-1248 . -351) 182454) ((-1248 . -526) 182188) ((-1248 . -321) 182073) ((-1248 . -390) 182025) ((-1248 . -658) 181977) ((-1248 . -412) 181929) ((-1248 . -901) NIL) ((-1248 . -842) NIL) ((-1248 . -812) NIL) ((-1248 . -814) NIL) ((-1248 . -861) NIL) ((-1248 . -864) NIL) ((-1248 . -816) NIL) ((-1248 . -819) NIL) ((-1248 . -860) NIL) ((-1248 . -899) 181881) ((-1248 . -929) NIL) ((-1248 . -1041) NIL) ((-1248 . -1059) 181847) ((-1248 . -1173) NIL) ((-1248 . -1012) 181799) ((-1247 . -857) T) ((-1247 . -864) T) ((-1247 . -861) T) ((-1247 . -1122) T) ((-1247 . -630) 181781) ((-1247 . -1238) T) ((-1247 . -102) T) ((-1247 . -381) T) ((-1247 . -682) T) ((-1246 . -857) T) ((-1246 . -864) T) ((-1246 . -861) T) ((-1246 . -1122) T) ((-1246 . -630) 181763) ((-1246 . -1238) T) ((-1246 . -102) T) ((-1246 . -381) T) ((-1246 . -682) T) ((-1245 . -857) T) ((-1245 . -864) T) ((-1245 . -861) T) ((-1245 . -1122) T) ((-1245 . -630) 181745) ((-1245 . -1238) T) ((-1245 . -102) T) ((-1245 . -381) T) ((-1245 . -682) T) ((-1244 . -857) T) ((-1244 . -864) T) ((-1244 . -861) T) ((-1244 . -1122) T) ((-1244 . -630) 181727) ((-1244 . -1238) T) ((-1244 . -102) T) ((-1244 . -381) T) ((-1244 . -682) T) ((-1239 . -1104) T) ((-1239 . -502) 181708) ((-1239 . -630) 181674) ((-1239 . -633) 181655) ((-1239 . -1122) T) ((-1239 . -1238) T) ((-1239 . -102) T) ((-1239 . -93) T) ((-1236 . -502) 181632) ((-1236 . -630) 181573) ((-1236 . -633) 181550) ((-1236 . -1122) 181528) ((-1236 . -1238) 181506) ((-1236 . -102) 181484) ((-1231 . -760) 181460) ((-1231 . -35) 181426) ((-1231 . -95) 181392) ((-1231 . -296) 181358) ((-1231 . -505) 181324) ((-1231 . -1227) 181290) ((-1231 . -1224) 181256) ((-1231 . -1023) 181222) ((-1231 . -47) 181191) ((-1231 . -38) 181088) ((-1231 . -660) 180985) ((-1231 . -737) 180882) ((-1231 . -633) 180764) ((-1231 . -302) 180743) ((-1231 . -569) 180722) ((-1231 . -111) 180584) ((-1231 . -1072) 180467) ((-1231 . -1077) 180350) ((-1231 . -175) 180301) ((-1231 . -149) 180280) ((-1231 . -147) 180259) ((-1231 . -668) 180184) ((-1231 . -666) 180094) ((-1231 . -994) 180055) ((-1231 . -919) 180036) ((-1231 . -1238) T) ((-1231 . -911) 180015) ((-1231 . -1070) T) ((-1231 . -1078) T) ((-1231 . -1133) T) ((-1231 . -746) T) ((-1231 . -21) T) ((-1231 . -23) T) ((-1231 . -1122) T) ((-1231 . -630) 179997) ((-1231 . -102) T) ((-1231 . -25) T) ((-1231 . -133) T) ((-1231 . -917) 179978) ((-1231 . -526) 179945) ((-1231 . -321) 179932) ((-1225 . -1031) 179916) ((-1225 . -34) T) ((-1225 . -1238) T) ((-1225 . -102) 179866) ((-1225 . -630) 179798) ((-1225 . -321) 179736) ((-1225 . -526) 179669) ((-1225 . -1122) 179647) ((-1225 . -501) 179631) ((-1220 . -378) 179605) ((-1220 . -102) T) ((-1220 . -1238) T) ((-1220 . -630) 179587) ((-1220 . -1122) T) ((-1218 . -1122) T) ((-1218 . -630) 179569) ((-1218 . -1238) T) ((-1218 . -102) T) ((-1218 . -633) 179551) ((-1212 . -849) 179535) ((-1212 . -102) T) ((-1212 . -1238) T) ((-1212 . -630) 179517) ((-1212 . -1122) T) ((-1210 . -1215) 179496) ((-1210 . -233) 179446) ((-1210 . -107) 179396) ((-1210 . -321) 179200) ((-1210 . -526) 178960) ((-1210 . -501) 178897) ((-1210 . -153) 178847) ((-1210 . -631) NIL) ((-1210 . -242) 178797) ((-1210 . -627) 178776) ((-1210 . -300) 178755) ((-1210 . -1238) T) ((-1210 . -298) 178734) ((-1210 . -1122) T) ((-1210 . -630) 178716) ((-1210 . -102) T) ((-1210 . -34) T) ((-1210 . -616) 178695) ((-1206 . -1122) T) ((-1206 . -630) 178677) ((-1206 . -1238) T) ((-1206 . -102) T) ((-1205 . -857) T) ((-1205 . -864) T) ((-1205 . -861) T) ((-1205 . -1122) T) ((-1205 . -630) 178659) ((-1205 . -1238) T) ((-1205 . -102) T) ((-1205 . -381) T) ((-1205 . -682) T) ((-1204 . -857) T) ((-1204 . -864) T) ((-1204 . -861) T) ((-1204 . -1122) T) ((-1204 . -630) 178641) ((-1204 . -1238) T) ((-1204 . -102) T) ((-1204 . -381) T) ((-1203 . -1284) T) ((-1203 . -1122) T) ((-1203 . -630) 178608) ((-1203 . -1238) T) ((-1203 . -102) T) ((-1203 . -1059) 178544) ((-1203 . -633) 178480) ((-1202 . -630) 178462) ((-1201 . -630) 178444) ((-1200 . -338) 178421) ((-1200 . -1059) 178317) ((-1200 . -424) 178301) ((-1200 . -38) 178198) ((-1200 . -633) 178051) ((-1200 . -668) 177976) ((-1200 . -666) 177886) ((-1200 . -746) T) ((-1200 . -1133) T) ((-1200 . -1078) T) ((-1200 . -1070) T) ((-1200 . -111) 177748) ((-1200 . -1072) 177631) ((-1200 . -1077) 177514) ((-1200 . -21) T) ((-1200 . -23) T) ((-1200 . -1122) T) ((-1200 . -630) 177496) ((-1200 . -1238) T) ((-1200 . -102) T) ((-1200 . -25) T) ((-1200 . -133) T) ((-1200 . -660) 177393) ((-1200 . -737) 177290) ((-1200 . -147) 177269) ((-1200 . -149) 177248) ((-1200 . -175) 177199) ((-1200 . -569) 177178) ((-1200 . -302) 177157) ((-1200 . -47) 177134) ((-1198 . -861) T) ((-1198 . -630) 177116) ((-1198 . -1122) T) ((-1198 . -102) T) ((-1198 . -1238) T) ((-1198 . -864) T) ((-1198 . -631) 177038) ((-1198 . -633) 177004) ((-1198 . -1059) 176986) ((-1198 . -901) 176953) ((-1197 . -630) 176935) ((-1196 . -1281) 176919) ((-1196 . -240) 176878) ((-1196 . -633) 176760) ((-1196 . -668) 176685) ((-1196 . -666) 176595) ((-1196 . -133) T) ((-1196 . -25) T) ((-1196 . -102) T) ((-1196 . -630) 176577) ((-1196 . -1122) T) ((-1196 . -23) T) ((-1196 . -21) T) ((-1196 . -746) T) ((-1196 . -1133) T) ((-1196 . -1078) T) ((-1196 . -1070) T) ((-1196 . -236) 176530) ((-1196 . -1238) T) ((-1196 . -239) 176489) ((-1196 . -298) 176454) ((-1196 . -917) 176367) ((-1196 . -911) 176255) ((-1196 . -919) 176168) ((-1196 . -994) 176137) ((-1196 . -38) 176034) ((-1196 . -111) 175896) ((-1196 . -1072) 175779) ((-1196 . -1077) 175662) ((-1196 . -660) 175559) ((-1196 . -737) 175456) ((-1196 . -147) 175435) ((-1196 . -149) 175414) ((-1196 . -175) 175365) ((-1196 . -569) 175344) ((-1196 . -302) 175323) ((-1196 . -47) 175300) ((-1196 . -1267) 175277) ((-1196 . -35) 175243) ((-1196 . -95) 175209) ((-1196 . -296) 175175) ((-1196 . -505) 175141) ((-1196 . -1227) 175107) ((-1196 . -1224) 175073) ((-1196 . -1023) 175039) ((-1195 . -1273) 175000) ((-1195 . -376) 174979) ((-1195 . -1243) 174958) ((-1195 . -940) 174937) ((-1195 . -569) 174888) ((-1195 . -175) 174819) ((-1195 . -633) 174562) ((-1195 . -737) 174403) ((-1195 . -660) 174244) ((-1195 . -38) 174085) ((-1195 . -464) 174064) ((-1195 . -319) 174043) ((-1195 . -668) 173940) ((-1195 . -666) 173822) ((-1195 . -746) T) ((-1195 . -1133) T) ((-1195 . -1078) T) ((-1195 . -1070) T) ((-1195 . -111) 173636) ((-1195 . -1072) 173471) ((-1195 . -1077) 173306) ((-1195 . -21) T) ((-1195 . -23) T) ((-1195 . -1122) T) ((-1195 . -630) 173288) ((-1195 . -1238) T) ((-1195 . -102) T) ((-1195 . -25) T) ((-1195 . -133) T) ((-1195 . -302) 173239) ((-1195 . -250) 173218) ((-1195 . -1023) 173184) ((-1195 . -1224) 173150) ((-1195 . -1227) 173116) ((-1195 . -505) 173082) ((-1195 . -296) 173048) ((-1195 . -95) 173014) ((-1195 . -35) 172980) ((-1195 . -1267) 172950) ((-1195 . -47) 172920) ((-1195 . -149) 172899) ((-1195 . -147) 172878) ((-1195 . -994) 172840) ((-1195 . -919) 172746) ((-1195 . -911) 172627) ((-1195 . -917) 172533) ((-1195 . -298) 172491) ((-1195 . -239) 172443) ((-1195 . -236) 172389) ((-1195 . -240) 172341) ((-1195 . -1271) 172325) ((-1195 . -1059) 172260) ((-1192 . -1264) 172244) ((-1192 . -1173) 172222) ((-1192 . -631) NIL) ((-1192 . -321) 172209) ((-1192 . -526) 172155) ((-1192 . -338) 172132) ((-1192 . -1059) 172012) ((-1192 . -424) 171996) ((-1192 . -38) 171825) ((-1192 . -111) 171627) ((-1192 . -1072) 171450) ((-1192 . -1077) 171273) ((-1192 . -666) 171183) ((-1192 . -668) 171072) ((-1192 . -660) 170901) ((-1192 . -737) 170730) ((-1192 . -633) 170499) ((-1192 . -147) 170478) ((-1192 . -149) 170457) ((-1192 . -47) 170434) ((-1192 . -390) 170418) ((-1192 . -658) 170366) ((-1192 . -917) 170309) ((-1192 . -911) 170212) ((-1192 . -919) 170119) ((-1192 . -901) NIL) ((-1192 . -929) 170098) ((-1192 . -1243) 170077) ((-1192 . -969) 170046) ((-1192 . -940) 170025) ((-1192 . -569) 169936) ((-1192 . -302) 169847) ((-1192 . -175) 169738) ((-1192 . -464) 169669) ((-1192 . -319) 169648) ((-1192 . -298) 169575) ((-1192 . -240) T) ((-1192 . -133) T) ((-1192 . -25) T) ((-1192 . -102) T) ((-1192 . -630) 169557) ((-1192 . -1122) T) ((-1192 . -23) T) ((-1192 . -21) T) ((-1192 . -746) T) ((-1192 . -1133) T) ((-1192 . -1078) T) ((-1192 . -1070) T) ((-1192 . -236) 169544) ((-1192 . -1238) T) ((-1192 . -239) T) ((-1192 . -274) 169528) ((-1192 . -234) 169512) ((-1189 . -1252) 169473) ((-1189 . -1023) 169439) ((-1189 . -1224) 169405) ((-1189 . -1227) 169371) ((-1189 . -505) 169337) ((-1189 . -296) 169303) ((-1189 . -95) 169269) ((-1189 . -35) 169235) ((-1189 . -1267) 169212) ((-1189 . -47) 169189) ((-1189 . -633) 168984) ((-1189 . -737) 168780) ((-1189 . -660) 168576) ((-1189 . -668) 168428) ((-1189 . -666) 168265) ((-1189 . -1077) 168055) ((-1189 . -1072) 167845) ((-1189 . -111) 167591) ((-1189 . -38) 167387) ((-1189 . -994) 167356) ((-1189 . -298) 167184) ((-1189 . -1250) 167168) ((-1189 . -746) T) ((-1189 . -1133) T) ((-1189 . -1078) T) ((-1189 . -1070) T) ((-1189 . -21) T) ((-1189 . -23) T) ((-1189 . -1122) T) ((-1189 . -630) 167150) ((-1189 . -1238) T) ((-1189 . -102) T) ((-1189 . -25) T) ((-1189 . -133) T) ((-1189 . -147) 167057) ((-1189 . -149) 166964) ((-1189 . -631) NIL) ((-1189 . -234) 166916) ((-1189 . -917) 166749) ((-1189 . -919) 166510) ((-1189 . -911) 166246) ((-1189 . -274) 166198) ((-1189 . -239) 166021) ((-1189 . -236) 165838) ((-1189 . -240) 165725) ((-1189 . -376) 165704) ((-1189 . -1243) 165683) ((-1189 . -940) 165662) ((-1189 . -569) 165613) ((-1189 . -175) 165544) ((-1189 . -464) 165523) ((-1189 . -319) 165502) ((-1189 . -302) 165453) ((-1189 . -250) 165432) ((-1189 . -351) 165384) ((-1189 . -526) 165118) ((-1189 . -321) 165003) ((-1189 . -390) 164955) ((-1189 . -658) 164907) ((-1189 . -412) 164859) ((-1189 . -901) NIL) ((-1189 . -842) NIL) ((-1189 . -812) NIL) ((-1189 . -814) NIL) ((-1189 . -861) NIL) ((-1189 . -864) NIL) ((-1189 . -816) NIL) ((-1189 . -819) NIL) ((-1189 . -860) NIL) ((-1189 . -899) 164811) ((-1189 . -929) NIL) ((-1189 . -1041) NIL) ((-1189 . -1059) 164777) ((-1189 . -1173) NIL) ((-1189 . -1012) 164729) ((-1188 . -1104) T) ((-1188 . -502) 164710) ((-1188 . -630) 164676) ((-1188 . -633) 164657) ((-1188 . -1122) T) ((-1188 . -1238) T) ((-1188 . -102) T) ((-1188 . -93) T) ((-1187 . -1122) T) ((-1187 . -630) 164639) ((-1187 . -1238) T) ((-1187 . -102) T) ((-1186 . -1122) T) ((-1186 . -630) 164621) ((-1186 . -1238) T) ((-1186 . -102) T) ((-1181 . -1215) 164597) ((-1181 . -233) 164544) ((-1181 . -107) 164491) ((-1181 . -321) 164286) ((-1181 . -526) 164034) ((-1181 . -501) 163968) ((-1181 . -153) 163915) ((-1181 . -631) NIL) ((-1181 . -242) 163862) ((-1181 . -627) 163838) ((-1181 . -300) 163814) ((-1181 . -1238) T) ((-1181 . -298) 163790) ((-1181 . -1122) T) ((-1181 . -630) 163772) ((-1181 . -102) T) ((-1181 . -34) T) ((-1181 . -616) 163748) ((-1180 . -1165) T) ((-1180 . -385) 163730) ((-1180 . -864) T) ((-1180 . -861) T) ((-1180 . -153) 163712) ((-1180 . -34) T) ((-1180 . -1238) T) ((-1180 . -102) T) ((-1180 . -630) 163694) ((-1180 . -321) NIL) ((-1180 . -526) NIL) ((-1180 . -1122) T) ((-1180 . -501) 163676) ((-1180 . -631) NIL) ((-1180 . -298) 163626) ((-1180 . -616) 163601) ((-1180 . -300) 163576) ((-1180 . -671) 163558) ((-1180 . -19) 163540) ((-1176 . -694) 163524) ((-1176 . -671) 163508) ((-1176 . -300) 163485) ((-1176 . -298) 163437) ((-1176 . -616) 163414) ((-1176 . -631) 163375) ((-1176 . -501) 163359) ((-1176 . -1122) 163337) ((-1176 . -526) 163270) ((-1176 . -321) 163208) ((-1176 . -630) 163140) ((-1176 . -102) 163090) ((-1176 . -1238) T) ((-1176 . -34) T) ((-1176 . -153) 163074) ((-1176 . -1277) 163058) ((-1176 . -1031) 163042) ((-1176 . -1171) 163026) ((-1176 . -633) 163003) ((-1174 . -1104) T) ((-1174 . -502) 162984) ((-1174 . -630) 162950) ((-1174 . -633) 162931) ((-1174 . -1122) T) ((-1174 . -1238) T) ((-1174 . -102) T) ((-1174 . -93) T) ((-1172 . -1215) 162910) ((-1172 . -233) 162860) ((-1172 . -107) 162810) ((-1172 . -321) 162614) ((-1172 . -526) 162374) ((-1172 . -501) 162311) ((-1172 . -153) 162261) ((-1172 . -631) NIL) ((-1172 . -242) 162211) ((-1172 . -627) 162190) ((-1172 . -300) 162169) ((-1172 . -1238) T) ((-1172 . -298) 162148) ((-1172 . -1122) T) ((-1172 . -630) 162130) ((-1172 . -102) T) ((-1172 . -34) T) ((-1172 . -616) 162109) ((-1169 . -1142) 162093) ((-1169 . -501) 162077) ((-1169 . -1122) 162055) ((-1169 . -526) 161988) ((-1169 . -321) 161926) ((-1169 . -630) 161858) ((-1169 . -102) 161808) ((-1169 . -1238) T) ((-1169 . -34) T) ((-1169 . -107) 161792) ((-1167 . -1130) 161761) ((-1167 . -1233) 161730) ((-1167 . -630) 161692) ((-1167 . -153) 161676) ((-1167 . -34) T) ((-1167 . -1238) T) ((-1167 . -102) T) ((-1167 . -321) 161614) ((-1167 . -526) 161547) ((-1167 . -1122) T) ((-1167 . -501) 161531) ((-1167 . -631) 161492) ((-1167 . -997) 161461) ((-1167 . -1092) 161430) ((-1163 . -1144) 161375) ((-1163 . -501) 161359) ((-1163 . -526) 161292) ((-1163 . -321) 161230) ((-1163 . -34) T) ((-1163 . -1074) 161170) ((-1163 . -1059) 161066) ((-1163 . -633) 160984) ((-1163 . -424) 160968) ((-1163 . -658) 160916) ((-1163 . -668) 160854) ((-1163 . -390) 160838) ((-1163 . -240) 160817) ((-1163 . -236) 160762) ((-1163 . -239) 160713) ((-1163 . -274) 160697) ((-1163 . -911) 160618) ((-1163 . -919) 160541) ((-1163 . -917) 160500) ((-1163 . -234) 160484) ((-1163 . -737) 160416) ((-1163 . -660) 160348) ((-1163 . -666) 160307) ((-1163 . -133) T) ((-1163 . -25) T) ((-1163 . -102) T) ((-1163 . -1238) T) ((-1163 . -630) 160269) ((-1163 . -1122) T) ((-1163 . -23) T) ((-1163 . -21) T) ((-1163 . -1077) 160253) ((-1163 . -1072) 160237) ((-1163 . -111) 160216) ((-1163 . -1070) T) ((-1163 . -1078) T) ((-1163 . -1133) T) ((-1163 . -746) T) ((-1163 . -38) 160176) ((-1163 . -631) 160137) ((-1162 . -1031) 160108) ((-1162 . -34) T) ((-1162 . -1238) T) ((-1162 . -102) T) ((-1162 . -630) 160090) ((-1162 . -321) 160016) ((-1162 . -526) 159924) ((-1162 . -1122) T) ((-1162 . -501) 159895) ((-1161 . -1122) T) ((-1161 . -630) 159877) ((-1161 . -1238) T) ((-1161 . -102) T) ((-1156 . -1158) T) ((-1156 . -1284) T) ((-1156 . -93) T) ((-1156 . -102) T) ((-1156 . -1238) T) ((-1156 . -630) 159843) ((-1156 . -1122) T) ((-1156 . -633) 159824) ((-1156 . -502) 159805) ((-1156 . -1104) T) ((-1154 . -1155) 159789) ((-1154 . -102) T) ((-1154 . -1238) T) ((-1154 . -630) 159771) ((-1154 . -1122) T) ((-1147 . -760) 159750) ((-1147 . -35) 159716) ((-1147 . -95) 159682) ((-1147 . -296) 159648) ((-1147 . -505) 159614) ((-1147 . -1227) 159580) ((-1147 . -1224) 159546) ((-1147 . -1023) 159512) ((-1147 . -47) 159484) ((-1147 . -38) 159381) ((-1147 . -660) 159278) ((-1147 . -737) 159175) ((-1147 . -633) 159057) ((-1147 . -302) 159036) ((-1147 . -569) 159015) ((-1147 . -111) 158877) ((-1147 . -1072) 158760) ((-1147 . -1077) 158643) ((-1147 . -175) 158594) ((-1147 . -149) 158573) ((-1147 . -147) 158552) ((-1147 . -668) 158477) ((-1147 . -666) 158387) ((-1147 . -994) 158354) ((-1147 . -919) 158338) ((-1147 . -1238) T) ((-1147 . -911) 158320) ((-1147 . -1070) T) ((-1147 . -1078) T) ((-1147 . -1133) T) ((-1147 . -746) T) ((-1147 . -21) T) ((-1147 . -23) T) ((-1147 . -1122) T) ((-1147 . -630) 158302) ((-1147 . -102) T) ((-1147 . -25) T) ((-1147 . -133) T) ((-1147 . -917) 158286) ((-1147 . -526) 158256) ((-1147 . -321) 158243) ((-1146 . -969) 158210) ((-1146 . -633) 158002) ((-1146 . -1059) 157885) ((-1146 . -1243) 157864) ((-1146 . -929) 157843) ((-1146 . -901) 157702) ((-1146 . -919) 157686) ((-1146 . -911) 157668) ((-1146 . -917) 157652) ((-1146 . -526) 157604) ((-1146 . -464) 157555) ((-1146 . -658) 157503) ((-1146 . -668) 157392) ((-1146 . -390) 157376) ((-1146 . -47) 157348) ((-1146 . -38) 157197) ((-1146 . -660) 157046) ((-1146 . -737) 156895) ((-1146 . -302) 156826) ((-1146 . -569) 156757) ((-1146 . -111) 156579) ((-1146 . -1072) 156422) ((-1146 . -1077) 156265) ((-1146 . -175) 156176) ((-1146 . -149) 156155) ((-1146 . -147) 156134) ((-1146 . -666) 156044) ((-1146 . -133) T) ((-1146 . -25) T) ((-1146 . -102) T) ((-1146 . -1238) T) ((-1146 . -630) 156026) ((-1146 . -1122) T) ((-1146 . -23) T) ((-1146 . -21) T) ((-1146 . -1070) T) ((-1146 . -1078) T) ((-1146 . -1133) T) ((-1146 . -746) T) ((-1146 . -424) 156010) ((-1146 . -338) 155982) ((-1146 . -321) 155969) ((-1146 . -631) 155717) ((-1141 . -557) T) ((-1141 . -1243) T) ((-1141 . -1173) T) ((-1141 . -1059) 155699) ((-1141 . -631) 155614) ((-1141 . -1041) T) ((-1141 . -901) 155596) ((-1141 . -860) T) ((-1141 . -819) T) ((-1141 . -816) T) ((-1141 . -864) T) ((-1141 . -861) T) ((-1141 . -814) T) ((-1141 . -812) T) ((-1141 . -842) T) ((-1141 . -668) 155568) ((-1141 . -658) 155550) ((-1141 . -940) T) ((-1141 . -569) T) ((-1141 . -302) T) ((-1141 . -175) T) ((-1141 . -633) 155522) ((-1141 . -737) 155509) ((-1141 . -660) 155496) ((-1141 . -1077) 155483) ((-1141 . -1072) 155470) ((-1141 . -111) 155455) ((-1141 . -38) 155442) ((-1141 . -464) T) ((-1141 . -319) T) ((-1141 . -239) T) ((-1141 . -236) 155429) ((-1141 . -240) T) ((-1141 . -145) T) ((-1141 . -1070) T) ((-1141 . -1078) T) ((-1141 . -1133) T) ((-1141 . -746) T) ((-1141 . -21) T) ((-1141 . -666) 155401) ((-1141 . -23) T) ((-1141 . -1122) T) ((-1141 . -630) 155383) ((-1141 . -1238) T) ((-1141 . -102) T) ((-1141 . -25) T) ((-1141 . -133) T) ((-1141 . -149) T) ((-1141 . -857) T) ((-1141 . -381) T) ((-1141 . -113) T) ((-1141 . -682) T) ((-1137 . -1104) T) ((-1137 . -502) 155364) ((-1137 . -630) 155330) ((-1137 . -633) 155311) ((-1137 . -1122) T) ((-1137 . -1238) T) ((-1137 . -102) T) ((-1137 . -93) T) ((-1136 . -1122) T) ((-1136 . -630) 155293) ((-1136 . -1238) T) ((-1136 . -102) T) ((-1134 . -245) 155272) ((-1134 . -1296) 155242) ((-1134 . -819) 155221) ((-1134 . -816) 155200) ((-1134 . -864) 155151) ((-1134 . -861) 155102) ((-1134 . -814) 155081) ((-1134 . -815) 155060) ((-1134 . -737) 155002) ((-1134 . -660) 154924) ((-1134 . -300) 154901) ((-1134 . -298) 154878) ((-1134 . -501) 154862) ((-1134 . -526) 154795) ((-1134 . -321) 154733) ((-1134 . -34) T) ((-1134 . -616) 154710) ((-1134 . -1059) 154537) ((-1134 . -633) 154335) ((-1134 . -424) 154304) ((-1134 . -658) 154210) ((-1134 . -668) 154043) ((-1134 . -390) 154012) ((-1134 . -381) 153991) ((-1134 . -240) 153943) ((-1134 . -666) 153722) ((-1134 . -746) 153700) ((-1134 . -1133) 153678) ((-1134 . -1078) 153656) ((-1134 . -1070) 153634) ((-1134 . -236) 153525) ((-1134 . -239) 153422) ((-1134 . -274) 153391) ((-1134 . -911) 153258) ((-1134 . -919) 153127) ((-1134 . -917) 153059) ((-1134 . -234) 153028) ((-1134 . -630) 152721) ((-1134 . -1077) 152642) ((-1134 . -1072) 152543) ((-1134 . -111) 152459) ((-1134 . -133) 152330) ((-1134 . -25) 152163) ((-1134 . -102) 151895) ((-1134 . -1238) T) ((-1134 . -1122) 151647) ((-1134 . -23) 151499) ((-1134 . -21) 151410) ((-1127 . -408) T) ((-1127 . -1238) T) ((-1127 . -630) 151392) ((-1126 . -1125) 151356) ((-1126 . -102) T) ((-1126 . -630) 151338) ((-1126 . -1122) T) ((-1126 . -298) 151294) ((-1126 . -1238) T) ((-1126 . -635) 151209) ((-1124 . -1125) 151161) ((-1124 . -102) T) ((-1124 . -630) 151143) ((-1124 . -1122) T) ((-1124 . -298) 151099) ((-1124 . -1238) T) ((-1124 . -635) 151002) ((-1123 . -381) T) ((-1123 . -102) T) ((-1123 . -1238) T) ((-1123 . -630) 150984) ((-1123 . -1122) T) ((-1118 . -438) 150968) ((-1118 . -1120) 150952) ((-1118 . -381) 150931) ((-1118 . -242) 150915) ((-1118 . -631) 150876) ((-1118 . -153) 150860) ((-1118 . -501) 150844) ((-1118 . -1122) T) ((-1118 . -526) 150777) ((-1118 . -321) 150715) ((-1118 . -630) 150697) ((-1118 . -102) T) ((-1118 . -1238) T) ((-1118 . -34) T) ((-1118 . -107) 150681) ((-1118 . -233) 150665) ((-1117 . -1104) T) ((-1117 . -502) 150646) ((-1117 . -630) 150612) ((-1117 . -633) 150593) ((-1117 . -1122) T) ((-1117 . -1238) T) ((-1117 . -102) T) ((-1117 . -93) T) ((-1113 . -1238) T) ((-1113 . -1122) 150563) ((-1113 . -630) 150522) ((-1113 . -102) 150492) ((-1112 . -1104) T) ((-1112 . -502) 150473) ((-1112 . -630) 150439) ((-1112 . -633) 150420) ((-1112 . -1122) T) ((-1112 . -1238) T) ((-1112 . -102) T) ((-1112 . -93) T) ((-1110 . -1115) 150404) ((-1110 . -635) 150388) ((-1110 . -1122) 150366) ((-1110 . -630) 150333) ((-1110 . -1238) 150311) ((-1110 . -102) 150289) ((-1110 . -1116) 150247) ((-1109 . -277) 150231) ((-1109 . -633) 150215) ((-1109 . -1059) 150199) ((-1109 . -864) T) ((-1109 . -102) T) ((-1109 . -1122) T) ((-1109 . -630) 150181) ((-1109 . -861) T) ((-1109 . -236) 150168) ((-1109 . -1238) T) ((-1109 . -239) T) ((-1108 . -262) 150105) ((-1108 . -633) 149841) ((-1108 . -1059) 149668) ((-1108 . -631) NIL) ((-1108 . -338) 149629) ((-1108 . -424) 149613) ((-1108 . -38) 149462) ((-1108 . -111) 149284) ((-1108 . -1072) 149127) ((-1108 . -1077) 148970) ((-1108 . -666) 148880) ((-1108 . -668) 148769) ((-1108 . -660) 148618) ((-1108 . -737) 148467) ((-1108 . -147) 148446) ((-1108 . -149) 148425) ((-1108 . -175) 148336) ((-1108 . -569) 148267) ((-1108 . -302) 148198) ((-1108 . -47) 148159) ((-1108 . -390) 148143) ((-1108 . -658) 148091) ((-1108 . -464) 148042) ((-1108 . -526) 147905) ((-1108 . -917) 147840) ((-1108 . -911) 147735) ((-1108 . -919) 147634) ((-1108 . -901) NIL) ((-1108 . -929) 147613) ((-1108 . -1243) 147592) ((-1108 . -969) 147537) ((-1108 . -321) 147524) ((-1108 . -240) 147503) ((-1108 . -133) T) ((-1108 . -25) T) ((-1108 . -102) T) ((-1108 . -630) 147485) ((-1108 . -1122) T) ((-1108 . -23) T) ((-1108 . -21) T) ((-1108 . -746) T) ((-1108 . -1133) T) ((-1108 . -1078) T) ((-1108 . -1070) T) ((-1108 . -236) 147430) ((-1108 . -1238) T) ((-1108 . -239) 147381) ((-1108 . -274) 147365) ((-1108 . -234) 147349) ((-1106 . -630) 147331) ((-1103 . -861) T) ((-1103 . -630) 147313) ((-1103 . -1122) T) ((-1103 . -102) T) ((-1103 . -1238) T) ((-1103 . -864) T) ((-1103 . -631) 147294) ((-1100 . -744) 147273) ((-1100 . -1059) 147169) ((-1100 . -424) 147153) ((-1100 . -658) 147101) ((-1100 . -668) 146975) ((-1100 . -390) 146959) ((-1100 . -383) 146938) ((-1100 . -149) 146917) ((-1100 . -633) 146735) ((-1100 . -737) 146603) ((-1100 . -660) 146471) ((-1100 . -666) 146366) ((-1100 . -1077) 146276) ((-1100 . -1072) 146186) ((-1100 . -111) 146075) ((-1100 . -38) 145943) ((-1100 . -422) 145922) ((-1100 . -414) 145901) ((-1100 . -147) 145852) ((-1100 . -1173) 145831) ((-1100 . -363) 145810) ((-1100 . -381) 145761) ((-1100 . -250) 145712) ((-1100 . -302) 145663) ((-1100 . -319) 145614) ((-1100 . -464) 145565) ((-1100 . -569) 145516) ((-1100 . -940) 145467) ((-1100 . -1243) 145418) ((-1100 . -376) 145369) ((-1100 . -240) 145294) ((-1100 . -236) 145167) ((-1100 . -239) 145046) ((-1100 . -274) 145016) ((-1100 . -911) 144885) ((-1100 . -919) 144756) ((-1100 . -917) 144689) ((-1100 . -234) 144659) ((-1100 . -631) 144643) ((-1100 . -21) T) ((-1100 . -23) T) ((-1100 . -1122) T) ((-1100 . -630) 144625) ((-1100 . -1238) T) ((-1100 . -102) T) ((-1100 . -25) T) ((-1100 . -133) T) ((-1100 . -1070) T) ((-1100 . -1078) T) ((-1100 . -1133) T) ((-1100 . -746) T) ((-1100 . -175) T) ((-1098 . -1122) T) ((-1098 . -630) 144607) ((-1098 . -1238) T) ((-1098 . -102) T) ((-1098 . -298) 144586) ((-1097 . -1122) T) ((-1097 . -630) 144568) ((-1097 . -1238) T) ((-1097 . -102) T) ((-1096 . -1122) T) ((-1096 . -630) 144550) ((-1096 . -1238) T) ((-1096 . -102) T) ((-1096 . -298) 144529) ((-1096 . -1059) 144506) ((-1096 . -633) 144483) ((-1095 . -1238) T) ((-1094 . -1104) T) ((-1094 . -502) 144464) ((-1094 . -630) 144430) ((-1094 . -633) 144411) ((-1094 . -1122) T) ((-1094 . -1238) T) ((-1094 . -102) T) ((-1094 . -93) T) ((-1087 . -1104) T) ((-1087 . -502) 144392) ((-1087 . -630) 144358) ((-1087 . -633) 144339) ((-1087 . -1122) T) ((-1087 . -1238) T) ((-1087 . -102) T) ((-1087 . -93) T) ((-1084 . -1215) 144314) ((-1084 . -233) 144260) ((-1084 . -107) 144206) ((-1084 . -321) 144057) ((-1084 . -526) 143865) ((-1084 . -501) 143797) ((-1084 . -153) 143743) ((-1084 . -631) NIL) ((-1084 . -242) 143689) ((-1084 . -627) 143664) ((-1084 . -300) 143639) ((-1084 . -1238) T) ((-1084 . -298) 143614) ((-1084 . -1122) T) ((-1084 . -630) 143596) ((-1084 . -102) T) ((-1084 . -34) T) ((-1084 . -616) 143571) ((-1083 . -557) T) ((-1083 . -1243) T) ((-1083 . -1173) T) ((-1083 . -1059) 143553) ((-1083 . -631) 143468) ((-1083 . -1041) T) ((-1083 . -901) 143450) ((-1083 . -860) T) ((-1083 . -819) T) ((-1083 . -816) T) ((-1083 . -864) T) ((-1083 . -861) T) ((-1083 . -814) T) ((-1083 . -812) T) ((-1083 . -842) T) ((-1083 . -668) 143422) ((-1083 . -658) 143404) ((-1083 . -940) T) ((-1083 . -569) T) ((-1083 . -302) T) ((-1083 . -175) T) ((-1083 . -633) 143376) ((-1083 . -737) 143363) ((-1083 . -660) 143350) ((-1083 . -1077) 143337) ((-1083 . -1072) 143324) ((-1083 . -111) 143309) ((-1083 . -38) 143296) ((-1083 . -464) T) ((-1083 . -319) T) ((-1083 . -239) T) ((-1083 . -236) 143283) ((-1083 . -240) T) ((-1083 . -145) T) ((-1083 . -1070) T) ((-1083 . -1078) T) ((-1083 . -1133) T) ((-1083 . -746) T) ((-1083 . -21) T) ((-1083 . -666) 143255) ((-1083 . -23) T) ((-1083 . -1122) T) ((-1083 . -630) 143237) ((-1083 . -1238) T) ((-1083 . -102) T) ((-1083 . -25) T) ((-1083 . -133) T) ((-1083 . -149) T) ((-1083 . -635) 143218) ((-1082 . -1089) 143197) ((-1082 . -102) T) ((-1082 . -1238) T) ((-1082 . -630) 143179) ((-1082 . -1122) T) ((-1079 . -1238) T) ((-1079 . -1122) 143157) ((-1079 . -630) 143124) ((-1079 . -102) 143102) ((-1075 . -1074) 143042) ((-1075 . -660) 142984) ((-1075 . -737) 142926) ((-1075 . -34) T) ((-1075 . -321) 142864) ((-1075 . -526) 142797) ((-1075 . -501) 142781) ((-1075 . -668) 142765) ((-1075 . -666) 142734) ((-1075 . -133) T) ((-1075 . -25) T) ((-1075 . -102) T) ((-1075 . -1238) T) ((-1075 . -630) 142696) ((-1075 . -1122) T) ((-1075 . -23) T) ((-1075 . -21) T) ((-1075 . -1077) 142680) ((-1075 . -1072) 142664) ((-1075 . -111) 142643) ((-1075 . -1296) 142613) ((-1075 . -631) 142574) ((-1067 . -1092) 142503) ((-1067 . -997) 142432) ((-1067 . -631) 142374) ((-1067 . -501) 142339) ((-1067 . -1122) T) ((-1067 . -526) 142223) ((-1067 . -321) 142131) ((-1067 . -630) 142074) ((-1067 . -102) T) ((-1067 . -1238) T) ((-1067 . -34) T) ((-1067 . -153) 142039) ((-1067 . -1233) 141968) ((-1057 . -1104) T) ((-1057 . -502) 141949) ((-1057 . -630) 141915) ((-1057 . -633) 141896) ((-1057 . -1122) T) ((-1057 . -1238) T) ((-1057 . -102) T) ((-1057 . -93) T) ((-1056 . -1215) 141871) ((-1056 . -233) 141817) ((-1056 . -107) 141763) ((-1056 . -321) 141614) ((-1056 . -526) 141422) ((-1056 . -501) 141354) ((-1056 . -153) 141300) ((-1056 . -631) NIL) ((-1056 . -242) 141246) ((-1056 . -627) 141221) ((-1056 . -300) 141196) ((-1056 . -1238) T) ((-1056 . -298) 141171) ((-1056 . -1122) T) ((-1056 . -630) 141153) ((-1056 . -102) T) ((-1056 . -34) T) ((-1056 . -616) 141128) ((-1055 . -175) T) ((-1055 . -633) 141097) ((-1055 . -746) T) ((-1055 . -1133) T) ((-1055 . -1078) T) ((-1055 . -1070) T) ((-1055 . -668) 141071) ((-1055 . -666) 141030) ((-1055 . -133) T) ((-1055 . -25) T) ((-1055 . -102) T) ((-1055 . -1238) T) ((-1055 . -630) 141012) ((-1055 . -1122) T) ((-1055 . -23) T) ((-1055 . -21) T) ((-1055 . -1077) 140986) ((-1055 . -1072) 140960) ((-1055 . -111) 140927) ((-1055 . -38) 140911) ((-1055 . -660) 140895) ((-1055 . -737) 140879) ((-1048 . -1092) 140848) ((-1048 . -997) 140817) ((-1048 . -631) 140778) ((-1048 . -501) 140762) ((-1048 . -1122) T) ((-1048 . -526) 140695) ((-1048 . -321) 140633) ((-1048 . -630) 140595) ((-1048 . -102) T) ((-1048 . -1238) T) ((-1048 . -34) T) ((-1048 . -153) 140579) ((-1048 . -1233) 140548) ((-1047 . -1238) T) ((-1047 . -1122) 140526) ((-1047 . -630) 140493) ((-1047 . -102) 140471) ((-1045 . -1033) T) ((-1045 . -1023) T) ((-1045 . -812) T) ((-1045 . -814) T) ((-1045 . -861) T) ((-1045 . -864) T) ((-1045 . -816) T) ((-1045 . -819) T) ((-1045 . -860) T) ((-1045 . -1059) 140351) ((-1045 . -424) 140313) ((-1045 . -250) T) ((-1045 . -302) T) ((-1045 . -319) T) ((-1045 . -464) T) ((-1045 . -38) 140250) ((-1045 . -660) 140187) ((-1045 . -737) 140124) ((-1045 . -633) 140061) ((-1045 . -569) T) ((-1045 . -940) T) ((-1045 . -1243) T) ((-1045 . -376) T) ((-1045 . -111) 139970) ((-1045 . -1072) 139907) ((-1045 . -1077) 139844) ((-1045 . -175) T) ((-1045 . -149) T) ((-1045 . -668) 139781) ((-1045 . -666) 139718) ((-1045 . -133) T) ((-1045 . -25) T) ((-1045 . -102) T) ((-1045 . -1238) T) ((-1045 . -630) 139700) ((-1045 . -1122) T) ((-1045 . -23) T) ((-1045 . -21) T) ((-1045 . -1070) T) ((-1045 . -1078) T) ((-1045 . -1133) T) ((-1045 . -746) T) ((-1040 . -1104) T) ((-1040 . -502) 139681) ((-1040 . -630) 139647) ((-1040 . -633) 139628) ((-1040 . -1122) T) ((-1040 . -1238) T) ((-1040 . -102) T) ((-1040 . -93) T) ((-1025 . -1012) 139610) ((-1025 . -1173) T) ((-1025 . -633) 139560) ((-1025 . -1059) 139520) ((-1025 . -631) 139450) ((-1025 . -1041) T) ((-1025 . -929) NIL) ((-1025 . -899) 139432) ((-1025 . -860) T) ((-1025 . -819) T) ((-1025 . -816) T) ((-1025 . -864) T) ((-1025 . -861) T) ((-1025 . -814) T) ((-1025 . -812) T) ((-1025 . -842) T) ((-1025 . -901) 139414) ((-1025 . -412) 139396) ((-1025 . -658) 139378) ((-1025 . -390) 139360) ((-1025 . -298) NIL) ((-1025 . -321) NIL) ((-1025 . -526) NIL) ((-1025 . -351) 139342) ((-1025 . -250) T) ((-1025 . -111) 139269) ((-1025 . -1072) 139219) ((-1025 . -1077) 139169) ((-1025 . -302) T) ((-1025 . -737) 139119) ((-1025 . -660) 139069) ((-1025 . -668) 139019) ((-1025 . -666) 138969) ((-1025 . -38) 138919) ((-1025 . -319) T) ((-1025 . -464) T) ((-1025 . -175) T) ((-1025 . -569) T) ((-1025 . -940) T) ((-1025 . -1243) T) ((-1025 . -376) T) ((-1025 . -240) T) ((-1025 . -236) 138906) ((-1025 . -239) T) ((-1025 . -274) 138888) ((-1025 . -911) NIL) ((-1025 . -919) NIL) ((-1025 . -917) NIL) ((-1025 . -234) 138870) ((-1025 . -149) T) ((-1025 . -147) NIL) ((-1025 . -133) T) ((-1025 . -25) T) ((-1025 . -102) T) ((-1025 . -1238) T) ((-1025 . -630) 138830) ((-1025 . -1122) T) ((-1025 . -23) T) ((-1025 . -21) T) ((-1025 . -1070) T) ((-1025 . -1078) T) ((-1025 . -1133) T) ((-1025 . -746) T) ((-1024 . -355) 138804) ((-1024 . -175) T) ((-1024 . -633) 138734) ((-1024 . -746) T) ((-1024 . -1133) T) ((-1024 . -1078) T) ((-1024 . -1070) T) ((-1024 . -668) 138636) ((-1024 . -666) 138566) ((-1024 . -133) T) ((-1024 . -25) T) ((-1024 . -102) T) ((-1024 . -1238) T) ((-1024 . -630) 138548) ((-1024 . -1122) T) ((-1024 . -23) T) ((-1024 . -21) T) ((-1024 . -1077) 138493) ((-1024 . -1072) 138438) ((-1024 . -111) 138355) ((-1024 . -631) 138339) ((-1024 . -234) 138316) ((-1024 . -917) 138268) ((-1024 . -919) 138177) ((-1024 . -911) 138084) ((-1024 . -274) 138061) ((-1024 . -239) 137998) ((-1024 . -236) 137929) ((-1024 . -240) 137901) ((-1024 . -376) T) ((-1024 . -1243) T) ((-1024 . -940) T) ((-1024 . -569) T) ((-1024 . -737) 137846) ((-1024 . -660) 137791) ((-1024 . -38) 137736) ((-1024 . -464) T) ((-1024 . -319) T) ((-1024 . -302) T) ((-1024 . -250) T) ((-1024 . -381) NIL) ((-1024 . -363) NIL) ((-1024 . -1173) NIL) ((-1024 . -147) 137708) ((-1024 . -414) NIL) ((-1024 . -422) 137680) ((-1024 . -149) 137652) ((-1024 . -383) 137624) ((-1024 . -390) 137601) ((-1024 . -658) 137535) ((-1024 . -424) 137512) ((-1024 . -1059) 137387) ((-1024 . -744) 137359) ((-1021 . -1016) 137343) ((-1021 . -501) 137327) ((-1021 . -1122) 137305) ((-1021 . -526) 137238) ((-1021 . -321) 137176) ((-1021 . -630) 137108) ((-1021 . -102) 137058) ((-1021 . -1238) T) ((-1021 . -34) T) ((-1021 . -107) 137042) ((-1017 . -1019) 137026) ((-1017 . -864) 137005) ((-1017 . -861) 136984) ((-1017 . -1059) 136880) ((-1017 . -424) 136864) ((-1017 . -658) 136812) ((-1017 . -668) 136714) ((-1017 . -390) 136698) ((-1017 . -298) 136656) ((-1017 . -321) 136621) ((-1017 . -526) 136533) ((-1017 . -351) 136517) ((-1017 . -38) 136465) ((-1017 . -111) 136340) ((-1017 . -1072) 136236) ((-1017 . -1077) 136132) ((-1017 . -666) 136055) ((-1017 . -660) 136003) ((-1017 . -737) 135951) ((-1017 . -633) 135841) ((-1017 . -302) 135792) ((-1017 . -250) 135771) ((-1017 . -240) 135750) ((-1017 . -236) 135695) ((-1017 . -239) 135646) ((-1017 . -274) 135630) ((-1017 . -911) 135551) ((-1017 . -919) 135474) ((-1017 . -917) 135433) ((-1017 . -234) 135417) ((-1017 . -631) 135378) ((-1017 . -149) 135357) ((-1017 . -147) 135336) ((-1017 . -133) T) ((-1017 . -25) T) ((-1017 . -102) T) ((-1017 . -1238) T) ((-1017 . -630) 135318) ((-1017 . -1122) T) ((-1017 . -23) T) ((-1017 . -21) T) ((-1017 . -1070) T) ((-1017 . -1078) T) ((-1017 . -1133) T) ((-1017 . -746) T) ((-1015 . -1104) T) ((-1015 . -502) 135299) ((-1015 . -630) 135265) ((-1015 . -633) 135246) ((-1015 . -1122) T) ((-1015 . -1238) T) ((-1015 . -102) T) ((-1015 . -93) T) ((-1014 . -21) T) ((-1014 . -666) 135228) ((-1014 . -23) T) ((-1014 . -1122) T) ((-1014 . -630) 135210) ((-1014 . -1238) T) ((-1014 . -102) T) ((-1014 . -25) T) ((-1014 . -133) T) ((-1014 . -298) 135177) ((-1010 . -630) 135159) ((-1007 . -1122) T) ((-1007 . -630) 135141) ((-1007 . -1238) T) ((-1007 . -102) T) ((-992 . -819) T) ((-992 . -816) T) ((-992 . -864) T) ((-992 . -861) T) ((-992 . -814) T) ((-992 . -23) T) ((-992 . -1122) T) ((-992 . -630) 135101) ((-992 . -1238) T) ((-992 . -102) T) ((-992 . -25) T) ((-992 . -133) T) ((-991 . -1104) T) ((-991 . -502) 135082) ((-991 . -630) 135048) ((-991 . -633) 135029) ((-991 . -1122) T) ((-991 . -1238) T) ((-991 . -102) T) ((-991 . -93) T) ((-985 . -988) T) ((-985 . -102) T) ((-985 . -630) 135011) ((-985 . -1122) T) ((-985 . -682) T) ((-985 . -1238) T) ((-985 . -113) T) ((-985 . -633) 134995) ((-984 . -630) 134977) ((-983 . -1122) T) ((-983 . -630) 134959) ((-983 . -1238) T) ((-983 . -102) T) ((-983 . -381) 134912) ((-983 . -746) 134811) ((-983 . -1133) 134710) ((-983 . -23) 134521) ((-983 . -25) 134332) ((-983 . -133) 134187) ((-983 . -485) 134140) ((-983 . -21) 134095) ((-983 . -666) 134039) ((-983 . -815) 133992) ((-983 . -814) 133945) ((-983 . -861) 133844) ((-983 . -864) 133743) ((-983 . -816) 133696) ((-983 . -819) 133649) ((-977 . -19) 133633) ((-977 . -671) 133617) ((-977 . -300) 133594) ((-977 . -298) 133546) ((-977 . -616) 133523) ((-977 . -631) 133484) ((-977 . -501) 133468) ((-977 . -1122) 133418) ((-977 . -526) 133351) ((-977 . -321) 133289) ((-977 . -630) 133201) ((-977 . -102) 133131) ((-977 . -1238) T) ((-977 . -34) T) ((-977 . -153) 133115) ((-977 . -861) 133094) ((-977 . -864) 133073) ((-977 . -385) 133057) ((-975 . -338) 133036) ((-975 . -1059) 132932) ((-975 . -424) 132916) ((-975 . -38) 132813) ((-975 . -633) 132666) ((-975 . -668) 132591) ((-975 . -666) 132501) ((-975 . -746) T) ((-975 . -1133) T) ((-975 . -1078) T) ((-975 . -1070) T) ((-975 . -111) 132363) ((-975 . -1072) 132246) ((-975 . -1077) 132129) ((-975 . -21) T) ((-975 . -23) T) ((-975 . -1122) T) ((-975 . -630) 132111) ((-975 . -1238) T) ((-975 . -102) T) ((-975 . -25) T) ((-975 . -133) T) ((-975 . -660) 132008) ((-975 . -737) 131905) ((-975 . -147) 131884) ((-975 . -149) 131863) ((-975 . -175) 131814) ((-975 . -569) 131793) ((-975 . -302) 131772) ((-975 . -47) 131751) ((-973 . -1122) T) ((-973 . -630) 131717) ((-973 . -1238) T) ((-973 . -102) T) ((-965 . -969) 131678) ((-965 . -633) 131467) ((-965 . -1059) 131347) ((-965 . -1243) 131326) ((-965 . -929) 131305) ((-965 . -901) 131230) ((-965 . -919) 131211) ((-965 . -911) 131190) ((-965 . -917) 131171) ((-965 . -526) 131117) ((-965 . -464) 131068) ((-965 . -658) 131016) ((-965 . -668) 130905) ((-965 . -390) 130889) ((-965 . -47) 130858) ((-965 . -38) 130707) ((-965 . -660) 130556) ((-965 . -737) 130405) ((-965 . -302) 130336) ((-965 . -569) 130267) ((-965 . -111) 130089) ((-965 . -1072) 129932) ((-965 . -1077) 129775) ((-965 . -175) 129686) ((-965 . -149) 129665) ((-965 . -147) 129644) ((-965 . -666) 129554) ((-965 . -133) T) ((-965 . -25) T) ((-965 . -102) T) ((-965 . -1238) T) ((-965 . -630) 129536) ((-965 . -1122) T) ((-965 . -23) T) ((-965 . -21) T) ((-965 . -1070) T) ((-965 . -1078) T) ((-965 . -1133) T) ((-965 . -746) T) ((-965 . -424) 129520) ((-965 . -338) 129489) ((-965 . -321) 129476) ((-965 . -631) 129337) ((-962 . -1001) 129321) ((-962 . -19) 129305) ((-962 . -671) 129289) ((-962 . -300) 129266) ((-962 . -298) 129218) ((-962 . -616) 129195) ((-962 . -631) 129156) ((-962 . -501) 129140) ((-962 . -1122) 129090) ((-962 . -526) 129023) ((-962 . -321) 128961) ((-962 . -630) 128873) ((-962 . -102) 128803) ((-962 . -1238) T) ((-962 . -34) T) ((-962 . -153) 128787) ((-962 . -861) 128766) ((-962 . -864) 128745) ((-962 . -385) 128729) ((-962 . -1287) 128713) ((-962 . -635) 128690) ((-946 . -995) T) ((-946 . -630) 128672) ((-944 . -974) T) ((-944 . -630) 128654) ((-938 . -816) T) ((-938 . -864) T) ((-938 . -861) T) ((-938 . -1122) T) ((-938 . -630) 128636) ((-938 . -1238) T) ((-938 . -102) T) ((-938 . -25) T) ((-938 . -746) T) ((-938 . -1133) T) ((-933 . -376) T) ((-933 . -1243) T) ((-933 . -940) T) ((-933 . -569) T) ((-933 . -175) T) ((-933 . -633) 128573) ((-933 . -737) 128525) ((-933 . -660) 128477) ((-933 . -38) 128429) ((-933 . -464) T) ((-933 . -319) T) ((-933 . -668) 128381) ((-933 . -666) 128318) ((-933 . -746) T) ((-933 . -1133) T) ((-933 . -1078) T) ((-933 . -1070) T) ((-933 . -111) 128249) ((-933 . -1072) 128201) ((-933 . -1077) 128153) ((-933 . -21) T) ((-933 . -23) T) ((-933 . -1122) T) ((-933 . -630) 128135) ((-933 . -1238) T) ((-933 . -102) T) ((-933 . -25) T) ((-933 . -133) T) ((-933 . -302) T) ((-933 . -250) T) ((-925 . -363) T) ((-925 . -1173) T) ((-925 . -381) T) ((-925 . -147) T) ((-925 . -376) T) ((-925 . -1243) T) ((-925 . -940) T) ((-925 . -569) T) ((-925 . -175) T) ((-925 . -633) 128085) ((-925 . -737) 128050) ((-925 . -660) 128015) ((-925 . -38) 127980) ((-925 . -464) T) ((-925 . -319) T) ((-925 . -111) 127929) ((-925 . -1072) 127894) ((-925 . -1077) 127859) ((-925 . -666) 127809) ((-925 . -668) 127774) ((-925 . -302) T) ((-925 . -250) T) ((-925 . -414) T) ((-925 . -239) T) ((-925 . -1238) T) ((-925 . -236) 127761) ((-925 . -1070) T) ((-925 . -1078) T) ((-925 . -1133) T) ((-925 . -746) T) ((-925 . -21) T) ((-925 . -23) T) ((-925 . -1122) T) ((-925 . -630) 127743) ((-925 . -102) T) ((-925 . -25) T) ((-925 . -133) T) ((-925 . -240) T) ((-925 . -341) 127730) ((-925 . -149) 127712) ((-925 . -1059) 127699) ((-925 . -1296) 127686) ((-925 . -1307) 127673) ((-925 . -631) 127655) ((-924 . -1122) T) ((-924 . -630) 127637) ((-924 . -1238) T) ((-924 . -102) T) ((-921 . -923) 127621) ((-921 . -864) 127572) ((-921 . -861) 127523) ((-921 . -746) T) ((-921 . -1122) T) ((-921 . -630) 127505) ((-921 . -102) T) ((-921 . -1133) T) ((-921 . -485) T) ((-921 . -1238) T) ((-921 . -298) 127484) ((-920 . -121) 127468) ((-920 . -501) 127452) ((-920 . -1122) 127430) ((-920 . -526) 127363) ((-920 . -321) 127301) ((-920 . -630) 127212) ((-920 . -102) 127162) ((-920 . -1238) T) ((-920 . -34) T) ((-920 . -1031) 127146) ((-915 . -1122) T) ((-915 . -630) 127128) ((-915 . -1238) T) ((-915 . -102) T) ((-908 . -861) T) ((-908 . -630) 127110) ((-908 . -1122) T) ((-908 . -102) T) ((-908 . -1238) T) ((-908 . -864) T) ((-908 . -1059) 127087) ((-908 . -633) 127064) ((-905 . -1122) T) ((-905 . -630) 127046) ((-905 . -1238) T) ((-905 . -102) T) ((-905 . -1059) 127014) ((-905 . -633) 126982) ((-903 . -1122) T) ((-903 . -630) 126964) ((-903 . -1238) T) ((-903 . -102) T) ((-900 . -1122) T) ((-900 . -630) 126946) ((-900 . -1238) T) ((-900 . -102) T) ((-890 . -1104) T) ((-890 . -502) 126927) ((-890 . -630) 126893) ((-890 . -633) 126874) ((-890 . -1122) T) ((-890 . -1238) T) ((-890 . -102) T) ((-890 . -93) T) ((-890 . -1284) T) ((-888 . -1122) T) ((-888 . -630) 126856) ((-888 . -1238) T) ((-888 . -102) T) ((-887 . -1238) T) ((-887 . -630) 126728) ((-887 . -1122) 126679) ((-887 . -102) 126630) ((-886 . -1012) 126614) ((-886 . -1173) 126592) ((-886 . -1059) 126456) ((-886 . -633) 126354) ((-886 . -631) 126155) ((-886 . -1041) 126133) ((-886 . -929) 126112) ((-886 . -899) 126096) ((-886 . -860) 126075) ((-886 . -819) 126054) ((-886 . -816) 126033) ((-886 . -864) 125984) ((-886 . -861) 125935) ((-886 . -814) 125914) ((-886 . -812) 125893) ((-886 . -842) 125872) ((-886 . -901) 125797) ((-886 . -412) 125781) ((-886 . -658) 125729) ((-886 . -668) 125645) ((-886 . -390) 125629) ((-886 . -298) 125587) ((-886 . -321) 125552) ((-886 . -526) 125464) ((-886 . -351) 125448) ((-886 . -250) T) ((-886 . -111) 125379) ((-886 . -1072) 125331) ((-886 . -1077) 125283) ((-886 . -302) T) ((-886 . -737) 125235) ((-886 . -660) 125187) ((-886 . -666) 125124) ((-886 . -38) 125076) ((-886 . -319) T) ((-886 . -464) T) ((-886 . -175) T) ((-886 . -569) T) ((-886 . -940) T) ((-886 . -1243) T) ((-886 . -376) T) ((-886 . -240) 125055) ((-886 . -236) 125000) ((-886 . -239) 124951) ((-886 . -274) 124935) ((-886 . -911) 124856) ((-886 . -919) 124779) ((-886 . -917) 124738) ((-886 . -234) 124722) ((-886 . -149) 124701) ((-886 . -147) 124680) ((-886 . -133) T) ((-886 . -25) T) ((-886 . -102) T) ((-886 . -1238) T) ((-886 . -630) 124662) ((-886 . -1122) T) ((-886 . -23) T) ((-886 . -21) T) ((-886 . -1070) T) ((-886 . -1078) T) ((-886 . -1133) T) ((-886 . -746) T) ((-885 . -1012) 124639) ((-885 . -1173) NIL) ((-885 . -1059) 124616) ((-885 . -633) 124546) ((-885 . -631) NIL) ((-885 . -1041) NIL) ((-885 . -929) NIL) ((-885 . -899) 124523) ((-885 . -860) NIL) ((-885 . -819) NIL) ((-885 . -816) NIL) ((-885 . -864) NIL) ((-885 . -861) NIL) ((-885 . -814) NIL) ((-885 . -812) NIL) ((-885 . -842) NIL) ((-885 . -901) NIL) ((-885 . -412) 124500) ((-885 . -658) 124477) ((-885 . -668) 124422) ((-885 . -390) 124399) ((-885 . -298) 124329) ((-885 . -321) 124273) ((-885 . -526) 124136) ((-885 . -351) 124113) ((-885 . -250) T) ((-885 . -111) 124030) ((-885 . -1072) 123975) ((-885 . -1077) 123920) ((-885 . -302) T) ((-885 . -737) 123865) ((-885 . -660) 123810) ((-885 . -666) 123740) ((-885 . -38) 123685) ((-885 . -319) T) ((-885 . -464) T) ((-885 . -175) T) ((-885 . -569) T) ((-885 . -940) T) ((-885 . -1243) T) ((-885 . -376) T) ((-885 . -240) NIL) ((-885 . -236) NIL) ((-885 . -239) NIL) ((-885 . -274) 123662) ((-885 . -911) NIL) ((-885 . -919) NIL) ((-885 . -917) NIL) ((-885 . -234) 123639) ((-885 . -149) T) ((-885 . -147) NIL) ((-885 . -133) T) ((-885 . -25) T) ((-885 . -102) T) ((-885 . -1238) T) ((-885 . -630) 123621) ((-885 . -1122) T) ((-885 . -23) T) ((-885 . -21) T) ((-885 . -1070) T) ((-885 . -1078) T) ((-885 . -1133) T) ((-885 . -746) T) ((-883 . -884) 123605) ((-883 . -940) T) ((-883 . -569) T) ((-883 . -302) T) ((-883 . -175) T) ((-883 . -633) 123577) ((-883 . -737) 123564) ((-883 . -660) 123551) ((-883 . -1077) 123538) ((-883 . -1072) 123525) ((-883 . -111) 123510) ((-883 . -38) 123497) ((-883 . -464) T) ((-883 . -319) T) ((-883 . -1070) T) ((-883 . -1078) T) ((-883 . -1133) T) ((-883 . -746) T) ((-883 . -21) T) ((-883 . -666) 123469) ((-883 . -23) T) ((-883 . -1122) T) ((-883 . -630) 123451) ((-883 . -1238) T) ((-883 . -102) T) ((-883 . -25) T) ((-883 . -133) T) ((-883 . -668) 123438) ((-883 . -149) T) ((-880 . -1070) T) ((-880 . -1078) T) ((-880 . -1133) T) ((-880 . -746) T) ((-880 . -21) T) ((-880 . -666) 123383) ((-880 . -23) T) ((-880 . -1122) T) ((-880 . -630) 123345) ((-880 . -1238) T) ((-880 . -102) T) ((-880 . -25) T) ((-880 . -133) T) ((-880 . -668) 123305) ((-880 . -633) 123240) ((-880 . -502) 123217) ((-880 . -38) 123187) ((-880 . -111) 123152) ((-880 . -1072) 123122) ((-880 . -1077) 123092) ((-880 . -660) 123062) ((-880 . -737) 123032) ((-879 . -1122) T) ((-879 . -630) 123014) ((-879 . -1238) T) ((-879 . -102) T) ((-878 . -857) T) ((-878 . -864) T) ((-878 . -861) T) ((-878 . -1122) T) ((-878 . -630) 122996) ((-878 . -1238) T) ((-878 . -102) T) ((-878 . -381) T) ((-878 . -631) 122918) ((-877 . -1122) T) ((-877 . -630) 122900) ((-877 . -1238) T) ((-877 . -102) T) ((-876 . -875) T) ((-876 . -176) T) ((-876 . -630) 122882) ((-872 . -861) T) ((-872 . -630) 122864) ((-872 . -1122) T) ((-872 . -102) T) ((-872 . -1238) T) ((-872 . -864) T) ((-869 . -866) 122848) ((-869 . -1059) 122744) ((-869 . -633) 122641) ((-869 . -424) 122625) ((-869 . -737) 122595) ((-869 . -660) 122565) ((-869 . -668) 122539) ((-869 . -666) 122498) ((-869 . -133) T) ((-869 . -25) T) ((-869 . -102) T) ((-869 . -1238) T) ((-869 . -630) 122480) ((-869 . -1122) T) ((-869 . -23) T) ((-869 . -21) T) ((-869 . -1077) 122464) ((-869 . -1072) 122448) ((-869 . -111) 122427) ((-869 . -1070) T) ((-869 . -1078) T) ((-869 . -1133) T) ((-869 . -746) T) ((-869 . -38) 122397) ((-868 . -866) 122381) ((-868 . -1059) 122277) ((-868 . -633) 122195) ((-868 . -424) 122179) ((-868 . -737) 122149) ((-868 . -660) 122119) ((-868 . -668) 122093) ((-868 . -666) 122052) ((-868 . -133) T) ((-868 . -25) T) ((-868 . -102) T) ((-868 . -1238) T) ((-868 . -630) 122034) ((-868 . -1122) T) ((-868 . -23) T) ((-868 . -21) T) ((-868 . -1077) 122018) ((-868 . -1072) 122002) ((-868 . -111) 121981) ((-868 . -1070) T) ((-868 . -1078) T) ((-868 . -1133) T) ((-868 . -746) T) ((-868 . -38) 121951) ((-862 . -864) T) ((-862 . -1238) T) ((-862 . -102) T) ((-862 . -502) 121935) ((-862 . -630) 121883) ((-862 . -633) 121867) ((-855 . -1122) T) ((-855 . -630) 121849) ((-855 . -1238) T) ((-855 . -102) T) ((-855 . -424) 121833) ((-855 . -633) 121701) ((-855 . -1059) 121597) ((-855 . -21) 121549) ((-855 . -666) 121466) ((-855 . -23) 121418) ((-855 . -25) 121370) ((-855 . -133) 121322) ((-855 . -860) 121301) ((-855 . -668) 121274) ((-855 . -1078) 121253) ((-855 . -1070) 121232) ((-855 . -819) 121211) ((-855 . -816) 121190) ((-855 . -864) 121169) ((-855 . -861) 121148) ((-855 . -814) 121127) ((-855 . -812) 121106) ((-855 . -1133) 121085) ((-855 . -746) 121064) ((-854 . -1122) T) ((-854 . -630) 121046) ((-854 . -1238) T) ((-854 . -102) T) ((-851 . -849) 121028) ((-851 . -102) T) ((-851 . -1238) T) ((-851 . -630) 121010) ((-851 . -1122) T) ((-847 . -1070) T) ((-847 . -1078) T) ((-847 . -1133) T) ((-847 . -746) T) ((-847 . -21) T) ((-847 . -666) 120955) ((-847 . -23) T) ((-847 . -1122) T) ((-847 . -630) 120937) ((-847 . -1238) T) ((-847 . -102) T) ((-847 . -25) T) ((-847 . -133) T) ((-847 . -668) 120897) ((-847 . -633) 120851) ((-847 . -1059) 120820) ((-847 . -298) 120799) ((-847 . -149) 120778) ((-847 . -147) 120757) ((-847 . -38) 120727) ((-847 . -111) 120692) ((-847 . -1072) 120662) ((-847 . -1077) 120632) ((-847 . -660) 120602) ((-847 . -737) 120572) ((-845 . -1122) T) ((-845 . -630) 120554) ((-845 . -1238) T) ((-845 . -102) T) ((-845 . -424) 120538) ((-845 . -633) 120406) ((-845 . -1059) 120302) ((-845 . -21) 120254) ((-845 . -666) 120171) ((-845 . -23) 120123) ((-845 . -25) 120075) ((-845 . -133) 120027) ((-845 . -860) 120006) ((-845 . -668) 119979) ((-845 . -1078) 119958) ((-845 . -1070) 119937) ((-845 . -819) 119916) ((-845 . -816) 119895) ((-845 . -864) 119874) ((-845 . -861) 119853) ((-845 . -814) 119832) ((-845 . -812) 119811) ((-845 . -1133) 119790) ((-845 . -746) 119769) ((-843 . -728) 119753) ((-843 . -633) 119708) ((-843 . -737) 119678) ((-843 . -660) 119648) ((-843 . -668) 119622) ((-843 . -666) 119581) ((-843 . -133) T) ((-843 . -25) T) ((-843 . -102) T) ((-843 . -1238) T) ((-843 . -630) 119563) ((-843 . -1122) T) ((-843 . -23) T) ((-843 . -21) T) ((-843 . -1077) 119547) ((-843 . -1072) 119531) ((-843 . -111) 119510) ((-843 . -1070) T) ((-843 . -1078) T) ((-843 . -1133) T) ((-843 . -746) T) ((-843 . -38) 119480) ((-843 . -240) 119459) ((-843 . -236) 119432) ((-843 . -239) 119411) ((-841 . -399) 119395) ((-841 . -633) 119379) ((-841 . -1059) 119363) ((-841 . -864) T) ((-841 . -861) T) ((-841 . -1133) T) ((-841 . -102) T) ((-841 . -1238) T) ((-841 . -630) 119345) ((-841 . -1122) T) ((-841 . -746) T) ((-841 . -859) T) ((-841 . -871) T) ((-840 . -277) 119329) ((-840 . -633) 119313) ((-840 . -1059) 119297) ((-840 . -864) T) ((-840 . -102) T) ((-840 . -1122) T) ((-840 . -630) 119279) ((-840 . -861) T) ((-840 . -236) 119266) ((-840 . -1238) T) ((-840 . -239) T) ((-839 . -111) 119201) ((-839 . -1072) 119152) ((-839 . -1077) 119103) ((-839 . -21) T) ((-839 . -666) 119039) ((-839 . -23) T) ((-839 . -1122) T) ((-839 . -630) 119008) ((-839 . -1238) T) ((-839 . -102) T) ((-839 . -25) T) ((-839 . -133) T) ((-839 . -668) 118959) ((-839 . -240) T) ((-839 . -633) 118868) ((-839 . -746) T) ((-839 . -1133) T) ((-839 . -1078) T) ((-839 . -1070) T) ((-839 . -236) 118855) ((-839 . -239) T) ((-839 . -502) 118839) ((-839 . -376) 118818) ((-839 . -1243) 118797) ((-839 . -940) 118776) ((-839 . -569) 118755) ((-839 . -175) 118734) ((-839 . -737) 118671) ((-839 . -660) 118608) ((-839 . -38) 118545) ((-839 . -464) 118524) ((-839 . -319) 118503) ((-839 . -302) 118482) ((-839 . -250) 118461) ((-838 . -262) 118400) ((-838 . -633) 118137) ((-838 . -1059) 117965) ((-838 . -631) NIL) ((-838 . -338) 117927) ((-838 . -424) 117911) ((-838 . -38) 117760) ((-838 . -111) 117582) ((-838 . -1072) 117425) ((-838 . -1077) 117268) ((-838 . -666) 117178) ((-838 . -668) 117067) ((-838 . -660) 116916) ((-838 . -737) 116765) ((-838 . -147) 116744) ((-838 . -149) 116723) ((-838 . -175) 116634) ((-838 . -569) 116565) ((-838 . -302) 116496) ((-838 . -47) 116458) ((-838 . -390) 116442) ((-838 . -658) 116390) ((-838 . -464) 116341) ((-838 . -526) 116206) ((-838 . -917) 116142) ((-838 . -911) 116038) ((-838 . -919) 115938) ((-838 . -901) NIL) ((-838 . -929) 115917) ((-838 . -1243) 115896) ((-838 . -969) 115843) ((-838 . -321) 115830) ((-838 . -240) 115809) ((-838 . -133) T) ((-838 . -25) T) ((-838 . -102) T) ((-838 . -630) 115791) ((-838 . -1122) T) ((-838 . -23) T) ((-838 . -21) T) ((-838 . -746) T) ((-838 . -1133) T) ((-838 . -1078) T) ((-838 . -1070) T) ((-838 . -236) 115736) ((-838 . -1238) T) ((-838 . -239) 115687) ((-838 . -274) 115671) ((-838 . -234) 115655) ((-837 . -245) 115634) ((-837 . -1296) 115604) ((-837 . -819) 115583) ((-837 . -816) 115562) ((-837 . -864) 115513) ((-837 . -861) 115464) ((-837 . -814) 115443) ((-837 . -815) 115422) ((-837 . -737) 115364) ((-837 . -660) 115286) ((-837 . -300) 115263) ((-837 . -298) 115240) ((-837 . -501) 115224) ((-837 . -526) 115157) ((-837 . -321) 115095) ((-837 . -34) T) ((-837 . -616) 115072) ((-837 . -1059) 114899) ((-837 . -633) 114697) ((-837 . -424) 114666) ((-837 . -658) 114572) ((-837 . -668) 114405) ((-837 . -390) 114374) ((-837 . -381) 114353) ((-837 . -240) 114305) ((-837 . -666) 114084) ((-837 . -746) 114062) ((-837 . -1133) 114040) ((-837 . -1078) 114018) ((-837 . -1070) 113996) ((-837 . -236) 113887) ((-837 . -239) 113784) ((-837 . -274) 113753) ((-837 . -911) 113620) ((-837 . -919) 113489) ((-837 . -917) 113421) ((-837 . -234) 113390) ((-837 . -630) 113083) ((-837 . -1077) 113004) ((-837 . -1072) 112905) ((-837 . -111) 112821) ((-837 . -133) 112692) ((-837 . -25) 112525) ((-837 . -102) 112257) ((-837 . -1238) T) ((-837 . -1122) 112009) ((-837 . -23) 111861) ((-837 . -21) 111772) ((-830 . -1122) T) ((-830 . -630) 111754) ((-830 . -1238) T) ((-830 . -102) T) ((-820 . -818) 111738) ((-820 . -864) 111717) ((-820 . -861) 111696) ((-820 . -1059) 111476) ((-820 . -633) 111322) ((-820 . -424) 111285) ((-820 . -298) 111243) ((-820 . -321) 111208) ((-820 . -526) 111120) ((-820 . -351) 111104) ((-820 . -381) 111083) ((-820 . -631) 111044) ((-820 . -149) 111023) ((-820 . -147) 111002) ((-820 . -737) 110986) ((-820 . -660) 110970) ((-820 . -668) 110944) ((-820 . -666) 110903) ((-820 . -133) T) ((-820 . -25) T) ((-820 . -102) T) ((-820 . -1238) T) ((-820 . -630) 110885) ((-820 . -1122) T) ((-820 . -23) T) ((-820 . -21) T) ((-820 . -1077) 110869) ((-820 . -1072) 110853) ((-820 . -111) 110832) ((-820 . -1070) T) ((-820 . -1078) T) ((-820 . -1133) T) ((-820 . -746) T) ((-820 . -38) 110816) ((-801 . -1264) 110800) ((-801 . -1173) 110778) ((-801 . -631) NIL) ((-801 . -321) 110765) ((-801 . -526) 110711) ((-801 . -338) 110688) ((-801 . -1059) 110547) ((-801 . -424) 110531) ((-801 . -38) 110360) ((-801 . -111) 110162) ((-801 . -1072) 109985) ((-801 . -1077) 109808) ((-801 . -666) 109718) ((-801 . -668) 109607) ((-801 . -660) 109436) ((-801 . -737) 109265) ((-801 . -633) 109013) ((-801 . -147) 108992) ((-801 . -149) 108971) ((-801 . -47) 108948) ((-801 . -390) 108932) ((-801 . -658) 108880) ((-801 . -917) 108823) ((-801 . -911) 108726) ((-801 . -919) 108633) ((-801 . -901) NIL) ((-801 . -929) 108612) ((-801 . -1243) 108591) ((-801 . -969) 108560) ((-801 . -940) 108539) ((-801 . -569) 108450) ((-801 . -302) 108361) ((-801 . -175) 108252) ((-801 . -464) 108183) ((-801 . -319) 108162) ((-801 . -298) 108089) ((-801 . -240) T) ((-801 . -133) T) ((-801 . -25) T) ((-801 . -102) T) ((-801 . -630) 108050) ((-801 . -1122) T) ((-801 . -23) T) ((-801 . -21) T) ((-801 . -746) T) ((-801 . -1133) T) ((-801 . -1078) T) ((-801 . -1070) T) ((-801 . -236) 108037) ((-801 . -1238) T) ((-801 . -239) T) ((-801 . -274) 108021) ((-801 . -234) 108005) ((-800 . -1086) 107972) ((-800 . -631) 107606) ((-800 . -321) 107593) ((-800 . -526) 107545) ((-800 . -338) 107517) ((-800 . -1059) 107374) ((-800 . -424) 107358) ((-800 . -38) 107207) ((-800 . -633) 106973) ((-800 . -668) 106862) ((-800 . -666) 106772) ((-800 . -746) T) ((-800 . -1133) T) ((-800 . -1078) T) ((-800 . -1070) T) ((-800 . -111) 106594) ((-800 . -1072) 106437) ((-800 . -1077) 106280) ((-800 . -21) T) ((-800 . -23) T) ((-800 . -1122) T) ((-800 . -630) 106194) ((-800 . -1238) T) ((-800 . -102) T) ((-800 . -25) T) ((-800 . -133) T) ((-800 . -660) 106043) ((-800 . -737) 105892) ((-800 . -147) 105871) ((-800 . -149) 105850) ((-800 . -175) 105761) ((-800 . -569) 105692) ((-800 . -302) 105623) ((-800 . -47) 105595) ((-800 . -390) 105579) ((-800 . -658) 105527) ((-800 . -464) 105478) ((-800 . -917) 105462) ((-800 . -911) 105444) ((-800 . -919) 105428) ((-800 . -901) 105287) ((-800 . -929) 105266) ((-800 . -1243) 105245) ((-800 . -969) 105212) ((-793 . -1122) T) ((-793 . -630) 105194) ((-793 . -1238) T) ((-793 . -102) T) ((-791 . -815) T) ((-791 . -133) T) ((-791 . -25) T) ((-791 . -102) T) ((-791 . -1238) T) ((-791 . -630) 105176) ((-791 . -1122) T) ((-791 . -23) T) ((-791 . -814) T) ((-791 . -861) T) ((-791 . -864) T) ((-791 . -816) T) ((-791 . -819) T) ((-791 . -746) T) ((-791 . -1133) T) ((-789 . -1122) T) ((-789 . -630) 105158) ((-789 . -1238) T) ((-789 . -102) T) ((-756 . -757) 105142) ((-756 . -1120) 105126) ((-756 . -242) 105110) ((-756 . -631) 105071) ((-756 . -153) 105055) ((-756 . -501) 105039) ((-756 . -1122) T) ((-756 . -526) 104972) ((-756 . -321) 104910) ((-756 . -630) 104892) ((-756 . -102) T) ((-756 . -1238) T) ((-756 . -34) T) ((-756 . -107) 104876) ((-756 . -715) 104860) ((-755 . -1070) T) ((-755 . -1078) T) ((-755 . -1133) T) ((-755 . -746) T) ((-755 . -21) T) ((-755 . -666) 104805) ((-755 . -23) T) ((-755 . -1122) T) ((-755 . -630) 104787) ((-755 . -1238) T) ((-755 . -102) T) ((-755 . -25) T) ((-755 . -133) T) ((-755 . -668) 104747) ((-755 . -633) 104703) ((-755 . -1059) 104674) ((-755 . -149) 104653) ((-755 . -147) 104632) ((-755 . -38) 104602) ((-755 . -111) 104567) ((-755 . -1072) 104537) ((-755 . -1077) 104507) ((-755 . -660) 104477) ((-755 . -737) 104447) ((-755 . -381) 104400) ((-751 . -969) 104353) ((-751 . -633) 104138) ((-751 . -1059) 104014) ((-751 . -1243) 103993) ((-751 . -929) 103972) ((-751 . -901) NIL) ((-751 . -919) 103949) ((-751 . -911) 103924) ((-751 . -917) 103901) ((-751 . -526) 103839) ((-751 . -464) 103790) ((-751 . -658) 103738) ((-751 . -668) 103627) ((-751 . -390) 103611) ((-751 . -47) 103576) ((-751 . -38) 103425) ((-751 . -660) 103274) ((-751 . -737) 103123) ((-751 . -302) 103054) ((-751 . -569) 102985) ((-751 . -111) 102807) ((-751 . -1072) 102650) ((-751 . -1077) 102493) ((-751 . -175) 102404) ((-751 . -149) 102383) ((-751 . -147) 102362) ((-751 . -666) 102272) ((-751 . -133) T) ((-751 . -25) T) ((-751 . -102) T) ((-751 . -1238) T) ((-751 . -630) 102254) ((-751 . -1122) T) ((-751 . -23) T) ((-751 . -21) T) ((-751 . -1070) T) ((-751 . -1078) T) ((-751 . -1133) T) ((-751 . -746) T) ((-751 . -424) 102238) ((-751 . -338) 102203) ((-751 . -321) 102190) ((-751 . -631) 102051) ((-738 . -485) T) ((-738 . -1133) T) ((-738 . -102) T) ((-738 . -1238) T) ((-738 . -630) 102033) ((-738 . -1122) T) ((-738 . -746) T) ((-735 . -1070) T) ((-735 . -1078) T) ((-735 . -1133) T) ((-735 . -746) T) ((-735 . -21) T) ((-735 . -666) 102005) ((-735 . -23) T) ((-735 . -1122) T) ((-735 . -630) 101987) ((-735 . -1238) T) ((-735 . -102) T) ((-735 . -25) T) ((-735 . -133) T) ((-735 . -668) 101974) ((-735 . -633) 101956) ((-734 . -1070) T) ((-734 . -1078) T) ((-734 . -1133) T) ((-734 . -746) T) ((-734 . -21) T) ((-734 . -666) 101901) ((-734 . -23) T) ((-734 . -1122) T) ((-734 . -630) 101883) ((-734 . -1238) T) ((-734 . -102) T) ((-734 . -25) T) ((-734 . -133) T) ((-734 . -668) 101843) ((-734 . -633) 101797) ((-734 . -1059) 101766) ((-734 . -298) 101745) ((-734 . -149) 101724) ((-734 . -147) 101703) ((-734 . -38) 101673) ((-734 . -111) 101638) ((-734 . -1072) 101608) ((-734 . -1077) 101578) ((-734 . -660) 101548) ((-734 . -737) 101518) ((-733 . -861) T) ((-733 . -630) 101453) ((-733 . -1122) T) ((-733 . -102) T) ((-733 . -1238) T) ((-733 . -864) T) ((-733 . -502) 101403) ((-733 . -633) 101353) ((-732 . -1264) 101337) ((-732 . -1173) 101315) ((-732 . -631) NIL) ((-732 . -321) 101302) ((-732 . -526) 101248) ((-732 . -338) 101225) ((-732 . -1059) 101105) ((-732 . -424) 101089) ((-732 . -38) 100918) ((-732 . -111) 100720) ((-732 . -1072) 100543) ((-732 . -1077) 100366) ((-732 . -666) 100276) ((-732 . -668) 100165) ((-732 . -660) 99994) ((-732 . -737) 99823) ((-732 . -633) 99579) ((-732 . -147) 99558) ((-732 . -149) 99537) ((-732 . -47) 99514) ((-732 . -390) 99498) ((-732 . -658) 99446) ((-732 . -917) 99389) ((-732 . -911) 99292) ((-732 . -919) 99199) ((-732 . -901) NIL) ((-732 . -929) 99178) ((-732 . -1243) 99157) ((-732 . -969) 99126) ((-732 . -940) 99105) ((-732 . -569) 99016) ((-732 . -302) 98927) ((-732 . -175) 98818) ((-732 . -464) 98749) ((-732 . -319) 98728) ((-732 . -298) 98655) ((-732 . -240) T) ((-732 . -133) T) ((-732 . -25) T) ((-732 . -102) T) ((-732 . -630) 98637) ((-732 . -1122) T) ((-732 . -23) T) ((-732 . -21) T) ((-732 . -746) T) ((-732 . -1133) T) ((-732 . -1078) T) ((-732 . -1070) T) ((-732 . -236) 98624) ((-732 . -1238) T) ((-732 . -239) T) ((-732 . -274) 98608) ((-732 . -234) 98592) ((-732 . -381) 98571) ((-731 . -376) T) ((-731 . -1243) T) ((-731 . -940) T) ((-731 . -569) T) ((-731 . -175) T) ((-731 . -633) 98521) ((-731 . -737) 98486) ((-731 . -660) 98451) ((-731 . -38) 98416) ((-731 . -464) T) ((-731 . -319) T) ((-731 . -668) 98381) ((-731 . -666) 98331) ((-731 . -746) T) ((-731 . -1133) T) ((-731 . -1078) T) ((-731 . -1070) T) ((-731 . -111) 98280) ((-731 . -1072) 98245) ((-731 . -1077) 98210) ((-731 . -21) T) ((-731 . -23) T) ((-731 . -1122) T) ((-731 . -630) 98192) ((-731 . -1238) T) ((-731 . -102) T) ((-731 . -25) T) ((-731 . -133) T) ((-731 . -302) T) ((-731 . -250) T) ((-730 . -1122) T) ((-730 . -630) 98174) ((-730 . -1238) T) ((-730 . -102) T) ((-721 . -401) T) ((-721 . -1059) 98156) ((-721 . -864) T) ((-721 . -861) T) ((-721 . -38) 98143) ((-721 . -633) 98115) ((-721 . -746) T) ((-721 . -1133) T) ((-721 . -1078) T) ((-721 . -1070) T) ((-721 . -111) 98100) ((-721 . -1072) 98087) ((-721 . -1077) 98074) ((-721 . -21) T) ((-721 . -666) 98046) ((-721 . -23) T) ((-721 . -1122) T) ((-721 . -630) 98028) ((-721 . -1238) T) ((-721 . -102) T) ((-721 . -25) T) ((-721 . -133) T) ((-721 . -668) 98000) ((-721 . -660) 97987) ((-721 . -737) 97974) ((-721 . -175) T) ((-721 . -302) T) ((-721 . -569) T) ((-721 . -557) T) ((-721 . -1243) T) ((-721 . -1173) T) ((-721 . -631) 97889) ((-721 . -1041) T) ((-721 . -901) 97871) ((-721 . -860) T) ((-721 . -819) T) ((-721 . -816) T) ((-721 . -814) T) ((-721 . -812) T) ((-721 . -842) T) ((-721 . -658) 97853) ((-721 . -940) T) ((-721 . -464) T) ((-721 . -319) T) ((-721 . -239) T) ((-721 . -236) 97840) ((-721 . -240) T) ((-721 . -145) T) ((-721 . -149) T) ((-719 . -416) T) ((-719 . -149) T) ((-719 . -633) 97775) ((-719 . -668) 97740) ((-719 . -666) 97690) ((-719 . -133) T) ((-719 . -25) T) ((-719 . -102) T) ((-719 . -1238) T) ((-719 . -630) 97672) ((-719 . -1122) T) ((-719 . -23) T) ((-719 . -21) T) ((-719 . -746) T) ((-719 . -1133) T) ((-719 . -1078) T) ((-719 . -1070) T) ((-719 . -631) 97617) ((-719 . -376) T) ((-719 . -1243) T) ((-719 . -940) T) ((-719 . -569) T) ((-719 . -175) T) ((-719 . -737) 97582) ((-719 . -660) 97547) ((-719 . -38) 97512) ((-719 . -464) T) ((-719 . -319) T) ((-719 . -111) 97461) ((-719 . -1072) 97426) ((-719 . -1077) 97391) ((-719 . -302) T) ((-719 . -250) T) ((-719 . -860) T) ((-719 . -819) T) ((-719 . -816) T) ((-719 . -864) T) ((-719 . -861) T) ((-719 . -814) T) ((-719 . -812) T) ((-719 . -901) 97373) ((-719 . -1023) T) ((-719 . -1041) T) ((-719 . -1059) 97318) ((-719 . -1081) T) ((-719 . -401) T) ((-714 . -401) T) ((-714 . -1059) 97263) ((-714 . -864) T) ((-714 . -861) T) ((-714 . -38) 97213) ((-714 . -633) 97148) ((-714 . -746) T) ((-714 . -1133) T) ((-714 . -1078) T) ((-714 . -1070) T) ((-714 . -111) 97075) ((-714 . -1072) 97025) ((-714 . -1077) 96975) ((-714 . -21) T) ((-714 . -666) 96910) ((-714 . -23) T) ((-714 . -1122) T) ((-714 . -630) 96892) ((-714 . -1238) T) ((-714 . -102) T) ((-714 . -25) T) ((-714 . -133) T) ((-714 . -668) 96842) ((-714 . -660) 96792) ((-714 . -737) 96742) ((-714 . -175) T) ((-714 . -302) T) ((-714 . -569) T) ((-714 . -168) 96724) ((-714 . -35) NIL) ((-714 . -95) NIL) ((-714 . -296) NIL) ((-714 . -505) NIL) ((-714 . -1227) NIL) ((-714 . -1224) NIL) ((-714 . -1023) NIL) ((-714 . -929) NIL) ((-714 . -631) 96632) ((-714 . -899) 96614) ((-714 . -381) NIL) ((-714 . -363) NIL) ((-714 . -1173) NIL) ((-714 . -414) NIL) ((-714 . -422) 96581) ((-714 . -383) 96548) ((-714 . -744) 96515) ((-714 . -424) 96497) ((-714 . -901) 96479) ((-714 . -412) 96461) ((-714 . -658) 96443) ((-714 . -390) 96425) ((-714 . -298) NIL) ((-714 . -321) NIL) ((-714 . -526) NIL) ((-714 . -351) 96407) ((-714 . -250) T) ((-714 . -1243) T) ((-714 . -376) T) ((-714 . -940) T) ((-714 . -464) T) ((-714 . -319) T) ((-714 . -240) NIL) ((-714 . -236) NIL) ((-714 . -239) NIL) ((-714 . -274) 96389) ((-714 . -911) NIL) ((-714 . -919) NIL) ((-714 . -917) NIL) ((-714 . -234) 96371) ((-714 . -149) T) ((-714 . -147) NIL) ((-711 . -1284) T) ((-711 . -1059) 96355) ((-711 . -633) 96339) ((-711 . -630) 96321) ((-709 . -706) 96279) ((-709 . -501) 96263) ((-709 . -1122) 96241) ((-709 . -526) 96174) ((-709 . -321) 96112) ((-709 . -630) 96044) ((-709 . -102) 95994) ((-709 . -1238) T) ((-709 . -34) T) ((-709 . -57) 95952) ((-709 . -631) 95913) ((-701 . -1104) T) ((-701 . -502) 95894) ((-701 . -630) 95844) ((-701 . -633) 95825) ((-701 . -1122) T) ((-701 . -1238) T) ((-701 . -102) T) ((-701 . -93) T) ((-697 . -861) T) ((-697 . -630) 95807) ((-697 . -1122) T) ((-697 . -102) T) ((-697 . -1238) T) ((-697 . -864) T) ((-697 . -1059) 95791) ((-697 . -633) 95775) ((-696 . -1104) T) ((-696 . -502) 95756) ((-696 . -630) 95722) ((-696 . -633) 95703) ((-696 . -1122) T) ((-696 . -1238) T) ((-696 . -102) T) ((-696 . -93) T) ((-695 . -501) 95687) ((-695 . -1122) 95665) ((-695 . -526) 95598) ((-695 . -321) 95536) ((-695 . -630) 95468) ((-695 . -102) 95418) ((-695 . -1238) T) ((-695 . -34) T) ((-692 . -861) T) ((-692 . -630) 95400) ((-692 . -1122) T) ((-692 . -102) T) ((-692 . -1238) T) ((-692 . -864) T) ((-692 . -1059) 95384) ((-692 . -633) 95368) ((-691 . -1104) T) ((-691 . -502) 95349) ((-691 . -630) 95315) ((-691 . -633) 95296) ((-691 . -1122) T) ((-691 . -1238) T) ((-691 . -102) T) ((-691 . -93) T) ((-690 . -1144) 95241) ((-690 . -501) 95225) ((-690 . -526) 95158) ((-690 . -321) 95096) ((-690 . -34) T) ((-690 . -1074) 95036) ((-690 . -1059) 94932) ((-690 . -633) 94850) ((-690 . -424) 94834) ((-690 . -658) 94782) ((-690 . -668) 94720) ((-690 . -390) 94704) ((-690 . -240) 94683) ((-690 . -236) 94628) ((-690 . -239) 94579) ((-690 . -274) 94563) ((-690 . -911) 94484) ((-690 . -919) 94407) ((-690 . -917) 94366) ((-690 . -234) 94350) ((-690 . -737) 94334) ((-690 . -660) 94318) ((-690 . -666) 94277) ((-690 . -133) T) ((-690 . -25) T) ((-690 . -102) T) ((-690 . -1238) T) ((-690 . -630) 94239) ((-690 . -1122) T) ((-690 . -23) T) ((-690 . -21) T) ((-690 . -1077) 94223) ((-690 . -1072) 94207) ((-690 . -111) 94186) ((-690 . -1070) T) ((-690 . -1078) T) ((-690 . -1133) T) ((-690 . -746) T) ((-690 . -38) 94146) ((-690 . -430) 94130) ((-690 . -764) 94114) ((-690 . -740) T) ((-690 . -781) T) ((-690 . -380) 94098) ((-690 . -298) 94075) ((-684 . -387) 94054) ((-684 . -737) 94038) ((-684 . -660) 94022) ((-684 . -668) 94006) ((-684 . -666) 93975) ((-684 . -133) T) ((-684 . -25) T) ((-684 . -102) T) ((-684 . -1238) T) ((-684 . -630) 93957) ((-684 . -1122) T) ((-684 . -23) T) ((-684 . -21) T) ((-684 . -1077) 93941) ((-684 . -1072) 93925) ((-684 . -111) 93904) ((-684 . -652) 93888) ((-684 . -397) 93860) ((-684 . -633) 93837) ((-684 . -1059) 93814) ((-676 . -678) 93798) ((-676 . -38) 93768) ((-676 . -633) 93686) ((-676 . -668) 93660) ((-676 . -666) 93619) ((-676 . -746) T) ((-676 . -1133) T) ((-676 . -1078) T) ((-676 . -1070) T) ((-676 . -111) 93598) ((-676 . -1072) 93582) ((-676 . -1077) 93566) ((-676 . -21) T) ((-676 . -23) T) ((-676 . -1122) T) ((-676 . -630) 93548) ((-676 . -102) T) ((-676 . -25) T) ((-676 . -133) T) ((-676 . -660) 93518) ((-676 . -737) 93488) ((-676 . -424) 93472) ((-676 . -1059) 93368) ((-676 . -866) 93352) ((-676 . -1238) T) ((-676 . -298) 93313) ((-675 . -678) 93297) ((-675 . -38) 93267) ((-675 . -633) 93185) ((-675 . -668) 93159) ((-675 . -666) 93118) ((-675 . -746) T) ((-675 . -1133) T) ((-675 . -1078) T) ((-675 . -1070) T) ((-675 . -111) 93097) ((-675 . -1072) 93081) ((-675 . -1077) 93065) ((-675 . -21) T) ((-675 . -23) T) ((-675 . -1122) T) ((-675 . -630) 93047) ((-675 . -102) T) ((-675 . -25) T) ((-675 . -133) T) ((-675 . -660) 93017) ((-675 . -737) 92987) ((-675 . -424) 92971) ((-675 . -1059) 92867) ((-675 . -866) 92851) ((-675 . -1238) T) ((-675 . -298) 92830) ((-674 . -678) 92814) ((-674 . -38) 92784) ((-674 . -633) 92702) ((-674 . -668) 92676) ((-674 . -666) 92635) ((-674 . -746) T) ((-674 . -1133) T) ((-674 . -1078) T) ((-674 . -1070) T) ((-674 . -111) 92614) ((-674 . -1072) 92598) ((-674 . -1077) 92582) ((-674 . -21) T) ((-674 . -23) T) ((-674 . -1122) T) ((-674 . -630) 92564) ((-674 . -102) T) ((-674 . -25) T) ((-674 . -133) T) ((-674 . -660) 92534) ((-674 . -737) 92504) ((-674 . -424) 92488) ((-674 . -1059) 92384) ((-674 . -866) 92368) ((-674 . -1238) T) ((-674 . -298) 92347) ((-672 . -737) 92331) ((-672 . -660) 92315) ((-672 . -668) 92299) ((-672 . -666) 92268) ((-672 . -133) T) ((-672 . -25) T) ((-672 . -102) T) ((-672 . -1238) T) ((-672 . -630) 92250) ((-672 . -1122) T) ((-672 . -23) T) ((-672 . -21) T) ((-672 . -1077) 92234) ((-672 . -1072) 92218) ((-672 . -111) 92197) ((-672 . -812) 92176) ((-672 . -814) 92155) ((-672 . -861) 92134) ((-672 . -864) 92113) ((-672 . -816) 92092) ((-672 . -819) 92071) ((-669 . -1122) T) ((-669 . -630) 92053) ((-669 . -1238) T) ((-669 . -102) T) ((-669 . -1059) 92037) ((-669 . -633) 92021) ((-667 . -715) 92005) ((-667 . -107) 91989) ((-667 . -34) T) ((-667 . -1238) T) ((-667 . -102) 91939) ((-667 . -630) 91871) ((-667 . -321) 91809) ((-667 . -526) 91742) ((-667 . -1122) 91720) ((-667 . -501) 91704) ((-667 . -153) 91688) ((-667 . -631) 91649) ((-667 . -242) 91633) ((-665 . -1104) T) ((-665 . -502) 91614) ((-665 . -630) 91567) ((-665 . -633) 91548) ((-665 . -1122) T) ((-665 . -1238) T) ((-665 . -102) T) ((-665 . -93) T) ((-661 . -686) 91532) ((-661 . -1277) 91516) ((-661 . -1031) 91500) ((-661 . -1171) 91484) ((-661 . -861) 91463) ((-661 . -864) 91442) ((-661 . -385) 91426) ((-661 . -671) 91410) ((-661 . -300) 91387) ((-661 . -298) 91339) ((-661 . -616) 91316) ((-661 . -631) 91277) ((-661 . -501) 91261) ((-661 . -1122) 91211) ((-661 . -526) 91144) ((-661 . -321) 91082) ((-661 . -630) 90994) ((-661 . -102) 90924) ((-661 . -1238) T) ((-661 . -34) T) ((-661 . -153) 90908) ((-661 . -294) 90892) ((-659 . -1296) 90876) ((-659 . -111) 90855) ((-659 . -1072) 90839) ((-659 . -1077) 90823) ((-659 . -21) T) ((-659 . -666) 90792) ((-659 . -23) T) ((-659 . -1122) T) ((-659 . -630) 90774) ((-659 . -1238) T) ((-659 . -102) T) ((-659 . -25) T) ((-659 . -133) T) ((-659 . -668) 90758) ((-659 . -660) 90742) ((-659 . -737) 90726) ((-659 . -298) 90693) ((-657 . -1296) 90677) ((-657 . -111) 90656) ((-657 . -1072) 90640) ((-657 . -1077) 90624) ((-657 . -21) T) ((-657 . -666) 90593) ((-657 . -23) T) ((-657 . -1122) T) ((-657 . -630) 90575) ((-657 . -1238) T) ((-657 . -102) T) ((-657 . -25) T) ((-657 . -133) T) ((-657 . -668) 90559) ((-657 . -660) 90543) ((-657 . -737) 90527) ((-657 . -633) 90504) ((-657 . -521) 90476) ((-655 . -857) T) ((-655 . -864) T) ((-655 . -861) T) ((-655 . -1122) T) ((-655 . -630) 90458) ((-655 . -1238) T) ((-655 . -102) T) ((-655 . -381) T) ((-655 . -633) 90435) ((-650 . -764) 90419) ((-650 . -740) T) ((-650 . -781) T) ((-650 . -111) 90398) ((-650 . -1072) 90382) ((-650 . -1077) 90366) ((-650 . -21) T) ((-650 . -666) 90335) ((-650 . -23) T) ((-650 . -1122) T) ((-650 . -630) 90304) ((-650 . -1238) T) ((-650 . -102) T) ((-650 . -25) T) ((-650 . -133) T) ((-650 . -668) 90288) ((-650 . -660) 90272) ((-650 . -737) 90256) ((-650 . -430) 90221) ((-650 . -380) 90153) ((-650 . -298) 90111) ((-649 . -1215) 90086) ((-649 . -233) 90032) ((-649 . -107) 89978) ((-649 . -321) 89829) ((-649 . -526) 89637) ((-649 . -501) 89569) ((-649 . -153) 89515) ((-649 . -631) NIL) ((-649 . -242) 89461) ((-649 . -627) 89436) ((-649 . -300) 89411) ((-649 . -1238) T) ((-649 . -298) 89364) ((-649 . -1122) T) ((-649 . -630) 89346) ((-649 . -102) T) ((-649 . -34) T) ((-649 . -616) 89321) ((-644 . -485) T) ((-644 . -1133) T) ((-644 . -102) T) ((-644 . -1238) T) ((-644 . -630) 89303) ((-644 . -1122) T) ((-644 . -746) T) ((-643 . -1104) T) ((-643 . -502) 89284) ((-643 . -630) 89250) ((-643 . -633) 89231) ((-643 . -1122) T) ((-643 . -1238) T) ((-643 . -102) T) ((-643 . -93) T) ((-640 . -234) 89215) ((-640 . -917) 89174) ((-640 . -919) 89097) ((-640 . -911) 89018) ((-640 . -274) 89002) ((-640 . -239) 88953) ((-640 . -1238) T) ((-640 . -236) 88898) ((-640 . -1070) T) ((-640 . -1078) T) ((-640 . -1133) T) ((-640 . -746) T) ((-640 . -21) T) ((-640 . -666) 88870) ((-640 . -23) T) ((-640 . -1122) T) ((-640 . -630) 88852) ((-640 . -102) T) ((-640 . -25) T) ((-640 . -133) T) ((-640 . -668) 88839) ((-640 . -633) 88734) ((-640 . -240) 88713) ((-640 . -569) T) ((-640 . -302) T) ((-640 . -175) T) ((-640 . -737) 88700) ((-640 . -660) 88687) ((-640 . -1077) 88674) ((-640 . -1072) 88661) ((-640 . -111) 88646) ((-640 . -38) 88633) ((-640 . -631) 88610) ((-640 . -424) 88594) ((-640 . -1059) 88477) ((-640 . -149) 88456) ((-640 . -147) 88435) ((-640 . -319) 88414) ((-640 . -464) 88393) ((-640 . -940) 88372) ((-636 . -38) 88356) ((-636 . -633) 88325) ((-636 . -668) 88299) ((-636 . -666) 88258) ((-636 . -746) T) ((-636 . -1133) T) ((-636 . -1078) T) ((-636 . -1070) T) ((-636 . -111) 88237) ((-636 . -1072) 88221) ((-636 . -1077) 88205) ((-636 . -21) T) ((-636 . -23) T) ((-636 . -1122) T) ((-636 . -630) 88187) ((-636 . -1238) T) ((-636 . -102) T) ((-636 . -25) T) ((-636 . -133) T) ((-636 . -660) 88171) ((-636 . -737) 88155) ((-636 . -860) 88134) ((-636 . -819) 88113) ((-636 . -816) 88092) ((-636 . -864) 88071) ((-636 . -861) 88050) ((-636 . -814) 88029) ((-636 . -812) 88008) ((-634 . -988) T) ((-634 . -102) T) ((-634 . -630) 87990) ((-634 . -1122) T) ((-634 . -682) T) ((-634 . -1238) T) ((-634 . -113) T) ((-628 . -134) T) ((-628 . -102) T) ((-628 . -1238) T) ((-628 . -630) 87972) ((-628 . -1122) T) ((-628 . -861) T) ((-628 . -864) T) ((-628 . -899) 87956) ((-628 . -631) 87817) ((-625 . -378) 87757) ((-625 . -102) T) ((-625 . -1238) T) ((-625 . -630) 87739) ((-625 . -1122) T) ((-625 . -1215) 87715) ((-625 . -233) 87662) ((-625 . -107) 87609) ((-625 . -321) 87404) ((-625 . -526) 87152) ((-625 . -501) 87086) ((-625 . -153) 87033) ((-625 . -631) NIL) ((-625 . -242) 86980) ((-625 . -627) 86956) ((-625 . -300) 86932) ((-625 . -298) 86908) ((-625 . -34) T) ((-625 . -616) 86884) ((-624 . -1122) T) ((-624 . -630) 86836) ((-624 . -1238) T) ((-624 . -102) T) ((-624 . -502) 86803) ((-624 . -633) 86770) ((-623 . -1122) T) ((-623 . -630) 86752) ((-623 . -1238) T) ((-623 . -102) T) ((-623 . -682) T) ((-622 . -1122) T) ((-622 . -630) 86734) ((-622 . -1238) T) ((-622 . -102) T) ((-622 . -682) T) ((-621 . -1122) T) ((-621 . -630) 86701) ((-621 . -1238) T) ((-621 . -102) T) ((-620 . -1122) T) ((-620 . -630) 86683) ((-620 . -1238) T) ((-620 . -102) T) ((-620 . -682) T) ((-619 . -1122) T) ((-619 . -630) 86650) ((-619 . -1238) T) ((-619 . -102) T) ((-619 . -502) 86632) ((-619 . -633) 86614) ((-618 . -764) 86598) ((-618 . -740) T) ((-618 . -781) T) ((-618 . -111) 86577) ((-618 . -1072) 86561) ((-618 . -1077) 86545) ((-618 . -21) T) ((-618 . -666) 86514) ((-618 . -23) T) ((-618 . -1122) T) ((-618 . -630) 86483) ((-618 . -1238) T) ((-618 . -102) T) ((-618 . -25) T) ((-618 . -133) T) ((-618 . -668) 86467) ((-618 . -660) 86451) ((-618 . -737) 86435) ((-618 . -430) 86400) ((-618 . -380) 86332) ((-618 . -298) 86290) ((-617 . -1104) T) ((-617 . -502) 86271) ((-617 . -630) 86221) ((-617 . -633) 86202) ((-617 . -1122) T) ((-617 . -1238) T) ((-617 . -102) T) ((-617 . -93) T) ((-614 . -1287) 86186) ((-614 . -385) 86170) ((-614 . -864) 86149) ((-614 . -861) 86128) ((-614 . -153) 86112) ((-614 . -34) T) ((-614 . -1238) T) ((-614 . -102) 86042) ((-614 . -630) 85954) ((-614 . -321) 85892) ((-614 . -526) 85825) ((-614 . -1122) 85775) ((-614 . -501) 85759) ((-614 . -631) 85720) ((-614 . -298) 85672) ((-614 . -616) 85649) ((-614 . -300) 85626) ((-614 . -671) 85610) ((-614 . -19) 85594) ((-613 . -630) 85576) ((-609 . -1122) T) ((-609 . -630) 85542) ((-609 . -1238) T) ((-609 . -102) T) ((-609 . -502) 85523) ((-609 . -633) 85504) ((-608 . -1070) T) ((-608 . -1078) T) ((-608 . -1133) T) ((-608 . -746) T) ((-608 . -21) T) ((-608 . -666) 85463) ((-608 . -23) T) ((-608 . -1122) T) ((-608 . -630) 85445) ((-608 . -1238) T) ((-608 . -102) T) ((-608 . -25) T) ((-608 . -133) T) ((-608 . -668) 85419) ((-608 . -633) 85377) ((-608 . -111) 85330) ((-608 . -1072) 85290) ((-608 . -1077) 85250) ((-608 . -569) 85229) ((-608 . -302) 85208) ((-608 . -175) 85187) ((-608 . -737) 85160) ((-608 . -660) 85133) ((-608 . -38) 85106) ((-607 . -1267) 85083) ((-607 . -47) 85060) ((-607 . -38) 84957) ((-607 . -660) 84854) ((-607 . -737) 84751) ((-607 . -633) 84633) ((-607 . -302) 84612) ((-607 . -569) 84591) ((-607 . -111) 84453) ((-607 . -1072) 84336) ((-607 . -1077) 84219) ((-607 . -175) 84170) ((-607 . -149) 84149) ((-607 . -147) 84128) ((-607 . -668) 84053) ((-607 . -666) 83963) ((-607 . -994) 83932) ((-607 . -919) 83845) ((-607 . -911) 83756) ((-607 . -917) 83669) ((-607 . -298) 83634) ((-607 . -239) 83593) ((-607 . -1238) T) ((-607 . -236) 83546) ((-607 . -1070) T) ((-607 . -1078) T) ((-607 . -1133) T) ((-607 . -746) T) ((-607 . -21) T) ((-607 . -23) T) ((-607 . -1122) T) ((-607 . -630) 83528) ((-607 . -102) T) ((-607 . -25) T) ((-607 . -133) T) ((-607 . -240) 83487) ((-605 . -1165) T) ((-605 . -385) 83469) ((-605 . -864) T) ((-605 . -861) T) ((-605 . -153) 83451) ((-605 . -34) T) ((-605 . -1238) T) ((-605 . -102) T) ((-605 . -630) 83433) ((-605 . -321) NIL) ((-605 . -526) NIL) ((-605 . -1122) T) ((-605 . -501) 83415) ((-605 . -631) NIL) ((-605 . -298) 83365) ((-605 . -616) 83340) ((-605 . -300) 83315) ((-605 . -671) 83297) ((-605 . -19) 83279) ((-604 . -1104) T) ((-604 . -502) 83260) ((-604 . -630) 83226) ((-604 . -633) 83207) ((-604 . -1122) T) ((-604 . -1238) T) ((-604 . -102) T) ((-604 . -93) T) ((-598 . -1122) T) ((-598 . -630) 83173) ((-598 . -1238) T) ((-598 . -102) T) ((-598 . -502) 83154) ((-598 . -633) 83135) ((-595 . -737) 83110) ((-595 . -660) 83085) ((-595 . -668) 83060) ((-595 . -666) 83020) ((-595 . -133) T) ((-595 . -25) T) ((-595 . -102) T) ((-595 . -1238) T) ((-595 . -630) 83002) ((-595 . -1122) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -1077) 82977) ((-595 . -1072) 82952) ((-595 . -111) 82913) ((-595 . -1059) 82897) ((-595 . -633) 82881) ((-593 . -363) T) ((-593 . -1173) T) ((-593 . -381) T) ((-593 . -147) T) ((-593 . -376) T) ((-593 . -1243) T) ((-593 . -940) T) ((-593 . -569) T) ((-593 . -175) T) ((-593 . -633) 82831) ((-593 . -737) 82796) ((-593 . -660) 82761) ((-593 . -38) 82726) ((-593 . -464) T) ((-593 . -319) T) ((-593 . -111) 82675) ((-593 . -1072) 82640) ((-593 . -1077) 82605) ((-593 . -666) 82555) ((-593 . -668) 82520) ((-593 . -302) T) ((-593 . -250) T) ((-593 . -414) T) ((-593 . -239) T) ((-593 . -1238) T) ((-593 . -236) 82507) ((-593 . -1070) T) ((-593 . -1078) T) ((-593 . -1133) T) ((-593 . -746) T) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1122) T) ((-593 . -630) 82489) ((-593 . -102) T) ((-593 . -25) T) ((-593 . -133) T) ((-593 . -240) T) ((-593 . -341) 82476) ((-593 . -149) 82458) ((-593 . -1059) 82445) ((-593 . -1296) 82432) ((-593 . -1307) 82419) ((-593 . -631) 82401) ((-592 . -884) 82385) ((-592 . -940) T) ((-592 . -569) T) ((-592 . -302) T) ((-592 . -175) T) ((-592 . -633) 82357) ((-592 . -737) 82344) ((-592 . -660) 82331) ((-592 . -1077) 82318) ((-592 . -1072) 82305) ((-592 . -111) 82290) ((-592 . -38) 82277) ((-592 . -464) T) ((-592 . -319) T) ((-592 . -1070) T) ((-592 . -1078) T) ((-592 . -1133) T) ((-592 . -746) T) ((-592 . -21) T) ((-592 . -666) 82249) ((-592 . -23) T) ((-592 . -1122) T) ((-592 . -630) 82231) ((-592 . -1238) T) ((-592 . -102) T) ((-592 . -25) T) ((-592 . -133) T) ((-592 . -668) 82218) ((-592 . -149) T) ((-591 . -1122) T) ((-591 . -630) 82200) ((-591 . -1238) T) ((-591 . -102) T) ((-590 . -1122) T) ((-590 . -630) 82182) ((-590 . -1238) T) ((-590 . -102) T) ((-589 . -588) T) ((-589 . -875) T) ((-589 . -176) T) ((-589 . -539) T) ((-589 . -630) 82164) ((-583 . -567) 82148) ((-583 . -35) T) ((-583 . -95) T) ((-583 . -296) T) ((-583 . -505) T) ((-583 . -1227) T) ((-583 . -1224) T) ((-583 . -1059) 82130) ((-583 . -1023) T) ((-583 . -864) T) ((-583 . -861) T) ((-583 . -569) T) ((-583 . -302) T) ((-583 . -175) T) ((-583 . -633) 82102) ((-583 . -737) 82089) ((-583 . -660) 82076) ((-583 . -668) 82063) ((-583 . -666) 82035) ((-583 . -133) T) ((-583 . -25) T) ((-583 . -102) T) ((-583 . -1238) T) ((-583 . -630) 82017) ((-583 . -1122) T) ((-583 . -23) T) ((-583 . -21) T) ((-583 . -1077) 82004) ((-583 . -1072) 81991) ((-583 . -111) 81976) ((-583 . -1070) T) ((-583 . -1078) T) ((-583 . -1133) T) ((-583 . -746) T) ((-583 . -38) 81963) ((-583 . -464) T) ((-563 . -1215) 81942) ((-563 . -233) 81892) ((-563 . -107) 81842) ((-563 . -321) 81646) ((-563 . -526) 81406) ((-563 . -501) 81343) ((-563 . -153) 81293) ((-563 . -631) NIL) ((-563 . -242) 81243) ((-563 . -627) 81222) ((-563 . -300) 81201) ((-563 . -1238) T) ((-563 . -298) 81180) ((-563 . -1122) T) ((-563 . -630) 81162) ((-563 . -102) T) ((-563 . -34) T) ((-563 . -616) 81141) ((-562 . -857) T) ((-562 . -864) T) ((-562 . -861) T) ((-562 . -1122) T) ((-562 . -630) 81123) ((-562 . -1238) T) ((-562 . -102) T) ((-562 . -381) T) ((-561 . -857) T) ((-561 . -864) T) ((-561 . -861) T) ((-561 . -1122) T) ((-561 . -630) 81105) ((-561 . -1238) T) ((-561 . -102) T) ((-561 . -381) T) ((-560 . -857) T) ((-560 . -864) T) ((-560 . -861) T) ((-560 . -1122) T) ((-560 . -630) 81087) ((-560 . -1238) T) ((-560 . -102) T) ((-560 . -381) T) ((-559 . -857) T) ((-559 . -864) T) ((-559 . -861) T) ((-559 . -1122) T) ((-559 . -630) 81069) ((-559 . -1238) T) ((-559 . -102) T) ((-559 . -381) T) ((-558 . -557) T) ((-558 . -1243) T) ((-558 . -1173) T) ((-558 . -1059) 81051) ((-558 . -631) 80966) ((-558 . -1041) T) ((-558 . -901) 80948) ((-558 . -860) T) ((-558 . -819) T) ((-558 . -816) T) ((-558 . -864) T) ((-558 . -861) T) ((-558 . -814) T) ((-558 . -812) T) ((-558 . -842) T) ((-558 . -668) 80920) ((-558 . -658) 80902) ((-558 . -940) T) ((-558 . -569) T) ((-558 . -302) T) ((-558 . -175) T) ((-558 . -633) 80874) ((-558 . -737) 80861) ((-558 . -660) 80848) ((-558 . -1077) 80835) ((-558 . -1072) 80822) ((-558 . -111) 80807) ((-558 . -38) 80794) ((-558 . -464) T) ((-558 . -319) T) ((-558 . -239) T) ((-558 . -236) 80781) ((-558 . -240) T) ((-558 . -145) T) ((-558 . -1070) T) ((-558 . -1078) T) ((-558 . -1133) T) ((-558 . -746) T) ((-558 . -21) T) ((-558 . -666) 80753) ((-558 . -23) T) ((-558 . -1122) T) ((-558 . -630) 80735) ((-558 . -1238) T) ((-558 . -102) T) ((-558 . -25) T) ((-558 . -133) T) ((-558 . -149) T) ((-547 . -1125) 80687) ((-547 . -102) T) ((-547 . -630) 80669) ((-547 . -1122) T) ((-547 . -298) 80625) ((-547 . -1238) T) ((-547 . -635) 80528) ((-547 . -631) 80509) ((-545 . -787) 80491) ((-545 . -539) T) ((-545 . -176) T) ((-545 . -875) T) ((-545 . -588) T) ((-545 . -630) 80473) ((-543 . -815) T) ((-543 . -133) T) ((-543 . -25) T) ((-543 . -102) T) ((-543 . -1238) T) ((-543 . -630) 80455) ((-543 . -1122) T) ((-543 . -23) T) ((-543 . -814) T) ((-543 . -861) T) ((-543 . -864) T) ((-543 . -816) T) ((-543 . -819) T) ((-543 . -521) 80432) ((-541 . -539) T) ((-541 . -176) T) ((-541 . -630) 80414) ((-537 . -1104) T) ((-537 . -502) 80395) ((-537 . -630) 80361) ((-537 . -633) 80342) ((-537 . -1122) T) ((-537 . -1238) T) ((-537 . -102) T) ((-537 . -93) T) ((-536 . -1104) T) ((-536 . -502) 80323) ((-536 . -630) 80289) ((-536 . -633) 80270) ((-536 . -1122) T) ((-536 . -1238) T) ((-536 . -102) T) ((-536 . -93) T) ((-535 . -706) 80220) ((-535 . -501) 80204) ((-535 . -1122) 80182) ((-535 . -526) 80115) ((-535 . -321) 80053) ((-535 . -630) 79985) ((-535 . -102) 79935) ((-535 . -1238) T) ((-535 . -34) T) ((-535 . -57) 79885) ((-532 . -686) 79869) ((-532 . -1277) 79853) ((-532 . -1031) 79837) ((-532 . -1171) 79821) ((-532 . -861) 79800) ((-532 . -864) 79779) ((-532 . -385) 79763) ((-532 . -671) 79747) ((-532 . -300) 79724) ((-532 . -298) 79676) ((-532 . -616) 79653) ((-532 . -631) 79614) ((-532 . -501) 79598) ((-532 . -1122) 79548) ((-532 . -526) 79481) ((-532 . -321) 79419) ((-532 . -630) 79331) ((-532 . -102) 79261) ((-532 . -1238) T) ((-532 . -34) T) ((-532 . -153) 79245) ((-532 . -294) 79229) ((-531 . -57) 79203) ((-531 . -34) T) ((-531 . -1238) T) ((-531 . -102) 79153) ((-531 . -630) 79085) ((-531 . -321) 79023) ((-531 . -526) 78956) ((-531 . -1122) 78934) ((-531 . -501) 78918) ((-530 . -341) 78895) ((-530 . -240) T) ((-530 . -236) 78882) ((-530 . -239) T) ((-530 . -381) T) ((-530 . -1173) T) ((-530 . -363) T) ((-530 . -149) 78864) ((-530 . -633) 78794) ((-530 . -668) 78739) ((-530 . -666) 78669) ((-530 . -133) T) ((-530 . -25) T) ((-530 . -102) T) ((-530 . -1238) T) ((-530 . -630) 78651) ((-530 . -1122) T) ((-530 . -23) T) ((-530 . -21) T) ((-530 . -746) T) ((-530 . -1133) T) ((-530 . -1078) T) ((-530 . -1070) T) ((-530 . -376) T) ((-530 . -1243) T) ((-530 . -940) T) ((-530 . -569) T) ((-530 . -175) T) ((-530 . -737) 78596) ((-530 . -660) 78541) ((-530 . -38) 78506) ((-530 . -464) T) ((-530 . -319) T) ((-530 . -111) 78423) ((-530 . -1072) 78368) ((-530 . -1077) 78313) ((-530 . -302) T) ((-530 . -250) T) ((-530 . -414) T) ((-530 . -147) T) ((-530 . -1059) 78290) ((-530 . -1296) 78267) ((-530 . -1307) 78244) ((-529 . -1104) T) ((-529 . -502) 78225) ((-529 . -630) 78191) ((-529 . -633) 78172) ((-529 . -1122) T) ((-529 . -1238) T) ((-529 . -102) T) ((-529 . -93) T) ((-528 . -19) 78156) ((-528 . -671) 78140) ((-528 . -300) 78117) ((-528 . -298) 78069) ((-528 . -616) 78046) ((-528 . -631) 78007) ((-528 . -501) 77991) ((-528 . -1122) 77941) ((-528 . -526) 77874) ((-528 . -321) 77812) ((-528 . -630) 77724) ((-528 . -102) 77654) ((-528 . -1238) T) ((-528 . -34) T) ((-528 . -153) 77638) ((-528 . -861) 77617) ((-528 . -864) 77596) ((-528 . -385) 77580) ((-528 . -294) 77564) ((-527 . -335) 77543) ((-527 . -633) 77527) ((-527 . -1059) 77511) ((-527 . -23) T) ((-527 . -1122) T) ((-527 . -630) 77493) ((-527 . -1238) T) ((-527 . -102) T) ((-527 . -25) T) ((-527 . -133) T) ((-524 . -815) T) ((-524 . -133) T) ((-524 . -25) T) ((-524 . -102) T) ((-524 . -1238) T) ((-524 . -630) 77475) ((-524 . -1122) T) ((-524 . -23) T) ((-524 . -814) T) ((-524 . -861) T) ((-524 . -864) T) ((-524 . -816) T) ((-524 . -819) T) ((-524 . -521) 77454) ((-523 . -814) T) ((-523 . -861) T) ((-523 . -864) T) ((-523 . -816) T) ((-523 . -25) T) ((-523 . -102) T) ((-523 . -1238) T) ((-523 . -630) 77436) ((-523 . -1122) T) ((-523 . -23) T) ((-523 . -521) 77415) ((-522 . -521) 77394) ((-522 . -630) 77334) ((-522 . -1122) 77285) ((-522 . -1238) T) ((-522 . -102) T) ((-520 . -23) T) ((-520 . -1122) T) ((-520 . -630) 77267) ((-520 . -1238) T) ((-520 . -102) T) ((-520 . -25) T) ((-520 . -521) 77246) ((-519 . -21) T) ((-519 . -666) 77228) ((-519 . -23) T) ((-519 . -1122) T) ((-519 . -630) 77210) ((-519 . -1238) T) ((-519 . -102) T) ((-519 . -25) T) ((-519 . -133) T) ((-519 . -521) 77189) ((-518 . -1122) T) ((-518 . -630) 77171) ((-518 . -1238) T) ((-518 . -102) T) ((-516 . -1122) T) ((-516 . -630) 77153) ((-516 . -1238) T) ((-516 . -102) T) ((-514 . -861) T) ((-514 . -630) 77135) ((-514 . -1122) T) ((-514 . -102) T) ((-514 . -1238) T) ((-514 . -864) T) ((-512 . -125) T) ((-512 . -385) 77117) ((-512 . -864) T) ((-512 . -861) T) ((-512 . -153) 77099) ((-512 . -34) T) ((-512 . -102) T) ((-512 . -630) 77081) ((-512 . -321) NIL) ((-512 . -526) NIL) ((-512 . -1122) T) ((-512 . -501) 77063) ((-512 . -631) 77045) ((-512 . -298) 76995) ((-512 . -616) 76970) ((-512 . -300) 76945) ((-512 . -671) 76927) ((-512 . -19) 76909) ((-512 . -682) T) ((-512 . -1238) T) ((-512 . -113) T) ((-509 . -57) 76859) ((-509 . -34) T) ((-509 . -1238) T) ((-509 . -102) 76809) ((-509 . -630) 76741) ((-509 . -321) 76679) ((-509 . -526) 76612) ((-509 . -1122) 76590) ((-509 . -501) 76574) ((-508 . -19) 76558) ((-508 . -671) 76542) ((-508 . -300) 76519) ((-508 . -298) 76471) ((-508 . -616) 76448) ((-508 . -631) 76409) ((-508 . -501) 76393) ((-508 . -1122) 76343) ((-508 . -526) 76276) ((-508 . -321) 76214) ((-508 . -630) 76126) ((-508 . -102) 76056) ((-508 . -1238) T) ((-508 . -34) T) ((-508 . -153) 76040) ((-508 . -861) 76019) ((-508 . -864) 75998) ((-508 . -385) 75982) ((-507 . -310) T) ((-507 . -102) T) ((-507 . -1238) T) ((-507 . -630) 75964) ((-507 . -1122) T) ((-507 . -633) 75897) ((-507 . -1059) 75840) ((-507 . -526) 75806) ((-507 . -321) 75793) ((-507 . -27) T) ((-507 . -1023) T) ((-507 . -250) T) ((-507 . -111) 75742) ((-507 . -1072) 75707) ((-507 . -1077) 75672) ((-507 . -302) T) ((-507 . -737) 75637) ((-507 . -660) 75602) ((-507 . -668) 75552) ((-507 . -666) 75502) ((-507 . -133) T) ((-507 . -25) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -1070) T) ((-507 . -1078) T) ((-507 . -1133) T) ((-507 . -746) T) ((-507 . -38) 75467) ((-507 . -319) T) ((-507 . -464) T) ((-507 . -175) T) ((-507 . -569) T) ((-507 . -940) T) ((-507 . -1243) T) ((-507 . -376) T) ((-507 . -658) 75427) ((-507 . -1041) T) ((-507 . -631) 75372) ((-507 . -149) T) ((-507 . -240) T) ((-507 . -236) 75359) ((-507 . -239) T) ((-503 . -1122) T) ((-503 . -630) 75325) ((-503 . -1238) T) ((-503 . -102) T) ((-499 . -1012) 75307) ((-499 . -1173) T) ((-499 . -633) 75257) ((-499 . -1059) 75217) ((-499 . -631) 75147) ((-499 . -1041) T) ((-499 . -929) NIL) ((-499 . -899) 75129) ((-499 . -860) T) ((-499 . -819) T) ((-499 . -816) T) ((-499 . -864) T) ((-499 . -861) T) ((-499 . -814) T) ((-499 . -812) T) ((-499 . -842) T) ((-499 . -901) 75111) ((-499 . -412) 75093) ((-499 . -658) 75075) ((-499 . -390) 75057) ((-499 . -298) NIL) ((-499 . -321) NIL) ((-499 . -526) NIL) ((-499 . -351) 75039) ((-499 . -250) T) ((-499 . -111) 74966) ((-499 . -1072) 74916) ((-499 . -1077) 74866) ((-499 . -302) T) ((-499 . -737) 74816) ((-499 . -660) 74766) ((-499 . -668) 74716) ((-499 . -666) 74666) ((-499 . -38) 74616) ((-499 . -319) T) ((-499 . -464) T) ((-499 . -175) T) ((-499 . -569) T) ((-499 . -940) T) ((-499 . -1243) T) ((-499 . -376) T) ((-499 . -240) T) ((-499 . -236) 74603) ((-499 . -239) T) ((-499 . -274) 74585) ((-499 . -911) NIL) ((-499 . -919) NIL) ((-499 . -917) NIL) ((-499 . -234) 74567) ((-499 . -149) T) ((-499 . -147) NIL) ((-499 . -133) T) ((-499 . -25) T) ((-499 . -102) T) ((-499 . -1238) T) ((-499 . -630) 74508) ((-499 . -1122) T) ((-499 . -23) T) ((-499 . -21) T) ((-499 . -1070) T) ((-499 . -1078) T) ((-499 . -1133) T) ((-499 . -746) T) ((-497 . -349) 74477) ((-497 . -133) T) ((-497 . -25) T) ((-497 . -102) T) ((-497 . -1238) T) ((-497 . -630) 74459) ((-497 . -1122) T) ((-497 . -23) T) ((-497 . -666) 74441) ((-497 . -21) T) ((-496 . -989) 74425) ((-496 . -501) 74409) ((-496 . -1122) 74387) ((-496 . -526) 74320) ((-496 . -321) 74258) ((-496 . -630) 74190) ((-496 . -102) 74140) ((-496 . -1238) T) ((-496 . -34) T) ((-496 . -107) 74124) ((-495 . -1104) T) ((-495 . -502) 74105) ((-495 . -630) 74071) ((-495 . -633) 74052) ((-495 . -1122) T) ((-495 . -1238) T) ((-495 . -102) T) ((-495 . -93) T) ((-494 . -245) 74031) ((-494 . -1296) 74001) ((-494 . -819) 73980) ((-494 . -816) 73959) ((-494 . -864) 73910) ((-494 . -861) 73861) ((-494 . -814) 73840) ((-494 . -815) 73819) ((-494 . -737) 73761) ((-494 . -660) 73683) ((-494 . -300) 73660) ((-494 . -298) 73637) ((-494 . -501) 73621) ((-494 . -526) 73554) ((-494 . -321) 73492) ((-494 . -34) T) ((-494 . -616) 73469) ((-494 . -1059) 73296) ((-494 . -633) 73094) ((-494 . -424) 73063) ((-494 . -658) 72969) ((-494 . -668) 72802) ((-494 . -390) 72771) ((-494 . -381) 72750) ((-494 . -240) 72702) ((-494 . -666) 72481) ((-494 . -746) 72459) ((-494 . -1133) 72437) ((-494 . -1078) 72415) ((-494 . -1070) 72393) ((-494 . -236) 72284) ((-494 . -239) 72181) ((-494 . -274) 72150) ((-494 . -911) 72017) ((-494 . -919) 71886) ((-494 . -917) 71818) ((-494 . -234) 71787) ((-494 . -630) 71480) ((-494 . -1077) 71401) ((-494 . -1072) 71302) ((-494 . -111) 71218) ((-494 . -133) 71089) ((-494 . -25) 70922) ((-494 . -102) 70654) ((-494 . -1238) T) ((-494 . -1122) 70406) ((-494 . -23) 70258) ((-494 . -21) 70169) ((-493 . -969) 70114) ((-493 . -633) 69899) ((-493 . -1059) 69775) ((-493 . -1243) 69754) ((-493 . -929) 69733) ((-493 . -901) NIL) ((-493 . -919) 69710) ((-493 . -911) 69685) ((-493 . -917) 69662) ((-493 . -526) 69600) ((-493 . -464) 69551) ((-493 . -658) 69499) ((-493 . -668) 69388) ((-493 . -390) 69372) ((-493 . -47) 69329) ((-493 . -38) 69178) ((-493 . -660) 69027) ((-493 . -737) 68876) ((-493 . -302) 68807) ((-493 . -569) 68738) ((-493 . -111) 68560) ((-493 . -1072) 68403) ((-493 . -1077) 68246) ((-493 . -175) 68157) ((-493 . -149) 68136) ((-493 . -147) 68115) ((-493 . -666) 68025) ((-493 . -133) T) ((-493 . -25) T) ((-493 . -102) T) ((-493 . -1238) T) ((-493 . -630) 68007) ((-493 . -1122) T) ((-493 . -23) T) ((-493 . -21) T) ((-493 . -1070) T) ((-493 . -1078) T) ((-493 . -1133) T) ((-493 . -746) T) ((-493 . -424) 67991) ((-493 . -338) 67948) ((-493 . -321) 67935) ((-493 . -631) 67796) ((-491 . -1215) 67775) ((-491 . -233) 67725) ((-491 . -107) 67675) ((-491 . -321) 67479) ((-491 . -526) 67239) ((-491 . -501) 67176) ((-491 . -153) 67126) ((-491 . -631) NIL) ((-491 . -242) 67076) ((-491 . -627) 67055) ((-491 . -300) 67034) ((-491 . -1238) T) ((-491 . -298) 67013) ((-491 . -1122) T) ((-491 . -630) 66995) ((-491 . -102) T) ((-491 . -34) T) ((-491 . -616) 66974) ((-490 . -1104) T) ((-490 . -502) 66955) ((-490 . -630) 66921) ((-490 . -633) 66902) ((-490 . -1122) T) ((-490 . -1238) T) ((-490 . -102) T) ((-490 . -93) T) ((-489 . -376) T) ((-489 . -1243) T) ((-489 . -940) T) ((-489 . -569) T) ((-489 . -175) T) ((-489 . -633) 66852) ((-489 . -737) 66817) ((-489 . -660) 66782) ((-489 . -38) 66747) ((-489 . -464) T) ((-489 . -319) T) ((-489 . -668) 66712) ((-489 . -666) 66662) ((-489 . -746) T) ((-489 . -1133) T) ((-489 . -1078) T) ((-489 . -1070) T) ((-489 . -111) 66611) ((-489 . -1072) 66576) ((-489 . -1077) 66541) ((-489 . -21) T) ((-489 . -23) T) ((-489 . -1122) T) ((-489 . -630) 66493) ((-489 . -1238) T) ((-489 . -102) T) ((-489 . -25) T) ((-489 . -133) T) ((-489 . -302) T) ((-489 . -250) T) ((-489 . -149) T) ((-489 . -1059) 66453) ((-489 . -1041) T) ((-489 . -631) 66375) ((-488 . -1233) 66344) ((-488 . -630) 66306) ((-488 . -153) 66290) ((-488 . -34) T) ((-488 . -1238) T) ((-488 . -102) T) ((-488 . -321) 66228) ((-488 . -526) 66161) ((-488 . -1122) T) ((-488 . -501) 66145) ((-488 . -631) 66106) ((-488 . -997) 66075) ((-487 . -1215) 66054) ((-487 . -233) 66004) ((-487 . -107) 65954) ((-487 . -321) 65758) ((-487 . -526) 65518) ((-487 . -501) 65455) ((-487 . -153) 65405) ((-487 . -631) NIL) ((-487 . -242) 65355) ((-487 . -627) 65334) ((-487 . -300) 65313) ((-487 . -1238) T) ((-487 . -298) 65292) ((-487 . -1122) T) ((-487 . -630) 65274) ((-487 . -102) T) ((-487 . -34) T) ((-487 . -616) 65253) ((-486 . -1271) 65237) ((-486 . -240) 65189) ((-486 . -236) 65135) ((-486 . -239) 65087) ((-486 . -298) 65045) ((-486 . -917) 64951) ((-486 . -911) 64832) ((-486 . -919) 64738) ((-486 . -994) 64700) ((-486 . -38) 64541) ((-486 . -111) 64355) ((-486 . -1072) 64190) ((-486 . -1077) 64025) ((-486 . -666) 63907) ((-486 . -668) 63804) ((-486 . -660) 63645) ((-486 . -737) 63486) ((-486 . -633) 63312) ((-486 . -147) 63291) ((-486 . -149) 63270) ((-486 . -47) 63240) ((-486 . -1267) 63210) ((-486 . -35) 63176) ((-486 . -95) 63142) ((-486 . -296) 63108) ((-486 . -505) 63074) ((-486 . -1227) 63040) ((-486 . -1224) 63006) ((-486 . -1023) 62972) ((-486 . -250) 62951) ((-486 . -302) 62902) ((-486 . -133) T) ((-486 . -25) T) ((-486 . -102) T) ((-486 . -1238) T) ((-486 . -630) 62884) ((-486 . -1122) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1070) T) ((-486 . -1078) T) ((-486 . -1133) T) ((-486 . -746) T) ((-486 . -319) 62863) ((-486 . -464) 62842) ((-486 . -175) 62773) ((-486 . -569) 62724) ((-486 . -940) 62703) ((-486 . -1243) 62682) ((-486 . -376) 62661) ((-480 . -1122) T) ((-480 . -630) 62643) ((-480 . -1238) T) ((-480 . -102) T) ((-475 . -997) 62612) ((-475 . -631) 62573) ((-475 . -501) 62557) ((-475 . -1122) T) ((-475 . -526) 62490) ((-475 . -321) 62428) ((-475 . -630) 62390) ((-475 . -102) T) ((-475 . -1238) T) ((-475 . -34) T) ((-475 . -153) 62374) ((-473 . -737) 62345) ((-473 . -660) 62316) ((-473 . -668) 62287) ((-473 . -666) 62243) ((-473 . -133) T) ((-473 . -25) T) ((-473 . -102) T) ((-473 . -1238) T) ((-473 . -630) 62225) ((-473 . -1122) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1077) 62196) ((-473 . -1072) 62167) ((-473 . -111) 62128) ((-466 . -969) 62095) ((-466 . -633) 61880) ((-466 . -1059) 61756) ((-466 . -1243) 61735) ((-466 . -929) 61714) ((-466 . -901) NIL) ((-466 . -919) 61691) ((-466 . -911) 61666) ((-466 . -917) 61643) ((-466 . -526) 61581) ((-466 . -464) 61532) ((-466 . -658) 61480) ((-466 . -668) 61369) ((-466 . -390) 61353) ((-466 . -47) 61332) ((-466 . -38) 61181) ((-466 . -660) 61030) ((-466 . -737) 60879) ((-466 . -302) 60810) ((-466 . -569) 60741) ((-466 . -111) 60563) ((-466 . -1072) 60406) ((-466 . -1077) 60249) ((-466 . -175) 60160) ((-466 . -149) 60139) ((-466 . -147) 60118) ((-466 . -666) 60028) ((-466 . -133) T) ((-466 . -25) T) ((-466 . -102) T) ((-466 . -1238) T) ((-466 . -630) 60010) ((-466 . -1122) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1070) T) ((-466 . -1078) T) ((-466 . -1133) T) ((-466 . -746) T) ((-466 . -424) 59994) ((-466 . -338) 59973) ((-466 . -321) 59960) ((-466 . -631) 59821) ((-465 . -430) 59791) ((-465 . -764) 59761) ((-465 . -740) T) ((-465 . -781) T) ((-465 . -111) 59712) ((-465 . -1072) 59682) ((-465 . -1077) 59652) ((-465 . -21) T) ((-465 . -666) 59567) ((-465 . -23) T) ((-465 . -1122) T) ((-465 . -630) 59549) ((-465 . -102) T) ((-465 . -25) T) ((-465 . -133) T) ((-465 . -668) 59479) ((-465 . -660) 59449) ((-465 . -737) 59419) ((-465 . -380) 59389) ((-465 . -1238) T) ((-465 . -298) 59352) ((-451 . -1122) T) ((-451 . -630) 59334) ((-451 . -1238) T) ((-451 . -102) T) ((-450 . -1122) T) ((-450 . -630) 59316) ((-450 . -1238) T) ((-450 . -102) T) ((-449 . -378) 59290) ((-449 . -102) T) ((-449 . -1238) T) ((-449 . -630) 59272) ((-449 . -1122) T) ((-448 . -1122) T) ((-448 . -630) 59254) ((-448 . -1238) T) ((-448 . -102) T) ((-446 . -630) 59236) ((-441 . -38) 59220) ((-441 . -633) 59189) ((-441 . -668) 59163) ((-441 . -666) 59122) ((-441 . -746) T) ((-441 . -1133) T) ((-441 . -1078) T) ((-441 . -1070) T) ((-441 . -111) 59101) ((-441 . -1072) 59085) ((-441 . -1077) 59069) ((-441 . -21) T) ((-441 . -23) T) ((-441 . -1122) T) ((-441 . -630) 59051) ((-441 . -1238) T) ((-441 . -102) T) ((-441 . -25) T) ((-441 . -133) T) ((-441 . -660) 59035) ((-441 . -737) 59019) ((-427 . -746) T) ((-427 . -1122) T) ((-427 . -630) 59001) ((-427 . -1238) T) ((-427 . -102) T) ((-427 . -1133) T) ((-425 . -485) T) ((-425 . -1133) T) ((-425 . -102) T) ((-425 . -1238) T) ((-425 . -630) 58983) ((-425 . -1122) T) ((-425 . -746) T) ((-419 . -1012) 58967) ((-419 . -1173) 58945) ((-419 . -1059) 58809) ((-419 . -633) 58707) ((-419 . -631) 58508) ((-419 . -1041) 58486) ((-419 . -929) 58465) ((-419 . -899) 58449) ((-419 . -860) 58428) ((-419 . -819) 58407) ((-419 . -816) 58386) ((-419 . -864) 58337) ((-419 . -861) 58288) ((-419 . -814) 58267) ((-419 . -812) 58246) ((-419 . -842) 58225) ((-419 . -901) 58150) ((-419 . -412) 58134) ((-419 . -658) 58082) ((-419 . -668) 57998) ((-419 . -390) 57982) ((-419 . -298) 57940) ((-419 . -321) 57905) ((-419 . -526) 57817) ((-419 . -351) 57801) ((-419 . -250) T) ((-419 . -111) 57732) ((-419 . -1072) 57684) ((-419 . -1077) 57636) ((-419 . -302) T) ((-419 . -737) 57588) ((-419 . -660) 57540) ((-419 . -666) 57477) ((-419 . -38) 57429) ((-419 . -319) T) ((-419 . -464) T) ((-419 . -175) T) ((-419 . -569) T) ((-419 . -940) T) ((-419 . -1243) T) ((-419 . -376) T) ((-419 . -240) 57408) ((-419 . -236) 57353) ((-419 . -239) 57304) ((-419 . -274) 57288) ((-419 . -911) 57209) ((-419 . -919) 57132) ((-419 . -917) 57091) ((-419 . -234) 57075) ((-419 . -149) 57054) ((-419 . -147) 57033) ((-419 . -133) T) ((-419 . -25) T) ((-419 . -102) T) ((-419 . -1238) T) ((-419 . -630) 57015) ((-419 . -1122) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -1070) T) ((-419 . -1078) T) ((-419 . -1133) T) ((-419 . -746) T) ((-417 . -569) T) ((-417 . -302) T) ((-417 . -175) T) ((-417 . -633) 56923) ((-417 . -737) 56897) ((-417 . -660) 56871) ((-417 . -668) 56845) ((-417 . -666) 56804) ((-417 . -133) T) ((-417 . -25) T) ((-417 . -102) T) ((-417 . -1238) T) ((-417 . -630) 56786) ((-417 . -1122) T) ((-417 . -23) T) ((-417 . -21) T) ((-417 . -1077) 56760) ((-417 . -1072) 56734) ((-417 . -111) 56701) ((-417 . -1070) T) ((-417 . -1078) T) ((-417 . -1133) T) ((-417 . -746) T) ((-417 . -38) 56675) ((-417 . -234) 56659) ((-417 . -917) 56618) ((-417 . -919) 56541) ((-417 . -911) 56462) ((-417 . -274) 56446) ((-417 . -239) 56397) ((-417 . -236) 56342) ((-417 . -240) 56321) ((-417 . -351) 56305) ((-417 . -526) 56147) ((-417 . -321) 56086) ((-417 . -298) 56014) ((-417 . -424) 55998) ((-417 . -1059) 55894) ((-417 . -464) 55844) ((-417 . -1041) 55822) ((-417 . -631) 55723) ((-417 . -1243) 55701) ((-411 . -1122) T) ((-411 . -630) 55683) ((-411 . -1238) T) ((-411 . -102) T) ((-411 . -239) T) ((-411 . -236) 55670) ((-411 . -631) 55647) ((-410 . -408) T) ((-410 . -1238) T) ((-410 . -630) 55629) ((-404 . -764) 55613) ((-404 . -740) T) ((-404 . -781) T) ((-404 . -111) 55592) ((-404 . -1072) 55576) ((-404 . -1077) 55560) ((-404 . -21) T) ((-404 . -666) 55529) ((-404 . -23) T) ((-404 . -1122) T) ((-404 . -630) 55511) ((-404 . -1238) T) ((-404 . -102) T) ((-404 . -25) T) ((-404 . -133) T) ((-404 . -668) 55495) ((-404 . -660) 55479) ((-404 . -737) 55463) ((-402 . -403) T) ((-402 . -102) T) ((-402 . -1238) T) ((-402 . -630) 55429) ((-402 . -1122) T) ((-402 . -633) 55410) ((-402 . -502) 55391) ((-400 . -399) 55375) ((-400 . -633) 55359) ((-400 . -1059) 55343) ((-400 . -864) 55322) ((-400 . -861) 55301) ((-400 . -1133) T) ((-400 . -102) T) ((-400 . -1238) T) ((-400 . -630) 55283) ((-400 . -1122) T) ((-400 . -746) T) ((-395 . -397) 55262) ((-395 . -633) 55246) ((-395 . -1059) 55230) ((-395 . -660) 55200) ((-395 . -737) 55170) ((-395 . -668) 55154) ((-395 . -666) 55123) ((-395 . -133) T) ((-395 . -25) T) ((-395 . -102) T) ((-395 . -1238) T) ((-395 . -630) 55105) ((-395 . -1122) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -1077) 55089) ((-395 . -1072) 55073) ((-395 . -111) 55052) ((-394 . -111) 55031) ((-394 . -1072) 55015) ((-394 . -1077) 54999) ((-394 . -21) T) ((-394 . -666) 54968) ((-394 . -23) T) ((-394 . -1122) T) ((-394 . -630) 54950) ((-394 . -1238) T) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -133) T) ((-394 . -668) 54934) ((-394 . -521) 54913) ((-394 . -737) 54883) ((-394 . -660) 54853) ((-391 . -416) T) ((-391 . -149) T) ((-391 . -633) 54803) ((-391 . -668) 54768) ((-391 . -666) 54718) ((-391 . -133) T) ((-391 . -25) T) ((-391 . -102) T) ((-391 . -1238) T) ((-391 . -630) 54685) ((-391 . -1122) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -746) T) ((-391 . -1133) T) ((-391 . -1078) T) ((-391 . -1070) T) ((-391 . -631) 54599) ((-391 . -376) T) ((-391 . -1243) T) ((-391 . -940) T) ((-391 . -569) T) ((-391 . -175) T) ((-391 . -737) 54564) ((-391 . -660) 54529) ((-391 . -38) 54494) ((-391 . -464) T) ((-391 . -319) T) ((-391 . -111) 54443) ((-391 . -1072) 54408) ((-391 . -1077) 54373) ((-391 . -302) T) ((-391 . -250) T) ((-391 . -860) T) ((-391 . -819) T) ((-391 . -816) T) ((-391 . -864) T) ((-391 . -861) T) ((-391 . -814) T) ((-391 . -812) T) ((-391 . -901) 54355) ((-391 . -1023) T) ((-391 . -1041) T) ((-391 . -1059) 54315) ((-391 . -1081) T) ((-391 . -240) T) ((-391 . -236) 54302) ((-391 . -239) T) ((-391 . -1224) T) ((-391 . -1227) T) ((-391 . -505) T) ((-391 . -296) T) ((-391 . -95) T) ((-391 . -35) T) ((-391 . -635) 54284) ((-377 . -378) 54261) ((-377 . -102) T) ((-377 . -1238) T) ((-377 . -630) 54243) ((-377 . -1122) T) ((-374 . -485) T) ((-374 . -1133) T) ((-374 . -102) T) ((-374 . -1238) T) ((-374 . -630) 54225) ((-374 . -1122) T) ((-374 . -746) T) ((-374 . -1059) 54209) ((-374 . -633) 54193) ((-372 . -341) 54177) ((-372 . -240) 54156) ((-372 . -236) 54129) ((-372 . -239) 54108) ((-372 . -381) 54087) ((-372 . -1173) 54066) ((-372 . -363) 54045) ((-372 . -149) 54024) ((-372 . -633) 53961) ((-372 . -668) 53913) ((-372 . -666) 53850) ((-372 . -133) T) ((-372 . -25) T) ((-372 . -102) T) ((-372 . -1238) T) ((-372 . -630) 53832) ((-372 . -1122) T) ((-372 . -23) T) ((-372 . -21) T) ((-372 . -746) T) ((-372 . -1133) T) ((-372 . -1078) T) ((-372 . -1070) T) ((-372 . -376) T) ((-372 . -1243) T) ((-372 . -940) T) ((-372 . -569) T) ((-372 . -175) T) ((-372 . -737) 53784) ((-372 . -660) 53736) ((-372 . -38) 53701) ((-372 . -464) T) ((-372 . -319) T) ((-372 . -111) 53632) ((-372 . -1072) 53584) ((-372 . -1077) 53536) ((-372 . -302) T) ((-372 . -250) T) ((-372 . -414) 53487) ((-372 . -147) 53438) ((-372 . -1059) 53422) ((-372 . -1296) 53406) ((-372 . -1307) 53390) ((-368 . -341) 53374) ((-368 . -240) 53353) ((-368 . -236) 53326) ((-368 . -239) 53305) ((-368 . -381) 53284) ((-368 . -1173) 53263) ((-368 . -363) 53242) ((-368 . -149) 53221) ((-368 . -633) 53158) ((-368 . -668) 53110) ((-368 . -666) 53047) ((-368 . -133) T) ((-368 . -25) T) ((-368 . -102) T) ((-368 . -1238) T) ((-368 . -630) 53029) ((-368 . -1122) T) ((-368 . -23) T) ((-368 . -21) T) ((-368 . -746) T) ((-368 . -1133) T) ((-368 . -1078) T) ((-368 . -1070) T) ((-368 . -376) T) ((-368 . -1243) T) ((-368 . -940) T) ((-368 . -569) T) ((-368 . -175) T) ((-368 . -737) 52981) ((-368 . -660) 52933) ((-368 . -38) 52898) ((-368 . -464) T) ((-368 . -319) T) ((-368 . -111) 52829) ((-368 . -1072) 52781) ((-368 . -1077) 52733) ((-368 . -302) T) ((-368 . -250) T) ((-368 . -414) 52684) ((-368 . -147) 52635) ((-368 . -1059) 52619) ((-368 . -1296) 52603) ((-368 . -1307) 52587) ((-367 . -341) 52571) ((-367 . -240) 52550) ((-367 . -236) 52523) ((-367 . -239) 52502) ((-367 . -381) 52481) ((-367 . -1173) 52460) ((-367 . -363) 52439) ((-367 . -149) 52418) ((-367 . -633) 52355) ((-367 . -668) 52307) ((-367 . -666) 52244) ((-367 . -133) T) ((-367 . -25) T) ((-367 . -102) T) ((-367 . -1238) T) ((-367 . -630) 52226) ((-367 . -1122) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -746) T) ((-367 . -1133) T) ((-367 . -1078) T) ((-367 . -1070) T) ((-367 . -376) T) ((-367 . -1243) T) ((-367 . -940) T) ((-367 . -569) T) ((-367 . -175) T) ((-367 . -737) 52178) ((-367 . -660) 52130) ((-367 . -38) 52095) ((-367 . -464) T) ((-367 . -319) T) ((-367 . -111) 52026) ((-367 . -1072) 51978) ((-367 . -1077) 51930) ((-367 . -302) T) ((-367 . -250) T) ((-367 . -414) 51881) ((-367 . -147) 51832) ((-367 . -1059) 51816) ((-367 . -1296) 51800) ((-367 . -1307) 51784) ((-366 . -341) 51768) ((-366 . -240) 51747) ((-366 . -236) 51720) ((-366 . -239) 51699) ((-366 . -381) 51678) ((-366 . -1173) 51657) ((-366 . -363) 51636) ((-366 . -149) 51615) ((-366 . -633) 51552) ((-366 . -668) 51504) ((-366 . -666) 51441) ((-366 . -133) T) ((-366 . -25) T) ((-366 . -102) T) ((-366 . -1238) T) ((-366 . -630) 51423) ((-366 . -1122) T) ((-366 . -23) T) ((-366 . -21) T) ((-366 . -746) T) ((-366 . -1133) T) ((-366 . -1078) T) ((-366 . -1070) T) ((-366 . -376) T) ((-366 . -1243) T) ((-366 . -940) T) ((-366 . -569) T) ((-366 . -175) T) ((-366 . -737) 51375) ((-366 . -660) 51327) ((-366 . -38) 51292) ((-366 . -464) T) ((-366 . -319) T) ((-366 . -111) 51223) ((-366 . -1072) 51175) ((-366 . -1077) 51127) ((-366 . -302) T) ((-366 . -250) T) ((-366 . -414) 51078) ((-366 . -147) 51029) ((-366 . -1059) 51013) ((-366 . -1296) 50997) ((-366 . -1307) 50981) ((-365 . -341) 50958) ((-365 . -240) T) ((-365 . -236) 50945) ((-365 . -239) T) ((-365 . -381) T) ((-365 . -1173) T) ((-365 . -363) T) ((-365 . -149) 50927) ((-365 . -633) 50857) ((-365 . -668) 50802) ((-365 . -666) 50732) ((-365 . -133) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -1238) T) ((-365 . -630) 50714) ((-365 . -1122) T) ((-365 . -23) T) ((-365 . -21) T) ((-365 . -746) T) ((-365 . -1133) T) ((-365 . -1078) T) ((-365 . -1070) T) ((-365 . -376) T) ((-365 . -1243) T) ((-365 . -940) T) ((-365 . -569) T) ((-365 . -175) T) ((-365 . -737) 50659) ((-365 . -660) 50604) ((-365 . -38) 50569) ((-365 . -464) T) ((-365 . -319) T) ((-365 . -111) 50486) ((-365 . -1072) 50431) ((-365 . -1077) 50376) ((-365 . -302) T) ((-365 . -250) T) ((-365 . -414) T) ((-365 . -147) T) ((-365 . -1059) 50353) ((-365 . -1296) 50330) ((-365 . -1307) 50307) ((-359 . -341) 50291) ((-359 . -240) 50270) ((-359 . -236) 50243) ((-359 . -239) 50222) ((-359 . -381) 50201) ((-359 . -1173) 50180) ((-359 . -363) 50159) ((-359 . -149) 50138) ((-359 . -633) 50075) ((-359 . -668) 50027) ((-359 . -666) 49964) ((-359 . -133) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -1238) T) ((-359 . -630) 49946) ((-359 . -1122) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -746) T) ((-359 . -1133) T) ((-359 . -1078) T) ((-359 . -1070) T) ((-359 . -376) T) ((-359 . -1243) T) ((-359 . -940) T) ((-359 . -569) T) ((-359 . -175) T) ((-359 . -737) 49898) ((-359 . -660) 49850) ((-359 . -38) 49815) ((-359 . -464) T) ((-359 . -319) T) ((-359 . -111) 49746) ((-359 . -1072) 49698) ((-359 . -1077) 49650) ((-359 . -302) T) ((-359 . -250) T) ((-359 . -414) 49601) ((-359 . -147) 49552) ((-359 . -1059) 49536) ((-359 . -1296) 49520) ((-359 . -1307) 49504) ((-358 . -341) 49488) ((-358 . -240) 49467) ((-358 . -236) 49440) ((-358 . -239) 49419) ((-358 . -381) 49398) ((-358 . -1173) 49377) ((-358 . -363) 49356) ((-358 . -149) 49335) ((-358 . -633) 49272) ((-358 . -668) 49224) ((-358 . -666) 49161) ((-358 . -133) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -1238) T) ((-358 . -630) 49143) ((-358 . -1122) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -746) T) ((-358 . -1133) T) ((-358 . -1078) T) ((-358 . -1070) T) ((-358 . -376) T) ((-358 . -1243) T) ((-358 . -940) T) ((-358 . -569) T) ((-358 . -175) T) ((-358 . -737) 49095) ((-358 . -660) 49047) ((-358 . -38) 49012) ((-358 . -464) T) ((-358 . -319) T) ((-358 . -111) 48943) ((-358 . -1072) 48895) ((-358 . -1077) 48847) ((-358 . -302) T) ((-358 . -250) T) ((-358 . -414) 48798) ((-358 . -147) 48749) ((-358 . -1059) 48733) ((-358 . -1296) 48717) ((-358 . -1307) 48701) ((-357 . -341) 48678) ((-357 . -240) T) ((-357 . -236) 48665) ((-357 . -239) T) ((-357 . -381) T) ((-357 . -1173) T) ((-357 . -363) T) ((-357 . -149) 48647) ((-357 . -633) 48577) ((-357 . -668) 48522) ((-357 . -666) 48452) ((-357 . -133) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -1238) T) ((-357 . -630) 48434) ((-357 . -1122) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -746) T) ((-357 . -1133) T) ((-357 . -1078) T) ((-357 . -1070) T) ((-357 . -376) T) ((-357 . -1243) T) ((-357 . -940) T) ((-357 . -569) T) ((-357 . -175) T) ((-357 . -737) 48379) ((-357 . -660) 48324) ((-357 . -38) 48289) ((-357 . -464) T) ((-357 . -319) T) ((-357 . -111) 48206) ((-357 . -1072) 48151) ((-357 . -1077) 48096) ((-357 . -302) T) ((-357 . -250) T) ((-357 . -414) T) ((-357 . -147) T) ((-357 . -1059) 48073) ((-357 . -1296) 48050) ((-357 . -1307) 48027) ((-353 . -341) 48004) ((-353 . -240) T) ((-353 . -236) 47991) ((-353 . -239) T) ((-353 . -381) T) ((-353 . -1173) T) ((-353 . -363) T) ((-353 . -149) 47973) ((-353 . -633) 47903) ((-353 . -668) 47848) ((-353 . -666) 47778) ((-353 . -133) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -1238) T) ((-353 . -630) 47760) ((-353 . -1122) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -746) T) ((-353 . -1133) T) ((-353 . -1078) T) ((-353 . -1070) T) ((-353 . -376) T) ((-353 . -1243) T) ((-353 . -940) T) ((-353 . -569) T) ((-353 . -175) T) ((-353 . -737) 47705) ((-353 . -660) 47650) ((-353 . -38) 47615) ((-353 . -464) T) ((-353 . -319) T) ((-353 . -111) 47532) ((-353 . -1072) 47477) ((-353 . -1077) 47422) ((-353 . -302) T) ((-353 . -250) T) ((-353 . -414) T) ((-353 . -147) T) ((-353 . -1059) 47399) ((-353 . -1296) 47376) ((-353 . -1307) 47353) ((-352 . -310) T) ((-352 . -102) T) ((-352 . -1238) T) ((-352 . -630) 47335) ((-352 . -1122) T) ((-352 . -633) 47287) ((-352 . -1059) 47254) ((-352 . -526) 47220) ((-352 . -321) 47207) ((-352 . -38) 47191) ((-352 . -668) 47165) ((-352 . -666) 47124) ((-352 . -746) T) ((-352 . -1133) T) ((-352 . -1078) T) ((-352 . -1070) T) ((-352 . -111) 47103) ((-352 . -1072) 47087) ((-352 . -1077) 47071) ((-352 . -21) T) ((-352 . -23) T) ((-352 . -25) T) ((-352 . -133) T) ((-352 . -660) 47055) ((-352 . -737) 47039) ((-352 . -917) 47020) ((-352 . -911) 46999) ((-352 . -919) 46980) ((-346 . -349) 46949) ((-346 . -133) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -1238) T) ((-346 . -630) 46931) ((-346 . -1122) T) ((-346 . -23) T) ((-346 . -666) 46913) ((-346 . -21) T) ((-345 . -1122) T) ((-345 . -630) 46895) ((-345 . -1238) T) ((-345 . -102) T) ((-343 . -861) T) ((-343 . -630) 46877) ((-343 . -1122) T) ((-343 . -102) T) ((-343 . -1238) T) ((-343 . -864) T) ((-342 . -1122) T) ((-342 . -630) 46859) ((-342 . -1238) T) ((-342 . -102) T) ((-339 . -19) 46843) ((-339 . -671) 46827) ((-339 . -300) 46804) ((-339 . -298) 46756) ((-339 . -616) 46733) ((-339 . -631) 46694) ((-339 . -501) 46678) ((-339 . -1122) 46628) ((-339 . -526) 46561) ((-339 . -321) 46499) ((-339 . -630) 46411) ((-339 . -102) 46341) ((-339 . -1238) T) ((-339 . -34) T) ((-339 . -153) 46325) ((-339 . -861) 46304) ((-339 . -864) 46283) ((-339 . -385) 46267) ((-339 . -294) 46251) ((-336 . -335) 46228) ((-336 . -633) 46212) ((-336 . -1059) 46196) ((-336 . -23) T) ((-336 . -1122) T) ((-336 . -630) 46178) ((-336 . -1238) T) ((-336 . -102) T) ((-336 . -25) T) ((-336 . -133) T) ((-334 . -21) T) ((-334 . -666) 46160) ((-334 . -23) T) ((-334 . -1122) T) ((-334 . -630) 46142) ((-334 . -1238) T) ((-334 . -102) T) ((-334 . -25) T) ((-334 . -133) T) ((-334 . -737) 46124) ((-334 . -660) 46106) ((-334 . -668) 46088) ((-334 . -1077) 46070) ((-334 . -1072) 46052) ((-334 . -111) 46027) ((-334 . -335) 46004) ((-334 . -633) 45988) ((-334 . -1059) 45972) ((-334 . -861) 45951) ((-334 . -864) 45930) ((-331 . -1271) 45914) ((-331 . -240) 45866) ((-331 . -236) 45812) ((-331 . -239) 45764) ((-331 . -298) 45722) ((-331 . -917) 45628) ((-331 . -911) 45532) ((-331 . -919) 45438) ((-331 . -994) 45400) ((-331 . -38) 45241) ((-331 . -111) 45055) ((-331 . -1072) 44890) ((-331 . -1077) 44725) ((-331 . -666) 44607) ((-331 . -668) 44504) ((-331 . -660) 44345) ((-331 . -737) 44186) ((-331 . -633) 44012) ((-331 . -147) 43991) ((-331 . -149) 43970) ((-331 . -47) 43940) ((-331 . -1267) 43910) ((-331 . -35) 43876) ((-331 . -95) 43842) ((-331 . -296) 43808) ((-331 . -505) 43774) ((-331 . -1227) 43740) ((-331 . -1224) 43706) ((-331 . -1023) 43672) ((-331 . -250) 43651) ((-331 . -302) 43602) ((-331 . -133) T) ((-331 . -25) T) ((-331 . -102) T) ((-331 . -1238) T) ((-331 . -630) 43584) ((-331 . -1122) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -1070) T) ((-331 . -1078) T) ((-331 . -1133) T) ((-331 . -746) T) ((-331 . -319) 43563) ((-331 . -464) 43542) ((-331 . -175) 43473) ((-331 . -569) 43424) ((-331 . -940) 43403) ((-331 . -1243) 43382) ((-331 . -376) 43361) ((-331 . -814) T) ((-331 . -861) T) ((-331 . -864) T) ((-331 . -816) T) ((-326 . -433) 43345) ((-326 . -633) 42909) ((-326 . -1059) 42572) ((-326 . -631) 42433) ((-326 . -899) 42417) ((-326 . -919) 42383) ((-326 . -911) 42347) ((-326 . -917) 42313) ((-326 . -485) 42292) ((-326 . -424) 42276) ((-326 . -901) 42201) ((-326 . -412) 42185) ((-326 . -658) 42091) ((-326 . -668) 41820) ((-326 . -390) 41789) ((-326 . -250) 41768) ((-326 . -111) 41657) ((-326 . -1072) 41567) ((-326 . -1077) 41477) ((-326 . -302) 41456) ((-326 . -737) 41366) ((-326 . -660) 41276) ((-326 . -666) 40931) ((-326 . -38) 40841) ((-326 . -319) 40820) ((-326 . -464) 40799) ((-326 . -175) 40778) ((-326 . -569) 40757) ((-326 . -940) 40736) ((-326 . -1243) 40715) ((-326 . -376) 40694) ((-326 . -321) 40681) ((-326 . -526) 40647) ((-326 . -310) T) ((-326 . -149) 40626) ((-326 . -147) 40605) ((-326 . -1070) 40495) ((-326 . -1078) 40385) ((-326 . -1133) 40234) ((-326 . -746) 40083) ((-326 . -133) 39954) ((-326 . -25) 39806) ((-326 . -102) T) ((-326 . -1238) T) ((-326 . -630) 39788) ((-326 . -1122) T) ((-326 . -23) 39640) ((-326 . -21) 39511) ((-326 . -29) 39481) ((-326 . -1023) 39460) ((-326 . -27) 39439) ((-326 . -1224) 39418) ((-326 . -1227) 39397) ((-326 . -505) 39376) ((-326 . -296) 39355) ((-326 . -95) 39334) ((-326 . -35) 39313) ((-326 . -162) 39292) ((-326 . -145) 39271) ((-326 . -647) 39250) ((-326 . -979) 39229) ((-326 . -1160) 39208) ((-325 . -1012) 39169) ((-325 . -1173) NIL) ((-325 . -1059) 39099) ((-325 . -633) 38982) ((-325 . -631) NIL) ((-325 . -1041) NIL) ((-325 . -929) NIL) ((-325 . -899) 38943) ((-325 . -860) NIL) ((-325 . -819) NIL) ((-325 . -816) NIL) ((-325 . -864) NIL) ((-325 . -861) NIL) ((-325 . -814) NIL) ((-325 . -812) NIL) ((-325 . -842) NIL) ((-325 . -901) NIL) ((-325 . -412) 38904) ((-325 . -658) 38865) ((-325 . -668) 38794) ((-325 . -390) 38755) ((-325 . -298) 38621) ((-325 . -321) 38517) ((-325 . -526) 38268) ((-325 . -351) 38229) ((-325 . -250) T) ((-325 . -111) 38114) ((-325 . -1072) 38043) ((-325 . -1077) 37972) ((-325 . -302) T) ((-325 . -737) 37901) ((-325 . -660) 37830) ((-325 . -666) 37744) ((-325 . -38) 37673) ((-325 . -319) T) ((-325 . -464) T) ((-325 . -175) T) ((-325 . -569) T) ((-325 . -940) T) ((-325 . -1243) T) ((-325 . -376) T) ((-325 . -240) NIL) ((-325 . -236) NIL) ((-325 . -239) NIL) ((-325 . -274) 37634) ((-325 . -911) NIL) ((-325 . -919) NIL) ((-325 . -917) NIL) ((-325 . -234) 37595) ((-325 . -149) 37551) ((-325 . -147) 37507) ((-325 . -133) T) ((-325 . -25) T) ((-325 . -102) T) ((-325 . -1238) T) ((-325 . -630) 37489) ((-325 . -1122) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -1070) T) ((-325 . -1078) T) ((-325 . -1133) T) ((-325 . -746) T) ((-324 . -1104) T) ((-324 . -502) 37470) ((-324 . -630) 37436) ((-324 . -633) 37417) ((-324 . -1122) T) ((-324 . -1238) T) ((-324 . -102) T) ((-324 . -93) T) ((-323 . -1122) T) ((-323 . -630) 37399) ((-323 . -1238) T) ((-323 . -102) T) ((-307 . -1215) 37378) ((-307 . -233) 37328) ((-307 . -107) 37278) ((-307 . -321) 37082) ((-307 . -526) 36842) ((-307 . -501) 36779) ((-307 . -153) 36729) ((-307 . -631) NIL) ((-307 . -242) 36679) ((-307 . -627) 36658) ((-307 . -300) 36637) ((-307 . -1238) T) ((-307 . -298) 36616) ((-307 . -1122) T) ((-307 . -630) 36598) ((-307 . -102) T) ((-307 . -34) T) ((-307 . -616) 36577) ((-305 . -1238) T) ((-305 . -526) 36526) ((-305 . -1122) 36308) ((-305 . -630) 36049) ((-305 . -102) 35831) ((-305 . -25) 35695) ((-305 . -21) 35578) ((-305 . -666) 35313) ((-305 . -23) 35196) ((-305 . -133) 35079) ((-305 . -1133) 34960) ((-305 . -746) 34862) ((-305 . -485) 34841) ((-305 . -1070) 34783) ((-305 . -1078) 34725) ((-305 . -668) 34585) ((-305 . -633) 34516) ((-305 . -111) 34432) ((-305 . -1072) 34353) ((-305 . -1077) 34274) ((-305 . -737) 34216) ((-305 . -660) 34158) ((-305 . -917) 34117) ((-305 . -911) 34074) ((-305 . -919) 34033) ((-305 . -1296) 34003) ((-303 . -630) 33985) ((-301 . -319) T) ((-301 . -464) T) ((-301 . -38) 33972) ((-301 . -633) 33944) ((-301 . -746) T) ((-301 . -1133) T) ((-301 . -1078) T) ((-301 . -1070) T) ((-301 . -111) 33929) ((-301 . -1072) 33916) ((-301 . -1077) 33903) ((-301 . -21) T) ((-301 . -666) 33875) ((-301 . -23) T) ((-301 . -1122) T) ((-301 . -630) 33857) ((-301 . -1238) T) ((-301 . -102) T) ((-301 . -25) T) ((-301 . -133) T) ((-301 . -668) 33844) ((-301 . -660) 33831) ((-301 . -737) 33818) ((-301 . -175) T) ((-301 . -302) T) ((-301 . -569) T) ((-301 . -940) T) ((-301 . -298) 33797) ((-292 . -630) 33779) ((-291 . -630) 33761) ((-286 . -861) T) ((-286 . -630) 33743) ((-286 . -1122) T) ((-286 . -102) T) ((-286 . -1238) T) ((-286 . -864) T) ((-285 . -852) T) ((-285 . -102) T) ((-285 . -1238) T) ((-285 . -630) 33725) ((-285 . -1122) T) ((-284 . -852) T) ((-284 . -102) T) ((-284 . -1238) T) ((-284 . -630) 33707) ((-284 . -1122) T) ((-283 . -852) T) ((-283 . -102) T) ((-283 . -1238) T) ((-283 . -630) 33689) ((-283 . -1122) T) ((-282 . -852) T) ((-282 . -102) T) ((-282 . -1238) T) ((-282 . -630) 33671) ((-282 . -1122) T) ((-281 . -852) T) ((-281 . -102) T) ((-281 . -1238) T) ((-281 . -630) 33653) ((-281 . -1122) T) ((-280 . -852) T) ((-280 . -102) T) ((-280 . -1238) T) ((-280 . -630) 33635) ((-280 . -1122) T) ((-279 . -852) T) ((-279 . -102) T) ((-279 . -1238) T) ((-279 . -630) 33617) ((-279 . -1122) T) ((-275 . -262) 33579) ((-275 . -633) 33332) ((-275 . -1059) 33176) ((-275 . -631) 32924) ((-275 . -338) 32896) ((-275 . -424) 32880) ((-275 . -38) 32729) ((-275 . -111) 32551) ((-275 . -1072) 32394) ((-275 . -1077) 32237) ((-275 . -666) 32147) ((-275 . -668) 32036) ((-275 . -660) 31885) ((-275 . -737) 31734) ((-275 . -147) 31713) ((-275 . -149) 31692) ((-275 . -175) 31603) ((-275 . -569) 31534) ((-275 . -302) 31465) ((-275 . -47) 31437) ((-275 . -390) 31421) ((-275 . -658) 31369) ((-275 . -464) 31320) ((-275 . -526) 31211) ((-275 . -917) 31157) ((-275 . -911) 31063) ((-275 . -919) 30973) ((-275 . -901) 30832) ((-275 . -929) 30811) ((-275 . -1243) 30790) ((-275 . -969) 30757) ((-275 . -321) 30744) ((-275 . -240) 30723) ((-275 . -133) T) ((-275 . -25) T) ((-275 . -102) T) ((-275 . -630) 30705) ((-275 . -1122) T) ((-275 . -23) T) ((-275 . -21) T) ((-275 . -746) T) ((-275 . -1133) T) ((-275 . -1078) T) ((-275 . -1070) T) ((-275 . -236) 30650) ((-275 . -1238) T) ((-275 . -239) 30601) ((-275 . -274) 30585) ((-275 . -234) 30569) ((-270 . -1122) T) ((-270 . -630) 30551) ((-270 . -1238) T) ((-270 . -102) T) ((-260 . -245) 30530) ((-260 . -1296) 30500) ((-260 . -819) 30479) ((-260 . -816) 30458) ((-260 . -864) 30409) ((-260 . -861) 30360) ((-260 . -814) 30339) ((-260 . -815) 30318) ((-260 . -737) 30260) ((-260 . -660) 30182) ((-260 . -300) 30159) ((-260 . -298) 30136) ((-260 . -501) 30120) ((-260 . -526) 30053) ((-260 . -321) 29991) ((-260 . -34) T) ((-260 . -616) 29968) ((-260 . -1059) 29795) ((-260 . -633) 29593) ((-260 . -424) 29562) ((-260 . -658) 29468) ((-260 . -668) 29288) ((-260 . -390) 29257) ((-260 . -381) 29236) ((-260 . -240) 29188) ((-260 . -666) 29036) ((-260 . -746) 29014) ((-260 . -1133) 28992) ((-260 . -1078) 28970) ((-260 . -1070) 28948) ((-260 . -236) 28839) ((-260 . -239) 28736) ((-260 . -274) 28705) ((-260 . -911) 28572) ((-260 . -919) 28441) ((-260 . -917) 28373) ((-260 . -234) 28342) ((-260 . -630) 28303) ((-260 . -1077) 28224) ((-260 . -1072) 28125) ((-260 . -111) 28041) ((-260 . -133) T) ((-260 . -25) T) ((-260 . -102) T) ((-260 . -1238) T) ((-260 . -1122) T) ((-260 . -23) T) ((-260 . -21) T) ((-259 . -245) 28020) ((-259 . -1296) 27990) ((-259 . -819) 27969) ((-259 . -816) 27948) ((-259 . -864) 27899) ((-259 . -861) 27850) ((-259 . -814) 27829) ((-259 . -815) 27808) ((-259 . -737) 27750) ((-259 . -660) 27672) ((-259 . -300) 27649) ((-259 . -298) 27626) ((-259 . -501) 27610) ((-259 . -526) 27543) ((-259 . -321) 27481) ((-259 . -34) T) ((-259 . -616) 27458) ((-259 . -1059) 27285) ((-259 . -633) 27083) ((-259 . -424) 27052) ((-259 . -658) 26958) ((-259 . -668) 26765) ((-259 . -390) 26734) ((-259 . -381) 26713) ((-259 . -240) 26665) ((-259 . -666) 26500) ((-259 . -746) 26478) ((-259 . -1133) 26456) ((-259 . -1078) 26434) ((-259 . -1070) 26412) ((-259 . -236) 26303) ((-259 . -239) 26200) ((-259 . -274) 26169) ((-259 . -911) 26036) ((-259 . -919) 25905) ((-259 . -917) 25837) ((-259 . -234) 25806) ((-259 . -630) 25767) ((-259 . -1077) 25688) ((-259 . -1072) 25589) ((-259 . -111) 25505) ((-259 . -133) T) ((-259 . -25) T) ((-259 . -102) T) ((-259 . -1238) T) ((-259 . -1122) T) ((-259 . -23) T) ((-259 . -21) T) ((-258 . -1122) T) ((-258 . -630) 25487) ((-258 . -1238) T) ((-258 . -102) T) ((-258 . -298) 25461) ((-257 . -189) T) ((-257 . -1122) T) ((-257 . -630) 25428) ((-257 . -1238) T) ((-257 . -102) T) ((-257 . -849) 25410) ((-256 . -1122) T) ((-256 . -630) 25392) ((-256 . -1238) T) ((-256 . -102) T) ((-255 . -969) 25337) ((-255 . -633) 25122) ((-255 . -1059) 24998) ((-255 . -1243) 24977) ((-255 . -929) 24956) ((-255 . -901) NIL) ((-255 . -919) 24933) ((-255 . -911) 24908) ((-255 . -917) 24885) ((-255 . -526) 24823) ((-255 . -464) 24774) ((-255 . -658) 24722) ((-255 . -668) 24611) ((-255 . -390) 24595) ((-255 . -47) 24552) ((-255 . -38) 24401) ((-255 . -660) 24250) ((-255 . -737) 24099) ((-255 . -302) 24030) ((-255 . -569) 23961) ((-255 . -111) 23783) ((-255 . -1072) 23626) ((-255 . -1077) 23469) ((-255 . -175) 23380) ((-255 . -149) 23359) ((-255 . -147) 23338) ((-255 . -666) 23248) ((-255 . -133) T) ((-255 . -25) T) ((-255 . -102) T) ((-255 . -1238) T) ((-255 . -630) 23230) ((-255 . -1122) T) ((-255 . -23) T) ((-255 . -21) T) ((-255 . -1070) T) ((-255 . -1078) T) ((-255 . -1133) T) ((-255 . -746) T) ((-255 . -424) 23214) ((-255 . -338) 23171) ((-255 . -321) 23158) ((-255 . -631) 23019) ((-252 . -686) 23003) ((-252 . -1277) 22987) ((-252 . -1031) 22971) ((-252 . -1171) 22955) ((-252 . -861) 22934) ((-252 . -864) 22913) ((-252 . -385) 22897) ((-252 . -671) 22881) ((-252 . -300) 22858) ((-252 . -298) 22810) ((-252 . -616) 22787) ((-252 . -631) 22748) ((-252 . -501) 22732) ((-252 . -1122) 22682) ((-252 . -526) 22615) ((-252 . -321) 22553) ((-252 . -630) 22445) ((-252 . -102) 22375) ((-252 . -1238) T) ((-252 . -34) T) ((-252 . -153) 22359) ((-252 . -294) 22343) ((-252 . -502) 22320) ((-252 . -633) 22297) ((-246 . -245) 22276) ((-246 . -1296) 22246) ((-246 . -819) 22225) ((-246 . -816) 22204) ((-246 . -864) 22155) ((-246 . -861) 22106) ((-246 . -814) 22085) ((-246 . -815) 22064) ((-246 . -737) 22006) ((-246 . -660) 21928) ((-246 . -300) 21905) ((-246 . -298) 21882) ((-246 . -501) 21866) ((-246 . -526) 21799) ((-246 . -321) 21737) ((-246 . -34) T) ((-246 . -616) 21714) ((-246 . -1059) 21541) ((-246 . -633) 21339) ((-246 . -424) 21308) ((-246 . -658) 21214) ((-246 . -668) 21047) ((-246 . -390) 21016) ((-246 . -381) 20995) ((-246 . -240) 20947) ((-246 . -666) 20726) ((-246 . -746) 20704) ((-246 . -1133) 20682) ((-246 . -1078) 20660) ((-246 . -1070) 20638) ((-246 . -236) 20529) ((-246 . -239) 20426) ((-246 . -274) 20395) ((-246 . -911) 20262) ((-246 . -919) 20131) ((-246 . -917) 20063) ((-246 . -234) 20032) ((-246 . -630) 19725) ((-246 . -1077) 19646) ((-246 . -1072) 19547) ((-246 . -111) 19463) ((-246 . -133) 19334) ((-246 . -25) 19167) ((-246 . -102) 18899) ((-246 . -1238) T) ((-246 . -1122) 18651) ((-246 . -23) 18503) ((-246 . -21) 18414) ((-231 . -706) 18372) ((-231 . -501) 18356) ((-231 . -1122) 18334) ((-231 . -526) 18267) ((-231 . -321) 18205) ((-231 . -630) 18137) ((-231 . -102) 18087) ((-231 . -1238) T) ((-231 . -34) T) ((-231 . -57) 18045) ((-229 . -416) T) ((-229 . -149) T) ((-229 . -633) 17995) ((-229 . -668) 17960) ((-229 . -666) 17910) ((-229 . -133) T) ((-229 . -25) T) ((-229 . -102) T) ((-229 . -1238) T) ((-229 . -630) 17892) ((-229 . -1122) T) ((-229 . -23) T) ((-229 . -21) T) ((-229 . -746) T) ((-229 . -1133) T) ((-229 . -1078) T) ((-229 . -1070) T) ((-229 . -631) 17822) ((-229 . -376) T) ((-229 . -1243) T) ((-229 . -940) T) ((-229 . -569) T) ((-229 . -175) T) ((-229 . -737) 17787) ((-229 . -660) 17752) ((-229 . -38) 17717) ((-229 . -464) T) ((-229 . -319) T) ((-229 . -111) 17666) ((-229 . -1072) 17631) ((-229 . -1077) 17596) ((-229 . -302) T) ((-229 . -250) T) ((-229 . -860) T) ((-229 . -819) T) ((-229 . -816) T) ((-229 . -864) T) ((-229 . -861) T) ((-229 . -814) T) ((-229 . -812) T) ((-229 . -901) 17578) ((-229 . -1023) T) ((-229 . -1041) T) ((-229 . -1059) 17538) ((-229 . -1081) T) ((-229 . -240) T) ((-229 . -236) 17525) ((-229 . -239) T) ((-229 . -1224) T) ((-229 . -1227) T) ((-229 . -505) T) ((-229 . -296) T) ((-229 . -95) T) ((-229 . -35) T) ((-227 . -638) 17502) ((-227 . -633) 17464) ((-227 . -668) 17431) ((-227 . -666) 17383) ((-227 . -746) T) ((-227 . -1133) T) ((-227 . -1078) T) ((-227 . -1070) T) ((-227 . -21) T) ((-227 . -23) T) ((-227 . -1122) T) ((-227 . -630) 17365) ((-227 . -1238) T) ((-227 . -102) T) ((-227 . -25) T) ((-227 . -133) T) ((-227 . -1059) 17342) ((-226 . -263) 17326) ((-226 . -1142) 17310) ((-226 . -107) 17294) ((-226 . -34) T) ((-226 . -1238) T) ((-226 . -102) 17244) ((-226 . -630) 17176) ((-226 . -321) 17114) ((-226 . -526) 17047) ((-226 . -1122) 17025) ((-226 . -501) 17009) ((-226 . -1016) 16993) ((-222 . -1104) T) ((-222 . -502) 16974) ((-222 . -630) 16940) ((-222 . -633) 16921) ((-222 . -1122) T) ((-222 . -1238) T) ((-222 . -102) T) ((-222 . -93) T) ((-221 . -1012) 16903) ((-221 . -1173) T) ((-221 . -633) 16853) ((-221 . -1059) 16813) ((-221 . -631) 16743) ((-221 . -1041) T) ((-221 . -929) NIL) ((-221 . -899) 16725) ((-221 . -860) T) ((-221 . -819) T) ((-221 . -816) T) ((-221 . -864) T) ((-221 . -861) T) ((-221 . -814) T) ((-221 . -812) T) ((-221 . -842) T) ((-221 . -901) 16707) ((-221 . -412) 16689) ((-221 . -658) 16671) ((-221 . -390) 16653) ((-221 . -298) NIL) ((-221 . -321) NIL) ((-221 . -526) NIL) ((-221 . -351) 16635) ((-221 . -250) T) ((-221 . -111) 16562) ((-221 . -1072) 16512) ((-221 . -1077) 16462) ((-221 . -302) T) ((-221 . -737) 16412) ((-221 . -660) 16362) ((-221 . -668) 16312) ((-221 . -666) 16262) ((-221 . -38) 16212) ((-221 . -319) T) ((-221 . -464) T) ((-221 . -175) T) ((-221 . -569) T) ((-221 . -940) T) ((-221 . -1243) T) ((-221 . -376) T) ((-221 . -240) T) ((-221 . -236) 16199) ((-221 . -239) T) ((-221 . -274) 16181) ((-221 . -911) NIL) ((-221 . -919) NIL) ((-221 . -917) NIL) ((-221 . -234) 16163) ((-221 . -149) T) ((-221 . -147) NIL) ((-221 . -133) T) ((-221 . -25) T) ((-221 . -102) T) ((-221 . -1238) T) ((-221 . -630) 16104) ((-221 . -1122) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -1070) T) ((-221 . -1078) T) ((-221 . -1133) T) ((-221 . -746) T) ((-218 . -857) T) ((-218 . -864) T) ((-218 . -861) T) ((-218 . -1122) T) ((-218 . -630) 16086) ((-218 . -1238) T) ((-218 . -102) T) ((-218 . -381) T) ((-217 . -1122) T) ((-217 . -630) 16068) ((-217 . -1238) T) ((-217 . -102) T) ((-217 . -633) 16045) ((-216 . -1122) T) ((-216 . -630) 16027) ((-216 . -1238) T) ((-216 . -102) T) ((-215 . -912) T) ((-215 . -102) T) ((-215 . -1238) T) ((-215 . -630) 16009) ((-215 . -1122) T) ((-214 . -912) T) ((-214 . -102) T) ((-214 . -1238) T) ((-214 . -630) 15991) ((-214 . -1122) T) ((-212 . -822) T) ((-212 . -102) T) ((-212 . -1238) T) ((-212 . -630) 15973) ((-212 . -1122) T) ((-211 . -822) T) ((-211 . -102) T) ((-211 . -1238) T) ((-211 . -630) 15955) ((-211 . -1122) T) ((-210 . -822) T) ((-210 . -102) T) ((-210 . -1238) T) ((-210 . -630) 15937) ((-210 . -1122) T) ((-209 . -822) T) ((-209 . -102) T) ((-209 . -1238) T) ((-209 . -630) 15919) ((-209 . -1122) T) ((-206 . -807) T) ((-206 . -102) T) ((-206 . -1238) T) ((-206 . -630) 15901) ((-206 . -1122) T) ((-205 . -807) T) ((-205 . -102) T) ((-205 . -1238) T) ((-205 . -630) 15883) ((-205 . -1122) T) ((-204 . -807) T) ((-204 . -102) T) ((-204 . -1238) T) ((-204 . -630) 15865) ((-204 . -1122) T) ((-203 . -807) T) ((-203 . -102) T) ((-203 . -1238) T) ((-203 . -630) 15847) ((-203 . -1122) T) ((-202 . -807) T) ((-202 . -102) T) ((-202 . -1238) T) ((-202 . -630) 15829) ((-202 . -1122) T) ((-201 . -807) T) ((-201 . -102) T) ((-201 . -1238) T) ((-201 . -630) 15811) ((-201 . -1122) T) ((-200 . -807) T) ((-200 . -102) T) ((-200 . -1238) T) ((-200 . -630) 15793) ((-200 . -1122) T) ((-199 . -807) T) ((-199 . -102) T) ((-199 . -1238) T) ((-199 . -630) 15775) ((-199 . -1122) T) ((-198 . -807) T) ((-198 . -102) T) ((-198 . -1238) T) ((-198 . -630) 15757) ((-198 . -1122) T) ((-197 . -807) T) ((-197 . -102) T) ((-197 . -1238) T) ((-197 . -630) 15739) ((-197 . -1122) T) ((-196 . -807) T) ((-196 . -102) T) ((-196 . -1238) T) ((-196 . -630) 15721) ((-196 . -1122) T) ((-190 . -1122) T) ((-190 . -630) 15703) ((-190 . -1238) T) ((-190 . -102) T) ((-187 . -1122) T) ((-187 . -630) 15685) ((-187 . -1238) T) ((-187 . -102) T) ((-186 . -189) T) ((-186 . -1122) T) ((-186 . -630) 15667) ((-186 . -1238) T) ((-186 . -102) T) ((-186 . -849) 15649) ((-183 . -1104) T) ((-183 . -502) 15630) ((-183 . -630) 15596) ((-183 . -633) 15577) ((-183 . -1122) T) ((-183 . -1238) T) ((-183 . -102) T) ((-183 . -93) T) ((-178 . -630) 15559) ((-177 . -38) 15491) ((-177 . -633) 15408) ((-177 . -668) 15340) ((-177 . -666) 15257) ((-177 . -746) T) ((-177 . -1133) T) ((-177 . -1078) T) ((-177 . -1070) T) ((-177 . -111) 15156) ((-177 . -1072) 15088) ((-177 . -1077) 15020) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1122) T) ((-177 . -630) 15002) ((-177 . -1238) T) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -133) T) ((-177 . -660) 14934) ((-177 . -737) 14866) ((-177 . -376) T) ((-177 . -1243) T) ((-177 . -940) T) ((-177 . -569) T) ((-177 . -175) T) ((-177 . -464) T) ((-177 . -319) T) ((-177 . -302) T) ((-177 . -250) T) ((-174 . -1122) T) ((-174 . -630) 14848) ((-174 . -1238) T) ((-174 . -102) T) ((-171 . -168) 14832) ((-171 . -35) 14810) ((-171 . -95) 14788) ((-171 . -296) 14766) ((-171 . -505) 14744) ((-171 . -1227) 14722) ((-171 . -1224) 14700) ((-171 . -1023) 14651) ((-171 . -929) 14604) ((-171 . -631) 14370) ((-171 . -899) 14354) ((-171 . -381) 14305) ((-171 . -363) 14284) ((-171 . -1173) 14263) ((-171 . -414) 14242) ((-171 . -422) 14213) ((-171 . -38) 14041) ((-171 . -111) 13930) ((-171 . -1072) 13840) ((-171 . -1077) 13750) ((-171 . -660) 13578) ((-171 . -737) 13406) ((-171 . -383) 13377) ((-171 . -744) 13348) ((-171 . -1059) 13244) ((-171 . -633) 13022) ((-171 . -424) 13006) ((-171 . -901) 12931) ((-171 . -412) 12915) ((-171 . -658) 12863) ((-171 . -668) 12737) ((-171 . -666) 12632) ((-171 . -390) 12616) ((-171 . -298) 12574) ((-171 . -321) 12539) ((-171 . -526) 12451) ((-171 . -351) 12435) ((-171 . -250) 12386) ((-171 . -1243) 12291) ((-171 . -376) 12242) ((-171 . -940) 12173) ((-171 . -569) 12084) ((-171 . -302) 11995) ((-171 . -464) 11926) ((-171 . -319) 11857) ((-171 . -240) 11808) ((-171 . -236) 11733) ((-171 . -239) 11664) ((-171 . -274) 11648) ((-171 . -911) 11569) ((-171 . -919) 11492) ((-171 . -917) 11451) ((-171 . -234) 11435) ((-171 . -175) T) ((-171 . -149) 11414) ((-171 . -1070) T) ((-171 . -1078) T) ((-171 . -1133) T) ((-171 . -746) T) ((-171 . -21) T) ((-171 . -23) T) ((-171 . -1122) T) ((-171 . -630) 11396) ((-171 . -1238) T) ((-171 . -102) T) ((-171 . -25) T) ((-171 . -133) T) ((-171 . -147) 11347) ((-164 . -1104) T) ((-164 . -502) 11328) ((-164 . -630) 11294) ((-164 . -633) 11275) ((-164 . -1122) T) ((-164 . -1238) T) ((-164 . -102) T) ((-164 . -93) T) ((-163 . -1122) T) ((-163 . -630) 11257) ((-163 . -1238) T) ((-163 . -102) T) ((-159 . -25) T) ((-159 . -102) T) ((-159 . -1238) T) ((-159 . -630) 11239) ((-159 . -1122) T) ((-158 . -1104) T) ((-158 . -502) 11220) ((-158 . -630) 11186) ((-158 . -633) 11167) ((-158 . -1122) T) ((-158 . -1238) T) ((-158 . -102) T) ((-158 . -93) T) ((-156 . -1104) T) ((-156 . -502) 11148) ((-156 . -630) 11114) ((-156 . -633) 11095) ((-156 . -1122) T) ((-156 . -1238) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1070) T) ((-154 . -1078) T) ((-154 . -1133) T) ((-154 . -746) T) ((-154 . -21) T) ((-154 . -666) 11054) ((-154 . -23) T) ((-154 . -1122) T) ((-154 . -630) 11036) ((-154 . -1238) T) ((-154 . -102) T) ((-154 . -25) T) ((-154 . -133) T) ((-154 . -668) 11010) ((-154 . -633) 10979) ((-154 . -38) 10963) ((-154 . -111) 10942) ((-154 . -1072) 10926) ((-154 . -1077) 10910) ((-154 . -660) 10894) ((-154 . -737) 10878) ((-154 . -1296) 10862) ((-146 . -857) T) ((-146 . -864) T) ((-146 . -861) T) ((-146 . -1122) T) ((-146 . -630) 10844) ((-146 . -1238) T) ((-146 . -102) T) ((-146 . -381) T) ((-143 . -1122) T) ((-143 . -630) 10826) ((-143 . -1238) T) ((-143 . -102) T) ((-143 . -631) 10785) ((-143 . -438) 10767) ((-143 . -1120) 10749) ((-143 . -381) T) ((-143 . -242) 10731) ((-143 . -153) 10713) ((-143 . -501) 10695) ((-143 . -526) NIL) ((-143 . -321) NIL) ((-143 . -34) T) ((-143 . -107) 10677) ((-143 . -233) 10659) ((-142 . -630) 10641) ((-141 . -189) T) ((-141 . -1122) T) ((-141 . -630) 10608) ((-141 . -1238) T) ((-141 . -102) T) ((-141 . -849) 10590) ((-140 . -1104) T) ((-140 . -502) 10571) ((-140 . -630) 10537) ((-140 . -633) 10518) ((-140 . -1122) T) ((-140 . -1238) T) ((-140 . -102) T) ((-140 . -93) T) ((-139 . -1104) T) ((-139 . -502) 10499) ((-139 . -630) 10465) ((-139 . -633) 10446) ((-139 . -1122) T) ((-139 . -1238) T) ((-139 . -102) T) ((-139 . -93) T) ((-137 . -477) 10423) ((-137 . -633) 10407) ((-137 . -1059) 10391) ((-137 . -1122) T) ((-137 . -630) 10373) ((-137 . -1238) T) ((-137 . -102) T) ((-137 . -482) 10328) ((-137 . -298) 10305) ((-136 . -861) T) ((-136 . -630) 10287) ((-136 . -1122) T) ((-136 . -102) T) ((-136 . -1238) T) ((-136 . -864) T) ((-136 . -23) T) ((-136 . -25) T) ((-136 . -746) T) ((-136 . -1133) T) ((-136 . -1059) 10269) ((-136 . -633) 10251) ((-135 . -1104) T) ((-135 . -502) 10232) ((-135 . -630) 10198) ((-135 . -633) 10179) ((-135 . -1122) T) ((-135 . -1238) T) ((-135 . -102) T) ((-135 . -93) T) ((-132 . -1122) T) ((-132 . -630) 10161) ((-132 . -1238) T) ((-132 . -102) T) ((-131 . -19) 10143) ((-131 . -671) 10125) ((-131 . -300) 10100) ((-131 . -298) 10050) ((-131 . -616) 10025) ((-131 . -631) NIL) ((-131 . -501) 10007) ((-131 . -1122) T) ((-131 . -526) NIL) ((-131 . -321) NIL) ((-131 . -630) 9951) ((-131 . -102) T) ((-131 . -1238) T) ((-131 . -34) T) ((-131 . -153) 9933) ((-131 . -861) T) ((-131 . -864) T) ((-131 . -385) 9915) ((-130 . -857) T) ((-130 . -864) T) ((-130 . -861) T) ((-130 . -1122) T) ((-130 . -630) 9897) ((-130 . -1238) T) ((-130 . -102) T) ((-130 . -381) T) ((-130 . -682) T) ((-129 . -127) 9881) ((-129 . -1031) 9865) ((-129 . -34) T) ((-129 . -1238) T) ((-129 . -102) 9815) ((-129 . -630) 9747) ((-129 . -321) 9685) ((-129 . -526) 9618) ((-129 . -1122) 9596) ((-129 . -501) 9580) ((-129 . -121) 9564) ((-128 . -127) 9548) ((-128 . -1031) 9532) ((-128 . -34) T) ((-128 . -1238) T) ((-128 . -102) 9482) ((-128 . -630) 9414) ((-128 . -321) 9352) ((-128 . -526) 9285) ((-128 . -1122) 9263) ((-128 . -501) 9247) ((-128 . -121) 9231) ((-123 . -127) 9215) ((-123 . -1031) 9199) ((-123 . -34) T) ((-123 . -1238) T) ((-123 . -102) 9149) ((-123 . -630) 9081) ((-123 . -321) 9019) ((-123 . -526) 8952) ((-123 . -1122) 8930) ((-123 . -501) 8914) ((-123 . -121) 8898) ((-119 . -1012) 8875) ((-119 . -1173) NIL) ((-119 . -1059) 8852) ((-119 . -633) 8782) ((-119 . -631) NIL) ((-119 . -1041) NIL) ((-119 . -929) NIL) ((-119 . -899) 8759) ((-119 . -860) NIL) ((-119 . -819) NIL) ((-119 . -816) NIL) ((-119 . -864) NIL) ((-119 . -861) NIL) ((-119 . -814) NIL) ((-119 . -812) NIL) ((-119 . -842) NIL) ((-119 . -901) NIL) ((-119 . -412) 8736) ((-119 . -658) 8713) ((-119 . -668) 8658) ((-119 . -390) 8635) ((-119 . -298) 8565) ((-119 . -321) 8509) ((-119 . -526) 8372) ((-119 . -351) 8349) ((-119 . -250) T) ((-119 . -111) 8266) ((-119 . -1072) 8211) ((-119 . -1077) 8156) ((-119 . -302) T) ((-119 . -737) 8101) ((-119 . -660) 8046) ((-119 . -666) 7976) ((-119 . -38) 7921) ((-119 . -319) T) ((-119 . -464) T) ((-119 . -175) T) ((-119 . -569) T) ((-119 . -940) T) ((-119 . -1243) T) ((-119 . -376) T) ((-119 . -240) NIL) ((-119 . -236) NIL) ((-119 . -239) NIL) ((-119 . -274) 7898) ((-119 . -911) NIL) ((-119 . -919) NIL) ((-119 . -917) NIL) ((-119 . -234) 7875) ((-119 . -149) T) ((-119 . -147) NIL) ((-119 . -133) T) ((-119 . -25) T) ((-119 . -102) T) ((-119 . -1238) T) ((-119 . -630) 7857) ((-119 . -1122) T) ((-119 . -23) T) ((-119 . -21) T) ((-119 . -1070) T) ((-119 . -1078) T) ((-119 . -1133) T) ((-119 . -746) T) ((-118 . -884) 7841) ((-118 . -940) T) ((-118 . -569) T) ((-118 . -302) T) ((-118 . -175) T) ((-118 . -633) 7813) ((-118 . -737) 7800) ((-118 . -660) 7787) ((-118 . -1077) 7774) ((-118 . -1072) 7761) ((-118 . -111) 7746) ((-118 . -38) 7733) ((-118 . -464) T) ((-118 . -319) T) ((-118 . -1070) T) ((-118 . -1078) T) ((-118 . -1133) T) ((-118 . -746) T) ((-118 . -21) T) ((-118 . -666) 7705) ((-118 . -23) T) ((-118 . -1122) T) ((-118 . -630) 7687) ((-118 . -1238) T) ((-118 . -102) T) ((-118 . -25) T) ((-118 . -133) T) ((-118 . -668) 7674) ((-118 . -149) T) ((-115 . -861) T) ((-115 . -630) 7656) ((-115 . -1122) T) ((-115 . -102) T) ((-115 . -1238) T) ((-115 . -864) T) ((-115 . -849) 7637) ((-114 . -857) T) ((-114 . -864) T) ((-114 . -861) T) ((-114 . -1122) T) ((-114 . -630) 7619) ((-114 . -1238) T) ((-114 . -102) T) ((-114 . -381) T) ((-114 . -988) T) ((-114 . -682) T) ((-114 . -113) T) ((-114 . -631) 7601) ((-110 . -125) T) ((-110 . -385) 7583) ((-110 . -864) T) ((-110 . -861) T) ((-110 . -153) 7565) ((-110 . -34) T) ((-110 . -102) T) ((-110 . -630) 7547) ((-110 . -321) NIL) ((-110 . -526) NIL) ((-110 . -1122) T) ((-110 . -501) 7529) ((-110 . -631) 7511) ((-110 . -298) 7461) ((-110 . -616) 7436) ((-110 . -300) 7411) ((-110 . -671) 7393) ((-110 . -19) 7375) ((-110 . -682) T) ((-110 . -1238) T) ((-110 . -113) T) ((-109 . -630) 7357) ((-108 . -1012) 7339) ((-108 . -1173) T) ((-108 . -633) 7289) ((-108 . -1059) 7249) ((-108 . -631) 7179) ((-108 . -1041) T) ((-108 . -929) NIL) ((-108 . -899) 7161) ((-108 . -860) T) ((-108 . -819) T) ((-108 . -816) T) ((-108 . -864) T) ((-108 . -861) T) ((-108 . -814) T) ((-108 . -812) T) ((-108 . -842) T) ((-108 . -901) 7143) ((-108 . -412) 7125) ((-108 . -658) 7107) ((-108 . -390) 7089) ((-108 . -298) NIL) ((-108 . -321) NIL) ((-108 . -526) NIL) ((-108 . -351) 7071) ((-108 . -250) T) ((-108 . -111) 6998) ((-108 . -1072) 6948) ((-108 . -1077) 6898) ((-108 . -302) T) ((-108 . -737) 6848) ((-108 . -660) 6798) ((-108 . -668) 6748) ((-108 . -666) 6698) ((-108 . -38) 6648) ((-108 . -319) T) ((-108 . -464) T) ((-108 . -175) T) ((-108 . -569) T) ((-108 . -940) T) ((-108 . -1243) T) ((-108 . -376) T) ((-108 . -240) T) ((-108 . -236) 6635) ((-108 . -239) T) ((-108 . -274) 6617) ((-108 . -911) NIL) ((-108 . -919) NIL) ((-108 . -917) NIL) ((-108 . -234) 6599) ((-108 . -149) T) ((-108 . -147) NIL) ((-108 . -133) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -1238) T) ((-108 . -630) 6541) ((-108 . -1122) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1070) T) ((-108 . -1078) T) ((-108 . -1133) T) ((-108 . -746) T) ((-105 . -1122) T) ((-105 . -630) 6523) ((-105 . -1238) T) ((-105 . -102) T) ((-103 . -127) 6507) ((-103 . -1031) 6491) ((-103 . -34) T) ((-103 . -1238) T) ((-103 . -102) 6441) ((-103 . -630) 6373) ((-103 . -321) 6311) ((-103 . -526) 6244) ((-103 . -1122) 6222) ((-103 . -501) 6206) ((-103 . -121) 6190) ((-99 . -485) T) ((-99 . -1133) T) ((-99 . -102) T) ((-99 . -1238) T) ((-99 . -630) 6172) ((-99 . -1122) T) ((-99 . -746) T) ((-99 . -298) 6151) ((-97 . -1122) T) ((-97 . -630) 6133) ((-97 . -1238) T) ((-97 . -102) T) ((-96 . -1104) T) ((-96 . -502) 6114) ((-96 . -630) 6080) ((-96 . -633) 6061) ((-96 . -1122) T) ((-96 . -1238) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1142) 6045) ((-91 . -501) 6029) ((-91 . -1122) 6007) ((-91 . -526) 5940) ((-91 . -321) 5878) ((-91 . -630) 5810) ((-91 . -102) 5760) ((-91 . -1238) T) ((-91 . -34) T) ((-91 . -107) 5744) ((-89 . -409) T) ((-89 . -630) 5726) ((-89 . -1238) T) ((-89 . -408) T) ((-88 . -398) T) ((-88 . -630) 5708) ((-88 . -1238) T) ((-88 . -408) T) ((-87 . -452) T) ((-87 . -630) 5690) ((-87 . -1238) T) ((-87 . -408) T) ((-86 . -453) T) ((-86 . -630) 5672) ((-86 . -1238) T) ((-86 . -408) T) ((-85 . -398) T) ((-85 . -630) 5654) ((-85 . -1238) T) ((-85 . -408) T) ((-84 . -398) T) ((-84 . -630) 5636) ((-84 . -1238) T) ((-84 . -408) T) ((-83 . -453) T) ((-83 . -630) 5618) ((-83 . -1238) T) ((-83 . -408) T) ((-82 . -453) T) ((-82 . -630) 5600) ((-82 . -1238) T) ((-82 . -408) T) ((-81 . -453) T) ((-81 . -630) 5582) ((-81 . -1238) T) ((-81 . -408) T) ((-81 . -633) 5523) ((-80 . -453) T) ((-80 . -630) 5505) ((-80 . -1238) T) ((-80 . -408) T) ((-79 . -453) T) ((-79 . -630) 5487) ((-79 . -1238) T) ((-79 . -408) T) ((-78 . -409) T) ((-78 . -630) 5469) ((-78 . -1238) T) ((-78 . -408) T) ((-77 . -453) T) ((-77 . -630) 5451) ((-77 . -1238) T) ((-77 . -408) T) ((-76 . -453) T) ((-76 . -630) 5433) ((-76 . -1238) T) ((-76 . -408) T) ((-75 . -409) T) ((-75 . -630) 5415) ((-75 . -1238) T) ((-75 . -408) T) ((-74 . -453) T) ((-74 . -630) 5397) ((-74 . -1238) T) ((-74 . -408) T) ((-73 . -396) T) ((-73 . -630) 5379) ((-73 . -1238) T) ((-73 . -408) T) ((-72 . -408) T) ((-72 . -1238) T) ((-72 . -630) 5361) ((-71 . -453) T) ((-71 . -630) 5343) ((-71 . -1238) T) ((-71 . -408) T) ((-70 . -396) T) ((-70 . -630) 5325) ((-70 . -1238) T) ((-70 . -408) T) ((-69 . -408) T) ((-69 . -1238) T) ((-69 . -630) 5307) ((-68 . -396) T) ((-68 . -630) 5289) ((-68 . -1238) T) ((-68 . -408) T) ((-67 . -396) T) ((-67 . -630) 5271) ((-67 . -1238) T) ((-67 . -408) T) ((-66 . -409) T) ((-66 . -630) 5253) ((-66 . -1238) T) ((-66 . -408) T) ((-65 . -398) T) ((-65 . -630) 5235) ((-65 . -1238) T) ((-65 . -408) T) ((-65 . -633) 5164) ((-64 . -453) T) ((-64 . -630) 5146) ((-64 . -1238) T) ((-64 . -408) T) ((-63 . -408) T) ((-63 . -1238) T) ((-63 . -630) 5128) ((-62 . -453) T) ((-62 . -630) 5110) ((-62 . -1238) T) ((-62 . -408) T) ((-61 . -409) T) ((-61 . -630) 5092) ((-61 . -1238) T) ((-61 . -408) T) ((-60 . -57) 5054) ((-60 . -34) T) ((-60 . -1238) T) ((-60 . -102) 5004) ((-60 . -630) 4936) ((-60 . -321) 4874) ((-60 . -526) 4807) ((-60 . -1122) 4785) ((-60 . -501) 4769) ((-58 . -19) 4753) ((-58 . -671) 4737) ((-58 . -300) 4714) ((-58 . -298) 4666) ((-58 . -616) 4643) ((-58 . -631) 4604) ((-58 . -501) 4588) ((-58 . -1122) 4538) ((-58 . -526) 4471) ((-58 . -321) 4409) ((-58 . -630) 4321) ((-58 . -102) 4251) ((-58 . -1238) T) ((-58 . -34) T) ((-58 . -153) 4235) ((-58 . -861) 4214) ((-58 . -864) 4193) ((-58 . -385) 4177) ((-55 . -1122) T) ((-55 . -630) 4159) ((-55 . -1238) T) ((-55 . -102) T) ((-55 . -1059) 4141) ((-55 . -633) 4123) ((-51 . -1122) T) ((-51 . -630) 4105) ((-51 . -1238) T) ((-51 . -102) T) ((-50 . -638) 4089) ((-50 . -633) 4058) ((-50 . -668) 4032) ((-50 . -666) 3991) ((-50 . -746) T) ((-50 . -1133) T) ((-50 . -1078) T) ((-50 . -1070) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1122) T) ((-50 . -630) 3973) ((-50 . -1238) T) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -133) T) ((-50 . -1059) 3957) ((-49 . -1122) T) ((-49 . -630) 3939) ((-49 . -1238) T) ((-49 . -102) T) ((-48 . -310) T) ((-48 . -102) T) ((-48 . -1238) T) ((-48 . -630) 3921) ((-48 . -1122) T) ((-48 . -633) 3854) ((-48 . -1059) 3797) ((-48 . -526) 3763) ((-48 . -321) 3750) ((-48 . -27) T) ((-48 . -1023) T) ((-48 . -250) T) ((-48 . -111) 3699) ((-48 . -1072) 3664) ((-48 . -1077) 3629) ((-48 . -302) T) ((-48 . -737) 3594) ((-48 . -660) 3559) ((-48 . -668) 3509) ((-48 . -666) 3459) ((-48 . -133) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1070) T) ((-48 . -1078) T) ((-48 . -1133) T) ((-48 . -746) T) ((-48 . -38) 3424) ((-48 . -319) T) ((-48 . -464) T) ((-48 . -175) T) ((-48 . -569) T) ((-48 . -940) T) ((-48 . -1243) T) ((-48 . -376) T) ((-48 . -658) 3384) ((-48 . -1041) T) ((-48 . -631) 3329) ((-48 . -149) T) ((-48 . -240) T) ((-48 . -236) 3316) ((-48 . -239) T) ((-45 . -36) 3295) ((-45 . -616) 3220) ((-45 . -321) 3024) ((-45 . -526) 2784) ((-45 . -501) 2721) ((-45 . -298) 2621) ((-45 . -300) 2546) ((-45 . -627) 2525) ((-45 . -242) 2475) ((-45 . -107) 2425) ((-45 . -233) 2375) ((-45 . -1215) 2354) ((-45 . -294) 2304) ((-45 . -153) 2254) ((-45 . -34) T) ((-45 . -1238) T) ((-45 . -102) T) ((-45 . -630) 2236) ((-45 . -1122) T) ((-45 . -631) NIL) ((-45 . -671) 2186) ((-45 . -385) 2136) ((-45 . -864) NIL) ((-45 . -861) NIL) ((-45 . -1171) 2086) ((-45 . -1031) 2036) ((-45 . -1277) 1986) ((-45 . -686) 1936) ((-44 . -430) 1920) ((-44 . -764) 1904) ((-44 . -740) T) ((-44 . -781) T) ((-44 . -111) 1883) ((-44 . -1072) 1867) ((-44 . -1077) 1851) ((-44 . -21) T) ((-44 . -666) 1794) ((-44 . -23) T) ((-44 . -1122) T) ((-44 . -630) 1776) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -133) T) ((-44 . -668) 1734) ((-44 . -660) 1718) ((-44 . -737) 1702) ((-44 . -380) 1686) ((-44 . -1238) T) ((-44 . -298) 1663) ((-40 . -355) 1637) ((-40 . -175) T) ((-40 . -633) 1567) ((-40 . -746) T) ((-40 . -1133) T) ((-40 . -1078) T) ((-40 . -1070) T) ((-40 . -668) 1469) ((-40 . -666) 1399) ((-40 . -133) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -1238) T) ((-40 . -630) 1381) ((-40 . -1122) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1077) 1326) ((-40 . -1072) 1271) ((-40 . -111) 1188) ((-40 . -631) 1172) ((-40 . -234) 1149) ((-40 . -917) 1101) ((-40 . -919) 1010) ((-40 . -911) 917) ((-40 . -274) 894) ((-40 . -239) 831) ((-40 . -236) 762) ((-40 . -240) 734) ((-40 . -376) T) ((-40 . -1243) T) ((-40 . -940) T) ((-40 . -569) T) ((-40 . -737) 679) ((-40 . -660) 624) ((-40 . -38) 569) ((-40 . -464) T) ((-40 . -319) T) ((-40 . -302) T) ((-40 . -250) T) ((-40 . -381) NIL) ((-40 . -363) NIL) ((-40 . -1173) NIL) ((-40 . -147) 541) ((-40 . -414) NIL) ((-40 . -422) 513) ((-40 . -149) 485) ((-40 . -383) 457) ((-40 . -390) 434) ((-40 . -658) 368) ((-40 . -424) 345) ((-40 . -1059) 220) ((-40 . -744) 192) ((-31 . -1104) T) ((-31 . -502) 173) ((-31 . -630) 139) ((-31 . -633) 120) ((-31 . -1122) T) ((-31 . -1238) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -974) T) ((-30 . -630) 102) ((0 . |EnumerationCategory|) T) ((0 . -630) 84) ((0 . -1122) T) ((0 . -102) T) ((0 . -1238) T) ((-2 . |RecordCategory|) T) ((-2 . -630) 66) ((-2 . -1122) T) ((-2 . -102) T) ((-2 . -1238) T) ((-3 . |UnionCategory|) T) ((-3 . -630) 48) ((-3 . -1122) T) ((-3 . -102) T) ((-3 . -1238) T) ((-1 . -1122) T) ((-1 . -630) 30) ((-1 . -1238) T) ((-1 . -102) T))
\ No newline at end of file +(((-3) T) ((-2) T) ((-1) T) ((0) T) ((-1317 . -175) T) ((-1317 . -632) 207038) ((-1317 . -745) T) ((-1317 . -1132) T) ((-1317 . -1077) T) ((-1317 . -1069) T) ((-1317 . -667) 207025) ((-1317 . -665) 206997) ((-1317 . -133) T) ((-1317 . -25) T) ((-1317 . -102) T) ((-1317 . -1237) T) ((-1317 . -629) 206979) ((-1317 . -1121) T) ((-1317 . -23) T) ((-1317 . -21) T) ((-1317 . -1076) 206966) ((-1317 . -1071) 206953) ((-1317 . -111) 206938) ((-1317 . -381) T) ((-1317 . -630) 206920) ((-1317 . -1172) T) ((-1313 . -1121) T) ((-1313 . -629) 206887) ((-1313 . -1237) T) ((-1313 . -102) T) ((-1313 . -502) 206869) ((-1313 . -632) 206851) ((-1312 . -1310) 206830) ((-1312 . -1058) 206807) ((-1312 . -632) 206756) ((-1312 . -1069) T) ((-1312 . -1077) T) ((-1312 . -1132) T) ((-1312 . -745) T) ((-1312 . -21) T) ((-1312 . -665) 206715) ((-1312 . -23) T) ((-1312 . -1121) T) ((-1312 . -629) 206697) ((-1312 . -1237) T) ((-1312 . -102) T) ((-1312 . -25) T) ((-1312 . -133) T) ((-1312 . -667) 206671) ((-1312 . -1302) 206655) ((-1312 . -736) 206625) ((-1312 . -659) 206595) ((-1312 . -1076) 206579) ((-1312 . -1071) 206563) ((-1312 . -111) 206542) ((-1312 . -38) 206512) ((-1312 . -1307) 206491) ((-1311 . -1069) T) ((-1311 . -1077) T) ((-1311 . -1132) T) ((-1311 . -745) T) ((-1311 . -21) T) ((-1311 . -665) 206450) ((-1311 . -23) T) ((-1311 . -1121) T) ((-1311 . -629) 206432) ((-1311 . -1237) T) ((-1311 . -102) T) ((-1311 . -25) T) ((-1311 . -133) T) ((-1311 . -667) 206406) ((-1311 . -632) 206362) ((-1311 . -1302) 206346) ((-1311 . -736) 206316) ((-1311 . -659) 206286) ((-1311 . -1076) 206270) ((-1311 . -1071) 206254) ((-1311 . -111) 206233) ((-1311 . -38) 206203) ((-1311 . -397) 206182) ((-1311 . -1058) 206166) ((-1309 . -1310) 206142) ((-1309 . -1058) 206116) ((-1309 . -632) 206062) ((-1309 . -1069) T) ((-1309 . -1077) T) ((-1309 . -1132) T) ((-1309 . -745) T) ((-1309 . -21) T) ((-1309 . -665) 206021) ((-1309 . -23) T) ((-1309 . -1121) T) ((-1309 . -629) 206003) ((-1309 . -1237) T) ((-1309 . -102) T) ((-1309 . -25) T) ((-1309 . -133) T) ((-1309 . -667) 205977) ((-1309 . -1302) 205961) ((-1309 . -736) 205931) ((-1309 . -659) 205901) ((-1309 . -1076) 205885) ((-1309 . -1071) 205869) ((-1309 . -111) 205848) ((-1309 . -38) 205818) ((-1309 . -1307) 205794) ((-1308 . -1310) 205773) ((-1308 . -1058) 205730) ((-1308 . -632) 205659) ((-1308 . -1069) T) ((-1308 . -1077) T) ((-1308 . -1132) T) ((-1308 . -745) T) ((-1308 . -21) T) ((-1308 . -665) 205618) ((-1308 . -23) T) ((-1308 . -1121) T) ((-1308 . -629) 205600) ((-1308 . -1237) T) ((-1308 . -102) T) ((-1308 . -25) T) ((-1308 . -133) T) ((-1308 . -667) 205574) ((-1308 . -1302) 205558) ((-1308 . -736) 205528) ((-1308 . -659) 205498) ((-1308 . -1076) 205482) ((-1308 . -1071) 205466) ((-1308 . -111) 205445) ((-1308 . -38) 205415) ((-1308 . -1307) 205394) ((-1308 . -397) 205366) ((-1303 . -397) 205338) ((-1303 . -632) 205287) ((-1303 . -1058) 205264) ((-1303 . -659) 205234) ((-1303 . -736) 205204) ((-1303 . -667) 205178) ((-1303 . -665) 205137) ((-1303 . -133) T) ((-1303 . -25) T) ((-1303 . -102) T) ((-1303 . -1237) T) ((-1303 . -629) 205119) ((-1303 . -1121) T) ((-1303 . -23) T) ((-1303 . -21) T) ((-1303 . -1076) 205103) ((-1303 . -1071) 205087) ((-1303 . -111) 205066) ((-1303 . -1310) 205045) ((-1303 . -1069) T) ((-1303 . -1077) T) ((-1303 . -1132) T) ((-1303 . -745) T) ((-1303 . -1302) 205029) ((-1303 . -38) 204999) ((-1303 . -1307) 204978) ((-1301 . -1232) 204947) ((-1301 . -629) 204909) ((-1301 . -153) 204893) ((-1301 . -34) T) ((-1301 . -1237) T) ((-1301 . -102) T) ((-1301 . -321) 204831) ((-1301 . -526) 204764) ((-1301 . -1121) T) ((-1301 . -501) 204748) ((-1301 . -630) 204709) ((-1301 . -996) 204678) ((-1300 . -1069) T) ((-1300 . -1077) T) ((-1300 . -1132) T) ((-1300 . -745) T) ((-1300 . -21) T) ((-1300 . -665) 204623) ((-1300 . -23) T) ((-1300 . -1121) T) ((-1300 . -629) 204592) ((-1300 . -1237) T) ((-1300 . -102) T) ((-1300 . -25) T) ((-1300 . -133) T) ((-1300 . -667) 204552) ((-1300 . -632) 204494) ((-1300 . -502) 204478) ((-1300 . -38) 204448) ((-1300 . -111) 204413) ((-1300 . -1071) 204383) ((-1300 . -1076) 204353) ((-1300 . -659) 204323) ((-1300 . -736) 204293) ((-1299 . -1103) T) ((-1299 . -502) 204274) ((-1299 . -629) 204240) ((-1299 . -632) 204221) ((-1299 . -1121) T) ((-1299 . -1237) T) ((-1299 . -102) T) ((-1299 . -93) T) ((-1298 . -1103) T) ((-1298 . -502) 204202) ((-1298 . -629) 204168) ((-1298 . -632) 204149) ((-1298 . -1121) T) ((-1298 . -1237) T) ((-1298 . -102) T) ((-1298 . -93) T) ((-1293 . -629) 204131) ((-1291 . -1121) T) ((-1291 . -629) 204113) ((-1291 . -1237) T) ((-1291 . -102) T) ((-1290 . -1121) T) ((-1290 . -629) 204095) ((-1290 . -1237) T) ((-1290 . -102) T) ((-1287 . -1286) 204079) ((-1287 . -385) 204063) ((-1287 . -863) 204042) ((-1287 . -860) 204021) ((-1287 . -153) 204005) ((-1287 . -34) T) ((-1287 . -1237) T) ((-1287 . -102) 203935) ((-1287 . -629) 203847) ((-1287 . -321) 203785) ((-1287 . -526) 203718) ((-1287 . -1121) 203668) ((-1287 . -501) 203652) ((-1287 . -630) 203613) ((-1287 . -298) 203565) ((-1287 . -615) 203542) ((-1287 . -300) 203519) ((-1287 . -670) 203503) ((-1287 . -19) 203487) ((-1284 . -1121) T) ((-1284 . -629) 203453) ((-1284 . -1237) T) ((-1284 . -102) T) ((-1277 . -1280) 203437) ((-1277 . -240) 203396) ((-1277 . -632) 203278) ((-1277 . -667) 203203) ((-1277 . -665) 203113) ((-1277 . -133) T) ((-1277 . -25) T) ((-1277 . -102) T) ((-1277 . -629) 203095) ((-1277 . -1121) T) ((-1277 . -23) T) ((-1277 . -21) T) ((-1277 . -745) T) ((-1277 . -1132) T) ((-1277 . -1077) T) ((-1277 . -1069) T) ((-1277 . -236) 203048) ((-1277 . -1237) T) ((-1277 . -239) 203007) ((-1277 . -298) 202972) ((-1277 . -916) 202885) ((-1277 . -910) 202773) ((-1277 . -918) 202686) ((-1277 . -993) 202655) ((-1277 . -38) 202552) ((-1277 . -111) 202414) ((-1277 . -1071) 202297) ((-1277 . -1076) 202180) ((-1277 . -659) 202077) ((-1277 . -736) 201974) ((-1277 . -147) 201953) ((-1277 . -149) 201932) ((-1277 . -175) 201883) ((-1277 . -569) 201862) ((-1277 . -302) 201841) ((-1277 . -47) 201818) ((-1277 . -1266) 201795) ((-1277 . -35) 201761) ((-1277 . -95) 201727) ((-1277 . -296) 201693) ((-1277 . -505) 201659) ((-1277 . -1226) 201625) ((-1277 . -1223) 201591) ((-1277 . -1022) 201557) ((-1274 . -338) 201501) ((-1274 . -1058) 201467) ((-1274 . -424) 201433) ((-1274 . -38) 201290) ((-1274 . -632) 201164) ((-1274 . -667) 201053) ((-1274 . -665) 200927) ((-1274 . -745) T) ((-1274 . -1132) T) ((-1274 . -1077) T) ((-1274 . -1069) T) ((-1274 . -111) 200777) ((-1274 . -1071) 200666) ((-1274 . -1076) 200555) ((-1274 . -21) T) ((-1274 . -23) T) ((-1274 . -1121) T) ((-1274 . -629) 200537) ((-1274 . -1237) T) ((-1274 . -102) T) ((-1274 . -25) T) ((-1274 . -133) T) ((-1274 . -659) 200394) ((-1274 . -736) 200251) ((-1274 . -147) 200212) ((-1274 . -149) 200173) ((-1274 . -175) T) ((-1274 . -569) T) ((-1274 . -302) T) ((-1274 . -47) 200117) ((-1273 . -1272) 200096) ((-1273 . -376) 200075) ((-1273 . -1242) 200054) ((-1273 . -939) 200033) ((-1273 . -569) 199984) ((-1273 . -175) 199915) ((-1273 . -632) 199728) ((-1273 . -736) 199569) ((-1273 . -659) 199410) ((-1273 . -38) 199251) ((-1273 . -464) 199230) ((-1273 . -319) 199209) ((-1273 . -667) 199106) ((-1273 . -665) 198988) ((-1273 . -745) T) ((-1273 . -1132) T) ((-1273 . -1077) T) ((-1273 . -1069) T) ((-1273 . -111) 198802) ((-1273 . -1071) 198637) ((-1273 . -1076) 198472) ((-1273 . -21) T) ((-1273 . -23) T) ((-1273 . -1121) T) ((-1273 . -629) 198454) ((-1273 . -1237) T) ((-1273 . -102) T) ((-1273 . -25) T) ((-1273 . -133) T) ((-1273 . -302) 198405) ((-1273 . -250) 198384) ((-1273 . -1022) 198350) ((-1273 . -1223) 198316) ((-1273 . -1226) 198282) ((-1273 . -505) 198248) ((-1273 . -296) 198214) ((-1273 . -95) 198180) ((-1273 . -35) 198146) ((-1273 . -1266) 198116) ((-1273 . -47) 198086) ((-1273 . -149) 198065) ((-1273 . -147) 198044) ((-1273 . -993) 198006) ((-1273 . -918) 197912) ((-1273 . -910) 197816) ((-1273 . -916) 197722) ((-1273 . -298) 197680) ((-1273 . -239) 197632) ((-1273 . -236) 197578) ((-1273 . -240) 197530) ((-1273 . -1270) 197514) ((-1273 . -1058) 197498) ((-1268 . -1272) 197459) ((-1268 . -376) 197438) ((-1268 . -1242) 197417) ((-1268 . -939) 197396) ((-1268 . -569) 197347) ((-1268 . -175) 197278) ((-1268 . -632) 197021) ((-1268 . -736) 196862) ((-1268 . -659) 196703) ((-1268 . -38) 196544) ((-1268 . -464) 196523) ((-1268 . -319) 196502) ((-1268 . -667) 196399) ((-1268 . -665) 196281) ((-1268 . -745) T) ((-1268 . -1132) T) ((-1268 . -1077) T) ((-1268 . -1069) T) ((-1268 . -111) 196095) ((-1268 . -1071) 195930) ((-1268 . -1076) 195765) ((-1268 . -21) T) ((-1268 . -23) T) ((-1268 . -1121) T) ((-1268 . -629) 195747) ((-1268 . -1237) T) ((-1268 . -102) T) ((-1268 . -25) T) ((-1268 . -133) T) ((-1268 . -302) 195698) ((-1268 . -250) 195677) ((-1268 . -1022) 195643) ((-1268 . -1223) 195609) ((-1268 . -1226) 195575) ((-1268 . -505) 195541) ((-1268 . -296) 195507) ((-1268 . -95) 195473) ((-1268 . -35) 195439) ((-1268 . -1266) 195409) ((-1268 . -47) 195379) ((-1268 . -149) 195358) ((-1268 . -147) 195337) ((-1268 . -993) 195299) ((-1268 . -918) 195205) ((-1268 . -910) 195086) ((-1268 . -916) 194992) ((-1268 . -298) 194950) ((-1268 . -239) 194902) ((-1268 . -236) 194848) ((-1268 . -240) 194800) ((-1268 . -1270) 194784) ((-1268 . -1058) 194719) ((-1256 . -1263) 194703) ((-1256 . -1172) 194681) ((-1256 . -630) NIL) ((-1256 . -321) 194668) ((-1256 . -526) 194614) ((-1256 . -338) 194591) ((-1256 . -1058) 194471) ((-1256 . -424) 194455) ((-1256 . -38) 194284) ((-1256 . -111) 194086) ((-1256 . -1071) 193909) ((-1256 . -1076) 193732) ((-1256 . -665) 193642) ((-1256 . -667) 193531) ((-1256 . -659) 193360) ((-1256 . -736) 193189) ((-1256 . -632) 192937) ((-1256 . -147) 192916) ((-1256 . -149) 192895) ((-1256 . -47) 192872) ((-1256 . -390) 192856) ((-1256 . -657) 192804) ((-1256 . -916) 192747) ((-1256 . -910) 192650) ((-1256 . -918) 192557) ((-1256 . -900) NIL) ((-1256 . -928) 192536) ((-1256 . -1242) 192515) ((-1256 . -968) 192484) ((-1256 . -939) 192463) ((-1256 . -569) 192374) ((-1256 . -302) 192285) ((-1256 . -175) 192176) ((-1256 . -464) 192107) ((-1256 . -319) 192086) ((-1256 . -298) 192013) ((-1256 . -240) T) ((-1256 . -133) T) ((-1256 . -25) T) ((-1256 . -102) T) ((-1256 . -629) 191995) ((-1256 . -1121) T) ((-1256 . -23) T) ((-1256 . -21) T) ((-1256 . -745) T) ((-1256 . -1132) T) ((-1256 . -1077) T) ((-1256 . -1069) T) ((-1256 . -236) 191982) ((-1256 . -1237) T) ((-1256 . -239) T) ((-1256 . -274) 191966) ((-1256 . -234) 191950) ((-1254 . -1114) 191934) ((-1254 . -634) 191918) ((-1254 . -1121) 191896) ((-1254 . -629) 191863) ((-1254 . -1237) 191841) ((-1254 . -102) 191819) ((-1254 . -1115) 191776) ((-1252 . -1251) 191755) ((-1252 . -1022) 191721) ((-1252 . -1223) 191687) ((-1252 . -1226) 191653) ((-1252 . -505) 191619) ((-1252 . -296) 191585) ((-1252 . -95) 191551) ((-1252 . -35) 191517) ((-1252 . -1266) 191494) ((-1252 . -47) 191471) ((-1252 . -632) 191219) ((-1252 . -736) 191033) ((-1252 . -659) 190847) ((-1252 . -667) 190655) ((-1252 . -665) 190510) ((-1252 . -1076) 190318) ((-1252 . -1071) 190126) ((-1252 . -111) 189908) ((-1252 . -38) 189722) ((-1252 . -993) 189691) ((-1252 . -298) 189591) ((-1252 . -1249) 189575) ((-1252 . -745) T) ((-1252 . -1132) T) ((-1252 . -1077) T) ((-1252 . -1069) T) ((-1252 . -21) T) ((-1252 . -23) T) ((-1252 . -1121) T) ((-1252 . -629) 189557) ((-1252 . -1237) T) ((-1252 . -102) T) ((-1252 . -25) T) ((-1252 . -133) T) ((-1252 . -147) 189482) ((-1252 . -149) 189407) ((-1252 . -630) 189078) ((-1252 . -234) 189048) ((-1252 . -916) 188899) ((-1252 . -918) 188696) ((-1252 . -910) 188491) ((-1252 . -274) 188461) ((-1252 . -239) 188320) ((-1252 . -236) 188173) ((-1252 . -240) 188078) ((-1252 . -376) 188057) ((-1252 . -1242) 188036) ((-1252 . -939) 188015) ((-1252 . -569) 187966) ((-1252 . -175) 187897) ((-1252 . -464) 187876) ((-1252 . -319) 187855) ((-1252 . -302) 187806) ((-1252 . -250) 187785) ((-1252 . -351) 187755) ((-1252 . -526) 187615) ((-1252 . -321) 187554) ((-1252 . -390) 187524) ((-1252 . -657) 187432) ((-1252 . -412) 187402) ((-1252 . -900) 187275) ((-1252 . -841) 187228) ((-1252 . -811) 187181) ((-1252 . -813) 187134) ((-1252 . -860) 187033) ((-1252 . -863) 186932) ((-1252 . -815) 186885) ((-1252 . -818) 186838) ((-1252 . -859) 186791) ((-1252 . -898) 186761) ((-1252 . -928) 186714) ((-1252 . -1040) 186666) ((-1252 . -1058) 186452) ((-1252 . -1172) 186404) ((-1252 . -1011) 186374) ((-1247 . -1251) 186335) ((-1247 . -1022) 186301) ((-1247 . -1223) 186267) ((-1247 . -1226) 186233) ((-1247 . -505) 186199) ((-1247 . -296) 186165) ((-1247 . -95) 186131) ((-1247 . -35) 186097) ((-1247 . -1266) 186074) ((-1247 . -47) 186051) ((-1247 . -632) 185846) ((-1247 . -736) 185642) ((-1247 . -659) 185438) ((-1247 . -667) 185290) ((-1247 . -665) 185127) ((-1247 . -1076) 184917) ((-1247 . -1071) 184707) ((-1247 . -111) 184453) ((-1247 . -38) 184249) ((-1247 . -993) 184218) ((-1247 . -298) 184046) ((-1247 . -1249) 184030) ((-1247 . -745) T) ((-1247 . -1132) T) ((-1247 . -1077) T) ((-1247 . -1069) T) ((-1247 . -21) T) ((-1247 . -23) T) ((-1247 . -1121) T) ((-1247 . -629) 184012) ((-1247 . -1237) T) ((-1247 . -102) T) ((-1247 . -25) T) ((-1247 . -133) T) ((-1247 . -147) 183919) ((-1247 . -149) 183826) ((-1247 . -630) NIL) ((-1247 . -234) 183778) ((-1247 . -916) 183611) ((-1247 . -918) 183372) ((-1247 . -910) 183108) ((-1247 . -274) 183060) ((-1247 . -239) 182883) ((-1247 . -236) 182700) ((-1247 . -240) 182587) ((-1247 . -376) 182566) ((-1247 . -1242) 182545) ((-1247 . -939) 182524) ((-1247 . -569) 182475) ((-1247 . -175) 182406) ((-1247 . -464) 182385) ((-1247 . -319) 182364) ((-1247 . -302) 182315) ((-1247 . -250) 182294) ((-1247 . -351) 182246) ((-1247 . -526) 181980) ((-1247 . -321) 181865) ((-1247 . -390) 181817) ((-1247 . -657) 181769) ((-1247 . -412) 181721) ((-1247 . -900) NIL) ((-1247 . -841) NIL) ((-1247 . -811) NIL) ((-1247 . -813) NIL) ((-1247 . -860) NIL) ((-1247 . -863) NIL) ((-1247 . -815) NIL) ((-1247 . -818) NIL) ((-1247 . -859) NIL) ((-1247 . -898) 181673) ((-1247 . -928) NIL) ((-1247 . -1040) NIL) ((-1247 . -1058) 181639) ((-1247 . -1172) NIL) ((-1247 . -1011) 181591) ((-1246 . -856) T) ((-1246 . -863) T) ((-1246 . -860) T) ((-1246 . -1121) T) ((-1246 . -629) 181573) ((-1246 . -1237) T) ((-1246 . -102) T) ((-1246 . -381) T) ((-1246 . -681) T) ((-1245 . -856) T) ((-1245 . -863) T) ((-1245 . -860) T) ((-1245 . -1121) T) ((-1245 . -629) 181555) ((-1245 . -1237) T) ((-1245 . -102) T) ((-1245 . -381) T) ((-1245 . -681) T) ((-1244 . -856) T) ((-1244 . -863) T) ((-1244 . -860) T) ((-1244 . -1121) T) ((-1244 . -629) 181537) ((-1244 . -1237) T) ((-1244 . -102) T) ((-1244 . -381) T) ((-1244 . -681) T) ((-1243 . -856) T) ((-1243 . -863) T) ((-1243 . -860) T) ((-1243 . -1121) T) ((-1243 . -629) 181519) ((-1243 . -1237) T) ((-1243 . -102) T) ((-1243 . -381) T) ((-1243 . -681) T) ((-1238 . -1103) T) ((-1238 . -502) 181500) ((-1238 . -629) 181466) ((-1238 . -632) 181447) ((-1238 . -1121) T) ((-1238 . -1237) T) ((-1238 . -102) T) ((-1238 . -93) T) ((-1235 . -502) 181424) ((-1235 . -629) 181365) ((-1235 . -632) 181342) ((-1235 . -1121) 181320) ((-1235 . -1237) 181298) ((-1235 . -102) 181276) ((-1230 . -759) 181252) ((-1230 . -35) 181218) ((-1230 . -95) 181184) ((-1230 . -296) 181150) ((-1230 . -505) 181116) ((-1230 . -1226) 181082) ((-1230 . -1223) 181048) ((-1230 . -1022) 181014) ((-1230 . -47) 180983) ((-1230 . -38) 180880) ((-1230 . -659) 180777) ((-1230 . -736) 180674) ((-1230 . -632) 180556) ((-1230 . -302) 180535) ((-1230 . -569) 180514) ((-1230 . -111) 180376) ((-1230 . -1071) 180259) ((-1230 . -1076) 180142) ((-1230 . -175) 180093) ((-1230 . -149) 180072) ((-1230 . -147) 180051) ((-1230 . -667) 179976) ((-1230 . -665) 179886) ((-1230 . -993) 179847) ((-1230 . -918) 179828) ((-1230 . -1237) T) ((-1230 . -910) 179807) ((-1230 . -1069) T) ((-1230 . -1077) T) ((-1230 . -1132) T) ((-1230 . -745) T) ((-1230 . -21) T) ((-1230 . -23) T) ((-1230 . -1121) T) ((-1230 . -629) 179789) ((-1230 . -102) T) ((-1230 . -25) T) ((-1230 . -133) T) ((-1230 . -916) 179770) ((-1230 . -526) 179737) ((-1230 . -321) 179724) ((-1224 . -1030) 179708) ((-1224 . -34) T) ((-1224 . -1237) T) ((-1224 . -102) 179658) ((-1224 . -629) 179590) ((-1224 . -321) 179528) ((-1224 . -526) 179461) ((-1224 . -1121) 179439) ((-1224 . -501) 179423) ((-1219 . -378) 179397) ((-1219 . -102) T) ((-1219 . -1237) T) ((-1219 . -629) 179379) ((-1219 . -1121) T) ((-1217 . -1121) T) ((-1217 . -629) 179361) ((-1217 . -1237) T) ((-1217 . -102) T) ((-1217 . -632) 179343) ((-1211 . -848) 179327) ((-1211 . -102) T) ((-1211 . -1237) T) ((-1211 . -629) 179309) ((-1211 . -1121) T) ((-1209 . -1214) 179288) ((-1209 . -233) 179238) ((-1209 . -107) 179188) ((-1209 . -321) 178992) ((-1209 . -526) 178752) ((-1209 . -501) 178689) ((-1209 . -153) 178639) ((-1209 . -630) NIL) ((-1209 . -242) 178589) ((-1209 . -626) 178568) ((-1209 . -300) 178547) ((-1209 . -1237) T) ((-1209 . -298) 178526) ((-1209 . -1121) T) ((-1209 . -629) 178508) ((-1209 . -102) T) ((-1209 . -34) T) ((-1209 . -615) 178487) ((-1205 . -1121) T) ((-1205 . -629) 178469) ((-1205 . -1237) T) ((-1205 . -102) T) ((-1204 . -856) T) ((-1204 . -863) T) ((-1204 . -860) T) ((-1204 . -1121) T) ((-1204 . -629) 178451) ((-1204 . -1237) T) ((-1204 . -102) T) ((-1204 . -381) T) ((-1204 . -681) T) ((-1203 . -856) T) ((-1203 . -863) T) ((-1203 . -860) T) ((-1203 . -1121) T) ((-1203 . -629) 178433) ((-1203 . -1237) T) ((-1203 . -102) T) ((-1203 . -381) T) ((-1202 . -1283) T) ((-1202 . -1121) T) ((-1202 . -629) 178400) ((-1202 . -1237) T) ((-1202 . -102) T) ((-1202 . -1058) 178336) ((-1202 . -632) 178272) ((-1201 . -629) 178254) ((-1200 . -629) 178236) ((-1199 . -338) 178213) ((-1199 . -1058) 178109) ((-1199 . -424) 178093) ((-1199 . -38) 177990) ((-1199 . -632) 177843) ((-1199 . -667) 177768) ((-1199 . -665) 177678) ((-1199 . -745) T) ((-1199 . -1132) T) ((-1199 . -1077) T) ((-1199 . -1069) T) ((-1199 . -111) 177540) ((-1199 . -1071) 177423) ((-1199 . -1076) 177306) ((-1199 . -21) T) ((-1199 . -23) T) ((-1199 . -1121) T) ((-1199 . -629) 177288) ((-1199 . -1237) T) ((-1199 . -102) T) ((-1199 . -25) T) ((-1199 . -133) T) ((-1199 . -659) 177185) ((-1199 . -736) 177082) ((-1199 . -147) 177061) ((-1199 . -149) 177040) ((-1199 . -175) 176991) ((-1199 . -569) 176970) ((-1199 . -302) 176949) ((-1199 . -47) 176926) ((-1197 . -860) T) ((-1197 . -629) 176908) ((-1197 . -1121) T) ((-1197 . -102) T) ((-1197 . -1237) T) ((-1197 . -863) T) ((-1197 . -630) 176830) ((-1197 . -632) 176796) ((-1197 . -1058) 176778) ((-1197 . -900) 176745) ((-1196 . -629) 176727) ((-1195 . -1280) 176711) ((-1195 . -240) 176670) ((-1195 . -632) 176552) ((-1195 . -667) 176477) ((-1195 . -665) 176387) ((-1195 . -133) T) ((-1195 . -25) T) ((-1195 . -102) T) ((-1195 . -629) 176369) ((-1195 . -1121) T) ((-1195 . -23) T) ((-1195 . -21) T) ((-1195 . -745) T) ((-1195 . -1132) T) ((-1195 . -1077) T) ((-1195 . -1069) T) ((-1195 . -236) 176322) ((-1195 . -1237) T) ((-1195 . -239) 176281) ((-1195 . -298) 176246) ((-1195 . -916) 176159) ((-1195 . -910) 176047) ((-1195 . -918) 175960) ((-1195 . -993) 175929) ((-1195 . -38) 175826) ((-1195 . -111) 175688) ((-1195 . -1071) 175571) ((-1195 . -1076) 175454) ((-1195 . -659) 175351) ((-1195 . -736) 175248) ((-1195 . -147) 175227) ((-1195 . -149) 175206) ((-1195 . -175) 175157) ((-1195 . -569) 175136) ((-1195 . -302) 175115) ((-1195 . -47) 175092) ((-1195 . -1266) 175069) ((-1195 . -35) 175035) ((-1195 . -95) 175001) ((-1195 . -296) 174967) ((-1195 . -505) 174933) ((-1195 . -1226) 174899) ((-1195 . -1223) 174865) ((-1195 . -1022) 174831) ((-1194 . -1272) 174792) ((-1194 . -376) 174771) ((-1194 . -1242) 174750) ((-1194 . -939) 174729) ((-1194 . -569) 174680) ((-1194 . -175) 174611) ((-1194 . -632) 174354) ((-1194 . -736) 174195) ((-1194 . -659) 174036) ((-1194 . -38) 173877) ((-1194 . -464) 173856) ((-1194 . -319) 173835) ((-1194 . -667) 173732) ((-1194 . -665) 173614) ((-1194 . -745) T) ((-1194 . -1132) T) ((-1194 . -1077) T) ((-1194 . -1069) T) ((-1194 . -111) 173428) ((-1194 . -1071) 173263) ((-1194 . -1076) 173098) ((-1194 . -21) T) ((-1194 . -23) T) ((-1194 . -1121) T) ((-1194 . -629) 173080) ((-1194 . -1237) T) ((-1194 . -102) T) ((-1194 . -25) T) ((-1194 . -133) T) ((-1194 . -302) 173031) ((-1194 . -250) 173010) ((-1194 . -1022) 172976) ((-1194 . -1223) 172942) ((-1194 . -1226) 172908) ((-1194 . -505) 172874) ((-1194 . -296) 172840) ((-1194 . -95) 172806) ((-1194 . -35) 172772) ((-1194 . -1266) 172742) ((-1194 . -47) 172712) ((-1194 . -149) 172691) ((-1194 . -147) 172670) ((-1194 . -993) 172632) ((-1194 . -918) 172538) ((-1194 . -910) 172419) ((-1194 . -916) 172325) ((-1194 . -298) 172283) ((-1194 . -239) 172235) ((-1194 . -236) 172181) ((-1194 . -240) 172133) ((-1194 . -1270) 172117) ((-1194 . -1058) 172052) ((-1191 . -1263) 172036) ((-1191 . -1172) 172014) ((-1191 . -630) NIL) ((-1191 . -321) 172001) ((-1191 . -526) 171947) ((-1191 . -338) 171924) ((-1191 . -1058) 171804) ((-1191 . -424) 171788) ((-1191 . -38) 171617) ((-1191 . -111) 171419) ((-1191 . -1071) 171242) ((-1191 . -1076) 171065) ((-1191 . -665) 170975) ((-1191 . -667) 170864) ((-1191 . -659) 170693) ((-1191 . -736) 170522) ((-1191 . -632) 170291) ((-1191 . -147) 170270) ((-1191 . -149) 170249) ((-1191 . -47) 170226) ((-1191 . -390) 170210) ((-1191 . -657) 170158) ((-1191 . -916) 170101) ((-1191 . -910) 170004) ((-1191 . -918) 169911) ((-1191 . -900) NIL) ((-1191 . -928) 169890) ((-1191 . -1242) 169869) ((-1191 . -968) 169838) ((-1191 . -939) 169817) ((-1191 . -569) 169728) ((-1191 . -302) 169639) ((-1191 . -175) 169530) ((-1191 . -464) 169461) ((-1191 . -319) 169440) ((-1191 . -298) 169367) ((-1191 . -240) T) ((-1191 . -133) T) ((-1191 . -25) T) ((-1191 . -102) T) ((-1191 . -629) 169349) ((-1191 . -1121) T) ((-1191 . -23) T) ((-1191 . -21) T) ((-1191 . -745) T) ((-1191 . -1132) T) ((-1191 . -1077) T) ((-1191 . -1069) T) ((-1191 . -236) 169336) ((-1191 . -1237) T) ((-1191 . -239) T) ((-1191 . -274) 169320) ((-1191 . -234) 169304) ((-1188 . -1251) 169265) ((-1188 . -1022) 169231) ((-1188 . -1223) 169197) ((-1188 . -1226) 169163) ((-1188 . -505) 169129) ((-1188 . -296) 169095) ((-1188 . -95) 169061) ((-1188 . -35) 169027) ((-1188 . -1266) 169004) ((-1188 . -47) 168981) ((-1188 . -632) 168776) ((-1188 . -736) 168572) ((-1188 . -659) 168368) ((-1188 . -667) 168220) ((-1188 . -665) 168057) ((-1188 . -1076) 167847) ((-1188 . -1071) 167637) ((-1188 . -111) 167383) ((-1188 . -38) 167179) ((-1188 . -993) 167148) ((-1188 . -298) 166976) ((-1188 . -1249) 166960) ((-1188 . -745) T) ((-1188 . -1132) T) ((-1188 . -1077) T) ((-1188 . -1069) T) ((-1188 . -21) T) ((-1188 . -23) T) ((-1188 . -1121) T) ((-1188 . -629) 166942) ((-1188 . -1237) T) ((-1188 . -102) T) ((-1188 . -25) T) ((-1188 . -133) T) ((-1188 . -147) 166849) ((-1188 . -149) 166756) ((-1188 . -630) NIL) ((-1188 . -234) 166708) ((-1188 . -916) 166541) ((-1188 . -918) 166302) ((-1188 . -910) 166038) ((-1188 . -274) 165990) ((-1188 . -239) 165813) ((-1188 . -236) 165630) ((-1188 . -240) 165517) ((-1188 . -376) 165496) ((-1188 . -1242) 165475) ((-1188 . -939) 165454) ((-1188 . -569) 165405) ((-1188 . -175) 165336) ((-1188 . -464) 165315) ((-1188 . -319) 165294) ((-1188 . -302) 165245) ((-1188 . -250) 165224) ((-1188 . -351) 165176) ((-1188 . -526) 164910) ((-1188 . -321) 164795) ((-1188 . -390) 164747) ((-1188 . -657) 164699) ((-1188 . -412) 164651) ((-1188 . -900) NIL) ((-1188 . -841) NIL) ((-1188 . -811) NIL) ((-1188 . -813) NIL) ((-1188 . -860) NIL) ((-1188 . -863) NIL) ((-1188 . -815) NIL) ((-1188 . -818) NIL) ((-1188 . -859) NIL) ((-1188 . -898) 164603) ((-1188 . -928) NIL) ((-1188 . -1040) NIL) ((-1188 . -1058) 164569) ((-1188 . -1172) NIL) ((-1188 . -1011) 164521) ((-1187 . -1103) T) ((-1187 . -502) 164502) ((-1187 . -629) 164468) ((-1187 . -632) 164449) ((-1187 . -1121) T) ((-1187 . -1237) T) ((-1187 . -102) T) ((-1187 . -93) T) ((-1186 . -1121) T) ((-1186 . -629) 164431) ((-1186 . -1237) T) ((-1186 . -102) T) ((-1185 . -1121) T) ((-1185 . -629) 164413) ((-1185 . -1237) T) ((-1185 . -102) T) ((-1180 . -1214) 164389) ((-1180 . -233) 164336) ((-1180 . -107) 164283) ((-1180 . -321) 164078) ((-1180 . -526) 163826) ((-1180 . -501) 163760) ((-1180 . -153) 163707) ((-1180 . -630) NIL) ((-1180 . -242) 163654) ((-1180 . -626) 163630) ((-1180 . -300) 163606) ((-1180 . -1237) T) ((-1180 . -298) 163582) ((-1180 . -1121) T) ((-1180 . -629) 163564) ((-1180 . -102) T) ((-1180 . -34) T) ((-1180 . -615) 163540) ((-1179 . -1164) T) ((-1179 . -385) 163522) ((-1179 . -863) T) ((-1179 . -860) T) ((-1179 . -153) 163504) ((-1179 . -34) T) ((-1179 . -1237) T) ((-1179 . -102) T) ((-1179 . -629) 163486) ((-1179 . -321) NIL) ((-1179 . -526) NIL) ((-1179 . -1121) T) ((-1179 . -501) 163468) ((-1179 . -630) NIL) ((-1179 . -298) 163418) ((-1179 . -615) 163393) ((-1179 . -300) 163368) ((-1179 . -670) 163350) ((-1179 . -19) 163332) ((-1175 . -693) 163316) ((-1175 . -670) 163300) ((-1175 . -300) 163277) ((-1175 . -298) 163229) ((-1175 . -615) 163206) ((-1175 . -630) 163167) ((-1175 . -501) 163151) ((-1175 . -1121) 163129) ((-1175 . -526) 163062) ((-1175 . -321) 163000) ((-1175 . -629) 162932) ((-1175 . -102) 162882) ((-1175 . -1237) T) ((-1175 . -34) T) ((-1175 . -153) 162866) ((-1175 . -1276) 162850) ((-1175 . -1030) 162834) ((-1175 . -1170) 162818) ((-1175 . -632) 162795) ((-1173 . -1103) T) ((-1173 . -502) 162776) ((-1173 . -629) 162742) ((-1173 . -632) 162723) ((-1173 . -1121) T) ((-1173 . -1237) T) ((-1173 . -102) T) ((-1173 . -93) T) ((-1171 . -1214) 162702) ((-1171 . -233) 162652) ((-1171 . -107) 162602) ((-1171 . -321) 162406) ((-1171 . -526) 162166) ((-1171 . -501) 162103) ((-1171 . -153) 162053) ((-1171 . -630) NIL) ((-1171 . -242) 162003) ((-1171 . -626) 161982) ((-1171 . -300) 161961) ((-1171 . -1237) T) ((-1171 . -298) 161940) ((-1171 . -1121) T) ((-1171 . -629) 161922) ((-1171 . -102) T) ((-1171 . -34) T) ((-1171 . -615) 161901) ((-1168 . -1141) 161885) ((-1168 . -501) 161869) ((-1168 . -1121) 161847) ((-1168 . -526) 161780) ((-1168 . -321) 161718) ((-1168 . -629) 161650) ((-1168 . -102) 161600) ((-1168 . -1237) T) ((-1168 . -34) T) ((-1168 . -107) 161584) ((-1166 . -1129) 161553) ((-1166 . -1232) 161522) ((-1166 . -629) 161484) ((-1166 . -153) 161468) ((-1166 . -34) T) ((-1166 . -1237) T) ((-1166 . -102) T) ((-1166 . -321) 161406) ((-1166 . -526) 161339) ((-1166 . -1121) T) ((-1166 . -501) 161323) ((-1166 . -630) 161284) ((-1166 . -996) 161253) ((-1166 . -1091) 161222) ((-1162 . -1143) 161167) ((-1162 . -501) 161151) ((-1162 . -526) 161084) ((-1162 . -321) 161022) ((-1162 . -34) T) ((-1162 . -1073) 160962) ((-1162 . -1058) 160858) ((-1162 . -632) 160776) ((-1162 . -424) 160760) ((-1162 . -657) 160708) ((-1162 . -667) 160646) ((-1162 . -390) 160630) ((-1162 . -240) 160609) ((-1162 . -236) 160554) ((-1162 . -239) 160505) ((-1162 . -274) 160489) ((-1162 . -910) 160410) ((-1162 . -918) 160333) ((-1162 . -916) 160292) ((-1162 . -234) 160276) ((-1162 . -736) 160208) ((-1162 . -659) 160140) ((-1162 . -665) 160099) ((-1162 . -133) T) ((-1162 . -25) T) ((-1162 . -102) T) ((-1162 . -1237) T) ((-1162 . -629) 160061) ((-1162 . -1121) T) ((-1162 . -23) T) ((-1162 . -21) T) ((-1162 . -1076) 160045) ((-1162 . -1071) 160029) ((-1162 . -111) 160008) ((-1162 . -1069) T) ((-1162 . -1077) T) ((-1162 . -1132) T) ((-1162 . -745) T) ((-1162 . -38) 159968) ((-1162 . -630) 159929) ((-1161 . -1030) 159900) ((-1161 . -34) T) ((-1161 . -1237) T) ((-1161 . -102) T) ((-1161 . -629) 159882) ((-1161 . -321) 159808) ((-1161 . -526) 159716) ((-1161 . -1121) T) ((-1161 . -501) 159687) ((-1160 . -1121) T) ((-1160 . -629) 159669) ((-1160 . -1237) T) ((-1160 . -102) T) ((-1155 . -1157) T) ((-1155 . -1283) T) ((-1155 . -93) T) ((-1155 . -102) T) ((-1155 . -1237) T) ((-1155 . -629) 159635) ((-1155 . -1121) T) ((-1155 . -632) 159616) ((-1155 . -502) 159597) ((-1155 . -1103) T) ((-1153 . -1154) 159581) ((-1153 . -102) T) ((-1153 . -1237) T) ((-1153 . -629) 159563) ((-1153 . -1121) T) ((-1146 . -759) 159542) ((-1146 . -35) 159508) ((-1146 . -95) 159474) ((-1146 . -296) 159440) ((-1146 . -505) 159406) ((-1146 . -1226) 159372) ((-1146 . -1223) 159338) ((-1146 . -1022) 159304) ((-1146 . -47) 159276) ((-1146 . -38) 159173) ((-1146 . -659) 159070) ((-1146 . -736) 158967) ((-1146 . -632) 158849) ((-1146 . -302) 158828) ((-1146 . -569) 158807) ((-1146 . -111) 158669) ((-1146 . -1071) 158552) ((-1146 . -1076) 158435) ((-1146 . -175) 158386) ((-1146 . -149) 158365) ((-1146 . -147) 158344) ((-1146 . -667) 158269) ((-1146 . -665) 158179) ((-1146 . -993) 158146) ((-1146 . -918) 158130) ((-1146 . -1237) T) ((-1146 . -910) 158112) ((-1146 . -1069) T) ((-1146 . -1077) T) ((-1146 . -1132) T) ((-1146 . -745) T) ((-1146 . -21) T) ((-1146 . -23) T) ((-1146 . -1121) T) ((-1146 . -629) 158094) ((-1146 . -102) T) ((-1146 . -25) T) ((-1146 . -133) T) ((-1146 . -916) 158078) ((-1146 . -526) 158048) ((-1146 . -321) 158035) ((-1145 . -968) 158002) ((-1145 . -632) 157794) ((-1145 . -1058) 157677) ((-1145 . -1242) 157656) ((-1145 . -928) 157635) ((-1145 . -900) 157494) ((-1145 . -918) 157478) ((-1145 . -910) 157460) ((-1145 . -916) 157444) ((-1145 . -526) 157396) ((-1145 . -464) 157347) ((-1145 . -657) 157295) ((-1145 . -667) 157184) ((-1145 . -390) 157168) ((-1145 . -47) 157140) ((-1145 . -38) 156989) ((-1145 . -659) 156838) ((-1145 . -736) 156687) ((-1145 . -302) 156618) ((-1145 . -569) 156549) ((-1145 . -111) 156371) ((-1145 . -1071) 156214) ((-1145 . -1076) 156057) ((-1145 . -175) 155968) ((-1145 . -149) 155947) ((-1145 . -147) 155926) ((-1145 . -665) 155836) ((-1145 . -133) T) ((-1145 . -25) T) ((-1145 . -102) T) ((-1145 . -1237) T) ((-1145 . -629) 155818) ((-1145 . -1121) T) ((-1145 . -23) T) ((-1145 . -21) T) ((-1145 . -1069) T) ((-1145 . -1077) T) ((-1145 . -1132) T) ((-1145 . -745) T) ((-1145 . -424) 155802) ((-1145 . -338) 155774) ((-1145 . -321) 155761) ((-1145 . -630) 155509) ((-1140 . -557) T) ((-1140 . -1242) T) ((-1140 . -1172) T) ((-1140 . -1058) 155491) ((-1140 . -630) 155406) ((-1140 . -1040) T) ((-1140 . -900) 155388) ((-1140 . -859) T) ((-1140 . -818) T) ((-1140 . -815) T) ((-1140 . -863) T) ((-1140 . -860) T) ((-1140 . -813) T) ((-1140 . -811) T) ((-1140 . -841) T) ((-1140 . -667) 155360) ((-1140 . -657) 155342) ((-1140 . -939) T) ((-1140 . -569) T) ((-1140 . -302) T) ((-1140 . -175) T) ((-1140 . -632) 155314) ((-1140 . -736) 155301) ((-1140 . -659) 155288) ((-1140 . -1076) 155275) ((-1140 . -1071) 155262) ((-1140 . -111) 155247) ((-1140 . -38) 155234) ((-1140 . -464) T) ((-1140 . -319) T) ((-1140 . -239) T) ((-1140 . -236) 155221) ((-1140 . -240) T) ((-1140 . -145) T) ((-1140 . -1069) T) ((-1140 . -1077) T) ((-1140 . -1132) T) ((-1140 . -745) T) ((-1140 . -21) T) ((-1140 . -665) 155193) ((-1140 . -23) T) ((-1140 . -1121) T) ((-1140 . -629) 155175) ((-1140 . -1237) T) ((-1140 . -102) T) ((-1140 . -25) T) ((-1140 . -133) T) ((-1140 . -149) T) ((-1140 . -856) T) ((-1140 . -381) T) ((-1140 . -113) T) ((-1140 . -681) T) ((-1136 . -1103) T) ((-1136 . -502) 155156) ((-1136 . -629) 155122) ((-1136 . -632) 155103) ((-1136 . -1121) T) ((-1136 . -1237) T) ((-1136 . -102) T) ((-1136 . -93) T) ((-1135 . -1121) T) ((-1135 . -629) 155085) ((-1135 . -1237) T) ((-1135 . -102) T) ((-1133 . -245) 155064) ((-1133 . -1295) 155034) ((-1133 . -818) 155013) ((-1133 . -815) 154992) ((-1133 . -863) 154943) ((-1133 . -860) 154894) ((-1133 . -813) 154873) ((-1133 . -814) 154852) ((-1133 . -736) 154794) ((-1133 . -659) 154716) ((-1133 . -300) 154693) ((-1133 . -298) 154670) ((-1133 . -501) 154654) ((-1133 . -526) 154587) ((-1133 . -321) 154525) ((-1133 . -34) T) ((-1133 . -615) 154502) ((-1133 . -1058) 154329) ((-1133 . -632) 154127) ((-1133 . -424) 154096) ((-1133 . -657) 154002) ((-1133 . -667) 153835) ((-1133 . -390) 153804) ((-1133 . -381) 153783) ((-1133 . -240) 153735) ((-1133 . -665) 153514) ((-1133 . -745) 153492) ((-1133 . -1132) 153470) ((-1133 . -1077) 153448) ((-1133 . -1069) 153426) ((-1133 . -236) 153317) ((-1133 . -239) 153214) ((-1133 . -274) 153183) ((-1133 . -910) 153050) ((-1133 . -918) 152919) ((-1133 . -916) 152851) ((-1133 . -234) 152820) ((-1133 . -629) 152513) ((-1133 . -1076) 152434) ((-1133 . -1071) 152335) ((-1133 . -111) 152251) ((-1133 . -133) 152122) ((-1133 . -25) 151955) ((-1133 . -102) 151687) ((-1133 . -1237) T) ((-1133 . -1121) 151439) ((-1133 . -23) 151291) ((-1133 . -21) 151202) ((-1126 . -408) T) ((-1126 . -1237) T) ((-1126 . -629) 151184) ((-1125 . -1124) 151148) ((-1125 . -102) T) ((-1125 . -629) 151130) ((-1125 . -1121) T) ((-1125 . -298) 151086) ((-1125 . -1237) T) ((-1125 . -634) 151001) ((-1123 . -1124) 150953) ((-1123 . -102) T) ((-1123 . -629) 150935) ((-1123 . -1121) T) ((-1123 . -298) 150891) ((-1123 . -1237) T) ((-1123 . -634) 150794) ((-1122 . -381) T) ((-1122 . -102) T) ((-1122 . -1237) T) ((-1122 . -629) 150776) ((-1122 . -1121) T) ((-1117 . -438) 150760) ((-1117 . -1119) 150744) ((-1117 . -381) 150723) ((-1117 . -242) 150707) ((-1117 . -630) 150668) ((-1117 . -153) 150652) ((-1117 . -501) 150636) ((-1117 . -1121) T) ((-1117 . -526) 150569) ((-1117 . -321) 150507) ((-1117 . -629) 150489) ((-1117 . -102) T) ((-1117 . -1237) T) ((-1117 . -34) T) ((-1117 . -107) 150473) ((-1117 . -233) 150457) ((-1116 . -1103) T) ((-1116 . -502) 150438) ((-1116 . -629) 150404) ((-1116 . -632) 150385) ((-1116 . -1121) T) ((-1116 . -1237) T) ((-1116 . -102) T) ((-1116 . -93) T) ((-1112 . -1237) T) ((-1112 . -1121) 150355) ((-1112 . -629) 150314) ((-1112 . -102) 150284) ((-1111 . -1103) T) ((-1111 . -502) 150265) ((-1111 . -629) 150231) ((-1111 . -632) 150212) ((-1111 . -1121) T) ((-1111 . -1237) T) ((-1111 . -102) T) ((-1111 . -93) T) ((-1109 . -1114) 150196) ((-1109 . -634) 150180) ((-1109 . -1121) 150158) ((-1109 . -629) 150125) ((-1109 . -1237) 150103) ((-1109 . -102) 150081) ((-1109 . -1115) 150039) ((-1108 . -277) 150023) ((-1108 . -632) 150007) ((-1108 . -1058) 149991) ((-1108 . -863) T) ((-1108 . -102) T) ((-1108 . -1121) T) ((-1108 . -629) 149973) ((-1108 . -860) T) ((-1108 . -236) 149960) ((-1108 . -1237) T) ((-1108 . -239) T) ((-1107 . -262) 149897) ((-1107 . -632) 149633) ((-1107 . -1058) 149460) ((-1107 . -630) NIL) ((-1107 . -338) 149421) ((-1107 . -424) 149405) ((-1107 . -38) 149254) ((-1107 . -111) 149076) ((-1107 . -1071) 148919) ((-1107 . -1076) 148762) ((-1107 . -665) 148672) ((-1107 . -667) 148561) ((-1107 . -659) 148410) ((-1107 . -736) 148259) ((-1107 . -147) 148238) ((-1107 . -149) 148217) ((-1107 . -175) 148128) ((-1107 . -569) 148059) ((-1107 . -302) 147990) ((-1107 . -47) 147951) ((-1107 . -390) 147935) ((-1107 . -657) 147883) ((-1107 . -464) 147834) ((-1107 . -526) 147697) ((-1107 . -916) 147632) ((-1107 . -910) 147527) ((-1107 . -918) 147426) ((-1107 . -900) NIL) ((-1107 . -928) 147405) ((-1107 . -1242) 147384) ((-1107 . -968) 147329) ((-1107 . -321) 147316) ((-1107 . -240) 147295) ((-1107 . -133) T) ((-1107 . -25) T) ((-1107 . -102) T) ((-1107 . -629) 147277) ((-1107 . -1121) T) ((-1107 . -23) T) ((-1107 . -21) T) ((-1107 . -745) T) ((-1107 . -1132) T) ((-1107 . -1077) T) ((-1107 . -1069) T) ((-1107 . -236) 147222) ((-1107 . -1237) T) ((-1107 . -239) 147173) ((-1107 . -274) 147157) ((-1107 . -234) 147141) ((-1105 . -629) 147123) ((-1102 . -860) T) ((-1102 . -629) 147105) ((-1102 . -1121) T) ((-1102 . -102) T) ((-1102 . -1237) T) ((-1102 . -863) T) ((-1102 . -630) 147086) ((-1099 . -743) 147065) ((-1099 . -1058) 146961) ((-1099 . -424) 146945) ((-1099 . -657) 146893) ((-1099 . -667) 146767) ((-1099 . -390) 146751) ((-1099 . -383) 146730) ((-1099 . -149) 146709) ((-1099 . -632) 146527) ((-1099 . -736) 146395) ((-1099 . -659) 146263) ((-1099 . -665) 146158) ((-1099 . -1076) 146068) ((-1099 . -1071) 145978) ((-1099 . -111) 145867) ((-1099 . -38) 145735) ((-1099 . -422) 145714) ((-1099 . -414) 145693) ((-1099 . -147) 145644) ((-1099 . -1172) 145623) ((-1099 . -363) 145602) ((-1099 . -381) 145553) ((-1099 . -250) 145504) ((-1099 . -302) 145455) ((-1099 . -319) 145406) ((-1099 . -464) 145357) ((-1099 . -569) 145308) ((-1099 . -939) 145259) ((-1099 . -1242) 145210) ((-1099 . -376) 145161) ((-1099 . -240) 145086) ((-1099 . -236) 144959) ((-1099 . -239) 144838) ((-1099 . -274) 144808) ((-1099 . -910) 144677) ((-1099 . -918) 144548) ((-1099 . -916) 144481) ((-1099 . -234) 144451) ((-1099 . -630) 144435) ((-1099 . -21) T) ((-1099 . -23) T) ((-1099 . -1121) T) ((-1099 . -629) 144417) ((-1099 . -1237) T) ((-1099 . -102) T) ((-1099 . -25) T) ((-1099 . -133) T) ((-1099 . -1069) T) ((-1099 . -1077) T) ((-1099 . -1132) T) ((-1099 . -745) T) ((-1099 . -175) T) ((-1097 . -1121) T) ((-1097 . -629) 144399) ((-1097 . -1237) T) ((-1097 . -102) T) ((-1097 . -298) 144378) ((-1096 . -1121) T) ((-1096 . -629) 144360) ((-1096 . -1237) T) ((-1096 . -102) T) ((-1095 . -1121) T) ((-1095 . -629) 144342) ((-1095 . -1237) T) ((-1095 . -102) T) ((-1095 . -298) 144321) ((-1095 . -1058) 144298) ((-1095 . -632) 144275) ((-1094 . -1237) T) ((-1093 . -1103) T) ((-1093 . -502) 144256) ((-1093 . -629) 144222) ((-1093 . -632) 144203) ((-1093 . -1121) T) ((-1093 . -1237) T) ((-1093 . -102) T) ((-1093 . -93) T) ((-1086 . -1103) T) ((-1086 . -502) 144184) ((-1086 . -629) 144150) ((-1086 . -632) 144131) ((-1086 . -1121) T) ((-1086 . -1237) T) ((-1086 . -102) T) ((-1086 . -93) T) ((-1083 . -1214) 144106) ((-1083 . -233) 144052) ((-1083 . -107) 143998) ((-1083 . -321) 143849) ((-1083 . -526) 143657) ((-1083 . -501) 143589) ((-1083 . -153) 143535) ((-1083 . -630) NIL) ((-1083 . -242) 143481) ((-1083 . -626) 143456) ((-1083 . -300) 143431) ((-1083 . -1237) T) ((-1083 . -298) 143406) ((-1083 . -1121) T) ((-1083 . -629) 143388) ((-1083 . -102) T) ((-1083 . -34) T) ((-1083 . -615) 143363) ((-1082 . -557) T) ((-1082 . -1242) T) ((-1082 . -1172) T) ((-1082 . -1058) 143345) ((-1082 . -630) 143260) ((-1082 . -1040) T) ((-1082 . -900) 143242) ((-1082 . -859) T) ((-1082 . -818) T) ((-1082 . -815) T) ((-1082 . -863) T) ((-1082 . -860) T) ((-1082 . -813) T) ((-1082 . -811) T) ((-1082 . -841) T) ((-1082 . -667) 143214) ((-1082 . -657) 143196) ((-1082 . -939) T) ((-1082 . -569) T) ((-1082 . -302) T) ((-1082 . -175) T) ((-1082 . -632) 143168) ((-1082 . -736) 143155) ((-1082 . -659) 143142) ((-1082 . -1076) 143129) ((-1082 . -1071) 143116) ((-1082 . -111) 143101) ((-1082 . -38) 143088) ((-1082 . -464) T) ((-1082 . -319) T) ((-1082 . -239) T) ((-1082 . -236) 143075) ((-1082 . -240) T) ((-1082 . -145) T) ((-1082 . -1069) T) ((-1082 . -1077) T) ((-1082 . -1132) T) ((-1082 . -745) T) ((-1082 . -21) T) ((-1082 . -665) 143047) ((-1082 . -23) T) ((-1082 . -1121) T) ((-1082 . -629) 143029) ((-1082 . -1237) T) ((-1082 . -102) T) ((-1082 . -25) T) ((-1082 . -133) T) ((-1082 . -149) T) ((-1082 . -634) 143010) ((-1081 . -1088) 142989) ((-1081 . -102) T) ((-1081 . -1237) T) ((-1081 . -629) 142971) ((-1081 . -1121) T) ((-1078 . -1237) T) ((-1078 . -1121) 142949) ((-1078 . -629) 142916) ((-1078 . -102) 142894) ((-1074 . -1073) 142834) ((-1074 . -659) 142776) ((-1074 . -736) 142718) ((-1074 . -34) T) ((-1074 . -321) 142656) ((-1074 . -526) 142589) ((-1074 . -501) 142573) ((-1074 . -667) 142557) ((-1074 . -665) 142526) ((-1074 . -133) T) ((-1074 . -25) T) ((-1074 . -102) T) ((-1074 . -1237) T) ((-1074 . -629) 142488) ((-1074 . -1121) T) ((-1074 . -23) T) ((-1074 . -21) T) ((-1074 . -1076) 142472) ((-1074 . -1071) 142456) ((-1074 . -111) 142435) ((-1074 . -1295) 142405) ((-1074 . -630) 142366) ((-1066 . -1091) 142295) ((-1066 . -996) 142224) ((-1066 . -630) 142166) ((-1066 . -501) 142131) ((-1066 . -1121) T) ((-1066 . -526) 142015) ((-1066 . -321) 141923) ((-1066 . -629) 141866) ((-1066 . -102) T) ((-1066 . -1237) T) ((-1066 . -34) T) ((-1066 . -153) 141831) ((-1066 . -1232) 141760) ((-1056 . -1103) T) ((-1056 . -502) 141741) ((-1056 . -629) 141707) ((-1056 . -632) 141688) ((-1056 . -1121) T) ((-1056 . -1237) T) ((-1056 . -102) T) ((-1056 . -93) T) ((-1055 . -1214) 141663) ((-1055 . -233) 141609) ((-1055 . -107) 141555) ((-1055 . -321) 141406) ((-1055 . -526) 141214) ((-1055 . -501) 141146) ((-1055 . -153) 141092) ((-1055 . -630) NIL) ((-1055 . -242) 141038) ((-1055 . -626) 141013) ((-1055 . -300) 140988) ((-1055 . -1237) T) ((-1055 . -298) 140963) ((-1055 . -1121) T) ((-1055 . -629) 140945) ((-1055 . -102) T) ((-1055 . -34) T) ((-1055 . -615) 140920) ((-1054 . -175) T) ((-1054 . -632) 140889) ((-1054 . -745) T) ((-1054 . -1132) T) ((-1054 . -1077) T) ((-1054 . -1069) T) ((-1054 . -667) 140863) ((-1054 . -665) 140822) ((-1054 . -133) T) ((-1054 . -25) T) ((-1054 . -102) T) ((-1054 . -1237) T) ((-1054 . -629) 140804) ((-1054 . -1121) T) ((-1054 . -23) T) ((-1054 . -21) T) ((-1054 . -1076) 140778) ((-1054 . -1071) 140752) ((-1054 . -111) 140719) ((-1054 . -38) 140703) ((-1054 . -659) 140687) ((-1054 . -736) 140671) ((-1047 . -1091) 140640) ((-1047 . -996) 140609) ((-1047 . -630) 140570) ((-1047 . -501) 140554) ((-1047 . -1121) T) ((-1047 . -526) 140487) ((-1047 . -321) 140425) ((-1047 . -629) 140387) ((-1047 . -102) T) ((-1047 . -1237) T) ((-1047 . -34) T) ((-1047 . -153) 140371) ((-1047 . -1232) 140340) ((-1046 . -1237) T) ((-1046 . -1121) 140318) ((-1046 . -629) 140285) ((-1046 . -102) 140263) ((-1044 . -1032) T) ((-1044 . -1022) T) ((-1044 . -811) T) ((-1044 . -813) T) ((-1044 . -860) T) ((-1044 . -863) T) ((-1044 . -815) T) ((-1044 . -818) T) ((-1044 . -859) T) ((-1044 . -1058) 140143) ((-1044 . -424) 140105) ((-1044 . -250) T) ((-1044 . -302) T) ((-1044 . -319) T) ((-1044 . -464) T) ((-1044 . -38) 140042) ((-1044 . -659) 139979) ((-1044 . -736) 139916) ((-1044 . -632) 139853) ((-1044 . -569) T) ((-1044 . -939) T) ((-1044 . -1242) T) ((-1044 . -376) T) ((-1044 . -111) 139762) ((-1044 . -1071) 139699) ((-1044 . -1076) 139636) ((-1044 . -175) T) ((-1044 . -149) T) ((-1044 . -667) 139573) ((-1044 . -665) 139510) ((-1044 . -133) T) ((-1044 . -25) T) ((-1044 . -102) T) ((-1044 . -1237) T) ((-1044 . -629) 139492) ((-1044 . -1121) T) ((-1044 . -23) T) ((-1044 . -21) T) ((-1044 . -1069) T) ((-1044 . -1077) T) ((-1044 . -1132) T) ((-1044 . -745) T) ((-1039 . -1103) T) ((-1039 . -502) 139473) ((-1039 . -629) 139439) ((-1039 . -632) 139420) ((-1039 . -1121) T) ((-1039 . -1237) T) ((-1039 . -102) T) ((-1039 . -93) T) ((-1024 . -1011) 139402) ((-1024 . -1172) T) ((-1024 . -632) 139352) ((-1024 . -1058) 139312) ((-1024 . -630) 139242) ((-1024 . -1040) T) ((-1024 . -928) NIL) ((-1024 . -898) 139224) ((-1024 . -859) T) ((-1024 . -818) T) ((-1024 . -815) T) ((-1024 . -863) T) ((-1024 . -860) T) ((-1024 . -813) T) ((-1024 . -811) T) ((-1024 . -841) T) ((-1024 . -900) 139206) ((-1024 . -412) 139188) ((-1024 . -657) 139170) ((-1024 . -390) 139152) ((-1024 . -298) NIL) ((-1024 . -321) NIL) ((-1024 . -526) NIL) ((-1024 . -351) 139134) ((-1024 . -250) T) ((-1024 . -111) 139061) ((-1024 . -1071) 139011) ((-1024 . -1076) 138961) ((-1024 . -302) T) ((-1024 . -736) 138911) ((-1024 . -659) 138861) ((-1024 . -667) 138811) ((-1024 . -665) 138761) ((-1024 . -38) 138711) ((-1024 . -319) T) ((-1024 . -464) T) ((-1024 . -175) T) ((-1024 . -569) T) ((-1024 . -939) T) ((-1024 . -1242) T) ((-1024 . -376) T) ((-1024 . -240) T) ((-1024 . -236) 138698) ((-1024 . -239) T) ((-1024 . -274) 138680) ((-1024 . -910) NIL) ((-1024 . -918) NIL) ((-1024 . -916) NIL) ((-1024 . -234) 138662) ((-1024 . -149) T) ((-1024 . -147) NIL) ((-1024 . -133) T) ((-1024 . -25) T) ((-1024 . -102) T) ((-1024 . -1237) T) ((-1024 . -629) 138622) ((-1024 . -1121) T) ((-1024 . -23) T) ((-1024 . -21) T) ((-1024 . -1069) T) ((-1024 . -1077) T) ((-1024 . -1132) T) ((-1024 . -745) T) ((-1023 . -355) 138596) ((-1023 . -175) T) ((-1023 . -632) 138526) ((-1023 . -745) T) ((-1023 . -1132) T) ((-1023 . -1077) T) ((-1023 . -1069) T) ((-1023 . -667) 138428) ((-1023 . -665) 138358) ((-1023 . -133) T) ((-1023 . -25) T) ((-1023 . -102) T) ((-1023 . -1237) T) ((-1023 . -629) 138340) ((-1023 . -1121) T) ((-1023 . -23) T) ((-1023 . -21) T) ((-1023 . -1076) 138285) ((-1023 . -1071) 138230) ((-1023 . -111) 138147) ((-1023 . -630) 138131) ((-1023 . -234) 138108) ((-1023 . -916) 138060) ((-1023 . -918) 137969) ((-1023 . -910) 137876) ((-1023 . -274) 137853) ((-1023 . -239) 137790) ((-1023 . -236) 137721) ((-1023 . -240) 137693) ((-1023 . -376) T) ((-1023 . -1242) T) ((-1023 . -939) T) ((-1023 . -569) T) ((-1023 . -736) 137638) ((-1023 . -659) 137583) ((-1023 . -38) 137528) ((-1023 . -464) T) ((-1023 . -319) T) ((-1023 . -302) T) ((-1023 . -250) T) ((-1023 . -381) NIL) ((-1023 . -363) NIL) ((-1023 . -1172) NIL) ((-1023 . -147) 137500) ((-1023 . -414) NIL) ((-1023 . -422) 137472) ((-1023 . -149) 137444) ((-1023 . -383) 137416) ((-1023 . -390) 137393) ((-1023 . -657) 137327) ((-1023 . -424) 137304) ((-1023 . -1058) 137179) ((-1023 . -743) 137151) ((-1020 . -1015) 137135) ((-1020 . -501) 137119) ((-1020 . -1121) 137097) ((-1020 . -526) 137030) ((-1020 . -321) 136968) ((-1020 . -629) 136900) ((-1020 . -102) 136850) ((-1020 . -1237) T) ((-1020 . -34) T) ((-1020 . -107) 136834) ((-1016 . -1018) 136818) ((-1016 . -863) 136797) ((-1016 . -860) 136776) ((-1016 . -1058) 136672) ((-1016 . -424) 136656) ((-1016 . -657) 136604) ((-1016 . -667) 136506) ((-1016 . -390) 136490) ((-1016 . -298) 136448) ((-1016 . -321) 136413) ((-1016 . -526) 136325) ((-1016 . -351) 136309) ((-1016 . -38) 136257) ((-1016 . -111) 136132) ((-1016 . -1071) 136028) ((-1016 . -1076) 135924) ((-1016 . -665) 135847) ((-1016 . -659) 135795) ((-1016 . -736) 135743) ((-1016 . -632) 135633) ((-1016 . -302) 135584) ((-1016 . -250) 135563) ((-1016 . -240) 135542) ((-1016 . -236) 135487) ((-1016 . -239) 135438) ((-1016 . -274) 135422) ((-1016 . -910) 135343) ((-1016 . -918) 135266) ((-1016 . -916) 135225) ((-1016 . -234) 135209) ((-1016 . -630) 135170) ((-1016 . -149) 135149) ((-1016 . -147) 135128) ((-1016 . -133) T) ((-1016 . -25) T) ((-1016 . -102) T) ((-1016 . -1237) T) ((-1016 . -629) 135110) ((-1016 . -1121) T) ((-1016 . -23) T) ((-1016 . -21) T) ((-1016 . -1069) T) ((-1016 . -1077) T) ((-1016 . -1132) T) ((-1016 . -745) T) ((-1014 . -1103) T) ((-1014 . -502) 135091) ((-1014 . -629) 135057) ((-1014 . -632) 135038) ((-1014 . -1121) T) ((-1014 . -1237) T) ((-1014 . -102) T) ((-1014 . -93) T) ((-1013 . -21) T) ((-1013 . -665) 135020) ((-1013 . -23) T) ((-1013 . -1121) T) ((-1013 . -629) 135002) ((-1013 . -1237) T) ((-1013 . -102) T) ((-1013 . -25) T) ((-1013 . -133) T) ((-1013 . -298) 134969) ((-1009 . -629) 134951) ((-1006 . -1121) T) ((-1006 . -629) 134933) ((-1006 . -1237) T) ((-1006 . -102) T) ((-991 . -818) T) ((-991 . -815) T) ((-991 . -863) T) ((-991 . -860) T) ((-991 . -813) T) ((-991 . -23) T) ((-991 . -1121) T) ((-991 . -629) 134893) ((-991 . -1237) T) ((-991 . -102) T) ((-991 . -25) T) ((-991 . -133) T) ((-990 . -1103) T) ((-990 . -502) 134874) ((-990 . -629) 134840) ((-990 . -632) 134821) ((-990 . -1121) T) ((-990 . -1237) T) ((-990 . -102) T) ((-990 . -93) T) ((-984 . -987) T) ((-984 . -102) T) ((-984 . -629) 134803) ((-984 . -1121) T) ((-984 . -681) T) ((-984 . -1237) T) ((-984 . -113) T) ((-984 . -632) 134787) ((-983 . -629) 134769) ((-982 . -1121) T) ((-982 . -629) 134751) ((-982 . -1237) T) ((-982 . -102) T) ((-982 . -381) 134704) ((-982 . -745) 134603) ((-982 . -1132) 134502) ((-982 . -23) 134313) ((-982 . -25) 134124) ((-982 . -133) 133979) ((-982 . -485) 133932) ((-982 . -21) 133887) ((-982 . -665) 133831) ((-982 . -814) 133784) ((-982 . -813) 133737) ((-982 . -860) 133636) ((-982 . -863) 133535) ((-982 . -815) 133488) ((-982 . -818) 133441) ((-976 . -19) 133425) ((-976 . -670) 133409) ((-976 . -300) 133386) ((-976 . -298) 133338) ((-976 . -615) 133315) ((-976 . -630) 133276) ((-976 . -501) 133260) ((-976 . -1121) 133210) ((-976 . -526) 133143) ((-976 . -321) 133081) ((-976 . -629) 132993) ((-976 . -102) 132923) ((-976 . -1237) T) ((-976 . -34) T) ((-976 . -153) 132907) ((-976 . -860) 132886) ((-976 . -863) 132865) ((-976 . -385) 132849) ((-974 . -338) 132828) ((-974 . -1058) 132724) ((-974 . -424) 132708) ((-974 . -38) 132605) ((-974 . -632) 132458) ((-974 . -667) 132383) ((-974 . -665) 132293) ((-974 . -745) T) ((-974 . -1132) T) ((-974 . -1077) T) ((-974 . -1069) T) ((-974 . -111) 132155) ((-974 . -1071) 132038) ((-974 . -1076) 131921) ((-974 . -21) T) ((-974 . -23) T) ((-974 . -1121) T) ((-974 . -629) 131903) ((-974 . -1237) T) ((-974 . -102) T) ((-974 . -25) T) ((-974 . -133) T) ((-974 . -659) 131800) ((-974 . -736) 131697) ((-974 . -147) 131676) ((-974 . -149) 131655) ((-974 . -175) 131606) ((-974 . -569) 131585) ((-974 . -302) 131564) ((-974 . -47) 131543) ((-972 . -1121) T) ((-972 . -629) 131509) ((-972 . -1237) T) ((-972 . -102) T) ((-964 . -968) 131470) ((-964 . -632) 131259) ((-964 . -1058) 131139) ((-964 . -1242) 131118) ((-964 . -928) 131097) ((-964 . -900) 131022) ((-964 . -918) 131003) ((-964 . -910) 130982) ((-964 . -916) 130963) ((-964 . -526) 130909) ((-964 . -464) 130860) ((-964 . -657) 130808) ((-964 . -667) 130697) ((-964 . -390) 130681) ((-964 . -47) 130650) ((-964 . -38) 130499) ((-964 . -659) 130348) ((-964 . -736) 130197) ((-964 . -302) 130128) ((-964 . -569) 130059) ((-964 . -111) 129881) ((-964 . -1071) 129724) ((-964 . -1076) 129567) ((-964 . -175) 129478) ((-964 . -149) 129457) ((-964 . -147) 129436) ((-964 . -665) 129346) ((-964 . -133) T) ((-964 . -25) T) ((-964 . -102) T) ((-964 . -1237) T) ((-964 . -629) 129328) ((-964 . -1121) T) ((-964 . -23) T) ((-964 . -21) T) ((-964 . -1069) T) ((-964 . -1077) T) ((-964 . -1132) T) ((-964 . -745) T) ((-964 . -424) 129312) ((-964 . -338) 129281) ((-964 . -321) 129268) ((-964 . -630) 129129) ((-961 . -1000) 129113) ((-961 . -19) 129097) ((-961 . -670) 129081) ((-961 . -300) 129058) ((-961 . -298) 129010) ((-961 . -615) 128987) ((-961 . -630) 128948) ((-961 . -501) 128932) ((-961 . -1121) 128882) ((-961 . -526) 128815) ((-961 . -321) 128753) ((-961 . -629) 128665) ((-961 . -102) 128595) ((-961 . -1237) T) ((-961 . -34) T) ((-961 . -153) 128579) ((-961 . -860) 128558) ((-961 . -863) 128537) ((-961 . -385) 128521) ((-961 . -1286) 128505) ((-961 . -634) 128482) ((-945 . -994) T) ((-945 . -629) 128464) ((-943 . -973) T) ((-943 . -629) 128446) ((-937 . -815) T) ((-937 . -863) T) ((-937 . -860) T) ((-937 . -1121) T) ((-937 . -629) 128428) ((-937 . -1237) T) ((-937 . -102) T) ((-937 . -25) T) ((-937 . -745) T) ((-937 . -1132) T) ((-932 . -376) T) ((-932 . -1242) T) ((-932 . -939) T) ((-932 . -569) T) ((-932 . -175) T) ((-932 . -632) 128365) ((-932 . -736) 128317) ((-932 . -659) 128269) ((-932 . -38) 128221) ((-932 . -464) T) ((-932 . -319) T) ((-932 . -667) 128173) ((-932 . -665) 128110) ((-932 . -745) T) ((-932 . -1132) T) ((-932 . -1077) T) ((-932 . -1069) T) ((-932 . -111) 128041) ((-932 . -1071) 127993) ((-932 . -1076) 127945) ((-932 . -21) T) ((-932 . -23) T) ((-932 . -1121) T) ((-932 . -629) 127927) ((-932 . -1237) T) ((-932 . -102) T) ((-932 . -25) T) ((-932 . -133) T) ((-932 . -302) T) ((-932 . -250) T) ((-924 . -363) T) ((-924 . -1172) T) ((-924 . -381) T) ((-924 . -147) T) ((-924 . -376) T) ((-924 . -1242) T) ((-924 . -939) T) ((-924 . -569) T) ((-924 . -175) T) ((-924 . -632) 127877) ((-924 . -736) 127842) ((-924 . -659) 127807) ((-924 . -38) 127772) ((-924 . -464) T) ((-924 . -319) T) ((-924 . -111) 127721) ((-924 . -1071) 127686) ((-924 . -1076) 127651) ((-924 . -665) 127601) ((-924 . -667) 127566) ((-924 . -302) T) ((-924 . -250) T) ((-924 . -414) T) ((-924 . -239) T) ((-924 . -1237) T) ((-924 . -236) 127553) ((-924 . -1069) T) ((-924 . -1077) T) ((-924 . -1132) T) ((-924 . -745) T) ((-924 . -21) T) ((-924 . -23) T) ((-924 . -1121) T) ((-924 . -629) 127535) ((-924 . -102) T) ((-924 . -25) T) ((-924 . -133) T) ((-924 . -240) T) ((-924 . -341) 127522) ((-924 . -149) 127504) ((-924 . -1058) 127491) ((-924 . -1295) 127478) ((-924 . -1306) 127465) ((-924 . -630) 127447) ((-923 . -1121) T) ((-923 . -629) 127429) ((-923 . -1237) T) ((-923 . -102) T) ((-920 . -922) 127413) ((-920 . -863) 127364) ((-920 . -860) 127315) ((-920 . -745) T) ((-920 . -1121) T) ((-920 . -629) 127297) ((-920 . -102) T) ((-920 . -1132) T) ((-920 . -485) T) ((-920 . -1237) T) ((-920 . -298) 127276) ((-919 . -121) 127260) ((-919 . -501) 127244) ((-919 . -1121) 127222) ((-919 . -526) 127155) ((-919 . -321) 127093) ((-919 . -629) 127004) ((-919 . -102) 126954) ((-919 . -1237) T) ((-919 . -34) T) ((-919 . -1030) 126938) ((-914 . -1121) T) ((-914 . -629) 126920) ((-914 . -1237) T) ((-914 . -102) T) ((-907 . -860) T) ((-907 . -629) 126902) ((-907 . -1121) T) ((-907 . -102) T) ((-907 . -1237) T) ((-907 . -863) T) ((-907 . -1058) 126879) ((-907 . -632) 126856) ((-904 . -1121) T) ((-904 . -629) 126838) ((-904 . -1237) T) ((-904 . -102) T) ((-904 . -1058) 126806) ((-904 . -632) 126774) ((-902 . -1121) T) ((-902 . -629) 126756) ((-902 . -1237) T) ((-902 . -102) T) ((-899 . -1121) T) ((-899 . -629) 126738) ((-899 . -1237) T) ((-899 . -102) T) ((-889 . -1103) T) ((-889 . -502) 126719) ((-889 . -629) 126685) ((-889 . -632) 126666) ((-889 . -1121) T) ((-889 . -1237) T) ((-889 . -102) T) ((-889 . -93) T) ((-889 . -1283) T) ((-887 . -1121) T) ((-887 . -629) 126648) ((-887 . -1237) T) ((-887 . -102) T) ((-886 . -1237) T) ((-886 . -629) 126520) ((-886 . -1121) 126471) ((-886 . -102) 126422) ((-885 . -1011) 126406) ((-885 . -1172) 126384) ((-885 . -1058) 126248) ((-885 . -632) 126146) ((-885 . -630) 125947) ((-885 . -1040) 125925) ((-885 . -928) 125904) ((-885 . -898) 125888) ((-885 . -859) 125867) ((-885 . -818) 125846) ((-885 . -815) 125825) ((-885 . -863) 125776) ((-885 . -860) 125727) ((-885 . -813) 125706) ((-885 . -811) 125685) ((-885 . -841) 125664) ((-885 . -900) 125589) ((-885 . -412) 125573) ((-885 . -657) 125521) ((-885 . -667) 125437) ((-885 . -390) 125421) ((-885 . -298) 125379) ((-885 . -321) 125344) ((-885 . -526) 125256) ((-885 . -351) 125240) ((-885 . -250) T) ((-885 . -111) 125171) ((-885 . -1071) 125123) ((-885 . -1076) 125075) ((-885 . -302) T) ((-885 . -736) 125027) ((-885 . -659) 124979) ((-885 . -665) 124916) ((-885 . -38) 124868) ((-885 . -319) T) ((-885 . -464) T) ((-885 . -175) T) ((-885 . -569) T) ((-885 . -939) T) ((-885 . -1242) T) ((-885 . -376) T) ((-885 . -240) 124847) ((-885 . -236) 124792) ((-885 . -239) 124743) ((-885 . -274) 124727) ((-885 . -910) 124648) ((-885 . -918) 124571) ((-885 . -916) 124530) ((-885 . -234) 124514) ((-885 . -149) 124493) ((-885 . -147) 124472) ((-885 . -133) T) ((-885 . -25) T) ((-885 . -102) T) ((-885 . -1237) T) ((-885 . -629) 124454) ((-885 . -1121) T) ((-885 . -23) T) ((-885 . -21) T) ((-885 . -1069) T) ((-885 . -1077) T) ((-885 . -1132) T) ((-885 . -745) T) ((-884 . -1011) 124431) ((-884 . -1172) NIL) ((-884 . -1058) 124408) ((-884 . -632) 124338) ((-884 . -630) NIL) ((-884 . -1040) NIL) ((-884 . -928) NIL) ((-884 . -898) 124315) ((-884 . -859) NIL) ((-884 . -818) NIL) ((-884 . -815) NIL) ((-884 . -863) NIL) ((-884 . -860) NIL) ((-884 . -813) NIL) ((-884 . -811) NIL) ((-884 . -841) NIL) ((-884 . -900) NIL) ((-884 . -412) 124292) ((-884 . -657) 124269) ((-884 . -667) 124214) ((-884 . -390) 124191) ((-884 . -298) 124121) ((-884 . -321) 124065) ((-884 . -526) 123928) ((-884 . -351) 123905) ((-884 . -250) T) ((-884 . -111) 123822) ((-884 . -1071) 123767) ((-884 . -1076) 123712) ((-884 . -302) T) ((-884 . -736) 123657) ((-884 . -659) 123602) ((-884 . -665) 123532) ((-884 . -38) 123477) ((-884 . -319) T) ((-884 . -464) T) ((-884 . -175) T) ((-884 . -569) T) ((-884 . -939) T) ((-884 . -1242) T) ((-884 . -376) T) ((-884 . -240) NIL) ((-884 . -236) NIL) ((-884 . -239) NIL) ((-884 . -274) 123454) ((-884 . -910) NIL) ((-884 . -918) NIL) ((-884 . -916) NIL) ((-884 . -234) 123431) ((-884 . -149) T) ((-884 . -147) NIL) ((-884 . -133) T) ((-884 . -25) T) ((-884 . -102) T) ((-884 . -1237) T) ((-884 . -629) 123413) ((-884 . -1121) T) ((-884 . -23) T) ((-884 . -21) T) ((-884 . -1069) T) ((-884 . -1077) T) ((-884 . -1132) T) ((-884 . -745) T) ((-882 . -883) 123397) ((-882 . -939) T) ((-882 . -569) T) ((-882 . -302) T) ((-882 . -175) T) ((-882 . -632) 123369) ((-882 . -736) 123356) ((-882 . -659) 123343) ((-882 . -1076) 123330) ((-882 . -1071) 123317) ((-882 . -111) 123302) ((-882 . -38) 123289) ((-882 . -464) T) ((-882 . -319) T) ((-882 . -1069) T) ((-882 . -1077) T) ((-882 . -1132) T) ((-882 . -745) T) ((-882 . -21) T) ((-882 . -665) 123261) ((-882 . -23) T) ((-882 . -1121) T) ((-882 . -629) 123243) ((-882 . -1237) T) ((-882 . -102) T) ((-882 . -25) T) ((-882 . -133) T) ((-882 . -667) 123230) ((-882 . -149) T) ((-879 . -1069) T) ((-879 . -1077) T) ((-879 . -1132) T) ((-879 . -745) T) ((-879 . -21) T) ((-879 . -665) 123175) ((-879 . -23) T) ((-879 . -1121) T) ((-879 . -629) 123137) ((-879 . -1237) T) ((-879 . -102) T) ((-879 . -25) T) ((-879 . -133) T) ((-879 . -667) 123097) ((-879 . -632) 123032) ((-879 . -502) 123009) ((-879 . -38) 122979) ((-879 . -111) 122944) ((-879 . -1071) 122914) ((-879 . -1076) 122884) ((-879 . -659) 122854) ((-879 . -736) 122824) ((-878 . -1121) T) ((-878 . -629) 122806) ((-878 . -1237) T) ((-878 . -102) T) ((-877 . -856) T) ((-877 . -863) T) ((-877 . -860) T) ((-877 . -1121) T) ((-877 . -629) 122788) ((-877 . -1237) T) ((-877 . -102) T) ((-877 . -381) T) ((-877 . -630) 122710) ((-876 . -1121) T) ((-876 . -629) 122692) ((-876 . -1237) T) ((-876 . -102) T) ((-875 . -874) T) ((-875 . -176) T) ((-875 . -629) 122674) ((-871 . -860) T) ((-871 . -629) 122656) ((-871 . -1121) T) ((-871 . -102) T) ((-871 . -1237) T) ((-871 . -863) T) ((-868 . -865) 122640) ((-868 . -1058) 122536) ((-868 . -632) 122433) ((-868 . -424) 122417) ((-868 . -736) 122387) ((-868 . -659) 122357) ((-868 . -667) 122331) ((-868 . -665) 122290) ((-868 . -133) T) ((-868 . -25) T) ((-868 . -102) T) ((-868 . -1237) T) ((-868 . -629) 122272) ((-868 . -1121) T) ((-868 . -23) T) ((-868 . -21) T) ((-868 . -1076) 122256) ((-868 . -1071) 122240) ((-868 . -111) 122219) ((-868 . -1069) T) ((-868 . -1077) T) ((-868 . -1132) T) ((-868 . -745) T) ((-868 . -38) 122189) ((-867 . -865) 122173) ((-867 . -1058) 122069) ((-867 . -632) 121987) ((-867 . -424) 121971) ((-867 . -736) 121941) ((-867 . -659) 121911) ((-867 . -667) 121885) ((-867 . -665) 121844) ((-867 . -133) T) ((-867 . -25) T) ((-867 . -102) T) ((-867 . -1237) T) ((-867 . -629) 121826) ((-867 . -1121) T) ((-867 . -23) T) ((-867 . -21) T) ((-867 . -1076) 121810) ((-867 . -1071) 121794) ((-867 . -111) 121773) ((-867 . -1069) T) ((-867 . -1077) T) ((-867 . -1132) T) ((-867 . -745) T) ((-867 . -38) 121743) ((-861 . -863) T) ((-861 . -1237) T) ((-861 . -102) T) ((-861 . -502) 121727) ((-861 . -629) 121675) ((-861 . -632) 121659) ((-854 . -1121) T) ((-854 . -629) 121641) ((-854 . -1237) T) ((-854 . -102) T) ((-854 . -424) 121625) ((-854 . -632) 121493) ((-854 . -1058) 121389) ((-854 . -21) 121341) ((-854 . -665) 121258) ((-854 . -23) 121210) ((-854 . -25) 121162) ((-854 . -133) 121114) ((-854 . -859) 121093) ((-854 . -667) 121066) ((-854 . -1077) 121045) ((-854 . -1069) 121024) ((-854 . -818) 121003) ((-854 . -815) 120982) ((-854 . -863) 120961) ((-854 . -860) 120940) ((-854 . -813) 120919) ((-854 . -811) 120898) ((-854 . -1132) 120877) ((-854 . -745) 120856) ((-853 . -1121) T) ((-853 . -629) 120838) ((-853 . -1237) T) ((-853 . -102) T) ((-850 . -848) 120820) ((-850 . -102) T) ((-850 . -1237) T) ((-850 . -629) 120802) ((-850 . -1121) T) ((-846 . -1069) T) ((-846 . -1077) T) ((-846 . -1132) T) ((-846 . -745) T) ((-846 . -21) T) ((-846 . -665) 120747) ((-846 . -23) T) ((-846 . -1121) T) ((-846 . -629) 120729) ((-846 . -1237) T) ((-846 . -102) T) ((-846 . -25) T) ((-846 . -133) T) ((-846 . -667) 120689) ((-846 . -632) 120643) ((-846 . -1058) 120612) ((-846 . -298) 120591) ((-846 . -149) 120570) ((-846 . -147) 120549) ((-846 . -38) 120519) ((-846 . -111) 120484) ((-846 . -1071) 120454) ((-846 . -1076) 120424) ((-846 . -659) 120394) ((-846 . -736) 120364) ((-844 . -1121) T) ((-844 . -629) 120346) ((-844 . -1237) T) ((-844 . -102) T) ((-844 . -424) 120330) ((-844 . -632) 120198) ((-844 . -1058) 120094) ((-844 . -21) 120046) ((-844 . -665) 119963) ((-844 . -23) 119915) ((-844 . -25) 119867) ((-844 . -133) 119819) ((-844 . -859) 119798) ((-844 . -667) 119771) ((-844 . -1077) 119750) ((-844 . -1069) 119729) ((-844 . -818) 119708) ((-844 . -815) 119687) ((-844 . -863) 119666) ((-844 . -860) 119645) ((-844 . -813) 119624) ((-844 . -811) 119603) ((-844 . -1132) 119582) ((-844 . -745) 119561) ((-842 . -727) 119545) ((-842 . -632) 119500) ((-842 . -736) 119470) ((-842 . -659) 119440) ((-842 . -667) 119414) ((-842 . -665) 119373) ((-842 . -133) T) ((-842 . -25) T) ((-842 . -102) T) ((-842 . -1237) T) ((-842 . -629) 119355) ((-842 . -1121) T) ((-842 . -23) T) ((-842 . -21) T) ((-842 . -1076) 119339) ((-842 . -1071) 119323) ((-842 . -111) 119302) ((-842 . -1069) T) ((-842 . -1077) T) ((-842 . -1132) T) ((-842 . -745) T) ((-842 . -38) 119272) ((-842 . -240) 119251) ((-842 . -236) 119224) ((-842 . -239) 119203) ((-840 . -399) 119187) ((-840 . -632) 119171) ((-840 . -1058) 119155) ((-840 . -863) T) ((-840 . -860) T) ((-840 . -1132) T) ((-840 . -102) T) ((-840 . -1237) T) ((-840 . -629) 119137) ((-840 . -1121) T) ((-840 . -745) T) ((-840 . -858) T) ((-840 . -870) T) ((-839 . -277) 119121) ((-839 . -632) 119105) ((-839 . -1058) 119089) ((-839 . -863) T) ((-839 . -102) T) ((-839 . -1121) T) ((-839 . -629) 119071) ((-839 . -860) T) ((-839 . -236) 119058) ((-839 . -1237) T) ((-839 . -239) T) ((-838 . -111) 118993) ((-838 . -1071) 118944) ((-838 . -1076) 118895) ((-838 . -21) T) ((-838 . -665) 118831) ((-838 . -23) T) ((-838 . -1121) T) ((-838 . -629) 118800) ((-838 . -1237) T) ((-838 . -102) T) ((-838 . -25) T) ((-838 . -133) T) ((-838 . -667) 118751) ((-838 . -240) T) ((-838 . -632) 118660) ((-838 . -745) T) ((-838 . -1132) T) ((-838 . -1077) T) ((-838 . -1069) T) ((-838 . -236) 118647) ((-838 . -239) T) ((-838 . -502) 118631) ((-838 . -376) 118610) ((-838 . -1242) 118589) ((-838 . -939) 118568) ((-838 . -569) 118547) ((-838 . -175) 118526) ((-838 . -736) 118463) ((-838 . -659) 118400) ((-838 . -38) 118337) ((-838 . -464) 118316) ((-838 . -319) 118295) ((-838 . -302) 118274) ((-838 . -250) 118253) ((-837 . -262) 118192) ((-837 . -632) 117929) ((-837 . -1058) 117757) ((-837 . -630) NIL) ((-837 . -338) 117719) ((-837 . -424) 117703) ((-837 . -38) 117552) ((-837 . -111) 117374) ((-837 . -1071) 117217) ((-837 . -1076) 117060) ((-837 . -665) 116970) ((-837 . -667) 116859) ((-837 . -659) 116708) ((-837 . -736) 116557) ((-837 . -147) 116536) ((-837 . -149) 116515) ((-837 . -175) 116426) ((-837 . -569) 116357) ((-837 . -302) 116288) ((-837 . -47) 116250) ((-837 . -390) 116234) ((-837 . -657) 116182) ((-837 . -464) 116133) ((-837 . -526) 115998) ((-837 . -916) 115934) ((-837 . -910) 115830) ((-837 . -918) 115730) ((-837 . -900) NIL) ((-837 . -928) 115709) ((-837 . -1242) 115688) ((-837 . -968) 115635) ((-837 . -321) 115622) ((-837 . -240) 115601) ((-837 . -133) T) ((-837 . -25) T) ((-837 . -102) T) ((-837 . -629) 115583) ((-837 . -1121) T) ((-837 . -23) T) ((-837 . -21) T) ((-837 . -745) T) ((-837 . -1132) T) ((-837 . -1077) T) ((-837 . -1069) T) ((-837 . -236) 115528) ((-837 . -1237) T) ((-837 . -239) 115479) ((-837 . -274) 115463) ((-837 . -234) 115447) ((-836 . -245) 115426) ((-836 . -1295) 115396) ((-836 . -818) 115375) ((-836 . -815) 115354) ((-836 . -863) 115305) ((-836 . -860) 115256) ((-836 . -813) 115235) ((-836 . -814) 115214) ((-836 . -736) 115156) ((-836 . -659) 115078) ((-836 . -300) 115055) ((-836 . -298) 115032) ((-836 . -501) 115016) ((-836 . -526) 114949) ((-836 . -321) 114887) ((-836 . -34) T) ((-836 . -615) 114864) ((-836 . -1058) 114691) ((-836 . -632) 114489) ((-836 . -424) 114458) ((-836 . -657) 114364) ((-836 . -667) 114197) ((-836 . -390) 114166) ((-836 . -381) 114145) ((-836 . -240) 114097) ((-836 . -665) 113876) ((-836 . -745) 113854) ((-836 . -1132) 113832) ((-836 . -1077) 113810) ((-836 . -1069) 113788) ((-836 . -236) 113679) ((-836 . -239) 113576) ((-836 . -274) 113545) ((-836 . -910) 113412) ((-836 . -918) 113281) ((-836 . -916) 113213) ((-836 . -234) 113182) ((-836 . -629) 112875) ((-836 . -1076) 112796) ((-836 . -1071) 112697) ((-836 . -111) 112613) ((-836 . -133) 112484) ((-836 . -25) 112317) ((-836 . -102) 112049) ((-836 . -1237) T) ((-836 . -1121) 111801) ((-836 . -23) 111653) ((-836 . -21) 111564) ((-829 . -1121) T) ((-829 . -629) 111546) ((-829 . -1237) T) ((-829 . -102) T) ((-819 . -817) 111530) ((-819 . -863) 111509) ((-819 . -860) 111488) ((-819 . -1058) 111268) ((-819 . -632) 111114) ((-819 . -424) 111077) ((-819 . -298) 111035) ((-819 . -321) 111000) ((-819 . -526) 110912) ((-819 . -351) 110896) ((-819 . -381) 110875) ((-819 . -630) 110836) ((-819 . -149) 110815) ((-819 . -147) 110794) ((-819 . -736) 110778) ((-819 . -659) 110762) ((-819 . -667) 110736) ((-819 . -665) 110695) ((-819 . -133) T) ((-819 . -25) T) ((-819 . -102) T) ((-819 . -1237) T) ((-819 . -629) 110677) ((-819 . -1121) T) ((-819 . -23) T) ((-819 . -21) T) ((-819 . -1076) 110661) ((-819 . -1071) 110645) ((-819 . -111) 110624) ((-819 . -1069) T) ((-819 . -1077) T) ((-819 . -1132) T) ((-819 . -745) T) ((-819 . -38) 110608) ((-800 . -1263) 110592) ((-800 . -1172) 110570) ((-800 . -630) NIL) ((-800 . -321) 110557) ((-800 . -526) 110503) ((-800 . -338) 110480) ((-800 . -1058) 110339) ((-800 . -424) 110323) ((-800 . -38) 110152) ((-800 . -111) 109954) ((-800 . -1071) 109777) ((-800 . -1076) 109600) ((-800 . -665) 109510) ((-800 . -667) 109399) ((-800 . -659) 109228) ((-800 . -736) 109057) ((-800 . -632) 108805) ((-800 . -147) 108784) ((-800 . -149) 108763) ((-800 . -47) 108740) ((-800 . -390) 108724) ((-800 . -657) 108672) ((-800 . -916) 108615) ((-800 . -910) 108518) ((-800 . -918) 108425) ((-800 . -900) NIL) ((-800 . -928) 108404) ((-800 . -1242) 108383) ((-800 . -968) 108352) ((-800 . -939) 108331) ((-800 . -569) 108242) ((-800 . -302) 108153) ((-800 . -175) 108044) ((-800 . -464) 107975) ((-800 . -319) 107954) ((-800 . -298) 107881) ((-800 . -240) T) ((-800 . -133) T) ((-800 . -25) T) ((-800 . -102) T) ((-800 . -629) 107842) ((-800 . -1121) T) ((-800 . -23) T) ((-800 . -21) T) ((-800 . -745) T) ((-800 . -1132) T) ((-800 . -1077) T) ((-800 . -1069) T) ((-800 . -236) 107829) ((-800 . -1237) T) ((-800 . -239) T) ((-800 . -274) 107813) ((-800 . -234) 107797) ((-799 . -1085) 107764) ((-799 . -630) 107398) ((-799 . -321) 107385) ((-799 . -526) 107337) ((-799 . -338) 107309) ((-799 . -1058) 107166) ((-799 . -424) 107150) ((-799 . -38) 106999) ((-799 . -632) 106765) ((-799 . -667) 106654) ((-799 . -665) 106564) ((-799 . -745) T) ((-799 . -1132) T) ((-799 . -1077) T) ((-799 . -1069) T) ((-799 . -111) 106386) ((-799 . -1071) 106229) ((-799 . -1076) 106072) ((-799 . -21) T) ((-799 . -23) T) ((-799 . -1121) T) ((-799 . -629) 105986) ((-799 . -1237) T) ((-799 . -102) T) ((-799 . -25) T) ((-799 . -133) T) ((-799 . -659) 105835) ((-799 . -736) 105684) ((-799 . -147) 105663) ((-799 . -149) 105642) ((-799 . -175) 105553) ((-799 . -569) 105484) ((-799 . -302) 105415) ((-799 . -47) 105387) ((-799 . -390) 105371) ((-799 . -657) 105319) ((-799 . -464) 105270) ((-799 . -916) 105254) ((-799 . -910) 105236) ((-799 . -918) 105220) ((-799 . -900) 105079) ((-799 . -928) 105058) ((-799 . -1242) 105037) ((-799 . -968) 105004) ((-792 . -1121) T) ((-792 . -629) 104986) ((-792 . -1237) T) ((-792 . -102) T) ((-790 . -814) T) ((-790 . -133) T) ((-790 . -25) T) ((-790 . -102) T) ((-790 . -1237) T) ((-790 . -629) 104968) ((-790 . -1121) T) ((-790 . -23) T) ((-790 . -813) T) ((-790 . -860) T) ((-790 . -863) T) ((-790 . -815) T) ((-790 . -818) T) ((-790 . -745) T) ((-790 . -1132) T) ((-788 . -1121) T) ((-788 . -629) 104950) ((-788 . -1237) T) ((-788 . -102) T) ((-755 . -756) 104934) ((-755 . -1119) 104918) ((-755 . -242) 104902) ((-755 . -630) 104863) ((-755 . -153) 104847) ((-755 . -501) 104831) ((-755 . -1121) T) ((-755 . -526) 104764) ((-755 . -321) 104702) ((-755 . -629) 104684) ((-755 . -102) T) ((-755 . -1237) T) ((-755 . -34) T) ((-755 . -107) 104668) ((-755 . -714) 104652) ((-754 . -1069) T) ((-754 . -1077) T) ((-754 . -1132) T) ((-754 . -745) T) ((-754 . -21) T) ((-754 . -665) 104597) ((-754 . -23) T) ((-754 . -1121) T) ((-754 . -629) 104579) ((-754 . -1237) T) ((-754 . -102) T) ((-754 . -25) T) ((-754 . -133) T) ((-754 . -667) 104539) ((-754 . -632) 104495) ((-754 . -1058) 104466) ((-754 . -149) 104445) ((-754 . -147) 104424) ((-754 . -38) 104394) ((-754 . -111) 104359) ((-754 . -1071) 104329) ((-754 . -1076) 104299) ((-754 . -659) 104269) ((-754 . -736) 104239) ((-754 . -381) 104192) ((-750 . -968) 104145) ((-750 . -632) 103930) ((-750 . -1058) 103806) ((-750 . -1242) 103785) ((-750 . -928) 103764) ((-750 . -900) NIL) ((-750 . -918) 103741) ((-750 . -910) 103716) ((-750 . -916) 103693) ((-750 . -526) 103631) ((-750 . -464) 103582) ((-750 . -657) 103530) ((-750 . -667) 103419) ((-750 . -390) 103403) ((-750 . -47) 103368) ((-750 . -38) 103217) ((-750 . -659) 103066) ((-750 . -736) 102915) ((-750 . -302) 102846) ((-750 . -569) 102777) ((-750 . -111) 102599) ((-750 . -1071) 102442) ((-750 . -1076) 102285) ((-750 . -175) 102196) ((-750 . -149) 102175) ((-750 . -147) 102154) ((-750 . -665) 102064) ((-750 . -133) T) ((-750 . -25) T) ((-750 . -102) T) ((-750 . -1237) T) ((-750 . -629) 102046) ((-750 . -1121) T) ((-750 . -23) T) ((-750 . -21) T) ((-750 . -1069) T) ((-750 . -1077) T) ((-750 . -1132) T) ((-750 . -745) T) ((-750 . -424) 102030) ((-750 . -338) 101995) ((-750 . -321) 101982) ((-750 . -630) 101843) ((-737 . -485) T) ((-737 . -1132) T) ((-737 . -102) T) ((-737 . -1237) T) ((-737 . -629) 101825) ((-737 . -1121) T) ((-737 . -745) T) ((-734 . -1069) T) ((-734 . -1077) T) ((-734 . -1132) T) ((-734 . -745) T) ((-734 . -21) T) ((-734 . -665) 101797) ((-734 . -23) T) ((-734 . -1121) T) ((-734 . -629) 101779) ((-734 . -1237) T) ((-734 . -102) T) ((-734 . -25) T) ((-734 . -133) T) ((-734 . -667) 101766) ((-734 . -632) 101748) ((-733 . -1069) T) ((-733 . -1077) T) ((-733 . -1132) T) ((-733 . -745) T) ((-733 . -21) T) ((-733 . -665) 101693) ((-733 . -23) T) ((-733 . -1121) T) ((-733 . -629) 101675) ((-733 . -1237) T) ((-733 . -102) T) ((-733 . -25) T) ((-733 . -133) T) ((-733 . -667) 101635) ((-733 . -632) 101589) ((-733 . -1058) 101558) ((-733 . -298) 101537) ((-733 . -149) 101516) ((-733 . -147) 101495) ((-733 . -38) 101465) ((-733 . -111) 101430) ((-733 . -1071) 101400) ((-733 . -1076) 101370) ((-733 . -659) 101340) ((-733 . -736) 101310) ((-732 . -860) T) ((-732 . -629) 101245) ((-732 . -1121) T) ((-732 . -102) T) ((-732 . -1237) T) ((-732 . -863) T) ((-732 . -502) 101195) ((-732 . -632) 101145) ((-731 . -1263) 101129) ((-731 . -1172) 101107) ((-731 . -630) NIL) ((-731 . -321) 101094) ((-731 . -526) 101040) ((-731 . -338) 101017) ((-731 . -1058) 100897) ((-731 . -424) 100881) ((-731 . -38) 100710) ((-731 . -111) 100512) ((-731 . -1071) 100335) ((-731 . -1076) 100158) ((-731 . -665) 100068) ((-731 . -667) 99957) ((-731 . -659) 99786) ((-731 . -736) 99615) ((-731 . -632) 99371) ((-731 . -147) 99350) ((-731 . -149) 99329) ((-731 . -47) 99306) ((-731 . -390) 99290) ((-731 . -657) 99238) ((-731 . -916) 99181) ((-731 . -910) 99084) ((-731 . -918) 98991) ((-731 . -900) NIL) ((-731 . -928) 98970) ((-731 . -1242) 98949) ((-731 . -968) 98918) ((-731 . -939) 98897) ((-731 . -569) 98808) ((-731 . -302) 98719) ((-731 . -175) 98610) ((-731 . -464) 98541) ((-731 . -319) 98520) ((-731 . -298) 98447) ((-731 . -240) T) ((-731 . -133) T) ((-731 . -25) T) ((-731 . -102) T) ((-731 . -629) 98429) ((-731 . -1121) T) ((-731 . -23) T) ((-731 . -21) T) ((-731 . -745) T) ((-731 . -1132) T) ((-731 . -1077) T) ((-731 . -1069) T) ((-731 . -236) 98416) ((-731 . -1237) T) ((-731 . -239) T) ((-731 . -274) 98400) ((-731 . -234) 98384) ((-731 . -381) 98363) ((-730 . -376) T) ((-730 . -1242) T) ((-730 . -939) T) ((-730 . -569) T) ((-730 . -175) T) ((-730 . -632) 98313) ((-730 . -736) 98278) ((-730 . -659) 98243) ((-730 . -38) 98208) ((-730 . -464) T) ((-730 . -319) T) ((-730 . -667) 98173) ((-730 . -665) 98123) ((-730 . -745) T) ((-730 . -1132) T) ((-730 . -1077) T) ((-730 . -1069) T) ((-730 . -111) 98072) ((-730 . -1071) 98037) ((-730 . -1076) 98002) ((-730 . -21) T) ((-730 . -23) T) ((-730 . -1121) T) ((-730 . -629) 97984) ((-730 . -1237) T) ((-730 . -102) T) ((-730 . -25) T) ((-730 . -133) T) ((-730 . -302) T) ((-730 . -250) T) ((-729 . -1121) T) ((-729 . -629) 97966) ((-729 . -1237) T) ((-729 . -102) T) ((-720 . -401) T) ((-720 . -1058) 97948) ((-720 . -863) T) ((-720 . -860) T) ((-720 . -38) 97935) ((-720 . -632) 97907) ((-720 . -745) T) ((-720 . -1132) T) ((-720 . -1077) T) ((-720 . -1069) T) ((-720 . -111) 97892) ((-720 . -1071) 97879) ((-720 . -1076) 97866) ((-720 . -21) T) ((-720 . -665) 97838) ((-720 . -23) T) ((-720 . -1121) T) ((-720 . -629) 97820) ((-720 . -1237) T) ((-720 . -102) T) ((-720 . -25) T) ((-720 . -133) T) ((-720 . -667) 97792) ((-720 . -659) 97779) ((-720 . -736) 97766) ((-720 . -175) T) ((-720 . -302) T) ((-720 . -569) T) ((-720 . -557) T) ((-720 . -1242) T) ((-720 . -1172) T) ((-720 . -630) 97681) ((-720 . -1040) T) ((-720 . -900) 97663) ((-720 . -859) T) ((-720 . -818) T) ((-720 . -815) T) ((-720 . -813) T) ((-720 . -811) T) ((-720 . -841) T) ((-720 . -657) 97645) ((-720 . -939) T) ((-720 . -464) T) ((-720 . -319) T) ((-720 . -239) T) ((-720 . -236) 97632) ((-720 . -240) T) ((-720 . -145) T) ((-720 . -149) T) ((-718 . -416) T) ((-718 . -149) T) ((-718 . -632) 97567) ((-718 . -667) 97532) ((-718 . -665) 97482) ((-718 . -133) T) ((-718 . -25) T) ((-718 . -102) T) ((-718 . -1237) T) ((-718 . -629) 97464) ((-718 . -1121) T) ((-718 . -23) T) ((-718 . -21) T) ((-718 . -745) T) ((-718 . -1132) T) ((-718 . -1077) T) ((-718 . -1069) T) ((-718 . -630) 97409) ((-718 . -376) T) ((-718 . -1242) T) ((-718 . -939) T) ((-718 . -569) T) ((-718 . -175) T) ((-718 . -736) 97374) ((-718 . -659) 97339) ((-718 . -38) 97304) ((-718 . -464) T) ((-718 . -319) T) ((-718 . -111) 97253) ((-718 . -1071) 97218) ((-718 . -1076) 97183) ((-718 . -302) T) ((-718 . -250) T) ((-718 . -859) T) ((-718 . -818) T) ((-718 . -815) T) ((-718 . -863) T) ((-718 . -860) T) ((-718 . -813) T) ((-718 . -811) T) ((-718 . -900) 97165) ((-718 . -1022) T) ((-718 . -1040) T) ((-718 . -1058) 97110) ((-718 . -1080) T) ((-718 . -401) T) ((-713 . -401) T) ((-713 . -1058) 97055) ((-713 . -863) T) ((-713 . -860) T) ((-713 . -38) 97005) ((-713 . -632) 96940) ((-713 . -745) T) ((-713 . -1132) T) ((-713 . -1077) T) ((-713 . -1069) T) ((-713 . -111) 96867) ((-713 . -1071) 96817) ((-713 . -1076) 96767) ((-713 . -21) T) ((-713 . -665) 96702) ((-713 . -23) T) ((-713 . -1121) T) ((-713 . -629) 96684) ((-713 . -1237) T) ((-713 . -102) T) ((-713 . -25) T) ((-713 . -133) T) ((-713 . -667) 96634) ((-713 . -659) 96584) ((-713 . -736) 96534) ((-713 . -175) T) ((-713 . -302) T) ((-713 . -569) T) ((-713 . -168) 96516) ((-713 . -35) NIL) ((-713 . -95) NIL) ((-713 . -296) NIL) ((-713 . -505) NIL) ((-713 . -1226) NIL) ((-713 . -1223) NIL) ((-713 . -1022) NIL) ((-713 . -928) NIL) ((-713 . -630) 96424) ((-713 . -898) 96406) ((-713 . -381) NIL) ((-713 . -363) NIL) ((-713 . -1172) NIL) ((-713 . -414) NIL) ((-713 . -422) 96373) ((-713 . -383) 96340) ((-713 . -743) 96307) ((-713 . -424) 96289) ((-713 . -900) 96271) ((-713 . -412) 96253) ((-713 . -657) 96235) ((-713 . -390) 96217) ((-713 . -298) NIL) ((-713 . -321) NIL) ((-713 . -526) NIL) ((-713 . -351) 96199) ((-713 . -250) T) ((-713 . -1242) T) ((-713 . -376) T) ((-713 . -939) T) ((-713 . -464) T) ((-713 . -319) T) ((-713 . -240) NIL) ((-713 . -236) NIL) ((-713 . -239) NIL) ((-713 . -274) 96181) ((-713 . -910) NIL) ((-713 . -918) NIL) ((-713 . -916) NIL) ((-713 . -234) 96163) ((-713 . -149) T) ((-713 . -147) NIL) ((-710 . -1283) T) ((-710 . -1058) 96147) ((-710 . -632) 96131) ((-710 . -629) 96113) ((-708 . -705) 96071) ((-708 . -501) 96055) ((-708 . -1121) 96033) ((-708 . -526) 95966) ((-708 . -321) 95904) ((-708 . -629) 95836) ((-708 . -102) 95786) ((-708 . -1237) T) ((-708 . -34) T) ((-708 . -57) 95744) ((-708 . -630) 95705) ((-700 . -1103) T) ((-700 . -502) 95686) ((-700 . -629) 95636) ((-700 . -632) 95617) ((-700 . -1121) T) ((-700 . -1237) T) ((-700 . -102) T) ((-700 . -93) T) ((-696 . -860) T) ((-696 . -629) 95599) ((-696 . -1121) T) ((-696 . -102) T) ((-696 . -1237) T) ((-696 . -863) T) ((-696 . -1058) 95583) ((-696 . -632) 95567) ((-695 . -1103) T) ((-695 . -502) 95548) ((-695 . -629) 95514) ((-695 . -632) 95495) ((-695 . -1121) T) ((-695 . -1237) T) ((-695 . -102) T) ((-695 . -93) T) ((-694 . -501) 95479) ((-694 . -1121) 95457) ((-694 . -526) 95390) ((-694 . -321) 95328) ((-694 . -629) 95260) ((-694 . -102) 95210) ((-694 . -1237) T) ((-694 . -34) T) ((-691 . -860) T) ((-691 . -629) 95192) ((-691 . -1121) T) ((-691 . -102) T) ((-691 . -1237) T) ((-691 . -863) T) ((-691 . -1058) 95176) ((-691 . -632) 95160) ((-690 . -1103) T) ((-690 . -502) 95141) ((-690 . -629) 95107) ((-690 . -632) 95088) ((-690 . -1121) T) ((-690 . -1237) T) ((-690 . -102) T) ((-690 . -93) T) ((-689 . -1143) 95033) ((-689 . -501) 95017) ((-689 . -526) 94950) ((-689 . -321) 94888) ((-689 . -34) T) ((-689 . -1073) 94828) ((-689 . -1058) 94724) ((-689 . -632) 94642) ((-689 . -424) 94626) ((-689 . -657) 94574) ((-689 . -667) 94512) ((-689 . -390) 94496) ((-689 . -240) 94475) ((-689 . -236) 94420) ((-689 . -239) 94371) ((-689 . -274) 94355) ((-689 . -910) 94276) ((-689 . -918) 94199) ((-689 . -916) 94158) ((-689 . -234) 94142) ((-689 . -736) 94126) ((-689 . -659) 94110) ((-689 . -665) 94069) ((-689 . -133) T) ((-689 . -25) T) ((-689 . -102) T) ((-689 . -1237) T) ((-689 . -629) 94031) ((-689 . -1121) T) ((-689 . -23) T) ((-689 . -21) T) ((-689 . -1076) 94015) ((-689 . -1071) 93999) ((-689 . -111) 93978) ((-689 . -1069) T) ((-689 . -1077) T) ((-689 . -1132) T) ((-689 . -745) T) ((-689 . -38) 93938) ((-689 . -430) 93922) ((-689 . -763) 93906) ((-689 . -739) T) ((-689 . -780) T) ((-689 . -380) 93890) ((-689 . -298) 93867) ((-683 . -387) 93846) ((-683 . -736) 93830) ((-683 . -659) 93814) ((-683 . -667) 93798) ((-683 . -665) 93767) ((-683 . -133) T) ((-683 . -25) T) ((-683 . -102) T) ((-683 . -1237) T) ((-683 . -629) 93749) ((-683 . -1121) T) ((-683 . -23) T) ((-683 . -21) T) ((-683 . -1076) 93733) ((-683 . -1071) 93717) ((-683 . -111) 93696) ((-683 . -651) 93680) ((-683 . -397) 93652) ((-683 . -632) 93629) ((-683 . -1058) 93606) ((-675 . -677) 93590) ((-675 . -38) 93560) ((-675 . -632) 93478) ((-675 . -667) 93452) ((-675 . -665) 93411) ((-675 . -745) T) ((-675 . -1132) T) ((-675 . -1077) T) ((-675 . -1069) T) ((-675 . -111) 93390) ((-675 . -1071) 93374) ((-675 . -1076) 93358) ((-675 . -21) T) ((-675 . -23) T) ((-675 . -1121) T) ((-675 . -629) 93340) ((-675 . -102) T) ((-675 . -25) T) ((-675 . -133) T) ((-675 . -659) 93310) ((-675 . -736) 93280) ((-675 . -424) 93264) ((-675 . -1058) 93160) ((-675 . -865) 93144) ((-675 . -1237) T) ((-675 . -298) 93105) ((-674 . -677) 93089) ((-674 . -38) 93059) ((-674 . -632) 92977) ((-674 . -667) 92951) ((-674 . -665) 92910) ((-674 . -745) T) ((-674 . -1132) T) ((-674 . -1077) T) ((-674 . -1069) T) ((-674 . -111) 92889) ((-674 . -1071) 92873) ((-674 . -1076) 92857) ((-674 . -21) T) ((-674 . -23) T) ((-674 . -1121) T) ((-674 . -629) 92839) ((-674 . -102) T) ((-674 . -25) T) ((-674 . -133) T) ((-674 . -659) 92809) ((-674 . -736) 92779) ((-674 . -424) 92763) ((-674 . -1058) 92659) ((-674 . -865) 92643) ((-674 . -1237) T) ((-674 . -298) 92622) ((-673 . -677) 92606) ((-673 . -38) 92576) ((-673 . -632) 92494) ((-673 . -667) 92468) ((-673 . -665) 92427) ((-673 . -745) T) ((-673 . -1132) T) ((-673 . -1077) T) ((-673 . -1069) T) ((-673 . -111) 92406) ((-673 . -1071) 92390) ((-673 . -1076) 92374) ((-673 . -21) T) ((-673 . -23) T) ((-673 . -1121) T) ((-673 . -629) 92356) ((-673 . -102) T) ((-673 . -25) T) ((-673 . -133) T) ((-673 . -659) 92326) ((-673 . -736) 92296) ((-673 . -424) 92280) ((-673 . -1058) 92176) ((-673 . -865) 92160) ((-673 . -1237) T) ((-673 . -298) 92139) ((-671 . -736) 92123) ((-671 . -659) 92107) ((-671 . -667) 92091) ((-671 . -665) 92060) ((-671 . -133) T) ((-671 . -25) T) ((-671 . -102) T) ((-671 . -1237) T) ((-671 . -629) 92042) ((-671 . -1121) T) ((-671 . -23) T) ((-671 . -21) T) ((-671 . -1076) 92026) ((-671 . -1071) 92010) ((-671 . -111) 91989) ((-671 . -811) 91968) ((-671 . -813) 91947) ((-671 . -860) 91926) ((-671 . -863) 91905) ((-671 . -815) 91884) ((-671 . -818) 91863) ((-668 . -1121) T) ((-668 . -629) 91845) ((-668 . -1237) T) ((-668 . -102) T) ((-668 . -1058) 91829) ((-668 . -632) 91813) ((-666 . -714) 91797) ((-666 . -107) 91781) ((-666 . -34) T) ((-666 . -1237) T) ((-666 . -102) 91731) ((-666 . -629) 91663) ((-666 . -321) 91601) ((-666 . -526) 91534) ((-666 . -1121) 91512) ((-666 . -501) 91496) ((-666 . -153) 91480) ((-666 . -630) 91441) ((-666 . -242) 91425) ((-664 . -1103) T) ((-664 . -502) 91406) ((-664 . -629) 91359) ((-664 . -632) 91340) ((-664 . -1121) T) ((-664 . -1237) T) ((-664 . -102) T) ((-664 . -93) T) ((-660 . -685) 91324) ((-660 . -1276) 91308) ((-660 . -1030) 91292) ((-660 . -1170) 91276) ((-660 . -860) 91255) ((-660 . -863) 91234) ((-660 . -385) 91218) ((-660 . -670) 91202) ((-660 . -300) 91179) ((-660 . -298) 91131) ((-660 . -615) 91108) ((-660 . -630) 91069) ((-660 . -501) 91053) ((-660 . -1121) 91003) ((-660 . -526) 90936) ((-660 . -321) 90874) ((-660 . -629) 90786) ((-660 . -102) 90716) ((-660 . -1237) T) ((-660 . -34) T) ((-660 . -153) 90700) ((-660 . -294) 90684) ((-658 . -1295) 90668) ((-658 . -111) 90647) ((-658 . -1071) 90631) ((-658 . -1076) 90615) ((-658 . -21) T) ((-658 . -665) 90584) ((-658 . -23) T) ((-658 . -1121) T) ((-658 . -629) 90566) ((-658 . -1237) T) ((-658 . -102) T) ((-658 . -25) T) ((-658 . -133) T) ((-658 . -667) 90550) ((-658 . -659) 90534) ((-658 . -736) 90518) ((-658 . -298) 90485) ((-656 . -1295) 90469) ((-656 . -111) 90448) ((-656 . -1071) 90432) ((-656 . -1076) 90416) ((-656 . -21) T) ((-656 . -665) 90385) ((-656 . -23) T) ((-656 . -1121) T) ((-656 . -629) 90367) ((-656 . -1237) T) ((-656 . -102) T) ((-656 . -25) T) ((-656 . -133) T) ((-656 . -667) 90351) ((-656 . -659) 90335) ((-656 . -736) 90319) ((-656 . -632) 90296) ((-656 . -521) 90268) ((-654 . -856) T) ((-654 . -863) T) ((-654 . -860) T) ((-654 . -1121) T) ((-654 . -629) 90250) ((-654 . -1237) T) ((-654 . -102) T) ((-654 . -381) T) ((-654 . -632) 90227) ((-649 . -763) 90211) ((-649 . -739) T) ((-649 . -780) T) ((-649 . -111) 90190) ((-649 . -1071) 90174) ((-649 . -1076) 90158) ((-649 . -21) T) ((-649 . -665) 90127) ((-649 . -23) T) ((-649 . -1121) T) ((-649 . -629) 90096) ((-649 . -1237) T) ((-649 . -102) T) ((-649 . -25) T) ((-649 . -133) T) ((-649 . -667) 90080) ((-649 . -659) 90064) ((-649 . -736) 90048) ((-649 . -430) 90013) ((-649 . -380) 89945) ((-649 . -298) 89903) ((-648 . -1214) 89878) ((-648 . -233) 89824) ((-648 . -107) 89770) ((-648 . -321) 89621) ((-648 . -526) 89429) ((-648 . -501) 89361) ((-648 . -153) 89307) ((-648 . -630) NIL) ((-648 . -242) 89253) ((-648 . -626) 89228) ((-648 . -300) 89203) ((-648 . -1237) T) ((-648 . -298) 89156) ((-648 . -1121) T) ((-648 . -629) 89138) ((-648 . -102) T) ((-648 . -34) T) ((-648 . -615) 89113) ((-643 . -485) T) ((-643 . -1132) T) ((-643 . -102) T) ((-643 . -1237) T) ((-643 . -629) 89095) ((-643 . -1121) T) ((-643 . -745) T) ((-642 . -1103) T) ((-642 . -502) 89076) ((-642 . -629) 89042) ((-642 . -632) 89023) ((-642 . -1121) T) ((-642 . -1237) T) ((-642 . -102) T) ((-642 . -93) T) ((-639 . -234) 89007) ((-639 . -916) 88966) ((-639 . -918) 88889) ((-639 . -910) 88810) ((-639 . -274) 88794) ((-639 . -239) 88745) ((-639 . -1237) T) ((-639 . -236) 88690) ((-639 . -1069) T) ((-639 . -1077) T) ((-639 . -1132) T) ((-639 . -745) T) ((-639 . -21) T) ((-639 . -665) 88662) ((-639 . -23) T) ((-639 . -1121) T) ((-639 . -629) 88644) ((-639 . -102) T) ((-639 . -25) T) ((-639 . -133) T) ((-639 . -667) 88631) ((-639 . -632) 88526) ((-639 . -240) 88505) ((-639 . -569) T) ((-639 . -302) T) ((-639 . -175) T) ((-639 . -736) 88492) ((-639 . -659) 88479) ((-639 . -1076) 88466) ((-639 . -1071) 88453) ((-639 . -111) 88438) ((-639 . -38) 88425) ((-639 . -630) 88402) ((-639 . -424) 88386) ((-639 . -1058) 88269) ((-639 . -149) 88248) ((-639 . -147) 88227) ((-639 . -319) 88206) ((-639 . -464) 88185) ((-639 . -939) 88164) ((-635 . -38) 88148) ((-635 . -632) 88117) ((-635 . -667) 88091) ((-635 . -665) 88050) ((-635 . -745) T) ((-635 . -1132) T) ((-635 . -1077) T) ((-635 . -1069) T) ((-635 . -111) 88029) ((-635 . -1071) 88013) ((-635 . -1076) 87997) ((-635 . -21) T) ((-635 . -23) T) ((-635 . -1121) T) ((-635 . -629) 87979) ((-635 . -1237) T) ((-635 . -102) T) ((-635 . -25) T) ((-635 . -133) T) ((-635 . -659) 87963) ((-635 . -736) 87947) ((-635 . -859) 87926) ((-635 . -818) 87905) ((-635 . -815) 87884) ((-635 . -863) 87863) ((-635 . -860) 87842) ((-635 . -813) 87821) ((-635 . -811) 87800) ((-633 . -987) T) ((-633 . -102) T) ((-633 . -629) 87782) ((-633 . -1121) T) ((-633 . -681) T) ((-633 . -1237) T) ((-633 . -113) T) ((-627 . -134) T) ((-627 . -102) T) ((-627 . -1237) T) ((-627 . -629) 87764) ((-627 . -1121) T) ((-627 . -860) T) ((-627 . -863) T) ((-627 . -898) 87748) ((-627 . -630) 87609) ((-624 . -378) 87549) ((-624 . -102) T) ((-624 . -1237) T) ((-624 . -629) 87531) ((-624 . -1121) T) ((-624 . -1214) 87507) ((-624 . -233) 87454) ((-624 . -107) 87401) ((-624 . -321) 87196) ((-624 . -526) 86944) ((-624 . -501) 86878) ((-624 . -153) 86825) ((-624 . -630) NIL) ((-624 . -242) 86772) ((-624 . -626) 86748) ((-624 . -300) 86724) ((-624 . -298) 86700) ((-624 . -34) T) ((-624 . -615) 86676) ((-623 . -1121) T) ((-623 . -629) 86628) ((-623 . -1237) T) ((-623 . -102) T) ((-623 . -502) 86595) ((-623 . -632) 86562) ((-622 . -1121) T) ((-622 . -629) 86544) ((-622 . -1237) T) ((-622 . -102) T) ((-622 . -681) T) ((-621 . -1121) T) ((-621 . -629) 86526) ((-621 . -1237) T) ((-621 . -102) T) ((-621 . -681) T) ((-620 . -1121) T) ((-620 . -629) 86493) ((-620 . -1237) T) ((-620 . -102) T) ((-619 . -1121) T) ((-619 . -629) 86475) ((-619 . -1237) T) ((-619 . -102) T) ((-619 . -681) T) ((-618 . -1121) T) ((-618 . -629) 86442) ((-618 . -1237) T) ((-618 . -102) T) ((-618 . -502) 86424) ((-618 . -632) 86406) ((-617 . -763) 86390) ((-617 . -739) T) ((-617 . -780) T) ((-617 . -111) 86369) ((-617 . -1071) 86353) ((-617 . -1076) 86337) ((-617 . -21) T) ((-617 . -665) 86306) ((-617 . -23) T) ((-617 . -1121) T) ((-617 . -629) 86275) ((-617 . -1237) T) ((-617 . -102) T) ((-617 . -25) T) ((-617 . -133) T) ((-617 . -667) 86259) ((-617 . -659) 86243) ((-617 . -736) 86227) ((-617 . -430) 86192) ((-617 . -380) 86124) ((-617 . -298) 86082) ((-616 . -1103) T) ((-616 . -502) 86063) ((-616 . -629) 86013) ((-616 . -632) 85994) ((-616 . -1121) T) ((-616 . -1237) T) ((-616 . -102) T) ((-616 . -93) T) ((-613 . -1286) 85978) ((-613 . -385) 85962) ((-613 . -863) 85941) ((-613 . -860) 85920) ((-613 . -153) 85904) ((-613 . -34) T) ((-613 . -1237) T) ((-613 . -102) 85834) ((-613 . -629) 85746) ((-613 . -321) 85684) ((-613 . -526) 85617) ((-613 . -1121) 85567) ((-613 . -501) 85551) ((-613 . -630) 85512) ((-613 . -298) 85464) ((-613 . -615) 85441) ((-613 . -300) 85418) ((-613 . -670) 85402) ((-613 . -19) 85386) ((-612 . -629) 85368) ((-608 . -1121) T) ((-608 . -629) 85334) ((-608 . -1237) T) ((-608 . -102) T) ((-608 . -502) 85315) ((-608 . -632) 85296) ((-607 . -1069) T) ((-607 . -1077) T) ((-607 . -1132) T) ((-607 . -745) T) ((-607 . -21) T) ((-607 . -665) 85255) ((-607 . -23) T) ((-607 . -1121) T) ((-607 . -629) 85237) ((-607 . -1237) T) ((-607 . -102) T) ((-607 . -25) T) ((-607 . -133) T) ((-607 . -667) 85211) ((-607 . -632) 85169) ((-607 . -111) 85122) ((-607 . -1071) 85082) ((-607 . -1076) 85042) ((-607 . -569) 85021) ((-607 . -302) 85000) ((-607 . -175) 84979) ((-607 . -736) 84952) ((-607 . -659) 84925) ((-607 . -38) 84898) ((-606 . -1266) 84875) ((-606 . -47) 84852) ((-606 . -38) 84749) ((-606 . -659) 84646) ((-606 . -736) 84543) ((-606 . -632) 84425) ((-606 . -302) 84404) ((-606 . -569) 84383) ((-606 . -111) 84245) ((-606 . -1071) 84128) ((-606 . -1076) 84011) ((-606 . -175) 83962) ((-606 . -149) 83941) ((-606 . -147) 83920) ((-606 . -667) 83845) ((-606 . -665) 83755) ((-606 . -993) 83724) ((-606 . -918) 83637) ((-606 . -910) 83548) ((-606 . -916) 83461) ((-606 . -298) 83426) ((-606 . -239) 83385) ((-606 . -1237) T) ((-606 . -236) 83338) ((-606 . -1069) T) ((-606 . -1077) T) ((-606 . -1132) T) ((-606 . -745) T) ((-606 . -21) T) ((-606 . -23) T) ((-606 . -1121) T) ((-606 . -629) 83320) ((-606 . -102) T) ((-606 . -25) T) ((-606 . -133) T) ((-606 . -240) 83279) ((-604 . -1103) T) ((-604 . -502) 83260) ((-604 . -629) 83226) ((-604 . -632) 83207) ((-604 . -1121) T) ((-604 . -1237) T) ((-604 . -102) T) ((-604 . -93) T) ((-598 . -1121) T) ((-598 . -629) 83173) ((-598 . -1237) T) ((-598 . -102) T) ((-598 . -502) 83154) ((-598 . -632) 83135) ((-595 . -736) 83110) ((-595 . -659) 83085) ((-595 . -667) 83060) ((-595 . -665) 83020) ((-595 . -133) T) ((-595 . -25) T) ((-595 . -102) T) ((-595 . -1237) T) ((-595 . -629) 83002) ((-595 . -1121) T) ((-595 . -23) T) ((-595 . -21) T) ((-595 . -1076) 82977) ((-595 . -1071) 82952) ((-595 . -111) 82913) ((-595 . -1058) 82897) ((-595 . -632) 82881) ((-593 . -363) T) ((-593 . -1172) T) ((-593 . -381) T) ((-593 . -147) T) ((-593 . -376) T) ((-593 . -1242) T) ((-593 . -939) T) ((-593 . -569) T) ((-593 . -175) T) ((-593 . -632) 82831) ((-593 . -736) 82796) ((-593 . -659) 82761) ((-593 . -38) 82726) ((-593 . -464) T) ((-593 . -319) T) ((-593 . -111) 82675) ((-593 . -1071) 82640) ((-593 . -1076) 82605) ((-593 . -665) 82555) ((-593 . -667) 82520) ((-593 . -302) T) ((-593 . -250) T) ((-593 . -414) T) ((-593 . -239) T) ((-593 . -1237) T) ((-593 . -236) 82507) ((-593 . -1069) T) ((-593 . -1077) T) ((-593 . -1132) T) ((-593 . -745) T) ((-593 . -21) T) ((-593 . -23) T) ((-593 . -1121) T) ((-593 . -629) 82489) ((-593 . -102) T) ((-593 . -25) T) ((-593 . -133) T) ((-593 . -240) T) ((-593 . -341) 82476) ((-593 . -149) 82458) ((-593 . -1058) 82445) ((-593 . -1295) 82432) ((-593 . -1306) 82419) ((-593 . -630) 82401) ((-592 . -883) 82385) ((-592 . -939) T) ((-592 . -569) T) ((-592 . -302) T) ((-592 . -175) T) ((-592 . -632) 82357) ((-592 . -736) 82344) ((-592 . -659) 82331) ((-592 . -1076) 82318) ((-592 . -1071) 82305) ((-592 . -111) 82290) ((-592 . -38) 82277) ((-592 . -464) T) ((-592 . -319) T) ((-592 . -1069) T) ((-592 . -1077) T) ((-592 . -1132) T) ((-592 . -745) T) ((-592 . -21) T) ((-592 . -665) 82249) ((-592 . -23) T) ((-592 . -1121) T) ((-592 . -629) 82231) ((-592 . -1237) T) ((-592 . -102) T) ((-592 . -25) T) ((-592 . -133) T) ((-592 . -667) 82218) ((-592 . -149) T) ((-591 . -1121) T) ((-591 . -629) 82200) ((-591 . -1237) T) ((-591 . -102) T) ((-590 . -1121) T) ((-590 . -629) 82182) ((-590 . -1237) T) ((-590 . -102) T) ((-589 . -588) T) ((-589 . -874) T) ((-589 . -176) T) ((-589 . -539) T) ((-589 . -629) 82164) ((-583 . -567) 82148) ((-583 . -35) T) ((-583 . -95) T) ((-583 . -296) T) ((-583 . -505) T) ((-583 . -1226) T) ((-583 . -1223) T) ((-583 . -1058) 82130) ((-583 . -1022) T) ((-583 . -863) T) ((-583 . -860) T) ((-583 . -569) T) ((-583 . -302) T) ((-583 . -175) T) ((-583 . -632) 82102) ((-583 . -736) 82089) ((-583 . -659) 82076) ((-583 . -667) 82063) ((-583 . -665) 82035) ((-583 . -133) T) ((-583 . -25) T) ((-583 . -102) T) ((-583 . -1237) T) ((-583 . -629) 82017) ((-583 . -1121) T) ((-583 . -23) T) ((-583 . -21) T) ((-583 . -1076) 82004) ((-583 . -1071) 81991) ((-583 . -111) 81976) ((-583 . -1069) T) ((-583 . -1077) T) ((-583 . -1132) T) ((-583 . -745) T) ((-583 . -38) 81963) ((-583 . -464) T) ((-563 . -1214) 81942) ((-563 . -233) 81892) ((-563 . -107) 81842) ((-563 . -321) 81646) ((-563 . -526) 81406) ((-563 . -501) 81343) ((-563 . -153) 81293) ((-563 . -630) NIL) ((-563 . -242) 81243) ((-563 . -626) 81222) ((-563 . -300) 81201) ((-563 . -1237) T) ((-563 . -298) 81180) ((-563 . -1121) T) ((-563 . -629) 81162) ((-563 . -102) T) ((-563 . -34) T) ((-563 . -615) 81141) ((-562 . -856) T) ((-562 . -863) T) ((-562 . -860) T) ((-562 . -1121) T) ((-562 . -629) 81123) ((-562 . -1237) T) ((-562 . -102) T) ((-562 . -381) T) ((-561 . -856) T) ((-561 . -863) T) ((-561 . -860) T) ((-561 . -1121) T) ((-561 . -629) 81105) ((-561 . -1237) T) ((-561 . -102) T) ((-561 . -381) T) ((-560 . -856) T) ((-560 . -863) T) ((-560 . -860) T) ((-560 . -1121) T) ((-560 . -629) 81087) ((-560 . -1237) T) ((-560 . -102) T) ((-560 . -381) T) ((-559 . -856) T) ((-559 . -863) T) ((-559 . -860) T) ((-559 . -1121) T) ((-559 . -629) 81069) ((-559 . -1237) T) ((-559 . -102) T) ((-559 . -381) T) ((-558 . -557) T) ((-558 . -1242) T) ((-558 . -1172) T) ((-558 . -1058) 81051) ((-558 . -630) 80966) ((-558 . -1040) T) ((-558 . -900) 80948) ((-558 . -859) T) ((-558 . -818) T) ((-558 . -815) T) ((-558 . -863) T) ((-558 . -860) T) ((-558 . -813) T) ((-558 . -811) T) ((-558 . -841) T) ((-558 . -667) 80920) ((-558 . -657) 80902) ((-558 . -939) T) ((-558 . -569) T) ((-558 . -302) T) ((-558 . -175) T) ((-558 . -632) 80874) ((-558 . -736) 80861) ((-558 . -659) 80848) ((-558 . -1076) 80835) ((-558 . -1071) 80822) ((-558 . -111) 80807) ((-558 . -38) 80794) ((-558 . -464) T) ((-558 . -319) T) ((-558 . -239) T) ((-558 . -236) 80781) ((-558 . -240) T) ((-558 . -145) T) ((-558 . -1069) T) ((-558 . -1077) T) ((-558 . -1132) T) ((-558 . -745) T) ((-558 . -21) T) ((-558 . -665) 80753) ((-558 . -23) T) ((-558 . -1121) T) ((-558 . -629) 80735) ((-558 . -1237) T) ((-558 . -102) T) ((-558 . -25) T) ((-558 . -133) T) ((-558 . -149) T) ((-547 . -1124) 80687) ((-547 . -102) T) ((-547 . -629) 80669) ((-547 . -1121) T) ((-547 . -298) 80625) ((-547 . -1237) T) ((-547 . -634) 80528) ((-547 . -630) 80509) ((-545 . -786) 80491) ((-545 . -539) T) ((-545 . -176) T) ((-545 . -874) T) ((-545 . -588) T) ((-545 . -629) 80473) ((-543 . -814) T) ((-543 . -133) T) ((-543 . -25) T) ((-543 . -102) T) ((-543 . -1237) T) ((-543 . -629) 80455) ((-543 . -1121) T) ((-543 . -23) T) ((-543 . -813) T) ((-543 . -860) T) ((-543 . -863) T) ((-543 . -815) T) ((-543 . -818) T) ((-543 . -521) 80432) ((-541 . -539) T) ((-541 . -176) T) ((-541 . -629) 80414) ((-537 . -1103) T) ((-537 . -502) 80395) ((-537 . -629) 80361) ((-537 . -632) 80342) ((-537 . -1121) T) ((-537 . -1237) T) ((-537 . -102) T) ((-537 . -93) T) ((-536 . -1103) T) ((-536 . -502) 80323) ((-536 . -629) 80289) ((-536 . -632) 80270) ((-536 . -1121) T) ((-536 . -1237) T) ((-536 . -102) T) ((-536 . -93) T) ((-535 . -705) 80220) ((-535 . -501) 80204) ((-535 . -1121) 80182) ((-535 . -526) 80115) ((-535 . -321) 80053) ((-535 . -629) 79985) ((-535 . -102) 79935) ((-535 . -1237) T) ((-535 . -34) T) ((-535 . -57) 79885) ((-532 . -685) 79869) ((-532 . -1276) 79853) ((-532 . -1030) 79837) ((-532 . -1170) 79821) ((-532 . -860) 79800) ((-532 . -863) 79779) ((-532 . -385) 79763) ((-532 . -670) 79747) ((-532 . -300) 79724) ((-532 . -298) 79676) ((-532 . -615) 79653) ((-532 . -630) 79614) ((-532 . -501) 79598) ((-532 . -1121) 79548) ((-532 . -526) 79481) ((-532 . -321) 79419) ((-532 . -629) 79331) ((-532 . -102) 79261) ((-532 . -1237) T) ((-532 . -34) T) ((-532 . -153) 79245) ((-532 . -294) 79229) ((-531 . -57) 79203) ((-531 . -34) T) ((-531 . -1237) T) ((-531 . -102) 79153) ((-531 . -629) 79085) ((-531 . -321) 79023) ((-531 . -526) 78956) ((-531 . -1121) 78934) ((-531 . -501) 78918) ((-530 . -341) 78895) ((-530 . -240) T) ((-530 . -236) 78882) ((-530 . -239) T) ((-530 . -381) T) ((-530 . -1172) T) ((-530 . -363) T) ((-530 . -149) 78864) ((-530 . -632) 78794) ((-530 . -667) 78739) ((-530 . -665) 78669) ((-530 . -133) T) ((-530 . -25) T) ((-530 . -102) T) ((-530 . -1237) T) ((-530 . -629) 78651) ((-530 . -1121) T) ((-530 . -23) T) ((-530 . -21) T) ((-530 . -745) T) ((-530 . -1132) T) ((-530 . -1077) T) ((-530 . -1069) T) ((-530 . -376) T) ((-530 . -1242) T) ((-530 . -939) T) ((-530 . -569) T) ((-530 . -175) T) ((-530 . -736) 78596) ((-530 . -659) 78541) ((-530 . -38) 78506) ((-530 . -464) T) ((-530 . -319) T) ((-530 . -111) 78423) ((-530 . -1071) 78368) ((-530 . -1076) 78313) ((-530 . -302) T) ((-530 . -250) T) ((-530 . -414) T) ((-530 . -147) T) ((-530 . -1058) 78290) ((-530 . -1295) 78267) ((-530 . -1306) 78244) ((-529 . -1103) T) ((-529 . -502) 78225) ((-529 . -629) 78191) ((-529 . -632) 78172) ((-529 . -1121) T) ((-529 . -1237) T) ((-529 . -102) T) ((-529 . -93) T) ((-528 . -19) 78156) ((-528 . -670) 78140) ((-528 . -300) 78117) ((-528 . -298) 78069) ((-528 . -615) 78046) ((-528 . -630) 78007) ((-528 . -501) 77991) ((-528 . -1121) 77941) ((-528 . -526) 77874) ((-528 . -321) 77812) ((-528 . -629) 77724) ((-528 . -102) 77654) ((-528 . -1237) T) ((-528 . -34) T) ((-528 . -153) 77638) ((-528 . -860) 77617) ((-528 . -863) 77596) ((-528 . -385) 77580) ((-528 . -294) 77564) ((-527 . -335) 77543) ((-527 . -632) 77527) ((-527 . -1058) 77511) ((-527 . -23) T) ((-527 . -1121) T) ((-527 . -629) 77493) ((-527 . -1237) T) ((-527 . -102) T) ((-527 . -25) T) ((-527 . -133) T) ((-524 . -814) T) ((-524 . -133) T) ((-524 . -25) T) ((-524 . -102) T) ((-524 . -1237) T) ((-524 . -629) 77475) ((-524 . -1121) T) ((-524 . -23) T) ((-524 . -813) T) ((-524 . -860) T) ((-524 . -863) T) ((-524 . -815) T) ((-524 . -818) T) ((-524 . -521) 77454) ((-523 . -813) T) ((-523 . -860) T) ((-523 . -863) T) ((-523 . -815) T) ((-523 . -25) T) ((-523 . -102) T) ((-523 . -1237) T) ((-523 . -629) 77436) ((-523 . -1121) T) ((-523 . -23) T) ((-523 . -521) 77415) ((-522 . -521) 77394) ((-522 . -629) 77334) ((-522 . -1121) 77285) ((-522 . -1237) T) ((-522 . -102) T) ((-520 . -23) T) ((-520 . -1121) T) ((-520 . -629) 77267) ((-520 . -1237) T) ((-520 . -102) T) ((-520 . -25) T) ((-520 . -521) 77246) ((-519 . -21) T) ((-519 . -665) 77228) ((-519 . -23) T) ((-519 . -1121) T) ((-519 . -629) 77210) ((-519 . -1237) T) ((-519 . -102) T) ((-519 . -25) T) ((-519 . -133) T) ((-519 . -521) 77189) ((-518 . -1121) T) ((-518 . -629) 77171) ((-518 . -1237) T) ((-518 . -102) T) ((-516 . -1121) T) ((-516 . -629) 77153) ((-516 . -1237) T) ((-516 . -102) T) ((-514 . -860) T) ((-514 . -629) 77135) ((-514 . -1121) T) ((-514 . -102) T) ((-514 . -1237) T) ((-514 . -863) T) ((-512 . -125) T) ((-512 . -385) 77117) ((-512 . -863) T) ((-512 . -860) T) ((-512 . -153) 77099) ((-512 . -34) T) ((-512 . -102) T) ((-512 . -629) 77081) ((-512 . -321) NIL) ((-512 . -526) NIL) ((-512 . -1121) T) ((-512 . -501) 77063) ((-512 . -630) 77045) ((-512 . -298) 76995) ((-512 . -615) 76970) ((-512 . -300) 76945) ((-512 . -670) 76927) ((-512 . -19) 76909) ((-512 . -681) T) ((-512 . -1237) T) ((-512 . -113) T) ((-509 . -57) 76859) ((-509 . -34) T) ((-509 . -1237) T) ((-509 . -102) 76809) ((-509 . -629) 76741) ((-509 . -321) 76679) ((-509 . -526) 76612) ((-509 . -1121) 76590) ((-509 . -501) 76574) ((-508 . -19) 76558) ((-508 . -670) 76542) ((-508 . -300) 76519) ((-508 . -298) 76471) ((-508 . -615) 76448) ((-508 . -630) 76409) ((-508 . -501) 76393) ((-508 . -1121) 76343) ((-508 . -526) 76276) ((-508 . -321) 76214) ((-508 . -629) 76126) ((-508 . -102) 76056) ((-508 . -1237) T) ((-508 . -34) T) ((-508 . -153) 76040) ((-508 . -860) 76019) ((-508 . -863) 75998) ((-508 . -385) 75982) ((-507 . -310) T) ((-507 . -102) T) ((-507 . -1237) T) ((-507 . -629) 75964) ((-507 . -1121) T) ((-507 . -632) 75897) ((-507 . -1058) 75840) ((-507 . -526) 75806) ((-507 . -321) 75793) ((-507 . -27) T) ((-507 . -1022) T) ((-507 . -250) T) ((-507 . -111) 75742) ((-507 . -1071) 75707) ((-507 . -1076) 75672) ((-507 . -302) T) ((-507 . -736) 75637) ((-507 . -659) 75602) ((-507 . -667) 75552) ((-507 . -665) 75502) ((-507 . -133) T) ((-507 . -25) T) ((-507 . -23) T) ((-507 . -21) T) ((-507 . -1069) T) ((-507 . -1077) T) ((-507 . -1132) T) ((-507 . -745) T) ((-507 . -38) 75467) ((-507 . -319) T) ((-507 . -464) T) ((-507 . -175) T) ((-507 . -569) T) ((-507 . -939) T) ((-507 . -1242) T) ((-507 . -376) T) ((-507 . -657) 75427) ((-507 . -1040) T) ((-507 . -630) 75372) ((-507 . -149) T) ((-507 . -240) T) ((-507 . -236) 75359) ((-507 . -239) T) ((-503 . -1121) T) ((-503 . -629) 75325) ((-503 . -1237) T) ((-503 . -102) T) ((-499 . -1011) 75307) ((-499 . -1172) T) ((-499 . -632) 75257) ((-499 . -1058) 75217) ((-499 . -630) 75147) ((-499 . -1040) T) ((-499 . -928) NIL) ((-499 . -898) 75129) ((-499 . -859) T) ((-499 . -818) T) ((-499 . -815) T) ((-499 . -863) T) ((-499 . -860) T) ((-499 . -813) T) ((-499 . -811) T) ((-499 . -841) T) ((-499 . -900) 75111) ((-499 . -412) 75093) ((-499 . -657) 75075) ((-499 . -390) 75057) ((-499 . -298) NIL) ((-499 . -321) NIL) ((-499 . -526) NIL) ((-499 . -351) 75039) ((-499 . -250) T) ((-499 . -111) 74966) ((-499 . -1071) 74916) ((-499 . -1076) 74866) ((-499 . -302) T) ((-499 . -736) 74816) ((-499 . -659) 74766) ((-499 . -667) 74716) ((-499 . -665) 74666) ((-499 . -38) 74616) ((-499 . -319) T) ((-499 . -464) T) ((-499 . -175) T) ((-499 . -569) T) ((-499 . -939) T) ((-499 . -1242) T) ((-499 . -376) T) ((-499 . -240) T) ((-499 . -236) 74603) ((-499 . -239) T) ((-499 . -274) 74585) ((-499 . -910) NIL) ((-499 . -918) NIL) ((-499 . -916) NIL) ((-499 . -234) 74567) ((-499 . -149) T) ((-499 . -147) NIL) ((-499 . -133) T) ((-499 . -25) T) ((-499 . -102) T) ((-499 . -1237) T) ((-499 . -629) 74508) ((-499 . -1121) T) ((-499 . -23) T) ((-499 . -21) T) ((-499 . -1069) T) ((-499 . -1077) T) ((-499 . -1132) T) ((-499 . -745) T) ((-497 . -349) 74477) ((-497 . -133) T) ((-497 . -25) T) ((-497 . -102) T) ((-497 . -1237) T) ((-497 . -629) 74459) ((-497 . -1121) T) ((-497 . -23) T) ((-497 . -665) 74441) ((-497 . -21) T) ((-496 . -988) 74425) ((-496 . -501) 74409) ((-496 . -1121) 74387) ((-496 . -526) 74320) ((-496 . -321) 74258) ((-496 . -629) 74190) ((-496 . -102) 74140) ((-496 . -1237) T) ((-496 . -34) T) ((-496 . -107) 74124) ((-495 . -1103) T) ((-495 . -502) 74105) ((-495 . -629) 74071) ((-495 . -632) 74052) ((-495 . -1121) T) ((-495 . -1237) T) ((-495 . -102) T) ((-495 . -93) T) ((-494 . -245) 74031) ((-494 . -1295) 74001) ((-494 . -818) 73980) ((-494 . -815) 73959) ((-494 . -863) 73910) ((-494 . -860) 73861) ((-494 . -813) 73840) ((-494 . -814) 73819) ((-494 . -736) 73761) ((-494 . -659) 73683) ((-494 . -300) 73660) ((-494 . -298) 73637) ((-494 . -501) 73621) ((-494 . -526) 73554) ((-494 . -321) 73492) ((-494 . -34) T) ((-494 . -615) 73469) ((-494 . -1058) 73296) ((-494 . -632) 73094) ((-494 . -424) 73063) ((-494 . -657) 72969) ((-494 . -667) 72802) ((-494 . -390) 72771) ((-494 . -381) 72750) ((-494 . -240) 72702) ((-494 . -665) 72481) ((-494 . -745) 72459) ((-494 . -1132) 72437) ((-494 . -1077) 72415) ((-494 . -1069) 72393) ((-494 . -236) 72284) ((-494 . -239) 72181) ((-494 . -274) 72150) ((-494 . -910) 72017) ((-494 . -918) 71886) ((-494 . -916) 71818) ((-494 . -234) 71787) ((-494 . -629) 71480) ((-494 . -1076) 71401) ((-494 . -1071) 71302) ((-494 . -111) 71218) ((-494 . -133) 71089) ((-494 . -25) 70922) ((-494 . -102) 70654) ((-494 . -1237) T) ((-494 . -1121) 70406) ((-494 . -23) 70258) ((-494 . -21) 70169) ((-493 . -968) 70114) ((-493 . -632) 69899) ((-493 . -1058) 69775) ((-493 . -1242) 69754) ((-493 . -928) 69733) ((-493 . -900) NIL) ((-493 . -918) 69710) ((-493 . -910) 69685) ((-493 . -916) 69662) ((-493 . -526) 69600) ((-493 . -464) 69551) ((-493 . -657) 69499) ((-493 . -667) 69388) ((-493 . -390) 69372) ((-493 . -47) 69329) ((-493 . -38) 69178) ((-493 . -659) 69027) ((-493 . -736) 68876) ((-493 . -302) 68807) ((-493 . -569) 68738) ((-493 . -111) 68560) ((-493 . -1071) 68403) ((-493 . -1076) 68246) ((-493 . -175) 68157) ((-493 . -149) 68136) ((-493 . -147) 68115) ((-493 . -665) 68025) ((-493 . -133) T) ((-493 . -25) T) ((-493 . -102) T) ((-493 . -1237) T) ((-493 . -629) 68007) ((-493 . -1121) T) ((-493 . -23) T) ((-493 . -21) T) ((-493 . -1069) T) ((-493 . -1077) T) ((-493 . -1132) T) ((-493 . -745) T) ((-493 . -424) 67991) ((-493 . -338) 67948) ((-493 . -321) 67935) ((-493 . -630) 67796) ((-491 . -1214) 67775) ((-491 . -233) 67725) ((-491 . -107) 67675) ((-491 . -321) 67479) ((-491 . -526) 67239) ((-491 . -501) 67176) ((-491 . -153) 67126) ((-491 . -630) NIL) ((-491 . -242) 67076) ((-491 . -626) 67055) ((-491 . -300) 67034) ((-491 . -1237) T) ((-491 . -298) 67013) ((-491 . -1121) T) ((-491 . -629) 66995) ((-491 . -102) T) ((-491 . -34) T) ((-491 . -615) 66974) ((-490 . -1103) T) ((-490 . -502) 66955) ((-490 . -629) 66921) ((-490 . -632) 66902) ((-490 . -1121) T) ((-490 . -1237) T) ((-490 . -102) T) ((-490 . -93) T) ((-489 . -376) T) ((-489 . -1242) T) ((-489 . -939) T) ((-489 . -569) T) ((-489 . -175) T) ((-489 . -632) 66852) ((-489 . -736) 66817) ((-489 . -659) 66782) ((-489 . -38) 66747) ((-489 . -464) T) ((-489 . -319) T) ((-489 . -667) 66712) ((-489 . -665) 66662) ((-489 . -745) T) ((-489 . -1132) T) ((-489 . -1077) T) ((-489 . -1069) T) ((-489 . -111) 66611) ((-489 . -1071) 66576) ((-489 . -1076) 66541) ((-489 . -21) T) ((-489 . -23) T) ((-489 . -1121) T) ((-489 . -629) 66493) ((-489 . -1237) T) ((-489 . -102) T) ((-489 . -25) T) ((-489 . -133) T) ((-489 . -302) T) ((-489 . -250) T) ((-489 . -149) T) ((-489 . -1058) 66453) ((-489 . -1040) T) ((-489 . -630) 66375) ((-488 . -1232) 66344) ((-488 . -629) 66306) ((-488 . -153) 66290) ((-488 . -34) T) ((-488 . -1237) T) ((-488 . -102) T) ((-488 . -321) 66228) ((-488 . -526) 66161) ((-488 . -1121) T) ((-488 . -501) 66145) ((-488 . -630) 66106) ((-488 . -996) 66075) ((-487 . -1214) 66054) ((-487 . -233) 66004) ((-487 . -107) 65954) ((-487 . -321) 65758) ((-487 . -526) 65518) ((-487 . -501) 65455) ((-487 . -153) 65405) ((-487 . -630) NIL) ((-487 . -242) 65355) ((-487 . -626) 65334) ((-487 . -300) 65313) ((-487 . -1237) T) ((-487 . -298) 65292) ((-487 . -1121) T) ((-487 . -629) 65274) ((-487 . -102) T) ((-487 . -34) T) ((-487 . -615) 65253) ((-486 . -1270) 65237) ((-486 . -240) 65189) ((-486 . -236) 65135) ((-486 . -239) 65087) ((-486 . -298) 65045) ((-486 . -916) 64951) ((-486 . -910) 64832) ((-486 . -918) 64738) ((-486 . -993) 64700) ((-486 . -38) 64541) ((-486 . -111) 64355) ((-486 . -1071) 64190) ((-486 . -1076) 64025) ((-486 . -665) 63907) ((-486 . -667) 63804) ((-486 . -659) 63645) ((-486 . -736) 63486) ((-486 . -632) 63312) ((-486 . -147) 63291) ((-486 . -149) 63270) ((-486 . -47) 63240) ((-486 . -1266) 63210) ((-486 . -35) 63176) ((-486 . -95) 63142) ((-486 . -296) 63108) ((-486 . -505) 63074) ((-486 . -1226) 63040) ((-486 . -1223) 63006) ((-486 . -1022) 62972) ((-486 . -250) 62951) ((-486 . -302) 62902) ((-486 . -133) T) ((-486 . -25) T) ((-486 . -102) T) ((-486 . -1237) T) ((-486 . -629) 62884) ((-486 . -1121) T) ((-486 . -23) T) ((-486 . -21) T) ((-486 . -1069) T) ((-486 . -1077) T) ((-486 . -1132) T) ((-486 . -745) T) ((-486 . -319) 62863) ((-486 . -464) 62842) ((-486 . -175) 62773) ((-486 . -569) 62724) ((-486 . -939) 62703) ((-486 . -1242) 62682) ((-486 . -376) 62661) ((-480 . -1121) T) ((-480 . -629) 62643) ((-480 . -1237) T) ((-480 . -102) T) ((-475 . -996) 62612) ((-475 . -630) 62573) ((-475 . -501) 62557) ((-475 . -1121) T) ((-475 . -526) 62490) ((-475 . -321) 62428) ((-475 . -629) 62390) ((-475 . -102) T) ((-475 . -1237) T) ((-475 . -34) T) ((-475 . -153) 62374) ((-473 . -736) 62345) ((-473 . -659) 62316) ((-473 . -667) 62287) ((-473 . -665) 62243) ((-473 . -133) T) ((-473 . -25) T) ((-473 . -102) T) ((-473 . -1237) T) ((-473 . -629) 62225) ((-473 . -1121) T) ((-473 . -23) T) ((-473 . -21) T) ((-473 . -1076) 62196) ((-473 . -1071) 62167) ((-473 . -111) 62128) ((-466 . -968) 62095) ((-466 . -632) 61880) ((-466 . -1058) 61756) ((-466 . -1242) 61735) ((-466 . -928) 61714) ((-466 . -900) NIL) ((-466 . -918) 61691) ((-466 . -910) 61666) ((-466 . -916) 61643) ((-466 . -526) 61581) ((-466 . -464) 61532) ((-466 . -657) 61480) ((-466 . -667) 61369) ((-466 . -390) 61353) ((-466 . -47) 61332) ((-466 . -38) 61181) ((-466 . -659) 61030) ((-466 . -736) 60879) ((-466 . -302) 60810) ((-466 . -569) 60741) ((-466 . -111) 60563) ((-466 . -1071) 60406) ((-466 . -1076) 60249) ((-466 . -175) 60160) ((-466 . -149) 60139) ((-466 . -147) 60118) ((-466 . -665) 60028) ((-466 . -133) T) ((-466 . -25) T) ((-466 . -102) T) ((-466 . -1237) T) ((-466 . -629) 60010) ((-466 . -1121) T) ((-466 . -23) T) ((-466 . -21) T) ((-466 . -1069) T) ((-466 . -1077) T) ((-466 . -1132) T) ((-466 . -745) T) ((-466 . -424) 59994) ((-466 . -338) 59973) ((-466 . -321) 59960) ((-466 . -630) 59821) ((-465 . -430) 59791) ((-465 . -763) 59761) ((-465 . -739) T) ((-465 . -780) T) ((-465 . -111) 59712) ((-465 . -1071) 59682) ((-465 . -1076) 59652) ((-465 . -21) T) ((-465 . -665) 59567) ((-465 . -23) T) ((-465 . -1121) T) ((-465 . -629) 59549) ((-465 . -102) T) ((-465 . -25) T) ((-465 . -133) T) ((-465 . -667) 59479) ((-465 . -659) 59449) ((-465 . -736) 59419) ((-465 . -380) 59389) ((-465 . -1237) T) ((-465 . -298) 59352) ((-451 . -1121) T) ((-451 . -629) 59334) ((-451 . -1237) T) ((-451 . -102) T) ((-450 . -1121) T) ((-450 . -629) 59316) ((-450 . -1237) T) ((-450 . -102) T) ((-449 . -378) 59290) ((-449 . -102) T) ((-449 . -1237) T) ((-449 . -629) 59272) ((-449 . -1121) T) ((-448 . -1121) T) ((-448 . -629) 59254) ((-448 . -1237) T) ((-448 . -102) T) ((-446 . -629) 59236) ((-441 . -38) 59220) ((-441 . -632) 59189) ((-441 . -667) 59163) ((-441 . -665) 59122) ((-441 . -745) T) ((-441 . -1132) T) ((-441 . -1077) T) ((-441 . -1069) T) ((-441 . -111) 59101) ((-441 . -1071) 59085) ((-441 . -1076) 59069) ((-441 . -21) T) ((-441 . -23) T) ((-441 . -1121) T) ((-441 . -629) 59051) ((-441 . -1237) T) ((-441 . -102) T) ((-441 . -25) T) ((-441 . -133) T) ((-441 . -659) 59035) ((-441 . -736) 59019) ((-427 . -745) T) ((-427 . -1121) T) ((-427 . -629) 59001) ((-427 . -1237) T) ((-427 . -102) T) ((-427 . -1132) T) ((-425 . -485) T) ((-425 . -1132) T) ((-425 . -102) T) ((-425 . -1237) T) ((-425 . -629) 58983) ((-425 . -1121) T) ((-425 . -745) T) ((-419 . -1011) 58967) ((-419 . -1172) 58945) ((-419 . -1058) 58809) ((-419 . -632) 58707) ((-419 . -630) 58508) ((-419 . -1040) 58486) ((-419 . -928) 58465) ((-419 . -898) 58449) ((-419 . -859) 58428) ((-419 . -818) 58407) ((-419 . -815) 58386) ((-419 . -863) 58337) ((-419 . -860) 58288) ((-419 . -813) 58267) ((-419 . -811) 58246) ((-419 . -841) 58225) ((-419 . -900) 58150) ((-419 . -412) 58134) ((-419 . -657) 58082) ((-419 . -667) 57998) ((-419 . -390) 57982) ((-419 . -298) 57940) ((-419 . -321) 57905) ((-419 . -526) 57817) ((-419 . -351) 57801) ((-419 . -250) T) ((-419 . -111) 57732) ((-419 . -1071) 57684) ((-419 . -1076) 57636) ((-419 . -302) T) ((-419 . -736) 57588) ((-419 . -659) 57540) ((-419 . -665) 57477) ((-419 . -38) 57429) ((-419 . -319) T) ((-419 . -464) T) ((-419 . -175) T) ((-419 . -569) T) ((-419 . -939) T) ((-419 . -1242) T) ((-419 . -376) T) ((-419 . -240) 57408) ((-419 . -236) 57353) ((-419 . -239) 57304) ((-419 . -274) 57288) ((-419 . -910) 57209) ((-419 . -918) 57132) ((-419 . -916) 57091) ((-419 . -234) 57075) ((-419 . -149) 57054) ((-419 . -147) 57033) ((-419 . -133) T) ((-419 . -25) T) ((-419 . -102) T) ((-419 . -1237) T) ((-419 . -629) 57015) ((-419 . -1121) T) ((-419 . -23) T) ((-419 . -21) T) ((-419 . -1069) T) ((-419 . -1077) T) ((-419 . -1132) T) ((-419 . -745) T) ((-417 . -569) T) ((-417 . -302) T) ((-417 . -175) T) ((-417 . -632) 56923) ((-417 . -736) 56897) ((-417 . -659) 56871) ((-417 . -667) 56845) ((-417 . -665) 56804) ((-417 . -133) T) ((-417 . -25) T) ((-417 . -102) T) ((-417 . -1237) T) ((-417 . -629) 56786) ((-417 . -1121) T) ((-417 . -23) T) ((-417 . -21) T) ((-417 . -1076) 56760) ((-417 . -1071) 56734) ((-417 . -111) 56701) ((-417 . -1069) T) ((-417 . -1077) T) ((-417 . -1132) T) ((-417 . -745) T) ((-417 . -38) 56675) ((-417 . -234) 56659) ((-417 . -916) 56618) ((-417 . -918) 56541) ((-417 . -910) 56462) ((-417 . -274) 56446) ((-417 . -239) 56397) ((-417 . -236) 56342) ((-417 . -240) 56321) ((-417 . -351) 56305) ((-417 . -526) 56147) ((-417 . -321) 56086) ((-417 . -298) 56014) ((-417 . -424) 55998) ((-417 . -1058) 55894) ((-417 . -464) 55844) ((-417 . -1040) 55822) ((-417 . -630) 55723) ((-417 . -1242) 55701) ((-411 . -1121) T) ((-411 . -629) 55683) ((-411 . -1237) T) ((-411 . -102) T) ((-411 . -239) T) ((-411 . -236) 55670) ((-411 . -630) 55647) ((-410 . -408) T) ((-410 . -1237) T) ((-410 . -629) 55629) ((-404 . -763) 55613) ((-404 . -739) T) ((-404 . -780) T) ((-404 . -111) 55592) ((-404 . -1071) 55576) ((-404 . -1076) 55560) ((-404 . -21) T) ((-404 . -665) 55529) ((-404 . -23) T) ((-404 . -1121) T) ((-404 . -629) 55511) ((-404 . -1237) T) ((-404 . -102) T) ((-404 . -25) T) ((-404 . -133) T) ((-404 . -667) 55495) ((-404 . -659) 55479) ((-404 . -736) 55463) ((-402 . -403) T) ((-402 . -102) T) ((-402 . -1237) T) ((-402 . -629) 55429) ((-402 . -1121) T) ((-402 . -632) 55410) ((-402 . -502) 55391) ((-400 . -399) 55375) ((-400 . -632) 55359) ((-400 . -1058) 55343) ((-400 . -863) 55322) ((-400 . -860) 55301) ((-400 . -1132) T) ((-400 . -102) T) ((-400 . -1237) T) ((-400 . -629) 55283) ((-400 . -1121) T) ((-400 . -745) T) ((-395 . -397) 55262) ((-395 . -632) 55246) ((-395 . -1058) 55230) ((-395 . -659) 55200) ((-395 . -736) 55170) ((-395 . -667) 55154) ((-395 . -665) 55123) ((-395 . -133) T) ((-395 . -25) T) ((-395 . -102) T) ((-395 . -1237) T) ((-395 . -629) 55105) ((-395 . -1121) T) ((-395 . -23) T) ((-395 . -21) T) ((-395 . -1076) 55089) ((-395 . -1071) 55073) ((-395 . -111) 55052) ((-394 . -111) 55031) ((-394 . -1071) 55015) ((-394 . -1076) 54999) ((-394 . -21) T) ((-394 . -665) 54968) ((-394 . -23) T) ((-394 . -1121) T) ((-394 . -629) 54950) ((-394 . -1237) T) ((-394 . -102) T) ((-394 . -25) T) ((-394 . -133) T) ((-394 . -667) 54934) ((-394 . -521) 54913) ((-394 . -736) 54883) ((-394 . -659) 54853) ((-391 . -416) T) ((-391 . -149) T) ((-391 . -632) 54803) ((-391 . -667) 54768) ((-391 . -665) 54718) ((-391 . -133) T) ((-391 . -25) T) ((-391 . -102) T) ((-391 . -1237) T) ((-391 . -629) 54685) ((-391 . -1121) T) ((-391 . -23) T) ((-391 . -21) T) ((-391 . -745) T) ((-391 . -1132) T) ((-391 . -1077) T) ((-391 . -1069) T) ((-391 . -630) 54599) ((-391 . -376) T) ((-391 . -1242) T) ((-391 . -939) T) ((-391 . -569) T) ((-391 . -175) T) ((-391 . -736) 54564) ((-391 . -659) 54529) ((-391 . -38) 54494) ((-391 . -464) T) ((-391 . -319) T) ((-391 . -111) 54443) ((-391 . -1071) 54408) ((-391 . -1076) 54373) ((-391 . -302) T) ((-391 . -250) T) ((-391 . -859) T) ((-391 . -818) T) ((-391 . -815) T) ((-391 . -863) T) ((-391 . -860) T) ((-391 . -813) T) ((-391 . -811) T) ((-391 . -900) 54355) ((-391 . -1022) T) ((-391 . -1040) T) ((-391 . -1058) 54315) ((-391 . -1080) T) ((-391 . -240) T) ((-391 . -236) 54302) ((-391 . -239) T) ((-391 . -1223) T) ((-391 . -1226) T) ((-391 . -505) T) ((-391 . -296) T) ((-391 . -95) T) ((-391 . -35) T) ((-391 . -634) 54284) ((-377 . -378) 54261) ((-377 . -102) T) ((-377 . -1237) T) ((-377 . -629) 54243) ((-377 . -1121) T) ((-374 . -485) T) ((-374 . -1132) T) ((-374 . -102) T) ((-374 . -1237) T) ((-374 . -629) 54225) ((-374 . -1121) T) ((-374 . -745) T) ((-374 . -1058) 54209) ((-374 . -632) 54193) ((-372 . -341) 54177) ((-372 . -240) 54156) ((-372 . -236) 54129) ((-372 . -239) 54108) ((-372 . -381) 54087) ((-372 . -1172) 54066) ((-372 . -363) 54045) ((-372 . -149) 54024) ((-372 . -632) 53961) ((-372 . -667) 53913) ((-372 . -665) 53850) ((-372 . -133) T) ((-372 . -25) T) ((-372 . -102) T) ((-372 . -1237) T) ((-372 . -629) 53832) ((-372 . -1121) T) ((-372 . -23) T) ((-372 . -21) T) ((-372 . -745) T) ((-372 . -1132) T) ((-372 . -1077) T) ((-372 . -1069) T) ((-372 . -376) T) ((-372 . -1242) T) ((-372 . -939) T) ((-372 . -569) T) ((-372 . -175) T) ((-372 . -736) 53784) ((-372 . -659) 53736) ((-372 . -38) 53701) ((-372 . -464) T) ((-372 . -319) T) ((-372 . -111) 53632) ((-372 . -1071) 53584) ((-372 . -1076) 53536) ((-372 . -302) T) ((-372 . -250) T) ((-372 . -414) 53487) ((-372 . -147) 53438) ((-372 . -1058) 53422) ((-372 . -1295) 53406) ((-372 . -1306) 53390) ((-368 . -341) 53374) ((-368 . -240) 53353) ((-368 . -236) 53326) ((-368 . -239) 53305) ((-368 . -381) 53284) ((-368 . -1172) 53263) ((-368 . -363) 53242) ((-368 . -149) 53221) ((-368 . -632) 53158) ((-368 . -667) 53110) ((-368 . -665) 53047) ((-368 . -133) T) ((-368 . -25) T) ((-368 . -102) T) ((-368 . -1237) T) ((-368 . -629) 53029) ((-368 . -1121) T) ((-368 . -23) T) ((-368 . -21) T) ((-368 . -745) T) ((-368 . -1132) T) ((-368 . -1077) T) ((-368 . -1069) T) ((-368 . -376) T) ((-368 . -1242) T) ((-368 . -939) T) ((-368 . -569) T) ((-368 . -175) T) ((-368 . -736) 52981) ((-368 . -659) 52933) ((-368 . -38) 52898) ((-368 . -464) T) ((-368 . -319) T) ((-368 . -111) 52829) ((-368 . -1071) 52781) ((-368 . -1076) 52733) ((-368 . -302) T) ((-368 . -250) T) ((-368 . -414) 52684) ((-368 . -147) 52635) ((-368 . -1058) 52619) ((-368 . -1295) 52603) ((-368 . -1306) 52587) ((-367 . -341) 52571) ((-367 . -240) 52550) ((-367 . -236) 52523) ((-367 . -239) 52502) ((-367 . -381) 52481) ((-367 . -1172) 52460) ((-367 . -363) 52439) ((-367 . -149) 52418) ((-367 . -632) 52355) ((-367 . -667) 52307) ((-367 . -665) 52244) ((-367 . -133) T) ((-367 . -25) T) ((-367 . -102) T) ((-367 . -1237) T) ((-367 . -629) 52226) ((-367 . -1121) T) ((-367 . -23) T) ((-367 . -21) T) ((-367 . -745) T) ((-367 . -1132) T) ((-367 . -1077) T) ((-367 . -1069) T) ((-367 . -376) T) ((-367 . -1242) T) ((-367 . -939) T) ((-367 . -569) T) ((-367 . -175) T) ((-367 . -736) 52178) ((-367 . -659) 52130) ((-367 . -38) 52095) ((-367 . -464) T) ((-367 . -319) T) ((-367 . -111) 52026) ((-367 . -1071) 51978) ((-367 . -1076) 51930) ((-367 . -302) T) ((-367 . -250) T) ((-367 . -414) 51881) ((-367 . -147) 51832) ((-367 . -1058) 51816) ((-367 . -1295) 51800) ((-367 . -1306) 51784) ((-366 . -341) 51768) ((-366 . -240) 51747) ((-366 . -236) 51720) ((-366 . -239) 51699) ((-366 . -381) 51678) ((-366 . -1172) 51657) ((-366 . -363) 51636) ((-366 . -149) 51615) ((-366 . -632) 51552) ((-366 . -667) 51504) ((-366 . -665) 51441) ((-366 . -133) T) ((-366 . -25) T) ((-366 . -102) T) ((-366 . -1237) T) ((-366 . -629) 51423) ((-366 . -1121) T) ((-366 . -23) T) ((-366 . -21) T) ((-366 . -745) T) ((-366 . -1132) T) ((-366 . -1077) T) ((-366 . -1069) T) ((-366 . -376) T) ((-366 . -1242) T) ((-366 . -939) T) ((-366 . -569) T) ((-366 . -175) T) ((-366 . -736) 51375) ((-366 . -659) 51327) ((-366 . -38) 51292) ((-366 . -464) T) ((-366 . -319) T) ((-366 . -111) 51223) ((-366 . -1071) 51175) ((-366 . -1076) 51127) ((-366 . -302) T) ((-366 . -250) T) ((-366 . -414) 51078) ((-366 . -147) 51029) ((-366 . -1058) 51013) ((-366 . -1295) 50997) ((-366 . -1306) 50981) ((-365 . -341) 50958) ((-365 . -240) T) ((-365 . -236) 50945) ((-365 . -239) T) ((-365 . -381) T) ((-365 . -1172) T) ((-365 . -363) T) ((-365 . -149) 50927) ((-365 . -632) 50857) ((-365 . -667) 50802) ((-365 . -665) 50732) ((-365 . -133) T) ((-365 . -25) T) ((-365 . -102) T) ((-365 . -1237) T) ((-365 . -629) 50714) ((-365 . -1121) T) ((-365 . -23) T) ((-365 . -21) T) ((-365 . -745) T) ((-365 . -1132) T) ((-365 . -1077) T) ((-365 . -1069) T) ((-365 . -376) T) ((-365 . -1242) T) ((-365 . -939) T) ((-365 . -569) T) ((-365 . -175) T) ((-365 . -736) 50659) ((-365 . -659) 50604) ((-365 . -38) 50569) ((-365 . -464) T) ((-365 . -319) T) ((-365 . -111) 50486) ((-365 . -1071) 50431) ((-365 . -1076) 50376) ((-365 . -302) T) ((-365 . -250) T) ((-365 . -414) T) ((-365 . -147) T) ((-365 . -1058) 50353) ((-365 . -1295) 50330) ((-365 . -1306) 50307) ((-359 . -341) 50291) ((-359 . -240) 50270) ((-359 . -236) 50243) ((-359 . -239) 50222) ((-359 . -381) 50201) ((-359 . -1172) 50180) ((-359 . -363) 50159) ((-359 . -149) 50138) ((-359 . -632) 50075) ((-359 . -667) 50027) ((-359 . -665) 49964) ((-359 . -133) T) ((-359 . -25) T) ((-359 . -102) T) ((-359 . -1237) T) ((-359 . -629) 49946) ((-359 . -1121) T) ((-359 . -23) T) ((-359 . -21) T) ((-359 . -745) T) ((-359 . -1132) T) ((-359 . -1077) T) ((-359 . -1069) T) ((-359 . -376) T) ((-359 . -1242) T) ((-359 . -939) T) ((-359 . -569) T) ((-359 . -175) T) ((-359 . -736) 49898) ((-359 . -659) 49850) ((-359 . -38) 49815) ((-359 . -464) T) ((-359 . -319) T) ((-359 . -111) 49746) ((-359 . -1071) 49698) ((-359 . -1076) 49650) ((-359 . -302) T) ((-359 . -250) T) ((-359 . -414) 49601) ((-359 . -147) 49552) ((-359 . -1058) 49536) ((-359 . -1295) 49520) ((-359 . -1306) 49504) ((-358 . -341) 49488) ((-358 . -240) 49467) ((-358 . -236) 49440) ((-358 . -239) 49419) ((-358 . -381) 49398) ((-358 . -1172) 49377) ((-358 . -363) 49356) ((-358 . -149) 49335) ((-358 . -632) 49272) ((-358 . -667) 49224) ((-358 . -665) 49161) ((-358 . -133) T) ((-358 . -25) T) ((-358 . -102) T) ((-358 . -1237) T) ((-358 . -629) 49143) ((-358 . -1121) T) ((-358 . -23) T) ((-358 . -21) T) ((-358 . -745) T) ((-358 . -1132) T) ((-358 . -1077) T) ((-358 . -1069) T) ((-358 . -376) T) ((-358 . -1242) T) ((-358 . -939) T) ((-358 . -569) T) ((-358 . -175) T) ((-358 . -736) 49095) ((-358 . -659) 49047) ((-358 . -38) 49012) ((-358 . -464) T) ((-358 . -319) T) ((-358 . -111) 48943) ((-358 . -1071) 48895) ((-358 . -1076) 48847) ((-358 . -302) T) ((-358 . -250) T) ((-358 . -414) 48798) ((-358 . -147) 48749) ((-358 . -1058) 48733) ((-358 . -1295) 48717) ((-358 . -1306) 48701) ((-357 . -341) 48678) ((-357 . -240) T) ((-357 . -236) 48665) ((-357 . -239) T) ((-357 . -381) T) ((-357 . -1172) T) ((-357 . -363) T) ((-357 . -149) 48647) ((-357 . -632) 48577) ((-357 . -667) 48522) ((-357 . -665) 48452) ((-357 . -133) T) ((-357 . -25) T) ((-357 . -102) T) ((-357 . -1237) T) ((-357 . -629) 48434) ((-357 . -1121) T) ((-357 . -23) T) ((-357 . -21) T) ((-357 . -745) T) ((-357 . -1132) T) ((-357 . -1077) T) ((-357 . -1069) T) ((-357 . -376) T) ((-357 . -1242) T) ((-357 . -939) T) ((-357 . -569) T) ((-357 . -175) T) ((-357 . -736) 48379) ((-357 . -659) 48324) ((-357 . -38) 48289) ((-357 . -464) T) ((-357 . -319) T) ((-357 . -111) 48206) ((-357 . -1071) 48151) ((-357 . -1076) 48096) ((-357 . -302) T) ((-357 . -250) T) ((-357 . -414) T) ((-357 . -147) T) ((-357 . -1058) 48073) ((-357 . -1295) 48050) ((-357 . -1306) 48027) ((-353 . -341) 48004) ((-353 . -240) T) ((-353 . -236) 47991) ((-353 . -239) T) ((-353 . -381) T) ((-353 . -1172) T) ((-353 . -363) T) ((-353 . -149) 47973) ((-353 . -632) 47903) ((-353 . -667) 47848) ((-353 . -665) 47778) ((-353 . -133) T) ((-353 . -25) T) ((-353 . -102) T) ((-353 . -1237) T) ((-353 . -629) 47760) ((-353 . -1121) T) ((-353 . -23) T) ((-353 . -21) T) ((-353 . -745) T) ((-353 . -1132) T) ((-353 . -1077) T) ((-353 . -1069) T) ((-353 . -376) T) ((-353 . -1242) T) ((-353 . -939) T) ((-353 . -569) T) ((-353 . -175) T) ((-353 . -736) 47705) ((-353 . -659) 47650) ((-353 . -38) 47615) ((-353 . -464) T) ((-353 . -319) T) ((-353 . -111) 47532) ((-353 . -1071) 47477) ((-353 . -1076) 47422) ((-353 . -302) T) ((-353 . -250) T) ((-353 . -414) T) ((-353 . -147) T) ((-353 . -1058) 47399) ((-353 . -1295) 47376) ((-353 . -1306) 47353) ((-352 . -310) T) ((-352 . -102) T) ((-352 . -1237) T) ((-352 . -629) 47335) ((-352 . -1121) T) ((-352 . -632) 47287) ((-352 . -1058) 47254) ((-352 . -526) 47220) ((-352 . -321) 47207) ((-352 . -38) 47191) ((-352 . -667) 47165) ((-352 . -665) 47124) ((-352 . -745) T) ((-352 . -1132) T) ((-352 . -1077) T) ((-352 . -1069) T) ((-352 . -111) 47103) ((-352 . -1071) 47087) ((-352 . -1076) 47071) ((-352 . -21) T) ((-352 . -23) T) ((-352 . -25) T) ((-352 . -133) T) ((-352 . -659) 47055) ((-352 . -736) 47039) ((-352 . -916) 47020) ((-352 . -910) 46999) ((-352 . -918) 46980) ((-346 . -349) 46949) ((-346 . -133) T) ((-346 . -25) T) ((-346 . -102) T) ((-346 . -1237) T) ((-346 . -629) 46931) ((-346 . -1121) T) ((-346 . -23) T) ((-346 . -665) 46913) ((-346 . -21) T) ((-345 . -1121) T) ((-345 . -629) 46895) ((-345 . -1237) T) ((-345 . -102) T) ((-343 . -860) T) ((-343 . -629) 46877) ((-343 . -1121) T) ((-343 . -102) T) ((-343 . -1237) T) ((-343 . -863) T) ((-342 . -1121) T) ((-342 . -629) 46859) ((-342 . -1237) T) ((-342 . -102) T) ((-339 . -19) 46843) ((-339 . -670) 46827) ((-339 . -300) 46804) ((-339 . -298) 46756) ((-339 . -615) 46733) ((-339 . -630) 46694) ((-339 . -501) 46678) ((-339 . -1121) 46628) ((-339 . -526) 46561) ((-339 . -321) 46499) ((-339 . -629) 46411) ((-339 . -102) 46341) ((-339 . -1237) T) ((-339 . -34) T) ((-339 . -153) 46325) ((-339 . -860) 46304) ((-339 . -863) 46283) ((-339 . -385) 46267) ((-339 . -294) 46251) ((-336 . -335) 46228) ((-336 . -632) 46212) ((-336 . -1058) 46196) ((-336 . -23) T) ((-336 . -1121) T) ((-336 . -629) 46178) ((-336 . -1237) T) ((-336 . -102) T) ((-336 . -25) T) ((-336 . -133) T) ((-334 . -21) T) ((-334 . -665) 46160) ((-334 . -23) T) ((-334 . -1121) T) ((-334 . -629) 46142) ((-334 . -1237) T) ((-334 . -102) T) ((-334 . -25) T) ((-334 . -133) T) ((-334 . -736) 46124) ((-334 . -659) 46106) ((-334 . -667) 46088) ((-334 . -1076) 46070) ((-334 . -1071) 46052) ((-334 . -111) 46027) ((-334 . -335) 46004) ((-334 . -632) 45988) ((-334 . -1058) 45972) ((-334 . -860) 45951) ((-334 . -863) 45930) ((-331 . -1270) 45914) ((-331 . -240) 45866) ((-331 . -236) 45812) ((-331 . -239) 45764) ((-331 . -298) 45722) ((-331 . -916) 45628) ((-331 . -910) 45532) ((-331 . -918) 45438) ((-331 . -993) 45400) ((-331 . -38) 45241) ((-331 . -111) 45055) ((-331 . -1071) 44890) ((-331 . -1076) 44725) ((-331 . -665) 44607) ((-331 . -667) 44504) ((-331 . -659) 44345) ((-331 . -736) 44186) ((-331 . -632) 44012) ((-331 . -147) 43991) ((-331 . -149) 43970) ((-331 . -47) 43940) ((-331 . -1266) 43910) ((-331 . -35) 43876) ((-331 . -95) 43842) ((-331 . -296) 43808) ((-331 . -505) 43774) ((-331 . -1226) 43740) ((-331 . -1223) 43706) ((-331 . -1022) 43672) ((-331 . -250) 43651) ((-331 . -302) 43602) ((-331 . -133) T) ((-331 . -25) T) ((-331 . -102) T) ((-331 . -1237) T) ((-331 . -629) 43584) ((-331 . -1121) T) ((-331 . -23) T) ((-331 . -21) T) ((-331 . -1069) T) ((-331 . -1077) T) ((-331 . -1132) T) ((-331 . -745) T) ((-331 . -319) 43563) ((-331 . -464) 43542) ((-331 . -175) 43473) ((-331 . -569) 43424) ((-331 . -939) 43403) ((-331 . -1242) 43382) ((-331 . -376) 43361) ((-331 . -813) T) ((-331 . -860) T) ((-331 . -863) T) ((-331 . -815) T) ((-326 . -433) 43345) ((-326 . -632) 42909) ((-326 . -1058) 42572) ((-326 . -630) 42433) ((-326 . -898) 42417) ((-326 . -918) 42383) ((-326 . -910) 42347) ((-326 . -916) 42313) ((-326 . -485) 42292) ((-326 . -424) 42276) ((-326 . -900) 42201) ((-326 . -412) 42185) ((-326 . -657) 42091) ((-326 . -667) 41820) ((-326 . -390) 41789) ((-326 . -250) 41768) ((-326 . -111) 41657) ((-326 . -1071) 41567) ((-326 . -1076) 41477) ((-326 . -302) 41456) ((-326 . -736) 41366) ((-326 . -659) 41276) ((-326 . -665) 40931) ((-326 . -38) 40841) ((-326 . -319) 40820) ((-326 . -464) 40799) ((-326 . -175) 40778) ((-326 . -569) 40757) ((-326 . -939) 40736) ((-326 . -1242) 40715) ((-326 . -376) 40694) ((-326 . -321) 40681) ((-326 . -526) 40647) ((-326 . -310) T) ((-326 . -149) 40626) ((-326 . -147) 40605) ((-326 . -1069) 40495) ((-326 . -1077) 40385) ((-326 . -1132) 40234) ((-326 . -745) 40083) ((-326 . -133) 39954) ((-326 . -25) 39806) ((-326 . -102) T) ((-326 . -1237) T) ((-326 . -629) 39788) ((-326 . -1121) T) ((-326 . -23) 39640) ((-326 . -21) 39511) ((-326 . -29) 39481) ((-326 . -1022) 39460) ((-326 . -27) 39439) ((-326 . -1223) 39418) ((-326 . -1226) 39397) ((-326 . -505) 39376) ((-326 . -296) 39355) ((-326 . -95) 39334) ((-326 . -35) 39313) ((-326 . -162) 39292) ((-326 . -145) 39271) ((-326 . -646) 39250) ((-326 . -978) 39229) ((-326 . -1159) 39208) ((-325 . -1011) 39169) ((-325 . -1172) NIL) ((-325 . -1058) 39099) ((-325 . -632) 38982) ((-325 . -630) NIL) ((-325 . -1040) NIL) ((-325 . -928) NIL) ((-325 . -898) 38943) ((-325 . -859) NIL) ((-325 . -818) NIL) ((-325 . -815) NIL) ((-325 . -863) NIL) ((-325 . -860) NIL) ((-325 . -813) NIL) ((-325 . -811) NIL) ((-325 . -841) NIL) ((-325 . -900) NIL) ((-325 . -412) 38904) ((-325 . -657) 38865) ((-325 . -667) 38794) ((-325 . -390) 38755) ((-325 . -298) 38621) ((-325 . -321) 38517) ((-325 . -526) 38268) ((-325 . -351) 38229) ((-325 . -250) T) ((-325 . -111) 38114) ((-325 . -1071) 38043) ((-325 . -1076) 37972) ((-325 . -302) T) ((-325 . -736) 37901) ((-325 . -659) 37830) ((-325 . -665) 37744) ((-325 . -38) 37673) ((-325 . -319) T) ((-325 . -464) T) ((-325 . -175) T) ((-325 . -569) T) ((-325 . -939) T) ((-325 . -1242) T) ((-325 . -376) T) ((-325 . -240) NIL) ((-325 . -236) NIL) ((-325 . -239) NIL) ((-325 . -274) 37634) ((-325 . -910) NIL) ((-325 . -918) NIL) ((-325 . -916) NIL) ((-325 . -234) 37595) ((-325 . -149) 37551) ((-325 . -147) 37507) ((-325 . -133) T) ((-325 . -25) T) ((-325 . -102) T) ((-325 . -1237) T) ((-325 . -629) 37489) ((-325 . -1121) T) ((-325 . -23) T) ((-325 . -21) T) ((-325 . -1069) T) ((-325 . -1077) T) ((-325 . -1132) T) ((-325 . -745) T) ((-324 . -1103) T) ((-324 . -502) 37470) ((-324 . -629) 37436) ((-324 . -632) 37417) ((-324 . -1121) T) ((-324 . -1237) T) ((-324 . -102) T) ((-324 . -93) T) ((-323 . -1121) T) ((-323 . -629) 37399) ((-323 . -1237) T) ((-323 . -102) T) ((-307 . -1214) 37378) ((-307 . -233) 37328) ((-307 . -107) 37278) ((-307 . -321) 37082) ((-307 . -526) 36842) ((-307 . -501) 36779) ((-307 . -153) 36729) ((-307 . -630) NIL) ((-307 . -242) 36679) ((-307 . -626) 36658) ((-307 . -300) 36637) ((-307 . -1237) T) ((-307 . -298) 36616) ((-307 . -1121) T) ((-307 . -629) 36598) ((-307 . -102) T) ((-307 . -34) T) ((-307 . -615) 36577) ((-305 . -1237) T) ((-305 . -526) 36526) ((-305 . -1121) 36308) ((-305 . -629) 36049) ((-305 . -102) 35831) ((-305 . -25) 35695) ((-305 . -21) 35578) ((-305 . -665) 35313) ((-305 . -23) 35196) ((-305 . -133) 35079) ((-305 . -1132) 34960) ((-305 . -745) 34862) ((-305 . -485) 34841) ((-305 . -1069) 34783) ((-305 . -1077) 34725) ((-305 . -667) 34585) ((-305 . -632) 34516) ((-305 . -111) 34432) ((-305 . -1071) 34353) ((-305 . -1076) 34274) ((-305 . -736) 34216) ((-305 . -659) 34158) ((-305 . -916) 34117) ((-305 . -910) 34074) ((-305 . -918) 34033) ((-305 . -1295) 34003) ((-303 . -629) 33985) ((-301 . -319) T) ((-301 . -464) T) ((-301 . -38) 33972) ((-301 . -632) 33944) ((-301 . -745) T) ((-301 . -1132) T) ((-301 . -1077) T) ((-301 . -1069) T) ((-301 . -111) 33929) ((-301 . -1071) 33916) ((-301 . -1076) 33903) ((-301 . -21) T) ((-301 . -665) 33875) ((-301 . -23) T) ((-301 . -1121) T) ((-301 . -629) 33857) ((-301 . -1237) T) ((-301 . -102) T) ((-301 . -25) T) ((-301 . -133) T) ((-301 . -667) 33844) ((-301 . -659) 33831) ((-301 . -736) 33818) ((-301 . -175) T) ((-301 . -302) T) ((-301 . -569) T) ((-301 . -939) T) ((-301 . -298) 33797) ((-292 . -629) 33779) ((-291 . -629) 33761) ((-286 . -860) T) ((-286 . -629) 33743) ((-286 . -1121) T) ((-286 . -102) T) ((-286 . -1237) T) ((-286 . -863) T) ((-285 . -851) T) ((-285 . -102) T) ((-285 . -1237) T) ((-285 . -629) 33725) ((-285 . -1121) T) ((-284 . -851) T) ((-284 . -102) T) ((-284 . -1237) T) ((-284 . -629) 33707) ((-284 . -1121) T) ((-283 . -851) T) ((-283 . -102) T) ((-283 . -1237) T) ((-283 . -629) 33689) ((-283 . -1121) T) ((-282 . -851) T) ((-282 . -102) T) ((-282 . -1237) T) ((-282 . -629) 33671) ((-282 . -1121) T) ((-281 . -851) T) ((-281 . -102) T) ((-281 . -1237) T) ((-281 . -629) 33653) ((-281 . -1121) T) ((-280 . -851) T) ((-280 . -102) T) ((-280 . -1237) T) ((-280 . -629) 33635) ((-280 . -1121) T) ((-279 . -851) T) ((-279 . -102) T) ((-279 . -1237) T) ((-279 . -629) 33617) ((-279 . -1121) T) ((-275 . -262) 33579) ((-275 . -632) 33332) ((-275 . -1058) 33176) ((-275 . -630) 32924) ((-275 . -338) 32896) ((-275 . -424) 32880) ((-275 . -38) 32729) ((-275 . -111) 32551) ((-275 . -1071) 32394) ((-275 . -1076) 32237) ((-275 . -665) 32147) ((-275 . -667) 32036) ((-275 . -659) 31885) ((-275 . -736) 31734) ((-275 . -147) 31713) ((-275 . -149) 31692) ((-275 . -175) 31603) ((-275 . -569) 31534) ((-275 . -302) 31465) ((-275 . -47) 31437) ((-275 . -390) 31421) ((-275 . -657) 31369) ((-275 . -464) 31320) ((-275 . -526) 31211) ((-275 . -916) 31157) ((-275 . -910) 31063) ((-275 . -918) 30973) ((-275 . -900) 30832) ((-275 . -928) 30811) ((-275 . -1242) 30790) ((-275 . -968) 30757) ((-275 . -321) 30744) ((-275 . -240) 30723) ((-275 . -133) T) ((-275 . -25) T) ((-275 . -102) T) ((-275 . -629) 30705) ((-275 . -1121) T) ((-275 . -23) T) ((-275 . -21) T) ((-275 . -745) T) ((-275 . -1132) T) ((-275 . -1077) T) ((-275 . -1069) T) ((-275 . -236) 30650) ((-275 . -1237) T) ((-275 . -239) 30601) ((-275 . -274) 30585) ((-275 . -234) 30569) ((-270 . -1121) T) ((-270 . -629) 30551) ((-270 . -1237) T) ((-270 . -102) T) ((-260 . -245) 30530) ((-260 . -1295) 30500) ((-260 . -818) 30479) ((-260 . -815) 30458) ((-260 . -863) 30409) ((-260 . -860) 30360) ((-260 . -813) 30339) ((-260 . -814) 30318) ((-260 . -736) 30260) ((-260 . -659) 30182) ((-260 . -300) 30159) ((-260 . -298) 30136) ((-260 . -501) 30120) ((-260 . -526) 30053) ((-260 . -321) 29991) ((-260 . -34) T) ((-260 . -615) 29968) ((-260 . -1058) 29795) ((-260 . -632) 29593) ((-260 . -424) 29562) ((-260 . -657) 29468) ((-260 . -667) 29288) ((-260 . -390) 29257) ((-260 . -381) 29236) ((-260 . -240) 29188) ((-260 . -665) 29036) ((-260 . -745) 29014) ((-260 . -1132) 28992) ((-260 . -1077) 28970) ((-260 . -1069) 28948) ((-260 . -236) 28839) ((-260 . -239) 28736) ((-260 . -274) 28705) ((-260 . -910) 28572) ((-260 . -918) 28441) ((-260 . -916) 28373) ((-260 . -234) 28342) ((-260 . -629) 28303) ((-260 . -1076) 28224) ((-260 . -1071) 28125) ((-260 . -111) 28041) ((-260 . -133) T) ((-260 . -25) T) ((-260 . -102) T) ((-260 . -1237) T) ((-260 . -1121) T) ((-260 . -23) T) ((-260 . -21) T) ((-259 . -245) 28020) ((-259 . -1295) 27990) ((-259 . -818) 27969) ((-259 . -815) 27948) ((-259 . -863) 27899) ((-259 . -860) 27850) ((-259 . -813) 27829) ((-259 . -814) 27808) ((-259 . -736) 27750) ((-259 . -659) 27672) ((-259 . -300) 27649) ((-259 . -298) 27626) ((-259 . -501) 27610) ((-259 . -526) 27543) ((-259 . -321) 27481) ((-259 . -34) T) ((-259 . -615) 27458) ((-259 . -1058) 27285) ((-259 . -632) 27083) ((-259 . -424) 27052) ((-259 . -657) 26958) ((-259 . -667) 26765) ((-259 . -390) 26734) ((-259 . -381) 26713) ((-259 . -240) 26665) ((-259 . -665) 26500) ((-259 . -745) 26478) ((-259 . -1132) 26456) ((-259 . -1077) 26434) ((-259 . -1069) 26412) ((-259 . -236) 26303) ((-259 . -239) 26200) ((-259 . -274) 26169) ((-259 . -910) 26036) ((-259 . -918) 25905) ((-259 . -916) 25837) ((-259 . -234) 25806) ((-259 . -629) 25767) ((-259 . -1076) 25688) ((-259 . -1071) 25589) ((-259 . -111) 25505) ((-259 . -133) T) ((-259 . -25) T) ((-259 . -102) T) ((-259 . -1237) T) ((-259 . -1121) T) ((-259 . -23) T) ((-259 . -21) T) ((-258 . -1121) T) ((-258 . -629) 25487) ((-258 . -1237) T) ((-258 . -102) T) ((-258 . -298) 25461) ((-257 . -189) T) ((-257 . -1121) T) ((-257 . -629) 25428) ((-257 . -1237) T) ((-257 . -102) T) ((-257 . -848) 25410) ((-256 . -1121) T) ((-256 . -629) 25392) ((-256 . -1237) T) ((-256 . -102) T) ((-255 . -968) 25337) ((-255 . -632) 25122) ((-255 . -1058) 24998) ((-255 . -1242) 24977) ((-255 . -928) 24956) ((-255 . -900) NIL) ((-255 . -918) 24933) ((-255 . -910) 24908) ((-255 . -916) 24885) ((-255 . -526) 24823) ((-255 . -464) 24774) ((-255 . -657) 24722) ((-255 . -667) 24611) ((-255 . -390) 24595) ((-255 . -47) 24552) ((-255 . -38) 24401) ((-255 . -659) 24250) ((-255 . -736) 24099) ((-255 . -302) 24030) ((-255 . -569) 23961) ((-255 . -111) 23783) ((-255 . -1071) 23626) ((-255 . -1076) 23469) ((-255 . -175) 23380) ((-255 . -149) 23359) ((-255 . -147) 23338) ((-255 . -665) 23248) ((-255 . -133) T) ((-255 . -25) T) ((-255 . -102) T) ((-255 . -1237) T) ((-255 . -629) 23230) ((-255 . -1121) T) ((-255 . -23) T) ((-255 . -21) T) ((-255 . -1069) T) ((-255 . -1077) T) ((-255 . -1132) T) ((-255 . -745) T) ((-255 . -424) 23214) ((-255 . -338) 23171) ((-255 . -321) 23158) ((-255 . -630) 23019) ((-252 . -685) 23003) ((-252 . -1276) 22987) ((-252 . -1030) 22971) ((-252 . -1170) 22955) ((-252 . -860) 22934) ((-252 . -863) 22913) ((-252 . -385) 22897) ((-252 . -670) 22881) ((-252 . -300) 22858) ((-252 . -298) 22810) ((-252 . -615) 22787) ((-252 . -630) 22748) ((-252 . -501) 22732) ((-252 . -1121) 22682) ((-252 . -526) 22615) ((-252 . -321) 22553) ((-252 . -629) 22445) ((-252 . -102) 22375) ((-252 . -1237) T) ((-252 . -34) T) ((-252 . -153) 22359) ((-252 . -294) 22343) ((-252 . -502) 22320) ((-252 . -632) 22297) ((-246 . -245) 22276) ((-246 . -1295) 22246) ((-246 . -818) 22225) ((-246 . -815) 22204) ((-246 . -863) 22155) ((-246 . -860) 22106) ((-246 . -813) 22085) ((-246 . -814) 22064) ((-246 . -736) 22006) ((-246 . -659) 21928) ((-246 . -300) 21905) ((-246 . -298) 21882) ((-246 . -501) 21866) ((-246 . -526) 21799) ((-246 . -321) 21737) ((-246 . -34) T) ((-246 . -615) 21714) ((-246 . -1058) 21541) ((-246 . -632) 21339) ((-246 . -424) 21308) ((-246 . -657) 21214) ((-246 . -667) 21047) ((-246 . -390) 21016) ((-246 . -381) 20995) ((-246 . -240) 20947) ((-246 . -665) 20726) ((-246 . -745) 20704) ((-246 . -1132) 20682) ((-246 . -1077) 20660) ((-246 . -1069) 20638) ((-246 . -236) 20529) ((-246 . -239) 20426) ((-246 . -274) 20395) ((-246 . -910) 20262) ((-246 . -918) 20131) ((-246 . -916) 20063) ((-246 . -234) 20032) ((-246 . -629) 19725) ((-246 . -1076) 19646) ((-246 . -1071) 19547) ((-246 . -111) 19463) ((-246 . -133) 19334) ((-246 . -25) 19167) ((-246 . -102) 18899) ((-246 . -1237) T) ((-246 . -1121) 18651) ((-246 . -23) 18503) ((-246 . -21) 18414) ((-231 . -705) 18372) ((-231 . -501) 18356) ((-231 . -1121) 18334) ((-231 . -526) 18267) ((-231 . -321) 18205) ((-231 . -629) 18137) ((-231 . -102) 18087) ((-231 . -1237) T) ((-231 . -34) T) ((-231 . -57) 18045) ((-229 . -416) T) ((-229 . -149) T) ((-229 . -632) 17995) ((-229 . -667) 17960) ((-229 . -665) 17910) ((-229 . -133) T) ((-229 . -25) T) ((-229 . -102) T) ((-229 . -1237) T) ((-229 . -629) 17892) ((-229 . -1121) T) ((-229 . -23) T) ((-229 . -21) T) ((-229 . -745) T) ((-229 . -1132) T) ((-229 . -1077) T) ((-229 . -1069) T) ((-229 . -630) 17822) ((-229 . -376) T) ((-229 . -1242) T) ((-229 . -939) T) ((-229 . -569) T) ((-229 . -175) T) ((-229 . -736) 17787) ((-229 . -659) 17752) ((-229 . -38) 17717) ((-229 . -464) T) ((-229 . -319) T) ((-229 . -111) 17666) ((-229 . -1071) 17631) ((-229 . -1076) 17596) ((-229 . -302) T) ((-229 . -250) T) ((-229 . -859) T) ((-229 . -818) T) ((-229 . -815) T) ((-229 . -863) T) ((-229 . -860) T) ((-229 . -813) T) ((-229 . -811) T) ((-229 . -900) 17578) ((-229 . -1022) T) ((-229 . -1040) T) ((-229 . -1058) 17538) ((-229 . -1080) T) ((-229 . -240) T) ((-229 . -236) 17525) ((-229 . -239) T) ((-229 . -1223) T) ((-229 . -1226) T) ((-229 . -505) T) ((-229 . -296) T) ((-229 . -95) T) ((-229 . -35) T) ((-227 . -637) 17502) ((-227 . -632) 17464) ((-227 . -667) 17431) ((-227 . -665) 17383) ((-227 . -745) T) ((-227 . -1132) T) ((-227 . -1077) T) ((-227 . -1069) T) ((-227 . -21) T) ((-227 . -23) T) ((-227 . -1121) T) ((-227 . -629) 17365) ((-227 . -1237) T) ((-227 . -102) T) ((-227 . -25) T) ((-227 . -133) T) ((-227 . -1058) 17342) ((-226 . -263) 17326) ((-226 . -1141) 17310) ((-226 . -107) 17294) ((-226 . -34) T) ((-226 . -1237) T) ((-226 . -102) 17244) ((-226 . -629) 17176) ((-226 . -321) 17114) ((-226 . -526) 17047) ((-226 . -1121) 17025) ((-226 . -501) 17009) ((-226 . -1015) 16993) ((-222 . -1103) T) ((-222 . -502) 16974) ((-222 . -629) 16940) ((-222 . -632) 16921) ((-222 . -1121) T) ((-222 . -1237) T) ((-222 . -102) T) ((-222 . -93) T) ((-221 . -1011) 16903) ((-221 . -1172) T) ((-221 . -632) 16853) ((-221 . -1058) 16813) ((-221 . -630) 16743) ((-221 . -1040) T) ((-221 . -928) NIL) ((-221 . -898) 16725) ((-221 . -859) T) ((-221 . -818) T) ((-221 . -815) T) ((-221 . -863) T) ((-221 . -860) T) ((-221 . -813) T) ((-221 . -811) T) ((-221 . -841) T) ((-221 . -900) 16707) ((-221 . -412) 16689) ((-221 . -657) 16671) ((-221 . -390) 16653) ((-221 . -298) NIL) ((-221 . -321) NIL) ((-221 . -526) NIL) ((-221 . -351) 16635) ((-221 . -250) T) ((-221 . -111) 16562) ((-221 . -1071) 16512) ((-221 . -1076) 16462) ((-221 . -302) T) ((-221 . -736) 16412) ((-221 . -659) 16362) ((-221 . -667) 16312) ((-221 . -665) 16262) ((-221 . -38) 16212) ((-221 . -319) T) ((-221 . -464) T) ((-221 . -175) T) ((-221 . -569) T) ((-221 . -939) T) ((-221 . -1242) T) ((-221 . -376) T) ((-221 . -240) T) ((-221 . -236) 16199) ((-221 . -239) T) ((-221 . -274) 16181) ((-221 . -910) NIL) ((-221 . -918) NIL) ((-221 . -916) NIL) ((-221 . -234) 16163) ((-221 . -149) T) ((-221 . -147) NIL) ((-221 . -133) T) ((-221 . -25) T) ((-221 . -102) T) ((-221 . -1237) T) ((-221 . -629) 16104) ((-221 . -1121) T) ((-221 . -23) T) ((-221 . -21) T) ((-221 . -1069) T) ((-221 . -1077) T) ((-221 . -1132) T) ((-221 . -745) T) ((-218 . -856) T) ((-218 . -863) T) ((-218 . -860) T) ((-218 . -1121) T) ((-218 . -629) 16086) ((-218 . -1237) T) ((-218 . -102) T) ((-218 . -381) T) ((-217 . -1121) T) ((-217 . -629) 16068) ((-217 . -1237) T) ((-217 . -102) T) ((-217 . -632) 16045) ((-216 . -1121) T) ((-216 . -629) 16027) ((-216 . -1237) T) ((-216 . -102) T) ((-215 . -911) T) ((-215 . -102) T) ((-215 . -1237) T) ((-215 . -629) 16009) ((-215 . -1121) T) ((-214 . -911) T) ((-214 . -102) T) ((-214 . -1237) T) ((-214 . -629) 15991) ((-214 . -1121) T) ((-212 . -821) T) ((-212 . -102) T) ((-212 . -1237) T) ((-212 . -629) 15973) ((-212 . -1121) T) ((-211 . -821) T) ((-211 . -102) T) ((-211 . -1237) T) ((-211 . -629) 15955) ((-211 . -1121) T) ((-210 . -821) T) ((-210 . -102) T) ((-210 . -1237) T) ((-210 . -629) 15937) ((-210 . -1121) T) ((-209 . -821) T) ((-209 . -102) T) ((-209 . -1237) T) ((-209 . -629) 15919) ((-209 . -1121) T) ((-206 . -806) T) ((-206 . -102) T) ((-206 . -1237) T) ((-206 . -629) 15901) ((-206 . -1121) T) ((-205 . -806) T) ((-205 . -102) T) ((-205 . -1237) T) ((-205 . -629) 15883) ((-205 . -1121) T) ((-204 . -806) T) ((-204 . -102) T) ((-204 . -1237) T) ((-204 . -629) 15865) ((-204 . -1121) T) ((-203 . -806) T) ((-203 . -102) T) ((-203 . -1237) T) ((-203 . -629) 15847) ((-203 . -1121) T) ((-202 . -806) T) ((-202 . -102) T) ((-202 . -1237) T) ((-202 . -629) 15829) ((-202 . -1121) T) ((-201 . -806) T) ((-201 . -102) T) ((-201 . -1237) T) ((-201 . -629) 15811) ((-201 . -1121) T) ((-200 . -806) T) ((-200 . -102) T) ((-200 . -1237) T) ((-200 . -629) 15793) ((-200 . -1121) T) ((-199 . -806) T) ((-199 . -102) T) ((-199 . -1237) T) ((-199 . -629) 15775) ((-199 . -1121) T) ((-198 . -806) T) ((-198 . -102) T) ((-198 . -1237) T) ((-198 . -629) 15757) ((-198 . -1121) T) ((-197 . -806) T) ((-197 . -102) T) ((-197 . -1237) T) ((-197 . -629) 15739) ((-197 . -1121) T) ((-196 . -806) T) ((-196 . -102) T) ((-196 . -1237) T) ((-196 . -629) 15721) ((-196 . -1121) T) ((-190 . -1121) T) ((-190 . -629) 15703) ((-190 . -1237) T) ((-190 . -102) T) ((-187 . -1121) T) ((-187 . -629) 15685) ((-187 . -1237) T) ((-187 . -102) T) ((-186 . -189) T) ((-186 . -1121) T) ((-186 . -629) 15667) ((-186 . -1237) T) ((-186 . -102) T) ((-186 . -848) 15649) ((-183 . -1103) T) ((-183 . -502) 15630) ((-183 . -629) 15596) ((-183 . -632) 15577) ((-183 . -1121) T) ((-183 . -1237) T) ((-183 . -102) T) ((-183 . -93) T) ((-178 . -629) 15559) ((-177 . -38) 15491) ((-177 . -632) 15408) ((-177 . -667) 15340) ((-177 . -665) 15257) ((-177 . -745) T) ((-177 . -1132) T) ((-177 . -1077) T) ((-177 . -1069) T) ((-177 . -111) 15156) ((-177 . -1071) 15088) ((-177 . -1076) 15020) ((-177 . -21) T) ((-177 . -23) T) ((-177 . -1121) T) ((-177 . -629) 15002) ((-177 . -1237) T) ((-177 . -102) T) ((-177 . -25) T) ((-177 . -133) T) ((-177 . -659) 14934) ((-177 . -736) 14866) ((-177 . -376) T) ((-177 . -1242) T) ((-177 . -939) T) ((-177 . -569) T) ((-177 . -175) T) ((-177 . -464) T) ((-177 . -319) T) ((-177 . -302) T) ((-177 . -250) T) ((-174 . -1121) T) ((-174 . -629) 14848) ((-174 . -1237) T) ((-174 . -102) T) ((-171 . -168) 14832) ((-171 . -35) 14810) ((-171 . -95) 14788) ((-171 . -296) 14766) ((-171 . -505) 14744) ((-171 . -1226) 14722) ((-171 . -1223) 14700) ((-171 . -1022) 14651) ((-171 . -928) 14604) ((-171 . -630) 14370) ((-171 . -898) 14354) ((-171 . -381) 14305) ((-171 . -363) 14284) ((-171 . -1172) 14263) ((-171 . -414) 14242) ((-171 . -422) 14213) ((-171 . -38) 14041) ((-171 . -111) 13930) ((-171 . -1071) 13840) ((-171 . -1076) 13750) ((-171 . -659) 13578) ((-171 . -736) 13406) ((-171 . -383) 13377) ((-171 . -743) 13348) ((-171 . -1058) 13244) ((-171 . -632) 13022) ((-171 . -424) 13006) ((-171 . -900) 12931) ((-171 . -412) 12915) ((-171 . -657) 12863) ((-171 . -667) 12737) ((-171 . -665) 12632) ((-171 . -390) 12616) ((-171 . -298) 12574) ((-171 . -321) 12539) ((-171 . -526) 12451) ((-171 . -351) 12435) ((-171 . -250) 12386) ((-171 . -1242) 12291) ((-171 . -376) 12242) ((-171 . -939) 12173) ((-171 . -569) 12084) ((-171 . -302) 11995) ((-171 . -464) 11926) ((-171 . -319) 11857) ((-171 . -240) 11808) ((-171 . -236) 11733) ((-171 . -239) 11664) ((-171 . -274) 11648) ((-171 . -910) 11569) ((-171 . -918) 11492) ((-171 . -916) 11451) ((-171 . -234) 11435) ((-171 . -175) T) ((-171 . -149) 11414) ((-171 . -1069) T) ((-171 . -1077) T) ((-171 . -1132) T) ((-171 . -745) T) ((-171 . -21) T) ((-171 . -23) T) ((-171 . -1121) T) ((-171 . -629) 11396) ((-171 . -1237) T) ((-171 . -102) T) ((-171 . -25) T) ((-171 . -133) T) ((-171 . -147) 11347) ((-164 . -1103) T) ((-164 . -502) 11328) ((-164 . -629) 11294) ((-164 . -632) 11275) ((-164 . -1121) T) ((-164 . -1237) T) ((-164 . -102) T) ((-164 . -93) T) ((-163 . -1121) T) ((-163 . -629) 11257) ((-163 . -1237) T) ((-163 . -102) T) ((-159 . -25) T) ((-159 . -102) T) ((-159 . -1237) T) ((-159 . -629) 11239) ((-159 . -1121) T) ((-158 . -1103) T) ((-158 . -502) 11220) ((-158 . -629) 11186) ((-158 . -632) 11167) ((-158 . -1121) T) ((-158 . -1237) T) ((-158 . -102) T) ((-158 . -93) T) ((-156 . -1103) T) ((-156 . -502) 11148) ((-156 . -629) 11114) ((-156 . -632) 11095) ((-156 . -1121) T) ((-156 . -1237) T) ((-156 . -102) T) ((-156 . -93) T) ((-154 . -1069) T) ((-154 . -1077) T) ((-154 . -1132) T) ((-154 . -745) T) ((-154 . -21) T) ((-154 . -665) 11054) ((-154 . -23) T) ((-154 . -1121) T) ((-154 . -629) 11036) ((-154 . -1237) T) ((-154 . -102) T) ((-154 . -25) T) ((-154 . -133) T) ((-154 . -667) 11010) ((-154 . -632) 10979) ((-154 . -38) 10963) ((-154 . -111) 10942) ((-154 . -1071) 10926) ((-154 . -1076) 10910) ((-154 . -659) 10894) ((-154 . -736) 10878) ((-154 . -1295) 10862) ((-146 . -856) T) ((-146 . -863) T) ((-146 . -860) T) ((-146 . -1121) T) ((-146 . -629) 10844) ((-146 . -1237) T) ((-146 . -102) T) ((-146 . -381) T) ((-143 . -1121) T) ((-143 . -629) 10826) ((-143 . -1237) T) ((-143 . -102) T) ((-143 . -630) 10785) ((-143 . -438) 10767) ((-143 . -1119) 10749) ((-143 . -381) T) ((-143 . -242) 10731) ((-143 . -153) 10713) ((-143 . -501) 10695) ((-143 . -526) NIL) ((-143 . -321) NIL) ((-143 . -34) T) ((-143 . -107) 10677) ((-143 . -233) 10659) ((-142 . -629) 10641) ((-141 . -189) T) ((-141 . -1121) T) ((-141 . -629) 10608) ((-141 . -1237) T) ((-141 . -102) T) ((-141 . -848) 10590) ((-140 . -1103) T) ((-140 . -502) 10571) ((-140 . -629) 10537) ((-140 . -632) 10518) ((-140 . -1121) T) ((-140 . -1237) T) ((-140 . -102) T) ((-140 . -93) T) ((-139 . -1103) T) ((-139 . -502) 10499) ((-139 . -629) 10465) ((-139 . -632) 10446) ((-139 . -1121) T) ((-139 . -1237) T) ((-139 . -102) T) ((-139 . -93) T) ((-137 . -477) 10423) ((-137 . -632) 10407) ((-137 . -1058) 10391) ((-137 . -1121) T) ((-137 . -629) 10373) ((-137 . -1237) T) ((-137 . -102) T) ((-137 . -482) 10328) ((-137 . -298) 10305) ((-136 . -860) T) ((-136 . -629) 10287) ((-136 . -1121) T) ((-136 . -102) T) ((-136 . -1237) T) ((-136 . -863) T) ((-136 . -23) T) ((-136 . -25) T) ((-136 . -745) T) ((-136 . -1132) T) ((-136 . -1058) 10269) ((-136 . -632) 10251) ((-135 . -1103) T) ((-135 . -502) 10232) ((-135 . -629) 10198) ((-135 . -632) 10179) ((-135 . -1121) T) ((-135 . -1237) T) ((-135 . -102) T) ((-135 . -93) T) ((-132 . -1121) T) ((-132 . -629) 10161) ((-132 . -1237) T) ((-132 . -102) T) ((-131 . -19) 10143) ((-131 . -670) 10125) ((-131 . -300) 10100) ((-131 . -298) 10050) ((-131 . -615) 10025) ((-131 . -630) NIL) ((-131 . -501) 10007) ((-131 . -1121) T) ((-131 . -526) NIL) ((-131 . -321) NIL) ((-131 . -629) 9951) ((-131 . -102) T) ((-131 . -1237) T) ((-131 . -34) T) ((-131 . -153) 9933) ((-131 . -860) T) ((-131 . -863) T) ((-131 . -385) 9915) ((-130 . -856) T) ((-130 . -863) T) ((-130 . -860) T) ((-130 . -1121) T) ((-130 . -629) 9897) ((-130 . -1237) T) ((-130 . -102) T) ((-130 . -381) T) ((-130 . -681) T) ((-129 . -127) 9881) ((-129 . -1030) 9865) ((-129 . -34) T) ((-129 . -1237) T) ((-129 . -102) 9815) ((-129 . -629) 9747) ((-129 . -321) 9685) ((-129 . -526) 9618) ((-129 . -1121) 9596) ((-129 . -501) 9580) ((-129 . -121) 9564) ((-128 . -127) 9548) ((-128 . -1030) 9532) ((-128 . -34) T) ((-128 . -1237) T) ((-128 . -102) 9482) ((-128 . -629) 9414) ((-128 . -321) 9352) ((-128 . -526) 9285) ((-128 . -1121) 9263) ((-128 . -501) 9247) ((-128 . -121) 9231) ((-123 . -127) 9215) ((-123 . -1030) 9199) ((-123 . -34) T) ((-123 . -1237) T) ((-123 . -102) 9149) ((-123 . -629) 9081) ((-123 . -321) 9019) ((-123 . -526) 8952) ((-123 . -1121) 8930) ((-123 . -501) 8914) ((-123 . -121) 8898) ((-119 . -1011) 8875) ((-119 . -1172) NIL) ((-119 . -1058) 8852) ((-119 . -632) 8782) ((-119 . -630) NIL) ((-119 . -1040) NIL) ((-119 . -928) NIL) ((-119 . -898) 8759) ((-119 . -859) NIL) ((-119 . -818) NIL) ((-119 . -815) NIL) ((-119 . -863) NIL) ((-119 . -860) NIL) ((-119 . -813) NIL) ((-119 . -811) NIL) ((-119 . -841) NIL) ((-119 . -900) NIL) ((-119 . -412) 8736) ((-119 . -657) 8713) ((-119 . -667) 8658) ((-119 . -390) 8635) ((-119 . -298) 8565) ((-119 . -321) 8509) ((-119 . -526) 8372) ((-119 . -351) 8349) ((-119 . -250) T) ((-119 . -111) 8266) ((-119 . -1071) 8211) ((-119 . -1076) 8156) ((-119 . -302) T) ((-119 . -736) 8101) ((-119 . -659) 8046) ((-119 . -665) 7976) ((-119 . -38) 7921) ((-119 . -319) T) ((-119 . -464) T) ((-119 . -175) T) ((-119 . -569) T) ((-119 . -939) T) ((-119 . -1242) T) ((-119 . -376) T) ((-119 . -240) NIL) ((-119 . -236) NIL) ((-119 . -239) NIL) ((-119 . -274) 7898) ((-119 . -910) NIL) ((-119 . -918) NIL) ((-119 . -916) NIL) ((-119 . -234) 7875) ((-119 . -149) T) ((-119 . -147) NIL) ((-119 . -133) T) ((-119 . -25) T) ((-119 . -102) T) ((-119 . -1237) T) ((-119 . -629) 7857) ((-119 . -1121) T) ((-119 . -23) T) ((-119 . -21) T) ((-119 . -1069) T) ((-119 . -1077) T) ((-119 . -1132) T) ((-119 . -745) T) ((-118 . -883) 7841) ((-118 . -939) T) ((-118 . -569) T) ((-118 . -302) T) ((-118 . -175) T) ((-118 . -632) 7813) ((-118 . -736) 7800) ((-118 . -659) 7787) ((-118 . -1076) 7774) ((-118 . -1071) 7761) ((-118 . -111) 7746) ((-118 . -38) 7733) ((-118 . -464) T) ((-118 . -319) T) ((-118 . -1069) T) ((-118 . -1077) T) ((-118 . -1132) T) ((-118 . -745) T) ((-118 . -21) T) ((-118 . -665) 7705) ((-118 . -23) T) ((-118 . -1121) T) ((-118 . -629) 7687) ((-118 . -1237) T) ((-118 . -102) T) ((-118 . -25) T) ((-118 . -133) T) ((-118 . -667) 7674) ((-118 . -149) T) ((-115 . -860) T) ((-115 . -629) 7656) ((-115 . -1121) T) ((-115 . -102) T) ((-115 . -1237) T) ((-115 . -863) T) ((-115 . -848) 7637) ((-114 . -856) T) ((-114 . -863) T) ((-114 . -860) T) ((-114 . -1121) T) ((-114 . -629) 7619) ((-114 . -1237) T) ((-114 . -102) T) ((-114 . -381) T) ((-114 . -987) T) ((-114 . -681) T) ((-114 . -113) T) ((-114 . -630) 7601) ((-110 . -125) T) ((-110 . -385) 7583) ((-110 . -863) T) ((-110 . -860) T) ((-110 . -153) 7565) ((-110 . -34) T) ((-110 . -102) T) ((-110 . -629) 7547) ((-110 . -321) NIL) ((-110 . -526) NIL) ((-110 . -1121) T) ((-110 . -501) 7529) ((-110 . -630) 7511) ((-110 . -298) 7461) ((-110 . -615) 7436) ((-110 . -300) 7411) ((-110 . -670) 7393) ((-110 . -19) 7375) ((-110 . -681) T) ((-110 . -1237) T) ((-110 . -113) T) ((-109 . -629) 7357) ((-108 . -1011) 7339) ((-108 . -1172) T) ((-108 . -632) 7289) ((-108 . -1058) 7249) ((-108 . -630) 7179) ((-108 . -1040) T) ((-108 . -928) NIL) ((-108 . -898) 7161) ((-108 . -859) T) ((-108 . -818) T) ((-108 . -815) T) ((-108 . -863) T) ((-108 . -860) T) ((-108 . -813) T) ((-108 . -811) T) ((-108 . -841) T) ((-108 . -900) 7143) ((-108 . -412) 7125) ((-108 . -657) 7107) ((-108 . -390) 7089) ((-108 . -298) NIL) ((-108 . -321) NIL) ((-108 . -526) NIL) ((-108 . -351) 7071) ((-108 . -250) T) ((-108 . -111) 6998) ((-108 . -1071) 6948) ((-108 . -1076) 6898) ((-108 . -302) T) ((-108 . -736) 6848) ((-108 . -659) 6798) ((-108 . -667) 6748) ((-108 . -665) 6698) ((-108 . -38) 6648) ((-108 . -319) T) ((-108 . -464) T) ((-108 . -175) T) ((-108 . -569) T) ((-108 . -939) T) ((-108 . -1242) T) ((-108 . -376) T) ((-108 . -240) T) ((-108 . -236) 6635) ((-108 . -239) T) ((-108 . -274) 6617) ((-108 . -910) NIL) ((-108 . -918) NIL) ((-108 . -916) NIL) ((-108 . -234) 6599) ((-108 . -149) T) ((-108 . -147) NIL) ((-108 . -133) T) ((-108 . -25) T) ((-108 . -102) T) ((-108 . -1237) T) ((-108 . -629) 6541) ((-108 . -1121) T) ((-108 . -23) T) ((-108 . -21) T) ((-108 . -1069) T) ((-108 . -1077) T) ((-108 . -1132) T) ((-108 . -745) T) ((-105 . -1121) T) ((-105 . -629) 6523) ((-105 . -1237) T) ((-105 . -102) T) ((-103 . -127) 6507) ((-103 . -1030) 6491) ((-103 . -34) T) ((-103 . -1237) T) ((-103 . -102) 6441) ((-103 . -629) 6373) ((-103 . -321) 6311) ((-103 . -526) 6244) ((-103 . -1121) 6222) ((-103 . -501) 6206) ((-103 . -121) 6190) ((-99 . -485) T) ((-99 . -1132) T) ((-99 . -102) T) ((-99 . -1237) T) ((-99 . -629) 6172) ((-99 . -1121) T) ((-99 . -745) T) ((-99 . -298) 6151) ((-97 . -1121) T) ((-97 . -629) 6133) ((-97 . -1237) T) ((-97 . -102) T) ((-96 . -1103) T) ((-96 . -502) 6114) ((-96 . -629) 6080) ((-96 . -632) 6061) ((-96 . -1121) T) ((-96 . -1237) T) ((-96 . -102) T) ((-96 . -93) T) ((-91 . -1141) 6045) ((-91 . -501) 6029) ((-91 . -1121) 6007) ((-91 . -526) 5940) ((-91 . -321) 5878) ((-91 . -629) 5810) ((-91 . -102) 5760) ((-91 . -1237) T) ((-91 . -34) T) ((-91 . -107) 5744) ((-89 . -409) T) ((-89 . -629) 5726) ((-89 . -1237) T) ((-89 . -408) T) ((-88 . -398) T) ((-88 . -629) 5708) ((-88 . -1237) T) ((-88 . -408) T) ((-87 . -452) T) ((-87 . -629) 5690) ((-87 . -1237) T) ((-87 . -408) T) ((-86 . -453) T) ((-86 . -629) 5672) ((-86 . -1237) T) ((-86 . -408) T) ((-85 . -398) T) ((-85 . -629) 5654) ((-85 . -1237) T) ((-85 . -408) T) ((-84 . -398) T) ((-84 . -629) 5636) ((-84 . -1237) T) ((-84 . -408) T) ((-83 . -453) T) ((-83 . -629) 5618) ((-83 . -1237) T) ((-83 . -408) T) ((-82 . -453) T) ((-82 . -629) 5600) ((-82 . -1237) T) ((-82 . -408) T) ((-81 . -453) T) ((-81 . -629) 5582) ((-81 . -1237) T) ((-81 . -408) T) ((-81 . -632) 5523) ((-80 . -453) T) ((-80 . -629) 5505) ((-80 . -1237) T) ((-80 . -408) T) ((-79 . -453) T) ((-79 . -629) 5487) ((-79 . -1237) T) ((-79 . -408) T) ((-78 . -409) T) ((-78 . -629) 5469) ((-78 . -1237) T) ((-78 . -408) T) ((-77 . -453) T) ((-77 . -629) 5451) ((-77 . -1237) T) ((-77 . -408) T) ((-76 . -453) T) ((-76 . -629) 5433) ((-76 . -1237) T) ((-76 . -408) T) ((-75 . -409) T) ((-75 . -629) 5415) ((-75 . -1237) T) ((-75 . -408) T) ((-74 . -453) T) ((-74 . -629) 5397) ((-74 . -1237) T) ((-74 . -408) T) ((-73 . -396) T) ((-73 . -629) 5379) ((-73 . -1237) T) ((-73 . -408) T) ((-72 . -408) T) ((-72 . -1237) T) ((-72 . -629) 5361) ((-71 . -453) T) ((-71 . -629) 5343) ((-71 . -1237) T) ((-71 . -408) T) ((-70 . -396) T) ((-70 . -629) 5325) ((-70 . -1237) T) ((-70 . -408) T) ((-69 . -408) T) ((-69 . -1237) T) ((-69 . -629) 5307) ((-68 . -396) T) ((-68 . -629) 5289) ((-68 . -1237) T) ((-68 . -408) T) ((-67 . -396) T) ((-67 . -629) 5271) ((-67 . -1237) T) ((-67 . -408) T) ((-66 . -409) T) ((-66 . -629) 5253) ((-66 . -1237) T) ((-66 . -408) T) ((-65 . -398) T) ((-65 . -629) 5235) ((-65 . -1237) T) ((-65 . -408) T) ((-65 . -632) 5164) ((-64 . -453) T) ((-64 . -629) 5146) ((-64 . -1237) T) ((-64 . -408) T) ((-63 . -408) T) ((-63 . -1237) T) ((-63 . -629) 5128) ((-62 . -453) T) ((-62 . -629) 5110) ((-62 . -1237) T) ((-62 . -408) T) ((-61 . -409) T) ((-61 . -629) 5092) ((-61 . -1237) T) ((-61 . -408) T) ((-60 . -57) 5054) ((-60 . -34) T) ((-60 . -1237) T) ((-60 . -102) 5004) ((-60 . -629) 4936) ((-60 . -321) 4874) ((-60 . -526) 4807) ((-60 . -1121) 4785) ((-60 . -501) 4769) ((-58 . -19) 4753) ((-58 . -670) 4737) ((-58 . -300) 4714) ((-58 . -298) 4666) ((-58 . -615) 4643) ((-58 . -630) 4604) ((-58 . -501) 4588) ((-58 . -1121) 4538) ((-58 . -526) 4471) ((-58 . -321) 4409) ((-58 . -629) 4321) ((-58 . -102) 4251) ((-58 . -1237) T) ((-58 . -34) T) ((-58 . -153) 4235) ((-58 . -860) 4214) ((-58 . -863) 4193) ((-58 . -385) 4177) ((-55 . -1121) T) ((-55 . -629) 4159) ((-55 . -1237) T) ((-55 . -102) T) ((-55 . -1058) 4141) ((-55 . -632) 4123) ((-51 . -1121) T) ((-51 . -629) 4105) ((-51 . -1237) T) ((-51 . -102) T) ((-50 . -637) 4089) ((-50 . -632) 4058) ((-50 . -667) 4032) ((-50 . -665) 3991) ((-50 . -745) T) ((-50 . -1132) T) ((-50 . -1077) T) ((-50 . -1069) T) ((-50 . -21) T) ((-50 . -23) T) ((-50 . -1121) T) ((-50 . -629) 3973) ((-50 . -1237) T) ((-50 . -102) T) ((-50 . -25) T) ((-50 . -133) T) ((-50 . -1058) 3957) ((-49 . -1121) T) ((-49 . -629) 3939) ((-49 . -1237) T) ((-49 . -102) T) ((-48 . -310) T) ((-48 . -102) T) ((-48 . -1237) T) ((-48 . -629) 3921) ((-48 . -1121) T) ((-48 . -632) 3854) ((-48 . -1058) 3797) ((-48 . -526) 3763) ((-48 . -321) 3750) ((-48 . -27) T) ((-48 . -1022) T) ((-48 . -250) T) ((-48 . -111) 3699) ((-48 . -1071) 3664) ((-48 . -1076) 3629) ((-48 . -302) T) ((-48 . -736) 3594) ((-48 . -659) 3559) ((-48 . -667) 3509) ((-48 . -665) 3459) ((-48 . -133) T) ((-48 . -25) T) ((-48 . -23) T) ((-48 . -21) T) ((-48 . -1069) T) ((-48 . -1077) T) ((-48 . -1132) T) ((-48 . -745) T) ((-48 . -38) 3424) ((-48 . -319) T) ((-48 . -464) T) ((-48 . -175) T) ((-48 . -569) T) ((-48 . -939) T) ((-48 . -1242) T) ((-48 . -376) T) ((-48 . -657) 3384) ((-48 . -1040) T) ((-48 . -630) 3329) ((-48 . -149) T) ((-48 . -240) T) ((-48 . -236) 3316) ((-48 . -239) T) ((-45 . -36) 3295) ((-45 . -615) 3220) ((-45 . -321) 3024) ((-45 . -526) 2784) ((-45 . -501) 2721) ((-45 . -298) 2621) ((-45 . -300) 2546) ((-45 . -626) 2525) ((-45 . -242) 2475) ((-45 . -107) 2425) ((-45 . -233) 2375) ((-45 . -1214) 2354) ((-45 . -294) 2304) ((-45 . -153) 2254) ((-45 . -34) T) ((-45 . -1237) T) ((-45 . -102) T) ((-45 . -629) 2236) ((-45 . -1121) T) ((-45 . -630) NIL) ((-45 . -670) 2186) ((-45 . -385) 2136) ((-45 . -863) NIL) ((-45 . -860) NIL) ((-45 . -1170) 2086) ((-45 . -1030) 2036) ((-45 . -1276) 1986) ((-45 . -685) 1936) ((-44 . -430) 1920) ((-44 . -763) 1904) ((-44 . -739) T) ((-44 . -780) T) ((-44 . -111) 1883) ((-44 . -1071) 1867) ((-44 . -1076) 1851) ((-44 . -21) T) ((-44 . -665) 1794) ((-44 . -23) T) ((-44 . -1121) T) ((-44 . -629) 1776) ((-44 . -102) T) ((-44 . -25) T) ((-44 . -133) T) ((-44 . -667) 1734) ((-44 . -659) 1718) ((-44 . -736) 1702) ((-44 . -380) 1686) ((-44 . -1237) T) ((-44 . -298) 1663) ((-40 . -355) 1637) ((-40 . -175) T) ((-40 . -632) 1567) ((-40 . -745) T) ((-40 . -1132) T) ((-40 . -1077) T) ((-40 . -1069) T) ((-40 . -667) 1469) ((-40 . -665) 1399) ((-40 . -133) T) ((-40 . -25) T) ((-40 . -102) T) ((-40 . -1237) T) ((-40 . -629) 1381) ((-40 . -1121) T) ((-40 . -23) T) ((-40 . -21) T) ((-40 . -1076) 1326) ((-40 . -1071) 1271) ((-40 . -111) 1188) ((-40 . -630) 1172) ((-40 . -234) 1149) ((-40 . -916) 1101) ((-40 . -918) 1010) ((-40 . -910) 917) ((-40 . -274) 894) ((-40 . -239) 831) ((-40 . -236) 762) ((-40 . -240) 734) ((-40 . -376) T) ((-40 . -1242) T) ((-40 . -939) T) ((-40 . -569) T) ((-40 . -736) 679) ((-40 . -659) 624) ((-40 . -38) 569) ((-40 . -464) T) ((-40 . -319) T) ((-40 . -302) T) ((-40 . -250) T) ((-40 . -381) NIL) ((-40 . -363) NIL) ((-40 . -1172) NIL) ((-40 . -147) 541) ((-40 . -414) NIL) ((-40 . -422) 513) ((-40 . -149) 485) ((-40 . -383) 457) ((-40 . -390) 434) ((-40 . -657) 368) ((-40 . -424) 345) ((-40 . -1058) 220) ((-40 . -743) 192) ((-31 . -1103) T) ((-31 . -502) 173) ((-31 . -629) 139) ((-31 . -632) 120) ((-31 . -1121) T) ((-31 . -1237) T) ((-31 . -102) T) ((-31 . -93) T) ((-30 . -973) T) ((-30 . -629) 102) ((0 . |EnumerationCategory|) T) ((0 . -629) 84) ((0 . -1121) T) ((0 . -102) T) ((0 . -1237) T) ((-2 . |RecordCategory|) T) ((-2 . -629) 66) ((-2 . -1121) T) ((-2 . -102) T) ((-2 . -1237) T) ((-3 . |UnionCategory|) T) ((-3 . -629) 48) ((-3 . -1121) T) ((-3 . -102) T) ((-3 . -1237) T) ((-1 . -1121) T) ((-1 . -629) 30) ((-1 . -1237) T) ((-1 . -102) T))
\ No newline at end of file diff --git a/src/share/algebra/compress.daase b/src/share/algebra/compress.daase index d18e81a6..9ff0ef0d 100644 --- a/src/share/algebra/compress.daase +++ b/src/share/algebra/compress.daase @@ -1,6 +1,6 @@ -(30 . 3524522242) -(4428 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| +(30 . 3524556578) +(4427 |Enumeration| |Mapping| |Record| |Union| |ofCategory| |isDomain| ATTRIBUTE |package| |domain| |category| CATEGORY |nobranch| AND |Join| |ofType| SIGNATURE "failed" "algebra" |OneDimensionalArrayAggregate&| |OneDimensionalArrayAggregate| |AbelianGroup&| |AbelianGroup| |AbelianMonoid&| @@ -187,9 +187,9 @@ |IntegrationResultFunctions2| |IntegrationResultToFunction| |InternalRepresentationForm| |IntegerRoots| |IrredPolyOverFiniteField| |IntegrationResultRFToFunction| |IrrRepSymNatPackage| - |InternalRationalUnivariateRepresentationPackage| |IsAst| |IndexedString| - |InnerPolySum| |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| - |InternalTypeForm| |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| + |InternalRationalUnivariateRepresentationPackage| |IsAst| |InnerPolySum| + |InnerSparseUnivariatePowerSeries| |InnerTaylorSeries| |InternalTypeForm| + |InfiniteTupleFunctions2| |InfiniteTupleFunctions3| |InnerTrigonometricManipulations| |InfiniteTuple| |IndexedVector| |IndexedAggregate&| |IndexedAggregate| |JoinAst| |AssociatedJordanAlgebra| |JVMBytecode| |JVMClassFileAccess| |JVMConstantTag| |JVMFieldAccess| diff --git a/src/share/algebra/interp.daase b/src/share/algebra/interp.daase index 2b14c8a9..900dd82f 100644 --- a/src/share/algebra/interp.daase +++ b/src/share/algebra/interp.daase @@ -1,4383 +1,4380 @@ -(3097043 . 3524522254) -((-1935 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-1933 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-4218 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-1255 (-558)) |#2|) 44 T ELT)) (-2510 (($ $) 80 T ELT)) (-4272 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3839 (((-558) (-1 (-114) |#2|) $) 27 T ELT) (((-558) |#2| $) NIL T ELT) (((-558) |#2| $ (-558)) 96 T ELT)) (-3290 (((-661 |#2|) $) 13 T ELT)) (-3938 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2160 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2517 (($ |#2| $ (-558)) NIL T ELT) (($ $ $ (-558)) 67 T ELT)) (-1468 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-4230 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) 66 T ELT)) (-2518 (($ $ (-558)) 76 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 34 T ELT) (((-791) |#2| $) NIL T ELT)) (-1934 (($ $ $ (-558)) 69 T ELT)) (-3820 (($ $) 68 T ELT)) (-3950 (($ (-661 |#2|)) 73 T ELT)) (-4232 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-661 $)) 85 T ELT)) (-4376 (((-877) $) 92 T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-3454 (((-114) $ $) 95 T ELT)) (-3086 (((-114) $ $) 99 T ELT))) -(((-18 |#1| |#2|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -3086 ((-114) |#1| |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -1933 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2510 (|#1| |#1|)) (-15 -1934 (|#1| |#1| |#1| (-558))) (-15 -1935 ((-114) |#1|)) (-15 -3938 (|#1| |#1| |#1|)) (-15 -3839 ((-558) |#2| |#1| (-558))) (-15 -3839 ((-558) |#2| |#1|)) (-15 -3839 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1935 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3938 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4218 (|#2| |#1| (-1255 (-558)) |#2|)) (-15 -2517 (|#1| |#1| |#1| (-558))) (-15 -2517 (|#1| |#2| |#1| (-558))) (-15 -2518 (|#1| |#1| (-1255 (-558)))) (-15 -2518 (|#1| |#1| (-558))) (-15 -4388 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4232 (|#1| (-661 |#1|))) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#2| |#1|)) (-15 -4232 (|#1| |#1| |#2|)) (-15 -4230 (|#1| |#1| (-1255 (-558)))) (-15 -3950 (|#1| (-661 |#2|))) (-15 -1468 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4230 (|#2| |#1| (-558))) (-15 -4230 (|#2| |#1| (-558) |#2|)) (-15 -4218 (|#2| |#1| (-558) |#2|)) (-15 -2157 ((-791) |#2| |#1|)) (-15 -3290 ((-661 |#2|) |#1|)) (-15 -2157 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2159 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2160 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3820 (|#1| |#1|))) (-19 |#2|) (-1238)) (T -18)) +(3091973 . 3524556590) +((-1934 (((-114) (-1 (-114) |#2| |#2|) $) 86 T ELT) (((-114) $) NIL T ELT)) (-1932 (($ (-1 (-114) |#2| |#2|) $) 18 T ELT) (($ $) NIL T ELT)) (-4217 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-1254 (-558)) |#2|) 44 T ELT)) (-2509 (($ $) 80 T ELT)) (-4271 ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 52 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 50 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $) 49 T ELT)) (-3838 (((-558) (-1 (-114) |#2|) $) 27 T ELT) (((-558) |#2| $) NIL T ELT) (((-558) |#2| $ (-558)) 96 T ELT)) (-3289 (((-660 |#2|) $) 13 T ELT)) (-3937 (($ (-1 (-114) |#2| |#2|) $ $) 64 T ELT) (($ $ $) NIL T ELT)) (-2159 (($ (-1 |#2| |#2|) $) 37 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 60 T ELT)) (-2516 (($ |#2| $ (-558)) NIL T ELT) (($ $ $ (-558)) 67 T ELT)) (-1467 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 29 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-4229 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) 66 T ELT)) (-2517 (($ $ (-558)) 76 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 34 T ELT) (((-790) |#2| $) NIL T ELT)) (-1933 (($ $ $ (-558)) 69 T ELT)) (-3819 (($ $) 68 T ELT)) (-3949 (($ (-660 |#2|)) 73 T ELT)) (-4231 (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 87 T ELT) (($ (-660 $)) 85 T ELT)) (-4375 (((-876) $) 92 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 22 T ELT)) (-3453 (((-114) $ $) 95 T ELT)) (-3085 (((-114) $ $) 99 T ELT))) +(((-18 |#1| |#2|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -3085 ((-114) |#1| |#1|)) (-15 -1932 (|#1| |#1|)) (-15 -1932 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2509 (|#1| |#1|)) (-15 -1933 (|#1| |#1| |#1| (-558))) (-15 -1934 ((-114) |#1|)) (-15 -3937 (|#1| |#1| |#1|)) (-15 -3838 ((-558) |#2| |#1| (-558))) (-15 -3838 ((-558) |#2| |#1|)) (-15 -3838 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1934 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3937 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -4217 (|#2| |#1| (-1254 (-558)) |#2|)) (-15 -2516 (|#1| |#1| |#1| (-558))) (-15 -2516 (|#1| |#2| |#1| (-558))) (-15 -2517 (|#1| |#1| (-1254 (-558)))) (-15 -2517 (|#1| |#1| (-558))) (-15 -4387 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4231 (|#1| (-660 |#1|))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#1| |#2| |#1|)) (-15 -4231 (|#1| |#1| |#2|)) (-15 -4229 (|#1| |#1| (-1254 (-558)))) (-15 -3949 (|#1| (-660 |#2|))) (-15 -1467 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4229 (|#2| |#1| (-558))) (-15 -4229 (|#2| |#1| (-558) |#2|)) (-15 -4217 (|#2| |#1| (-558) |#2|)) (-15 -2156 ((-790) |#2| |#1|)) (-15 -3289 ((-660 |#2|) |#1|)) (-15 -2156 ((-790) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2159 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3819 (|#1| |#1|))) (-19 |#2|) (-1237)) (T -18)) NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4426)) ELT) (($ $) 97 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4426))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2510 (($ $) 99 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 109 T ELT)) (-1467 (($ $) 84 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 83 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 55 T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 91 (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 92 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2414 (($ $ |#1|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1934 (($ $ $ (-558)) 100 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 76 T ELT)) (-4232 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 93 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 95 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) 94 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 96 (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-19 |#1|) (-142) (-1238)) (T -19)) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4425)) ELT) (($ $) 97 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4425))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2509 (($ $) 99 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 109 T ELT)) (-1466 (($ $) 84 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 83 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 55 T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 91 (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 92 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2413 (($ $ |#1|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1933 (($ $ $ (-558)) 100 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 76 T ELT)) (-4231 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 93 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 95 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) 94 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 96 (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-19 |#1|) (-142) (-1237)) (T -19)) NIL -(-13 (-385 |t#1|) (-10 -7 (-6 -4426))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1122) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861))) ((-1238) . T)) -((-1426 (((-3 $ "failed") $ $) 12 T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) 16 T ELT) (($ (-558) $) 25 T ELT))) -(((-20 |#1|) (-10 -7 (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1426 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|))) (-21)) (T -20)) +(-13 (-385 |t#1|) (-10 -7 (-6 -4425))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1121) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860))) ((-1237) . T)) +((-1425 (((-3 $ "failed") $ $) 12 T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) 9 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) 16 T ELT) (($ (-558) $) 25 T ELT))) +(((-20 |#1|) (-10 -7 (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -1425 ((-3 |#1| "failed") |#1| |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|))) (-21)) (T -20)) NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT))) (((-21) (-142)) (T -21)) -((-4267 (*1 *1 *1) (-4 *1 (-21))) (-4267 (*1 *1 *1 *1) (-4 *1 (-21)))) -(-13 (-133) (-666 (-558)) (-10 -8 (-15 -4267 ($ $)) (-15 -4267 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-1122) . T) ((-1238) . T)) -((-3606 (((-114) $) 10 T ELT)) (-4154 (($) 15 T ELT)) (* (($ (-938) $) 14 T ELT) (($ (-791) $) 19 T ELT))) -(((-22 |#1|) (-10 -7 (-15 * (|#1| (-791) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 -4154 (|#1|)) (-15 * (|#1| (-938) |#1|))) (-23)) (T -22)) +((-4266 (*1 *1 *1) (-4 *1 (-21))) (-4266 (*1 *1 *1 *1) (-4 *1 (-21)))) +(-13 (-133) (-665 (-558)) (-10 -8 (-15 -4266 ($ $)) (-15 -4266 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-1121) . T) ((-1237) . T)) +((-3605 (((-114) $) 10 T ELT)) (-4153 (($) 15 T ELT)) (* (($ (-937) $) 14 T ELT) (($ (-790) $) 19 T ELT))) +(((-22 |#1|) (-10 -7 (-15 * (|#1| (-790) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 -4153 (|#1|)) (-15 * (|#1| (-937) |#1|))) (-23)) (T -22)) NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT))) (((-23) (-142)) (T -23)) -((-3059 (*1 *1) (-4 *1 (-23))) (-4154 (*1 *1) (-4 *1 (-23))) (-3606 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-791))))) -(-13 (-25) (-10 -8 (-15 (-3059) ($) -4382) (-15 -4154 ($) -4382) (-15 -3606 ((-114) $)) (-15 * ($ (-791) $)))) -(((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((* (($ (-938) $) 10 T ELT))) -(((-24 |#1|) (-10 -7 (-15 * (|#1| (-938) |#1|))) (-25)) (T -24)) +((-3058 (*1 *1) (-4 *1 (-23))) (-4153 (*1 *1) (-4 *1 (-23))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-790))))) +(-13 (-25) (-10 -8 (-15 (-3058) ($) -4381) (-15 -4153 ($) -4381) (-15 -3605 ((-114) $)) (-15 * ($ (-790) $)))) +(((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((* (($ (-937) $) 10 T ELT))) +(((-24 |#1|) (-10 -7 (-15 * (|#1| (-937) |#1|))) (-25)) (T -24)) NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT))) +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT))) (((-25) (-142)) (T -25)) -((-4269 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938))))) -(-13 (-1122) (-10 -8 (-15 -4269 ($ $ $)) (-15 * ($ (-938) $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-1750 (((-661 $) (-965 $)) 32 T ELT) (((-661 $) (-1192 $)) 16 T ELT) (((-661 $) (-1192 $) (-1198)) 20 T ELT)) (-1323 (($ (-965 $)) 30 T ELT) (($ (-1192 $)) 11 T ELT) (($ (-1192 $) (-1198)) 60 T ELT)) (-1324 (((-661 $) (-965 $)) 33 T ELT) (((-661 $) (-1192 $)) 18 T ELT) (((-661 $) (-1192 $) (-1198)) 19 T ELT)) (-3601 (($ (-965 $)) 31 T ELT) (($ (-1192 $)) 13 T ELT) (($ (-1192 $) (-1198)) NIL T ELT))) -(((-26 |#1|) (-10 -7 (-15 -1750 ((-661 |#1|) (-1192 |#1|) (-1198))) (-15 -1750 ((-661 |#1|) (-1192 |#1|))) (-15 -1750 ((-661 |#1|) (-965 |#1|))) (-15 -1323 (|#1| (-1192 |#1|) (-1198))) (-15 -1323 (|#1| (-1192 |#1|))) (-15 -1323 (|#1| (-965 |#1|))) (-15 -1324 ((-661 |#1|) (-1192 |#1|) (-1198))) (-15 -1324 ((-661 |#1|) (-1192 |#1|))) (-15 -1324 ((-661 |#1|) (-965 |#1|))) (-15 -3601 (|#1| (-1192 |#1|) (-1198))) (-15 -3601 (|#1| (-1192 |#1|))) (-15 -3601 (|#1| (-965 |#1|)))) (-27)) (T -26)) +((-4268 (*1 *1 *1 *1) (-4 *1 (-25))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-937))))) +(-13 (-1121) (-10 -8 (-15 -4268 ($ $ $)) (-15 * ($ (-937) $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-1749 (((-660 $) (-964 $)) 32 T ELT) (((-660 $) (-1191 $)) 16 T ELT) (((-660 $) (-1191 $) (-1197)) 20 T ELT)) (-1322 (($ (-964 $)) 30 T ELT) (($ (-1191 $)) 11 T ELT) (($ (-1191 $) (-1197)) 60 T ELT)) (-1323 (((-660 $) (-964 $)) 33 T ELT) (((-660 $) (-1191 $)) 18 T ELT) (((-660 $) (-1191 $) (-1197)) 19 T ELT)) (-3600 (($ (-964 $)) 31 T ELT) (($ (-1191 $)) 13 T ELT) (($ (-1191 $) (-1197)) NIL T ELT))) +(((-26 |#1|) (-10 -7 (-15 -1749 ((-660 |#1|) (-1191 |#1|) (-1197))) (-15 -1749 ((-660 |#1|) (-1191 |#1|))) (-15 -1749 ((-660 |#1|) (-964 |#1|))) (-15 -1322 (|#1| (-1191 |#1|) (-1197))) (-15 -1322 (|#1| (-1191 |#1|))) (-15 -1322 (|#1| (-964 |#1|))) (-15 -1323 ((-660 |#1|) (-1191 |#1|) (-1197))) (-15 -1323 ((-660 |#1|) (-1191 |#1|))) (-15 -1323 ((-660 |#1|) (-964 |#1|))) (-15 -3600 (|#1| (-1191 |#1|) (-1197))) (-15 -3600 (|#1| (-1191 |#1|))) (-15 -3600 (|#1| (-964 |#1|)))) (-27)) (T -26)) NIL -((-2967 (((-114) $ $) 7 T ELT)) (-1750 (((-661 $) (-965 $)) 95 T ELT) (((-661 $) (-1192 $)) 94 T ELT) (((-661 $) (-1192 $) (-1198)) 93 T ELT)) (-1323 (($ (-965 $)) 98 T ELT) (($ (-1192 $)) 97 T ELT) (($ (-1192 $) (-1198)) 96 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-3438 (($ $) 107 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-1324 (((-661 $) (-965 $)) 101 T ELT) (((-661 $) (-1192 $)) 100 T ELT) (((-661 $) (-1192 $) (-1198)) 99 T ELT)) (-3601 (($ (-965 $)) 104 T ELT) (($ (-1192 $)) 103 T ELT) (($ (-1192 $) (-1198)) 102 T ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 106 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 105 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +((-2966 (((-114) $ $) 7 T ELT)) (-1749 (((-660 $) (-964 $)) 95 T ELT) (((-660 $) (-1191 $)) 94 T ELT) (((-660 $) (-1191 $) (-1197)) 93 T ELT)) (-1322 (($ (-964 $)) 98 T ELT) (($ (-1191 $)) 97 T ELT) (($ (-1191 $) (-1197)) 96 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-3437 (($ $) 107 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-1323 (((-660 $) (-964 $)) 101 T ELT) (((-660 $) (-1191 $)) 100 T ELT) (((-660 $) (-1191 $) (-1197)) 99 T ELT)) (-3600 (($ (-964 $)) 104 T ELT) (($ (-1191 $)) 103 T ELT) (($ (-1191 $) (-1197)) 102 T ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 106 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 105 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-27) (-142)) (T -27)) -((-3601 (*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) (-3601 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-3601 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1324 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1324 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) (-1323 (*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) (-1323 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) (-1750 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-661 *1))))) -(-13 (-376) (-1023) (-10 -8 (-15 -3601 ($ (-965 $))) (-15 -3601 ($ (-1192 $))) (-15 -3601 ($ (-1192 $) (-1198))) (-15 -1324 ((-661 $) (-965 $))) (-15 -1324 ((-661 $) (-1192 $))) (-15 -1324 ((-661 $) (-1192 $) (-1198))) (-15 -1323 ($ (-965 $))) (-15 -1323 ($ (-1192 $))) (-15 -1323 ($ (-1192 $) (-1198))) (-15 -1750 ((-661 $) (-965 $))) (-15 -1750 ((-661 $) (-1192 $))) (-15 -1750 ((-661 $) (-1192 $) (-1198))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1023) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-1750 (((-661 $) (-965 $)) NIL T ELT) (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-1192 $) (-1198)) 54 T ELT) (((-661 $) $) 22 T ELT) (((-661 $) $ (-1198)) 45 T ELT)) (-1323 (($ (-965 $)) NIL T ELT) (($ (-1192 $)) NIL T ELT) (($ (-1192 $) (-1198)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1198)) 39 T ELT)) (-1324 (((-661 $) (-965 $)) NIL T ELT) (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-1192 $) (-1198)) 52 T ELT) (((-661 $) $) 18 T ELT) (((-661 $) $ (-1198)) 47 T ELT)) (-3601 (($ (-965 $)) NIL T ELT) (($ (-1192 $)) NIL T ELT) (($ (-1192 $) (-1198)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1198)) 41 T ELT))) -(((-28 |#1| |#2|) (-10 -7 (-15 -1750 ((-661 |#1|) |#1| (-1198))) (-15 -1323 (|#1| |#1| (-1198))) (-15 -1750 ((-661 |#1|) |#1|)) (-15 -1323 (|#1| |#1|)) (-15 -1324 ((-661 |#1|) |#1| (-1198))) (-15 -3601 (|#1| |#1| (-1198))) (-15 -1324 ((-661 |#1|) |#1|)) (-15 -3601 (|#1| |#1|)) (-15 -1750 ((-661 |#1|) (-1192 |#1|) (-1198))) (-15 -1750 ((-661 |#1|) (-1192 |#1|))) (-15 -1750 ((-661 |#1|) (-965 |#1|))) (-15 -1323 (|#1| (-1192 |#1|) (-1198))) (-15 -1323 (|#1| (-1192 |#1|))) (-15 -1323 (|#1| (-965 |#1|))) (-15 -1324 ((-661 |#1|) (-1192 |#1|) (-1198))) (-15 -1324 ((-661 |#1|) (-1192 |#1|))) (-15 -1324 ((-661 |#1|) (-965 |#1|))) (-15 -3601 (|#1| (-1192 |#1|) (-1198))) (-15 -3601 (|#1| (-1192 |#1|))) (-15 -3601 (|#1| (-965 |#1|)))) (-29 |#2|) (-569)) (T -28)) +((-3600 (*1 *1 *2) (-12 (-5 *2 (-964 *1)) (-4 *1 (-27)))) (-3600 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-3600 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-964 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1323 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1323 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-964 *1)) (-4 *1 (-27)))) (-1322 (*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) (-1322 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-964 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1749 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) (-1749 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-660 *1))))) +(-13 (-376) (-1022) (-10 -8 (-15 -3600 ($ (-964 $))) (-15 -3600 ($ (-1191 $))) (-15 -3600 ($ (-1191 $) (-1197))) (-15 -1323 ((-660 $) (-964 $))) (-15 -1323 ((-660 $) (-1191 $))) (-15 -1323 ((-660 $) (-1191 $) (-1197))) (-15 -1322 ($ (-964 $))) (-15 -1322 ($ (-1191 $))) (-15 -1322 ($ (-1191 $) (-1197))) (-15 -1749 ((-660 $) (-964 $))) (-15 -1749 ((-660 $) (-1191 $))) (-15 -1749 ((-660 $) (-1191 $) (-1197))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1022) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-1749 (((-660 $) (-964 $)) NIL T ELT) (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-1191 $) (-1197)) 54 T ELT) (((-660 $) $) 22 T ELT) (((-660 $) $ (-1197)) 45 T ELT)) (-1322 (($ (-964 $)) NIL T ELT) (($ (-1191 $)) NIL T ELT) (($ (-1191 $) (-1197)) 56 T ELT) (($ $) 20 T ELT) (($ $ (-1197)) 39 T ELT)) (-1323 (((-660 $) (-964 $)) NIL T ELT) (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-1191 $) (-1197)) 52 T ELT) (((-660 $) $) 18 T ELT) (((-660 $) $ (-1197)) 47 T ELT)) (-3600 (($ (-964 $)) NIL T ELT) (($ (-1191 $)) NIL T ELT) (($ (-1191 $) (-1197)) NIL T ELT) (($ $) 15 T ELT) (($ $ (-1197)) 41 T ELT))) +(((-28 |#1| |#2|) (-10 -7 (-15 -1749 ((-660 |#1|) |#1| (-1197))) (-15 -1322 (|#1| |#1| (-1197))) (-15 -1749 ((-660 |#1|) |#1|)) (-15 -1322 (|#1| |#1|)) (-15 -1323 ((-660 |#1|) |#1| (-1197))) (-15 -3600 (|#1| |#1| (-1197))) (-15 -1323 ((-660 |#1|) |#1|)) (-15 -3600 (|#1| |#1|)) (-15 -1749 ((-660 |#1|) (-1191 |#1|) (-1197))) (-15 -1749 ((-660 |#1|) (-1191 |#1|))) (-15 -1749 ((-660 |#1|) (-964 |#1|))) (-15 -1322 (|#1| (-1191 |#1|) (-1197))) (-15 -1322 (|#1| (-1191 |#1|))) (-15 -1322 (|#1| (-964 |#1|))) (-15 -1323 ((-660 |#1|) (-1191 |#1|) (-1197))) (-15 -1323 ((-660 |#1|) (-1191 |#1|))) (-15 -1323 ((-660 |#1|) (-964 |#1|))) (-15 -3600 (|#1| (-1191 |#1|) (-1197))) (-15 -3600 (|#1| (-1191 |#1|))) (-15 -3600 (|#1| (-964 |#1|)))) (-29 |#2|) (-569)) (T -28)) NIL -((-2967 (((-114) $ $) 7 T ELT)) (-1750 (((-661 $) (-965 $)) 95 T ELT) (((-661 $) (-1192 $)) 94 T ELT) (((-661 $) (-1192 $) (-1198)) 93 T ELT) (((-661 $) $) 145 T ELT) (((-661 $) $ (-1198)) 143 T ELT)) (-1323 (($ (-965 $)) 98 T ELT) (($ (-1192 $)) 97 T ELT) (($ (-1192 $) (-1198)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1198)) 144 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 (-1198)) $) 214 T ELT)) (-3486 (((-419 (-1192 $)) $ (-628 $)) 246 (|has| |#1| (-569)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1743 (((-661 (-628 $)) $) 177 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-1747 (($ $ (-661 (-628 $)) (-661 $)) 167 T ELT) (($ $ (-661 (-305 $))) 166 T ELT) (($ $ (-305 $)) 165 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-3438 (($ $) 107 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-1324 (((-661 $) (-965 $)) 101 T ELT) (((-661 $) (-1192 $)) 100 T ELT) (((-661 $) (-1192 $) (-1198)) 99 T ELT) (((-661 $) $) 149 T ELT) (((-661 $) $ (-1198)) 147 T ELT)) (-3601 (($ (-965 $)) 104 T ELT) (($ (-1192 $)) 103 T ELT) (($ (-1192 $) (-1198)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1198)) 148 T ELT)) (-3575 (((-3 (-965 |#1|) #1="failed") $) 265 (|has| |#1| (-1070)) ELT) (((-3 (-419 (-965 |#1|)) #1#) $) 248 (|has| |#1| (-569)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-558) #1#) $) 207 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1198) #1#) $) 201 T ELT) (((-3 (-628 $) #1#) $) 152 T ELT) (((-3 (-419 (-558)) #1#) $) 140 (-3957 (-12 (|has| |#1| (-1059 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3574 (((-965 |#1|) $) 264 (|has| |#1| (-1070)) ELT) (((-419 (-965 |#1|)) $) 247 (|has| |#1| (-569)) ELT) ((|#1| $) 209 T ELT) (((-558) $) 208 (|has| |#1| (-1059 (-558))) ELT) (((-1198) $) 200 T ELT) (((-628 $) $) 151 T ELT) (((-419 (-558)) $) 141 (-3957 (-12 (|has| |#1| (-1059 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-2963 (($ $ $) 68 T ELT)) (-2493 (((-709 |#1|) (-709 $)) 253 (|has| |#1| (-1070)) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 252 (|has| |#1| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 139 (-3957 (-2961 (|has| |#1| (-1070)) (|has| |#1| (-658 (-558)))) (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT) (((-709 (-558)) (-709 $)) 138 (-3957 (-2961 (|has| |#1| (-1070)) (|has| |#1| (-658 (-558)))) (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 206 (|has| |#1| (-901 (-391))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 205 (|has| |#1| (-901 (-558))) ELT)) (-2972 (($ (-661 $)) 171 T ELT) (($ $) 170 T ELT)) (-1742 (((-661 (-115)) $) 178 T ELT)) (-4023 (((-115) (-115)) 179 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3074 (((-114) $) 199 (|has| $ (-1059 (-558))) ELT)) (-3397 (($ $) 231 (|has| |#1| (-1070)) ELT)) (-3399 (((-1146 |#1| (-628 $)) $) 230 (|has| |#1| (-1070)) ELT)) (-3412 (($ $ (-558)) 106 T ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 65 T ELT)) (-1740 (((-1192 $) (-628 $)) 196 (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) 185 T ELT)) (-1745 (((-3 (-628 $) "failed") $) 175 T ELT)) (-2494 (((-709 |#1|) (-1288 $)) 255 (|has| |#1| (-1070)) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 254 (|has| |#1| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 137 (-3957 (-2961 (|has| |#1| (-1070)) (|has| |#1| (-658 (-558)))) (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT) (((-709 (-558)) (-1288 $)) 136 (-3957 (-2961 (|has| |#1| (-1070)) (|has| |#1| (-658 (-558)))) (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1744 (((-661 (-628 $)) $) 176 T ELT)) (-2449 (($ (-115) (-661 $)) 184 T ELT) (($ (-115) $) 183 T ELT)) (-3224 (((-3 (-661 $) #3="failed") $) 225 (|has| |#1| (-1133)) ELT)) (-3226 (((-3 (-2 (|:| |val| $) (|:| -2632 (-558))) #3#) $) 234 (|has| |#1| (-1070)) ELT)) (-3223 (((-3 (-661 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-2002 (((-3 (-2 (|:| -4384 (-558)) (|:| |var| (-628 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-3225 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #3#) $ (-1198)) 233 (|has| |#1| (-1070)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #3#) $ (-115)) 232 (|has| |#1| (-1070)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #3#) $) 226 (|has| |#1| (-1133)) ELT)) (-3032 (((-114) $ (-1198)) 182 T ELT) (((-114) $ (-115)) 181 T ELT)) (-2874 (($ $) 85 T ELT)) (-3002 (((-791) $) 174 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2005 (((-114) $) 212 T ELT)) (-2004 ((|#1| $) 213 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1741 (((-114) $ (-1198)) 187 T ELT) (((-114) $ $) 186 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-3075 (((-114) $) 198 (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-1198) (-791) (-1 $ $)) 238 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791) (-1 $ (-661 $))) 237 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ (-661 $)))) 236 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ $))) 235 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-115)) (-661 $) (-1198)) 224 (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) $ (-1198)) 223 (|has| |#1| (-631 (-547))) ELT) (($ $) 222 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1198))) 221 (|has| |#1| (-631 (-547))) ELT) (($ $ (-1198)) 220 (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) (-1 $ $)) 195 T ELT) (($ $ (-115) (-1 $ (-661 $))) 194 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 193 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 192 T ELT) (($ $ (-1198) (-1 $ $)) 191 T ELT) (($ $ (-1198) (-1 $ (-661 $))) 190 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) 189 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) 188 T ELT) (($ $ (-661 $) (-661 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-305 $)) 157 T ELT) (($ $ (-661 (-305 $))) 156 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 155 T ELT) (($ $ (-628 $) $) 154 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-4230 (($ (-115) (-661 $)) 164 T ELT) (($ (-115) $ $ $ $) 163 T ELT) (($ (-115) $ $ $) 162 T ELT) (($ (-115) $ $) 161 T ELT) (($ (-115) $) 160 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-1746 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-4188 (($ $ (-661 (-1198)) (-661 (-791))) 260 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791)) 259 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198))) 258 (|has| |#1| (-1070)) ELT) (($ $ (-1198)) 256 (|has| |#1| (-1070)) ELT)) (-3396 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3398 (((-1146 |#1| (-628 $)) $) 240 (|has| |#1| (-569)) ELT)) (-3603 (($ $) 197 (|has| $ (-1070)) ELT)) (-4402 (((-547) $) 269 (|has| |#1| (-631 (-547))) ELT) (($ (-417 $)) 239 (|has| |#1| (-569)) ELT) (((-905 (-391)) $) 204 (|has| |#1| (-631 (-905 (-391)))) ELT) (((-905 (-558)) $) 203 (|has| |#1| (-631 (-905 (-558)))) ELT)) (-3410 (($ $ $) 268 (|has| |#1| (-485)) ELT)) (-2824 (($ $ $) 267 (|has| |#1| (-485)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-965 |#1|)) 266 (|has| |#1| (-1070)) ELT) (($ (-419 (-965 |#1|))) 249 (|has| |#1| (-569)) ELT) (($ (-419 (-965 (-419 |#1|)))) 245 (|has| |#1| (-569)) ELT) (($ (-965 (-419 |#1|))) 244 (|has| |#1| (-569)) ELT) (($ (-419 |#1|)) 243 (|has| |#1| (-569)) ELT) (($ (-1146 |#1| (-628 $))) 229 (|has| |#1| (-1070)) ELT) (($ |#1|) 211 T ELT) (($ (-1198)) 202 T ELT) (($ (-628 $)) 153 T ELT)) (-3103 (((-711 $) $) 251 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-2989 (($ (-661 $)) 169 T ELT) (($ $) 168 T ELT)) (-2468 (((-114) (-115)) 180 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-2003 (($ (-1198) (-661 $)) 219 T ELT) (($ (-1198) $ $ $ $) 218 T ELT) (($ (-1198) $ $ $) 217 T ELT) (($ (-1198) $ $) 216 T ELT) (($ (-1198) $) 215 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-661 (-1198)) (-661 (-791))) 263 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791)) 262 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198))) 261 (|has| |#1| (-1070)) ELT) (($ $ (-1198)) 257 (|has| |#1| (-1070)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT) (($ (-1146 |#1| (-628 $)) (-1146 |#1| (-628 $))) 242 (|has| |#1| (-569)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 105 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-175)) ELT) (($ |#1| $) 142 (|has| |#1| (-1070)) ELT))) +((-2966 (((-114) $ $) 7 T ELT)) (-1749 (((-660 $) (-964 $)) 95 T ELT) (((-660 $) (-1191 $)) 94 T ELT) (((-660 $) (-1191 $) (-1197)) 93 T ELT) (((-660 $) $) 145 T ELT) (((-660 $) $ (-1197)) 143 T ELT)) (-1322 (($ (-964 $)) 98 T ELT) (($ (-1191 $)) 97 T ELT) (($ (-1191 $) (-1197)) 96 T ELT) (($ $) 146 T ELT) (($ $ (-1197)) 144 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 (-1197)) $) 214 T ELT)) (-3485 (((-419 (-1191 $)) $ (-627 $)) 246 (|has| |#1| (-569)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1742 (((-660 (-627 $)) $) 177 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-1746 (($ $ (-660 (-627 $)) (-660 $)) 167 T ELT) (($ $ (-660 (-305 $))) 166 T ELT) (($ $ (-305 $)) 165 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-3437 (($ $) 107 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-1323 (((-660 $) (-964 $)) 101 T ELT) (((-660 $) (-1191 $)) 100 T ELT) (((-660 $) (-1191 $) (-1197)) 99 T ELT) (((-660 $) $) 149 T ELT) (((-660 $) $ (-1197)) 147 T ELT)) (-3600 (($ (-964 $)) 104 T ELT) (($ (-1191 $)) 103 T ELT) (($ (-1191 $) (-1197)) 102 T ELT) (($ $) 150 T ELT) (($ $ (-1197)) 148 T ELT)) (-3574 (((-3 (-964 |#1|) #1="failed") $) 265 (|has| |#1| (-1069)) ELT) (((-3 (-419 (-964 |#1|)) #1#) $) 248 (|has| |#1| (-569)) ELT) (((-3 |#1| #1#) $) 210 T ELT) (((-3 (-558) #1#) $) 207 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1197) #1#) $) 201 T ELT) (((-3 (-627 $) #1#) $) 152 T ELT) (((-3 (-419 (-558)) #1#) $) 140 (-3956 (-12 (|has| |#1| (-1058 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3573 (((-964 |#1|) $) 264 (|has| |#1| (-1069)) ELT) (((-419 (-964 |#1|)) $) 247 (|has| |#1| (-569)) ELT) ((|#1| $) 209 T ELT) (((-558) $) 208 (|has| |#1| (-1058 (-558))) ELT) (((-1197) $) 200 T ELT) (((-627 $) $) 151 T ELT) (((-419 (-558)) $) 141 (-3956 (-12 (|has| |#1| (-1058 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-2962 (($ $ $) 68 T ELT)) (-2492 (((-708 |#1|) (-708 $)) 253 (|has| |#1| (-1069)) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 252 (|has| |#1| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 139 (-3956 (-2960 (|has| |#1| (-1069)) (|has| |#1| (-657 (-558)))) (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT) (((-708 (-558)) (-708 $)) 138 (-3956 (-2960 (|has| |#1| (-1069)) (|has| |#1| (-657 (-558)))) (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 206 (|has| |#1| (-900 (-391))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 205 (|has| |#1| (-900 (-558))) ELT)) (-2971 (($ (-660 $)) 171 T ELT) (($ $) 170 T ELT)) (-1741 (((-660 (-115)) $) 178 T ELT)) (-4022 (((-115) (-115)) 179 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3073 (((-114) $) 199 (|has| $ (-1058 (-558))) ELT)) (-3396 (($ $) 231 (|has| |#1| (-1069)) ELT)) (-3398 (((-1145 |#1| (-627 $)) $) 230 (|has| |#1| (-1069)) ELT)) (-3411 (($ $ (-558)) 106 T ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 65 T ELT)) (-1739 (((-1191 $) (-627 $)) 196 (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) 185 T ELT)) (-1744 (((-3 (-627 $) "failed") $) 175 T ELT)) (-2493 (((-708 |#1|) (-1287 $)) 255 (|has| |#1| (-1069)) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 254 (|has| |#1| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 137 (-3956 (-2960 (|has| |#1| (-1069)) (|has| |#1| (-657 (-558)))) (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT) (((-708 (-558)) (-1287 $)) 136 (-3956 (-2960 (|has| |#1| (-1069)) (|has| |#1| (-657 (-558)))) (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1743 (((-660 (-627 $)) $) 176 T ELT)) (-2448 (($ (-115) (-660 $)) 184 T ELT) (($ (-115) $) 183 T ELT)) (-3223 (((-3 (-660 $) #3="failed") $) 225 (|has| |#1| (-1132)) ELT)) (-3225 (((-3 (-2 (|:| |val| $) (|:| -2631 (-558))) #3#) $) 234 (|has| |#1| (-1069)) ELT)) (-3222 (((-3 (-660 $) #3#) $) 227 (|has| |#1| (-25)) ELT)) (-2001 (((-3 (-2 (|:| -4383 (-558)) (|:| |var| (-627 $))) #3#) $) 228 (|has| |#1| (-25)) ELT)) (-3224 (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #3#) $ (-1197)) 233 (|has| |#1| (-1069)) ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #3#) $ (-115)) 232 (|has| |#1| (-1069)) ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #3#) $) 226 (|has| |#1| (-1132)) ELT)) (-3031 (((-114) $ (-1197)) 182 T ELT) (((-114) $ (-115)) 181 T ELT)) (-2873 (($ $) 85 T ELT)) (-3001 (((-790) $) 174 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2004 (((-114) $) 212 T ELT)) (-2003 ((|#1| $) 213 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-1740 (((-114) $ (-1197)) 187 T ELT) (((-114) $ $) 186 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-3074 (((-114) $) 198 (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-1197) (-790) (-1 $ $)) 238 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790) (-1 $ (-660 $))) 237 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ (-660 $)))) 236 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ $))) 235 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-115)) (-660 $) (-1197)) 224 (|has| |#1| (-630 (-547))) ELT) (($ $ (-115) $ (-1197)) 223 (|has| |#1| (-630 (-547))) ELT) (($ $) 222 (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-1197))) 221 (|has| |#1| (-630 (-547))) ELT) (($ $ (-1197)) 220 (|has| |#1| (-630 (-547))) ELT) (($ $ (-115) (-1 $ $)) 195 T ELT) (($ $ (-115) (-1 $ (-660 $))) 194 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 193 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 192 T ELT) (($ $ (-1197) (-1 $ $)) 191 T ELT) (($ $ (-1197) (-1 $ (-660 $))) 190 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) 189 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) 188 T ELT) (($ $ (-660 $) (-660 $)) 159 T ELT) (($ $ $ $) 158 T ELT) (($ $ (-305 $)) 157 T ELT) (($ $ (-660 (-305 $))) 156 T ELT) (($ $ (-660 (-627 $)) (-660 $)) 155 T ELT) (($ $ (-627 $) $) 154 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-4229 (($ (-115) (-660 $)) 164 T ELT) (($ (-115) $ $ $ $) 163 T ELT) (($ (-115) $ $ $) 162 T ELT) (($ (-115) $ $) 161 T ELT) (($ (-115) $) 160 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-1745 (($ $ $) 173 T ELT) (($ $) 172 T ELT)) (-4187 (($ $ (-660 (-1197)) (-660 (-790))) 260 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790)) 259 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197))) 258 (|has| |#1| (-1069)) ELT) (($ $ (-1197)) 256 (|has| |#1| (-1069)) ELT)) (-3395 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3397 (((-1145 |#1| (-627 $)) $) 240 (|has| |#1| (-569)) ELT)) (-3602 (($ $) 197 (|has| $ (-1069)) ELT)) (-4401 (((-547) $) 269 (|has| |#1| (-630 (-547))) ELT) (($ (-417 $)) 239 (|has| |#1| (-569)) ELT) (((-904 (-391)) $) 204 (|has| |#1| (-630 (-904 (-391)))) ELT) (((-904 (-558)) $) 203 (|has| |#1| (-630 (-904 (-558)))) ELT)) (-3409 (($ $ $) 268 (|has| |#1| (-485)) ELT)) (-2823 (($ $ $) 267 (|has| |#1| (-485)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-964 |#1|)) 266 (|has| |#1| (-1069)) ELT) (($ (-419 (-964 |#1|))) 249 (|has| |#1| (-569)) ELT) (($ (-419 (-964 (-419 |#1|)))) 245 (|has| |#1| (-569)) ELT) (($ (-964 (-419 |#1|))) 244 (|has| |#1| (-569)) ELT) (($ (-419 |#1|)) 243 (|has| |#1| (-569)) ELT) (($ (-1145 |#1| (-627 $))) 229 (|has| |#1| (-1069)) ELT) (($ |#1|) 211 T ELT) (($ (-1197)) 202 T ELT) (($ (-627 $)) 153 T ELT)) (-3102 (((-710 $) $) 251 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-2988 (($ (-660 $)) 169 T ELT) (($ $) 168 T ELT)) (-2467 (((-114) (-115)) 180 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-2002 (($ (-1197) (-660 $)) 219 T ELT) (($ (-1197) $ $ $ $) 218 T ELT) (($ (-1197) $ $ $) 217 T ELT) (($ (-1197) $ $) 216 T ELT) (($ (-1197) $) 215 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-660 (-1197)) (-660 (-790))) 263 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790)) 262 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197))) 261 (|has| |#1| (-1069)) ELT) (($ $ (-1197)) 257 (|has| |#1| (-1069)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT) (($ (-1145 |#1| (-627 $)) (-1145 |#1| (-627 $))) 242 (|has| |#1| (-569)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 105 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 250 (|has| |#1| (-175)) ELT) (($ |#1| $) 142 (|has| |#1| (-1069)) ELT))) (((-29 |#1|) (-142) (-569)) (T -29)) -((-3601 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1324 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3)))) (-3601 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1324 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4)))) (-1323 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1750 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3)))) (-1323 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1750 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4))))) -(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3601 ($ $)) (-15 -1324 ((-661 $) $)) (-15 -3601 ($ $ (-1198))) (-15 -1324 ((-661 $) $ (-1198))) (-15 -1323 ($ $)) (-15 -1750 ((-661 $) $)) (-15 -1323 ($ $ (-1198))) (-15 -1750 ((-661 $) $ (-1198))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) . T) ((-633 (-419 (-965 |#1|))) |has| |#1| (-569)) ((-633 (-558)) . T) ((-633 (-628 $)) . T) ((-633 (-965 |#1|)) |has| |#1| (-1070)) ((-633 (-1198)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-905 (-391))) |has| |#1| (-631 (-905 (-391)))) ((-631 (-905 (-558))) |has| |#1| (-631 (-905 (-558)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-433 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-628 $) $) . T) ((-526 $ $) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 |#1|) -3957 (|has| |#1| (-1070)) (|has| |#1| (-175))) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 (-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ((-668 |#1|) -3957 (|has| |#1| (-1070)) (|has| |#1| (-175))) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) . T) ((-658 (-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ((-658 |#1|) |has| |#1| (-1070)) ((-737 (-419 (-558))) . T) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) . T) ((-746) . T) ((-911 $ (-1198)) |has| |#1| (-1070)) ((-917 (-1198)) |has| |#1| (-1070)) ((-919 (-1198)) |has| |#1| (-1070)) ((-901 (-391)) |has| |#1| (-901 (-391))) ((-901 (-558)) |has| |#1| (-901 (-558))) ((-899 |#1|) . T) ((-940) . T) ((-1023) . T) ((-1059 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558))))) ((-1059 (-419 (-965 |#1|))) |has| |#1| (-569)) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 (-628 $)) . T) ((-1059 (-965 |#1|)) |has| |#1| (-1070)) ((-1059 (-1198)) . T) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) . T) ((-1072 |#1|) |has| |#1| (-175)) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 |#1|) |has| |#1| (-175)) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-3297 (((-1110 (-229)) $) NIL T ELT)) (-3298 (((-1110 (-229)) $) NIL T ELT)) (-3536 (($ $ (-229)) 164 T ELT)) (-1325 (($ (-965 (-558)) (-1198) (-1198) (-1110 (-419 (-558))) (-1110 (-419 (-558)))) 103 T ELT)) (-3299 (((-661 (-661 (-962 (-229)))) $) 181 T ELT)) (-4376 (((-877) $) 195 T ELT))) -(((-30) (-13 (-974) (-10 -8 (-15 -1325 ($ (-965 (-558)) (-1198) (-1198) (-1110 (-419 (-558))) (-1110 (-419 (-558))))) (-15 -3536 ($ $ (-229)))))) (T -30)) -((-1325 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-965 (-558))) (-5 *3 (-1198)) (-5 *4 (-1110 (-419 (-558)))) (-5 *1 (-30)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-1156) $) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (((-1156) $) 9 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-31) (-13 (-1104) (-10 -8 (-15 -3095 ((-1156) $)) (-15 -3651 ((-1156) $))))) (T -31)) -((-3095 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31))))) -((-3601 ((|#2| (-1192 |#2|) (-1198)) 39 T ELT)) (-4023 (((-115) (-115)) 53 T ELT)) (-1740 (((-1192 |#2|) (-628 |#2|)) 150 (|has| |#1| (-1059 (-558))) ELT)) (-1328 ((|#2| |#1| (-558)) 138 (|has| |#1| (-1059 (-558))) ELT)) (-1326 ((|#2| (-1192 |#2|) |#2|) 29 T ELT)) (-1327 (((-877) (-661 |#2|)) 87 T ELT)) (-3603 ((|#2| |#2|) 145 (|has| |#1| (-1059 (-558))) ELT)) (-2468 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-419 (-558))) 104 (|has| |#1| (-1059 (-558))) ELT))) -(((-32 |#1| |#2|) (-10 -7 (-15 -3601 (|#2| (-1192 |#2|) (-1198))) (-15 -4023 ((-115) (-115))) (-15 -2468 ((-114) (-115))) (-15 -1326 (|#2| (-1192 |#2|) |#2|)) (-15 -1327 ((-877) (-661 |#2|))) (IF (|has| |#1| (-1059 (-558))) (PROGN (-15 ** (|#2| |#2| (-419 (-558)))) (-15 -1740 ((-1192 |#2|) (-628 |#2|))) (-15 -3603 (|#2| |#2|)) (-15 -1328 (|#2| |#1| (-558)))) |%noBranch|)) (-569) (-433 |#1|)) (T -32)) -((-1328 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1059 *4)) (-4 *3 (-569)))) (-3603 (*1 *2 *2) (-12 (-4 *3 (-1059 (-558))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-628 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1059 (-558))) (-4 *4 (-569)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-1059 (-558))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-1327 (*1 *2 *3) (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-569)) (-5 *2 (-877)) (-5 *1 (-32 *4 *5)))) (-1326 (*1 *2 *3 *2) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3601 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1198)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) -((-4154 (($) 10 T ELT)) (-1329 (((-114) $ $) 8 T ELT)) (-3823 (((-114) $) 15 T ELT))) -(((-33 |#1|) (-10 -7 (-15 -4154 (|#1|)) (-15 -3823 ((-114) |#1|)) (-15 -1329 ((-114) |#1| |#1|))) (-34)) (T -33)) -NIL -((-4154 (($) 7 T CONST)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-3820 (($ $) 10 T ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) +((-3600 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1323 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) (-3600 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1323 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4)))) (-1322 (*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) (-1749 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) (-1322 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) (-1749 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4))))) +(-13 (-27) (-433 |t#1|) (-10 -8 (-15 -3600 ($ $)) (-15 -1323 ((-660 $) $)) (-15 -3600 ($ $ (-1197))) (-15 -1323 ((-660 $) $ (-1197))) (-15 -1322 ($ $)) (-15 -1749 ((-660 $) $)) (-15 -1322 ($ $ (-1197))) (-15 -1749 ((-660 $) $ (-1197))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) . T) ((-27) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) . T) ((-632 (-419 (-964 |#1|))) |has| |#1| (-569)) ((-632 (-558)) . T) ((-632 (-627 $)) . T) ((-632 (-964 |#1|)) |has| |#1| (-1069)) ((-632 (-1197)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-630 (-904 (-391))) |has| |#1| (-630 (-904 (-391)))) ((-630 (-904 (-558))) |has| |#1| (-630 (-904 (-558)))) ((-250) . T) ((-302) . T) ((-319) . T) ((-321 $) . T) ((-310) . T) ((-376) . T) ((-390 |#1|) |has| |#1| (-1069)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-433 |#1|) . T) ((-464) . T) ((-485) |has| |#1| (-485)) ((-526 (-627 $) $) . T) ((-526 $ $) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 |#1|) -3956 (|has| |#1| (-1069)) (|has| |#1| (-175))) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 (-558)) -12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ((-667 |#1|) -3956 (|has| |#1| (-1069)) (|has| |#1| (-175))) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) . T) ((-657 (-558)) -12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ((-657 |#1|) |has| |#1| (-1069)) ((-736 (-419 (-558))) . T) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) . T) ((-745) . T) ((-910 $ (-1197)) |has| |#1| (-1069)) ((-916 (-1197)) |has| |#1| (-1069)) ((-918 (-1197)) |has| |#1| (-1069)) ((-900 (-391)) |has| |#1| (-900 (-391))) ((-900 (-558)) |has| |#1| (-900 (-558))) ((-898 |#1|) . T) ((-939) . T) ((-1022) . T) ((-1058 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558))))) ((-1058 (-419 (-964 |#1|))) |has| |#1| (-569)) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 (-627 $)) . T) ((-1058 (-964 |#1|)) |has| |#1| (-1069)) ((-1058 (-1197)) . T) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) . T) ((-1071 |#1|) |has| |#1| (-175)) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 |#1|) |has| |#1| (-175)) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-3296 (((-1109 (-229)) $) NIL T ELT)) (-3297 (((-1109 (-229)) $) NIL T ELT)) (-3535 (($ $ (-229)) 164 T ELT)) (-1324 (($ (-964 (-558)) (-1197) (-1197) (-1109 (-419 (-558))) (-1109 (-419 (-558)))) 103 T ELT)) (-3298 (((-660 (-660 (-961 (-229)))) $) 181 T ELT)) (-4375 (((-876) $) 195 T ELT))) +(((-30) (-13 (-973) (-10 -8 (-15 -1324 ($ (-964 (-558)) (-1197) (-1197) (-1109 (-419 (-558))) (-1109 (-419 (-558))))) (-15 -3535 ($ $ (-229)))))) (T -30)) +((-1324 (*1 *1 *2 *3 *3 *4 *4) (-12 (-5 *2 (-964 (-558))) (-5 *3 (-1197)) (-5 *4 (-1109 (-419 (-558)))) (-5 *1 (-30)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-1155) $) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (((-1155) $) 9 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-31) (-13 (-1103) (-10 -8 (-15 -3094 ((-1155) $)) (-15 -3650 ((-1155) $))))) (T -31)) +((-3094 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31))))) +((-3600 ((|#2| (-1191 |#2|) (-1197)) 39 T ELT)) (-4022 (((-115) (-115)) 53 T ELT)) (-1739 (((-1191 |#2|) (-627 |#2|)) 150 (|has| |#1| (-1058 (-558))) ELT)) (-1327 ((|#2| |#1| (-558)) 138 (|has| |#1| (-1058 (-558))) ELT)) (-1325 ((|#2| (-1191 |#2|) |#2|) 29 T ELT)) (-1326 (((-876) (-660 |#2|)) 87 T ELT)) (-3602 ((|#2| |#2|) 145 (|has| |#1| (-1058 (-558))) ELT)) (-2467 (((-114) (-115)) 17 T ELT)) (** ((|#2| |#2| (-419 (-558))) 104 (|has| |#1| (-1058 (-558))) ELT))) +(((-32 |#1| |#2|) (-10 -7 (-15 -3600 (|#2| (-1191 |#2|) (-1197))) (-15 -4022 ((-115) (-115))) (-15 -2467 ((-114) (-115))) (-15 -1325 (|#2| (-1191 |#2|) |#2|)) (-15 -1326 ((-876) (-660 |#2|))) (IF (|has| |#1| (-1058 (-558))) (PROGN (-15 ** (|#2| |#2| (-419 (-558)))) (-15 -1739 ((-1191 |#2|) (-627 |#2|))) (-15 -3602 (|#2| |#2|)) (-15 -1327 (|#2| |#1| (-558)))) |%noBranch|)) (-569) (-433 |#1|)) (T -32)) +((-1327 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1058 *4)) (-4 *3 (-569)))) (-3602 (*1 *2 *2) (-12 (-4 *3 (-1058 (-558))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-627 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1058 (-558))) (-4 *4 (-569)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) (** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-1058 (-558))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) (-1326 (*1 *2 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-433 *4)) (-4 *4 (-569)) (-5 *2 (-876)) (-5 *1 (-32 *4 *5)))) (-1325 (*1 *2 *3 *2) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) (-3600 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1197)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569))))) +((-4153 (($) 10 T ELT)) (-1328 (((-114) $ $) 8 T ELT)) (-3822 (((-114) $) 15 T ELT))) +(((-33 |#1|) (-10 -7 (-15 -4153 (|#1|)) (-15 -3822 ((-114) |#1|)) (-15 -1328 ((-114) |#1| |#1|))) (-34)) (T -33)) +NIL +((-4153 (($) 7 T CONST)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-3819 (($ $) 10 T ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) (((-34) (-142)) (T -34)) -((-1329 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-3820 (*1 *1 *1) (-4 *1 (-34))) (-3993 (*1 *1) (-4 *1 (-34))) (-3823 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-4154 (*1 *1) (-4 *1 (-34))) (-4387 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-34)) (-5 *2 (-791))))) -(-13 (-1238) (-10 -8 (-15 -1329 ((-114) $ $)) (-15 -3820 ($ $)) (-15 -3993 ($)) (-15 -3823 ((-114) $)) (-15 -4154 ($) -4382) (IF (|has| $ (-6 -4425)) (-15 -4387 ((-791) $)) |%noBranch|))) -(((-1238) . T)) -((-3918 (($ $) 11 T ELT)) (-3916 (($ $) 10 T ELT)) (-3920 (($ $) 9 T ELT)) (-3921 (($ $) 8 T ELT)) (-3919 (($ $) 7 T ELT)) (-3917 (($ $) 6 T ELT))) +((-1328 (*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-3819 (*1 *1 *1) (-4 *1 (-34))) (-3992 (*1 *1) (-4 *1 (-34))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) (-4153 (*1 *1) (-4 *1 (-34))) (-4386 (*1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-34)) (-5 *2 (-790))))) +(-13 (-1237) (-10 -8 (-15 -1328 ((-114) $ $)) (-15 -3819 ($ $)) (-15 -3992 ($)) (-15 -3822 ((-114) $)) (-15 -4153 ($) -4381) (IF (|has| $ (-6 -4424)) (-15 -4386 ((-790) $)) |%noBranch|))) +(((-1237) . T)) +((-3917 (($ $) 11 T ELT)) (-3915 (($ $) 10 T ELT)) (-3919 (($ $) 9 T ELT)) (-3920 (($ $) 8 T ELT)) (-3918 (($ $) 7 T ELT)) (-3916 (($ $) 6 T ELT))) (((-35) (-142)) (T -35)) -((-3918 (*1 *1 *1) (-4 *1 (-35))) (-3916 (*1 *1 *1) (-4 *1 (-35))) (-3920 (*1 *1 *1) (-4 *1 (-35))) (-3921 (*1 *1 *1) (-4 *1 (-35))) (-3919 (*1 *1 *1) (-4 *1 (-35))) (-3917 (*1 *1 *1) (-4 *1 (-35)))) -(-13 (-10 -8 (-15 -3917 ($ $)) (-15 -3919 ($ $)) (-15 -3921 ($ $)) (-15 -3920 ($ $)) (-15 -3916 ($ $)) (-15 -3918 ($ $)))) -((-2967 (((-114) $ $) 19 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ELT)) (-3822 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 133 T ELT)) (-4225 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 156 T ELT)) (-4227 (($ $) 154 T ELT)) (-4027 (($) 77 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 76 T ELT)) (-2413 (((-1294) $ |#1| |#1|) 104 (|has| $ (-6 -4426)) ELT) (((-1294) $ (-558) (-558)) 186 (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) 167 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 220 T ELT) (((-114) $) 214 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-1933 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 211 (|has| $ (-6 -4426)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) (|has| $ (-6 -4426))) ELT)) (-3310 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3862 (((-114) $ (-791)) 203 T ELT)) (-3426 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 142 (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 163 (|has| $ (-6 -4426)) ELT)) (-4216 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 165 (|has| $ (-6 -4426)) ELT)) (-4219 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 161 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 197 (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-1255 (-558)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 168 (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #1="last" (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 166 (|has| $ (-6 -4426)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #3="first" (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 162 (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #4="value" (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 141 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 140 (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 49 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 227 T ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 59 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 183 (|has| $ (-6 -4425)) ELT)) (-4226 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 155 T ELT)) (-2446 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-4154 (($) 7 T CONST)) (-2510 (($ $) 212 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 222 T ELT)) (-4229 (($ $ (-791)) 150 T ELT) (($ $) 148 T ELT)) (-2594 (($ $) 225 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-1467 (($ $) 62 (-3957 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425)))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 50 (|has| $ (-6 -4425)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 231 T ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 226 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 58 (|has| $ (-6 -4425)) ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 185 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 182 (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 60 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 57 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 56 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 184 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 181 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 180 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 198 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) 196 T ELT)) (-3863 (((-114) $) 200 T ELT)) (-3839 (((-558) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 219 T ELT) (((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 218 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT) (((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) 217 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 30 (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) 84 (|has| $ (-6 -4425)) ELT) (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 122 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 131 T ELT)) (-3428 (((-114) $ $) 139 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-4044 (($ (-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 176 T ELT)) (-4149 (((-114) $ (-791)) 202 T ELT)) (-2415 ((|#1| $) 101 (|has| |#1| (-861)) ELT) (((-558) $) 188 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 204 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3257 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3938 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 29 (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) 85 (|has| $ (-6 -4425)) ELT) (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 123 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT) (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 125 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 ((|#1| $) 100 (|has| |#1| (-861)) ELT) (((-558) $) 189 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 205 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 34 (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4426)) ELT) (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 118 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 117 T ELT)) (-3962 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 236 T ELT)) (-4146 (((-114) $ (-791)) 201 T ELT)) (-3431 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 136 T ELT)) (-3947 (((-114) $) 132 T ELT)) (-3660 (((-1180) $) 22 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-4228 (($ $ (-791)) 153 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 151 T ELT)) (-2884 (((-661 |#1|) $) 67 T ELT)) (-2447 (((-114) |#1| $) 68 T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 43 T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 44 T ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) 230 T ELT) (($ $ $ (-558)) 229 T ELT)) (-2517 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) 170 T ELT) (($ $ $ (-558)) 169 T ELT)) (-2418 (((-661 |#1|) $) 98 T ELT) (((-661 (-558)) $) 191 T ELT)) (-2419 (((-114) |#1| $) 97 T ELT) (((-114) (-558) $) 192 T ELT)) (-3661 (((-1141) $) 21 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-4231 ((|#2| $) 102 (|has| |#1| (-861)) ELT) (($ $ (-791)) 147 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 145 T ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #6#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 179 T ELT)) (-2414 (($ $ |#2|) 103 (|has| $ (-6 -4426)) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 187 (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 45 T ELT)) (-3864 (((-114) $) 199 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 32 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 120 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) 26 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 25 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 24 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 23 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 129 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 128 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 127 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) 126 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 190 (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-2420 (((-661 |#2|) $) 96 T ELT) (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 193 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 195 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) 194 T ELT) (($ $ (-1255 (-558))) 177 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #4#) 134 T ELT)) (-3430 (((-558) $ $) 137 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 52 T ELT)) (-1714 (($ $ (-558)) 233 T ELT) (($ $ (-1255 (-558))) 232 T ELT)) (-2518 (($ $ (-558)) 172 T ELT) (($ $ (-1255 (-558))) 171 T ELT)) (-4063 (((-114) $) 135 T ELT)) (-4222 (($ $) 159 T ELT)) (-4220 (($ $) 160 (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) 158 T ELT)) (-4224 (($ $) 157 T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) |#2| $) 86 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 124 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 121 (|has| $ (-6 -4425)) ELT)) (-1934 (($ $ $ (-558)) 213 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547)))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 54 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 178 T ELT)) (-4221 (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-4232 (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 175 T ELT) (($ (-661 $)) 174 T ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4376 (((-877) $) 17 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877)))) ELT)) (-3942 (((-661 $) $) 130 T ELT)) (-3429 (((-114) $ $) 138 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-1378 (((-114) $ $) 20 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 46 T ELT)) (-1330 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) "failed") |#1| $) 116 T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 33 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 119 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 206 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-2966 (((-114) $ $) 208 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3454 (((-114) $ $) 18 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ELT)) (-3085 (((-114) $ $) 207 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3086 (((-114) $ $) 209 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-36 |#1| |#2|) (-142) (-1122) (-1122)) (T -36)) -((-1330 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| -4290 *3) (|:| -2286 *4)))))) -(-13 (-1215 |t#1| |t#2|) (-686 (-2 (|:| -4290 |t#1|) (|:| -2286 |t#2|))) (-10 -8 (-15 -1330 ((-3 (-2 (|:| -4290 |t#1|) (|:| -2286 |t#2|)) "failed") |t#1| $)))) -(((-34) . T) ((-107 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-102) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-1122)) (|has| |#2| (-102))) ((-630 (-877)) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-1122)) (|has| |#2| (-630 (-877)))) ((-153 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-631 (-547)) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ((-233 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-242 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-298 (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-298 (-1255 (-558)) $) . T) ((-298 |#1| |#2|) . T) ((-300 (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-300 |#1| |#2|) . T) ((-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) -12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-294 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-385 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-501 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-501 |#2|) . T) ((-616 (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-616 |#1| |#2|) . T) ((-526 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) -12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-627 |#1| |#2|) . T) ((-671 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-686 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-861) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ((-864) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ((-1031 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-1122) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) (|has| |#2| (-1122))) ((-1171 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-1215 |#1| |#2|) . T) ((-1238) . T) ((-1277 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T)) -((-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-37 |#1| |#2|) (-10 -7 (-15 -4376 (|#1| |#2|)) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-38 |#2|) (-175)) (T -37)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +((-3917 (*1 *1 *1) (-4 *1 (-35))) (-3915 (*1 *1 *1) (-4 *1 (-35))) (-3919 (*1 *1 *1) (-4 *1 (-35))) (-3920 (*1 *1 *1) (-4 *1 (-35))) (-3918 (*1 *1 *1) (-4 *1 (-35))) (-3916 (*1 *1 *1) (-4 *1 (-35)))) +(-13 (-10 -8 (-15 -3916 ($ $)) (-15 -3918 ($ $)) (-15 -3920 ($ $)) (-15 -3919 ($ $)) (-15 -3915 ($ $)) (-15 -3917 ($ $)))) +((-2966 (((-114) $ $) 19 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ELT)) (-3821 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 133 T ELT)) (-4224 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 156 T ELT)) (-4226 (($ $) 154 T ELT)) (-4026 (($) 77 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 76 T ELT)) (-2412 (((-1293) $ |#1| |#1|) 104 (|has| $ (-6 -4425)) ELT) (((-1293) $ (-558) (-558)) 186 (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) 167 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 220 T ELT) (((-114) $) 214 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-1932 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 211 (|has| $ (-6 -4425)) ELT) (($ $) 210 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) (|has| $ (-6 -4425))) ELT)) (-3309 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 221 T ELT) (($ $) 215 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3861 (((-114) $ (-790)) 203 T ELT)) (-3425 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 142 (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 163 (|has| $ (-6 -4425)) ELT)) (-4215 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 165 (|has| $ (-6 -4425)) ELT)) (-4218 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 161 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) 78 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 197 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-1254 (-558)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 168 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #1="last" (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 166 (|has| $ (-6 -4425)) ELT) (($ $ #2="rest" $) 164 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #3="first" (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 162 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #4="value" (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 141 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 140 (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 49 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 227 T ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 59 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 183 (|has| $ (-6 -4424)) ELT)) (-4225 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 155 T ELT)) (-2445 (((-3 |#2| #5="failed") |#1| $) 65 T ELT)) (-4153 (($) 7 T CONST)) (-2509 (($ $) 212 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 222 T ELT)) (-4228 (($ $ (-790)) 150 T ELT) (($ $) 148 T ELT)) (-2593 (($ $) 225 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-1466 (($ $) 62 (-3956 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424)))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 50 (|has| $ (-6 -4424)) ELT) (((-3 |#2| #5#) |#1| $) 66 T ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 231 T ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 226 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 58 (|has| $ (-6 -4424)) ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 185 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 182 (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 60 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 57 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 56 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 184 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 181 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 180 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 198 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) 93 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) 196 T ELT)) (-3862 (((-114) $) 200 T ELT)) (-3838 (((-558) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 219 T ELT) (((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 218 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT) (((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) 217 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 30 (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) 84 (|has| $ (-6 -4424)) ELT) (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 122 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 131 T ELT)) (-3427 (((-114) $ $) 139 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-4043 (($ (-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 176 T ELT)) (-4148 (((-114) $ (-790)) 202 T ELT)) (-2414 ((|#1| $) 101 (|has| |#1| (-860)) ELT) (((-558) $) 188 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 204 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3256 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ $) 228 T ELT) (($ $ $) 224 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3937 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ $) 223 T ELT) (($ $ $) 216 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 29 (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) 85 (|has| $ (-6 -4424)) ELT) (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 123 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT) (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 125 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 ((|#1| $) 100 (|has| |#1| (-860)) ELT) (((-558) $) 189 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 205 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 34 (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4425)) ELT) (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 118 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT) (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ $) 173 T ELT) (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 117 T ELT)) (-3961 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 236 T ELT)) (-4145 (((-114) $ (-790)) 201 T ELT)) (-3430 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 136 T ELT)) (-3946 (((-114) $) 132 T ELT)) (-3659 (((-1179) $) 22 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-4227 (($ $ (-790)) 153 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 151 T ELT)) (-2883 (((-660 |#1|) $) 67 T ELT)) (-2446 (((-114) |#1| $) 68 T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 43 T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 44 T ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) 230 T ELT) (($ $ $ (-558)) 229 T ELT)) (-2516 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) 170 T ELT) (($ $ $ (-558)) 169 T ELT)) (-2417 (((-660 |#1|) $) 98 T ELT) (((-660 (-558)) $) 191 T ELT)) (-2418 (((-114) |#1| $) 97 T ELT) (((-114) (-558) $) 192 T ELT)) (-3660 (((-1140) $) 21 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-4230 ((|#2| $) 102 (|has| |#1| (-860)) ELT) (($ $ (-790)) 147 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 145 T ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #6="failed") (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 55 T ELT) (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #6#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 179 T ELT)) (-2413 (($ $ |#2|) 103 (|has| $ (-6 -4425)) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 187 (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 45 T ELT)) (-3863 (((-114) $) 199 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 32 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 120 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) 26 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 25 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 24 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 23 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 129 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 128 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 127 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) 126 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 190 (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-2419 (((-660 |#2|) $) 96 T ELT) (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 193 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 195 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) 194 T ELT) (($ $ (-1254 (-558))) 177 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #1#) 152 T ELT) (($ $ #2#) 149 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #3#) 146 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #4#) 134 T ELT)) (-3429 (((-558) $ $) 137 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 52 T ELT)) (-1713 (($ $ (-558)) 233 T ELT) (($ $ (-1254 (-558))) 232 T ELT)) (-2517 (($ $ (-558)) 172 T ELT) (($ $ (-1254 (-558))) 171 T ELT)) (-4062 (((-114) $) 135 T ELT)) (-4221 (($ $) 159 T ELT)) (-4219 (($ $) 160 (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) 158 T ELT)) (-4223 (($ $) 157 T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) |#2| $) 86 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 124 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 121 (|has| $ (-6 -4424)) ELT)) (-1933 (($ $ $ (-558)) 213 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547)))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 54 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 178 T ELT)) (-4220 (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 235 T ELT) (($ $ $) 234 T ELT)) (-4231 (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 175 T ELT) (($ (-660 $)) 174 T ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 144 T ELT) (($ $ $) 143 T ELT)) (-4375 (((-876) $) 17 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876)))) ELT)) (-3941 (((-660 $) $) 130 T ELT)) (-3428 (((-114) $ $) 138 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-1377 (((-114) $ $) 20 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 46 T ELT)) (-1329 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) "failed") |#1| $) 116 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 33 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 119 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 206 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-2965 (((-114) $ $) 208 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3453 (((-114) $ $) 18 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ELT)) (-3084 (((-114) $ $) 207 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3085 (((-114) $ $) 209 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-36 |#1| |#2|) (-142) (-1121) (-1121)) (T -36)) +((-1329 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| -4289 *3) (|:| -2285 *4)))))) +(-13 (-1214 |t#1| |t#2|) (-685 (-2 (|:| -4289 |t#1|) (|:| -2285 |t#2|))) (-10 -8 (-15 -1329 ((-3 (-2 (|:| -4289 |t#1|) (|:| -2285 |t#2|)) "failed") |t#1| $)))) +(((-34) . T) ((-107 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-102) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-629 (-876)) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-1121)) (|has| |#2| (-629 (-876)))) ((-153 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-630 (-547)) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ((-233 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-242 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-298 (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-298 (-1254 (-558)) $) . T) ((-298 |#1| |#2|) . T) ((-300 (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-300 |#1| |#2|) . T) ((-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) -12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-294 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-385 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-501 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-501 |#2|) . T) ((-615 (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-615 |#1| |#2|) . T) ((-526 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) -12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-626 |#1| |#2|) . T) ((-670 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-685 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-860) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ((-863) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ((-1030 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-1121) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) (|has| |#2| (-1121))) ((-1170 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-1214 |#1| |#2|) . T) ((-1237) . T) ((-1276 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T)) +((-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-37 |#1| |#2|) (-10 -7 (-15 -4375 (|#1| |#2|)) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-38 |#2|) (-175)) (T -37)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) (((-38 |#1|) (-142) (-175)) (T -38)) NIL -(-13 (-1070) (-737 |t#1|) (-633 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3838 (((-417 |#1|) |#1|) 41 T ELT)) (-4162 (((-417 |#1|) |#1|) 30 T ELT) (((-417 |#1|) |#1| (-661 (-48))) 33 T ELT)) (-1331 (((-114) |#1|) 59 T ELT))) -(((-39 |#1|) (-10 -7 (-15 -4162 ((-417 |#1|) |#1| (-661 (-48)))) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -3838 ((-417 |#1|) |#1|)) (-15 -1331 ((-114) |#1|))) (-1264 (-48))) (T -39)) -((-1331 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-3838 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1850 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2273 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2271 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1990 (((-709 (-419 |#2|)) (-1288 $)) NIL T ELT) (((-709 (-419 |#2|))) NIL T ELT)) (-3750 (((-419 |#2|) $) NIL T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1788 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3538 (((-791)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1864 (((-114)) NIL T ELT)) (-1863 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| (-419 |#2|) (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| (-419 |#2|) (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-558)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-2000 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL T ELT) (($ (-1288 (-419 |#2|))) 61 T ELT) (($ (-1288 |#2|) |#2|) 131 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2963 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1989 (((-709 (-419 |#2|)) $ (-1288 $)) NIL T ELT) (((-709 (-419 |#2|)) $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-419 |#2|)) (-709 $)) NIL T ELT)) (-1855 (((-1288 $) (-1288 $)) NIL T ELT)) (-4272 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-1842 (((-661 (-661 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1867 (((-114) |#1| |#1|) NIL T ELT)) (-3511 (((-938)) NIL T ELT)) (-3395 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1862 (((-114)) NIL T ELT)) (-1861 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-2962 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3923 (($ $) NIL T ELT)) (-3234 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1883 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1974 (($ $ (-791)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4153 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4202 (((-938) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3797 (((-791)) NIL T ELT)) (-1856 (((-1288 $) (-1288 $)) 106 T ELT)) (-3534 (((-419 |#2|) $) NIL T ELT)) (-1843 (((-661 (-965 |#1|)) (-1198)) NIL (|has| |#1| (-376)) ELT)) (-3865 (((-711 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2224 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2220 (((-938) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3480 ((|#3| $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL T ELT) (((-709 (-419 |#2|)) (-1288 $)) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1332 (((-1294) (-791)) 84 T ELT)) (-1851 (((-709 (-419 |#2|))) 56 T ELT)) (-1853 (((-709 (-419 |#2|))) 49 T ELT)) (-2874 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1848 (($ (-1288 |#2|) |#2|) 132 T ELT)) (-1852 (((-709 (-419 |#2|))) 50 T ELT)) (-1854 (((-709 (-419 |#2|))) 48 T ELT)) (-1847 (((-2 (|:| |num| (-709 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1849 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1860 (((-1288 $)) 47 T ELT)) (-4348 (((-1288 $)) 46 T ELT)) (-1859 (((-114) $) NIL T ELT)) (-1858 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3866 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2631 (($ (-938)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1845 (((-3 |#2| #1#)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1869 (((-791)) NIL T ELT)) (-2640 (($) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4162 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1787 (((-791) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4230 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1846 (((-3 |#2| #1#)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4187 (((-419 |#2|) (-1288 $)) NIL T ELT) (((-419 |#2|)) 44 T ELT)) (-1975 (((-791) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-791) #1#) $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4188 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2639 (((-709 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3603 ((|#3|) 55 T ELT)) (-1877 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3642 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL T ELT) (((-709 (-419 |#2|)) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 (-419 |#2|)) $) 62 T ELT) (((-709 (-419 |#2|)) (-1288 $)) 107 T ELT)) (-4402 (((-1288 (-419 |#2|)) $) NIL T ELT) (($ (-1288 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1857 (((-1288 $) (-1288 $)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3103 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-711 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2838 ((|#3| $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1866 (((-114)) 42 T ELT)) (-1865 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1844 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1868 (((-114)) NIL T ELT)) (-3059 (($) 17 T CONST)) (-3065 (($) 27 T CONST)) (-3070 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-419 |#2|) (-376)) ELT))) -(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1332 ((-1294) (-791))))) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) |#3|) (T -40)) -((-1332 (*1 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-4 *5 (-1264 *4)) (-5 *2 (-1294)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) -((-1333 ((|#2| |#2|) 47 T ELT)) (-1338 ((|#2| |#2|) 138 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-558))))) ELT)) (-1337 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-558))))) ELT)) (-1336 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-558))))) ELT)) (-1339 ((|#2| (-115) |#2| (-791)) 134 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1059 (-558))))) ELT)) (-1335 (((-1192 |#2|) |#2|) 44 T ELT)) (-1334 ((|#2| |#2| (-661 (-628 |#2|))) 18 T ELT) ((|#2| |#2| (-661 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) -(((-41 |#1| |#2|) (-10 -7 (-15 -1333 (|#2| |#2|)) (-15 -1334 (|#2| |#2|)) (-15 -1334 (|#2| |#2| |#2|)) (-15 -1334 (|#2| |#2| (-661 |#2|))) (-15 -1334 (|#2| |#2| (-661 (-628 |#2|)))) (-15 -1335 ((-1192 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1059 (-558)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1336 (|#2| |#2|)) (-15 -1337 (|#2| |#2|)) (-15 -1338 (|#2| |#2|)) (-15 -1339 (|#2| (-115) |#2| (-791)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 |#1| (-628 $)) $)) (-15 -3398 ((-1146 |#1| (-628 $)) $)) (-15 -4376 ($ (-1146 |#1| (-628 $))))))) (T -41)) -((-1339 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1059 (-558)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *5 (-628 $)) $)) (-15 -3398 ((-1146 *5 (-628 $)) $)) (-15 -4376 ($ (-1146 *5 (-628 $))))))))) (-1338 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) (-15 -3398 ((-1146 *3 (-628 $)) $)) (-15 -4376 ($ (-1146 *3 (-628 $))))))))) (-1337 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) (-15 -3398 ((-1146 *3 (-628 $)) $)) (-15 -4376 ($ (-1146 *3 (-628 $))))))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) (-15 -3398 ((-1146 *3 (-628 $)) $)) (-15 -4376 ($ (-1146 *3 (-628 $))))))))) (-1335 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *4 (-628 $)) $)) (-15 -3398 ((-1146 *4 (-628 $)) $)) (-15 -4376 ($ (-1146 *4 (-628 $))))))))) (-1334 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-628 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *4 (-628 $)) $)) (-15 -3398 ((-1146 *4 (-628 $)) $)) (-15 -4376 ($ (-1146 *4 (-628 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-1334 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *4 (-628 $)) $)) (-15 -3398 ((-1146 *4 (-628 $)) $)) (-15 -4376 ($ (-1146 *4 (-628 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-1334 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) (-15 -3398 ((-1146 *3 (-628 $)) $)) (-15 -4376 ($ (-1146 *3 (-628 $))))))))) (-1334 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) (-15 -3398 ((-1146 *3 (-628 $)) $)) (-15 -4376 ($ (-1146 *3 (-628 $))))))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) (-15 -3398 ((-1146 *3 (-628 $)) $)) (-15 -4376 ($ (-1146 *3 (-628 $)))))))))) -((-4162 (((-417 (-1192 |#3|)) (-1192 |#3|) (-661 (-48))) 23 T ELT) (((-417 |#3|) |#3| (-661 (-48))) 19 T ELT))) -(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4162 ((-417 |#3|) |#3| (-661 (-48)))) (-15 -4162 ((-417 (-1192 |#3|)) (-1192 |#3|) (-661 (-48))))) (-861) (-815) (-969 (-48) |#2| |#1|)) (T -42)) -((-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-48))) (-4 *5 (-861)) (-4 *6 (-815)) (-4 *7 (-969 (-48) *6 *5)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-48))) (-4 *5 (-861)) (-4 *6 (-815)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-969 (-48) *6 *5))))) -((-1343 (((-791) |#2|) 70 T ELT)) (-1341 (((-791) |#2|) 74 T ELT)) (-1356 (((-661 |#2|)) 37 T ELT)) (-1340 (((-791) |#2|) 73 T ELT)) (-1342 (((-791) |#2|) 69 T ELT)) (-1344 (((-791) |#2|) 72 T ELT)) (-1354 (((-661 (-709 |#1|))) 65 T ELT)) (-1349 (((-661 |#2|)) 60 T ELT)) (-1347 (((-661 |#2|) |#2|) 48 T ELT)) (-1351 (((-661 |#2|)) 62 T ELT)) (-1350 (((-661 |#2|)) 61 T ELT)) (-1353 (((-661 (-709 |#1|))) 53 T ELT)) (-1348 (((-661 |#2|)) 59 T ELT)) (-1346 (((-661 |#2|) |#2|) 47 T ELT)) (-1345 (((-661 |#2|)) 55 T ELT)) (-1355 (((-661 (-709 |#1|))) 66 T ELT)) (-1352 (((-661 |#2|)) 64 T ELT)) (-2222 (((-1288 |#2|) (-1288 |#2|)) 99 (|has| |#1| (-319)) ELT))) -(((-43 |#1| |#2|) (-10 -7 (-15 -1340 ((-791) |#2|)) (-15 -1341 ((-791) |#2|)) (-15 -1342 ((-791) |#2|)) (-15 -1343 ((-791) |#2|)) (-15 -1344 ((-791) |#2|)) (-15 -1345 ((-661 |#2|))) (-15 -1346 ((-661 |#2|) |#2|)) (-15 -1347 ((-661 |#2|) |#2|)) (-15 -1348 ((-661 |#2|))) (-15 -1349 ((-661 |#2|))) (-15 -1350 ((-661 |#2|))) (-15 -1351 ((-661 |#2|))) (-15 -1352 ((-661 |#2|))) (-15 -1353 ((-661 (-709 |#1|)))) (-15 -1354 ((-661 (-709 |#1|)))) (-15 -1355 ((-661 (-709 |#1|)))) (-15 -1356 ((-661 |#2|))) (IF (|has| |#1| (-319)) (-15 -2222 ((-1288 |#2|) (-1288 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) -((-2222 (*1 *2 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-1356 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1355 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1354 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1353 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1352 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1351 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1350 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1349 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1348 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1347 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1345 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1344 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1343 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1342 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1341 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1340 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1980 (((-3 $ #1="failed")) NIL (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3641 (((-1288 (-709 |#1|)) (-1288 $)) NIL T ELT) (((-1288 (-709 |#1|))) 24 T ELT)) (-1932 (((-1288 $)) 52 T ELT)) (-4154 (($) NIL T CONST)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (|has| |#1| (-569)) ELT)) (-1906 (((-3 $ #1#)) NIL (|has| |#1| (-569)) ELT)) (-1996 (((-709 |#1|) (-1288 $)) NIL T ELT) (((-709 |#1|)) NIL T ELT)) (-1930 ((|#1| $) NIL T ELT)) (-1994 (((-709 |#1|) $ (-1288 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2635 (((-3 $ #1#) $) NIL (|has| |#1| (-569)) ELT)) (-2111 (((-1192 (-965 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2638 (($ $ (-938)) NIL T ELT)) (-1928 ((|#1| $) NIL T ELT)) (-1908 (((-1192 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-1998 ((|#1| (-1288 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1926 (((-1192 |#1|) $) NIL T ELT)) (-1920 (((-114)) 99 T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) NIL T ELT) (($ (-1288 |#1|)) NIL T ELT)) (-3887 (((-3 $ #1#) $) 14 (|has| |#1| (-569)) ELT)) (-3511 (((-938)) 53 T ELT)) (-1917 (((-114)) NIL T ELT)) (-2662 (($ $ (-938)) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1915 (((-114)) 101 T ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (|has| |#1| (-569)) ELT)) (-1907 (((-3 $ #1#)) NIL (|has| |#1| (-569)) ELT)) (-1997 (((-709 |#1|) (-1288 $)) NIL T ELT) (((-709 |#1|)) NIL T ELT)) (-1931 ((|#1| $) NIL T ELT)) (-1995 (((-709 |#1|) $ (-1288 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2636 (((-3 $ #1#) $) NIL (|has| |#1| (-569)) ELT)) (-2115 (((-1192 (-965 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2637 (($ $ (-938)) NIL T ELT)) (-1929 ((|#1| $) NIL T ELT)) (-1909 (((-1192 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-1999 ((|#1| (-1288 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1927 (((-1192 |#1|) $) NIL T ELT)) (-1921 (((-114)) 98 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1912 (((-114)) 106 T ELT)) (-1914 (((-114)) 105 T ELT)) (-1916 (((-114)) 107 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1919 (((-114)) 100 T ELT)) (-4230 ((|#1| $ (-558)) 55 T ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 48 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#1|) $) 28 T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-4402 (((-1288 |#1|) $) NIL T ELT) (($ (-1288 |#1|)) NIL T ELT)) (-2103 (((-661 (-965 |#1|)) (-1288 $)) NIL T ELT) (((-661 (-965 |#1|))) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-1925 (((-114)) 95 T ELT)) (-4376 (((-877) $) 71 T ELT) (($ (-1288 |#1|)) 22 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) 51 T ELT)) (-1910 (((-661 (-1288 |#1|))) NIL (|has| |#1| (-569)) ELT)) (-2825 (($ $ $ $) NIL T ELT)) (-1923 (((-114)) 91 T ELT)) (-2944 (($ (-709 |#1|) $) 18 T ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) 97 T ELT)) (-1922 (((-114)) 92 T ELT)) (-1918 (((-114)) 90 T ELT)) (-3059 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1163 |#2| |#1|) $) 19 T ELT))) -(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-668 (-1163 |#2| |#1|)) (-10 -8 (-15 -4376 ($ (-1288 |#1|))))) (-376) (-938) (-661 (-1198)) (-1288 (-709 |#1|))) (T -44)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-376)) (-14 *6 (-1288 (-709 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-661 (-1198)))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3822 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4225 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4227 (($ $) NIL T ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT) (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-1933 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861))) ELT)) (-3310 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3862 (((-114) $ (-791)) NIL T ELT)) (-3426 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 33 (|has| $ (-6 -4426)) ELT)) (-4216 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT)) (-4219 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 35 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-1255 (-558)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #1="last" (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #3="first" (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #4="value" (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4226 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2446 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-4229 (($ $ (-791)) NIL T ELT) (($ $) 29 T ELT)) (-2594 (($ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) NIL T ELT)) (-3863 (((-114) $) NIL T ELT)) (-3839 (((-558) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT) (((-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 20 (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 20 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-4044 (($ (-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL T ELT)) (-4149 (((-114) $ (-791)) NIL T ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT) (((-558) $) 38 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3257 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3938 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT) (((-558) $) 40 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-3962 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL T ELT)) (-4146 (((-114) $ (-791)) NIL T ELT)) (-3431 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) 49 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4228 (($ $ (-791)) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2884 (((-661 |#1|) $) 22 T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2517 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT) (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT) (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT) (($ $ (-791)) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 27 T ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #5#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #5#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-3864 (((-114) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT) (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 19 T ELT)) (-3823 (((-114) $) 18 T ELT)) (-3993 (($) 14 T ELT)) (-4230 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $ #4#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-1598 (($) 13 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-1714 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-4222 (($ $) NIL T ELT)) (-4220 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) NIL T ELT)) (-4224 (($ $) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4221 (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-4232 (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL T ELT) (($ (-661 $)) NIL T ELT) (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-1330 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #5#) |#1| $) 51 T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3085 (((-114) $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-861)) ELT)) (-4387 (((-791) $) 25 (|has| $ (-6 -4425)) ELT))) -(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1122) (-1122)) (T -45)) -NIL -((-4367 (((-114) $) 12 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-419 (-558)) $) 25 T ELT) (($ $ (-419 (-558))) NIL T ELT))) -(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4367 ((-114) |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|))) (-47 |#2| |#3|) (-1070) (-814)) (T -46)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| |#2|) 78 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4378 ((|#2| $) 81 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4107 ((|#1| $ |#2|) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-47 |#1| |#2|) (-142) (-1070) (-814)) (T -47)) -((-3592 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-114)))) (-3294 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) (-4107 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *2 (-376))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (-15 -3592 (|t#1| $)) (-15 -3295 ($ $)) (-15 -4378 (|t#2| $)) (-15 -4388 ($ (-1 |t#1| |t#1|) $)) (-15 -4367 ((-114) $)) (-15 -3294 ($ |t#1| |t#2|)) (-15 -4389 ($ $)) (-15 -4107 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -4379 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (-6 (-38 (-419 (-558)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-1750 (((-661 $) (-1192 $) (-1198)) NIL T ELT) (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-965 $)) NIL T ELT)) (-1323 (($ (-1192 $) (-1198)) NIL T ELT) (($ (-1192 $)) NIL T ELT) (($ (-965 $)) NIL T ELT)) (-3606 (((-114) $) 9 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1743 (((-661 (-628 $)) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1747 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3438 (($ $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1324 (((-661 $) (-1192 $) (-1198)) NIL T ELT) (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-965 $)) NIL T ELT)) (-3601 (($ (-1192 $) (-1198)) NIL T ELT) (($ (-1192 $)) NIL T ELT) (($ (-965 $)) NIL T ELT)) (-3575 (((-3 (-628 $) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3574 (((-628 $) $) NIL T ELT) (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-419 (-558)))) (|:| |vec| (-1288 (-419 (-558))))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-419 (-558))) (-709 $)) NIL T ELT)) (-4272 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2972 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1742 (((-661 (-115)) $) NIL T ELT)) (-4023 (((-115) (-115)) NIL T ELT)) (-2641 (((-114) $) 11 T ELT)) (-3074 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-3399 (((-1146 (-558) (-628 $)) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-3534 (((-1192 $) (-1192 $) (-628 $)) NIL T ELT) (((-1192 $) (-1192 $) (-661 (-628 $))) NIL T ELT) (($ $ (-628 $)) NIL T ELT) (($ $ (-661 (-628 $))) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-1740 (((-1192 $) (-628 $)) NIL (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) NIL T ELT)) (-1745 (((-3 (-628 $) #1#) $) NIL T ELT)) (-2494 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-419 (-558)))) (|:| |vec| (-1288 (-419 (-558))))) (-1288 $) $) NIL T ELT) (((-709 (-419 (-558))) (-1288 $)) NIL T ELT)) (-2102 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1744 (((-661 (-628 $)) $) NIL T ELT)) (-2449 (($ (-115) $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3032 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3002 (((-791) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1741 (((-114) $ $) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3075 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1198) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1198) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4188 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3398 (((-1146 (-558) (-628 $)) $) NIL T ELT)) (-3603 (($ $) NIL (|has| $ (-1070)) ELT)) (-4402 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-628 $)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1146 (-558) (-628 $))) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-2989 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-2468 (((-114) (-115)) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 6 T CONST)) (-3065 (($) 10 T CONST)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3454 (((-114) $ $) 13 T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-938) $) NIL T ELT))) -(((-48) (-13 (-310) (-27) (-1059 (-558)) (-1059 (-419 (-558))) (-658 (-558)) (-1041) (-658 (-419 (-558))) (-149) (-631 (-171 (-391))) (-240) (-10 -8 (-15 -4376 ($ (-1146 (-558) (-628 $)))) (-15 -3399 ((-1146 (-558) (-628 $)) $)) (-15 -3398 ((-1146 (-558) (-628 $)) $)) (-15 -4272 ($ $)) (-15 -3534 ((-1192 $) (-1192 $) (-628 $))) (-15 -3534 ((-1192 $) (-1192 $) (-661 (-628 $)))) (-15 -3534 ($ $ (-628 $))) (-15 -3534 ($ $ (-661 (-628 $))))))) (T -48)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1146 (-558) (-628 (-48)))) (-5 *1 (-48)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-48)))) (-5 *1 (-48)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-48)))) (-5 *1 (-48)))) (-4272 (*1 *1 *1) (-5 *1 (-48))) (-3534 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-628 (-48))) (-5 *1 (-48)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-661 (-628 (-48)))) (-5 *1 (-48)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-628 (-48))) (-5 *1 (-48)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-48)))) (-5 *1 (-48))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2149 (((-661 (-518)) $) 17 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 7 T ELT)) (-3651 (((-1203) $) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-49) (-13 (-1122) (-10 -8 (-15 -2149 ((-661 (-518)) $)) (-15 -3651 ((-1203) $))))) (T -49)) -((-2149 (*1 *2 *1) (-12 (-5 *2 (-661 (-518))) (-5 *1 (-49)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-49))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 85 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3063 (((-114) $) 30 T ELT)) (-3575 (((-3 |#1| #1#) $) 33 T ELT)) (-3574 ((|#1| $) 34 T ELT)) (-4389 (($ $) 40 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3592 ((|#1| $) 31 T ELT)) (-1587 (($ $) 74 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1586 (((-114) $) 43 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($ (-791)) 72 T ELT)) (-4373 (($ (-661 (-558))) 73 T ELT)) (-4378 (((-791) $) 44 T ELT)) (-4376 (((-877) $) 91 T ELT) (($ (-558)) 69 T ELT) (($ |#1|) 67 T ELT)) (-4107 ((|#1| $ $) 28 T ELT)) (-3528 (((-791)) 71 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 45 T CONST)) (-3065 (($) 17 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 64 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) -(((-50 |#1| |#2|) (-13 (-638 |#1|) (-1059 |#1|) (-10 -8 (-15 -3592 (|#1| $)) (-15 -1587 ($ $)) (-15 -4389 ($ $)) (-15 -4107 (|#1| $ $)) (-15 -2640 ($ (-791))) (-15 -4373 ($ (-661 (-558)))) (-15 -1586 ((-114) $)) (-15 -3063 ((-114) $)) (-15 -4378 ((-791) $)) (-15 -4388 ($ (-1 |#1| |#1|) $)))) (-1070) (-661 (-1198))) (T -50)) -((-3592 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1198))))) (-1587 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-661 (-1198))))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-661 (-1198))))) (-4107 (*1 *2 *1 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1198))))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-661 (-1198))))) (-4373 (*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-661 (-1198))))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-661 (-1198))))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-661 (-1198))))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) (-14 *4 (-661 (-1198))))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) (-14 *4 (-661 (-1198)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1357 (((-793) $) 8 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1358 (((-1124) $) 10 T ELT)) (-4376 (((-877) $) 15 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1359 (($ (-1124) (-793)) 16 T ELT)) (-3454 (((-114) $ $) 12 T ELT))) -(((-51) (-13 (-1122) (-10 -8 (-15 -1359 ($ (-1124) (-793))) (-15 -1358 ((-1124) $)) (-15 -1357 ((-793) $))))) (T -51)) -((-1359 (*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-793)) (-5 *1 (-51)))) (-1358 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-51)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-51))))) -((-3063 (((-114) (-51)) 18 T ELT)) (-3575 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3574 ((|#1| (-51)) 21 T ELT)) (-4376 (((-51) |#1|) 14 T ELT))) -(((-52 |#1|) (-10 -7 (-15 -4376 ((-51) |#1|)) (-15 -3575 ((-3 |#1| "failed") (-51))) (-15 -3063 ((-114) (-51))) (-15 -3574 (|#1| (-51)))) (-1238)) (T -52)) -((-3574 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1238)))) (-3063 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1238)))) (-3575 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1238)))) (-4376 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1238))))) -((-2944 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) -(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2944 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1070) (-668 |#1|) (-866 |#1|)) (T -53)) -((-2944 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-668 *5)) (-4 *5 (-1070)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5))))) -((-1361 ((|#3| |#3| (-661 (-1198))) 44 T ELT)) (-1360 ((|#3| (-661 (-1096 |#1| |#2| |#3|)) |#3| (-938)) 32 T ELT) ((|#3| (-661 (-1096 |#1| |#2| |#3|)) |#3|) 31 T ELT))) -(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1360 (|#3| (-661 (-1096 |#1| |#2| |#3|)) |#3|)) (-15 -1360 (|#3| (-661 (-1096 |#1| |#2| |#3|)) |#3| (-938))) (-15 -1361 (|#3| |#3| (-661 (-1198))))) (-1122) (-13 (-1070) (-901 |#1|) (-631 (-905 |#1|))) (-13 (-433 |#2|) (-901 |#1|) (-631 (-905 |#1|)))) (T -54)) -((-1361 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-4 *4 (-1122)) (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))))) (-1360 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-661 (-1096 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1122)) (-4 *6 (-13 (-1070) (-901 *5) (-631 (-905 *5)))) (-4 *2 (-13 (-433 *6) (-901 *5) (-631 (-905 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1360 (*1 *2 *3 *2) (-12 (-5 *3 (-661 (-1096 *4 *5 *2))) (-4 *4 (-1122)) (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-54 *4 *5 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 14 T ELT)) (-3575 (((-3 (-791) "failed") $) 32 T ELT)) (-3574 (((-791) $) NIL T ELT)) (-2641 (((-114) $) 16 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) 18 T ELT)) (-4376 (((-877) $) 23 T ELT) (($ (-791)) 29 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1362 (($) 11 T CONST)) (-3454 (((-114) $ $) 20 T ELT))) -(((-55) (-13 (-1122) (-1059 (-791)) (-10 -8 (-15 -1362 ($) -4382) (-15 -3606 ((-114) $)) (-15 -2641 ((-114) $))))) (T -55)) -((-1362 (*1 *1) (-5 *1 (-55))) (-3606 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-2641 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))) -((-1364 (($ $ (-558) |#3|) 60 T ELT)) (-1363 (($ $ (-558) |#4|) 64 T ELT)) (-3514 ((|#3| $ (-558)) 73 T ELT)) (-3290 (((-661 |#2|) $) 41 T ELT)) (-3663 (((-114) |#2| $) 68 T ELT)) (-2160 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2414 (($ $ |#2|) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4230 ((|#2| $ (-558) (-558)) NIL T ELT) ((|#2| $ (-558) (-558) |#2|) 29 T ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 35 T ELT) (((-791) |#2| $) 70 T ELT)) (-3820 (($ $) 45 T ELT)) (-3513 ((|#4| $ (-558)) 76 T ELT)) (-4376 (((-877) $) 82 T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-3454 (((-114) $ $) 67 T ELT)) (-4387 (((-791) $) 26 T ELT))) -(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4388 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2160 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1363 (|#1| |#1| (-558) |#4|)) (-15 -1364 (|#1| |#1| (-558) |#3|)) (-15 -3290 ((-661 |#2|) |#1|)) (-15 -3513 (|#4| |#1| (-558))) (-15 -3514 (|#3| |#1| (-558))) (-15 -4230 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4230 (|#2| |#1| (-558) (-558))) (-15 -2414 (|#1| |#1| |#2|)) (-15 -3663 ((-114) |#2| |#1|)) (-15 -2157 ((-791) |#2| |#1|)) (-15 -2157 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2159 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4387 ((-791) |#1|)) (-15 -3820 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1238) (-385 |#2|) (-385 |#2|)) (T -56)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) 48 T ELT)) (-1364 (($ $ (-558) |#2|) 46 T ELT)) (-1363 (($ $ (-558) |#3|) 45 T ELT)) (-4154 (($) 7 T CONST)) (-3514 ((|#2| $ (-558)) 50 T ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) 47 T ELT)) (-3515 ((|#1| $ (-558) (-558)) 52 T ELT)) (-3290 (((-661 |#1|) $) 30 T ELT)) (-3517 (((-791) $) 55 T ELT)) (-4044 (($ (-791) (-791) |#1|) 61 T ELT)) (-3516 (((-791) $) 54 T ELT)) (-3521 (((-558) $) 59 T ELT)) (-3519 (((-558) $) 57 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3520 (((-558) $) 58 T ELT)) (-3518 (((-558) $) 56 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) 60 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) (-558)) 53 T ELT) ((|#1| $ (-558) (-558) |#1|) 51 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-3513 ((|#3| $ (-558)) 49 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-57 |#1| |#2| |#3|) (-142) (-1238) (-385 |t#1|) (-385 |t#1|)) (T -57)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4044 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-791)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2414 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-791)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-791)))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1238)))) (-3515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1238)))) (-4230 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3290 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-661 *3)))) (-4218 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1719 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1364 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4388 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4388 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -4044 ($ (-791) (-791) |t#1|)) (-15 -2414 ($ $ |t#1|)) (-15 -3521 ((-558) $)) (-15 -3520 ((-558) $)) (-15 -3519 ((-558) $)) (-15 -3518 ((-558) $)) (-15 -3517 ((-791) $)) (-15 -3516 ((-791) $)) (-15 -4230 (|t#1| $ (-558) (-558))) (-15 -3515 (|t#1| $ (-558) (-558))) (-15 -4230 (|t#1| $ (-558) (-558) |t#1|)) (-15 -3514 (|t#2| $ (-558))) (-15 -3513 (|t#3| $ (-558))) (-15 -3290 ((-661 |t#1|) $)) (-15 -4218 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1719 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1364 ($ $ (-558) |t#2|)) (-15 -1363 ($ $ (-558) |t#3|)) (-15 -4388 ($ (-1 |t#1| |t#1|) $)) (-15 -2160 ($ (-1 |t#1| |t#1|) $)) (-15 -4388 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4388 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1365 (($ (-661 |#1|)) 11 T ELT) (($ (-791) |#1|) 14 T ELT)) (-4044 (($ (-791) |#1|) 13 T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 10 T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1365 ($ (-661 |#1|))) (-15 -1365 ($ (-791) |#1|)))) (-1238)) (T -58)) -((-1365 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-58 *3)))) (-1365 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-58 *3)) (-4 *3 (-1238))))) -((-4271 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-4272 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4388 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) -(((-59 |#1| |#2|) (-10 -7 (-15 -4271 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4272 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4388 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1238) (-1238)) (T -59)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-59 *5 *2)))) (-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-1364 (($ $ (-558) (-58 |#1|)) NIL T ELT)) (-1363 (($ $ (-558) (-58 |#1|)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3514 (((-58 |#1|) $ (-558)) NIL T ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3515 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL T ELT)) (-3517 (((-791) $) NIL T ELT)) (-4044 (($ (-791) (-791) |#1|) NIL T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3521 (((-558) $) NIL T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3513 (((-58 |#1|) $ (-558)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4426))) (-1238)) (T -60)) -NIL -((-3575 (((-3 $ #1="failed") (-326 (-391))) 41 T ELT) (((-3 $ #1#) (-326 (-558))) 46 T ELT) (((-3 $ #1#) (-965 (-391))) 50 T ELT) (((-3 $ #1#) (-965 (-558))) 54 T ELT) (((-3 $ #1#) (-419 (-965 (-391)))) 36 T ELT) (((-3 $ #1#) (-419 (-965 (-558)))) 29 T ELT)) (-3574 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-558))) 44 T ELT) (($ (-965 (-391))) 48 T ELT) (($ (-965 (-558))) 52 T ELT) (($ (-419 (-965 (-391)))) 34 T ELT) (($ (-419 (-965 (-558)))) 26 T ELT)) (-3800 (((-1294) $) 76 T ELT)) (-4376 (((-877) $) 69 T ELT) (($ (-661 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 64 T ELT) (($ (-352 (-3950 (QUOTE X)) (-3950) (-719))) 25 T ELT))) -(((-61 |#1|) (-13 (-409) (-10 -8 (-15 -4376 ($ (-352 (-3950 (QUOTE X)) (-3950) (-719)))))) (-1198)) (T -61)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-352 (-3950 (QUOTE X)) (-3950) (-719))) (-5 *1 (-61 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 74 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 63 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 94 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 84 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 52 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 39 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 70 T ELT) (($ (-1288 (-326 (-558)))) 59 T ELT) (($ (-1288 (-965 (-391)))) 90 T ELT) (($ (-1288 (-965 (-558)))) 80 T ELT) (($ (-1288 (-419 (-965 (-391))))) 48 T ELT) (($ (-1288 (-419 (-965 (-558))))) 32 T ELT)) (-3800 (((-1294) $) 124 T ELT)) (-4376 (((-877) $) 118 T ELT) (($ (-661 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 101 T ELT) (($ (-1288 (-352 (-3950 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3950) (-719)))) 31 T ELT))) -(((-62 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3950) (-719))))))) (-1198)) (T -62)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3950) (-719)))) (-5 *1 (-62 *3)) (-14 *3 (-1198))))) -((-3800 (((-1294) $) 54 T ELT) (((-1294)) 55 T ELT)) (-4376 (((-877) $) 51 T ELT))) -(((-63 |#1|) (-13 (-408) (-10 -7 (-15 -3800 ((-1294))))) (-1198)) (T -63)) -((-3800 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-63 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 150 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 140 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 170 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 160 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 129 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 117 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 146 T ELT) (($ (-1288 (-326 (-558)))) 136 T ELT) (($ (-1288 (-965 (-391)))) 166 T ELT) (($ (-1288 (-965 (-558)))) 156 T ELT) (($ (-1288 (-419 (-965 (-391))))) 125 T ELT) (($ (-1288 (-419 (-965 (-558))))) 110 T ELT)) (-3800 (((-1294) $) 103 T ELT)) (-4376 (((-877) $) 97 T ELT) (($ (-661 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 33 T ELT) (($ (-1288 (-352 (-3950) (-3950 (QUOTE XC)) (-719)))) 95 T ELT))) -(((-64 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950) (-3950 (QUOTE XC)) (-719))))))) (-1198)) (T -64)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 (QUOTE XC)) (-719)))) (-5 *1 (-64 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-709 (-326 (-391)))) 111 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 99 T ELT) (((-3 $ #1#) (-709 (-965 (-391)))) 133 T ELT) (((-3 $ #1#) (-709 (-965 (-558)))) 122 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-391))))) 87 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-558))))) 73 T ELT)) (-3574 (($ (-709 (-326 (-391)))) 107 T ELT) (($ (-709 (-326 (-558)))) 95 T ELT) (($ (-709 (-965 (-391)))) 129 T ELT) (($ (-709 (-965 (-558)))) 118 T ELT) (($ (-709 (-419 (-965 (-391))))) 83 T ELT) (($ (-709 (-419 (-965 (-558))))) 66 T ELT)) (-3800 (((-1294) $) 141 T ELT)) (-4376 (((-877) $) 135 T ELT) (($ (-661 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 32 T ELT) (($ (-709 (-352 (-3950) (-3950 (QUOTE X) (QUOTE HESS)) (-719)))) 56 T ELT))) -(((-65 |#1|) (-13 (-398) (-633 (-709 (-352 (-3950) (-3950 (QUOTE X) (QUOTE HESS)) (-719))))) (-1198)) (T -65)) -NIL -((-3575 (((-3 $ #1="failed") (-326 (-391))) 60 T ELT) (((-3 $ #1#) (-326 (-558))) 65 T ELT) (((-3 $ #1#) (-965 (-391))) 69 T ELT) (((-3 $ #1#) (-965 (-558))) 73 T ELT) (((-3 $ #1#) (-419 (-965 (-391)))) 55 T ELT) (((-3 $ #1#) (-419 (-965 (-558)))) 48 T ELT)) (-3574 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-558))) 63 T ELT) (($ (-965 (-391))) 67 T ELT) (($ (-965 (-558))) 71 T ELT) (($ (-419 (-965 (-391)))) 53 T ELT) (($ (-419 (-965 (-558)))) 45 T ELT)) (-3800 (((-1294) $) 82 T ELT)) (-4376 (((-877) $) 76 T ELT) (($ (-661 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 32 T ELT) (($ (-352 (-3950) (-3950 (QUOTE XC)) (-719))) 40 T ELT))) -(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -4376 ($ (-352 (-3950) (-3950 (QUOTE XC)) (-719)))))) (-1198)) (T -66)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-352 (-3950) (-3950 (QUOTE XC)) (-719))) (-5 *1 (-66 *3)) (-14 *3 (-1198))))) -((-3800 (((-1294) $) 65 T ELT)) (-4376 (((-877) $) 59 T ELT) (($ (-709 (-719))) 51 T ELT) (($ (-661 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 55 T ELT))) -(((-67 |#1|) (-396) (-1198)) (T -67)) -NIL -((-3800 (((-1294) $) 66 T ELT)) (-4376 (((-877) $) 60 T ELT) (($ (-709 (-719))) 52 T ELT) (($ (-661 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 57 T ELT))) -(((-68 |#1|) (-396) (-1198)) (T -68)) -NIL -((-3800 (((-1294) $) NIL T ELT) (((-1294)) 33 T ELT)) (-4376 (((-877) $) NIL T ELT))) -(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -3800 ((-1294))))) (-1198)) (T -69)) -((-3800 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-69 *3)) (-14 *3 (-1198))))) -((-3800 (((-1294) $) 75 T ELT)) (-4376 (((-877) $) 69 T ELT) (($ (-709 (-719))) 61 T ELT) (($ (-661 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 60 T ELT))) -(((-70 |#1|) (-396) (-1198)) (T -70)) -NIL -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 109 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 98 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 129 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 119 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 87 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 74 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 105 T ELT) (($ (-1288 (-326 (-558)))) 94 T ELT) (($ (-1288 (-965 (-391)))) 125 T ELT) (($ (-1288 (-965 (-558)))) 115 T ELT) (($ (-1288 (-419 (-965 (-391))))) 83 T ELT) (($ (-1288 (-419 (-965 (-558))))) 67 T ELT)) (-3800 (((-1294) $) 142 T ELT)) (-4376 (((-877) $) 136 T ELT) (($ (-661 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 59 T ELT) (($ (-1288 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719)))) 60 T ELT))) -(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719))))))) (-1198)) (T -71)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719)))) (-5 *1 (-71 *3)) (-14 *3 (-1198))))) -((-3800 (((-1294) $) 33 T ELT) (((-1294)) 32 T ELT)) (-4376 (((-877) $) 36 T ELT))) -(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -3800 ((-1294))))) (-1198)) (T -72)) -((-3800 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-72 *3)) (-14 *3 (-1198))))) -((-3800 (((-1294) $) 65 T ELT)) (-4376 (((-877) $) 59 T ELT) (($ (-709 (-719))) 51 T ELT) (($ (-661 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 50 T ELT))) -(((-73 |#1|) (-396) (-1198)) (T -73)) -NIL -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 127 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 117 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 147 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 137 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 107 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 95 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 123 T ELT) (($ (-1288 (-326 (-558)))) 113 T ELT) (($ (-1288 (-965 (-391)))) 143 T ELT) (($ (-1288 (-965 (-558)))) 133 T ELT) (($ (-1288 (-419 (-965 (-391))))) 103 T ELT) (($ (-1288 (-419 (-965 (-558))))) 88 T ELT)) (-3800 (((-1294) $) 80 T ELT)) (-4376 (((-877) $) 28 T ELT) (($ (-661 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 73 T ELT) (($ (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719)))) 67 T ELT))) -(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719))))))) (-1198)) (T -74)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719)))) (-5 *1 (-74 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-326 (-391))) 47 T ELT) (((-3 $ #1#) (-326 (-558))) 52 T ELT) (((-3 $ #1#) (-965 (-391))) 56 T ELT) (((-3 $ #1#) (-965 (-558))) 60 T ELT) (((-3 $ #1#) (-419 (-965 (-391)))) 42 T ELT) (((-3 $ #1#) (-419 (-965 (-558)))) 35 T ELT)) (-3574 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-558))) 50 T ELT) (($ (-965 (-391))) 54 T ELT) (($ (-965 (-558))) 58 T ELT) (($ (-419 (-965 (-391)))) 40 T ELT) (($ (-419 (-965 (-558)))) 32 T ELT)) (-3800 (((-1294) $) 81 T ELT)) (-4376 (((-877) $) 75 T ELT) (($ (-661 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 70 T ELT) (($ (-352 (-3950) (-3950 (QUOTE X)) (-719))) 31 T ELT))) -(((-75 |#1|) (-13 (-409) (-10 -8 (-15 -4376 ($ (-352 (-3950) (-3950 (QUOTE X)) (-719)))))) (-1198)) (T -75)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-352 (-3950) (-3950 (QUOTE X)) (-719))) (-5 *1 (-75 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 132 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 121 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 152 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 142 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 110 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 97 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 128 T ELT) (($ (-1288 (-326 (-558)))) 117 T ELT) (($ (-1288 (-965 (-391)))) 148 T ELT) (($ (-1288 (-965 (-558)))) 138 T ELT) (($ (-1288 (-419 (-965 (-391))))) 106 T ELT) (($ (-1288 (-419 (-965 (-558))))) 90 T ELT)) (-3800 (((-1294) $) 82 T ELT)) (-4376 (((-877) $) 74 T ELT) (($ (-661 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) NIL T ELT) (($ (-1288 (-352 (-3950 (QUOTE X) (QUOTE EPS)) (-3950 (QUOTE -4396)) (-719)))) 69 T ELT))) -(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE X) (QUOTE EPS)) (-3950 (QUOTE -4396)) (-719))))))) (-1198) (-1198) (-1198)) (T -76)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE X) (QUOTE EPS)) (-3950 (QUOTE -4396)) (-719)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 138 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 127 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 158 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 148 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 116 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 103 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 134 T ELT) (($ (-1288 (-326 (-558)))) 123 T ELT) (($ (-1288 (-965 (-391)))) 154 T ELT) (($ (-1288 (-965 (-558)))) 144 T ELT) (($ (-1288 (-419 (-965 (-391))))) 112 T ELT) (($ (-1288 (-419 (-965 (-558))))) 96 T ELT)) (-3800 (((-1294) $) 88 T ELT)) (-4376 (((-877) $) 80 T ELT) (($ (-661 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) NIL T ELT) (($ (-1288 (-352 (-3950 (QUOTE EPS)) (-3950 (QUOTE YA) (QUOTE YB)) (-719)))) 75 T ELT))) -(((-77 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE EPS)) (-3950 (QUOTE YA) (QUOTE YB)) (-719))))))) (-1198) (-1198) (-1198)) (T -77)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE EPS)) (-3950 (QUOTE YA) (QUOTE YB)) (-719)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198))))) -((-3575 (((-3 $ #1="failed") (-326 (-391))) 83 T ELT) (((-3 $ #1#) (-326 (-558))) 88 T ELT) (((-3 $ #1#) (-965 (-391))) 92 T ELT) (((-3 $ #1#) (-965 (-558))) 96 T ELT) (((-3 $ #1#) (-419 (-965 (-391)))) 78 T ELT) (((-3 $ #1#) (-419 (-965 (-558)))) 71 T ELT)) (-3574 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-558))) 86 T ELT) (($ (-965 (-391))) 90 T ELT) (($ (-965 (-558))) 94 T ELT) (($ (-419 (-965 (-391)))) 76 T ELT) (($ (-419 (-965 (-558)))) 68 T ELT)) (-3800 (((-1294) $) 63 T ELT)) (-4376 (((-877) $) 51 T ELT) (($ (-661 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 55 T ELT) (($ (-352 (-3950) (-3950 (QUOTE X)) (-719))) 48 T ELT))) -(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -4376 ($ (-352 (-3950) (-3950 (QUOTE X)) (-719)))))) (-1198)) (T -78)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-352 (-3950) (-3950 (QUOTE X)) (-719))) (-5 *1 (-78 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 90 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 79 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 110 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 100 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 68 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 55 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 86 T ELT) (($ (-1288 (-326 (-558)))) 75 T ELT) (($ (-1288 (-965 (-391)))) 106 T ELT) (($ (-1288 (-965 (-558)))) 96 T ELT) (($ (-1288 (-419 (-965 (-391))))) 64 T ELT) (($ (-1288 (-419 (-965 (-558))))) 48 T ELT)) (-3800 (((-1294) $) 126 T ELT)) (-4376 (((-877) $) 120 T ELT) (($ (-661 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 116 T ELT) (($ (-1288 (-352 (-3950) (-3950 (QUOTE XC)) (-719)))) 39 T ELT))) -(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950) (-3950 (QUOTE XC)) (-719))))))) (-1198)) (T -79)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 (QUOTE XC)) (-719)))) (-5 *1 (-79 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 151 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 141 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 171 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 161 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 131 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 119 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 147 T ELT) (($ (-1288 (-326 (-558)))) 137 T ELT) (($ (-1288 (-965 (-391)))) 167 T ELT) (($ (-1288 (-965 (-558)))) 157 T ELT) (($ (-1288 (-419 (-965 (-391))))) 127 T ELT) (($ (-1288 (-419 (-965 (-558))))) 112 T ELT)) (-3800 (((-1294) $) 105 T ELT)) (-4376 (((-877) $) 99 T ELT) (($ (-661 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 95 T ELT) (($ (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719)))) 91 T ELT))) -(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719))))))) (-1198)) (T -80)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719)))) (-5 *1 (-80 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 79 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 68 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 99 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 89 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 57 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 44 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 75 T ELT) (($ (-1288 (-326 (-558)))) 64 T ELT) (($ (-1288 (-965 (-391)))) 95 T ELT) (($ (-1288 (-965 (-558)))) 85 T ELT) (($ (-1288 (-419 (-965 (-391))))) 53 T ELT) (($ (-1288 (-419 (-965 (-558))))) 37 T ELT)) (-3800 (((-1294) $) 125 T ELT)) (-4376 (((-877) $) 119 T ELT) (($ (-661 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 114 T ELT) (($ (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719)))) 36 T ELT))) -(((-81 |#1|) (-13 (-453) (-633 (-1288 (-352 (-3950) (-3950 (QUOTE X)) (-719))))) (-1198)) (T -81)) -NIL -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 80 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 69 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 100 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 90 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 58 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 45 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 76 T ELT) (($ (-1288 (-326 (-558)))) 65 T ELT) (($ (-1288 (-965 (-391)))) 96 T ELT) (($ (-1288 (-965 (-558)))) 86 T ELT) (($ (-1288 (-419 (-965 (-391))))) 54 T ELT) (($ (-1288 (-419 (-965 (-558))))) 38 T ELT)) (-3800 (((-1294) $) 126 T ELT)) (-4376 (((-877) $) 120 T ELT) (($ (-661 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 115 T ELT) (($ (-1288 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719)))) 37 T ELT))) -(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719))))))) (-1198)) (T -82)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719)))) (-5 *1 (-82 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 99 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 88 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 119 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 109 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 77 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 64 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 95 T ELT) (($ (-1288 (-326 (-558)))) 84 T ELT) (($ (-1288 (-965 (-391)))) 115 T ELT) (($ (-1288 (-965 (-558)))) 105 T ELT) (($ (-1288 (-419 (-965 (-391))))) 73 T ELT) (($ (-1288 (-419 (-965 (-558))))) 57 T ELT)) (-3800 (((-1294) $) 49 T ELT)) (-4376 (((-877) $) 43 T ELT) (($ (-661 (-342))) 33 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 39 T ELT) (($ (-1288 (-352 (-3950 (QUOTE X) (QUOTE -4396)) (-3950) (-719)))) 34 T ELT))) -(((-83 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE X) (QUOTE -4396)) (-3950) (-719))))))) (-1198)) (T -83)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE X) (QUOTE -4396)) (-3950) (-719)))) (-5 *1 (-83 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-709 (-326 (-391)))) 118 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 107 T ELT) (((-3 $ #1#) (-709 (-965 (-391)))) 140 T ELT) (((-3 $ #1#) (-709 (-965 (-558)))) 129 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-391))))) 96 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-558))))) 83 T ELT)) (-3574 (($ (-709 (-326 (-391)))) 114 T ELT) (($ (-709 (-326 (-558)))) 103 T ELT) (($ (-709 (-965 (-391)))) 136 T ELT) (($ (-709 (-965 (-558)))) 125 T ELT) (($ (-709 (-419 (-965 (-391))))) 92 T ELT) (($ (-709 (-419 (-965 (-558))))) 76 T ELT)) (-3800 (((-1294) $) 66 T ELT)) (-4376 (((-877) $) 53 T ELT) (($ (-661 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 58 T ELT) (($ (-709 (-352 (-3950 (QUOTE X) (QUOTE -4396)) (-3950) (-719)))) 50 T ELT))) -(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -4376 ($ (-709 (-352 (-3950 (QUOTE X) (QUOTE -4396)) (-3950) (-719))))))) (-1198)) (T -84)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-709 (-352 (-3950 (QUOTE X) (QUOTE -4396)) (-3950) (-719)))) (-5 *1 (-84 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-709 (-326 (-391)))) 113 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 101 T ELT) (((-3 $ #1#) (-709 (-965 (-391)))) 135 T ELT) (((-3 $ #1#) (-709 (-965 (-558)))) 124 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-391))))) 89 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-558))))) 75 T ELT)) (-3574 (($ (-709 (-326 (-391)))) 109 T ELT) (($ (-709 (-326 (-558)))) 97 T ELT) (($ (-709 (-965 (-391)))) 131 T ELT) (($ (-709 (-965 (-558)))) 120 T ELT) (($ (-709 (-419 (-965 (-391))))) 85 T ELT) (($ (-709 (-419 (-965 (-558))))) 68 T ELT)) (-3800 (((-1294) $) 60 T ELT)) (-4376 (((-877) $) 54 T ELT) (($ (-661 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 45 T ELT) (($ (-709 (-352 (-3950 (QUOTE X)) (-3950) (-719)))) 46 T ELT))) -(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -4376 ($ (-709 (-352 (-3950 (QUOTE X)) (-3950) (-719))))))) (-1198)) (T -85)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-709 (-352 (-3950 (QUOTE X)) (-3950) (-719)))) (-5 *1 (-85 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-1288 (-326 (-391)))) 105 T ELT) (((-3 $ #1#) (-1288 (-326 (-558)))) 94 T ELT) (((-3 $ #1#) (-1288 (-965 (-391)))) 125 T ELT) (((-3 $ #1#) (-1288 (-965 (-558)))) 115 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-391))))) 83 T ELT) (((-3 $ #1#) (-1288 (-419 (-965 (-558))))) 70 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 101 T ELT) (($ (-1288 (-326 (-558)))) 90 T ELT) (($ (-1288 (-965 (-391)))) 121 T ELT) (($ (-1288 (-965 (-558)))) 111 T ELT) (($ (-1288 (-419 (-965 (-391))))) 79 T ELT) (($ (-1288 (-419 (-965 (-558))))) 63 T ELT)) (-3800 (((-1294) $) 47 T ELT)) (-4376 (((-877) $) 41 T ELT) (($ (-661 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 53 T ELT) (($ (-1288 (-352 (-3950 (QUOTE X)) (-3950) (-719)))) 38 T ELT))) -(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4376 ($ (-1288 (-352 (-3950 (QUOTE X)) (-3950) (-719))))))) (-1198)) (T -86)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-352 (-3950 (QUOTE X)) (-3950) (-719)))) (-5 *1 (-86 *3)) (-14 *3 (-1198))))) -((-3800 (((-1294) $) 45 T ELT)) (-4376 (((-877) $) 39 T ELT) (($ (-1288 (-719))) 99 T ELT) (($ (-661 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 34 T ELT))) -(((-87 |#1|) (-452) (-1198)) (T -87)) -NIL -((-3575 (((-3 $ #1="failed") (-709 (-326 (-391)))) 116 T ELT) (((-3 $ #1#) (-709 (-326 (-558)))) 104 T ELT) (((-3 $ #1#) (-709 (-965 (-391)))) 138 T ELT) (((-3 $ #1#) (-709 (-965 (-558)))) 127 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-391))))) 92 T ELT) (((-3 $ #1#) (-709 (-419 (-965 (-558))))) 78 T ELT)) (-3574 (($ (-709 (-326 (-391)))) 112 T ELT) (($ (-709 (-326 (-558)))) 100 T ELT) (($ (-709 (-965 (-391)))) 134 T ELT) (($ (-709 (-965 (-558)))) 123 T ELT) (($ (-709 (-419 (-965 (-391))))) 88 T ELT) (($ (-709 (-419 (-965 (-558))))) 71 T ELT)) (-3800 (((-1294) $) 62 T ELT)) (-4376 (((-877) $) 56 T ELT) (($ (-661 (-342))) 46 T ELT) (($ (-342)) 53 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 51 T ELT) (($ (-709 (-352 (-3950 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3950) (-719)))) 47 T ELT))) -(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -4376 ($ (-709 (-352 (-3950 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3950) (-719))))))) (-1198)) (T -88)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-709 (-352 (-3950 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3950) (-719)))) (-5 *1 (-88 *3)) (-14 *3 (-1198))))) -((-3575 (((-3 $ #1="failed") (-326 (-391))) 48 T ELT) (((-3 $ #1#) (-326 (-558))) 53 T ELT) (((-3 $ #1#) (-965 (-391))) 57 T ELT) (((-3 $ #1#) (-965 (-558))) 61 T ELT) (((-3 $ #1#) (-419 (-965 (-391)))) 43 T ELT) (((-3 $ #1#) (-419 (-965 (-558)))) 36 T ELT)) (-3574 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-558))) 51 T ELT) (($ (-965 (-391))) 55 T ELT) (($ (-965 (-558))) 59 T ELT) (($ (-419 (-965 (-391)))) 41 T ELT) (($ (-419 (-965 (-558)))) 33 T ELT)) (-3800 (((-1294) $) 91 T ELT)) (-4376 (((-877) $) 85 T ELT) (($ (-661 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 77 T ELT) (($ (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719))) 32 T ELT))) -(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -4376 ($ (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719)))))) (-1198)) (T -89)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-352 (-3950 (QUOTE X)) (-3950 (QUOTE -4396)) (-719))) (-5 *1 (-89 *3)) (-14 *3 (-1198))))) -((-1367 (((-1288 (-709 |#1|)) (-709 |#1|)) 61 T ELT)) (-1366 (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 (-661 (-938))))) |#2| (-938)) 49 T ELT)) (-1368 (((-2 (|:| |minor| (-661 (-938))) (|:| -3684 |#2|) (|:| |minors| (-661 (-661 (-938)))) (|:| |ops| (-661 |#2|))) |#2| (-938)) 72 (|has| |#1| (-376)) ELT))) -(((-90 |#1| |#2|) (-10 -7 (-15 -1366 ((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 (-661 (-938))))) |#2| (-938))) (-15 -1367 ((-1288 (-709 |#1|)) (-709 |#1|))) (IF (|has| |#1| (-376)) (-15 -1368 ((-2 (|:| |minor| (-661 (-938))) (|:| -3684 |#2|) (|:| |minors| (-661 (-661 (-938)))) (|:| |ops| (-661 |#2|))) |#2| (-938))) |%noBranch|)) (-569) (-678 |#1|)) (T -90)) -((-1368 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-661 (-938))) (|:| -3684 *3) (|:| |minors| (-661 (-661 (-938)))) (|:| |ops| (-661 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-678 *5)))) (-1367 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1288 (-709 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-709 *4)) (-4 *5 (-678 *4)))) (-1366 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -1783 (-709 *5)) (|:| |vec| (-1288 (-661 (-938)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-678 *5))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3744 ((|#1| $) 40 T ELT)) (-4154 (($) NIL T CONST)) (-3746 ((|#1| |#1| $) 35 T ELT)) (-3745 ((|#1| $) 33 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) NIL T ELT)) (-4037 (($ |#1| $) 36 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-1390 ((|#1| $) 34 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 18 T ELT)) (-3993 (($) 45 T ELT)) (-3743 (((-791) $) 31 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 17 T ELT)) (-4376 (((-877) $) 30 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) NIL T ELT)) (-1369 (($ (-661 |#1|)) 42 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 12 (|has| $ (-6 -4425)) ELT))) -(((-91 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -1369 ($ (-661 |#1|))))) (-1122)) (T -91)) -((-1369 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-91 *3))))) -((-4376 (((-877) $) 13 T ELT) (($ (-1203)) 9 T ELT) (((-1203) $) 8 T ELT))) -(((-92 |#1|) (-10 -7 (-15 -4376 ((-1203) |#1|)) (-15 -4376 (|#1| (-1203))) (-15 -4376 ((-877) |#1|))) (-93)) (T -92)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-1203)) 20 T ELT) (((-1203) $) 19 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +(-13 (-1069) (-736 |t#1|) (-632 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-745) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3837 (((-417 |#1|) |#1|) 41 T ELT)) (-4161 (((-417 |#1|) |#1|) 30 T ELT) (((-417 |#1|) |#1| (-660 (-48))) 33 T ELT)) (-1330 (((-114) |#1|) 59 T ELT))) +(((-39 |#1|) (-10 -7 (-15 -4161 ((-417 |#1|) |#1| (-660 (-48)))) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -3837 ((-417 |#1|) |#1|)) (-15 -1330 ((-114) |#1|))) (-1263 (-48))) (T -39)) +((-1330 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-3837 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1849 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2272 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2270 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1989 (((-708 (-419 |#2|)) (-1287 $)) NIL T ELT) (((-708 (-419 |#2|))) NIL T ELT)) (-3749 (((-419 |#2|) $) NIL T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1787 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3537 (((-790)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1863 (((-114)) NIL T ELT)) (-1862 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| (-419 |#2|) (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 |#2|) (-1058 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| (-419 |#2|) (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-419 |#2|) (-1058 (-419 (-558)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-1999 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL T ELT) (($ (-1287 (-419 |#2|))) 61 T ELT) (($ (-1287 |#2|) |#2|) 131 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2962 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1988 (((-708 (-419 |#2|)) $ (-1287 $)) NIL T ELT) (((-708 (-419 |#2|)) $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-419 |#2|)) (-708 $)) NIL T ELT)) (-1854 (((-1287 $) (-1287 $)) NIL T ELT)) (-4271 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-1841 (((-660 (-660 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1866 (((-114) |#1| |#1|) NIL T ELT)) (-3510 (((-937)) NIL T ELT)) (-3394 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1861 (((-114)) NIL T ELT)) (-1860 (((-114) |#1|) NIL T ELT) (((-114) |#2|) NIL T ELT)) (-2961 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3922 (($ $) NIL T ELT)) (-3233 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1882 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1973 (($ $ (-790)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4152 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4201 (((-937) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-844 (-937)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3796 (((-790)) NIL T ELT)) (-1855 (((-1287 $) (-1287 $)) 106 T ELT)) (-3533 (((-419 |#2|) $) NIL T ELT)) (-1842 (((-660 (-964 |#1|)) (-1197)) NIL (|has| |#1| (-376)) ELT)) (-3864 (((-710 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2223 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2219 (((-937) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3479 ((|#3| $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) NIL T ELT) (((-708 (-419 |#2|)) (-1287 $)) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1331 (((-1293) (-790)) 84 T ELT)) (-1850 (((-708 (-419 |#2|))) 56 T ELT)) (-1852 (((-708 (-419 |#2|))) 49 T ELT)) (-2873 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1847 (($ (-1287 |#2|) |#2|) 132 T ELT)) (-1851 (((-708 (-419 |#2|))) 50 T ELT)) (-1853 (((-708 (-419 |#2|))) 48 T ELT)) (-1846 (((-2 (|:| |num| (-708 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 130 T ELT)) (-1848 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 68 T ELT)) (-1859 (((-1287 $)) 47 T ELT)) (-4347 (((-1287 $)) 46 T ELT)) (-1858 (((-114) $) NIL T ELT)) (-1857 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3865 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2630 (($ (-937)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1844 (((-3 |#2| #1#)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1868 (((-790)) NIL T ELT)) (-2639 (($) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4161 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-790) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4229 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1845 (((-3 |#2| #1#)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4186 (((-419 |#2|) (-1287 $)) NIL T ELT) (((-419 |#2|)) 44 T ELT)) (-1974 (((-790) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-790) #1#) $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4187 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-790)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 126 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2638 (((-708 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3602 ((|#3|) 55 T ELT)) (-1876 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3641 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL T ELT) (((-708 (-419 |#2|)) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 (-419 |#2|)) $) 62 T ELT) (((-708 (-419 |#2|)) (-1287 $)) 107 T ELT)) (-4401 (((-1287 (-419 |#2|)) $) NIL T ELT) (($ (-1287 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1856 (((-1287 $) (-1287 $)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3102 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-710 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2837 ((|#3| $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1865 (((-114)) 42 T ELT)) (-1864 (((-114) |#1|) 54 T ELT) (((-114) |#2|) 138 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1843 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1867 (((-114)) NIL T ELT)) (-3058 (($) 17 T CONST)) (-3064 (($) 27 T CONST)) (-3069 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-790)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-419 |#2|) (-376)) ELT))) +(((-40 |#1| |#2| |#3| |#4|) (-13 (-355 |#1| |#2| |#3|) (-10 -7 (-15 -1331 ((-1293) (-790))))) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) |#3|) (T -40)) +((-1331 (*1 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-376)) (-4 *5 (-1263 *4)) (-5 *2 (-1293)) (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6)))) +((-1332 ((|#2| |#2|) 47 T ELT)) (-1337 ((|#2| |#2|) 138 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-558))))) ELT)) (-1336 ((|#2| |#2|) 100 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-558))))) ELT)) (-1335 ((|#2| |#2|) 101 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-558))))) ELT)) (-1338 ((|#2| (-115) |#2| (-790)) 134 (-12 (|has| |#2| (-433 |#1|)) (|has| |#1| (-13 (-464) (-1058 (-558))))) ELT)) (-1334 (((-1191 |#2|) |#2|) 44 T ELT)) (-1333 ((|#2| |#2| (-660 (-627 |#2|))) 18 T ELT) ((|#2| |#2| (-660 |#2|)) 20 T ELT) ((|#2| |#2| |#2|) 21 T ELT) ((|#2| |#2|) 16 T ELT))) +(((-41 |#1| |#2|) (-10 -7 (-15 -1332 (|#2| |#2|)) (-15 -1333 (|#2| |#2|)) (-15 -1333 (|#2| |#2| |#2|)) (-15 -1333 (|#2| |#2| (-660 |#2|))) (-15 -1333 (|#2| |#2| (-660 (-627 |#2|)))) (-15 -1334 ((-1191 |#2|) |#2|)) (IF (|has| |#1| (-13 (-464) (-1058 (-558)))) (IF (|has| |#2| (-433 |#1|)) (PROGN (-15 -1335 (|#2| |#2|)) (-15 -1336 (|#2| |#2|)) (-15 -1337 (|#2| |#2|)) (-15 -1338 (|#2| (-115) |#2| (-790)))) |%noBranch|) |%noBranch|)) (-569) (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 |#1| (-627 $)) $)) (-15 -3397 ((-1145 |#1| (-627 $)) $)) (-15 -4375 ($ (-1145 |#1| (-627 $))))))) (T -41)) +((-1338 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-115)) (-5 *4 (-790)) (-4 *5 (-13 (-464) (-1058 (-558)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *5 (-627 $)) $)) (-15 -3397 ((-1145 *5 (-627 $)) $)) (-15 -4375 ($ (-1145 *5 (-627 $))))))))) (-1337 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) (-15 -3397 ((-1145 *3 (-627 $)) $)) (-15 -4375 ($ (-1145 *3 (-627 $))))))))) (-1336 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) (-15 -3397 ((-1145 *3 (-627 $)) $)) (-15 -4375 ($ (-1145 *3 (-627 $))))))))) (-1335 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) (-15 -3397 ((-1145 *3 (-627 $)) $)) (-15 -4375 ($ (-1145 *3 (-627 $))))))))) (-1334 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *4 (-627 $)) $)) (-15 -3397 ((-1145 *4 (-627 $)) $)) (-15 -4375 ($ (-1145 *4 (-627 $))))))))) (-1333 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-627 *2))) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *4 (-627 $)) $)) (-15 -3397 ((-1145 *4 (-627 $)) $)) (-15 -4375 ($ (-1145 *4 (-627 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-1333 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *4 (-627 $)) $)) (-15 -3397 ((-1145 *4 (-627 $)) $)) (-15 -4375 ($ (-1145 *4 (-627 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) (-1333 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) (-15 -3397 ((-1145 *3 (-627 $)) $)) (-15 -4375 ($ (-1145 *3 (-627 $))))))))) (-1333 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) (-15 -3397 ((-1145 *3 (-627 $)) $)) (-15 -4375 ($ (-1145 *3 (-627 $))))))))) (-1332 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) (-15 -3397 ((-1145 *3 (-627 $)) $)) (-15 -4375 ($ (-1145 *3 (-627 $)))))))))) +((-4161 (((-417 (-1191 |#3|)) (-1191 |#3|) (-660 (-48))) 23 T ELT) (((-417 |#3|) |#3| (-660 (-48))) 19 T ELT))) +(((-42 |#1| |#2| |#3|) (-10 -7 (-15 -4161 ((-417 |#3|) |#3| (-660 (-48)))) (-15 -4161 ((-417 (-1191 |#3|)) (-1191 |#3|) (-660 (-48))))) (-860) (-814) (-968 (-48) |#2| |#1|)) (T -42)) +((-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-4 *5 (-860)) (-4 *6 (-814)) (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-42 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-48))) (-4 *5 (-860)) (-4 *6 (-814)) (-5 *2 (-417 *3)) (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5))))) +((-1342 (((-790) |#2|) 70 T ELT)) (-1340 (((-790) |#2|) 74 T ELT)) (-1355 (((-660 |#2|)) 37 T ELT)) (-1339 (((-790) |#2|) 73 T ELT)) (-1341 (((-790) |#2|) 69 T ELT)) (-1343 (((-790) |#2|) 72 T ELT)) (-1353 (((-660 (-708 |#1|))) 65 T ELT)) (-1348 (((-660 |#2|)) 60 T ELT)) (-1346 (((-660 |#2|) |#2|) 48 T ELT)) (-1350 (((-660 |#2|)) 62 T ELT)) (-1349 (((-660 |#2|)) 61 T ELT)) (-1352 (((-660 (-708 |#1|))) 53 T ELT)) (-1347 (((-660 |#2|)) 59 T ELT)) (-1345 (((-660 |#2|) |#2|) 47 T ELT)) (-1344 (((-660 |#2|)) 55 T ELT)) (-1354 (((-660 (-708 |#1|))) 66 T ELT)) (-1351 (((-660 |#2|)) 64 T ELT)) (-2221 (((-1287 |#2|) (-1287 |#2|)) 99 (|has| |#1| (-319)) ELT))) +(((-43 |#1| |#2|) (-10 -7 (-15 -1339 ((-790) |#2|)) (-15 -1340 ((-790) |#2|)) (-15 -1341 ((-790) |#2|)) (-15 -1342 ((-790) |#2|)) (-15 -1343 ((-790) |#2|)) (-15 -1344 ((-660 |#2|))) (-15 -1345 ((-660 |#2|) |#2|)) (-15 -1346 ((-660 |#2|) |#2|)) (-15 -1347 ((-660 |#2|))) (-15 -1348 ((-660 |#2|))) (-15 -1349 ((-660 |#2|))) (-15 -1350 ((-660 |#2|))) (-15 -1351 ((-660 |#2|))) (-15 -1352 ((-660 (-708 |#1|)))) (-15 -1353 ((-660 (-708 |#1|)))) (-15 -1354 ((-660 (-708 |#1|)))) (-15 -1355 ((-660 |#2|))) (IF (|has| |#1| (-319)) (-15 -2221 ((-1287 |#2|) (-1287 |#2|))) |%noBranch|)) (-569) (-430 |#1|)) (T -43)) +((-2221 (*1 *2 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) (-1355 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1354 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-708 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1353 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-708 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1352 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 (-708 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1351 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1350 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1349 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1348 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1347 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1346 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1345 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1344 (*1 *2) (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3)))) (-1343 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1342 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1341 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1340 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4)))) (-1339 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1979 (((-3 $ #1="failed")) NIL (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3640 (((-1287 (-708 |#1|)) (-1287 $)) NIL T ELT) (((-1287 (-708 |#1|))) 24 T ELT)) (-1931 (((-1287 $)) 52 T ELT)) (-4153 (($) NIL T CONST)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (|has| |#1| (-569)) ELT)) (-1905 (((-3 $ #1#)) NIL (|has| |#1| (-569)) ELT)) (-1995 (((-708 |#1|) (-1287 $)) NIL T ELT) (((-708 |#1|)) NIL T ELT)) (-1929 ((|#1| $) NIL T ELT)) (-1993 (((-708 |#1|) $ (-1287 $)) NIL T ELT) (((-708 |#1|) $) NIL T ELT)) (-2634 (((-3 $ #1#) $) NIL (|has| |#1| (-569)) ELT)) (-2110 (((-1191 (-964 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2637 (($ $ (-937)) NIL T ELT)) (-1927 ((|#1| $) NIL T ELT)) (-1907 (((-1191 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-1997 ((|#1| (-1287 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1925 (((-1191 |#1|) $) NIL T ELT)) (-1919 (((-114)) 99 T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) NIL T ELT) (($ (-1287 |#1|)) NIL T ELT)) (-3886 (((-3 $ #1#) $) 14 (|has| |#1| (-569)) ELT)) (-3510 (((-937)) 53 T ELT)) (-1916 (((-114)) NIL T ELT)) (-2661 (($ $ (-937)) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-1910 (((-114)) NIL T ELT)) (-1914 (((-114)) 101 T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (|has| |#1| (-569)) ELT)) (-1906 (((-3 $ #1#)) NIL (|has| |#1| (-569)) ELT)) (-1996 (((-708 |#1|) (-1287 $)) NIL T ELT) (((-708 |#1|)) NIL T ELT)) (-1930 ((|#1| $) NIL T ELT)) (-1994 (((-708 |#1|) $ (-1287 $)) NIL T ELT) (((-708 |#1|) $) NIL T ELT)) (-2635 (((-3 $ #1#) $) NIL (|has| |#1| (-569)) ELT)) (-2114 (((-1191 (-964 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-2636 (($ $ (-937)) NIL T ELT)) (-1928 ((|#1| $) NIL T ELT)) (-1908 (((-1191 |#1|) $) NIL (|has| |#1| (-569)) ELT)) (-1998 ((|#1| (-1287 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1926 (((-1191 |#1|) $) NIL T ELT)) (-1920 (((-114)) 98 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1911 (((-114)) 106 T ELT)) (-1913 (((-114)) 105 T ELT)) (-1915 (((-114)) 107 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1918 (((-114)) 100 T ELT)) (-4229 ((|#1| $ (-558)) 55 T ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 48 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#1|) $) 28 T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-4401 (((-1287 |#1|) $) NIL T ELT) (($ (-1287 |#1|)) NIL T ELT)) (-2102 (((-660 (-964 |#1|)) (-1287 $)) NIL T ELT) (((-660 (-964 |#1|))) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) 95 T ELT)) (-4375 (((-876) $) 71 T ELT) (($ (-1287 |#1|)) 22 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) 51 T ELT)) (-1909 (((-660 (-1287 |#1|))) NIL (|has| |#1| (-569)) ELT)) (-2824 (($ $ $ $) NIL T ELT)) (-1922 (((-114)) 91 T ELT)) (-2943 (($ (-708 |#1|) $) 18 T ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) 97 T ELT)) (-1921 (((-114)) 92 T ELT)) (-1917 (((-114)) 90 T ELT)) (-3058 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-1162 |#2| |#1|) $) 19 T ELT))) +(((-44 |#1| |#2| |#3| |#4|) (-13 (-430 |#1|) (-667 (-1162 |#2| |#1|)) (-10 -8 (-15 -4375 ($ (-1287 |#1|))))) (-376) (-937) (-660 (-1197)) (-1287 (-708 |#1|))) (T -44)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-376)) (-14 *6 (-1287 (-708 *3))) (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-660 (-1197)))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3821 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4224 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4226 (($ $) NIL T ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT) (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (((-114) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-1932 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860))) ELT)) (-3309 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3861 (((-114) $ (-790)) NIL T ELT)) (-3425 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 33 (|has| $ (-6 -4425)) ELT)) (-4215 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT)) (-4218 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 35 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) 53 T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-1254 (-558)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #1="last" (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (($ $ #2="rest" $) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #3="first" (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #4="value" (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4225 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2445 (((-3 |#2| #5="failed") |#1| $) 43 T ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-4228 (($ $ (-790)) NIL T ELT) (($ $) 29 T ELT)) (-2593 (($ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #5#) |#1| $) 56 T ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) NIL T ELT)) (-3862 (((-114) $) NIL T ELT)) (-3838 (((-558) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT) (((-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 20 (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 20 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-4043 (($ (-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL T ELT)) (-4148 (((-114) $ (-790)) NIL T ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT) (((-558) $) 38 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3256 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3937 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ $) NIL T ELT) (($ $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT) (((-558) $) 40 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ $) NIL T ELT) (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-3961 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL T ELT)) (-4145 (((-114) $ (-790)) NIL T ELT)) (-3430 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) 49 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4227 (($ $ (-790)) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2883 (((-660 |#1|) $) 22 T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2516 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT) (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT) (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT) (($ $ (-790)) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 27 T ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #5#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #5#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-3863 (((-114) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT) (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 19 T ELT)) (-3822 (((-114) $) 18 T ELT)) (-3992 (($) 14 T ELT)) (-4229 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #3#) NIL T ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $ #4#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-1597 (($) 13 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-1713 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-4221 (($ $) NIL T ELT)) (-4219 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) NIL T ELT)) (-4223 (($ $) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4220 (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL T ELT) (($ $ $) NIL T ELT)) (-4231 (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL T ELT) (($ (-660 $)) NIL T ELT) (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 31 T ELT) (($ $ $) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-1329 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #5#) |#1| $) 51 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-3084 (((-114) $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-860)) ELT)) (-4386 (((-790) $) 25 (|has| $ (-6 -4424)) ELT))) +(((-45 |#1| |#2|) (-36 |#1| |#2|) (-1121) (-1121)) (T -45)) +NIL +((-4366 (((-114) $) 12 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 21 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (($ (-419 (-558)) $) 25 T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-46 |#1| |#2| |#3|) (-10 -7 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4366 ((-114) |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|))) (-47 |#2| |#3|) (-1069) (-813)) (T -46)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| |#2|) 78 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4377 ((|#2| $) 81 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4106 ((|#1| $ |#2|) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-47 |#1| |#2|) (-142) (-1069) (-813)) (T -47)) +((-3591 (*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) (-3294 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-114)))) (-3293 (*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) (-4106 (*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) (-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *2 (-376))))) +(-13 (-1069) (-111 |t#1| |t#1|) (-10 -8 (-15 -3591 (|t#1| $)) (-15 -3294 ($ $)) (-15 -4377 (|t#2| $)) (-15 -4387 ($ (-1 |t#1| |t#1|) $)) (-15 -4366 ((-114) $)) (-15 -3293 ($ |t#1| |t#2|)) (-15 -4388 ($ $)) (-15 -4106 (|t#1| $ |t#2|)) (IF (|has| |t#1| (-376)) (-15 -4378 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-6 (-175)) (-6 (-38 |t#1|))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-569)) (-6 (-569)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (-6 (-38 (-419 (-558)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-1749 (((-660 $) (-1191 $) (-1197)) NIL T ELT) (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-964 $)) NIL T ELT)) (-1322 (($ (-1191 $) (-1197)) NIL T ELT) (($ (-1191 $)) NIL T ELT) (($ (-964 $)) NIL T ELT)) (-3605 (((-114) $) 9 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1742 (((-660 (-627 $)) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1746 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3437 (($ $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1323 (((-660 $) (-1191 $) (-1197)) NIL T ELT) (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-964 $)) NIL T ELT)) (-3600 (($ (-1191 $) (-1197)) NIL T ELT) (($ (-1191 $)) NIL T ELT) (($ (-964 $)) NIL T ELT)) (-3574 (((-3 (-627 $) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3573 (((-627 $) $) NIL T ELT) (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-419 (-558)))) (|:| |vec| (-1287 (-419 (-558))))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-419 (-558))) (-708 $)) NIL T ELT)) (-4271 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2971 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1741 (((-660 (-115)) $) NIL T ELT)) (-4022 (((-115) (-115)) NIL T ELT)) (-2640 (((-114) $) 11 T ELT)) (-3073 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-3398 (((-1145 (-558) (-627 $)) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-3533 (((-1191 $) (-1191 $) (-627 $)) NIL T ELT) (((-1191 $) (-1191 $) (-660 (-627 $))) NIL T ELT) (($ $ (-627 $)) NIL T ELT) (($ $ (-660 (-627 $))) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-1739 (((-1191 $) (-627 $)) NIL (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) NIL T ELT)) (-1744 (((-3 (-627 $) #1#) $) NIL T ELT)) (-2493 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-419 (-558)))) (|:| |vec| (-1287 (-419 (-558))))) (-1287 $) $) NIL T ELT) (((-708 (-419 (-558))) (-1287 $)) NIL T ELT)) (-2101 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1743 (((-660 (-627 $)) $) NIL T ELT)) (-2448 (($ (-115) $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3031 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3001 (((-790) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1740 (((-114) $ $) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-3074 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-627 $) $) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1197) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1197) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1745 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4187 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3397 (((-1145 (-558) (-627 $)) $) NIL T ELT)) (-3602 (($ $) NIL (|has| $ (-1069)) ELT)) (-4401 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-171 (-391)) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-627 $)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1145 (-558) (-627 $))) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-2988 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2467 (((-114) (-115)) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 6 T CONST)) (-3064 (($) 10 T CONST)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3453 (((-114) $ $) 13 T ELT)) (-4378 (($ $ $) NIL T ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-937) $) NIL T ELT))) +(((-48) (-13 (-310) (-27) (-1058 (-558)) (-1058 (-419 (-558))) (-657 (-558)) (-1040) (-657 (-419 (-558))) (-149) (-630 (-171 (-391))) (-240) (-10 -8 (-15 -4375 ($ (-1145 (-558) (-627 $)))) (-15 -3398 ((-1145 (-558) (-627 $)) $)) (-15 -3397 ((-1145 (-558) (-627 $)) $)) (-15 -4271 ($ $)) (-15 -3533 ((-1191 $) (-1191 $) (-627 $))) (-15 -3533 ((-1191 $) (-1191 $) (-660 (-627 $)))) (-15 -3533 ($ $ (-627 $))) (-15 -3533 ($ $ (-660 (-627 $))))))) (T -48)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1145 (-558) (-627 (-48)))) (-5 *1 (-48)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-48)))) (-5 *1 (-48)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-48)))) (-5 *1 (-48)))) (-4271 (*1 *1 *1) (-5 *1 (-48))) (-3533 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-627 (-48))) (-5 *1 (-48)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-660 (-627 (-48)))) (-5 *1 (-48)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-48))) (-5 *1 (-48)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-627 (-48)))) (-5 *1 (-48))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2148 (((-660 (-518)) $) 17 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 7 T ELT)) (-3650 (((-1202) $) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-49) (-13 (-1121) (-10 -8 (-15 -2148 ((-660 (-518)) $)) (-15 -3650 ((-1202) $))))) (T -49)) +((-2148 (*1 *2 *1) (-12 (-5 *2 (-660 (-518))) (-5 *1 (-49)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 85 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3062 (((-114) $) 30 T ELT)) (-3574 (((-3 |#1| #1#) $) 33 T ELT)) (-3573 ((|#1| $) 34 T ELT)) (-4388 (($ $) 40 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3591 ((|#1| $) 31 T ELT)) (-1586 (($ $) 74 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1585 (((-114) $) 43 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($ (-790)) 72 T ELT)) (-4372 (($ (-660 (-558))) 73 T ELT)) (-4377 (((-790) $) 44 T ELT)) (-4375 (((-876) $) 91 T ELT) (($ (-558)) 69 T ELT) (($ |#1|) 67 T ELT)) (-4106 ((|#1| $ $) 28 T ELT)) (-3527 (((-790)) 71 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 45 T CONST)) (-3064 (($) 17 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 64 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 65 T ELT) (($ |#1| $) 58 T ELT))) +(((-50 |#1| |#2|) (-13 (-637 |#1|) (-1058 |#1|) (-10 -8 (-15 -3591 (|#1| $)) (-15 -1586 ($ $)) (-15 -4388 ($ $)) (-15 -4106 (|#1| $ $)) (-15 -2639 ($ (-790))) (-15 -4372 ($ (-660 (-558)))) (-15 -1585 ((-114) $)) (-15 -3062 ((-114) $)) (-15 -4377 ((-790) $)) (-15 -4387 ($ (-1 |#1| |#1|) $)))) (-1069) (-660 (-1197))) (T -50)) +((-3591 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1197))))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-660 (-1197))))) (-4388 (*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-660 (-1197))))) (-4106 (*1 *2 *1 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1197))))) (-2639 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-660 (-1197))))) (-4372 (*1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-660 (-1197))))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-660 (-1197))))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-660 (-1197))))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) (-14 *4 (-660 (-1197))))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-50 *3 *4)) (-14 *4 (-660 (-1197)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1356 (((-792) $) 8 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1357 (((-1123) $) 10 T ELT)) (-4375 (((-876) $) 15 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1358 (($ (-1123) (-792)) 16 T ELT)) (-3453 (((-114) $ $) 12 T ELT))) +(((-51) (-13 (-1121) (-10 -8 (-15 -1358 ($ (-1123) (-792))) (-15 -1357 ((-1123) $)) (-15 -1356 ((-792) $))))) (T -51)) +((-1358 (*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-792)) (-5 *1 (-51)))) (-1357 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-51)))) (-1356 (*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51))))) +((-3062 (((-114) (-51)) 18 T ELT)) (-3574 (((-3 |#1| "failed") (-51)) 20 T ELT)) (-3573 ((|#1| (-51)) 21 T ELT)) (-4375 (((-51) |#1|) 14 T ELT))) +(((-52 |#1|) (-10 -7 (-15 -4375 ((-51) |#1|)) (-15 -3574 ((-3 |#1| "failed") (-51))) (-15 -3062 ((-114) (-51))) (-15 -3573 (|#1| (-51)))) (-1237)) (T -52)) +((-3573 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1237)))) (-3062 (*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1237)))) (-3574 (*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1237)))) (-4375 (*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1237))))) +((-2943 ((|#2| |#3| (-1 |#2| |#2|) |#2|) 16 T ELT))) +(((-53 |#1| |#2| |#3|) (-10 -7 (-15 -2943 (|#2| |#3| (-1 |#2| |#2|) |#2|))) (-1069) (-667 |#1|) (-865 |#1|)) (T -53)) +((-2943 (*1 *2 *3 *4 *2) (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-667 *5)) (-4 *5 (-1069)) (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-865 *5))))) +((-1360 ((|#3| |#3| (-660 (-1197))) 44 T ELT)) (-1359 ((|#3| (-660 (-1095 |#1| |#2| |#3|)) |#3| (-937)) 32 T ELT) ((|#3| (-660 (-1095 |#1| |#2| |#3|)) |#3|) 31 T ELT))) +(((-54 |#1| |#2| |#3|) (-10 -7 (-15 -1359 (|#3| (-660 (-1095 |#1| |#2| |#3|)) |#3|)) (-15 -1359 (|#3| (-660 (-1095 |#1| |#2| |#3|)) |#3| (-937))) (-15 -1360 (|#3| |#3| (-660 (-1197))))) (-1121) (-13 (-1069) (-900 |#1|) (-630 (-904 |#1|))) (-13 (-433 |#2|) (-900 |#1|) (-630 (-904 |#1|)))) (T -54)) +((-1360 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-54 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))))) (-1359 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-660 (-1095 *5 *6 *2))) (-5 *4 (-937)) (-4 *5 (-1121)) (-4 *6 (-13 (-1069) (-900 *5) (-630 (-904 *5)))) (-4 *2 (-13 (-433 *6) (-900 *5) (-630 (-904 *5)))) (-5 *1 (-54 *5 *6 *2)))) (-1359 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-1095 *4 *5 *2))) (-4 *4 (-1121)) (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-54 *4 *5 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 14 T ELT)) (-3574 (((-3 (-790) "failed") $) 32 T ELT)) (-3573 (((-790) $) NIL T ELT)) (-2640 (((-114) $) 16 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) 18 T ELT)) (-4375 (((-876) $) 23 T ELT) (($ (-790)) 29 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1361 (($) 11 T CONST)) (-3453 (((-114) $ $) 20 T ELT))) +(((-55) (-13 (-1121) (-1058 (-790)) (-10 -8 (-15 -1361 ($) -4381) (-15 -3605 ((-114) $)) (-15 -2640 ((-114) $))))) (T -55)) +((-1361 (*1 *1) (-5 *1 (-55))) (-3605 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) (-2640 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55))))) +((-1363 (($ $ (-558) |#3|) 60 T ELT)) (-1362 (($ $ (-558) |#4|) 64 T ELT)) (-3513 ((|#3| $ (-558)) 73 T ELT)) (-3289 (((-660 |#2|) $) 41 T ELT)) (-3662 (((-114) |#2| $) 68 T ELT)) (-2159 (($ (-1 |#2| |#2|) $) 49 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 48 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 52 T ELT) (($ (-1 |#2| |#2| |#2|) $ $ |#2|) 56 T ELT)) (-2413 (($ $ |#2|) 46 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4229 ((|#2| $ (-558) (-558)) NIL T ELT) ((|#2| $ (-558) (-558) |#2|) 29 T ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 35 T ELT) (((-790) |#2| $) 70 T ELT)) (-3819 (($ $) 45 T ELT)) (-3512 ((|#4| $ (-558)) 76 T ELT)) (-4375 (((-876) $) 82 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 20 T ELT)) (-3453 (((-114) $ $) 67 T ELT)) (-4386 (((-790) $) 26 T ELT))) +(((-56 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1| |#2|)) (-15 -4387 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -2159 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -1362 (|#1| |#1| (-558) |#4|)) (-15 -1363 (|#1| |#1| (-558) |#3|)) (-15 -3289 ((-660 |#2|) |#1|)) (-15 -3512 (|#4| |#1| (-558))) (-15 -3513 (|#3| |#1| (-558))) (-15 -4229 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4229 (|#2| |#1| (-558) (-558))) (-15 -2413 (|#1| |#1| |#2|)) (-15 -3662 ((-114) |#2| |#1|)) (-15 -2156 ((-790) |#2| |#1|)) (-15 -2156 ((-790) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4386 ((-790) |#1|)) (-15 -3819 (|#1| |#1|))) (-57 |#2| |#3| |#4|) (-1237) (-385 |#2|) (-385 |#2|)) (T -56)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) 48 T ELT)) (-1363 (($ $ (-558) |#2|) 46 T ELT)) (-1362 (($ $ (-558) |#3|) 45 T ELT)) (-4153 (($) 7 T CONST)) (-3513 ((|#2| $ (-558)) 50 T ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) 47 T ELT)) (-3514 ((|#1| $ (-558) (-558)) 52 T ELT)) (-3289 (((-660 |#1|) $) 30 T ELT)) (-3516 (((-790) $) 55 T ELT)) (-4043 (($ (-790) (-790) |#1|) 61 T ELT)) (-3515 (((-790) $) 54 T ELT)) (-3520 (((-558) $) 59 T ELT)) (-3518 (((-558) $) 57 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3519 (((-558) $) 58 T ELT)) (-3517 (((-558) $) 56 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) 60 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) (-558)) 53 T ELT) ((|#1| $ (-558) (-558) |#1|) 51 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-3512 ((|#3| $ (-558)) 49 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-57 |#1| |#2| |#3|) (-142) (-1237) (-385 |t#1|) (-385 |t#1|)) (T -57)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4043 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-790)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2413 (*1 *1 *1 *2) (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-790)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-790)))) (-4229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1237)))) (-3514 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-1237)))) (-4229 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) (-3289 (*1 *2 *1) (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-660 *3)))) (-4217 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1718 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) (-1363 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4)))) (-1362 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4)))) (-2159 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4387 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4387 (*1 *1 *2 *1 *1 *3) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4425) (-6 -4424) (-15 -4043 ($ (-790) (-790) |t#1|)) (-15 -2413 ($ $ |t#1|)) (-15 -3520 ((-558) $)) (-15 -3519 ((-558) $)) (-15 -3518 ((-558) $)) (-15 -3517 ((-558) $)) (-15 -3516 ((-790) $)) (-15 -3515 ((-790) $)) (-15 -4229 (|t#1| $ (-558) (-558))) (-15 -3514 (|t#1| $ (-558) (-558))) (-15 -4229 (|t#1| $ (-558) (-558) |t#1|)) (-15 -3513 (|t#2| $ (-558))) (-15 -3512 (|t#3| $ (-558))) (-15 -3289 ((-660 |t#1|) $)) (-15 -4217 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1718 (|t#1| $ (-558) (-558) |t#1|)) (-15 -1363 ($ $ (-558) |t#2|)) (-15 -1362 ($ $ (-558) |t#3|)) (-15 -4387 ($ (-1 |t#1| |t#1|) $)) (-15 -2159 ($ (-1 |t#1| |t#1|) $)) (-15 -4387 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -4387 ($ (-1 |t#1| |t#1| |t#1|) $ $ |t#1|)))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1364 (($ (-660 |#1|)) 11 T ELT) (($ (-790) |#1|) 14 T ELT)) (-4043 (($ (-790) |#1|) 13 T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 10 T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-58 |#1|) (-13 (-19 |#1|) (-10 -8 (-15 -1364 ($ (-660 |#1|))) (-15 -1364 ($ (-790) |#1|)))) (-1237)) (T -58)) +((-1364 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-58 *3)))) (-1364 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-58 *3)) (-4 *3 (-1237))))) +((-4270 (((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 16 T ELT)) (-4271 ((|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|) 18 T ELT)) (-4387 (((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)) 13 T ELT))) +(((-59 |#1| |#2|) (-10 -7 (-15 -4270 ((-58 |#2|) (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4271 (|#2| (-1 |#2| |#1| |#2|) (-58 |#1|) |#2|)) (-15 -4387 ((-58 |#2|) (-1 |#2| |#1|) (-58 |#1|)))) (-1237) (-1237)) (T -59)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-59 *5 *2)))) (-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-1363 (($ $ (-558) (-58 |#1|)) NIL T ELT)) (-1362 (($ $ (-558) (-58 |#1|)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3513 (((-58 |#1|) $ (-558)) NIL T ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3514 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL T ELT)) (-3516 (((-790) $) NIL T ELT)) (-4043 (($ (-790) (-790) |#1|) NIL T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3519 (((-558) $) NIL T ELT)) (-3517 (((-558) $) NIL T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3512 (((-58 |#1|) $ (-558)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-60 |#1|) (-13 (-57 |#1| (-58 |#1|) (-58 |#1|)) (-10 -7 (-6 -4425))) (-1237)) (T -60)) +NIL +((-3574 (((-3 $ #1="failed") (-326 (-391))) 41 T ELT) (((-3 $ #1#) (-326 (-558))) 46 T ELT) (((-3 $ #1#) (-964 (-391))) 50 T ELT) (((-3 $ #1#) (-964 (-558))) 54 T ELT) (((-3 $ #1#) (-419 (-964 (-391)))) 36 T ELT) (((-3 $ #1#) (-419 (-964 (-558)))) 29 T ELT)) (-3573 (($ (-326 (-391))) 39 T ELT) (($ (-326 (-558))) 44 T ELT) (($ (-964 (-391))) 48 T ELT) (($ (-964 (-558))) 52 T ELT) (($ (-419 (-964 (-391)))) 34 T ELT) (($ (-419 (-964 (-558)))) 26 T ELT)) (-3799 (((-1293) $) 76 T ELT)) (-4375 (((-876) $) 69 T ELT) (($ (-660 (-342))) 61 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 64 T ELT) (($ (-352 (-3949 (QUOTE X)) (-3949) (-718))) 25 T ELT))) +(((-61 |#1|) (-13 (-409) (-10 -8 (-15 -4375 ($ (-352 (-3949 (QUOTE X)) (-3949) (-718)))))) (-1197)) (T -61)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-352 (-3949 (QUOTE X)) (-3949) (-718))) (-5 *1 (-61 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 74 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 63 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 94 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 84 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 52 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 39 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 70 T ELT) (($ (-1287 (-326 (-558)))) 59 T ELT) (($ (-1287 (-964 (-391)))) 90 T ELT) (($ (-1287 (-964 (-558)))) 80 T ELT) (($ (-1287 (-419 (-964 (-391))))) 48 T ELT) (($ (-1287 (-419 (-964 (-558))))) 32 T ELT)) (-3799 (((-1293) $) 124 T ELT)) (-4375 (((-876) $) 118 T ELT) (($ (-660 (-342))) 103 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 101 T ELT) (($ (-1287 (-352 (-3949 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3949) (-718)))) 31 T ELT))) +(((-62 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3949) (-718))))))) (-1197)) (T -62)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE JINT) (QUOTE X) (QUOTE ELAM)) (-3949) (-718)))) (-5 *1 (-62 *3)) (-14 *3 (-1197))))) +((-3799 (((-1293) $) 54 T ELT) (((-1293)) 55 T ELT)) (-4375 (((-876) $) 51 T ELT))) +(((-63 |#1|) (-13 (-408) (-10 -7 (-15 -3799 ((-1293))))) (-1197)) (T -63)) +((-3799 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-63 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 150 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 140 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 170 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 160 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 129 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 117 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 146 T ELT) (($ (-1287 (-326 (-558)))) 136 T ELT) (($ (-1287 (-964 (-391)))) 166 T ELT) (($ (-1287 (-964 (-558)))) 156 T ELT) (($ (-1287 (-419 (-964 (-391))))) 125 T ELT) (($ (-1287 (-419 (-964 (-558))))) 110 T ELT)) (-3799 (((-1293) $) 103 T ELT)) (-4375 (((-876) $) 97 T ELT) (($ (-660 (-342))) 30 T ELT) (($ (-342)) 35 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 33 T ELT) (($ (-1287 (-352 (-3949) (-3949 (QUOTE XC)) (-718)))) 95 T ELT))) +(((-64 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949) (-3949 (QUOTE XC)) (-718))))))) (-1197)) (T -64)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 (QUOTE XC)) (-718)))) (-5 *1 (-64 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-708 (-326 (-391)))) 111 T ELT) (((-3 $ #1#) (-708 (-326 (-558)))) 99 T ELT) (((-3 $ #1#) (-708 (-964 (-391)))) 133 T ELT) (((-3 $ #1#) (-708 (-964 (-558)))) 122 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-391))))) 87 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-558))))) 73 T ELT)) (-3573 (($ (-708 (-326 (-391)))) 107 T ELT) (($ (-708 (-326 (-558)))) 95 T ELT) (($ (-708 (-964 (-391)))) 129 T ELT) (($ (-708 (-964 (-558)))) 118 T ELT) (($ (-708 (-419 (-964 (-391))))) 83 T ELT) (($ (-708 (-419 (-964 (-558))))) 66 T ELT)) (-3799 (((-1293) $) 141 T ELT)) (-4375 (((-876) $) 135 T ELT) (($ (-660 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 32 T ELT) (($ (-708 (-352 (-3949) (-3949 (QUOTE X) (QUOTE HESS)) (-718)))) 56 T ELT))) +(((-65 |#1|) (-13 (-398) (-632 (-708 (-352 (-3949) (-3949 (QUOTE X) (QUOTE HESS)) (-718))))) (-1197)) (T -65)) +NIL +((-3574 (((-3 $ #1="failed") (-326 (-391))) 60 T ELT) (((-3 $ #1#) (-326 (-558))) 65 T ELT) (((-3 $ #1#) (-964 (-391))) 69 T ELT) (((-3 $ #1#) (-964 (-558))) 73 T ELT) (((-3 $ #1#) (-419 (-964 (-391)))) 55 T ELT) (((-3 $ #1#) (-419 (-964 (-558)))) 48 T ELT)) (-3573 (($ (-326 (-391))) 58 T ELT) (($ (-326 (-558))) 63 T ELT) (($ (-964 (-391))) 67 T ELT) (($ (-964 (-558))) 71 T ELT) (($ (-419 (-964 (-391)))) 53 T ELT) (($ (-419 (-964 (-558)))) 45 T ELT)) (-3799 (((-1293) $) 82 T ELT)) (-4375 (((-876) $) 76 T ELT) (($ (-660 (-342))) 29 T ELT) (($ (-342)) 34 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 32 T ELT) (($ (-352 (-3949) (-3949 (QUOTE XC)) (-718))) 40 T ELT))) +(((-66 |#1|) (-13 (-409) (-10 -8 (-15 -4375 ($ (-352 (-3949) (-3949 (QUOTE XC)) (-718)))))) (-1197)) (T -66)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-352 (-3949) (-3949 (QUOTE XC)) (-718))) (-5 *1 (-66 *3)) (-14 *3 (-1197))))) +((-3799 (((-1293) $) 65 T ELT)) (-4375 (((-876) $) 59 T ELT) (($ (-708 (-718))) 51 T ELT) (($ (-660 (-342))) 50 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 55 T ELT))) +(((-67 |#1|) (-396) (-1197)) (T -67)) +NIL +((-3799 (((-1293) $) 66 T ELT)) (-4375 (((-876) $) 60 T ELT) (($ (-708 (-718))) 52 T ELT) (($ (-660 (-342))) 51 T ELT) (($ (-342)) 54 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 57 T ELT))) +(((-68 |#1|) (-396) (-1197)) (T -68)) +NIL +((-3799 (((-1293) $) NIL T ELT) (((-1293)) 33 T ELT)) (-4375 (((-876) $) NIL T ELT))) +(((-69 |#1|) (-13 (-408) (-10 -7 (-15 -3799 ((-1293))))) (-1197)) (T -69)) +((-3799 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197))))) +((-3799 (((-1293) $) 75 T ELT)) (-4375 (((-876) $) 69 T ELT) (($ (-708 (-718))) 61 T ELT) (($ (-660 (-342))) 63 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 60 T ELT))) +(((-70 |#1|) (-396) (-1197)) (T -70)) +NIL +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 109 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 98 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 129 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 119 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 87 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 74 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 105 T ELT) (($ (-1287 (-326 (-558)))) 94 T ELT) (($ (-1287 (-964 (-391)))) 125 T ELT) (($ (-1287 (-964 (-558)))) 115 T ELT) (($ (-1287 (-419 (-964 (-391))))) 83 T ELT) (($ (-1287 (-419 (-964 (-558))))) 67 T ELT)) (-3799 (((-1293) $) 142 T ELT)) (-4375 (((-876) $) 136 T ELT) (($ (-660 (-342))) 131 T ELT) (($ (-342)) 134 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 59 T ELT) (($ (-1287 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718)))) 60 T ELT))) +(((-71 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718))))))) (-1197)) (T -71)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718)))) (-5 *1 (-71 *3)) (-14 *3 (-1197))))) +((-3799 (((-1293) $) 33 T ELT) (((-1293)) 32 T ELT)) (-4375 (((-876) $) 36 T ELT))) +(((-72 |#1|) (-13 (-408) (-10 -7 (-15 -3799 ((-1293))))) (-1197)) (T -72)) +((-3799 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197))))) +((-3799 (((-1293) $) 65 T ELT)) (-4375 (((-876) $) 59 T ELT) (($ (-708 (-718))) 51 T ELT) (($ (-660 (-342))) 53 T ELT) (($ (-342)) 56 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 50 T ELT))) +(((-73 |#1|) (-396) (-1197)) (T -73)) +NIL +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 127 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 117 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 147 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 137 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 107 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 95 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 123 T ELT) (($ (-1287 (-326 (-558)))) 113 T ELT) (($ (-1287 (-964 (-391)))) 143 T ELT) (($ (-1287 (-964 (-558)))) 133 T ELT) (($ (-1287 (-419 (-964 (-391))))) 103 T ELT) (($ (-1287 (-419 (-964 (-558))))) 88 T ELT)) (-3799 (((-1293) $) 80 T ELT)) (-4375 (((-876) $) 28 T ELT) (($ (-660 (-342))) 70 T ELT) (($ (-342)) 66 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 73 T ELT) (($ (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718)))) 67 T ELT))) +(((-74 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718))))))) (-1197)) (T -74)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718)))) (-5 *1 (-74 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-326 (-391))) 47 T ELT) (((-3 $ #1#) (-326 (-558))) 52 T ELT) (((-3 $ #1#) (-964 (-391))) 56 T ELT) (((-3 $ #1#) (-964 (-558))) 60 T ELT) (((-3 $ #1#) (-419 (-964 (-391)))) 42 T ELT) (((-3 $ #1#) (-419 (-964 (-558)))) 35 T ELT)) (-3573 (($ (-326 (-391))) 45 T ELT) (($ (-326 (-558))) 50 T ELT) (($ (-964 (-391))) 54 T ELT) (($ (-964 (-558))) 58 T ELT) (($ (-419 (-964 (-391)))) 40 T ELT) (($ (-419 (-964 (-558)))) 32 T ELT)) (-3799 (((-1293) $) 81 T ELT)) (-4375 (((-876) $) 75 T ELT) (($ (-660 (-342))) 67 T ELT) (($ (-342)) 72 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 70 T ELT) (($ (-352 (-3949) (-3949 (QUOTE X)) (-718))) 31 T ELT))) +(((-75 |#1|) (-13 (-409) (-10 -8 (-15 -4375 ($ (-352 (-3949) (-3949 (QUOTE X)) (-718)))))) (-1197)) (T -75)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-352 (-3949) (-3949 (QUOTE X)) (-718))) (-5 *1 (-75 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 132 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 121 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 152 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 142 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 110 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 97 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 128 T ELT) (($ (-1287 (-326 (-558)))) 117 T ELT) (($ (-1287 (-964 (-391)))) 148 T ELT) (($ (-1287 (-964 (-558)))) 138 T ELT) (($ (-1287 (-419 (-964 (-391))))) 106 T ELT) (($ (-1287 (-419 (-964 (-558))))) 90 T ELT)) (-3799 (((-1293) $) 82 T ELT)) (-4375 (((-876) $) 74 T ELT) (($ (-660 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) NIL T ELT) (($ (-1287 (-352 (-3949 (QUOTE X) (QUOTE EPS)) (-3949 (QUOTE -4395)) (-718)))) 69 T ELT))) +(((-76 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE X) (QUOTE EPS)) (-3949 (QUOTE -4395)) (-718))))))) (-1197) (-1197) (-1197)) (T -76)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE X) (QUOTE EPS)) (-3949 (QUOTE -4395)) (-718)))) (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 138 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 127 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 158 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 148 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 116 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 103 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 134 T ELT) (($ (-1287 (-326 (-558)))) 123 T ELT) (($ (-1287 (-964 (-391)))) 154 T ELT) (($ (-1287 (-964 (-558)))) 144 T ELT) (($ (-1287 (-419 (-964 (-391))))) 112 T ELT) (($ (-1287 (-419 (-964 (-558))))) 96 T ELT)) (-3799 (((-1293) $) 88 T ELT)) (-4375 (((-876) $) 80 T ELT) (($ (-660 (-342))) NIL T ELT) (($ (-342)) NIL T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) NIL T ELT) (($ (-1287 (-352 (-3949 (QUOTE EPS)) (-3949 (QUOTE YA) (QUOTE YB)) (-718)))) 75 T ELT))) +(((-77 |#1| |#2| |#3|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE EPS)) (-3949 (QUOTE YA) (QUOTE YB)) (-718))))))) (-1197) (-1197) (-1197)) (T -77)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE EPS)) (-3949 (QUOTE YA) (QUOTE YB)) (-718)))) (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197))))) +((-3574 (((-3 $ #1="failed") (-326 (-391))) 83 T ELT) (((-3 $ #1#) (-326 (-558))) 88 T ELT) (((-3 $ #1#) (-964 (-391))) 92 T ELT) (((-3 $ #1#) (-964 (-558))) 96 T ELT) (((-3 $ #1#) (-419 (-964 (-391)))) 78 T ELT) (((-3 $ #1#) (-419 (-964 (-558)))) 71 T ELT)) (-3573 (($ (-326 (-391))) 81 T ELT) (($ (-326 (-558))) 86 T ELT) (($ (-964 (-391))) 90 T ELT) (($ (-964 (-558))) 94 T ELT) (($ (-419 (-964 (-391)))) 76 T ELT) (($ (-419 (-964 (-558)))) 68 T ELT)) (-3799 (((-1293) $) 63 T ELT)) (-4375 (((-876) $) 51 T ELT) (($ (-660 (-342))) 47 T ELT) (($ (-342)) 57 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 55 T ELT) (($ (-352 (-3949) (-3949 (QUOTE X)) (-718))) 48 T ELT))) +(((-78 |#1|) (-13 (-409) (-10 -8 (-15 -4375 ($ (-352 (-3949) (-3949 (QUOTE X)) (-718)))))) (-1197)) (T -78)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-352 (-3949) (-3949 (QUOTE X)) (-718))) (-5 *1 (-78 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 90 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 79 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 110 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 100 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 68 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 55 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 86 T ELT) (($ (-1287 (-326 (-558)))) 75 T ELT) (($ (-1287 (-964 (-391)))) 106 T ELT) (($ (-1287 (-964 (-558)))) 96 T ELT) (($ (-1287 (-419 (-964 (-391))))) 64 T ELT) (($ (-1287 (-419 (-964 (-558))))) 48 T ELT)) (-3799 (((-1293) $) 126 T ELT)) (-4375 (((-876) $) 120 T ELT) (($ (-660 (-342))) 113 T ELT) (($ (-342)) 38 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 116 T ELT) (($ (-1287 (-352 (-3949) (-3949 (QUOTE XC)) (-718)))) 39 T ELT))) +(((-79 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949) (-3949 (QUOTE XC)) (-718))))))) (-1197)) (T -79)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 (QUOTE XC)) (-718)))) (-5 *1 (-79 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 151 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 141 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 171 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 161 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 131 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 119 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 147 T ELT) (($ (-1287 (-326 (-558)))) 137 T ELT) (($ (-1287 (-964 (-391)))) 167 T ELT) (($ (-1287 (-964 (-558)))) 157 T ELT) (($ (-1287 (-419 (-964 (-391))))) 127 T ELT) (($ (-1287 (-419 (-964 (-558))))) 112 T ELT)) (-3799 (((-1293) $) 105 T ELT)) (-4375 (((-876) $) 99 T ELT) (($ (-660 (-342))) 90 T ELT) (($ (-342)) 97 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 95 T ELT) (($ (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718)))) 91 T ELT))) +(((-80 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718))))))) (-1197)) (T -80)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718)))) (-5 *1 (-80 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 79 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 68 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 99 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 89 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 57 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 44 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 75 T ELT) (($ (-1287 (-326 (-558)))) 64 T ELT) (($ (-1287 (-964 (-391)))) 95 T ELT) (($ (-1287 (-964 (-558)))) 85 T ELT) (($ (-1287 (-419 (-964 (-391))))) 53 T ELT) (($ (-1287 (-419 (-964 (-558))))) 37 T ELT)) (-3799 (((-1293) $) 125 T ELT)) (-4375 (((-876) $) 119 T ELT) (($ (-660 (-342))) 110 T ELT) (($ (-342)) 116 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 114 T ELT) (($ (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718)))) 36 T ELT))) +(((-81 |#1|) (-13 (-453) (-632 (-1287 (-352 (-3949) (-3949 (QUOTE X)) (-718))))) (-1197)) (T -81)) +NIL +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 80 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 69 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 100 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 90 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 58 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 45 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 76 T ELT) (($ (-1287 (-326 (-558)))) 65 T ELT) (($ (-1287 (-964 (-391)))) 96 T ELT) (($ (-1287 (-964 (-558)))) 86 T ELT) (($ (-1287 (-419 (-964 (-391))))) 54 T ELT) (($ (-1287 (-419 (-964 (-558))))) 38 T ELT)) (-3799 (((-1293) $) 126 T ELT)) (-4375 (((-876) $) 120 T ELT) (($ (-660 (-342))) 111 T ELT) (($ (-342)) 117 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 115 T ELT) (($ (-1287 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718)))) 37 T ELT))) +(((-82 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718))))))) (-1197)) (T -82)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718)))) (-5 *1 (-82 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 99 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 88 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 119 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 109 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 77 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 64 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 95 T ELT) (($ (-1287 (-326 (-558)))) 84 T ELT) (($ (-1287 (-964 (-391)))) 115 T ELT) (($ (-1287 (-964 (-558)))) 105 T ELT) (($ (-1287 (-419 (-964 (-391))))) 73 T ELT) (($ (-1287 (-419 (-964 (-558))))) 57 T ELT)) (-3799 (((-1293) $) 49 T ELT)) (-4375 (((-876) $) 43 T ELT) (($ (-660 (-342))) 33 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 39 T ELT) (($ (-1287 (-352 (-3949 (QUOTE X) (QUOTE -4395)) (-3949) (-718)))) 34 T ELT))) +(((-83 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE X) (QUOTE -4395)) (-3949) (-718))))))) (-1197)) (T -83)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE X) (QUOTE -4395)) (-3949) (-718)))) (-5 *1 (-83 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-708 (-326 (-391)))) 118 T ELT) (((-3 $ #1#) (-708 (-326 (-558)))) 107 T ELT) (((-3 $ #1#) (-708 (-964 (-391)))) 140 T ELT) (((-3 $ #1#) (-708 (-964 (-558)))) 129 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-391))))) 96 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-558))))) 83 T ELT)) (-3573 (($ (-708 (-326 (-391)))) 114 T ELT) (($ (-708 (-326 (-558)))) 103 T ELT) (($ (-708 (-964 (-391)))) 136 T ELT) (($ (-708 (-964 (-558)))) 125 T ELT) (($ (-708 (-419 (-964 (-391))))) 92 T ELT) (($ (-708 (-419 (-964 (-558))))) 76 T ELT)) (-3799 (((-1293) $) 66 T ELT)) (-4375 (((-876) $) 53 T ELT) (($ (-660 (-342))) 60 T ELT) (($ (-342)) 49 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 58 T ELT) (($ (-708 (-352 (-3949 (QUOTE X) (QUOTE -4395)) (-3949) (-718)))) 50 T ELT))) +(((-84 |#1|) (-13 (-398) (-10 -8 (-15 -4375 ($ (-708 (-352 (-3949 (QUOTE X) (QUOTE -4395)) (-3949) (-718))))))) (-1197)) (T -84)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-708 (-352 (-3949 (QUOTE X) (QUOTE -4395)) (-3949) (-718)))) (-5 *1 (-84 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-708 (-326 (-391)))) 113 T ELT) (((-3 $ #1#) (-708 (-326 (-558)))) 101 T ELT) (((-3 $ #1#) (-708 (-964 (-391)))) 135 T ELT) (((-3 $ #1#) (-708 (-964 (-558)))) 124 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-391))))) 89 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-558))))) 75 T ELT)) (-3573 (($ (-708 (-326 (-391)))) 109 T ELT) (($ (-708 (-326 (-558)))) 97 T ELT) (($ (-708 (-964 (-391)))) 131 T ELT) (($ (-708 (-964 (-558)))) 120 T ELT) (($ (-708 (-419 (-964 (-391))))) 85 T ELT) (($ (-708 (-419 (-964 (-558))))) 68 T ELT)) (-3799 (((-1293) $) 60 T ELT)) (-4375 (((-876) $) 54 T ELT) (($ (-660 (-342))) 48 T ELT) (($ (-342)) 51 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 45 T ELT) (($ (-708 (-352 (-3949 (QUOTE X)) (-3949) (-718)))) 46 T ELT))) +(((-85 |#1|) (-13 (-398) (-10 -8 (-15 -4375 ($ (-708 (-352 (-3949 (QUOTE X)) (-3949) (-718))))))) (-1197)) (T -85)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-708 (-352 (-3949 (QUOTE X)) (-3949) (-718)))) (-5 *1 (-85 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-1287 (-326 (-391)))) 105 T ELT) (((-3 $ #1#) (-1287 (-326 (-558)))) 94 T ELT) (((-3 $ #1#) (-1287 (-964 (-391)))) 125 T ELT) (((-3 $ #1#) (-1287 (-964 (-558)))) 115 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-391))))) 83 T ELT) (((-3 $ #1#) (-1287 (-419 (-964 (-558))))) 70 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 101 T ELT) (($ (-1287 (-326 (-558)))) 90 T ELT) (($ (-1287 (-964 (-391)))) 121 T ELT) (($ (-1287 (-964 (-558)))) 111 T ELT) (($ (-1287 (-419 (-964 (-391))))) 79 T ELT) (($ (-1287 (-419 (-964 (-558))))) 63 T ELT)) (-3799 (((-1293) $) 47 T ELT)) (-4375 (((-876) $) 41 T ELT) (($ (-660 (-342))) 50 T ELT) (($ (-342)) 37 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 53 T ELT) (($ (-1287 (-352 (-3949 (QUOTE X)) (-3949) (-718)))) 38 T ELT))) +(((-86 |#1|) (-13 (-453) (-10 -8 (-15 -4375 ($ (-1287 (-352 (-3949 (QUOTE X)) (-3949) (-718))))))) (-1197)) (T -86)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-352 (-3949 (QUOTE X)) (-3949) (-718)))) (-5 *1 (-86 *3)) (-14 *3 (-1197))))) +((-3799 (((-1293) $) 45 T ELT)) (-4375 (((-876) $) 39 T ELT) (($ (-1287 (-718))) 99 T ELT) (($ (-660 (-342))) 31 T ELT) (($ (-342)) 36 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 34 T ELT))) +(((-87 |#1|) (-452) (-1197)) (T -87)) +NIL +((-3574 (((-3 $ #1="failed") (-708 (-326 (-391)))) 116 T ELT) (((-3 $ #1#) (-708 (-326 (-558)))) 104 T ELT) (((-3 $ #1#) (-708 (-964 (-391)))) 138 T ELT) (((-3 $ #1#) (-708 (-964 (-558)))) 127 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-391))))) 92 T ELT) (((-3 $ #1#) (-708 (-419 (-964 (-558))))) 78 T ELT)) (-3573 (($ (-708 (-326 (-391)))) 112 T ELT) (($ (-708 (-326 (-558)))) 100 T ELT) (($ (-708 (-964 (-391)))) 134 T ELT) (($ (-708 (-964 (-558)))) 123 T ELT) (($ (-708 (-419 (-964 (-391))))) 88 T ELT) (($ (-708 (-419 (-964 (-558))))) 71 T ELT)) (-3799 (((-1293) $) 62 T ELT)) (-4375 (((-876) $) 56 T ELT) (($ (-660 (-342))) 46 T ELT) (($ (-342)) 53 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 51 T ELT) (($ (-708 (-352 (-3949 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3949) (-718)))) 47 T ELT))) +(((-88 |#1|) (-13 (-398) (-10 -8 (-15 -4375 ($ (-708 (-352 (-3949 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3949) (-718))))))) (-1197)) (T -88)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-708 (-352 (-3949 (QUOTE XL) (QUOTE XR) (QUOTE ELAM)) (-3949) (-718)))) (-5 *1 (-88 *3)) (-14 *3 (-1197))))) +((-3574 (((-3 $ #1="failed") (-326 (-391))) 48 T ELT) (((-3 $ #1#) (-326 (-558))) 53 T ELT) (((-3 $ #1#) (-964 (-391))) 57 T ELT) (((-3 $ #1#) (-964 (-558))) 61 T ELT) (((-3 $ #1#) (-419 (-964 (-391)))) 43 T ELT) (((-3 $ #1#) (-419 (-964 (-558)))) 36 T ELT)) (-3573 (($ (-326 (-391))) 46 T ELT) (($ (-326 (-558))) 51 T ELT) (($ (-964 (-391))) 55 T ELT) (($ (-964 (-558))) 59 T ELT) (($ (-419 (-964 (-391)))) 41 T ELT) (($ (-419 (-964 (-558)))) 33 T ELT)) (-3799 (((-1293) $) 91 T ELT)) (-4375 (((-876) $) 85 T ELT) (($ (-660 (-342))) 79 T ELT) (($ (-342)) 82 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 77 T ELT) (($ (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718))) 32 T ELT))) +(((-89 |#1|) (-13 (-409) (-10 -8 (-15 -4375 ($ (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718)))))) (-1197)) (T -89)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-352 (-3949 (QUOTE X)) (-3949 (QUOTE -4395)) (-718))) (-5 *1 (-89 *3)) (-14 *3 (-1197))))) +((-1366 (((-1287 (-708 |#1|)) (-708 |#1|)) 61 T ELT)) (-1365 (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 (-660 (-937))))) |#2| (-937)) 49 T ELT)) (-1367 (((-2 (|:| |minor| (-660 (-937))) (|:| -3683 |#2|) (|:| |minors| (-660 (-660 (-937)))) (|:| |ops| (-660 |#2|))) |#2| (-937)) 72 (|has| |#1| (-376)) ELT))) +(((-90 |#1| |#2|) (-10 -7 (-15 -1365 ((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 (-660 (-937))))) |#2| (-937))) (-15 -1366 ((-1287 (-708 |#1|)) (-708 |#1|))) (IF (|has| |#1| (-376)) (-15 -1367 ((-2 (|:| |minor| (-660 (-937))) (|:| -3683 |#2|) (|:| |minors| (-660 (-660 (-937)))) (|:| |ops| (-660 |#2|))) |#2| (-937))) |%noBranch|)) (-569) (-677 |#1|)) (T -90)) +((-1367 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |minor| (-660 (-937))) (|:| -3683 *3) (|:| |minors| (-660 (-660 (-937)))) (|:| |ops| (-660 *3)))) (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-677 *5)))) (-1366 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-1287 (-708 *4))) (-5 *1 (-90 *4 *5)) (-5 *3 (-708 *4)) (-4 *5 (-677 *4)))) (-1365 (*1 *2 *3 *4) (-12 (-4 *5 (-569)) (-5 *2 (-2 (|:| -1782 (-708 *5)) (|:| |vec| (-1287 (-660 (-937)))))) (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-677 *5))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3743 ((|#1| $) 40 T ELT)) (-4153 (($) NIL T CONST)) (-3745 ((|#1| |#1| $) 35 T ELT)) (-3744 ((|#1| $) 33 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) NIL T ELT)) (-4036 (($ |#1| $) 36 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-1389 ((|#1| $) 34 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 18 T ELT)) (-3992 (($) 45 T ELT)) (-3742 (((-790) $) 31 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 17 T ELT)) (-4375 (((-876) $) 30 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) NIL T ELT)) (-1368 (($ (-660 |#1|)) 42 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 15 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 12 (|has| $ (-6 -4424)) ELT))) +(((-91 |#1|) (-13 (-1141 |#1|) (-10 -8 (-15 -1368 ($ (-660 |#1|))))) (-1121)) (T -91)) +((-1368 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) +((-4375 (((-876) $) 13 T ELT) (($ (-1202)) 9 T ELT) (((-1202) $) 8 T ELT))) +(((-92 |#1|) (-10 -7 (-15 -4375 ((-1202) |#1|)) (-15 -4375 (|#1| (-1202))) (-15 -4375 ((-876) |#1|))) (-93)) (T -92)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-1202)) 20 T ELT) (((-1202) $) 19 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-93) (-142)) (T -93)) NIL -(-13 (-1122) (-502 (-1203))) -(((-102) . T) ((-633 (-1203)) . T) ((-630 (-877)) . T) ((-630 (-1203)) . T) ((-502 (-1203)) . T) ((-1122) . T) ((-1238) . T)) -((-3908 (($ $) 10 T ELT)) (-3909 (($ $) 12 T ELT))) -(((-94 |#1|) (-10 -7 (-15 -3909 (|#1| |#1|)) (-15 -3908 (|#1| |#1|))) (-95)) (T -94)) +(-13 (-1121) (-502 (-1202))) +(((-102) . T) ((-632 (-1202)) . T) ((-629 (-876)) . T) ((-629 (-1202)) . T) ((-502 (-1202)) . T) ((-1121) . T) ((-1237) . T)) +((-3907 (($ $) 10 T ELT)) (-3908 (($ $) 12 T ELT))) +(((-94 |#1|) (-10 -7 (-15 -3908 (|#1| |#1|)) (-15 -3907 (|#1| |#1|))) (-95)) (T -94)) NIL -((-3906 (($ $) 11 T ELT)) (-3904 (($ $) 10 T ELT)) (-3908 (($ $) 9 T ELT)) (-3909 (($ $) 8 T ELT)) (-3907 (($ $) 7 T ELT)) (-3905 (($ $) 6 T ELT))) +((-3905 (($ $) 11 T ELT)) (-3903 (($ $) 10 T ELT)) (-3907 (($ $) 9 T ELT)) (-3908 (($ $) 8 T ELT)) (-3906 (($ $) 7 T ELT)) (-3904 (($ $) 6 T ELT))) (((-95) (-142)) (T -95)) -((-3906 (*1 *1 *1) (-4 *1 (-95))) (-3904 (*1 *1 *1) (-4 *1 (-95))) (-3908 (*1 *1 *1) (-4 *1 (-95))) (-3909 (*1 *1 *1) (-4 *1 (-95))) (-3907 (*1 *1 *1) (-4 *1 (-95))) (-3905 (*1 *1 *1) (-4 *1 (-95)))) -(-13 (-10 -8 (-15 -3905 ($ $)) (-15 -3907 ($ $)) (-15 -3909 ($ $)) (-15 -3908 ($ $)) (-15 -3904 ($ $)) (-15 -3906 ($ $)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3970 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 15 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-96) (-13 (-1104) (-10 -8 (-15 -3970 ((-1156) $))))) (T -96)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1370 (((-391) (-1180) (-391)) 46 T ELT) (((-391) (-1180) (-1180) (-391)) 44 T ELT)) (-1371 (((-391) (-391)) 35 T ELT)) (-1372 (((-1294)) 37 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1375 (((-391) (-1180) (-1180)) 50 T ELT) (((-391) (-1180)) 52 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1373 (((-391) (-1180) (-1180)) 51 T ELT)) (-1374 (((-391) (-1180) (-1180)) 53 T ELT) (((-391) (-1180)) 54 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-97) (-13 (-1122) (-10 -7 (-15 -1375 ((-391) (-1180) (-1180))) (-15 -1375 ((-391) (-1180))) (-15 -1374 ((-391) (-1180) (-1180))) (-15 -1374 ((-391) (-1180))) (-15 -1373 ((-391) (-1180) (-1180))) (-15 -1372 ((-1294))) (-15 -1371 ((-391) (-391))) (-15 -1370 ((-391) (-1180) (-391))) (-15 -1370 ((-391) (-1180) (-1180) (-391))) (-6 -4425)))) (T -97)) -((-1375 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1375 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1374 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1373 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1372 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-97)))) (-1371 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1370 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1180)) (-5 *1 (-97)))) (-1370 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1180)) (-5 *1 (-97))))) +((-3905 (*1 *1 *1) (-4 *1 (-95))) (-3903 (*1 *1 *1) (-4 *1 (-95))) (-3907 (*1 *1 *1) (-4 *1 (-95))) (-3908 (*1 *1 *1) (-4 *1 (-95))) (-3906 (*1 *1 *1) (-4 *1 (-95))) (-3904 (*1 *1 *1) (-4 *1 (-95)))) +(-13 (-10 -8 (-15 -3904 ($ $)) (-15 -3906 ($ $)) (-15 -3908 ($ $)) (-15 -3907 ($ $)) (-15 -3903 ($ $)) (-15 -3905 ($ $)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3969 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 15 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-96) (-13 (-1103) (-10 -8 (-15 -3969 ((-1155) $))))) (T -96)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-96))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1369 (((-391) (-1179) (-391)) 46 T ELT) (((-391) (-1179) (-1179) (-391)) 44 T ELT)) (-1370 (((-391) (-391)) 35 T ELT)) (-1371 (((-1293)) 37 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1374 (((-391) (-1179) (-1179)) 50 T ELT) (((-391) (-1179)) 52 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1372 (((-391) (-1179) (-1179)) 51 T ELT)) (-1373 (((-391) (-1179) (-1179)) 53 T ELT) (((-391) (-1179)) 54 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-97) (-13 (-1121) (-10 -7 (-15 -1374 ((-391) (-1179) (-1179))) (-15 -1374 ((-391) (-1179))) (-15 -1373 ((-391) (-1179) (-1179))) (-15 -1373 ((-391) (-1179))) (-15 -1372 ((-391) (-1179) (-1179))) (-15 -1371 ((-1293))) (-15 -1370 ((-391) (-391))) (-15 -1369 ((-391) (-1179) (-391))) (-15 -1369 ((-391) (-1179) (-1179) (-391))) (-6 -4424)))) (T -97)) +((-1374 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1374 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1373 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1373 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1372 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) (-1371 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97)))) (-1370 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97)))) (-1369 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1179)) (-5 *1 (-97)))) (-1369 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1179)) (-5 *1 (-97))))) NIL (((-98) (-142)) (T -98)) NIL -(-13 (-10 -7 (-6 -4425) (-6 (-4427 "*")) (-6 -4426) (-6 -4422) (-6 -4420) (-6 -4419) (-6 -4418) (-6 -4423) (-6 -4417) (-6 -4416) (-6 -4415) (-6 -4414) (-6 -4413) (-6 -4421) (-6 -4424) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4412))) -((-2967 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1376 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-558))) 24 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 16 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 ((|#1| $ |#1|) 13 T ELT)) (-3410 (($ $ $) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-4376 (((-877) $) 22 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 8 T CONST)) (-3454 (((-114) $ $) 10 T ELT)) (-4379 (($ $ $) NIL T ELT)) (** (($ $ (-938)) 30 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 18 T ELT)) (* (($ $ $) 31 T ELT))) -(((-99 |#1|) (-13 (-485) (-298 |#1| |#1|) (-10 -8 (-15 -1376 ($ (-1 |#1| |#1|))) (-15 -1376 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1376 ($ (-1 |#1| |#1| (-558)))))) (-1070)) (T -99)) -((-1376 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-1376 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) (-1376 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) -((-1377 (((-417 |#2|) |#2| (-661 |#2|)) 10 T ELT) (((-417 |#2|) |#2| |#2|) 11 T ELT))) -(((-100 |#1| |#2|) (-10 -7 (-15 -1377 ((-417 |#2|) |#2| |#2|)) (-15 -1377 ((-417 |#2|) |#2| (-661 |#2|)))) (-13 (-464) (-149)) (-1264 |#1|)) (T -100)) -((-1377 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-1377 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1264 *4))))) -((-2967 (((-114) $ $) 13 T ELT)) (-1378 (((-114) $ $) 14 T ELT)) (-3454 (((-114) $ $) 11 T ELT))) -(((-101 |#1|) (-10 -7 (-15 -1378 ((-114) |#1| |#1|)) (-15 -2967 ((-114) |#1| |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-102)) (T -101)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +(-13 (-10 -7 (-6 -4424) (-6 (-4426 "*")) (-6 -4425) (-6 -4421) (-6 -4419) (-6 -4418) (-6 -4417) (-6 -4422) (-6 -4416) (-6 -4415) (-6 -4414) (-6 -4413) (-6 -4412) (-6 -4420) (-6 -4423) (-6 |NullSquare|) (-6 |JacobiIdentity|) (-6 -4411))) +((-2966 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1375 (($ (-1 |#1| |#1|)) 27 T ELT) (($ (-1 |#1| |#1|) (-1 |#1| |#1|)) 26 T ELT) (($ (-1 |#1| |#1| (-558))) 24 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 16 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 ((|#1| $ |#1|) 13 T ELT)) (-3409 (($ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-4375 (((-876) $) 22 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 8 T CONST)) (-3453 (((-114) $ $) 10 T ELT)) (-4378 (($ $ $) NIL T ELT)) (** (($ $ (-937)) 30 T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 18 T ELT)) (* (($ $ $) 31 T ELT))) +(((-99 |#1|) (-13 (-485) (-298 |#1| |#1|) (-10 -8 (-15 -1375 ($ (-1 |#1| |#1|))) (-15 -1375 ($ (-1 |#1| |#1|) (-1 |#1| |#1|))) (-15 -1375 ($ (-1 |#1| |#1| (-558)))))) (-1069)) (T -99)) +((-1375 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) (-1375 (*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) (-1375 (*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1069)) (-5 *1 (-99 *3))))) +((-1376 (((-417 |#2|) |#2| (-660 |#2|)) 10 T ELT) (((-417 |#2|) |#2| |#2|) 11 T ELT))) +(((-100 |#1| |#2|) (-10 -7 (-15 -1376 ((-417 |#2|) |#2| |#2|)) (-15 -1376 ((-417 |#2|) |#2| (-660 |#2|)))) (-13 (-464) (-149)) (-1263 |#1|)) (T -100)) +((-1376 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3)))) (-1376 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) (-4 *3 (-1263 *4))))) +((-2966 (((-114) $ $) 13 T ELT)) (-1377 (((-114) $ $) 14 T ELT)) (-3453 (((-114) $ $) 11 T ELT))) +(((-101 |#1|) (-10 -7 (-15 -1377 ((-114) |#1| |#1|)) (-15 -2966 ((-114) |#1| |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-102)) (T -101)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-102) (-142)) (T -102)) -((-3454 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-2967 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-1378 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) -(-13 (-1238) (-10 -8 (-15 -3454 ((-114) $ $)) (-15 -2967 ((-114) $ $)) (-15 -1378 ((-114) $ $)))) -(((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) NIL T ELT)) (-3426 ((|#1| $ |#1|) 24 (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) NIL (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) NIL (|has| $ (-6 -4426)) ELT)) (-1381 (($ $ (-661 |#1|)) 30 T ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3539 (($ $) 12 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1416 (($ $ |#1| $) 32 T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1380 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1379 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-661 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3540 (($ $) 11 T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) 13 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 9 T ELT)) (-3993 (($) 31 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1382 (($ (-791) |#1|) 33 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -1382 ($ (-791) |#1|)) (-15 -1381 ($ $ (-661 |#1|))) (-15 -1380 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1380 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1379 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1379 ($ $ |#1| (-1 (-661 |#1|) |#1| |#1| |#1|))))) (-1122)) (T -103)) -((-1382 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-103 *3)) (-4 *3 (-1122)))) (-1381 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) (-1380 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1122)))) (-1380 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) (-1379 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2)))) (-1379 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-661 *2) *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2))))) -((-1383 ((|#3| |#2| |#2|) 34 T ELT)) (-1385 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4427 #1="*"))) ELT)) (-1384 ((|#3| |#2| |#2|) 36 T ELT)) (-1386 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4427 #1#))) ELT))) -(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1383 (|#3| |#2| |#2|)) (-15 -1384 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4427 "*"))) (PROGN (-15 -1385 (|#1| |#2| |#2|)) (-15 -1386 (|#1| |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-706 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) -((-1386 (*1 *2 *3) (-12 (|has| *2 (-6 (-4427 #1="*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-706 *2 *5 *6)))) (-1385 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4427 #1#))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) (-4 *4 (-706 *2 *5 *6)))) (-1384 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1383 (*1 *2 *3 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1264 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1388 (((-661 (-1198))) 37 T ELT)) (-1387 (((-2 (|:| |zeros| (-1176 (-229))) (|:| |ones| (-1176 (-229))) (|:| |singularities| (-1176 (-229)))) (-1198)) 39 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-105) (-13 (-1122) (-10 -7 (-15 -1388 ((-661 (-1198)))) (-15 -1387 ((-2 (|:| |zeros| (-1176 (-229))) (|:| |ones| (-1176 (-229))) (|:| |singularities| (-1176 (-229)))) (-1198))) (-6 -4425)))) (T -105)) -((-1388 (*1 *2) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-105)))) (-1387 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-2 (|:| |zeros| (-1176 (-229))) (|:| |ones| (-1176 (-229))) (|:| |singularities| (-1176 (-229))))) (-5 *1 (-105))))) -((-1391 (($ (-661 |#2|)) 11 T ELT))) -(((-106 |#1| |#2|) (-10 -7 (-15 -1391 (|#1| (-661 |#2|)))) (-107 |#2|) (-1238)) (T -106)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4154 (($) 7 T CONST)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-107 |#1|) (-142) (-1238)) (T -107)) -((-1391 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3)))) (-1390 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-4037 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(-13 (-501 |t#1|) (-10 -8 (-6 -4426) (-15 -1391 ($ (-661 |t#1|))) (-15 -1390 (|t#1| $)) (-15 -4037 ($ |t#1| $)) (-15 -1389 (|t#1| $)))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-3574 (((-558) $) NIL T ELT) (((-1198) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-558) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-558) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-558) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-558) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| (-558) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-4388 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-558) (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3532 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1198)) (-661 (-558))) NIL (|has| (-558) (-526 (-1198) (-558))) ELT) (($ $ (-1198) (-558)) NIL (|has| (-558) (-526 (-1198) (-558))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) NIL T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-558) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-558) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1041)) ELT) (((-229) $) NIL (|has| (-558) (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1198)) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1025 2) $) 10 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-558) (-929))) (|has| (-558) (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-2239 (($ (-419 (-558))) 9 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-4379 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) -(((-108) (-13 (-1012 (-558)) (-630 (-419 (-558))) (-630 (-1025 2)) (-10 -8 (-15 -3530 ((-419 (-558)) $)) (-15 -2239 ($ (-419 (-558))))))) (T -108)) -((-3530 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) (-2239 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108))))) -((-1402 (((-661 (-984)) $) 13 T ELT)) (-3970 (((-518) $) 9 T ELT)) (-4376 (((-877) $) 20 T ELT)) (-1392 (($ (-518) (-661 (-984))) 15 T ELT))) -(((-109) (-13 (-630 (-877)) (-10 -8 (-15 -3970 ((-518) $)) (-15 -1402 ((-661 (-984)) $)) (-15 -1392 ($ (-518) (-661 (-984))))))) (T -109)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1402 (*1 *2 *1) (-12 (-5 *2 (-661 (-984))) (-5 *1 (-109)))) (-1392 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-984))) (-5 *1 (-109))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3742 (($ $ $) NIL T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) NIL (|has| (-114) (-861)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1933 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-114) (-861))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) NIL (|has| (-114) (-861)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4218 (((-114) $ (-1255 (-558)) (-114)) NIL (|has| $ (-6 -4426)) ELT) (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-3826 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-4272 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-1719 (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-114) $ (-558)) NIL T ELT)) (-3839 (((-558) (-114) $ (-558)) NIL (|has| (-114) (-1122)) ELT) (((-558) (-114) $) NIL (|has| (-114) (-1122)) ELT) (((-558) (-1 (-114) (-114)) $) NIL T ELT)) (-3290 (((-661 (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-2959 (($ $) NIL T ELT)) (-1414 (($ $ $) NIL T ELT)) (-4044 (($ (-791) (-114)) 10 T ELT)) (-1415 (($ $ $) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL T ELT)) (-3938 (($ $ $) NIL (|has| (-114) (-861)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3007 (((-661 (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL T ELT)) (-2160 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2517 (($ $ $ (-558)) NIL T ELT) (($ (-114) $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-114) $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2414 (($ $ (-114)) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-114)) (-661 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-661 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-2420 (((-661 (-114)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 (($ $ (-1255 (-558))) NIL T ELT) (((-114) $ (-558)) NIL T ELT) (((-114) $ (-558) (-114)) NIL T ELT)) (-2518 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2157 (((-791) (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT) (((-791) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-114) (-631 (-547))) ELT)) (-3950 (($ (-661 (-114))) NIL T ELT)) (-4232 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1978 (($ (-791) (-114)) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-110) (-13 (-125) (-10 -8 (-15 -1978 ($ (-791) (-114)))))) (T -110)) -((-1978 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-114)) (-5 *1 (-110))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-111 |#1| |#2|) (-142) (-1070) (-1070)) (T -111)) -NIL -(-13 (-668 |t#1|) (-1077 |t#2|) (-10 -7 (-6 -4420) (-6 -4419))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1122) . T) ((-1238) . T)) -((-2526 (($ $) 8 T ELT))) -(((-112 |#1|) (-10 -7 (-15 -2526 (|#1| |#1|))) (-113)) (T -112)) -NIL -((-2526 (($ $) 8 T ELT)) (-2960 (($ $ $) 9 T ELT)) (-2959 (($ $) 11 T ELT)) (-2961 (($ $ $) 10 T ELT)) (-2524 (($ $ $) 6 T ELT)) (-2525 (($ $ $) 7 T ELT))) +((-3453 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) (-1377 (*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) +(-13 (-1237) (-10 -8 (-15 -3453 ((-114) $ $)) (-15 -2966 ((-114) $ $)) (-15 -1377 ((-114) $ $)))) +(((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) NIL T ELT)) (-3425 ((|#1| $ |#1|) 24 (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) NIL (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) NIL (|has| $ (-6 -4425)) ELT)) (-1380 (($ $ (-660 |#1|)) 30 T ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3538 (($ $) 12 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1415 (($ $ |#1| $) 32 T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1379 ((|#1| $ (-1 |#1| |#1| |#1|)) 40 T ELT) (($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|)) 45 T ELT)) (-1378 (($ $ |#1| (-1 |#1| |#1| |#1|)) 46 T ELT) (($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|)) 49 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3539 (($ $) 11 T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) 13 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 9 T ELT)) (-3992 (($) 31 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1381 (($ (-790) |#1|) 33 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-103 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4424) (-6 -4425) (-15 -1381 ($ (-790) |#1|)) (-15 -1380 ($ $ (-660 |#1|))) (-15 -1379 (|#1| $ (-1 |#1| |#1| |#1|))) (-15 -1379 ($ $ $ (-1 |#1| |#1| |#1| |#1| |#1|))) (-15 -1378 ($ $ |#1| (-1 |#1| |#1| |#1|))) (-15 -1378 ($ $ |#1| (-1 (-660 |#1|) |#1| |#1| |#1|))))) (-1121)) (T -103)) +((-1381 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-103 *3)) (-4 *3 (-1121)))) (-1380 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-1379 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121)))) (-1379 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2)))) (-1378 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-1 (-660 *2) *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) +((-1382 ((|#3| |#2| |#2|) 34 T ELT)) (-1384 ((|#1| |#2| |#2|) 51 (|has| |#1| (-6 (-4426 #1="*"))) ELT)) (-1383 ((|#3| |#2| |#2|) 36 T ELT)) (-1385 ((|#1| |#2|) 54 (|has| |#1| (-6 (-4426 #1#))) ELT))) +(((-104 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1382 (|#3| |#2| |#2|)) (-15 -1383 (|#3| |#2| |#2|)) (IF (|has| |#1| (-6 (-4426 "*"))) (PROGN (-15 -1384 (|#1| |#2| |#2|)) (-15 -1385 (|#1| |#2|))) |%noBranch|)) (-1069) (-1263 |#1|) (-705 |#1| |#4| |#5|) (-385 |#1|) (-385 |#1|)) (T -104)) +((-1385 (*1 *2 *3) (-12 (|has| *2 (-6 (-4426 #1="*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-705 *2 *5 *6)))) (-1384 (*1 *2 *3 *3) (-12 (|has| *2 (-6 (-4426 #1#))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) (-4 *4 (-705 *2 *5 *6)))) (-1383 (*1 *2 *3 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-705 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-1382 (*1 *2 *3 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-705 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) (-4 *3 (-1263 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1387 (((-660 (-1197))) 37 T ELT)) (-1386 (((-2 (|:| |zeros| (-1175 (-229))) (|:| |ones| (-1175 (-229))) (|:| |singularities| (-1175 (-229)))) (-1197)) 39 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-105) (-13 (-1121) (-10 -7 (-15 -1387 ((-660 (-1197)))) (-15 -1386 ((-2 (|:| |zeros| (-1175 (-229))) (|:| |ones| (-1175 (-229))) (|:| |singularities| (-1175 (-229)))) (-1197))) (-6 -4424)))) (T -105)) +((-1387 (*1 *2) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-105)))) (-1386 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-2 (|:| |zeros| (-1175 (-229))) (|:| |ones| (-1175 (-229))) (|:| |singularities| (-1175 (-229))))) (-5 *1 (-105))))) +((-1390 (($ (-660 |#2|)) 11 T ELT))) +(((-106 |#1| |#2|) (-10 -7 (-15 -1390 (|#1| (-660 |#2|)))) (-107 |#2|) (-1237)) (T -106)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4153 (($) 7 T CONST)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-107 |#1|) (-142) (-1237)) (T -107)) +((-1390 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3)))) (-1389 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-4036 (*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) (-1388 (*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) +(-13 (-501 |t#1|) (-10 -8 (-6 -4425) (-15 -1390 ($ (-660 |t#1|))) (-15 -1389 (|t#1| $)) (-15 -4036 ($ |t#1| $)) (-15 -1388 (|t#1| $)))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-558) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-3573 (((-558) $) NIL T ELT) (((-1197) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-558) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-558) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-558) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| (-558) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-4387 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-558) (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3531 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-558)) (-660 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-1197)) (-660 (-558))) NIL (|has| (-558) (-526 (-1197) (-558))) ELT) (($ $ (-1197) (-558)) NIL (|has| (-558) (-526 (-1197) (-558))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-558) $) NIL T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-558) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-558) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1040)) ELT) (((-229) $) NIL (|has| (-558) (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1197)) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1024 2) $) 10 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-558) (-928))) (|has| (-558) (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-2238 (($ (-419 (-558))) 9 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| (-558) (-841)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-4378 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) +(((-108) (-13 (-1011 (-558)) (-629 (-419 (-558))) (-629 (-1024 2)) (-10 -8 (-15 -3529 ((-419 (-558)) $)) (-15 -2238 ($ (-419 (-558))))))) (T -108)) +((-3529 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) (-2238 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108))))) +((-1401 (((-660 (-983)) $) 13 T ELT)) (-3969 (((-518) $) 9 T ELT)) (-4375 (((-876) $) 20 T ELT)) (-1391 (($ (-518) (-660 (-983))) 15 T ELT))) +(((-109) (-13 (-629 (-876)) (-10 -8 (-15 -3969 ((-518) $)) (-15 -1401 ((-660 (-983)) $)) (-15 -1391 ($ (-518) (-660 (-983))))))) (T -109)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-660 (-983))) (-5 *1 (-109)))) (-1391 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-983))) (-5 *1 (-109))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3741 (($ $ $) NIL T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) NIL (|has| (-114) (-860)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1932 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-860))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) NIL (|has| (-114) (-860)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4217 (((-114) $ (-1254 (-558)) (-114)) NIL (|has| $ (-6 -4425)) ELT) (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-3825 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-4271 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-1718 (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4425)) ELT)) (-3514 (((-114) $ (-558)) NIL T ELT)) (-3838 (((-558) (-114) $ (-558)) NIL (|has| (-114) (-1121)) ELT) (((-558) (-114) $) NIL (|has| (-114) (-1121)) ELT) (((-558) (-1 (-114) (-114)) $) NIL T ELT)) (-3289 (((-660 (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2959 (($ $ $) NIL T ELT)) (-2958 (($ $) NIL T ELT)) (-1413 (($ $ $) NIL T ELT)) (-4043 (($ (-790) (-114)) 10 T ELT)) (-1414 (($ $ $) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| (-114) (-860)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3006 (((-660 (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL T ELT)) (-2159 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2516 (($ $ $ (-558)) NIL T ELT) (($ (-114) $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-114) $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2413 (($ $ (-114)) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-114)) (-660 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-660 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-2419 (((-660 (-114)) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 (($ $ (-1254 (-558))) NIL T ELT) (((-114) $ (-558)) NIL T ELT) (((-114) $ (-558) (-114)) NIL T ELT)) (-2517 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2156 (((-790) (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT) (((-790) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-114) (-630 (-547))) ELT)) (-3949 (($ (-660 (-114))) NIL T ELT)) (-4231 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1977 (($ (-790) (-114)) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2960 (($ $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-110) (-13 (-125) (-10 -8 (-15 -1977 ($ (-790) (-114)))))) (T -110)) +((-1977 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-114)) (-5 *1 (-110))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-111 |#1| |#2|) (-142) (-1069) (-1069)) (T -111)) +NIL +(-13 (-667 |t#1|) (-1076 |t#2|) (-10 -7 (-6 -4419) (-6 -4418))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1121) . T) ((-1237) . T)) +((-2525 (($ $) 8 T ELT))) +(((-112 |#1|) (-10 -7 (-15 -2525 (|#1| |#1|))) (-113)) (T -112)) +NIL +((-2525 (($ $) 8 T ELT)) (-2959 (($ $ $) 9 T ELT)) (-2958 (($ $) 11 T ELT)) (-2960 (($ $ $) 10 T ELT)) (-2523 (($ $ $) 6 T ELT)) (-2524 (($ $ $) 7 T ELT))) (((-113) (-142)) (T -113)) -((-2959 (*1 *1 *1) (-4 *1 (-113))) (-2961 (*1 *1 *1 *1) (-4 *1 (-113))) (-2960 (*1 *1 *1 *1) (-4 *1 (-113)))) -(-13 (-682) (-10 -8 (-15 -2959 ($ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)))) -(((-682) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) 9 T ELT)) (-3742 (($ $ $) 14 T ELT)) (-3256 (($) 6 T CONST)) (-3538 (((-791)) 23 T ELT)) (-3395 (($) 31 T ELT)) (-2960 (($ $ $) 12 T ELT)) (-2959 (($ $) 8 T ELT)) (-1414 (($ $ $) 15 T ELT)) (-1415 (($ $ $) 16 T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) 29 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 27 T ELT)) (-3254 (($ $ $) 19 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3255 (($) 7 T CONST)) (-3253 (($ $ $) 20 T ELT)) (-4402 (((-547) $) 33 T ELT)) (-4376 (((-877) $) 35 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2961 (($ $ $) 10 T ELT)) (-2524 (($ $ $) 13 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 18 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 21 T ELT)) (-2525 (($ $ $) 11 T ELT))) -(((-114) (-13 (-857) (-988) (-631 (-547)) (-10 -8 (-15 -3742 ($ $ $)) (-15 -1415 ($ $ $)) (-15 -1414 ($ $ $))))) (T -114)) -((-3742 (*1 *1 *1 *1) (-5 *1 (-114))) (-1415 (*1 *1 *1 *1) (-5 *1 (-114))) (-1414 (*1 *1 *1 *1) (-5 *1 (-114)))) -((-2967 (((-114) $ $) NIL T ELT)) (-1654 (((-791) $) 92 T ELT) (($ $ (-791)) 38 T ELT)) (-1400 (((-114) $) 42 T ELT)) (-1394 (($ $ (-1180) (-793)) 59 T ELT) (($ $ (-518) (-793)) 34 T ELT)) (-1393 (($ $ (-45 (-1180) (-793))) 16 T ELT)) (-3242 (((-3 (-793) "failed") $ (-1180)) 27 T ELT) (((-711 (-793)) $ (-518)) 33 T ELT)) (-1402 (((-45 (-1180) (-793)) $) 15 T ELT)) (-4023 (($ (-1198)) 20 T ELT) (($ (-1198) (-791)) 23 T ELT) (($ (-1198) (-55)) 24 T ELT)) (-1401 (((-114) $) 40 T ELT)) (-1399 (((-114) $) 44 T ELT)) (-3970 (((-1198) $) 8 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3032 (((-114) $ (-1198)) 11 T ELT)) (-2343 (($ $ (-1 (-547) (-661 (-547)))) 65 T ELT) (((-711 (-1 (-547) (-661 (-547)))) $) 69 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1396 (((-114) $ (-518)) 37 T ELT)) (-1398 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-4047 (((-711 (-1 (-877) (-661 (-877)))) $) 67 T ELT) (($ $ (-1 (-877) (-661 (-877)))) 52 T ELT) (($ $ (-1 (-877) (-877))) 54 T ELT)) (-1395 (($ $ (-1180)) 56 T ELT) (($ $ (-518)) 57 T ELT)) (-3820 (($ $) 75 T ELT)) (-1397 (($ $ (-1 (-114) $ $)) 47 T ELT)) (-4376 (((-877) $) 61 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3193 (($ $ (-518)) 35 T ELT)) (-2917 (((-55) $) 70 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 88 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 104 T ELT))) -(((-115) (-13 (-861) (-849 (-1198)) (-10 -8 (-15 -1402 ((-45 (-1180) (-793)) $)) (-15 -3820 ($ $)) (-15 -4023 ($ (-1198))) (-15 -4023 ($ (-1198) (-791))) (-15 -4023 ($ (-1198) (-55))) (-15 -1401 ((-114) $)) (-15 -1400 ((-114) $)) (-15 -1399 ((-114) $)) (-15 -1654 ((-791) $)) (-15 -1654 ($ $ (-791))) (-15 -1398 ($ $ (-1 (-114) $ $))) (-15 -1397 ($ $ (-1 (-114) $ $))) (-15 -4047 ((-711 (-1 (-877) (-661 (-877)))) $)) (-15 -4047 ($ $ (-1 (-877) (-661 (-877))))) (-15 -4047 ($ $ (-1 (-877) (-877)))) (-15 -2343 ($ $ (-1 (-547) (-661 (-547))))) (-15 -2343 ((-711 (-1 (-547) (-661 (-547)))) $)) (-15 -1396 ((-114) $ (-518))) (-15 -3193 ($ $ (-518))) (-15 -1395 ($ $ (-1180))) (-15 -1395 ($ $ (-518))) (-15 -3242 ((-3 (-793) "failed") $ (-1180))) (-15 -3242 ((-711 (-793)) $ (-518))) (-15 -1394 ($ $ (-1180) (-793))) (-15 -1394 ($ $ (-518) (-793))) (-15 -1393 ($ $ (-45 (-1180) (-793))))))) (T -115)) -((-1402 (*1 *2 *1) (-12 (-5 *2 (-45 (-1180) (-793))) (-5 *1 (-115)))) (-3820 (*1 *1 *1) (-5 *1 (-115))) (-4023 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-115)))) (-4023 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-791)) (-5 *1 (-115)))) (-4023 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1401 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1654 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) (-1654 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) (-1398 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-877) (-661 (-877))))) (-5 *1 (-115)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-661 (-877)))) (-5 *1 (-115)))) (-4047 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-877))) (-5 *1 (-115)))) (-2343 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-661 (-547)))) (-5 *1 (-115)))) (-2343 (*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-547) (-661 (-547))))) (-5 *1 (-115)))) (-1396 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115)))) (-3193 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1395 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-115)))) (-1395 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3242 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-793)) (-5 *1 (-115)))) (-3242 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-793))) (-5 *1 (-115)))) (-1394 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-793)) (-5 *1 (-115)))) (-1394 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-793)) (-5 *1 (-115)))) (-1393 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1180) (-793))) (-5 *1 (-115))))) -((-2914 (((-3 (-1 |#1| (-661 |#1|)) #1="failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-661 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-115) (-661 |#1|)) 25 T ELT)) (-1403 (((-3 (-661 (-1 |#1| (-661 |#1|))) #1#) (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-661 (-1 |#1| (-661 |#1|)))) 30 T ELT)) (-1404 (((-115) |#1|) 63 T ELT)) (-1405 (((-3 |#1| #1#) (-115)) 58 T ELT))) -(((-116 |#1|) (-10 -7 (-15 -2914 ((-3 |#1| #1="failed") (-115) (-661 |#1|))) (-15 -2914 ((-115) (-115) (-1 |#1| (-661 |#1|)))) (-15 -2914 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2914 ((-3 (-1 |#1| (-661 |#1|)) #1#) (-115))) (-15 -1403 ((-115) (-115) (-661 (-1 |#1| (-661 |#1|))))) (-15 -1403 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1403 ((-3 (-661 (-1 |#1| (-661 |#1|))) #1#) (-115))) (-15 -1404 ((-115) |#1|)) (-15 -1405 ((-3 |#1| #1#) (-115)))) (-1122)) (T -116)) -((-1405 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1122)))) (-1404 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1122)))) (-1403 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-1 *4 (-661 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1122)))) (-1403 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-116 *4)))) (-1403 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 (-1 *4 (-661 *4)))) (-4 *4 (-1122)) (-5 *1 (-116 *4)))) (-2914 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-661 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1122)))) (-2914 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-116 *4)))) (-2914 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-661 *4))) (-4 *4 (-1122)) (-5 *1 (-116 *4)))) (-2914 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-661 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1122))))) -((-1406 (((-558) |#2|) 41 T ELT))) -(((-117 |#1| |#2|) (-10 -7 (-15 -1406 ((-558) |#2|))) (-13 (-376) (-1059 (-419 (-558)))) (-1264 |#1|)) (T -117)) -((-1406 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1059 (-419 *2)))) (-5 *2 (-558)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1264 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $ (-558)) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3010 (($ (-1192 (-558)) (-558)) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3011 (($ $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4202 (((-791) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-3013 (((-558)) NIL T ELT)) (-3012 (((-558) $) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4199 (($ $ (-558)) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3014 (((-1176 (-558)) $) NIL T ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-558) $ (-558)) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-118 |#1|) (-884 |#1|) (-558)) (T -118)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-118 |#1|) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-118 |#1|) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-118 |#1|) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-118 |#1|) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-118 |#1|) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-118 |#1|) (-1059 (-558))) ELT)) (-3574 (((-118 |#1|) $) NIL T ELT) (((-1198) $) NIL (|has| (-118 |#1|) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-118 |#1|) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-118 |#1|) (-1059 (-558))) ELT)) (-4160 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-118 |#1|))) (|:| |vec| (-1288 (-118 |#1|)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-118 |#1|)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-118 |#1|) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-118 |#1|) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-118 |#1|) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-118 |#1|) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| (-118 |#1|) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-118 |#1|) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-118 |#1|) (-861)) ELT)) (-4388 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-118 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-118 |#1|))) (|:| |vec| (-1288 (-118 |#1|)))) (-1288 $) $) NIL T ELT) (((-709 (-118 |#1|)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-118 |#1|) (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3532 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-118 |#1|) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-118 |#1|) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-118 |#1|)) (-661 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-661 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-661 (-1198)) (-661 (-118 |#1|))) NIL (|has| (-118 |#1|) (-526 (-1198) (-118 |#1|))) ELT) (($ $ (-1198) (-118 |#1|)) NIL (|has| (-118 |#1|) (-526 (-1198) (-118 |#1|))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-118 |#1|) $) NIL T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-118 |#1|) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-118 |#1|) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-118 |#1|) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1041)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1041)) ELT)) (-3015 (((-177 (-419 (-558))) $) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1198)) NIL (|has| (-118 |#1|) (-1059 (-1198))) ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-929))) (|has| (-118 |#1|) (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-419 (-558)) $ (-558)) NIL T ELT)) (-3803 (($ $) NIL (|has| (-118 |#1|) (-842)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-118 |#1|) (-919 (-1198))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-118 |#1|) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-118 |#1|) (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| (-118 |#1|) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-118 |#1|) (-861)) ELT)) (-4379 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT))) -(((-119 |#1|) (-13 (-1012 (-118 |#1|)) (-10 -8 (-15 -4200 ((-419 (-558)) $ (-558))) (-15 -3015 ((-177 (-419 (-558))) $)) (-15 -4160 ($ $)) (-15 -4160 ($ (-558) $)))) (-558)) (T -119)) -((-4200 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-119 *3)) (-14 *3 (-558)))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-558)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-119 *3)) (-14 *3 *2)))) -((-4218 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3432 (((-661 $) $) 31 T ELT)) (-3428 (((-114) $ $) 36 T ELT)) (-3663 (((-114) |#2| $) 40 T ELT)) (-3431 (((-661 |#2|) $) 25 T ELT)) (-3947 (((-114) $) 18 T ELT)) (-4230 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-4063 (((-114) $) 57 T ELT)) (-4376 (((-877) $) 47 T ELT)) (-3942 (((-661 $) $) 32 T ELT)) (-3454 (((-114) $ $) 38 T ELT)) (-4387 (((-791) $) 50 T ELT))) -(((-120 |#1| |#2|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -4218 (|#1| |#1| #1="right" |#1|)) (-15 -4218 (|#1| |#1| #2="left" |#1|)) (-15 -4230 (|#1| |#1| #1#)) (-15 -4230 (|#1| |#1| #2#)) (-15 -4218 (|#2| |#1| #3="value" |#2|)) (-15 -3428 ((-114) |#1| |#1|)) (-15 -3431 ((-661 |#2|) |#1|)) (-15 -4063 ((-114) |#1|)) (-15 -4230 (|#2| |#1| #3#)) (-15 -3947 ((-114) |#1|)) (-15 -3432 ((-661 |#1|) |#1|)) (-15 -3942 ((-661 |#1|) |#1|)) (-15 -3663 ((-114) |#2| |#1|)) (-15 -4387 ((-791) |#1|))) (-121 |#2|) (-1238)) (T -120)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) 58 (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) 60 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4426)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4154 (($) 7 T CONST)) (-3539 (($ $) 63 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3540 (($ $) 65 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-121 |#1|) (-142) (-1238)) (T -121)) -((-3540 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1238)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1238)))) (-3539 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1238)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1238)))) (-4218 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4426)) (-4 *1 (-121 *3)) (-4 *3 (-1238)))) (-1408 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-121 *2)) (-4 *2 (-1238)))) (-4218 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4426)) (-4 *1 (-121 *3)) (-4 *3 (-1238)))) (-1407 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-121 *2)) (-4 *2 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -3540 ($ $)) (-15 -4230 ($ $ "left")) (-15 -3539 ($ $)) (-15 -4230 ($ $ "right")) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4218 ($ $ "left" $)) (-15 -1408 ($ $ $)) (-15 -4218 ($ $ "right" $)) (-15 -1407 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1031 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-1411 (((-114) |#1|) 29 T ELT)) (-1410 (((-791) (-791)) 28 T ELT) (((-791)) 27 T ELT)) (-1409 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT))) -(((-122 |#1|) (-10 -7 (-15 -1409 ((-114) |#1|)) (-15 -1409 ((-114) |#1| (-114))) (-15 -1410 ((-791))) (-15 -1410 ((-791) (-791))) (-15 -1411 ((-114) |#1|))) (-1264 (-558))) (T -122)) -((-1411 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558))))) (-1410 (*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558))))) (-1410 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558))))) (-1409 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558))))) (-1409 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558)))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 18 T ELT)) (-3838 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) 21 (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) 23 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3539 (($ $) 20 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1416 (($ $ |#1| $) 27 T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3540 (($ $) 22 T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1412 (($ |#1| $) 28 T ELT)) (-4037 (($ |#1| $) 15 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 17 T ELT)) (-3993 (($) 11 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1413 (($ (-661 |#1|)) 16 T ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1413 ($ (-661 |#1|))) (-15 -4037 ($ |#1| $)) (-15 -1412 ($ |#1| $)) (-15 -3838 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-861)) (T -123)) -((-1413 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-123 *3)))) (-4037 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-861)))) (-1412 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-861)))) (-3838 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-861))))) -((-2526 (($ $) 13 T ELT)) (-2959 (($ $) 11 T ELT)) (-1414 (($ $ $) 23 T ELT)) (-1415 (($ $ $) 21 T ELT)) (-2524 (($ $ $) 19 T ELT)) (-2525 (($ $ $) 17 T ELT))) -(((-124 |#1|) (-10 -7 (-15 -1414 (|#1| |#1| |#1|)) (-15 -1415 (|#1| |#1| |#1|)) (-15 -2526 (|#1| |#1|)) (-15 -2525 (|#1| |#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -2959 (|#1| |#1|))) (-125)) (T -124)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-2526 (($ $) 103 T ELT)) (-3742 (($ $ $) 31 T ELT)) (-2413 (((-1294) $ (-558) (-558)) 66 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) 98 (|has| (-114) (-861)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-1933 (($ $) 102 (-12 (|has| (-114) (-861)) (|has| $ (-6 -4426))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) 97 (|has| (-114) (-861)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-4218 (((-114) $ (-1255 (-558)) (-114)) 88 (|has| $ (-6 -4426)) ELT) (((-114) $ (-558) (-114)) 54 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 38 T CONST)) (-2510 (($ $) 100 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 90 T ELT)) (-1467 (($ $) 68 (-12 (|has| (-114) (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4425)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1122)) (|has| $ (-6 -4425))) ELT)) (-4272 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1122)) (|has| $ (-6 -4425))) ELT)) (-1719 (((-114) $ (-558) (-114)) 53 (|has| $ (-6 -4426)) ELT)) (-3515 (((-114) $ (-558)) 55 T ELT)) (-3839 (((-558) (-114) $ (-558)) 95 (|has| (-114) (-1122)) ELT) (((-558) (-114) $) 94 (|has| (-114) (-1122)) ELT) (((-558) (-1 (-114) (-114)) $) 93 T ELT)) (-3290 (((-661 (-114)) $) 45 (|has| $ (-6 -4425)) ELT)) (-2960 (($ $ $) 108 T ELT)) (-2959 (($ $) 106 T ELT)) (-1414 (($ $ $) 32 T ELT)) (-4044 (($ (-791) (-114)) 78 T ELT)) (-1415 (($ $ $) 33 T ELT)) (-2415 (((-558) $) 63 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 23 T ELT)) (-3938 (($ $ $) 96 (|has| (-114) (-861)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-3007 (((-661 (-114)) $) 46 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 62 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 22 T ELT)) (-2160 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2517 (($ $ $ (-558)) 87 T ELT) (($ (-114) $ (-558)) 86 T ELT)) (-2418 (((-661 (-558)) $) 60 T ELT)) (-2419 (((-114) (-558) $) 59 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4231 (((-114) $) 64 (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-2414 (($ $ (-114)) 65 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-114)) (-661 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-661 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT)) (-1329 (((-114) $ $) 34 T ELT)) (-2417 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-2420 (((-661 (-114)) $) 58 T ELT)) (-3823 (((-114) $) 37 T ELT)) (-3993 (($) 36 T ELT)) (-4230 (($ $ (-1255 (-558))) 77 T ELT) (((-114) $ (-558)) 57 T ELT) (((-114) $ (-558) (-114)) 56 T ELT)) (-2518 (($ $ (-1255 (-558))) 85 T ELT) (($ $ (-558)) 84 T ELT)) (-2157 (((-791) (-114) $) 47 (-12 (|has| (-114) (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4425)) ELT)) (-1934 (($ $ $ (-558)) 99 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 35 T ELT)) (-4402 (((-547) $) 67 (|has| (-114) (-631 (-547))) ELT)) (-3950 (($ (-661 (-114))) 76 T ELT)) (-4232 (($ (-661 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2159 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4425)) ELT)) (-2961 (($ $ $) 107 T ELT)) (-2524 (($ $ $) 105 T ELT)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-2525 (($ $ $) 104 T ELT)) (-4387 (((-791) $) 39 (|has| $ (-6 -4425)) ELT))) +((-2958 (*1 *1 *1) (-4 *1 (-113))) (-2960 (*1 *1 *1 *1) (-4 *1 (-113))) (-2959 (*1 *1 *1 *1) (-4 *1 (-113)))) +(-13 (-681) (-10 -8 (-15 -2958 ($ $)) (-15 -2960 ($ $ $)) (-15 -2959 ($ $ $)))) +(((-681) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) 9 T ELT)) (-3741 (($ $ $) 14 T ELT)) (-3255 (($) 6 T CONST)) (-3537 (((-790)) 23 T ELT)) (-3394 (($) 31 T ELT)) (-2959 (($ $ $) 12 T ELT)) (-2958 (($ $) 8 T ELT)) (-1413 (($ $ $) 15 T ELT)) (-1414 (($ $ $) 16 T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) 29 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 27 T ELT)) (-3253 (($ $ $) 19 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3254 (($) 7 T CONST)) (-3252 (($ $ $) 20 T ELT)) (-4401 (((-547) $) 33 T ELT)) (-4375 (((-876) $) 35 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2960 (($ $ $) 10 T ELT)) (-2523 (($ $ $) 13 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 18 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 21 T ELT)) (-2524 (($ $ $) 11 T ELT))) +(((-114) (-13 (-856) (-987) (-630 (-547)) (-10 -8 (-15 -3741 ($ $ $)) (-15 -1414 ($ $ $)) (-15 -1413 ($ $ $))))) (T -114)) +((-3741 (*1 *1 *1 *1) (-5 *1 (-114))) (-1414 (*1 *1 *1 *1) (-5 *1 (-114))) (-1413 (*1 *1 *1 *1) (-5 *1 (-114)))) +((-2966 (((-114) $ $) NIL T ELT)) (-1653 (((-790) $) 92 T ELT) (($ $ (-790)) 38 T ELT)) (-1399 (((-114) $) 42 T ELT)) (-1393 (($ $ (-1179) (-792)) 59 T ELT) (($ $ (-518) (-792)) 34 T ELT)) (-1392 (($ $ (-45 (-1179) (-792))) 16 T ELT)) (-3241 (((-3 (-792) "failed") $ (-1179)) 27 T ELT) (((-710 (-792)) $ (-518)) 33 T ELT)) (-1401 (((-45 (-1179) (-792)) $) 15 T ELT)) (-4022 (($ (-1197)) 20 T ELT) (($ (-1197) (-790)) 23 T ELT) (($ (-1197) (-55)) 24 T ELT)) (-1400 (((-114) $) 40 T ELT)) (-1398 (((-114) $) 44 T ELT)) (-3969 (((-1197) $) 8 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3031 (((-114) $ (-1197)) 11 T ELT)) (-2342 (($ $ (-1 (-547) (-660 (-547)))) 65 T ELT) (((-710 (-1 (-547) (-660 (-547)))) $) 69 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1395 (((-114) $ (-518)) 37 T ELT)) (-1397 (($ $ (-1 (-114) $ $)) 46 T ELT)) (-4046 (((-710 (-1 (-876) (-660 (-876)))) $) 67 T ELT) (($ $ (-1 (-876) (-660 (-876)))) 52 T ELT) (($ $ (-1 (-876) (-876))) 54 T ELT)) (-1394 (($ $ (-1179)) 56 T ELT) (($ $ (-518)) 57 T ELT)) (-3819 (($ $) 75 T ELT)) (-1396 (($ $ (-1 (-114) $ $)) 47 T ELT)) (-4375 (((-876) $) 61 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3192 (($ $ (-518)) 35 T ELT)) (-2916 (((-55) $) 70 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 88 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 104 T ELT))) +(((-115) (-13 (-860) (-848 (-1197)) (-10 -8 (-15 -1401 ((-45 (-1179) (-792)) $)) (-15 -3819 ($ $)) (-15 -4022 ($ (-1197))) (-15 -4022 ($ (-1197) (-790))) (-15 -4022 ($ (-1197) (-55))) (-15 -1400 ((-114) $)) (-15 -1399 ((-114) $)) (-15 -1398 ((-114) $)) (-15 -1653 ((-790) $)) (-15 -1653 ($ $ (-790))) (-15 -1397 ($ $ (-1 (-114) $ $))) (-15 -1396 ($ $ (-1 (-114) $ $))) (-15 -4046 ((-710 (-1 (-876) (-660 (-876)))) $)) (-15 -4046 ($ $ (-1 (-876) (-660 (-876))))) (-15 -4046 ($ $ (-1 (-876) (-876)))) (-15 -2342 ($ $ (-1 (-547) (-660 (-547))))) (-15 -2342 ((-710 (-1 (-547) (-660 (-547)))) $)) (-15 -1395 ((-114) $ (-518))) (-15 -3192 ($ $ (-518))) (-15 -1394 ($ $ (-1179))) (-15 -1394 ($ $ (-518))) (-15 -3241 ((-3 (-792) "failed") $ (-1179))) (-15 -3241 ((-710 (-792)) $ (-518))) (-15 -1393 ($ $ (-1179) (-792))) (-15 -1393 ($ $ (-518) (-792))) (-15 -1392 ($ $ (-45 (-1179) (-792))))))) (T -115)) +((-1401 (*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-792))) (-5 *1 (-115)))) (-3819 (*1 *1 *1) (-5 *1 (-115))) (-4022 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) (-4022 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-790)) (-5 *1 (-115)))) (-4022 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) (-1400 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1399 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1398 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115)))) (-1653 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-115)))) (-1653 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-115)))) (-1397 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-1396 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-710 (-1 (-876) (-660 (-876))))) (-5 *1 (-115)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-660 (-876)))) (-5 *1 (-115)))) (-4046 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) (-2342 (*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-660 (-547)))) (-5 *1 (-115)))) (-2342 (*1 *2 *1) (-12 (-5 *2 (-710 (-1 (-547) (-660 (-547))))) (-5 *1 (-115)))) (-1395 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115)))) (-3192 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-1394 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115)))) (-1394 (*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) (-3241 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-792)) (-5 *1 (-115)))) (-3241 (*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-792))) (-5 *1 (-115)))) (-1393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-792)) (-5 *1 (-115)))) (-1393 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-792)) (-5 *1 (-115)))) (-1392 (*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-792))) (-5 *1 (-115))))) +((-2913 (((-3 (-1 |#1| (-660 |#1|)) #1="failed") (-115)) 23 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 13 T ELT) (((-115) (-115) (-1 |#1| (-660 |#1|))) 11 T ELT) (((-3 |#1| #1#) (-115) (-660 |#1|)) 25 T ELT)) (-1402 (((-3 (-660 (-1 |#1| (-660 |#1|))) #1#) (-115)) 29 T ELT) (((-115) (-115) (-1 |#1| |#1|)) 33 T ELT) (((-115) (-115) (-660 (-1 |#1| (-660 |#1|)))) 30 T ELT)) (-1403 (((-115) |#1|) 63 T ELT)) (-1404 (((-3 |#1| #1#) (-115)) 58 T ELT))) +(((-116 |#1|) (-10 -7 (-15 -2913 ((-3 |#1| #1="failed") (-115) (-660 |#1|))) (-15 -2913 ((-115) (-115) (-1 |#1| (-660 |#1|)))) (-15 -2913 ((-115) (-115) (-1 |#1| |#1|))) (-15 -2913 ((-3 (-1 |#1| (-660 |#1|)) #1#) (-115))) (-15 -1402 ((-115) (-115) (-660 (-1 |#1| (-660 |#1|))))) (-15 -1402 ((-115) (-115) (-1 |#1| |#1|))) (-15 -1402 ((-3 (-660 (-1 |#1| (-660 |#1|))) #1#) (-115))) (-15 -1403 ((-115) |#1|)) (-15 -1404 ((-3 |#1| #1#) (-115)))) (-1121)) (T -116)) +((-1404 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1121)))) (-1403 (*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1121)))) (-1402 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-1 *4 (-660 *4)))) (-5 *1 (-116 *4)) (-4 *4 (-1121)))) (-1402 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) (-1402 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 (-1 *4 (-660 *4)))) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) (-2913 (*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-660 *4))) (-5 *1 (-116 *4)) (-4 *4 (-1121)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) (-2913 (*1 *2 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-660 *4))) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) (-2913 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-660 *2)) (-5 *1 (-116 *2)) (-4 *2 (-1121))))) +((-1405 (((-558) |#2|) 41 T ELT))) +(((-117 |#1| |#2|) (-10 -7 (-15 -1405 ((-558) |#2|))) (-13 (-376) (-1058 (-419 (-558)))) (-1263 |#1|)) (T -117)) +((-1405 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-1058 (-419 *2)))) (-5 *2 (-558)) (-5 *1 (-117 *4 *3)) (-4 *3 (-1263 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $ (-558)) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3009 (($ (-1191 (-558)) (-558)) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3010 (($ $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4201 (((-790) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-3012 (((-558)) NIL T ELT)) (-3011 (((-558) $) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4198 (($ $ (-558)) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3013 (((-1175 (-558)) $) NIL T ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-558) $ (-558)) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-118 |#1|) (-883 |#1|) (-558)) (T -118)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-118 |#1|) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-118 |#1|) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-118 |#1|) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-118 |#1|) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-118 |#1|) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-118 |#1|) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-118 |#1|) (-1058 (-558))) ELT)) (-3573 (((-118 |#1|) $) NIL T ELT) (((-1197) $) NIL (|has| (-118 |#1|) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-118 |#1|) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-118 |#1|) (-1058 (-558))) ELT)) (-4159 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-118 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-118 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-118 |#1|))) (|:| |vec| (-1287 (-118 |#1|)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-118 |#1|)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-118 |#1|) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| (-118 |#1|) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-118 |#1|) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-118 |#1|) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-118 |#1|) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| (-118 |#1|) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-118 |#1|) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-118 |#1|) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-118 |#1|) (-860)) ELT)) (-4387 (($ (-1 (-118 |#1|) (-118 |#1|)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-118 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-118 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-118 |#1|))) (|:| |vec| (-1287 (-118 |#1|)))) (-1287 $) $) NIL T ELT) (((-708 (-118 |#1|)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-118 |#1|) (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-118 |#1|) (-319)) ELT)) (-3531 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-118 |#1|) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-118 |#1|) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-118 |#1|)) (-660 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-118 |#1|) (-118 |#1|)) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-305 (-118 |#1|))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-660 (-305 (-118 |#1|)))) NIL (|has| (-118 |#1|) (-321 (-118 |#1|))) ELT) (($ $ (-660 (-1197)) (-660 (-118 |#1|))) NIL (|has| (-118 |#1|) (-526 (-1197) (-118 |#1|))) ELT) (($ $ (-1197) (-118 |#1|)) NIL (|has| (-118 |#1|) (-526 (-1197) (-118 |#1|))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-118 |#1|)) NIL (|has| (-118 |#1|) (-298 (-118 |#1|) (-118 |#1|))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-790)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-118 |#1|) $) NIL T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-118 |#1|) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-118 |#1|) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-118 |#1|) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-118 |#1|) (-1040)) ELT) (((-229) $) NIL (|has| (-118 |#1|) (-1040)) ELT)) (-3014 (((-177 (-419 (-558))) $) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-118 |#1|)) NIL T ELT) (($ (-1197)) NIL (|has| (-118 |#1|) (-1058 (-1197))) ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-118 |#1|) (-928))) (|has| (-118 |#1|) (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (((-118 |#1|) $) NIL (|has| (-118 |#1|) (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-419 (-558)) $ (-558)) NIL T ELT)) (-3802 (($ $) NIL (|has| (-118 |#1|) (-841)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-118 |#1|) (-118 |#1|))) NIL T ELT) (($ $ (-1 (-118 |#1|) (-118 |#1|)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-118 |#1|) (-918 (-1197))) ELT) (($ $) NIL (|has| (-118 |#1|) (-239)) ELT) (($ $ (-790)) NIL (|has| (-118 |#1|) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-118 |#1|) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-118 |#1|) (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| (-118 |#1|) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-118 |#1|) (-860)) ELT)) (-4378 (($ $ $) NIL T ELT) (($ (-118 |#1|) (-118 |#1|)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-118 |#1|) $) NIL T ELT) (($ $ (-118 |#1|)) NIL T ELT))) +(((-119 |#1|) (-13 (-1011 (-118 |#1|)) (-10 -8 (-15 -4199 ((-419 (-558)) $ (-558))) (-15 -3014 ((-177 (-419 (-558))) $)) (-15 -4159 ($ $)) (-15 -4159 ($ (-558) $)))) (-558)) (T -119)) +((-4199 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-119 *3)) (-14 *3 (-558)))) (-4159 (*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-558)))) (-4159 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-119 *3)) (-14 *3 *2)))) +((-4217 ((|#2| $ #1="value" |#2|) NIL T ELT) (($ $ #2="left" $) 61 T ELT) (($ $ #3="right" $) 63 T ELT)) (-3431 (((-660 $) $) 31 T ELT)) (-3427 (((-114) $ $) 36 T ELT)) (-3662 (((-114) |#2| $) 40 T ELT)) (-3430 (((-660 |#2|) $) 25 T ELT)) (-3946 (((-114) $) 18 T ELT)) (-4229 ((|#2| $ #1#) NIL T ELT) (($ $ #2#) 10 T ELT) (($ $ #3#) 13 T ELT)) (-4062 (((-114) $) 57 T ELT)) (-4375 (((-876) $) 47 T ELT)) (-3941 (((-660 $) $) 32 T ELT)) (-3453 (((-114) $ $) 38 T ELT)) (-4386 (((-790) $) 50 T ELT))) +(((-120 |#1| |#2|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -4217 (|#1| |#1| #1="right" |#1|)) (-15 -4217 (|#1| |#1| #2="left" |#1|)) (-15 -4229 (|#1| |#1| #1#)) (-15 -4229 (|#1| |#1| #2#)) (-15 -4217 (|#2| |#1| #3="value" |#2|)) (-15 -3427 ((-114) |#1| |#1|)) (-15 -3430 ((-660 |#2|) |#1|)) (-15 -4062 ((-114) |#1|)) (-15 -4229 (|#2| |#1| #3#)) (-15 -3946 ((-114) |#1|)) (-15 -3431 ((-660 |#1|) |#1|)) (-15 -3941 ((-660 |#1|) |#1|)) (-15 -3662 ((-114) |#2| |#1|)) (-15 -4386 ((-790) |#1|))) (-121 |#2|) (-1237)) (T -120)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) 58 (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) 60 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT) (($ $ "left" $) 61 (|has| $ (-6 -4425)) ELT) (($ $ "right" $) 59 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4153 (($) 7 T CONST)) (-3538 (($ $) 63 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3539 (($ $) 65 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT) (($ $ "left") 64 T ELT) (($ $ "right") 62 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-121 |#1|) (-142) (-1237)) (T -121)) +((-3539 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1237)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1237)))) (-3538 (*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1237)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1237)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-5 *2 "left") (|has| *1 (-6 -4425)) (-4 *1 (-121 *3)) (-4 *3 (-1237)))) (-1407 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-121 *2)) (-4 *2 (-1237)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-5 *2 "right") (|has| *1 (-6 -4425)) (-4 *1 (-121 *3)) (-4 *3 (-1237)))) (-1406 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-121 *2)) (-4 *2 (-1237))))) +(-13 (-1030 |t#1|) (-10 -8 (-15 -3539 ($ $)) (-15 -4229 ($ $ "left")) (-15 -3538 ($ $)) (-15 -4229 ($ $ "right")) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4217 ($ $ "left" $)) (-15 -1407 ($ $ $)) (-15 -4217 ($ $ "right" $)) (-15 -1406 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1030 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-1410 (((-114) |#1|) 29 T ELT)) (-1409 (((-790) (-790)) 28 T ELT) (((-790)) 27 T ELT)) (-1408 (((-114) |#1| (-114)) 30 T ELT) (((-114) |#1|) 31 T ELT))) +(((-122 |#1|) (-10 -7 (-15 -1408 ((-114) |#1|)) (-15 -1408 ((-114) |#1| (-114))) (-15 -1409 ((-790))) (-15 -1409 ((-790) (-790))) (-15 -1410 ((-114) |#1|))) (-1263 (-558))) (T -122)) +((-1410 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558))))) (-1409 (*1 *2 *2) (-12 (-5 *2 (-790)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558))))) (-1409 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558))))) (-1408 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558))))) (-1408 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558)))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 18 T ELT)) (-3837 (((-2 (|:| |less| $) (|:| |greater| $)) |#1| $) 26 T ELT)) (-3425 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) 21 (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) 23 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3538 (($ $) 20 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1415 (($ $ |#1| $) 27 T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3539 (($ $) 22 T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1411 (($ |#1| $) 28 T ELT)) (-4036 (($ |#1| $) 15 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 17 T ELT)) (-3992 (($) 11 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1412 (($ (-660 |#1|)) 16 T ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-123 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4425) (-6 -4424) (-15 -1412 ($ (-660 |#1|))) (-15 -4036 ($ |#1| $)) (-15 -1411 ($ |#1| $)) (-15 -3837 ((-2 (|:| |less| $) (|:| |greater| $)) |#1| $)))) (-860)) (T -123)) +((-1412 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-123 *3)))) (-4036 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-860)))) (-1411 (*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-860)))) (-3837 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) (-5 *1 (-123 *3)) (-4 *3 (-860))))) +((-2525 (($ $) 13 T ELT)) (-2958 (($ $) 11 T ELT)) (-1413 (($ $ $) 23 T ELT)) (-1414 (($ $ $) 21 T ELT)) (-2523 (($ $ $) 19 T ELT)) (-2524 (($ $ $) 17 T ELT))) +(((-124 |#1|) (-10 -7 (-15 -1413 (|#1| |#1| |#1|)) (-15 -1414 (|#1| |#1| |#1|)) (-15 -2525 (|#1| |#1|)) (-15 -2524 (|#1| |#1| |#1|)) (-15 -2523 (|#1| |#1| |#1|)) (-15 -2958 (|#1| |#1|))) (-125)) (T -124)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-2525 (($ $) 103 T ELT)) (-3741 (($ $ $) 31 T ELT)) (-2412 (((-1293) $ (-558) (-558)) 66 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) 98 (|has| (-114) (-860)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) 92 T ELT)) (-1932 (($ $) 102 (-12 (|has| (-114) (-860)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) (-114) (-114)) $) 101 (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) 97 (|has| (-114) (-860)) ELT) (($ (-1 (-114) (-114) (-114)) $) 91 T ELT)) (-4217 (((-114) $ (-1254 (-558)) (-114)) 88 (|has| $ (-6 -4425)) ELT) (((-114) $ (-558) (-114)) 54 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) (-114)) $) 71 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 38 T CONST)) (-2509 (($ $) 100 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 90 T ELT)) (-1466 (($ $) 68 (-12 (|has| (-114) (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ (-1 (-114) (-114)) $) 72 (|has| $ (-6 -4424)) ELT) (($ (-114) $) 69 (-12 (|has| (-114) (-1121)) (|has| $ (-6 -4424))) ELT)) (-4271 (((-114) (-1 (-114) (-114) (-114)) $) 74 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) 73 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) 70 (-12 (|has| (-114) (-1121)) (|has| $ (-6 -4424))) ELT)) (-1718 (((-114) $ (-558) (-114)) 53 (|has| $ (-6 -4425)) ELT)) (-3514 (((-114) $ (-558)) 55 T ELT)) (-3838 (((-558) (-114) $ (-558)) 95 (|has| (-114) (-1121)) ELT) (((-558) (-114) $) 94 (|has| (-114) (-1121)) ELT) (((-558) (-1 (-114) (-114)) $) 93 T ELT)) (-3289 (((-660 (-114)) $) 45 (|has| $ (-6 -4424)) ELT)) (-2959 (($ $ $) 108 T ELT)) (-2958 (($ $) 106 T ELT)) (-1413 (($ $ $) 32 T ELT)) (-4043 (($ (-790) (-114)) 78 T ELT)) (-1414 (($ $ $) 33 T ELT)) (-2414 (((-558) $) 63 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 23 T ELT)) (-3937 (($ $ $) 96 (|has| (-114) (-860)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) 89 T ELT)) (-3006 (((-660 (-114)) $) 46 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-114) $) 48 (-12 (|has| (-114) (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 62 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 22 T ELT)) (-2159 (($ (-1 (-114) (-114)) $) 41 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-114) (-114) (-114)) $ $) 83 T ELT) (($ (-1 (-114) (-114)) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2516 (($ $ $ (-558)) 87 T ELT) (($ (-114) $ (-558)) 86 T ELT)) (-2417 (((-660 (-558)) $) 60 T ELT)) (-2418 (((-114) (-558) $) 59 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4230 (((-114) $) 64 (|has| (-558) (-860)) ELT)) (-1467 (((-3 (-114) "failed") (-1 (-114) (-114)) $) 75 T ELT)) (-2413 (($ $ (-114)) 65 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) (-114)) $) 43 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-114)) (-660 (-114))) 52 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-114) (-114)) 51 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-305 (-114))) 50 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-660 (-305 (-114)))) 49 (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT)) (-1328 (((-114) $ $) 34 T ELT)) (-2416 (((-114) (-114) $) 61 (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-2419 (((-660 (-114)) $) 58 T ELT)) (-3822 (((-114) $) 37 T ELT)) (-3992 (($) 36 T ELT)) (-4229 (($ $ (-1254 (-558))) 77 T ELT) (((-114) $ (-558)) 57 T ELT) (((-114) $ (-558) (-114)) 56 T ELT)) (-2517 (($ $ (-1254 (-558))) 85 T ELT) (($ $ (-558)) 84 T ELT)) (-2156 (((-790) (-114) $) 47 (-12 (|has| (-114) (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) (-114)) $) 44 (|has| $ (-6 -4424)) ELT)) (-1933 (($ $ $ (-558)) 99 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 35 T ELT)) (-4401 (((-547) $) 67 (|has| (-114) (-630 (-547))) ELT)) (-3949 (($ (-660 (-114))) 76 T ELT)) (-4231 (($ (-660 $)) 82 T ELT) (($ $ $) 81 T ELT) (($ (-114) $) 80 T ELT) (($ $ (-114)) 79 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2158 (((-114) (-1 (-114) (-114)) $) 42 (|has| $ (-6 -4424)) ELT)) (-2960 (($ $ $) 107 T ELT)) (-2523 (($ $ $) 105 T ELT)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-2524 (($ $ $) 104 T ELT)) (-4386 (((-790) $) 39 (|has| $ (-6 -4424)) ELT))) (((-125) (-142)) (T -125)) -((-1415 (*1 *1 *1 *1) (-4 *1 (-125))) (-1414 (*1 *1 *1 *1) (-4 *1 (-125))) (-3742 (*1 *1 *1 *1) (-4 *1 (-125)))) -(-13 (-861) (-113) (-682) (-19 (-114)) (-10 -8 (-15 -1415 ($ $ $)) (-15 -1414 ($ $ $)) (-15 -3742 ($ $ $)))) -(((-34) . T) ((-102) . T) ((-113) . T) ((-630 (-877)) . T) ((-153 (-114)) . T) ((-631 (-547)) |has| (-114) (-631 (-547))) ((-298 (-558) (-114)) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) (-114)) . T) ((-321 (-114)) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ((-385 (-114)) . T) ((-501 (-114)) . T) ((-616 (-558) (-114)) . T) ((-526 (-114) (-114)) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ((-671 (-114)) . T) ((-682) . T) ((-19 (-114)) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-2160 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3820 (($ $) 16 T ELT)) (-4387 (((-791) $) 25 T ELT))) -(((-126 |#1| |#2|) (-10 -7 (-15 -2160 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4387 ((-791) |#1|)) (-15 -3820 (|#1| |#1|))) (-127 |#2|) (-1122)) (T -126)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) 58 (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) 60 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4426)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4154 (($) 7 T CONST)) (-3539 (($ $) 63 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-1416 (($ $ |#1| $) 66 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3540 (($ $) 65 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-127 |#1|) (-142) (-1122)) (T -127)) -((-1416 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1122))))) -(-13 (-121 |t#1|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -1416 ($ $ |t#1| $)))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1031 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 18 T ELT)) (-3426 ((|#1| $ |#1|) 22 (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) 23 (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) 21 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3539 (($ $) 24 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1416 (($ $ |#1| $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3540 (($ $) NIL T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4037 (($ |#1| $) 15 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 17 T ELT)) (-3993 (($) 11 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 20 T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1417 (($ (-661 |#1|)) 16 T ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4426) (-15 -1417 ($ (-661 |#1|))) (-15 -4037 ($ |#1| $)))) (-861)) (T -128)) -((-1417 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-128 *3)))) (-4037 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-861))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 30 T ELT)) (-3426 ((|#1| $ |#1|) 32 (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) 36 (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) 34 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3539 (($ $) 23 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1416 (($ $ |#1| $) 16 T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3540 (($ $) 22 T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) 25 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 20 T ELT)) (-3993 (($) 11 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1418 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -1418 ($ |#1|)) (-15 -1418 ($ $ |#1| $)))) (-1122)) (T -129)) -((-1418 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1122)))) (-1418 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) 34 T ELT)) (-3538 (((-791)) 20 T ELT)) (-4154 (($) 12 T CONST)) (-3395 (($) 29 T ELT)) (-2930 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3258 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2220 (((-938) $) 27 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 25 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1419 (($ (-791)) 8 T ELT)) (-4155 (($ $ $) 31 T ELT)) (-4156 (($ $ $) 30 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) 33 T ELT)) (-2965 (((-114) $ $) 17 T ELT)) (-2966 (((-114) $ $) 15 T ELT)) (-3454 (((-114) $ $) 13 T ELT)) (-3085 (((-114) $ $) 16 T ELT)) (-3086 (((-114) $ $) 14 T ELT)) (-2525 (($ $ $) 32 T ELT))) -(((-130) (-13 (-857) (-682) (-10 -8 (-15 -1419 ($ (-791))) (-15 -4156 ($ $ $)) (-15 -4155 ($ $ $)) (-15 -4154 ($) -4382)))) (T -130)) -((-1419 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-130)))) (-4156 (*1 *1 *1 *1) (-5 *1 (-130))) (-4155 (*1 *1 *1 *1) (-5 *1 (-130))) (-4154 (*1 *1) (-5 *1 (-130)))) -((-791) (|%ilt| |#1| 256)) -((-2967 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-861)) ELT)) (-1933 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-130) (-861))) ELT)) (-3310 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-861)) ELT)) (-4218 (((-130) $ (-558) (-130)) 26 (|has| $ (-6 -4426)) ELT) (((-130) $ (-1255 (-558)) (-130)) NIL (|has| $ (-6 -4426)) ELT)) (-1420 (((-791) $ (-791)) 34 T ELT)) (-4140 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-1122))) ELT)) (-3826 (($ (-130) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-1122))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-1122))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4425)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 (((-130) $ (-558) (-130)) 25 (|has| $ (-6 -4426)) ELT)) (-3515 (((-130) $ (-558)) 20 T ELT)) (-3839 (((-558) (-1 (-114) (-130)) $) NIL T ELT) (((-558) (-130) $) NIL (|has| (-130) (-1122)) ELT) (((-558) (-130) $ (-558)) NIL (|has| (-130) (-1122)) ELT)) (-3290 (((-661 (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) (-130)) 14 T ELT)) (-2415 (((-558) $) 27 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| (-130) (-861)) ELT)) (-3938 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-861)) ELT)) (-3007 (((-661 (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-1122))) ELT)) (-2416 (((-558) $) 30 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-130) (-861)) ELT)) (-2160 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| (-130) (-1122)) ELT)) (-2517 (($ (-130) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| (-130) (-1122)) ELT)) (-4231 (((-130) $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-2414 (($ $ (-130)) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1122))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1122))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1122))) ELT) (($ $ (-661 (-130)) (-661 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-1122))) ELT)) (-2420 (((-661 (-130)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 12 T ELT)) (-4230 (((-130) $ (-558) (-130)) NIL T ELT) (((-130) $ (-558)) 23 T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-130) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-130) (-631 (-547))) ELT)) (-3950 (($ (-661 (-130))) 40 T ELT)) (-4232 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-977 (-130)) $) 35 T ELT) (((-1180) $) 37 T ELT) (((-877) $) NIL (|has| (-130) (-630 (-877))) ELT)) (-1421 (((-791) $) 18 T ELT)) (-1422 (($ (-791)) 8 T ELT)) (-1378 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2159 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-130) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-130) (-861)) ELT)) (-3454 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-130) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-130) (-861)) ELT)) (-4387 (((-791) $) 15 (|has| $ (-6 -4425)) ELT))) -(((-131) (-13 (-19 (-130)) (-630 (-977 (-130))) (-630 (-1180)) (-10 -8 (-15 -1422 ($ (-791))) (-15 -1421 ((-791) $)) (-15 -1420 ((-791) $ (-791))) (-6 -4425)))) (T -131)) -((-1422 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131)))) (-1421 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-131)))) (-1420 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1423 (($) 6 T CONST)) (-1425 (($) 7 T CONST)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 14 T ELT)) (-1424 (($) 8 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 10 T ELT))) -(((-132) (-13 (-1122) (-10 -8 (-15 -1425 ($) -4382) (-15 -1424 ($) -4382) (-15 -1423 ($) -4382)))) (T -132)) -((-1425 (*1 *1) (-5 *1 (-132))) (-1424 (*1 *1) (-5 *1 (-132))) (-1423 (*1 *1) (-5 *1 (-132)))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT))) +((-1414 (*1 *1 *1 *1) (-4 *1 (-125))) (-1413 (*1 *1 *1 *1) (-4 *1 (-125))) (-3741 (*1 *1 *1 *1) (-4 *1 (-125)))) +(-13 (-860) (-113) (-681) (-19 (-114)) (-10 -8 (-15 -1414 ($ $ $)) (-15 -1413 ($ $ $)) (-15 -3741 ($ $ $)))) +(((-34) . T) ((-102) . T) ((-113) . T) ((-629 (-876)) . T) ((-153 (-114)) . T) ((-630 (-547)) |has| (-114) (-630 (-547))) ((-298 (-558) (-114)) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) (-114)) . T) ((-321 (-114)) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ((-385 (-114)) . T) ((-501 (-114)) . T) ((-615 (-558) (-114)) . T) ((-526 (-114) (-114)) -12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ((-670 (-114)) . T) ((-681) . T) ((-19 (-114)) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-2159 (($ (-1 |#2| |#2|) $) 22 T ELT)) (-3819 (($ $) 16 T ELT)) (-4386 (((-790) $) 25 T ELT))) +(((-126 |#1| |#2|) (-10 -7 (-15 -2159 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4386 ((-790) |#1|)) (-15 -3819 (|#1| |#1|))) (-127 |#2|) (-1121)) (T -126)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) 58 (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) 60 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT) (($ $ #2="left" $) 61 (|has| $ (-6 -4425)) ELT) (($ $ #3="right" $) 59 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4153 (($) 7 T CONST)) (-3538 (($ $) 63 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-1415 (($ $ |#1| $) 66 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3539 (($ $) 65 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT) (($ $ #2#) 64 T ELT) (($ $ #3#) 62 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-127 |#1|) (-142) (-1121)) (T -127)) +((-1415 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1121))))) +(-13 (-121 |t#1|) (-10 -8 (-6 -4425) (-6 -4424) (-15 -1415 ($ $ |t#1| $)))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-121 |#1|) . T) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1030 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 18 T ELT)) (-3425 ((|#1| $ |#1|) 22 (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) 23 (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) 21 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3538 (($ $) 24 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1415 (($ $ |#1| $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3539 (($ $) NIL T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4036 (($ |#1| $) 15 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 17 T ELT)) (-3992 (($) 11 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 20 T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1416 (($ (-660 |#1|)) 16 T ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-128 |#1|) (-13 (-127 |#1|) (-10 -8 (-6 -4425) (-15 -1416 ($ (-660 |#1|))) (-15 -4036 ($ |#1| $)))) (-860)) (T -128)) +((-1416 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-128 *3)))) (-4036 (*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-860))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 30 T ELT)) (-3425 ((|#1| $ |#1|) 32 (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) 36 (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) 34 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3538 (($ $) 23 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1415 (($ $ |#1| $) 16 T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3539 (($ $) 22 T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) 25 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 20 T ELT)) (-3992 (($) 11 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1417 (($ |#1|) 18 T ELT) (($ $ |#1| $) 17 T ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 10 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-129 |#1|) (-13 (-127 |#1|) (-10 -8 (-15 -1417 ($ |#1|)) (-15 -1417 ($ $ |#1| $)))) (-1121)) (T -129)) +((-1417 (*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1121)))) (-1417 (*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) 34 T ELT)) (-3537 (((-790)) 20 T ELT)) (-4153 (($) 12 T CONST)) (-3394 (($) 29 T ELT)) (-2929 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3257 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2219 (((-937) $) 27 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 25 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1418 (($ (-790)) 8 T ELT)) (-4154 (($ $ $) 31 T ELT)) (-4155 (($ $ $) 30 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) 33 T ELT)) (-2964 (((-114) $ $) 17 T ELT)) (-2965 (((-114) $ $) 15 T ELT)) (-3453 (((-114) $ $) 13 T ELT)) (-3084 (((-114) $ $) 16 T ELT)) (-3085 (((-114) $ $) 14 T ELT)) (-2524 (($ $ $) 32 T ELT))) +(((-130) (-13 (-856) (-681) (-10 -8 (-15 -1418 ($ (-790))) (-15 -4155 ($ $ $)) (-15 -4154 ($ $ $)) (-15 -4153 ($) -4381)))) (T -130)) +((-1418 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-130)))) (-4155 (*1 *1 *1 *1) (-5 *1 (-130))) (-4154 (*1 *1 *1 *1) (-5 *1 (-130))) (-4153 (*1 *1) (-5 *1 (-130)))) +((-790) (|%ilt| |#1| 256)) +((-2966 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) (-130) (-130)) $) NIL T ELT) (((-114) $) NIL (|has| (-130) (-860)) ELT)) (-1932 (($ (-1 (-114) (-130) (-130)) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-130) (-860))) ELT)) (-3309 (($ (-1 (-114) (-130) (-130)) $) NIL T ELT) (($ $) NIL (|has| (-130) (-860)) ELT)) (-4217 (((-130) $ (-558) (-130)) 26 (|has| $ (-6 -4425)) ELT) (((-130) $ (-1254 (-558)) (-130)) NIL (|has| $ (-6 -4425)) ELT)) (-1419 (((-790) $ (-790)) 34 T ELT)) (-4139 (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-1121))) ELT)) (-3825 (($ (-130) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-1121))) ELT) (($ (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-130) (-1 (-130) (-130) (-130)) $ (-130) (-130)) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-1121))) ELT) (((-130) (-1 (-130) (-130) (-130)) $ (-130)) NIL (|has| $ (-6 -4424)) ELT) (((-130) (-1 (-130) (-130) (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 (((-130) $ (-558) (-130)) 25 (|has| $ (-6 -4425)) ELT)) (-3514 (((-130) $ (-558)) 20 T ELT)) (-3838 (((-558) (-1 (-114) (-130)) $) NIL T ELT) (((-558) (-130) $) NIL (|has| (-130) (-1121)) ELT) (((-558) (-130) $ (-558)) NIL (|has| (-130) (-1121)) ELT)) (-3289 (((-660 (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) (-130)) 14 T ELT)) (-2414 (((-558) $) 27 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| (-130) (-860)) ELT)) (-3937 (($ (-1 (-114) (-130) (-130)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-130) (-860)) ELT)) (-3006 (((-660 (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-1121))) ELT)) (-2415 (((-558) $) 30 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-130) (-860)) ELT)) (-2159 (($ (-1 (-130) (-130)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-130) (-130)) $) NIL T ELT) (($ (-1 (-130) (-130) (-130)) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| (-130) (-1121)) ELT)) (-2516 (($ (-130) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| (-130) (-1121)) ELT)) (-4230 (((-130) $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 (-130) "failed") (-1 (-114) (-130)) $) NIL T ELT)) (-2413 (($ $ (-130)) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-130)))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1121))) ELT) (($ $ (-305 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1121))) ELT) (($ $ (-130) (-130)) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1121))) ELT) (($ $ (-660 (-130)) (-660 (-130))) NIL (-12 (|has| (-130) (-321 (-130))) (|has| (-130) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-130) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-1121))) ELT)) (-2419 (((-660 (-130)) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 12 T ELT)) (-4229 (((-130) $ (-558) (-130)) NIL T ELT) (((-130) $ (-558)) 23 T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-130) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-130) (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-130) (-630 (-547))) ELT)) (-3949 (($ (-660 (-130))) 40 T ELT)) (-4231 (($ $ (-130)) NIL T ELT) (($ (-130) $) NIL T ELT) (($ $ $) 44 T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-976 (-130)) $) 35 T ELT) (((-1179) $) 37 T ELT) (((-876) $) NIL (|has| (-130) (-629 (-876))) ELT)) (-1420 (((-790) $) 18 T ELT)) (-1421 (($ (-790)) 8 T ELT)) (-1377 (((-114) $ $) NIL (|has| (-130) (-102)) ELT)) (-2158 (((-114) (-1 (-114) (-130)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-130) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-130) (-860)) ELT)) (-3453 (((-114) $ $) 32 (|has| (-130) (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-130) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-130) (-860)) ELT)) (-4386 (((-790) $) 15 (|has| $ (-6 -4424)) ELT))) +(((-131) (-13 (-19 (-130)) (-629 (-976 (-130))) (-629 (-1179)) (-10 -8 (-15 -1421 ($ (-790))) (-15 -1420 ((-790) $)) (-15 -1419 ((-790) $ (-790))) (-6 -4424)))) (T -131)) +((-1421 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-131)))) (-1420 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-131)))) (-1419 (*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-131))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1422 (($) 6 T CONST)) (-1424 (($) 7 T CONST)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 14 T ELT)) (-1423 (($) 8 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 10 T ELT))) +(((-132) (-13 (-1121) (-10 -8 (-15 -1424 ($) -4381) (-15 -1423 ($) -4381) (-15 -1422 ($) -4381)))) (T -132)) +((-1424 (*1 *1) (-5 *1 (-132))) (-1423 (*1 *1) (-5 *1 (-132))) (-1422 (*1 *1) (-5 *1 (-132)))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT))) (((-133) (-142)) (T -133)) -((-1426 (*1 *1 *1 *1) (|partial| -4 *1 (-133)))) -(-13 (-23) (-10 -8 (-15 -1426 ((-3 $ "failed") $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-1427 (((-1294) $ (-791)) 17 T ELT)) (-3839 (((-791) $) 18 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +((-1425 (*1 *1 *1 *1) (|partial| -4 *1 (-133)))) +(-13 (-23) (-10 -8 (-15 -1425 ((-3 $ "failed") $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-1426 (((-1293) $ (-790)) 17 T ELT)) (-3838 (((-790) $) 18 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-134) (-142)) (T -134)) -((-3839 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-791)))) (-1427 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-791)) (-5 *2 (-1294))))) -(-13 (-1122) (-10 -8 (-15 -3839 ((-791) $)) (-15 -1427 ((-1294) $ (-791))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 16 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-661 (-1156)) $) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-135) (-13 (-1104) (-10 -8 (-15 -3651 ((-661 (-1156)) $))))) (T -135)) -((-3651 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-135))))) -((-2967 (((-114) $ $) 49 T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-791) #1="failed") $) 60 T ELT)) (-3574 (((-791) $) 58 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) 37 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1429 (((-114)) 61 T ELT)) (-1428 (((-114) (-114)) 63 T ELT)) (-2924 (((-114) $) 30 T ELT)) (-1430 (((-114) $) 57 T ELT)) (-4376 (((-877) $) 28 T ELT) (($ (-791)) 20 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 18 T CONST)) (-3065 (($) 19 T CONST)) (-1431 (($ (-791)) 21 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) 40 T ELT)) (-3454 (((-114) $ $) 32 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 35 T ELT)) (-4267 (((-3 $ #1#) $ $) 42 T ELT)) (-4269 (($ $ $) 38 T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-791) $) 48 T ELT) (($ (-938) $) NIL T ELT) (($ $ $) 45 T ELT))) -(((-136) (-13 (-861) (-23) (-746) (-1059 (-791)) (-10 -8 (-6 (-4427 "*")) (-15 -4267 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1431 ($ (-791))) (-15 -2924 ((-114) $)) (-15 -1430 ((-114) $)) (-15 -1429 ((-114))) (-15 -1428 ((-114) (-114)))))) (T -136)) -((-4267 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-136)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1430 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1429 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1428 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1432 (($ (-661 |#3|)) 62 T ELT)) (-3834 (($ $) 125 T ELT) (($ $ (-558) (-558)) 124 T ELT)) (-4154 (($) 20 T ELT)) (-3575 (((-3 |#3| "failed") $) 85 T ELT)) (-3574 ((|#3| $) NIL T ELT)) (-1436 (($ $ (-661 (-558))) 126 T ELT)) (-1433 (((-661 |#3|) $) 57 T ELT)) (-3511 (((-791) $) 67 T ELT)) (-4374 (($ $ $) 119 T ELT)) (-1434 (($) 66 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1435 (($) 19 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 ((|#3| $ (-558)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-558) (-558)) 72 T ELT) ((|#3| $ (-558) (-558) (-558)) 73 T ELT) ((|#3| $ (-558) (-558) (-558) (-558)) 74 T ELT) ((|#3| $ (-661 (-558))) 75 T ELT)) (-4378 (((-791) $) 68 T ELT)) (-2193 (($ $ (-558) $ (-558)) 120 T ELT) (($ $ (-558) (-558)) 122 T ELT)) (-4376 (((-877) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-246 |#2| |#3|)) 101 T ELT) (($ (-1163 |#2| |#3|)) 104 T ELT) (($ (-661 |#3|)) 76 T ELT) (($ (-661 $)) 82 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 95 T CONST)) (-3065 (($) 96 T CONST)) (-3454 (((-114) $ $) 106 T ELT)) (-4267 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-4269 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-558)) 115 T ELT) (($ (-558) $) 114 T ELT) (($ $ $) 121 T ELT))) -(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-791)) (-482 (-558) (-791)) (-298 (-558) |#3|) (-10 -8 (-15 -4376 ($ (-246 |#2| |#3|))) (-15 -4376 ($ (-1163 |#2| |#3|))) (-15 -4376 ($ (-661 |#3|))) (-15 -4376 ($ (-661 $))) (-15 -3511 ((-791) $)) (-15 -4230 (|#3| $)) (-15 -4230 (|#3| $ (-558) (-558))) (-15 -4230 (|#3| $ (-558) (-558) (-558))) (-15 -4230 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -4230 (|#3| $ (-661 (-558)))) (-15 -4374 ($ $ $)) (-15 * ($ $ $)) (-15 -2193 ($ $ (-558) $ (-558))) (-15 -2193 ($ $ (-558) (-558))) (-15 -3834 ($ $)) (-15 -3834 ($ $ (-558) (-558))) (-15 -1436 ($ $ (-661 (-558)))) (-15 -1435 ($)) (-15 -1434 ($)) (-15 -1433 ((-661 |#3|) $)) (-15 -1432 ($ (-661 |#3|))) (-15 -4154 ($)))) (-558) (-791) (-175)) (T -137)) -((-4374 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)) (-4 *5 (-175)))) (-3511 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-175)))) (-4230 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-791)))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-791)))) (-4230 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-791)))) (-4230 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-791)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-661 (-558))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-558)) (-14 *5 (-791)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-2193 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) (-2193 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-3834 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) (-4 *5 (-175)))) (-1436 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)) (-4 *5 (-175)))) (-1435 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-1434 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) (-1433 (*1 *2 *1) (-12 (-5 *2 (-661 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)) (-4 *5 (-175)))) (-1432 (*1 *1 *2) (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-791)))) (-4154 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175))))) -((-2644 (((-137 |#1| |#2| |#4|) (-661 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-4388 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) -(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2644 ((-137 |#1| |#2| |#4|) (-661 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4388 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-558) (-791) (-175) (-175)) (T -138)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3948 (((-1156) $) 11 T ELT)) (-3949 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-139) (-13 (-1104) (-10 -8 (-15 -3949 ((-1156) $)) (-15 -3948 ((-1156) $))))) (T -139)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-139)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-139))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1540 (((-190) $) 10 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-661 (-1156)) $) 13 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-140) (-13 (-1104) (-10 -8 (-15 -1540 ((-190) $)) (-15 -3651 ((-661 (-1156)) $))))) (T -140)) -((-1540 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-140))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1538 (((-661 (-879)) $) NIL T ELT)) (-3970 (((-518) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1540 (((-190) $) NIL T ELT)) (-3032 (((-114) $ (-518)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1539 (((-661 (-114)) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (((-186) $) 6 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2917 (((-55) $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-141) (-13 (-189) (-630 (-186)))) (T -141)) -NIL -((-1438 (((-661 (-187 (-141))) $) 13 T ELT)) (-1437 (((-661 (-187 (-141))) $) 14 T ELT)) (-1439 (((-661 (-851)) $) 10 T ELT)) (-1614 (((-141) $) 7 T ELT)) (-4376 (((-877) $) 16 T ELT))) -(((-142) (-13 (-630 (-877)) (-10 -8 (-15 -1614 ((-141) $)) (-15 -1439 ((-661 (-851)) $)) (-15 -1438 ((-661 (-187 (-141))) $)) (-15 -1437 ((-661 (-187 (-141))) $))))) (T -142)) -((-1614 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-1439 (*1 *2 *1) (-12 (-5 *2 (-661 (-851))) (-5 *1 (-142)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3847 (($) 17 T CONST)) (-2010 (($) NIL (|has| (-146) (-381)) ELT)) (-3652 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-3654 (($ $ $) NIL T ELT)) (-3653 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| (-146) (-381)) ELT)) (-3657 (($) NIL T ELT) (($ (-661 (-146))) NIL T ELT)) (-1713 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-3825 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-146) $) 60 (|has| $ (-6 -4425)) ELT)) (-3826 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-4272 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4425)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4425)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-3395 (($) NIL (|has| (-146) (-381)) ELT)) (-3290 (((-661 (-146)) $) 69 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) NIL T ELT)) (-2930 (((-146) $) NIL (|has| (-146) (-861)) ELT)) (-3007 (((-661 (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-3258 (((-146) $) NIL (|has| (-146) (-861)) ELT)) (-2160 (($ (-1 (-146) (-146)) $) 68 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-146) (-146)) $) 64 T ELT)) (-3849 (($) 18 T CONST)) (-2220 (((-938) $) NIL (|has| (-146) (-381)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3656 (($ $ $) 30 T ELT)) (-1389 (((-146) $) 61 T ELT)) (-4037 (($ (-146) $) 59 T ELT)) (-2631 (($ (-938)) NIL (|has| (-146) (-381)) ELT)) (-1442 (($) 16 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-1468 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-1390 (((-146) $) 62 T ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-146)) (-661 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-661 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 57 T ELT)) (-1443 (($) 15 T CONST)) (-3655 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-1598 (($ (-661 (-146))) NIL T ELT) (($) NIL T ELT)) (-2157 (((-791) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT) (((-791) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-1180) $) 37 T ELT) (((-547) $) NIL (|has| (-146) (-631 (-547))) ELT) (((-661 (-146)) $) 35 T ELT)) (-3950 (($ (-661 (-146))) NIL T ELT)) (-2011 (($ $) 33 (|has| (-146) (-381)) ELT)) (-4376 (((-877) $) 53 T ELT)) (-1444 (($ (-1180)) 14 T ELT) (($ (-661 (-146))) 50 T ELT)) (-2012 (((-791) $) NIL T ELT)) (-3658 (($) 58 T ELT) (($ (-661 (-146))) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1391 (($ (-661 (-146))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-1440 (($) 21 T CONST)) (-1441 (($) 20 T CONST)) (-3454 (((-114) $ $) 24 T ELT)) (-4387 (((-791) $) 56 (|has| $ (-6 -4425)) ELT))) -(((-143) (-13 (-1122) (-631 (-1180)) (-438 (-146)) (-631 (-661 (-146))) (-10 -8 (-15 -1444 ($ (-1180))) (-15 -1444 ($ (-661 (-146)))) (-15 -1443 ($) -4382) (-15 -1442 ($) -4382) (-15 -3847 ($) -4382) (-15 -3849 ($) -4382) (-15 -1441 ($) -4382) (-15 -1440 ($) -4382)))) (T -143)) -((-1444 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-143)))) (-1444 (*1 *1 *2) (-12 (-5 *2 (-661 (-146))) (-5 *1 (-143)))) (-1443 (*1 *1) (-5 *1 (-143))) (-1442 (*1 *1) (-5 *1 (-143))) (-3847 (*1 *1) (-5 *1 (-143))) (-3849 (*1 *1) (-5 *1 (-143))) (-1441 (*1 *1) (-5 *1 (-143))) (-1440 (*1 *1) (-5 *1 (-143)))) -((-4171 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-4169 ((|#1| |#3|) 9 T ELT)) (-4170 ((|#3| |#3|) 15 T ELT))) -(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4169 (|#1| |#3|)) (-15 -4170 (|#3| |#3|)) (-15 -4171 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1012 |#1|) (-385 |#2|)) (T -144)) -((-4171 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1012 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4))))) -((-1483 (($ $ $) 8 T ELT)) (-1481 (($ $) 7 T ELT)) (-3504 (($ $ $) 6 T ELT))) +((-3838 (*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-790)))) (-1426 (*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-790)) (-5 *2 (-1293))))) +(-13 (-1121) (-10 -8 (-15 -3838 ((-790) $)) (-15 -1426 ((-1293) $ (-790))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 16 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-660 (-1155)) $) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-135) (-13 (-1103) (-10 -8 (-15 -3650 ((-660 (-1155)) $))))) (T -135)) +((-3650 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-135))))) +((-2966 (((-114) $ $) 49 T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-790) #1="failed") $) 60 T ELT)) (-3573 (((-790) $) 58 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) 37 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1428 (((-114)) 61 T ELT)) (-1427 (((-114) (-114)) 63 T ELT)) (-2923 (((-114) $) 30 T ELT)) (-1429 (((-114) $) 57 T ELT)) (-4375 (((-876) $) 28 T ELT) (($ (-790)) 20 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 18 T CONST)) (-3064 (($) 19 T CONST)) (-1430 (($ (-790)) 21 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) 40 T ELT)) (-3453 (((-114) $ $) 32 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 35 T ELT)) (-4266 (((-3 $ #1#) $ $) 42 T ELT)) (-4268 (($ $ $) 38 T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT) (($ $ $) 56 T ELT)) (* (($ (-790) $) 48 T ELT) (($ (-937) $) NIL T ELT) (($ $ $) 45 T ELT))) +(((-136) (-13 (-860) (-23) (-745) (-1058 (-790)) (-10 -8 (-6 (-4426 "*")) (-15 -4266 ((-3 $ "failed") $ $)) (-15 ** ($ $ $)) (-15 -1430 ($ (-790))) (-15 -2923 ((-114) $)) (-15 -1429 ((-114) $)) (-15 -1428 ((-114))) (-15 -1427 ((-114) (-114)))))) (T -136)) +((-4266 (*1 *1 *1 *1) (|partial| -5 *1 (-136))) (** (*1 *1 *1 *1) (-5 *1 (-136))) (-1430 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-136)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1429 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1428 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) (-1427 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1431 (($ (-660 |#3|)) 62 T ELT)) (-3833 (($ $) 125 T ELT) (($ $ (-558) (-558)) 124 T ELT)) (-4153 (($) 20 T ELT)) (-3574 (((-3 |#3| "failed") $) 85 T ELT)) (-3573 ((|#3| $) NIL T ELT)) (-1435 (($ $ (-660 (-558))) 126 T ELT)) (-1432 (((-660 |#3|) $) 57 T ELT)) (-3510 (((-790) $) 67 T ELT)) (-4373 (($ $ $) 119 T ELT)) (-1433 (($) 66 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1434 (($) 19 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 ((|#3| $ (-558)) 71 T ELT) ((|#3| $) 70 T ELT) ((|#3| $ (-558) (-558)) 72 T ELT) ((|#3| $ (-558) (-558) (-558)) 73 T ELT) ((|#3| $ (-558) (-558) (-558) (-558)) 74 T ELT) ((|#3| $ (-660 (-558))) 75 T ELT)) (-4377 (((-790) $) 68 T ELT)) (-2192 (($ $ (-558) $ (-558)) 120 T ELT) (($ $ (-558) (-558)) 122 T ELT)) (-4375 (((-876) $) 93 T ELT) (($ |#3|) 94 T ELT) (($ (-246 |#2| |#3|)) 101 T ELT) (($ (-1162 |#2| |#3|)) 104 T ELT) (($ (-660 |#3|)) 76 T ELT) (($ (-660 $)) 82 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 95 T CONST)) (-3064 (($) 96 T CONST)) (-3453 (((-114) $ $) 106 T ELT)) (-4266 (($ $) 112 T ELT) (($ $ $) 110 T ELT)) (-4268 (($ $ $) 108 T ELT)) (* (($ |#3| $) 117 T ELT) (($ $ |#3|) 118 T ELT) (($ $ (-558)) 115 T ELT) (($ (-558) $) 114 T ELT) (($ $ $) 121 T ELT))) +(((-137 |#1| |#2| |#3|) (-13 (-477 |#3| (-790)) (-482 (-558) (-790)) (-298 (-558) |#3|) (-10 -8 (-15 -4375 ($ (-246 |#2| |#3|))) (-15 -4375 ($ (-1162 |#2| |#3|))) (-15 -4375 ($ (-660 |#3|))) (-15 -4375 ($ (-660 $))) (-15 -3510 ((-790) $)) (-15 -4229 (|#3| $)) (-15 -4229 (|#3| $ (-558) (-558))) (-15 -4229 (|#3| $ (-558) (-558) (-558))) (-15 -4229 (|#3| $ (-558) (-558) (-558) (-558))) (-15 -4229 (|#3| $ (-660 (-558)))) (-15 -4373 ($ $ $)) (-15 * ($ $ $)) (-15 -2192 ($ $ (-558) $ (-558))) (-15 -2192 ($ $ (-558) (-558))) (-15 -3833 ($ $)) (-15 -3833 ($ $ (-558) (-558))) (-15 -1435 ($ $ (-660 (-558)))) (-15 -1434 ($)) (-15 -1433 ($)) (-15 -1432 ((-660 |#3|) $)) (-15 -1431 ($ (-660 |#3|))) (-15 -4153 ($)))) (-558) (-790) (-175)) (T -137)) +((-4373 (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-790)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1162 *4 *5)) (-14 *4 (-790)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-790)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-790)) (-4 *5 (-175)))) (-3510 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-175)))) (-4229 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-790)))) (-4229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-790)))) (-4229 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-790)))) (-4229 (*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) (-14 *5 (-790)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-558))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 (-558)) (-14 *5 (-790)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) (-2192 (*1 *1 *1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-790)) (-4 *5 (-175)))) (-2192 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-790)) (-4 *5 (-175)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) (-3833 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-790)) (-4 *5 (-175)))) (-1435 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-790)) (-4 *5 (-175)))) (-1434 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) (-1433 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) (-1432 (*1 *2 *1) (-12 (-5 *2 (-660 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-790)) (-4 *5 (-175)))) (-1431 (*1 *1 *2) (-12 (-5 *2 (-660 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 (-790)))) (-4153 (*1 *1) (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175))))) +((-2643 (((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|)) 14 T ELT)) (-4387 (((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)) 18 T ELT))) +(((-138 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2643 ((-137 |#1| |#2| |#4|) (-660 |#4|) (-137 |#1| |#2| |#3|))) (-15 -4387 ((-137 |#1| |#2| |#4|) (-1 |#4| |#3|) (-137 |#1| |#2| |#3|)))) (-558) (-790) (-175) (-175)) (T -138)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-790)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) (-14 *6 (-790)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3947 (((-1155) $) 11 T ELT)) (-3948 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-139) (-13 (-1103) (-10 -8 (-15 -3948 ((-1155) $)) (-15 -3947 ((-1155) $))))) (T -139)) +((-3948 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-139)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-139))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1539 (((-190) $) 10 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-660 (-1155)) $) 13 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-140) (-13 (-1103) (-10 -8 (-15 -1539 ((-190) $)) (-15 -3650 ((-660 (-1155)) $))))) (T -140)) +((-1539 (*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-140))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1537 (((-660 (-878)) $) NIL T ELT)) (-3969 (((-518) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1539 (((-190) $) NIL T ELT)) (-3031 (((-114) $ (-518)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1538 (((-660 (-114)) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (((-186) $) 6 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2916 (((-55) $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-141) (-13 (-189) (-629 (-186)))) (T -141)) +NIL +((-1437 (((-660 (-187 (-141))) $) 13 T ELT)) (-1436 (((-660 (-187 (-141))) $) 14 T ELT)) (-1438 (((-660 (-850)) $) 10 T ELT)) (-1613 (((-141) $) 7 T ELT)) (-4375 (((-876) $) 16 T ELT))) +(((-142) (-13 (-629 (-876)) (-10 -8 (-15 -1613 ((-141) $)) (-15 -1438 ((-660 (-850)) $)) (-15 -1437 ((-660 (-187 (-141))) $)) (-15 -1436 ((-660 (-187 (-141))) $))))) (T -142)) +((-1613 (*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) (-1438 (*1 *2 *1) (-12 (-5 *2 (-660 (-850))) (-5 *1 (-142)))) (-1437 (*1 *2 *1) (-12 (-5 *2 (-660 (-187 (-141)))) (-5 *1 (-142)))) (-1436 (*1 *2 *1) (-12 (-5 *2 (-660 (-187 (-141)))) (-5 *1 (-142))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3846 (($) 17 T CONST)) (-2009 (($) NIL (|has| (-146) (-381)) ELT)) (-3651 (($ $ $) 19 T ELT) (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT)) (-3653 (($ $ $) NIL T ELT)) (-3652 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| (-146) (-381)) ELT)) (-3656 (($) NIL T ELT) (($ (-660 (-146))) NIL T ELT)) (-1712 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-3824 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-146) $) 55 (|has| $ (-6 -4424)) ELT)) (-3825 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-146) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-4271 (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4424)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4424)) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-3394 (($) NIL (|has| (-146) (-381)) ELT)) (-3289 (((-660 (-146)) $) 64 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) NIL T ELT)) (-2929 (((-146) $) NIL (|has| (-146) (-860)) ELT)) (-3006 (((-660 (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-146) $) 27 (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-3257 (((-146) $) NIL (|has| (-146) (-860)) ELT)) (-2159 (($ (-1 (-146) (-146)) $) 63 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-146) (-146)) $) 59 T ELT)) (-3848 (($) 18 T CONST)) (-2219 (((-937) $) NIL (|has| (-146) (-381)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3655 (($ $ $) 30 T ELT)) (-1388 (((-146) $) 56 T ELT)) (-4036 (($ (-146) $) 54 T ELT)) (-2630 (($ (-937)) NIL (|has| (-146) (-381)) ELT)) (-1441 (($) 16 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-1467 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-1389 (((-146) $) 57 T ELT)) (-2157 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-146)) (-660 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-660 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 52 T ELT)) (-1442 (($) 15 T CONST)) (-3654 (($ $ $) 32 T ELT) (($ $ (-146)) NIL T ELT)) (-1597 (($ (-660 (-146))) NIL T ELT) (($) NIL T ELT)) (-2156 (((-790) (-146) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT) (((-790) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-1179) $) 37 T ELT) (((-547) $) NIL (|has| (-146) (-630 (-547))) ELT) (((-660 (-146)) $) 35 T ELT)) (-3949 (($ (-660 (-146))) NIL T ELT)) (-2010 (($ $) 33 (|has| (-146) (-381)) ELT)) (-4375 (((-876) $) 49 T ELT)) (-1443 (($ (-1179)) 14 T ELT) (($ (-660 (-146))) 46 T ELT)) (-2011 (((-790) $) NIL T ELT)) (-3657 (($) 53 T ELT) (($ (-660 (-146))) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1390 (($ (-660 (-146))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-1439 (($) 21 T CONST)) (-1440 (($) 20 T CONST)) (-3453 (((-114) $ $) 24 T ELT)) (-4386 (((-790) $) 51 (|has| $ (-6 -4424)) ELT))) +(((-143) (-13 (-1121) (-630 (-1179)) (-438 (-146)) (-630 (-660 (-146))) (-10 -8 (-15 -1443 ($ (-1179))) (-15 -1443 ($ (-660 (-146)))) (-15 -1442 ($) -4381) (-15 -1441 ($) -4381) (-15 -3846 ($) -4381) (-15 -3848 ($) -4381) (-15 -1440 ($) -4381) (-15 -1439 ($) -4381)))) (T -143)) +((-1443 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-143)))) (-1443 (*1 *1 *2) (-12 (-5 *2 (-660 (-146))) (-5 *1 (-143)))) (-1442 (*1 *1) (-5 *1 (-143))) (-1441 (*1 *1) (-5 *1 (-143))) (-3846 (*1 *1) (-5 *1 (-143))) (-3848 (*1 *1) (-5 *1 (-143))) (-1440 (*1 *1) (-5 *1 (-143))) (-1439 (*1 *1) (-5 *1 (-143)))) +((-4170 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 17 T ELT)) (-4168 ((|#1| |#3|) 9 T ELT)) (-4169 ((|#3| |#3|) 15 T ELT))) +(((-144 |#1| |#2| |#3|) (-10 -7 (-15 -4168 (|#1| |#3|)) (-15 -4169 (|#3| |#3|)) (-15 -4170 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1011 |#1|) (-385 |#2|)) (T -144)) +((-4170 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) (-4169 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1011 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4))))) +((-1482 (($ $ $) 8 T ELT)) (-1480 (($ $) 7 T ELT)) (-3503 (($ $ $) 6 T ELT))) (((-145) (-142)) (T -145)) -((-1483 (*1 *1 *1 *1) (-4 *1 (-145))) (-1481 (*1 *1 *1) (-4 *1 (-145))) (-3504 (*1 *1 *1 *1) (-4 *1 (-145)))) -(-13 (-10 -8 (-15 -3504 ($ $ $)) (-15 -1481 ($ $)) (-15 -1483 ($ $ $)))) -((-2967 (((-114) $ $) NIL T ELT)) (-1452 (($) 35 T CONST)) (-1447 (((-114) $) 47 T ELT)) (-3847 (($ $) 57 T ELT)) (-1459 (($) 28 T CONST)) (-1650 (($) 26 T CONST)) (-3538 (((-791)) 13 T ELT)) (-3395 (($) 25 T ELT)) (-2978 (($) 27 T CONST)) (-1461 (((-791) $) 21 T ELT)) (-1458 (($) 29 T CONST)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1446 (((-114) $) 49 T ELT)) (-3849 (($ $) 58 T ELT)) (-2220 (((-938) $) 23 T ELT)) (-1456 (($) 31 T CONST)) (-3660 (((-1180) $) 55 T ELT)) (-2631 (($ (-938)) 20 T ELT)) (-1453 (($) 34 T CONST)) (-1449 (((-114) $) 45 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1455 (($) 32 T CONST)) (-1451 (($) 36 T CONST)) (-1450 (((-114) $) 43 T ELT)) (-4376 (((-877) $) 38 T ELT)) (-1460 (($ (-791)) 19 T ELT) (($ (-1180)) 56 T ELT)) (-1457 (($) 30 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-1454 (($) 33 T CONST)) (-1445 (((-114) $) 53 T ELT)) (-1448 (((-114) $) 51 T ELT)) (-2965 (((-114) $ $) 11 T ELT)) (-2966 (((-114) $ $) 9 T ELT)) (-3454 (((-114) $ $) 7 T ELT)) (-3085 (((-114) $ $) 10 T ELT)) (-3086 (((-114) $ $) 8 T ELT))) -(((-146) (-13 (-857) (-10 -8 (-15 -1461 ((-791) $)) (-15 -1460 ($ (-791))) (-15 -1460 ($ (-1180))) (-15 -1650 ($) -4382) (-15 -2978 ($) -4382) (-15 -1459 ($) -4382) (-15 -1458 ($) -4382) (-15 -1457 ($) -4382) (-15 -1456 ($) -4382) (-15 -1455 ($) -4382) (-15 -1454 ($) -4382) (-15 -1453 ($) -4382) (-15 -1452 ($) -4382) (-15 -1451 ($) -4382) (-15 -3847 ($ $)) (-15 -3849 ($ $)) (-15 -1450 ((-114) $)) (-15 -1449 ((-114) $)) (-15 -1448 ((-114) $)) (-15 -1447 ((-114) $)) (-15 -1446 ((-114) $)) (-15 -1445 ((-114) $))))) (T -146)) -((-1461 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-146)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-146)))) (-1460 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-146)))) (-1650 (*1 *1) (-5 *1 (-146))) (-2978 (*1 *1) (-5 *1 (-146))) (-1459 (*1 *1) (-5 *1 (-146))) (-1458 (*1 *1) (-5 *1 (-146))) (-1457 (*1 *1) (-5 *1 (-146))) (-1456 (*1 *1) (-5 *1 (-146))) (-1455 (*1 *1) (-5 *1 (-146))) (-1454 (*1 *1) (-5 *1 (-146))) (-1453 (*1 *1) (-5 *1 (-146))) (-1452 (*1 *1) (-5 *1 (-146))) (-1451 (*1 *1) (-5 *1 (-146))) (-3847 (*1 *1 *1) (-5 *1 (-146))) (-3849 (*1 *1 *1) (-5 *1 (-146))) (-1450 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3103 (((-711 $) $) 44 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-1482 (*1 *1 *1 *1) (-4 *1 (-145))) (-1480 (*1 *1 *1) (-4 *1 (-145))) (-3503 (*1 *1 *1 *1) (-4 *1 (-145)))) +(-13 (-10 -8 (-15 -3503 ($ $ $)) (-15 -1480 ($ $)) (-15 -1482 ($ $ $)))) +((-2966 (((-114) $ $) NIL T ELT)) (-1451 (($) 30 T CONST)) (-1446 (((-114) $) 42 T ELT)) (-3846 (($ $) 52 T ELT)) (-1458 (($) 23 T CONST)) (-1649 (($) 21 T CONST)) (-3537 (((-790)) 13 T ELT)) (-3394 (($) 20 T ELT)) (-2977 (($) 22 T CONST)) (-1460 (((-790) $) 17 T ELT)) (-1457 (($) 24 T CONST)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-1445 (((-114) $) 44 T ELT)) (-3848 (($ $) 53 T ELT)) (-2219 (((-937) $) 18 T ELT)) (-1455 (($) 26 T CONST)) (-3659 (((-1179) $) 50 T ELT)) (-2630 (($ (-937)) 16 T ELT)) (-1452 (($) 29 T CONST)) (-1448 (((-114) $) 40 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1454 (($) 27 T CONST)) (-1450 (($) 31 T CONST)) (-1449 (((-114) $) 38 T ELT)) (-4375 (((-876) $) 33 T ELT)) (-1459 (($ (-790)) 14 T ELT) (($ (-1179)) 51 T ELT)) (-1456 (($) 25 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-1453 (($) 28 T CONST)) (-1444 (((-114) $) 48 T ELT)) (-1447 (((-114) $) 46 T ELT)) (-2964 (((-114) $ $) 11 T ELT)) (-2965 (((-114) $ $) 9 T ELT)) (-3453 (((-114) $ $) 7 T ELT)) (-3084 (((-114) $ $) 10 T ELT)) (-3085 (((-114) $ $) 8 T ELT))) +(((-146) (-13 (-856) (-10 -8 (-15 -1460 ((-790) $)) (-15 -1459 ($ (-790))) (-15 -1459 ($ (-1179))) (-15 -1649 ($) -4381) (-15 -2977 ($) -4381) (-15 -1458 ($) -4381) (-15 -1457 ($) -4381) (-15 -1456 ($) -4381) (-15 -1455 ($) -4381) (-15 -1454 ($) -4381) (-15 -1453 ($) -4381) (-15 -1452 ($) -4381) (-15 -1451 ($) -4381) (-15 -1450 ($) -4381) (-15 -3846 ($ $)) (-15 -3848 ($ $)) (-15 -1449 ((-114) $)) (-15 -1448 ((-114) $)) (-15 -1447 ((-114) $)) (-15 -1446 ((-114) $)) (-15 -1445 ((-114) $)) (-15 -1444 ((-114) $))))) (T -146)) +((-1460 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-146)))) (-1459 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-146)))) (-1459 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-146)))) (-1649 (*1 *1) (-5 *1 (-146))) (-2977 (*1 *1) (-5 *1 (-146))) (-1458 (*1 *1) (-5 *1 (-146))) (-1457 (*1 *1) (-5 *1 (-146))) (-1456 (*1 *1) (-5 *1 (-146))) (-1455 (*1 *1) (-5 *1 (-146))) (-1454 (*1 *1) (-5 *1 (-146))) (-1453 (*1 *1) (-5 *1 (-146))) (-1452 (*1 *1) (-5 *1 (-146))) (-1451 (*1 *1) (-5 *1 (-146))) (-1450 (*1 *1) (-5 *1 (-146))) (-3846 (*1 *1 *1) (-5 *1 (-146))) (-3848 (*1 *1 *1) (-5 *1 (-146))) (-1449 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1448 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1447 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1446 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1445 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146)))) (-1444 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3102 (((-710 $) $) 44 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-147) (-142)) (T -147)) -((-3103 (*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147))))) -(-13 (-1070) (-10 -8 (-15 -3103 ((-711 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2838 ((|#1| (-709 |#1|) |#1|) 19 T ELT))) -(((-148 |#1|) (-10 -7 (-15 -2838 (|#1| (-709 |#1|) |#1|))) (-175)) (T -148)) -((-2838 (*1 *2 *3 *2) (-12 (-5 *3 (-709 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-3102 (*1 *2 *1) (-12 (-5 *2 (-710 *1)) (-4 *1 (-147))))) +(-13 (-1069) (-10 -8 (-15 -3102 ((-710 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2837 ((|#1| (-708 |#1|) |#1|) 19 T ELT))) +(((-148 |#1|) (-10 -7 (-15 -2837 (|#1| (-708 |#1|) |#1|))) (-175)) (T -148)) +((-2837 (*1 *2 *3 *2) (-12 (-5 *3 (-708 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-149) (-142)) (T -149)) NIL -(-13 (-1070)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-1464 (((-2 (|:| -2632 (-791)) (|:| -4384 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-791)) 76 T ELT)) (-1463 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-791))) "failed") |#3|) 56 T ELT)) (-1462 (((-2 (|:| -4384 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1465 ((|#1| |#3| |#3|) 44 T ELT)) (-4198 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20 T ELT)) (-1466 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-791))) |#3| |#3|) 53 T ELT))) -(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1462 ((-2 (|:| -4384 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1463 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-791))) "failed") |#3|)) (-15 -1464 ((-2 (|:| -2632 (-791)) (|:| -4384 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-791))) (-15 -1465 (|#1| |#3| |#3|)) (-15 -4198 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1466 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-791))) |#3| |#3|))) (-1243) (-1264 |#1|) (-1264 (-419 |#2|))) (T -150)) -((-1466 (*1 *2 *3 *3) (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-791)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-4198 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1264 *3)))) (-1465 (*1 *2 *3 *3) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1243)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-1464 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1243)) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-791)) (-4 *7 (-1264 *3)))) (-1463 (*1 *2 *3) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-791)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1264 (-419 *5))))) (-1462 (*1 *2 *3) (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -4384 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -((-3105 (((-3 (-661 (-1192 |#2|)) "failed") (-661 (-1192 |#2|)) (-1192 |#2|)) 35 T ELT))) -(((-151 |#1| |#2|) (-10 -7 (-15 -3105 ((-3 (-661 (-1192 |#2|)) "failed") (-661 (-1192 |#2|)) (-1192 |#2|)))) (-557) (-168 |#1|)) (T -151)) -((-3105 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-168 *4)) (-4 *4 (-557)) (-5 *1 (-151 *4 *5))))) -((-4140 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-1467 (($ $) 44 T ELT)) (-3826 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-4272 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1468 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 18 T ELT) (((-791) |#2| $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4387 (((-791) $) 12 T ELT))) -(((-152 |#1| |#2|) (-10 -7 (-15 -1467 (|#1| |#1|)) (-15 -3826 (|#1| |#2| |#1|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4140 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3826 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1468 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-791) |#2| |#1|)) (-15 -2157 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2159 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4387 ((-791) |#1|))) (-153 |#2|) (-1238)) (T -152)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 48 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 45 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 44 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 53 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-153 |#1|) (-142) (-1238)) (T -153)) -((-3950 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-4 *1 (-153 *3)))) (-1468 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1238)))) (-4272 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)))) (-4272 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *3)) (-4 *3 (-1238)))) (-4140 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *3)) (-4 *3 (-1238)))) (-4272 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)))) (-3826 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)) (-4 *2 (-1122)))) (-1467 (*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)) (-4 *2 (-1122))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -3950 ($ (-661 |t#1|))) (-15 -1468 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4272 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4272 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3826 ($ (-1 (-114) |t#1|) $)) (-15 -4140 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -4272 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3826 ($ |t#1| $)) (-15 -1467 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) 112 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-661 (-938))) 71 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1469 (($ (-938)) 57 T ELT)) (-4341 (((-136)) 23 T ELT)) (-4376 (((-877) $) 87 T ELT) (($ (-558)) 53 T ELT) (($ |#2|) 54 T ELT)) (-4107 ((|#2| $ (-661 (-938))) 74 T ELT)) (-3528 (((-791)) 20 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 47 T CONST)) (-3065 (($) 51 T CONST)) (-3454 (((-114) $ $) 33 T ELT)) (-4379 (($ $ |#2|) NIL T ELT)) (-4267 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-4269 (($ $ $) 38 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) -(((-154 |#1| |#2| |#3|) (-13 (-1070) (-38 |#2|) (-1296 |#2|) (-10 -8 (-15 -1469 ($ (-938))) (-15 -3294 ($ |#2| (-661 (-938)))) (-15 -4107 (|#2| $ (-661 (-938)))) (-15 -3887 ((-3 $ "failed") $)))) (-938) (-376) (-1014 |#1| |#2|)) (T -154)) -((-3887 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-376)) (-14 *4 (-1014 *2 *3)))) (-1469 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1014 *3 *4)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-938)) (-4 *2 (-376)) (-14 *5 (-1014 *4 *2)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-661 (-938))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-938)) (-14 *5 (-1014 *4 *2))))) -((-1471 (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-661 (-661 (-962 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-1470 (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944) (-419 (-558)) (-419 (-558))) 95 T ELT) (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944)) 96 T ELT)) (-1642 (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-661 (-661 (-962 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-661 (-962 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944) (-419 (-558)) (-419 (-558))) 89 T ELT) (((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944)) 90 T ELT))) -(((-155) (-10 -7 (-15 -1642 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944))) (-15 -1642 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944) (-419 (-558)) (-419 (-558)))) (-15 -1470 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944))) (-15 -1470 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-944) (-419 (-558)) (-419 (-558)))) (-15 -1471 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-661 (-661 (-962 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1642 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-661 (-962 (-229))))) (-15 -1642 ((-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229)))) (-661 (-661 (-962 (-229)))))))) (T -155)) -((-1642 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) (-5 *1 (-155)) (-5 *3 (-661 (-661 (-962 (-229))))))) (-1642 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) (-5 *1 (-155)) (-5 *3 (-661 (-962 (-229)))))) (-1471 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 *4)))) (|:| |xValues| (-1110 *4)) (|:| |yValues| (-1110 *4)))) (-5 *1 (-155)) (-5 *3 (-661 (-661 (-962 *4)))))) (-1470 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-558))) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) (-5 *1 (-155)))) (-1470 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) (-5 *1 (-155)))) (-1642 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-944)) (-5 *4 (-419 (-558))) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) (-5 *1 (-155)))) (-1642 (*1 *2 *3) (-12 (-5 *3 (-944)) (-5 *2 (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) (-5 *1 (-155))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3599 (((-661 (-1156)) $) 20 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 27 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-1156) $) 9 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-156) (-13 (-1104) (-10 -8 (-15 -3599 ((-661 (-1156)) $)) (-15 -3651 ((-1156) $))))) (T -156)) -((-3599 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-156)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-156))))) -((-1524 (((-661 (-171 |#2|)) |#1| |#2|) 50 T ELT))) -(((-157 |#1| |#2|) (-10 -7 (-15 -1524 ((-661 (-171 |#2|)) |#1| |#2|))) (-1264 (-171 (-558))) (-13 (-376) (-860))) (T -157)) -((-1524 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1264 (-171 (-558)))) (-4 *4 (-13 (-376) (-860)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3948 (((-1239) $) 12 T ELT)) (-3949 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 19 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-158) (-13 (-1104) (-10 -8 (-15 -3949 ((-1156) $)) (-15 -3948 ((-1239) $))))) (T -158)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-158)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-158))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1473 (($) 38 T ELT)) (-3501 (($) 37 T ELT)) (-1472 (((-938)) 43 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3357 (((-558) $) 41 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3500 (($) 39 T ELT)) (-3356 (($ (-558)) 44 T ELT)) (-4376 (((-877) $) 50 T ELT)) (-3499 (($) 40 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 35 T ELT)) (-4269 (($ $ $) 32 T ELT)) (* (($ (-938) $) 42 T ELT) (($ (-229) $) 11 T ELT))) -(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-938) $)) (-15 * ($ (-229) $)) (-15 -4269 ($ $ $)) (-15 -3501 ($)) (-15 -1473 ($)) (-15 -3500 ($)) (-15 -3499 ($)) (-15 -3357 ((-558) $)) (-15 -1472 ((-938))) (-15 -3356 ($ (-558)))))) (T -159)) -((-4269 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-3501 (*1 *1) (-5 *1 (-159))) (-1473 (*1 *1) (-5 *1 (-159))) (-3500 (*1 *1) (-5 *1 (-159))) (-3499 (*1 *1) (-5 *1 (-159))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) (-1472 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-159)))) (-3356 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-159))))) -((-1486 ((|#2| |#2| (-1113 |#2|)) 98 T ELT) ((|#2| |#2| (-1198)) 75 T ELT)) (-4374 ((|#2| |#2| (-1113 |#2|)) 97 T ELT) ((|#2| |#2| (-1198)) 74 T ELT)) (-1483 ((|#2| |#2| |#2|) 25 T ELT)) (-4023 (((-115) (-115)) 111 T ELT)) (-1480 ((|#2| (-661 |#2|)) 130 T ELT)) (-1477 ((|#2| (-661 |#2|)) 150 T ELT)) (-1476 ((|#2| (-661 |#2|)) 138 T ELT)) (-1474 ((|#2| |#2|) 136 T ELT)) (-1478 ((|#2| (-661 |#2|)) 124 T ELT)) (-1479 ((|#2| (-661 |#2|)) 125 T ELT)) (-1475 ((|#2| (-661 |#2|)) 148 T ELT)) (-1487 ((|#2| |#2| (-1198)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1481 ((|#2| |#2|) 21 T ELT)) (-3504 ((|#2| |#2| |#2|) 24 T ELT)) (-2468 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) -(((-160 |#1| |#2|) (-10 -7 (-15 -2468 ((-114) (-115))) (-15 -4023 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3504 (|#2| |#2| |#2|)) (-15 -1483 (|#2| |#2| |#2|)) (-15 -1481 (|#2| |#2|)) (-15 -1487 (|#2| |#2|)) (-15 -1487 (|#2| |#2| (-1198))) (-15 -1486 (|#2| |#2| (-1198))) (-15 -1486 (|#2| |#2| (-1113 |#2|))) (-15 -4374 (|#2| |#2| (-1198))) (-15 -4374 (|#2| |#2| (-1113 |#2|))) (-15 -1474 (|#2| |#2|)) (-15 -1475 (|#2| (-661 |#2|))) (-15 -1476 (|#2| (-661 |#2|))) (-15 -1477 (|#2| (-661 |#2|))) (-15 -1478 (|#2| (-661 |#2|))) (-15 -1479 (|#2| (-661 |#2|))) (-15 -1480 (|#2| (-661 |#2|)))) (-569) (-433 |#1|)) (T -160)) -((-1480 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1479 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1474 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4374 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) (-4374 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1486 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) (-1486 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1487 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1487 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1481 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1483 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-3504 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-433 *4))))) -((-1485 ((|#1| |#1| |#1|) 66 T ELT)) (-1484 ((|#1| |#1| |#1|) 63 T ELT)) (-1483 ((|#1| |#1| |#1|) 57 T ELT)) (-3291 ((|#1| |#1|) 43 T ELT)) (-1482 ((|#1| |#1| (-661 |#1|)) 55 T ELT)) (-1481 ((|#1| |#1|) 47 T ELT)) (-3504 ((|#1| |#1| |#1|) 51 T ELT))) -(((-161 |#1|) (-10 -7 (-15 -3504 (|#1| |#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -1482 (|#1| |#1| (-661 |#1|))) (-15 -3291 (|#1| |#1|)) (-15 -1483 (|#1| |#1| |#1|)) (-15 -1484 (|#1| |#1| |#1|)) (-15 -1485 (|#1| |#1| |#1|))) (-557)) (T -161)) -((-1485 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1484 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1483 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-3291 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1482 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-557)) (-5 *1 (-161 *2)))) (-1481 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-3504 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) -((-1486 (($ $ (-1198)) 12 T ELT) (($ $ (-1113 $)) 11 T ELT)) (-4374 (($ $ (-1198)) 10 T ELT) (($ $ (-1113 $)) 9 T ELT)) (-1483 (($ $ $) 8 T ELT)) (-1487 (($ $) 14 T ELT) (($ $ (-1198)) 13 T ELT)) (-1481 (($ $) 7 T ELT)) (-3504 (($ $ $) 6 T ELT))) +(-13 (-1069)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-1463 (((-2 (|:| -2631 (-790)) (|:| -4383 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-790)) 76 T ELT)) (-1462 (((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-790))) "failed") |#3|) 56 T ELT)) (-1461 (((-2 (|:| -4383 (-419 |#2|)) (|:| |poly| |#3|)) |#3|) 41 T ELT)) (-1464 ((|#1| |#3| |#3|) 44 T ELT)) (-4197 ((|#3| |#3| (-419 |#2|) (-419 |#2|)) 20 T ELT)) (-1465 (((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-790))) |#3| |#3|) 53 T ELT))) +(((-150 |#1| |#2| |#3|) (-10 -7 (-15 -1461 ((-2 (|:| -4383 (-419 |#2|)) (|:| |poly| |#3|)) |#3|)) (-15 -1462 ((-3 (-2 (|:| |radicand| (-419 |#2|)) (|:| |deg| (-790))) "failed") |#3|)) (-15 -1463 ((-2 (|:| -2631 (-790)) (|:| -4383 (-419 |#2|)) (|:| |radicand| |#2|)) (-419 |#2|) (-790))) (-15 -1464 (|#1| |#3| |#3|)) (-15 -4197 (|#3| |#3| (-419 |#2|) (-419 |#2|))) (-15 -1465 ((-2 (|:| |func| |#3|) (|:| |poly| |#3|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| |deg| (-790))) |#3| |#3|))) (-1242) (-1263 |#1|) (-1263 (-419 |#2|))) (T -150)) +((-1465 (*1 *2 *3 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) (|:| |c2| (-419 *5)) (|:| |deg| (-790)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-4197 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1263 *3)))) (-1464 (*1 *2 *3 *3) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1242)) (-5 *1 (-150 *2 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-1463 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *3) (|:| |radicand| *6))) (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-790)) (-4 *7 (-1263 *3)))) (-1462 (*1 *2 *3) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-790)))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1263 (-419 *5))))) (-1461 (*1 *2 *3) (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -4383 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) +((-3104 (((-3 (-660 (-1191 |#2|)) "failed") (-660 (-1191 |#2|)) (-1191 |#2|)) 35 T ELT))) +(((-151 |#1| |#2|) (-10 -7 (-15 -3104 ((-3 (-660 (-1191 |#2|)) "failed") (-660 (-1191 |#2|)) (-1191 |#2|)))) (-557) (-168 |#1|)) (T -151)) +((-3104 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-168 *4)) (-4 *4 (-557)) (-5 *1 (-151 *4 *5))))) +((-4139 (($ (-1 (-114) |#2|) $) 37 T ELT)) (-1466 (($ $) 44 T ELT)) (-3825 (($ (-1 (-114) |#2|) $) 35 T ELT) (($ |#2| $) 40 T ELT)) (-4271 ((|#2| (-1 |#2| |#2| |#2|) $) 30 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 32 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 42 T ELT)) (-1467 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 27 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 24 T ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 18 T ELT) (((-790) |#2| $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 21 T ELT)) (-4386 (((-790) $) 12 T ELT))) +(((-152 |#1| |#2|) (-10 -7 (-15 -1466 (|#1| |#1|)) (-15 -3825 (|#1| |#2| |#1|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4139 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3825 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1467 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -2156 ((-790) |#2| |#1|)) (-15 -2156 ((-790) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4386 ((-790) |#1|))) (-153 |#2|) (-1237)) (T -152)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 48 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 45 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT) (($ |#1| $) 46 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) 51 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 50 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 47 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 52 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 44 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 53 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-153 |#1|) (-142) (-1237)) (T -153)) +((-3949 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-4 *1 (-153 *3)))) (-1467 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1237)))) (-4271 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)))) (-4271 (*1 *2 *3 *1 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *3)) (-4 *3 (-1237)))) (-4139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *3)) (-4 *3 (-1237)))) (-4271 (*1 *2 *3 *1 *2 *2) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)))) (-3825 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)) (-4 *2 (-1121)))) (-1466 (*1 *1 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)) (-4 *2 (-1121))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3949 ($ (-660 |t#1|))) (-15 -1467 ((-3 |t#1| "failed") (-1 (-114) |t#1|) $)) (IF (|has| $ (-6 -4424)) (PROGN (-15 -4271 (|t#1| (-1 |t#1| |t#1| |t#1|) $)) (-15 -4271 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1|)) (-15 -3825 ($ (-1 (-114) |t#1|) $)) (-15 -4139 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -4271 (|t#1| (-1 |t#1| |t#1| |t#1|) $ |t#1| |t#1|)) (-15 -3825 ($ |t#1| $)) (-15 -1466 ($ $))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) 112 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-660 (-937))) 71 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1468 (($ (-937)) 57 T ELT)) (-4340 (((-136)) 23 T ELT)) (-4375 (((-876) $) 87 T ELT) (($ (-558)) 53 T ELT) (($ |#2|) 54 T ELT)) (-4106 ((|#2| $ (-660 (-937))) 74 T ELT)) (-3527 (((-790)) 20 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 47 T CONST)) (-3064 (($) 51 T CONST)) (-3453 (((-114) $ $) 33 T ELT)) (-4378 (($ $ |#2|) NIL T ELT)) (-4266 (($ $) 42 T ELT) (($ $ $) 40 T ELT)) (-4268 (($ $ $) 38 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 44 T ELT) (($ $ $) 63 T ELT) (($ |#2| $) 46 T ELT) (($ $ |#2|) NIL T ELT))) +(((-154 |#1| |#2| |#3|) (-13 (-1069) (-38 |#2|) (-1295 |#2|) (-10 -8 (-15 -1468 ($ (-937))) (-15 -3293 ($ |#2| (-660 (-937)))) (-15 -4106 (|#2| $ (-660 (-937)))) (-15 -3886 ((-3 $ "failed") $)))) (-937) (-376) (-1013 |#1| |#2|)) (T -154)) +((-3886 (*1 *1 *1) (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-937)) (-4 *3 (-376)) (-14 *4 (-1013 *2 *3)))) (-1468 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) (-14 *5 (-1013 *3 *4)))) (-3293 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-937)) (-4 *2 (-376)) (-14 *5 (-1013 *4 *2)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-937))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-937)) (-14 *5 (-1013 *4 *2))))) +((-1470 (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-660 (-660 (-961 (-229)))) (-229) (-229) (-229) (-229)) 59 T ELT)) (-1469 (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943) (-419 (-558)) (-419 (-558))) 95 T ELT) (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943)) 96 T ELT)) (-1641 (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-660 (-660 (-961 (-229))))) 99 T ELT) (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-660 (-961 (-229)))) 98 T ELT) (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943) (-419 (-558)) (-419 (-558))) 89 T ELT) (((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943)) 90 T ELT))) +(((-155) (-10 -7 (-15 -1641 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943))) (-15 -1641 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943) (-419 (-558)) (-419 (-558)))) (-15 -1469 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943))) (-15 -1469 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-943) (-419 (-558)) (-419 (-558)))) (-15 -1470 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-660 (-660 (-961 (-229)))) (-229) (-229) (-229) (-229))) (-15 -1641 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-660 (-961 (-229))))) (-15 -1641 ((-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229)))) (-660 (-660 (-961 (-229)))))))) (T -155)) +((-1641 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)) (-5 *3 (-660 (-660 (-961 (-229))))))) (-1641 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)) (-5 *3 (-660 (-961 (-229)))))) (-1470 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 *4)))) (|:| |xValues| (-1109 *4)) (|:| |yValues| (-1109 *4)))) (-5 *1 (-155)) (-5 *3 (-660 (-660 (-961 *4)))))) (-1469 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-943)) (-5 *4 (-419 (-558))) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)))) (-1469 (*1 *2 *3) (-12 (-5 *3 (-943)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)))) (-1641 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-943)) (-5 *4 (-419 (-558))) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)))) (-1641 (*1 *2 *3) (-12 (-5 *3 (-943)) (-5 *2 (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3598 (((-660 (-1155)) $) 20 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 27 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-1155) $) 9 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-156) (-13 (-1103) (-10 -8 (-15 -3598 ((-660 (-1155)) $)) (-15 -3650 ((-1155) $))))) (T -156)) +((-3598 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-156)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-156))))) +((-1523 (((-660 (-171 |#2|)) |#1| |#2|) 50 T ELT))) +(((-157 |#1| |#2|) (-10 -7 (-15 -1523 ((-660 (-171 |#2|)) |#1| |#2|))) (-1263 (-171 (-558))) (-13 (-376) (-859))) (T -157)) +((-1523 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-171 *4))) (-5 *1 (-157 *3 *4)) (-4 *3 (-1263 (-171 (-558)))) (-4 *4 (-13 (-376) (-859)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3947 (((-1238) $) 12 T ELT)) (-3948 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 19 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-158) (-13 (-1103) (-10 -8 (-15 -3948 ((-1155) $)) (-15 -3947 ((-1238) $))))) (T -158)) +((-3948 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-158)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-158))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1472 (($) 38 T ELT)) (-3500 (($) 37 T ELT)) (-1471 (((-937)) 43 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3356 (((-558) $) 41 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3499 (($) 39 T ELT)) (-3355 (($ (-558)) 44 T ELT)) (-4375 (((-876) $) 50 T ELT)) (-3498 (($) 40 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 35 T ELT)) (-4268 (($ $ $) 32 T ELT)) (* (($ (-937) $) 42 T ELT) (($ (-229) $) 11 T ELT))) +(((-159) (-13 (-25) (-10 -8 (-15 * ($ (-937) $)) (-15 * ($ (-229) $)) (-15 -4268 ($ $ $)) (-15 -3500 ($)) (-15 -1472 ($)) (-15 -3499 ($)) (-15 -3498 ($)) (-15 -3356 ((-558) $)) (-15 -1471 ((-937))) (-15 -3355 ($ (-558)))))) (T -159)) +((-4268 (*1 *1 *1 *1) (-5 *1 (-159))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-159)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) (-3500 (*1 *1) (-5 *1 (-159))) (-1472 (*1 *1) (-5 *1 (-159))) (-3499 (*1 *1) (-5 *1 (-159))) (-3498 (*1 *1) (-5 *1 (-159))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) (-1471 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-159)))) (-3355 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-159))))) +((-1485 ((|#2| |#2| (-1112 |#2|)) 98 T ELT) ((|#2| |#2| (-1197)) 75 T ELT)) (-4373 ((|#2| |#2| (-1112 |#2|)) 97 T ELT) ((|#2| |#2| (-1197)) 74 T ELT)) (-1482 ((|#2| |#2| |#2|) 25 T ELT)) (-4022 (((-115) (-115)) 111 T ELT)) (-1479 ((|#2| (-660 |#2|)) 130 T ELT)) (-1476 ((|#2| (-660 |#2|)) 150 T ELT)) (-1475 ((|#2| (-660 |#2|)) 138 T ELT)) (-1473 ((|#2| |#2|) 136 T ELT)) (-1477 ((|#2| (-660 |#2|)) 124 T ELT)) (-1478 ((|#2| (-660 |#2|)) 125 T ELT)) (-1474 ((|#2| (-660 |#2|)) 148 T ELT)) (-1486 ((|#2| |#2| (-1197)) 63 T ELT) ((|#2| |#2|) 62 T ELT)) (-1480 ((|#2| |#2|) 21 T ELT)) (-3503 ((|#2| |#2| |#2|) 24 T ELT)) (-2467 (((-114) (-115)) 55 T ELT)) (** ((|#2| |#2| |#2|) 46 T ELT))) +(((-160 |#1| |#2|) (-10 -7 (-15 -2467 ((-114) (-115))) (-15 -4022 ((-115) (-115))) (-15 ** (|#2| |#2| |#2|)) (-15 -3503 (|#2| |#2| |#2|)) (-15 -1482 (|#2| |#2| |#2|)) (-15 -1480 (|#2| |#2|)) (-15 -1486 (|#2| |#2|)) (-15 -1486 (|#2| |#2| (-1197))) (-15 -1485 (|#2| |#2| (-1197))) (-15 -1485 (|#2| |#2| (-1112 |#2|))) (-15 -4373 (|#2| |#2| (-1197))) (-15 -4373 (|#2| |#2| (-1112 |#2|))) (-15 -1473 (|#2| |#2|)) (-15 -1474 (|#2| (-660 |#2|))) (-15 -1475 (|#2| (-660 |#2|))) (-15 -1476 (|#2| (-660 |#2|))) (-15 -1477 (|#2| (-660 |#2|))) (-15 -1478 (|#2| (-660 |#2|))) (-15 -1479 (|#2| (-660 |#2|)))) (-569) (-433 |#1|)) (T -160)) +((-1479 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1478 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1477 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1476 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1475 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1474 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569)))) (-1473 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4373 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) (-4373 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) (-1485 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1486 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) (-1486 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1480 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-1482 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-3503 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (** (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-160 *4 *5)) (-4 *5 (-433 *4))))) +((-1484 ((|#1| |#1| |#1|) 66 T ELT)) (-1483 ((|#1| |#1| |#1|) 63 T ELT)) (-1482 ((|#1| |#1| |#1|) 57 T ELT)) (-3290 ((|#1| |#1|) 43 T ELT)) (-1481 ((|#1| |#1| (-660 |#1|)) 55 T ELT)) (-1480 ((|#1| |#1|) 47 T ELT)) (-3503 ((|#1| |#1| |#1|) 51 T ELT))) +(((-161 |#1|) (-10 -7 (-15 -3503 (|#1| |#1| |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -1481 (|#1| |#1| (-660 |#1|))) (-15 -3290 (|#1| |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -1483 (|#1| |#1| |#1|)) (-15 -1484 (|#1| |#1| |#1|))) (-557)) (T -161)) +((-1484 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1483 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1482 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-3290 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-1481 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-557)) (-5 *1 (-161 *2)))) (-1480 (*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) (-3503 (*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) +((-1485 (($ $ (-1197)) 12 T ELT) (($ $ (-1112 $)) 11 T ELT)) (-4373 (($ $ (-1197)) 10 T ELT) (($ $ (-1112 $)) 9 T ELT)) (-1482 (($ $ $) 8 T ELT)) (-1486 (($ $) 14 T ELT) (($ $ (-1197)) 13 T ELT)) (-1480 (($ $) 7 T ELT)) (-3503 (($ $ $) 6 T ELT))) (((-162) (-142)) (T -162)) -((-1487 (*1 *1 *1) (-4 *1 (-162))) (-1487 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1198)))) (-1486 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1198)))) (-1486 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-162)))) (-4374 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1198)))) (-4374 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-162))))) -(-13 (-145) (-10 -8 (-15 -1487 ($ $)) (-15 -1487 ($ $ (-1198))) (-15 -1486 ($ $ (-1198))) (-15 -1486 ($ $ (-1113 $))) (-15 -4374 ($ $ (-1198))) (-15 -4374 ($ $ (-1113 $))))) +((-1486 (*1 *1 *1) (-4 *1 (-162))) (-1486 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1197)))) (-1485 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1197)))) (-1485 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-162)))) (-4373 (*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1197)))) (-4373 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-162))))) +(-13 (-145) (-10 -8 (-15 -1486 ($ $)) (-15 -1486 ($ $ (-1197))) (-15 -1485 ($ $ (-1197))) (-15 -1485 ($ $ (-1112 $))) (-15 -4373 ($ $ (-1197))) (-15 -4373 ($ $ (-1112 $))))) (((-145) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-1488 (($ (-558)) 15 T ELT) (($ $ $) 16 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 19 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 11 T ELT))) -(((-163) (-13 (-1122) (-10 -8 (-15 -1488 ($ (-558))) (-15 -1488 ($ $ $))))) (T -163)) -((-1488 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-163)))) (-1488 (*1 *1 *1 *1) (-5 *1 (-163)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 16 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-661 (-1156)) $) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-164) (-13 (-1104) (-10 -8 (-15 -3651 ((-661 (-1156)) $))))) (T -164)) -((-3651 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-164))))) -((-4023 (((-115) (-1198)) 103 T ELT))) -(((-165) (-10 -7 (-15 -4023 ((-115) (-1198))))) (T -165)) -((-4023 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-115)) (-5 *1 (-165))))) -((-1738 ((|#3| |#3|) 19 T ELT))) -(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1738 (|#3| |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|)) (T -166)) -((-1738 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1264 *4))))) -((-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 222 T ELT)) (-3750 ((|#2| $) 102 T ELT)) (-3912 (($ $) 255 T ELT)) (-4069 (($ $) 249 T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 47 T ELT)) (-3910 (($ $) 253 T ELT)) (-4068 (($ $) 247 T ELT)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3574 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2963 (($ $ $) 228 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) 160 T ELT) (((-709 |#2|) (-709 $)) 154 T ELT)) (-4272 (($ (-1192 |#2|)) 125 T ELT) (((-3 $ #1#) (-419 (-1192 |#2|))) NIL T ELT)) (-3887 (((-3 $ #1#) $) 213 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 203 T ELT)) (-3424 (((-114) $) 198 T ELT)) (-3423 (((-419 (-558)) $) 201 T ELT)) (-3511 (((-938)) 96 T ELT)) (-2962 (($ $ $) 230 T ELT)) (-1489 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-4057 (($) 244 T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 192 T ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 197 T ELT)) (-3534 ((|#2| $) 100 T ELT)) (-2224 (((-1192 |#2|) $) 127 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4372 (($ $) 246 T ELT)) (-3480 (((-1192 |#2|) $) 126 T ELT)) (-2874 (($ $) 206 T ELT)) (-1491 (($) 103 T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 95 T ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 64 T ELT)) (-3886 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-4373 (($ $) 245 T ELT)) (-1787 (((-791) $) 225 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 234 T ELT)) (-4187 ((|#2| (-1288 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-4188 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-3603 (((-1192 |#2|)) 120 T ELT)) (-3911 (($ $) 254 T ELT)) (-4064 (($ $) 248 T ELT)) (-3642 (((-1288 |#2|) $ (-1288 $)) 136 T ELT) (((-709 |#2|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#2|) $) 116 T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-4402 (((-1288 |#2|) $) NIL T ELT) (($ (-1288 |#2|)) NIL T ELT) (((-1192 |#2|) $) NIL T ELT) (($ (-1192 |#2|)) NIL T ELT) (((-905 (-558)) $) 183 T ELT) (((-905 (-391)) $) 187 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-547) $) 179 T ELT)) (-3410 (($ $) 104 T ELT)) (-4376 (((-877) $) 143 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-2838 (((-1192 |#2|) $) 32 T ELT)) (-3528 (((-791)) 106 T ELT)) (-1378 (((-114) $ $) 13 T ELT)) (-3918 (($ $) 258 T ELT)) (-3906 (($ $) 252 T ELT)) (-3916 (($ $) 256 T ELT)) (-3904 (($ $) 250 T ELT)) (-2450 ((|#2| $) 241 T ELT)) (-3917 (($ $) 257 T ELT)) (-3905 (($ $) 251 T ELT)) (-3803 (($ $) 162 T ELT)) (-3454 (((-114) $ $) 110 T ELT)) (-4267 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 111 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-419 (-558))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT))) -(((-167 |#1| |#2|) (-10 -7 (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4376 (|#1| |#1|)) (-15 -3886 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2274 ((-2 (|:| -1980 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1787 ((-791) |#1|)) (-15 -3280 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2962 (|#1| |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4402 ((-547) |#1|)) (-15 -4402 ((-171 (-229)) |#1|)) (-15 -4402 ((-171 (-391)) |#1|)) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4057 (|#1|)) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3107 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3106 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3105 ((-3 (-661 (-1192 |#1|)) #1#) (-661 (-1192 |#1|)) (-1192 |#1|))) (-15 -3425 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3423 ((-419 (-558)) |#1|)) (-15 -3424 ((-114) |#1|)) (-15 -1489 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2450 (|#2| |#1|)) (-15 -3803 (|#1| |#1|)) (-15 -3886 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3410 (|#1| |#1|)) (-15 -1491 (|#1|)) (-15 -4402 ((-905 (-391)) |#1|)) (-15 -4402 ((-905 (-558)) |#1|)) (-15 -3197 ((-903 (-391) |#1|) |#1| (-905 (-391)) (-903 (-391) |#1|))) (-15 -3197 ((-903 (-558) |#1|) |#1| (-905 (-558)) (-903 (-558) |#1|))) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4272 ((-3 |#1| #1#) (-419 (-1192 |#2|)))) (-15 -3480 ((-1192 |#2|) |#1|)) (-15 -4402 (|#1| (-1192 |#2|))) (-15 -4272 (|#1| (-1192 |#2|))) (-15 -3603 ((-1192 |#2|))) (-15 -2493 ((-709 |#2|) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-709 (-558)) (-709 |#1|))) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -4402 ((-1192 |#2|) |#1|)) (-15 -4187 (|#2|)) (-15 -4402 (|#1| (-1288 |#2|))) (-15 -4402 ((-1288 |#2|) |#1|)) (-15 -3642 ((-709 |#2|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1|)) (-15 -2224 ((-1192 |#2|) |#1|)) (-15 -2838 ((-1192 |#2|) |#1|)) (-15 -4187 (|#2| (-1288 |#1|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -3534 (|#2| |#1|)) (-15 -3750 (|#2| |#1|)) (-15 -3511 ((-938))) (-15 -4376 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3528 ((-791))) (-15 -4376 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 -3887 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -1378 ((-114) |#1| |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167)) -((-3528 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-3511 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-938)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-4187 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-3603 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1192 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 111 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-2273 (($ $) 112 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-2271 (((-114) $) 114 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-1990 (((-709 |#1|) (-1288 $)) 58 T ELT) (((-709 |#1|)) 74 T ELT)) (-3750 ((|#1| $) 64 T ELT)) (-3912 (($ $) 247 (|has| |#1| (-1224)) ELT)) (-4069 (($ $) 230 (|has| |#1| (-1224)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 164 (|has| |#1| (-363)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 261 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-4205 (($ $) 131 (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-4401 (((-417 $) $) 132 (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-3438 (($ $) 260 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ELT)) (-3105 (((-3 (-661 (-1192 $)) "failed") (-661 (-1192 $)) (-1192 $)) 264 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-1788 (((-114) $ $) 122 (|has| |#1| (-319)) ELT)) (-3538 (((-791)) 105 (|has| |#1| (-381)) ELT)) (-3910 (($ $) 246 (|has| |#1| (-1224)) ELT)) (-4068 (($ $) 231 (|has| |#1| (-1224)) ELT)) (-3914 (($ $) 245 (|has| |#1| (-1224)) ELT)) (-4067 (($ $) 232 (|has| |#1| (-1224)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 191 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3574 (((-558) $) 190 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 188 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 187 T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) 60 T ELT) (($ (-1288 |#1|)) 77 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-2963 (($ $ $) 126 (|has| |#1| (-319)) ELT)) (-1989 (((-709 |#1|) $ (-1288 $)) 65 T ELT) (((-709 |#1|) $) 72 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 183 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 182 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 181 T ELT) (((-709 |#1|) (-709 $)) 180 T ELT)) (-4272 (($ (-1192 |#1|)) 175 T ELT) (((-3 $ "failed") (-419 (-1192 |#1|))) 172 (|has| |#1| (-376)) ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4073 ((|#1| $) 272 T ELT)) (-3425 (((-3 (-419 (-558)) "failed") $) 265 (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) 267 (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) 266 (|has| |#1| (-557)) ELT)) (-3511 (((-938)) 66 T ELT)) (-3395 (($) 108 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) 125 (|has| |#1| (-319)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 120 (|has| |#1| (-319)) ELT)) (-3234 (($) 166 (|has| |#1| (-363)) ELT)) (-1883 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1974 (($ $ (-791)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4153 (((-114) $) 133 (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-1489 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1081)) (|has| |#1| (-1224))) ELT)) (-4057 (($) 257 (|has| |#1| (-1224)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 280 (|has| |#1| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 279 (|has| |#1| (-901 (-391))) ELT)) (-4202 (((-938) $) 169 (|has| |#1| (-363)) ELT) (((-845 (-938)) $) 155 (|has| |#1| (-363)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 259 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ELT)) (-3534 ((|#1| $) 63 T ELT)) (-3865 (((-711 $) $) 159 (|has| |#1| (-363)) ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 129 (|has| |#1| (-319)) ELT)) (-2224 (((-1192 |#1|) $) 56 (|has| |#1| (-376)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2220 (((-938) $) 107 (|has| |#1| (-381)) ELT)) (-4372 (($ $) 254 (|has| |#1| (-1224)) ELT)) (-3480 (((-1192 |#1|) $) 173 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 185 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 184 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 179 T ELT) (((-709 |#1|) (-1288 $)) 178 T ELT)) (-2102 (($ (-661 $)) 118 (-3957 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT) (($ $ $) 117 (-3957 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3866 (($) 160 (|has| |#1| (-363)) CONST)) (-2631 (($ (-938)) 106 (|has| |#1| (-381)) ELT)) (-1491 (($) 276 T ELT)) (-4074 ((|#1| $) 273 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2640 (($) 177 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 119 (-3957 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-3562 (($ (-661 $)) 116 (-3957 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT) (($ $ $) 115 (-3957 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 163 (|has| |#1| (-363)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 263 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 262 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-4162 (((-417 $) $) 130 (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 127 (|has| |#1| (-319)) ELT)) (-3886 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 110 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 121 (|has| |#1| (-319)) ELT)) (-4373 (($ $) 255 (|has| |#1| (-1224)) ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) 287 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 285 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 284 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 283 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) 282 (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-1787 (((-791) $) 123 (|has| |#1| (-319)) ELT)) (-4230 (($ $ |#1|) 288 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 124 (|has| |#1| (-319)) ELT)) (-4187 ((|#1| (-1288 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1975 (((-791) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-791) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4188 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 141 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) 147 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) 146 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) 145 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198)) 143 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-791)) 153 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2961 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 151 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2961 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2639 (((-709 |#1|) (-1288 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3603 (((-1192 |#1|)) 176 T ELT)) (-3915 (($ $) 244 (|has| |#1| (-1224)) ELT)) (-4066 (($ $) 233 (|has| |#1| (-1224)) ELT)) (-1877 (($) 165 (|has| |#1| (-363)) ELT)) (-3913 (($ $) 243 (|has| |#1| (-1224)) ELT)) (-4065 (($ $) 234 (|has| |#1| (-1224)) ELT)) (-3911 (($ $) 242 (|has| |#1| (-1224)) ELT)) (-4064 (($ $) 235 (|has| |#1| (-1224)) ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 62 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) 61 T ELT) (((-1288 |#1|) $) 79 T ELT) (((-709 |#1|) (-1288 $)) 78 T ELT)) (-4402 (((-1288 |#1|) $) 76 T ELT) (($ (-1288 |#1|)) 75 T ELT) (((-1192 |#1|) $) 192 T ELT) (($ (-1192 |#1|)) 174 T ELT) (((-905 (-558)) $) 278 (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) 277 (|has| |#1| (-631 (-905 (-391)))) ELT) (((-171 (-391)) $) 229 (|has| |#1| (-1041)) ELT) (((-171 (-229)) $) 228 (|has| |#1| (-1041)) ELT) (((-547) $) 227 (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $) 275 T ELT)) (-3104 (((-3 (-1288 $) "failed") (-709 $)) 162 (-3957 (-2961 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) (|has| |#1| (-363))) ELT)) (-1490 (($ |#1| |#1|) 274 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 104 (-3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) 109 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-3103 (($ $) 161 (|has| |#1| (-363)) ELT) (((-711 $) $) 55 (-3957 (-2961 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) (|has| |#1| (-147))) ELT)) (-2838 (((-1192 |#1|) $) 57 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2222 (((-1288 $)) 80 T ELT)) (-3918 (($ $) 253 (|has| |#1| (-1224)) ELT)) (-3906 (($ $) 241 (|has| |#1| (-1224)) ELT)) (-2272 (((-114) $ $) 113 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929)))) ELT)) (-3916 (($ $) 252 (|has| |#1| (-1224)) ELT)) (-3904 (($ $) 240 (|has| |#1| (-1224)) ELT)) (-3920 (($ $) 251 (|has| |#1| (-1224)) ELT)) (-3908 (($ $) 239 (|has| |#1| (-1224)) ELT)) (-2450 ((|#1| $) 269 (|has| |#1| (-1224)) ELT)) (-3921 (($ $) 250 (|has| |#1| (-1224)) ELT)) (-3909 (($ $) 238 (|has| |#1| (-1224)) ELT)) (-3919 (($ $) 249 (|has| |#1| (-1224)) ELT)) (-3907 (($ $) 237 (|has| |#1| (-1224)) ELT)) (-3917 (($ $) 248 (|has| |#1| (-1224)) ELT)) (-3905 (($ $) 236 (|has| |#1| (-1224)) ELT)) (-3803 (($ $) 270 (|has| |#1| (-1081)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 139 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) 150 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) 149 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) 148 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198)) 144 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-791)) 154 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2961 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 152 (-3957 (-2961 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2961 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2961 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-419 (-558))) 258 (-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ELT) (($ $ $) 256 (|has| |#1| (-1224)) ELT) (($ $ (-558)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| |#1| (-376)) ELT))) +((-2966 (((-114) $ $) NIL T ELT)) (-1487 (($ (-558)) 15 T ELT) (($ $ $) 16 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 19 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 11 T ELT))) +(((-163) (-13 (-1121) (-10 -8 (-15 -1487 ($ (-558))) (-15 -1487 ($ $ $))))) (T -163)) +((-1487 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-163)))) (-1487 (*1 *1 *1 *1) (-5 *1 (-163)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 16 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-660 (-1155)) $) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-164) (-13 (-1103) (-10 -8 (-15 -3650 ((-660 (-1155)) $))))) (T -164)) +((-3650 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-164))))) +((-4022 (((-115) (-1197)) 103 T ELT))) +(((-165) (-10 -7 (-15 -4022 ((-115) (-1197))))) (T -165)) +((-4022 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-165))))) +((-1737 ((|#3| |#3|) 19 T ELT))) +(((-166 |#1| |#2| |#3|) (-10 -7 (-15 -1737 (|#3| |#3|))) (-1069) (-1263 |#1|) (-1263 |#2|)) (T -166)) +((-1737 (*1 *2 *2) (-12 (-4 *3 (-1069)) (-4 *4 (-1263 *3)) (-5 *1 (-166 *3 *4 *2)) (-4 *2 (-1263 *4))))) +((-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 222 T ELT)) (-3749 ((|#2| $) 102 T ELT)) (-3911 (($ $) 255 T ELT)) (-4068 (($ $) 249 T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 47 T ELT)) (-3909 (($ $) 253 T ELT)) (-4067 (($ $) 247 T ELT)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 146 T ELT)) (-3573 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 144 T ELT)) (-2962 (($ $ $) 228 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) 160 T ELT) (((-708 |#2|) (-708 $)) 154 T ELT)) (-4271 (($ (-1191 |#2|)) 125 T ELT) (((-3 $ #1#) (-419 (-1191 |#2|))) NIL T ELT)) (-3886 (((-3 $ #1#) $) 213 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 203 T ELT)) (-3423 (((-114) $) 198 T ELT)) (-3422 (((-419 (-558)) $) 201 T ELT)) (-3510 (((-937)) 96 T ELT)) (-2961 (($ $ $) 230 T ELT)) (-1488 (((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) $) 267 T ELT)) (-4056 (($) 244 T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 192 T ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 197 T ELT)) (-3533 ((|#2| $) 100 T ELT)) (-2223 (((-1191 |#2|) $) 127 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 108 T ELT)) (-4371 (($ $) 246 T ELT)) (-3479 (((-1191 |#2|) $) 126 T ELT)) (-2873 (($ $) 206 T ELT)) (-1490 (($) 103 T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 95 T ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 64 T ELT)) (-3885 (((-3 $ #1#) $ |#2|) 208 T ELT) (((-3 $ #1#) $ $) 211 T ELT)) (-4372 (($ $) 245 T ELT)) (-1786 (((-790) $) 225 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 234 T ELT)) (-4186 ((|#2| (-1287 $)) NIL T ELT) ((|#2|) 98 T ELT)) (-4187 (($ $ (-1 |#2| |#2|)) 119 T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-3602 (((-1191 |#2|)) 120 T ELT)) (-3910 (($ $) 254 T ELT)) (-4063 (($ $) 248 T ELT)) (-3641 (((-1287 |#2|) $ (-1287 $)) 136 T ELT) (((-708 |#2|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#2|) $) 116 T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-4401 (((-1287 |#2|) $) NIL T ELT) (($ (-1287 |#2|)) NIL T ELT) (((-1191 |#2|) $) NIL T ELT) (($ (-1191 |#2|)) NIL T ELT) (((-904 (-558)) $) 183 T ELT) (((-904 (-391)) $) 187 T ELT) (((-171 (-391)) $) 172 T ELT) (((-171 (-229)) $) 167 T ELT) (((-547) $) 179 T ELT)) (-3409 (($ $) 104 T ELT)) (-4375 (((-876) $) 143 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-2837 (((-1191 |#2|) $) 32 T ELT)) (-3527 (((-790)) 106 T ELT)) (-1377 (((-114) $ $) 13 T ELT)) (-3917 (($ $) 258 T ELT)) (-3905 (($ $) 252 T ELT)) (-3915 (($ $) 256 T ELT)) (-3903 (($ $) 250 T ELT)) (-2449 ((|#2| $) 241 T ELT)) (-3916 (($ $) 257 T ELT)) (-3904 (($ $) 251 T ELT)) (-3802 (($ $) 162 T ELT)) (-3453 (((-114) $ $) 110 T ELT)) (-4266 (($ $) 112 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 111 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-419 (-558))) 274 T ELT) (($ $ $) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 118 T ELT) (($ $ $) 147 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 114 T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-167 |#1| |#2|) (-10 -7 (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4375 (|#1| |#1|)) (-15 -3885 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2273 ((-2 (|:| -1979 |#1|) (|:| -4411 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -1786 ((-790) |#1|)) (-15 -3279 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -2962 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4401 ((-547) |#1|)) (-15 -4401 ((-171 (-229)) |#1|)) (-15 -4401 ((-171 (-391)) |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 -4056 (|#1|)) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3106 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3105 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3104 ((-3 (-660 (-1191 |#1|)) #1#) (-660 (-1191 |#1|)) (-1191 |#1|))) (-15 -3424 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3422 ((-419 (-558)) |#1|)) (-15 -3423 ((-114) |#1|)) (-15 -1488 ((-2 (|:| |r| |#2|) (|:| |phi| |#2|)) |#1|)) (-15 -2449 (|#2| |#1|)) (-15 -3802 (|#1| |#1|)) (-15 -3885 ((-3 |#1| #1#) |#1| |#2|)) (-15 -3409 (|#1| |#1|)) (-15 -1490 (|#1|)) (-15 -4401 ((-904 (-391)) |#1|)) (-15 -4401 ((-904 (-558)) |#1|)) (-15 -3196 ((-902 (-391) |#1|) |#1| (-904 (-391)) (-902 (-391) |#1|))) (-15 -3196 ((-902 (-558) |#1|) |#1| (-904 (-558)) (-902 (-558) |#1|))) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4271 ((-3 |#1| #1#) (-419 (-1191 |#2|)))) (-15 -3479 ((-1191 |#2|) |#1|)) (-15 -4401 (|#1| (-1191 |#2|))) (-15 -4271 (|#1| (-1191 |#2|))) (-15 -3602 ((-1191 |#2|))) (-15 -2492 ((-708 |#2|) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-708 (-558)) (-708 |#1|))) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -4401 ((-1191 |#2|) |#1|)) (-15 -4186 (|#2|)) (-15 -4401 (|#1| (-1287 |#2|))) (-15 -4401 ((-1287 |#2|) |#1|)) (-15 -3641 ((-708 |#2|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1|)) (-15 -2223 ((-1191 |#2|) |#1|)) (-15 -2837 ((-1191 |#2|) |#1|)) (-15 -4186 (|#2| (-1287 |#1|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -3533 (|#2| |#1|)) (-15 -3749 (|#2| |#1|)) (-15 -3510 ((-937))) (-15 -4375 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3527 ((-790))) (-15 -4375 (|#1| (-558))) (-15 ** (|#1| |#1| (-790))) (-15 -3886 ((-3 |#1| #1#) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4268 (|#1| |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -1377 ((-114) |#1| |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-168 |#2|) (-175)) (T -167)) +((-3527 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-790)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-3510 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-937)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) (-4186 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) (-3602 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1191 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 111 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-2272 (($ $) 112 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-2270 (((-114) $) 114 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-1989 (((-708 |#1|) (-1287 $)) 58 T ELT) (((-708 |#1|)) 74 T ELT)) (-3749 ((|#1| $) 64 T ELT)) (-3911 (($ $) 247 (|has| |#1| (-1223)) ELT)) (-4068 (($ $) 230 (|has| |#1| (-1223)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 164 (|has| |#1| (-363)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 261 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-4204 (($ $) 131 (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-4400 (((-417 $) $) 132 (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-3437 (($ $) 260 (-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ELT)) (-3104 (((-3 (-660 (-1191 $)) "failed") (-660 (-1191 $)) (-1191 $)) 264 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-1787 (((-114) $ $) 122 (|has| |#1| (-319)) ELT)) (-3537 (((-790)) 105 (|has| |#1| (-381)) ELT)) (-3909 (($ $) 246 (|has| |#1| (-1223)) ELT)) (-4067 (($ $) 231 (|has| |#1| (-1223)) ELT)) (-3913 (($ $) 245 (|has| |#1| (-1223)) ELT)) (-4066 (($ $) 232 (|has| |#1| (-1223)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 191 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3573 (((-558) $) 190 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 188 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 187 T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) 60 T ELT) (($ (-1287 |#1|)) 77 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-2962 (($ $ $) 126 (|has| |#1| (-319)) ELT)) (-1988 (((-708 |#1|) $ (-1287 $)) 65 T ELT) (((-708 |#1|) $) 72 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 183 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 182 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 181 T ELT) (((-708 |#1|) (-708 $)) 180 T ELT)) (-4271 (($ (-1191 |#1|)) 175 T ELT) (((-3 $ "failed") (-419 (-1191 |#1|))) 172 (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4072 ((|#1| $) 272 T ELT)) (-3424 (((-3 (-419 (-558)) "failed") $) 265 (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) 267 (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) 266 (|has| |#1| (-557)) ELT)) (-3510 (((-937)) 66 T ELT)) (-3394 (($) 108 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) 125 (|has| |#1| (-319)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 120 (|has| |#1| (-319)) ELT)) (-3233 (($) 166 (|has| |#1| (-363)) ELT)) (-1882 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1973 (($ $ (-790)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4152 (((-114) $) 133 (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-1488 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) 268 (-12 (|has| |#1| (-1080)) (|has| |#1| (-1223))) ELT)) (-4056 (($) 257 (|has| |#1| (-1223)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 280 (|has| |#1| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 279 (|has| |#1| (-900 (-391))) ELT)) (-4201 (((-937) $) 169 (|has| |#1| (-363)) ELT) (((-844 (-937)) $) 155 (|has| |#1| (-363)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 259 (-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ELT)) (-3533 ((|#1| $) 63 T ELT)) (-3864 (((-710 $) $) 159 (|has| |#1| (-363)) ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 129 (|has| |#1| (-319)) ELT)) (-2223 (((-1191 |#1|) $) 56 (|has| |#1| (-376)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 281 T ELT)) (-2219 (((-937) $) 107 (|has| |#1| (-381)) ELT)) (-4371 (($ $) 254 (|has| |#1| (-1223)) ELT)) (-3479 (((-1191 |#1|) $) 173 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 185 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 184 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 179 T ELT) (((-708 |#1|) (-1287 $)) 178 T ELT)) (-2101 (($ (-660 $)) 118 (-3956 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT) (($ $ $) 117 (-3956 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3865 (($) 160 (|has| |#1| (-363)) CONST)) (-2630 (($ (-937)) 106 (|has| |#1| (-381)) ELT)) (-1490 (($) 276 T ELT)) (-4073 ((|#1| $) 273 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2639 (($) 177 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 119 (-3956 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-3561 (($ (-660 $)) 116 (-3956 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT) (($ $ $) 115 (-3956 (|has| |#1| (-319)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 163 (|has| |#1| (-363)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 263 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 262 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-4161 (((-417 $) $) 130 (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 127 (|has| |#1| (-319)) ELT)) (-3885 (((-3 $ "failed") $ |#1|) 271 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 110 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 121 (|has| |#1| (-319)) ELT)) (-4372 (($ $) 255 (|has| |#1| (-1223)) ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) 287 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 286 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 285 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 284 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 283 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) 282 (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-1786 (((-790) $) 123 (|has| |#1| (-319)) ELT)) (-4229 (($ $ |#1|) 288 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 124 (|has| |#1| (-319)) ELT)) (-4186 ((|#1| (-1287 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1974 (((-790) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-790) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4187 (($ $ (-1 |#1| |#1|)) 142 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 141 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) 147 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) 146 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) 145 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197)) 143 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-790)) 153 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2960 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 151 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2960 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-2638 (((-708 |#1|) (-1287 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3602 (((-1191 |#1|)) 176 T ELT)) (-3914 (($ $) 244 (|has| |#1| (-1223)) ELT)) (-4065 (($ $) 233 (|has| |#1| (-1223)) ELT)) (-1876 (($) 165 (|has| |#1| (-363)) ELT)) (-3912 (($ $) 243 (|has| |#1| (-1223)) ELT)) (-4064 (($ $) 234 (|has| |#1| (-1223)) ELT)) (-3910 (($ $) 242 (|has| |#1| (-1223)) ELT)) (-4063 (($ $) 235 (|has| |#1| (-1223)) ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 62 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) 61 T ELT) (((-1287 |#1|) $) 79 T ELT) (((-708 |#1|) (-1287 $)) 78 T ELT)) (-4401 (((-1287 |#1|) $) 76 T ELT) (($ (-1287 |#1|)) 75 T ELT) (((-1191 |#1|) $) 192 T ELT) (($ (-1191 |#1|)) 174 T ELT) (((-904 (-558)) $) 278 (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) 277 (|has| |#1| (-630 (-904 (-391)))) ELT) (((-171 (-391)) $) 229 (|has| |#1| (-1040)) ELT) (((-171 (-229)) $) 228 (|has| |#1| (-1040)) ELT) (((-547) $) 227 (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $) 275 T ELT)) (-3103 (((-3 (-1287 $) "failed") (-708 $)) 162 (-3956 (-2960 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) (|has| |#1| (-363))) ELT)) (-1489 (($ |#1| |#1|) 274 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 104 (-3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) 109 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-3102 (($ $) 161 (|has| |#1| (-363)) ELT) (((-710 $) $) 55 (-3956 (-2960 (|has| $ (-147)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) (|has| |#1| (-147))) ELT)) (-2837 (((-1191 |#1|) $) 57 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2221 (((-1287 $)) 80 T ELT)) (-3917 (($ $) 253 (|has| |#1| (-1223)) ELT)) (-3905 (($ $) 241 (|has| |#1| (-1223)) ELT)) (-2271 (((-114) $ $) 113 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928)))) ELT)) (-3915 (($ $) 252 (|has| |#1| (-1223)) ELT)) (-3903 (($ $) 240 (|has| |#1| (-1223)) ELT)) (-3919 (($ $) 251 (|has| |#1| (-1223)) ELT)) (-3907 (($ $) 239 (|has| |#1| (-1223)) ELT)) (-2449 ((|#1| $) 269 (|has| |#1| (-1223)) ELT)) (-3920 (($ $) 250 (|has| |#1| (-1223)) ELT)) (-3908 (($ $) 238 (|has| |#1| (-1223)) ELT)) (-3918 (($ $) 249 (|has| |#1| (-1223)) ELT)) (-3906 (($ $) 237 (|has| |#1| (-1223)) ELT)) (-3916 (($ $) 248 (|has| |#1| (-1223)) ELT)) (-3904 (($ $) 236 (|has| |#1| (-1223)) ELT)) (-3802 (($ $) 270 (|has| |#1| (-1080)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) 140 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 139 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) 150 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) 149 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) 148 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197)) 144 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-790)) 154 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2960 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT) (($ $) 152 (-3956 (-2960 (|has| |#1| (-376)) (|has| |#1| (-239))) (-2960 (|has| |#1| (-376)) (|has| |#1| (-240))) (|has| |#1| (-239)) (-2960 (|has| |#1| (-239)) (|has| |#1| (-376)))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-419 (-558))) 258 (-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ELT) (($ $ $) 256 (|has| |#1| (-1223)) ELT) (($ $ (-558)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| |#1| (-376)) ELT))) (((-168 |#1|) (-142) (-175)) (T -168)) -((-3534 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1491 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3410 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1490 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4074 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3886 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-3803 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) (-2450 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1224)))) (-1489 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1081)) (-4 *3 (-1224)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558)))))) -(-13 (-744 |t#1| (-1192 |t#1|)) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-412 |t#1|) (-899 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -1490) (-15 -1491 ($)) (-15 -3410 ($ $)) (-15 -1490 ($ |t#1| |t#1|)) (-15 -4074 (|t#1| $)) (-15 -4073 (|t#1| $)) (-15 -3534 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3886 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4424)) (-6 -4424) |%noBranch|) (IF (|has| |t#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1041)) (PROGN (-6 (-631 (-171 (-229)))) (-6 (-631 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -3803 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1224)) (PROGN (-6 (-1224)) (-15 -2450 (|t#1| $)) (IF (|has| |t#1| (-1023)) (-6 (-1023)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -1489 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-929)) (IF (|has| |t#1| (-319)) (-6 (-929)) |%noBranch|) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1224)) ((-95) |has| |#1| (-1224)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3957 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-630 (-877)) . T) ((-175) . T) ((-631 (-171 (-229))) |has| |#1| (-1041)) ((-631 (-171 (-391))) |has| |#1| (-1041)) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-905 (-391))) |has| |#1| (-631 (-905 (-391)))) ((-631 (-905 (-558))) |has| |#1| (-631 (-905 (-558)))) ((-631 (-1192 |#1|)) . T) ((-236 $) -3957 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -3957 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -3957 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1224)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -3957 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -3957 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -3957 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| (-1192 |#1|)) . T) ((-422 |#1| (-1192 |#1|)) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) -3957 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-505) |has| |#1| (-1224)) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-569) -3957 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-666 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 |#1|) . T) ((-660 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-737 |#1|) . T) ((-737 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-744 |#1| (-1192 |#1|)) . T) ((-746) . T) ((-911 $ (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-917 (-1198)) |has| |#1| (-917 (-1198))) ((-919 (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-901 (-391)) |has| |#1| (-901 (-391))) ((-901 (-558)) |has| |#1| (-901 (-558))) ((-899 |#1|) . T) ((-929) -12 (|has| |#1| (-319)) (|has| |#1| (-929))) ((-940) -3957 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1023) -12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) |has| |#1| (-363)) ((-1224) |has| |#1| (-1224)) ((-1227) |has| |#1| (-1224)) ((-1238) . T) ((-1243) -3957 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-929))))) -((-4162 (((-417 |#2|) |#2|) 67 T ELT))) -(((-169 |#1| |#2|) (-10 -7 (-15 -4162 ((-417 |#2|) |#2|))) (-319) (-1264 (-171 |#1|))) (T -169)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -((-1494 (((-1156) (-1156) (-303)) 8 T ELT)) (-1492 (((-661 (-711 (-292))) (-1180)) 81 T ELT)) (-1493 (((-711 (-292)) (-1156)) 76 T ELT))) -(((-170) (-13 (-1238) (-10 -7 (-15 -1494 ((-1156) (-1156) (-303))) (-15 -1493 ((-711 (-292)) (-1156))) (-15 -1492 ((-661 (-711 (-292))) (-1180)))))) (T -170)) -((-1494 (*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-303)) (-5 *1 (-170)))) (-1493 (*1 *2 *3) (-12 (-5 *3 (-1156)) (-5 *2 (-711 (-292))) (-5 *1 (-170)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-661 (-711 (-292)))) (-5 *1 (-170))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 15 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-569))) ELT)) (-2273 (($ $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-569))) ELT)) (-2271 (((-114) $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-569))) ELT)) (-1990 (((-709 |#1|) (-1288 $)) NIL T ELT) (((-709 |#1|)) NIL T ELT)) (-3750 ((|#1| $) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4069 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| |#1| (-363)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-4205 (($ $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-4401 (((-417 $) $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-3438 (($ $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4068 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3914 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4067 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) NIL T ELT) (($ (-1288 |#1|)) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1989 (((-709 |#1|) $ (-1288 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-4272 (($ (-1192 |#1|)) NIL T ELT) (((-3 $ #1#) (-419 (-1192 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4073 ((|#1| $) 20 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3511 (((-938)) NIL T ELT)) (-3395 (($) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-319)) ELT)) (-3234 (($) NIL (|has| |#1| (-363)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1974 (($ $ (-791)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4153 (((-114) $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-1489 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1081)) (|has| |#1| (-1224))) ELT)) (-4057 (($) NIL (|has| |#1| (-1224)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| |#1| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| |#1| (-901 (-391))) ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-363)) ELT) (((-845 (-938)) $) NIL (|has| |#1| (-363)) ELT)) (-2641 (((-114) $) 17 T ELT)) (-3412 (($ $ (-558)) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ELT)) (-3534 ((|#1| $) 30 T ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-363)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-319)) ELT)) (-2224 (((-1192 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3480 (((-1192 |#1|) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3866 (($) NIL (|has| |#1| (-363)) CONST)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-1491 (($) NIL T ELT)) (-4074 ((|#1| $) 21 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-319)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| |#1| (-363)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) ELT)) (-4162 (((-417 $) $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-376))) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 31 (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-569))) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-319)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-319)) ELT)) (-4230 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-4187 ((|#1| (-1288 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-791) #1#) $ $) NIL (|has| |#1| (-363)) ELT)) (-4188 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2639 (((-709 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3603 (((-1192 |#1|)) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4066 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-1877 (($) NIL (|has| |#1| (-363)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4065 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3911 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-4064 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) NIL T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#1|) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-4402 (((-1288 |#1|) $) NIL T ELT) (($ (-1288 |#1|)) NIL T ELT) (((-1192 |#1|) $) NIL T ELT) (($ (-1192 |#1|)) NIL T ELT) (((-905 (-558)) $) NIL (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| |#1| (-631 (-905 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1041)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1041)) ELT) (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $) 29 T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-363))) ELT)) (-1490 (($ |#1| |#1|) 19 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-569))) ELT)) (-3103 (($ $) NIL (|has| |#1| (-363)) ELT) (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-2838 (((-1192 |#1|) $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3906 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-2272 (((-114) $ $) NIL (-3957 (-12 (|has| |#1| (-319)) (|has| |#1| (-929))) (|has| |#1| (-569))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3904 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3920 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-2450 ((|#1| $) NIL (|has| |#1| (-1224)) ELT)) (-3921 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3907 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3917 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3905 (($ $) NIL (|has| |#1| (-1224)) ELT)) (-3803 (($ $) NIL (|has| |#1| (-1081)) ELT)) (-3059 (($) 8 T CONST)) (-3065 (($) 10 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-3957 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 23 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-419 (-558))) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1224))) ELT) (($ $ $) NIL (|has| |#1| (-1224)) ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT))) +((-3533 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1490 (*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3409 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-1489 (*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) (-3885 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-3802 (*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-2449 (*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1223)))) (-1488 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1080)) (-4 *3 (-1223)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3))))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558)))))) +(-13 (-743 |t#1| (-1191 |t#1|)) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-412 |t#1|) (-898 |t#1|) (-390 |t#1|) (-175) (-10 -8 (-6 -1489) (-15 -1490 ($)) (-15 -3409 ($ $)) (-15 -1489 ($ |t#1| |t#1|)) (-15 -4073 (|t#1| $)) (-15 -4072 (|t#1| $)) (-15 -3533 (|t#1| $)) (IF (|has| |t#1| (-569)) (PROGN (-6 (-569)) (-15 -3885 ((-3 $ "failed") $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-319)) (-6 (-319)) |%noBranch|) (IF (|has| |t#1| (-6 -4423)) (-6 -4423) |%noBranch|) (IF (|has| |t#1| (-6 -4420)) (-6 -4420) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|) (IF (|has| |t#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1040)) (PROGN (-6 (-630 (-171 (-229)))) (-6 (-630 (-171 (-391))))) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -3802 ($ $)) |%noBranch|) (IF (|has| |t#1| (-1223)) (PROGN (-6 (-1223)) (-15 -2449 (|t#1| $)) (IF (|has| |t#1| (-1022)) (-6 (-1022)) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -1488 ((-2 (|:| |r| |t#1|) (|:| |phi| |t#1|)) $)) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-928)) (IF (|has| |t#1| (-319)) (-6 (-928)) |%noBranch|) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-35) |has| |#1| (-1223)) ((-95) |has| |#1| (-1223)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3956 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-629 (-876)) . T) ((-175) . T) ((-630 (-171 (-229))) |has| |#1| (-1040)) ((-630 (-171 (-391))) |has| |#1| (-1040)) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-630 (-904 (-391))) |has| |#1| (-630 (-904 (-391)))) ((-630 (-904 (-558))) |has| |#1| (-630 (-904 (-558)))) ((-630 (-1191 |#1|)) . T) ((-236 $) -3956 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) -3956 (|has| |#1| (-363)) (|has| |#1| (-240))) ((-239) -3956 (|has| |#1| (-363)) (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-296) |has| |#1| (-1223)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -3956 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-319) -3956 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -3956 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| (-1191 |#1|)) . T) ((-422 |#1| (-1191 |#1|)) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) -3956 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-505) |has| |#1| (-1223)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-569) -3956 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-665 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-659 |#1|) . T) ((-659 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-736 |#1|) . T) ((-736 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-743 |#1| (-1191 |#1|)) . T) ((-745) . T) ((-910 $ (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-916 (-1197)) |has| |#1| (-916 (-1197))) ((-918 (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-900 (-391)) |has| |#1| (-900 (-391))) ((-900 (-558)) |has| |#1| (-900 (-558))) ((-898 |#1|) . T) ((-928) -12 (|has| |#1| (-319)) (|has| |#1| (-928))) ((-939) -3956 (|has| |#1| (-363)) (|has| |#1| (-376)) (|has| |#1| (-319))) ((-1022) -12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) |has| |#1| (-363)) ((-1223) |has| |#1| (-1223)) ((-1226) |has| |#1| (-1223)) ((-1237) . T) ((-1242) -3956 (|has| |#1| (-363)) (|has| |#1| (-376)) (-12 (|has| |#1| (-319)) (|has| |#1| (-928))))) +((-4161 (((-417 |#2|) |#2|) 67 T ELT))) +(((-169 |#1| |#2|) (-10 -7 (-15 -4161 ((-417 |#2|) |#2|))) (-319) (-1263 (-171 |#1|))) (T -169)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) +((-1493 (((-1155) (-1155) (-303)) 8 T ELT)) (-1491 (((-660 (-710 (-292))) (-1179)) 81 T ELT)) (-1492 (((-710 (-292)) (-1155)) 76 T ELT))) +(((-170) (-13 (-1237) (-10 -7 (-15 -1493 ((-1155) (-1155) (-303))) (-15 -1492 ((-710 (-292)) (-1155))) (-15 -1491 ((-660 (-710 (-292))) (-1179)))))) (T -170)) +((-1493 (*1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-303)) (-5 *1 (-170)))) (-1492 (*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-710 (-292))) (-5 *1 (-170)))) (-1491 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-660 (-710 (-292)))) (-5 *1 (-170))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 15 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-569))) ELT)) (-2272 (($ $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-569))) ELT)) (-2270 (((-114) $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-569))) ELT)) (-1989 (((-708 |#1|) (-1287 $)) NIL T ELT) (((-708 |#1|)) NIL T ELT)) (-3749 ((|#1| $) NIL T ELT)) (-3911 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4068 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| |#1| (-363)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-4204 (($ $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-4400 (((-417 $) $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-3437 (($ $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-319)) ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4067 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3913 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4066 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) NIL T ELT) (($ (-1287 |#1|)) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1988 (((-708 |#1|) $ (-1287 $)) NIL T ELT) (((-708 |#1|) $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-4271 (($ (-1191 |#1|)) NIL T ELT) (((-3 $ #1#) (-419 (-1191 |#1|))) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4072 ((|#1| $) 20 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3510 (((-937)) NIL T ELT)) (-3394 (($) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-319)) ELT)) (-3233 (($) NIL (|has| |#1| (-363)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1973 (($ $ (-790)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4152 (((-114) $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-1488 (((-2 (|:| |r| |#1|) (|:| |phi| |#1|)) $) NIL (-12 (|has| |#1| (-1080)) (|has| |#1| (-1223))) ELT)) (-4056 (($) NIL (|has| |#1| (-1223)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| |#1| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| |#1| (-900 (-391))) ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-363)) ELT) (((-844 (-937)) $) NIL (|has| |#1| (-363)) ELT)) (-2640 (((-114) $) 17 T ELT)) (-3411 (($ $ (-558)) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ELT)) (-3533 ((|#1| $) 30 T ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-363)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-319)) ELT)) (-2223 (((-1191 |#1|) $) NIL (|has| |#1| (-376)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3479 (((-1191 |#1|) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3865 (($) NIL (|has| |#1| (-363)) CONST)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-1490 (($) NIL T ELT)) (-4073 ((|#1| $) 21 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-319)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-319)) ELT) (($ $ $) NIL (|has| |#1| (-319)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| |#1| (-363)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) ELT)) (-4161 (((-417 $) $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-376))) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) 28 (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 31 (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-569))) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-319)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-319)) ELT)) (-4229 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-319)) ELT)) (-4186 ((|#1| (-1287 $)) NIL T ELT) ((|#1|) NIL T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-790) #1#) $ $) NIL (|has| |#1| (-363)) ELT)) (-4187 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-2638 (((-708 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3602 (((-1191 |#1|)) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4065 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-1876 (($) NIL (|has| |#1| (-363)) ELT)) (-3912 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4064 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-4063 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) NIL T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#1|) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-4401 (((-1287 |#1|) $) NIL T ELT) (($ (-1287 |#1|)) NIL T ELT) (((-1191 |#1|) $) NIL T ELT) (($ (-1191 |#1|)) NIL T ELT) (((-904 (-558)) $) NIL (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| |#1| (-630 (-904 (-391)))) ELT) (((-171 (-391)) $) NIL (|has| |#1| (-1040)) ELT) (((-171 (-229)) $) NIL (|has| |#1| (-1040)) ELT) (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $) 29 T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-363))) ELT)) (-1489 (($ |#1| |#1|) 19 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 18 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-569))) ELT)) (-3102 (($ $) NIL (|has| |#1| (-363)) ELT) (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-2837 (((-1191 |#1|) $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3905 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-2271 (((-114) $ $) NIL (-3956 (-12 (|has| |#1| (-319)) (|has| |#1| (-928))) (|has| |#1| (-569))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3903 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3919 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3907 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-2449 ((|#1| $) NIL (|has| |#1| (-1223)) ELT)) (-3920 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3908 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3918 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3906 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3904 (($ $) NIL (|has| |#1| (-1223)) ELT)) (-3802 (($ $) NIL (|has| |#1| (-1080)) ELT)) (-3058 (($) 8 T CONST)) (-3064 (($) 10 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT) (($ $) NIL (-3956 (-12 (|has| |#1| (-240)) (|has| |#1| (-376))) (|has| |#1| (-239))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 23 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-419 (-558))) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1223))) ELT) (($ $ $) NIL (|has| |#1| (-1223)) ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 26 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT))) (((-171 |#1|) (-168 |#1|) (-175)) (T -171)) NIL -((-4388 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) -(((-172 |#1| |#2|) (-10 -7 (-15 -4388 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))) -((-4402 (((-905 |#1|) |#3|) 22 T ELT))) -(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -4402 ((-905 |#1|) |#3|))) (-1122) (-13 (-631 (-905 |#1|)) (-175)) (-168 |#2|)) (T -173)) -((-4402 (*1 *2 *3) (-12 (-4 *5 (-13 (-631 *2) (-175))) (-5 *2 (-905 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1122)) (-4 *3 (-168 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1496 (((-114) $) 9 T ELT)) (-1495 (((-114) $ (-114)) 11 T ELT)) (-4044 (($) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3820 (($ $) 14 T ELT)) (-4376 (((-877) $) 18 T ELT)) (-4132 (((-114) $) 8 T ELT)) (-4291 (((-114) $ (-114)) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-174) (-13 (-1122) (-10 -8 (-15 -4044 ($)) (-15 -4132 ((-114) $)) (-15 -1496 ((-114) $)) (-15 -4291 ((-114) $ (-114))) (-15 -1495 ((-114) $ (-114))) (-15 -3820 ($ $))))) (T -174)) -((-4044 (*1 *1) (-5 *1 (-174))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4291 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1495 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-3820 (*1 *1 *1) (-5 *1 (-174)))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4387 (((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)) 14 T ELT))) +(((-172 |#1| |#2|) (-10 -7 (-15 -4387 ((-171 |#2|) (-1 |#2| |#1|) (-171 |#1|)))) (-175) (-175)) (T -172)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6))))) +((-4401 (((-904 |#1|) |#3|) 22 T ELT))) +(((-173 |#1| |#2| |#3|) (-10 -7 (-15 -4401 ((-904 |#1|) |#3|))) (-1121) (-13 (-630 (-904 |#1|)) (-175)) (-168 |#2|)) (T -173)) +((-4401 (*1 *2 *3) (-12 (-4 *5 (-13 (-630 *2) (-175))) (-5 *2 (-904 *4)) (-5 *1 (-173 *4 *5 *3)) (-4 *4 (-1121)) (-4 *3 (-168 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1495 (((-114) $) 9 T ELT)) (-1494 (((-114) $ (-114)) 11 T ELT)) (-4043 (($) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3819 (($ $) 14 T ELT)) (-4375 (((-876) $) 18 T ELT)) (-4131 (((-114) $) 8 T ELT)) (-4290 (((-114) $ (-114)) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-174) (-13 (-1121) (-10 -8 (-15 -4043 ($)) (-15 -4131 ((-114) $)) (-15 -1495 ((-114) $)) (-15 -4290 ((-114) $ (-114))) (-15 -1494 ((-114) $ (-114))) (-15 -3819 ($ $))))) (T -174)) +((-4043 (*1 *1) (-5 *1 (-174))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1495 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-4290 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-1494 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) (-3819 (*1 *1 *1) (-5 *1 (-174)))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-175) (-142)) (T -175)) NIL -(-13 (-1070) (-111 $ $) (-10 -7 (-6 (-4427 "*")))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-1903 (($ $) 6 T ELT))) +(-13 (-1069) (-111 $ $) (-10 -7 (-6 (-4426 "*")))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-1902 (($ $) 6 T ELT))) (((-176) (-142)) (T -176)) -((-1903 (*1 *1 *1) (-4 *1 (-176)))) -(-13 (-10 -8 (-15 -1903 ($ $)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 ((|#1| $) 79 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL T ELT)) (-1501 (($ $) 21 T ELT)) (-1505 (($ |#1| (-1176 |#1|)) 48 T ELT)) (-3887 (((-3 $ #1#) $) 123 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-1502 (((-1176 |#1|) $) 86 T ELT)) (-1504 (((-1176 |#1|) $) 83 T ELT)) (-1503 (((-1176 |#1|) $) 84 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1498 (((-1176 |#1|) $) 93 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2102 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-4199 (($ $ (-558)) 96 T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1497 (((-1176 |#1|) $) 94 T ELT)) (-1499 (((-1176 (-419 |#1|)) $) 14 T ELT)) (-3015 (($ (-419 |#1|)) 17 T ELT) (($ |#1| (-1176 |#1|) (-1176 |#1|)) 38 T ELT)) (-3292 (($ $) 98 T ELT)) (-4376 (((-877) $) 139 T ELT) (($ (-558)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-419 |#1|)) 36 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-3528 (((-791)) 67 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-1500 (((-1176 (-419 |#1|)) $) 20 T ELT)) (-3059 (($) 103 T CONST)) (-3065 (($) 28 T CONST)) (-3454 (((-114) $ $) 35 T ELT)) (-4379 (($ $ $) 121 T ELT)) (-4267 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-4269 (($ $ $) 107 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-419 |#1|) $) 117 T ELT) (($ $ (-419 |#1|)) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT))) -(((-177 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-376) (-10 -8 (-15 -3015 ($ (-419 |#1|))) (-15 -3015 ($ |#1| (-1176 |#1|) (-1176 |#1|))) (-15 -1505 ($ |#1| (-1176 |#1|))) (-15 -1504 ((-1176 |#1|) $)) (-15 -1503 ((-1176 |#1|) $)) (-15 -1502 ((-1176 |#1|) $)) (-15 -3531 (|#1| $)) (-15 -1501 ($ $)) (-15 -1500 ((-1176 (-419 |#1|)) $)) (-15 -1499 ((-1176 (-419 |#1|)) $)) (-15 -1498 ((-1176 |#1|) $)) (-15 -1497 ((-1176 |#1|) $)) (-15 -4199 ($ $ (-558))) (-15 -3292 ($ $)))) (-319)) (T -177)) -((-3015 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-3015 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1505 (*1 *1 *2 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1504 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3531 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1501 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1500 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3292 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) -((-1506 (($ (-109) $) 15 T ELT)) (-3639 (((-711 (-109)) (-518) $) 14 T ELT)) (-4376 (((-877) $) 18 T ELT)) (-1507 (((-661 (-109)) $) 8 T ELT))) -(((-178) (-13 (-630 (-877)) (-10 -8 (-15 -1507 ((-661 (-109)) $)) (-15 -1506 ($ (-109) $)) (-15 -3639 ((-711 (-109)) (-518) $))))) (T -178)) -((-1507 (*1 *2 *1) (-12 (-5 *2 (-661 (-109))) (-5 *1 (-178)))) (-1506 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-3639 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-178))))) -((-1520 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 38 T ELT)) (-1511 (((-962 |#1|) (-962 |#1|)) 22 T ELT)) (-1516 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 34 T ELT)) (-1509 (((-962 |#1|) (-962 |#1|)) 20 T ELT)) (-1514 (((-962 |#1|) (-962 |#1|)) 28 T ELT)) (-1513 (((-962 |#1|) (-962 |#1|)) 27 T ELT)) (-1512 (((-962 |#1|) (-962 |#1|)) 26 T ELT)) (-1517 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 35 T ELT)) (-1515 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 33 T ELT)) (-1846 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 32 T ELT)) (-1510 (((-962 |#1|) (-962 |#1|)) 21 T ELT)) (-1521 (((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|) 41 T ELT)) (-1508 (((-962 |#1|) (-962 |#1|)) 8 T ELT)) (-1519 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 37 T ELT)) (-1518 (((-1 (-962 |#1|) (-962 |#1|)) |#1|) 36 T ELT))) -(((-179 |#1|) (-10 -7 (-15 -1508 ((-962 |#1|) (-962 |#1|))) (-15 -1509 ((-962 |#1|) (-962 |#1|))) (-15 -1510 ((-962 |#1|) (-962 |#1|))) (-15 -1511 ((-962 |#1|) (-962 |#1|))) (-15 -1512 ((-962 |#1|) (-962 |#1|))) (-15 -1513 ((-962 |#1|) (-962 |#1|))) (-15 -1514 ((-962 |#1|) (-962 |#1|))) (-15 -1846 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1515 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1516 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1517 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1518 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1519 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1520 ((-1 (-962 |#1|) (-962 |#1|)) |#1|)) (-15 -1521 ((-1 (-962 |#1|) (-962 |#1|)) |#1| |#1|))) (-13 (-376) (-1224) (-1023))) (T -179)) -((-1521 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1520 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1846 (*1 *2 *3) (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))))) (-1514 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3)))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3)))) (-1509 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) (-5 *1 (-179 *3))))) -((-2838 ((|#2| |#3|) 28 T ELT))) -(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2838 (|#2| |#3|))) (-175) (-1264 |#1|) (-744 |#1| |#2|)) (T -180)) -((-2838 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1264 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-744 *4 *2))))) -((-3197 (((-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|)) 44 (|has| (-965 |#2|) (-901 |#1|)) ELT))) -(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-965 |#2|) (-901 |#1|)) (-15 -3197 ((-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|))) |%noBranch|)) (-1122) (-13 (-901 |#1|) (-175)) (-168 |#2|)) (T -181)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *3 (-168 *6)) (-4 (-965 *6) (-901 *5)) (-4 *6 (-13 (-901 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))) -((-1523 (((-661 |#1|) (-661 |#1|) |#1|) 41 T ELT)) (-1522 (((-661 |#1|) |#1| (-661 |#1|)) 20 T ELT)) (-2292 (((-661 |#1|) (-661 (-661 |#1|)) (-661 |#1|)) 36 T ELT) ((|#1| (-661 |#1|) (-661 |#1|)) 32 T ELT))) -(((-182 |#1|) (-10 -7 (-15 -1522 ((-661 |#1|) |#1| (-661 |#1|))) (-15 -2292 (|#1| (-661 |#1|) (-661 |#1|))) (-15 -2292 ((-661 |#1|) (-661 (-661 |#1|)) (-661 |#1|))) (-15 -1523 ((-661 |#1|) (-661 |#1|) |#1|))) (-319)) (T -182)) -((-1523 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-2292 (*1 *2 *3 *2) (-12 (-5 *3 (-661 (-661 *4))) (-5 *2 (-661 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-2292 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-1522 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3736 (((-1239) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3624 (((-1156) $) 10 T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-183) (-13 (-1104) (-10 -8 (-15 -3624 ((-1156) $)) (-15 -3736 ((-1239) $))))) (T -183)) -((-3624 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-183)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-183))))) -((-1532 (((-2 (|:| |start| |#2|) (|:| -1987 (-417 |#2|))) |#2|) 66 T ELT)) (-1531 ((|#1| |#1|) 58 T ELT)) (-1530 (((-171 |#1|) |#2|) 93 T ELT)) (-1529 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1528 ((|#2| |#2|) 90 T ELT)) (-1527 (((-417 |#2|) |#2| |#1|) 118 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 87 T ELT)) (-3534 ((|#1| |#2|) 117 T ELT)) (-1526 ((|#2| |#2|) 130 T ELT)) (-4162 (((-417 |#2|) |#2|) 153 T ELT) (((-417 |#2|) |#2| |#1|) 33 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-1525 (((-661 (-2 (|:| -1987 (-661 |#2|)) (|:| -1739 |#1|))) |#2| |#2|) 151 T ELT) (((-661 (-2 (|:| -1987 (-661 |#2|)) (|:| -1739 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-1524 (((-661 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-661 (-171 |#1|)) |#2|) 43 T ELT))) -(((-184 |#1| |#2|) (-10 -7 (-15 -1524 ((-661 (-171 |#1|)) |#2|)) (-15 -1524 ((-661 (-171 |#1|)) |#2| |#1|)) (-15 -1525 ((-661 (-2 (|:| -1987 (-661 |#2|)) (|:| -1739 |#1|))) |#2| |#2| (-114))) (-15 -1525 ((-661 (-2 (|:| -1987 (-661 |#2|)) (|:| -1739 |#1|))) |#2| |#2|)) (-15 -4162 ((-417 |#2|) |#2| |#1| (-114))) (-15 -4162 ((-417 |#2|) |#2| |#1|)) (-15 -4162 ((-417 |#2|) |#2|)) (-15 -1526 (|#2| |#2|)) (-15 -3534 (|#1| |#2|)) (-15 -1527 ((-417 |#2|) |#2| |#1| (-114))) (-15 -1527 ((-417 |#2|) |#2| |#1|)) (-15 -1528 (|#2| |#2|)) (-15 -1529 (|#1| |#2| |#1|)) (-15 -1529 (|#1| |#2|)) (-15 -1530 ((-171 |#1|) |#2|)) (-15 -1531 (|#1| |#1|)) (-15 -1532 ((-2 (|:| |start| |#2|) (|:| -1987 (-417 |#2|))) |#2|))) (-13 (-376) (-860)) (-1264 (-171 |#1|))) (T -184)) -((-1532 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-2 (|:| |start| *3) (|:| -1987 (-417 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1531 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1530 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-860))) (-4 *3 (-1264 *2)))) (-1529 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1529 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1528 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-860))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-1527 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1527 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-3534 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1264 (-171 *2))))) (-1526 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-860))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1264 (-171 *3))))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-4162 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-4162 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1525 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-661 (-2 (|:| -1987 (-661 *3)) (|:| -1739 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1525 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-860))) (-5 *2 (-661 (-2 (|:| -1987 (-661 *3)) (|:| -1739 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1264 (-171 *5))))) (-1524 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) (-1524 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -((-1533 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1534 (((-791) |#2|) 18 T ELT)) (-1535 ((|#2| |#2| |#2|) 20 T ELT))) -(((-185 |#1| |#2|) (-10 -7 (-15 -1533 ((-3 |#2| "failed") |#2|)) (-15 -1534 ((-791) |#2|)) (-15 -1535 (|#2| |#2| |#2|))) (-1238) (-694 |#1|)) (T -185)) -((-1535 (*1 *2 *2 *2) (-12 (-4 *3 (-1238)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3)))) (-1534 (*1 *2 *3) (-12 (-4 *4 (-1238)) (-5 *2 (-791)) (-5 *1 (-185 *4 *3)) (-4 *3 (-694 *4)))) (-1533 (*1 *2 *2) (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1538 (((-661 (-879)) $) NIL T ELT)) (-3970 (((-518) $) 8 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1540 (((-190) $) 10 T ELT)) (-3032 (((-114) $ (-518)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1536 (((-711 $) (-518)) 17 T ELT)) (-1539 (((-661 (-114)) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2917 (((-55) $) 12 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-186) (-13 (-189) (-10 -8 (-15 -1536 ((-711 $) (-518)))))) (T -186)) -((-1536 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-186))) (-5 *1 (-186))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1614 ((|#1| $) 7 T ELT)) (-4376 (((-877) $) 14 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1537 (((-661 (-1203)) $) 10 T ELT)) (-3454 (((-114) $ $) 12 T ELT))) -(((-187 |#1|) (-13 (-1122) (-10 -8 (-15 -1614 (|#1| $)) (-15 -1537 ((-661 (-1203)) $)))) (-189)) (T -187)) -((-1614 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-1537 (*1 *2 *1) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) -((-1538 (((-661 (-879)) $) 16 T ELT)) (-1540 (((-190) $) 8 T ELT)) (-1539 (((-661 (-114)) $) 13 T ELT)) (-2917 (((-55) $) 10 T ELT))) -(((-188 |#1|) (-10 -7 (-15 -1538 ((-661 (-879)) |#1|)) (-15 -1539 ((-661 (-114)) |#1|)) (-15 -1540 ((-190) |#1|)) (-15 -2917 ((-55) |#1|))) (-189)) (T -188)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-1538 (((-661 (-879)) $) 22 T ELT)) (-3970 (((-518) $) 19 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1540 (((-190) $) 24 T ELT)) (-3032 (((-114) $ (-518)) 17 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1539 (((-661 (-114)) $) 23 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2917 (((-55) $) 18 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +((-1902 (*1 *1 *1) (-4 *1 (-176)))) +(-13 (-10 -8 (-15 -1902 ($ $)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 ((|#1| $) 79 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL T ELT)) (-1500 (($ $) 21 T ELT)) (-1504 (($ |#1| (-1175 |#1|)) 48 T ELT)) (-3886 (((-3 $ #1#) $) 123 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-1501 (((-1175 |#1|) $) 86 T ELT)) (-1503 (((-1175 |#1|) $) 83 T ELT)) (-1502 (((-1175 |#1|) $) 84 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1497 (((-1175 |#1|) $) 93 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2101 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-4198 (($ $ (-558)) 96 T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1496 (((-1175 |#1|) $) 94 T ELT)) (-1498 (((-1175 (-419 |#1|)) $) 14 T ELT)) (-3014 (($ (-419 |#1|)) 17 T ELT) (($ |#1| (-1175 |#1|) (-1175 |#1|)) 38 T ELT)) (-3291 (($ $) 98 T ELT)) (-4375 (((-876) $) 139 T ELT) (($ (-558)) 51 T ELT) (($ |#1|) 52 T ELT) (($ (-419 |#1|)) 36 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-3527 (((-790)) 67 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-1499 (((-1175 (-419 |#1|)) $) 20 T ELT)) (-3058 (($) 103 T CONST)) (-3064 (($) 28 T CONST)) (-3453 (((-114) $ $) 35 T ELT)) (-4378 (($ $ $) 121 T ELT)) (-4266 (($ $) 112 T ELT) (($ $ $) 109 T ELT)) (-4268 (($ $ $) 107 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 119 T ELT) (($ $ $) 114 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 116 T ELT) (($ (-419 |#1|) $) 117 T ELT) (($ $ (-419 |#1|)) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-177 |#1|) (-13 (-38 |#1|) (-38 (-419 |#1|)) (-376) (-10 -8 (-15 -3014 ($ (-419 |#1|))) (-15 -3014 ($ |#1| (-1175 |#1|) (-1175 |#1|))) (-15 -1504 ($ |#1| (-1175 |#1|))) (-15 -1503 ((-1175 |#1|) $)) (-15 -1502 ((-1175 |#1|) $)) (-15 -1501 ((-1175 |#1|) $)) (-15 -3530 (|#1| $)) (-15 -1500 ($ $)) (-15 -1499 ((-1175 (-419 |#1|)) $)) (-15 -1498 ((-1175 (-419 |#1|)) $)) (-15 -1497 ((-1175 |#1|) $)) (-15 -1496 ((-1175 |#1|) $)) (-15 -4198 ($ $ (-558))) (-15 -3291 ($ $)))) (-319)) (T -177)) +((-3014 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) (-3014 (*1 *1 *2 *3 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1504 (*1 *1 *2 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) (-1503 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1502 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1501 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1500 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) (-1499 (*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1498 (*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1497 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-1496 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) (-3291 (*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) +((-1505 (($ (-109) $) 15 T ELT)) (-3638 (((-710 (-109)) (-518) $) 14 T ELT)) (-4375 (((-876) $) 18 T ELT)) (-1506 (((-660 (-109)) $) 8 T ELT))) +(((-178) (-13 (-629 (-876)) (-10 -8 (-15 -1506 ((-660 (-109)) $)) (-15 -1505 ($ (-109) $)) (-15 -3638 ((-710 (-109)) (-518) $))))) (T -178)) +((-1506 (*1 *2 *1) (-12 (-5 *2 (-660 (-109))) (-5 *1 (-178)))) (-1505 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178)))) (-3638 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-109))) (-5 *1 (-178))))) +((-1519 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 38 T ELT)) (-1510 (((-961 |#1|) (-961 |#1|)) 22 T ELT)) (-1515 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 34 T ELT)) (-1508 (((-961 |#1|) (-961 |#1|)) 20 T ELT)) (-1513 (((-961 |#1|) (-961 |#1|)) 28 T ELT)) (-1512 (((-961 |#1|) (-961 |#1|)) 27 T ELT)) (-1511 (((-961 |#1|) (-961 |#1|)) 26 T ELT)) (-1516 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 35 T ELT)) (-1514 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 33 T ELT)) (-1845 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 32 T ELT)) (-1509 (((-961 |#1|) (-961 |#1|)) 21 T ELT)) (-1520 (((-1 (-961 |#1|) (-961 |#1|)) |#1| |#1|) 41 T ELT)) (-1507 (((-961 |#1|) (-961 |#1|)) 8 T ELT)) (-1518 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 37 T ELT)) (-1517 (((-1 (-961 |#1|) (-961 |#1|)) |#1|) 36 T ELT))) +(((-179 |#1|) (-10 -7 (-15 -1507 ((-961 |#1|) (-961 |#1|))) (-15 -1508 ((-961 |#1|) (-961 |#1|))) (-15 -1509 ((-961 |#1|) (-961 |#1|))) (-15 -1510 ((-961 |#1|) (-961 |#1|))) (-15 -1511 ((-961 |#1|) (-961 |#1|))) (-15 -1512 ((-961 |#1|) (-961 |#1|))) (-15 -1513 ((-961 |#1|) (-961 |#1|))) (-15 -1845 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1514 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1515 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1516 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1517 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1518 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1519 ((-1 (-961 |#1|) (-961 |#1|)) |#1|)) (-15 -1520 ((-1 (-961 |#1|) (-961 |#1|)) |#1| |#1|))) (-13 (-376) (-1223) (-1022))) (T -179)) +((-1520 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1519 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1518 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1517 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1516 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1515 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1514 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1845 (*1 *2 *3) (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))))) (-1513 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3)))) (-1512 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3)))) (-1511 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3)))) (-1510 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3)))) (-1509 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3)))) (-1508 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3)))) (-1507 (*1 *2 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) +((-2837 ((|#2| |#3|) 28 T ELT))) +(((-180 |#1| |#2| |#3|) (-10 -7 (-15 -2837 (|#2| |#3|))) (-175) (-1263 |#1|) (-743 |#1| |#2|)) (T -180)) +((-2837 (*1 *2 *3) (-12 (-4 *4 (-175)) (-4 *2 (-1263 *4)) (-5 *1 (-180 *4 *2 *3)) (-4 *3 (-743 *4 *2))))) +((-3196 (((-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|)) 44 (|has| (-964 |#2|) (-900 |#1|)) ELT))) +(((-181 |#1| |#2| |#3|) (-10 -7 (IF (|has| (-964 |#2|) (-900 |#1|)) (-15 -3196 ((-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|))) |%noBranch|)) (-1121) (-13 (-900 |#1|) (-175)) (-168 |#2|)) (T -181)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *3 (-168 *6)) (-4 (-964 *6) (-900 *5)) (-4 *6 (-13 (-900 *5) (-175))) (-5 *1 (-181 *5 *6 *3))))) +((-1522 (((-660 |#1|) (-660 |#1|) |#1|) 41 T ELT)) (-1521 (((-660 |#1|) |#1| (-660 |#1|)) 20 T ELT)) (-2291 (((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|)) 36 T ELT) ((|#1| (-660 |#1|) (-660 |#1|)) 32 T ELT))) +(((-182 |#1|) (-10 -7 (-15 -1521 ((-660 |#1|) |#1| (-660 |#1|))) (-15 -2291 (|#1| (-660 |#1|) (-660 |#1|))) (-15 -2291 ((-660 |#1|) (-660 (-660 |#1|)) (-660 |#1|))) (-15 -1522 ((-660 |#1|) (-660 |#1|) |#1|))) (-319)) (T -182)) +((-1522 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3)))) (-2291 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-660 *4))) (-5 *2 (-660 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) (-2291 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) (-1521 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3735 (((-1238) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3623 (((-1155) $) 10 T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-183) (-13 (-1103) (-10 -8 (-15 -3623 ((-1155) $)) (-15 -3735 ((-1238) $))))) (T -183)) +((-3623 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-183)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-183))))) +((-1531 (((-2 (|:| |start| |#2|) (|:| -1986 (-417 |#2|))) |#2|) 66 T ELT)) (-1530 ((|#1| |#1|) 58 T ELT)) (-1529 (((-171 |#1|) |#2|) 93 T ELT)) (-1528 ((|#1| |#2|) 136 T ELT) ((|#1| |#2| |#1|) 89 T ELT)) (-1527 ((|#2| |#2|) 90 T ELT)) (-1526 (((-417 |#2|) |#2| |#1|) 118 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 87 T ELT)) (-3533 ((|#1| |#2|) 117 T ELT)) (-1525 ((|#2| |#2|) 130 T ELT)) (-4161 (((-417 |#2|) |#2|) 153 T ELT) (((-417 |#2|) |#2| |#1|) 33 T ELT) (((-417 |#2|) |#2| |#1| (-114)) 152 T ELT)) (-1524 (((-660 (-2 (|:| -1986 (-660 |#2|)) (|:| -1738 |#1|))) |#2| |#2|) 151 T ELT) (((-660 (-2 (|:| -1986 (-660 |#2|)) (|:| -1738 |#1|))) |#2| |#2| (-114)) 81 T ELT)) (-1523 (((-660 (-171 |#1|)) |#2| |#1|) 42 T ELT) (((-660 (-171 |#1|)) |#2|) 43 T ELT))) +(((-184 |#1| |#2|) (-10 -7 (-15 -1523 ((-660 (-171 |#1|)) |#2|)) (-15 -1523 ((-660 (-171 |#1|)) |#2| |#1|)) (-15 -1524 ((-660 (-2 (|:| -1986 (-660 |#2|)) (|:| -1738 |#1|))) |#2| |#2| (-114))) (-15 -1524 ((-660 (-2 (|:| -1986 (-660 |#2|)) (|:| -1738 |#1|))) |#2| |#2|)) (-15 -4161 ((-417 |#2|) |#2| |#1| (-114))) (-15 -4161 ((-417 |#2|) |#2| |#1|)) (-15 -4161 ((-417 |#2|) |#2|)) (-15 -1525 (|#2| |#2|)) (-15 -3533 (|#1| |#2|)) (-15 -1526 ((-417 |#2|) |#2| |#1| (-114))) (-15 -1526 ((-417 |#2|) |#2| |#1|)) (-15 -1527 (|#2| |#2|)) (-15 -1528 (|#1| |#2| |#1|)) (-15 -1528 (|#1| |#2|)) (-15 -1529 ((-171 |#1|) |#2|)) (-15 -1530 (|#1| |#1|)) (-15 -1531 ((-2 (|:| |start| |#2|) (|:| -1986 (-417 |#2|))) |#2|))) (-13 (-376) (-859)) (-1263 (-171 |#1|))) (T -184)) +((-1531 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-2 (|:| |start| *3) (|:| -1986 (-417 *3)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1530 (*1 *2 *2) (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1529 (*1 *2 *3) (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-859))) (-4 *3 (-1263 *2)))) (-1528 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1528 (*1 *2 *3 *2) (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1527 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-859))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-1526 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1526 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-3533 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) (-4 *3 (-1263 (-171 *2))))) (-1525 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-859))) (-5 *1 (-184 *3 *2)) (-4 *2 (-1263 (-171 *3))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4161 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1524 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-660 (-2 (|:| -1986 (-660 *3)) (|:| -1738 *4)))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1524 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-859))) (-5 *2 (-660 (-2 (|:| -1986 (-660 *3)) (|:| -1738 *5)))) (-5 *1 (-184 *5 *3)) (-4 *3 (-1263 (-171 *5))))) (-1523 (*1 *2 *3 *4) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) (-1523 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) +((-1532 (((-3 |#2| "failed") |#2|) 16 T ELT)) (-1533 (((-790) |#2|) 18 T ELT)) (-1534 ((|#2| |#2| |#2|) 20 T ELT))) +(((-185 |#1| |#2|) (-10 -7 (-15 -1532 ((-3 |#2| "failed") |#2|)) (-15 -1533 ((-790) |#2|)) (-15 -1534 (|#2| |#2| |#2|))) (-1237) (-693 |#1|)) (T -185)) +((-1534 (*1 *2 *2 *2) (-12 (-4 *3 (-1237)) (-5 *1 (-185 *3 *2)) (-4 *2 (-693 *3)))) (-1533 (*1 *2 *3) (-12 (-4 *4 (-1237)) (-5 *2 (-790)) (-5 *1 (-185 *4 *3)) (-4 *3 (-693 *4)))) (-1532 (*1 *2 *2) (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-185 *3 *2)) (-4 *2 (-693 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1537 (((-660 (-878)) $) NIL T ELT)) (-3969 (((-518) $) 8 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1539 (((-190) $) 10 T ELT)) (-3031 (((-114) $ (-518)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1535 (((-710 $) (-518)) 17 T ELT)) (-1538 (((-660 (-114)) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2916 (((-55) $) 12 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-186) (-13 (-189) (-10 -8 (-15 -1535 ((-710 $) (-518)))))) (T -186)) +((-1535 (*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-186))) (-5 *1 (-186))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1613 ((|#1| $) 7 T ELT)) (-4375 (((-876) $) 14 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1536 (((-660 (-1202)) $) 10 T ELT)) (-3453 (((-114) $ $) 12 T ELT))) +(((-187 |#1|) (-13 (-1121) (-10 -8 (-15 -1613 (|#1| $)) (-15 -1536 ((-660 (-1202)) $)))) (-189)) (T -187)) +((-1613 (*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) (-1536 (*1 *2 *1) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) +((-1537 (((-660 (-878)) $) 16 T ELT)) (-1539 (((-190) $) 8 T ELT)) (-1538 (((-660 (-114)) $) 13 T ELT)) (-2916 (((-55) $) 10 T ELT))) +(((-188 |#1|) (-10 -7 (-15 -1537 ((-660 (-878)) |#1|)) (-15 -1538 ((-660 (-114)) |#1|)) (-15 -1539 ((-190) |#1|)) (-15 -2916 ((-55) |#1|))) (-189)) (T -188)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-1537 (((-660 (-878)) $) 22 T ELT)) (-3969 (((-518) $) 19 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1539 (((-190) $) 24 T ELT)) (-3031 (((-114) $ (-518)) 17 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1538 (((-660 (-114)) $) 23 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2916 (((-55) $) 18 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-189) (-142)) (T -189)) -((-1540 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-1539 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-114))))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-879)))))) -(-13 (-849 (-518)) (-10 -8 (-15 -1540 ((-190) $)) (-15 -1539 ((-661 (-114)) $)) (-15 -1538 ((-661 (-879)) $)))) -(((-102) . T) ((-630 (-877)) . T) ((-849 (-518)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4376 (((-877) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 10 T ELT))) -(((-190) (-13 (-1122) (-10 -8 (-15 -9 ($) -4382) (-15 -8 ($) -4382) (-15 -7 ($) -4382)))) (T -190)) +((-1539 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190)))) (-1538 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-660 (-114))))) (-1537 (*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-660 (-878)))))) +(-13 (-848 (-518)) (-10 -8 (-15 -1539 ((-190) $)) (-15 -1538 ((-660 (-114)) $)) (-15 -1537 ((-660 (-878)) $)))) +(((-102) . T) ((-629 (-876)) . T) ((-848 (-518)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-7 (($) 8 T CONST)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-8 (($) 7 T CONST)) (-4375 (((-876) $) 12 T ELT)) (-9 (($) 6 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 10 T ELT))) +(((-190) (-13 (-1121) (-10 -8 (-15 -9 ($) -4381) (-15 -8 ($) -4381) (-15 -7 ($) -4381)))) (T -190)) ((-9 (*1 *1) (-5 *1 (-190))) (-8 (*1 *1) (-5 *1 (-190))) (-7 (*1 *1) (-5 *1 (-190)))) -((-4072 ((|#2| |#2|) 28 T ELT)) (-4075 (((-114) |#2|) 19 T ELT)) (-4073 (((-326 |#1|) |#2|) 12 T ELT)) (-4074 (((-326 |#1|) |#2|) 14 T ELT)) (-4070 ((|#2| |#2| (-1198)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-4076 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-4071 ((|#2| |#2| (-1198)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) -(((-191 |#1| |#2|) (-10 -7 (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1198))) (-15 -4071 (|#2| |#2|)) (-15 -4071 (|#2| |#2| (-1198))) (-15 -4073 ((-326 |#1|) |#2|)) (-15 -4074 ((-326 |#1|) |#2|)) (-15 -4075 ((-114) |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4076 ((-171 (-326 |#1|)) |#2|))) (-13 (-569) (-1059 (-558))) (-13 (-27) (-1224) (-433 (-171 |#1|)))) (T -191)) -((-4076 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 (-171 *3)))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) (-4071 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 (-171 *4)))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 (-171 *3)))))) (-4070 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 (-171 *4)))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 (-171 *3))))))) -((-1544 (((-1288 (-709 (-965 |#1|))) (-1288 (-709 |#1|))) 26 T ELT)) (-4376 (((-1288 (-709 (-419 (-965 |#1|)))) (-1288 (-709 |#1|))) 37 T ELT))) -(((-192 |#1|) (-10 -7 (-15 -1544 ((-1288 (-709 (-965 |#1|))) (-1288 (-709 |#1|)))) (-15 -4376 ((-1288 (-709 (-419 (-965 |#1|)))) (-1288 (-709 |#1|))))) (-175)) (T -192)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-1288 (-709 *4))) (-4 *4 (-175)) (-5 *2 (-1288 (-709 (-419 (-965 *4))))) (-5 *1 (-192 *4)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-1288 (-709 *4))) (-4 *4 (-175)) (-5 *2 (-1288 (-709 (-965 *4)))) (-5 *1 (-192 *4))))) -((-1552 (((-1200 (-419 (-558))) (-1200 (-419 (-558))) (-1200 (-419 (-558)))) 93 T ELT)) (-1554 (((-1200 (-419 (-558))) (-661 (-558)) (-661 (-558))) 106 T ELT)) (-1545 (((-1200 (-419 (-558))) (-938)) 54 T ELT)) (-4284 (((-1200 (-419 (-558))) (-938)) 79 T ELT)) (-4198 (((-419 (-558)) (-1200 (-419 (-558)))) 89 T ELT)) (-1546 (((-1200 (-419 (-558))) (-938)) 37 T ELT)) (-1549 (((-1200 (-419 (-558))) (-938)) 66 T ELT)) (-1548 (((-1200 (-419 (-558))) (-938)) 61 T ELT)) (-1551 (((-1200 (-419 (-558))) (-1200 (-419 (-558))) (-1200 (-419 (-558)))) 87 T ELT)) (-3292 (((-1200 (-419 (-558))) (-938)) 29 T ELT)) (-1550 (((-419 (-558)) (-1200 (-419 (-558))) (-1200 (-419 (-558)))) 91 T ELT)) (-1547 (((-1200 (-419 (-558))) (-938)) 35 T ELT)) (-1553 (((-1200 (-419 (-558))) (-661 (-938))) 100 T ELT))) -(((-193) (-10 -7 (-15 -3292 ((-1200 (-419 (-558))) (-938))) (-15 -1545 ((-1200 (-419 (-558))) (-938))) (-15 -1546 ((-1200 (-419 (-558))) (-938))) (-15 -1547 ((-1200 (-419 (-558))) (-938))) (-15 -1548 ((-1200 (-419 (-558))) (-938))) (-15 -1549 ((-1200 (-419 (-558))) (-938))) (-15 -4284 ((-1200 (-419 (-558))) (-938))) (-15 -1550 ((-419 (-558)) (-1200 (-419 (-558))) (-1200 (-419 (-558))))) (-15 -1551 ((-1200 (-419 (-558))) (-1200 (-419 (-558))) (-1200 (-419 (-558))))) (-15 -4198 ((-419 (-558)) (-1200 (-419 (-558))))) (-15 -1552 ((-1200 (-419 (-558))) (-1200 (-419 (-558))) (-1200 (-419 (-558))))) (-15 -1553 ((-1200 (-419 (-558))) (-661 (-938)))) (-15 -1554 ((-1200 (-419 (-558))) (-661 (-558)) (-661 (-558)))))) (T -193)) -((-1554 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1553 (*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1552 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-4198 (*1 *2 *3) (-12 (-5 *3 (-1200 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1550 (*1 *2 *3 *3) (-12 (-5 *3 (-1200 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) (-4284 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1549 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1548 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) (-3292 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -((-1556 (((-417 (-1192 (-558))) (-558)) 38 T ELT)) (-1555 (((-661 (-1192 (-558))) (-558)) 33 T ELT)) (-3202 (((-1192 (-558)) (-558)) 28 T ELT))) -(((-194) (-10 -7 (-15 -1555 ((-661 (-1192 (-558))) (-558))) (-15 -3202 ((-1192 (-558)) (-558))) (-15 -1556 ((-417 (-1192 (-558))) (-558))))) (T -194)) -((-1556 (*1 *2 *3) (-12 (-5 *2 (-417 (-1192 (-558)))) (-5 *1 (-194)) (-5 *3 (-558)))) (-3202 (*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-194)) (-5 *3 (-558)))) (-1555 (*1 *2 *3) (-12 (-5 *2 (-661 (-1192 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) -((-1751 (((-1176 (-229)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 133 T ELT)) (-1772 (((-661 (-1180)) (-1176 (-229))) NIL T ELT)) (-1557 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1749 (((-661 (-229)) (-326 (-229)) (-1198) (-1110 (-855 (-229)))) NIL T ELT)) (-1771 (((-661 (-1180)) (-661 (-229))) NIL T ELT)) (-1773 (((-229) (-1110 (-855 (-229)))) 31 T ELT)) (-1774 (((-229) (-1110 (-855 (-229)))) 32 T ELT)) (-1559 (((-391) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 127 T ELT)) (-1558 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-1769 (((-1180) (-229)) NIL T ELT)) (-2970 (((-1180) (-661 (-1180))) 27 T ELT)) (-1560 (((-1056) (-1198) (-1198) (-1056)) 13 T ELT))) -(((-195) (-10 -7 (-15 -1557 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1558 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1773 ((-229) (-1110 (-855 (-229))))) (-15 -1774 ((-229) (-1110 (-855 (-229))))) (-15 -1559 ((-391) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1749 ((-661 (-229)) (-326 (-229)) (-1198) (-1110 (-855 (-229))))) (-15 -1751 ((-1176 (-229)) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1769 ((-1180) (-229))) (-15 -1771 ((-661 (-1180)) (-661 (-229)))) (-15 -1772 ((-661 (-1180)) (-1176 (-229)))) (-15 -2970 ((-1180) (-661 (-1180)))) (-15 -1560 ((-1056) (-1198) (-1198) (-1056))))) (T -195)) -((-1560 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1198)) (-5 *1 (-195)))) (-2970 (*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1180)) (-5 *1 (-195)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1176 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-195)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-195)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1180)) (-5 *1 (-195)))) (-1751 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-195)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1198)) (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-195)))) (-1559 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 61 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-196) (-807)) (T -196)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 66 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-197) (-807)) (T -197)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 80 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-198) (-807)) (T -198)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 63 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-199) (-807)) (T -199)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 76 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-200) (-807)) (T -200)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 93 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-201) (-807)) (T -201)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 90 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-202) (-807)) (T -202)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 78 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-203) (-807)) (T -203)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 76 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-204) (-807)) (T -204)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 77 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-205) (-807)) (T -205)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 105 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-206) (-807)) (T -206)) -NIL -((-1561 (((-3 (-2 (|:| -2909 (-115)) (|:| |w| (-229))) #1="failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1563 (((-558) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1562 (((-3 (-661 (-229)) #1#) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 91 T ELT))) -(((-207) (-10 -7 (-15 -1561 ((-3 (-2 (|:| -2909 (-115)) (|:| |w| (-229))) #1="failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1562 ((-3 (-661 (-229)) #1#) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1563 ((-558) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207)) -((-1563 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-558)) (-5 *1 (-207)))) (-1562 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-207)))) (-1561 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -2909 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) -((-1568 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 47 T ELT)) (-1567 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-1566 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-709 (-326 (-229)))) 110 T ELT)) (-1565 (((-391) (-709 (-326 (-229)))) 138 T ELT)) (-2591 (((-709 (-326 (-229))) (-1288 (-326 (-229))) (-661 (-1198))) 134 T ELT)) (-1571 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-1569 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT)) (-4198 (((-709 (-326 (-229))) (-709 (-326 (-229))) (-661 (-1198)) (-1288 (-326 (-229)))) 123 T ELT)) (-1564 (((-391) (-391) (-661 (-391))) 131 T ELT) (((-391) (-391) (-391)) 126 T ELT)) (-1570 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT))) -(((-208) (-10 -7 (-15 -1564 ((-391) (-391) (-391))) (-15 -1564 ((-391) (-391) (-661 (-391)))) (-15 -1565 ((-391) (-709 (-326 (-229))))) (-15 -2591 ((-709 (-326 (-229))) (-1288 (-326 (-229))) (-661 (-1198)))) (-15 -4198 ((-709 (-326 (-229))) (-709 (-326 (-229))) (-661 (-1198)) (-1288 (-326 (-229))))) (-15 -1566 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-709 (-326 (-229))))) (-15 -1567 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1568 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1569 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1570 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1571 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208)) -((-1571 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1570 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4198 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-709 (-326 (-229)))) (-5 *3 (-661 (-1198))) (-5 *4 (-1288 (-326 (-229)))) (-5 *1 (-208)))) (-2591 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *4 (-661 (-1198))) (-5 *2 (-709 (-326 (-229)))) (-5 *1 (-208)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1564 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1564 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2880 (((-1056) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 74 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-209) (-822)) (T -209)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2880 (((-1056) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-210) (-822)) (T -210)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2880 (((-1056) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-211) (-822)) (T -211)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2880 (((-1056) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 87 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-212) (-822)) (T -212)) -NIL -((-4364 (((-661 (-1198)) (-1198) (-791)) 26 T ELT)) (-1572 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-1574 (((-114) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 87 T ELT)) (-1573 (((-114) (-229) (-229) (-661 (-326 (-229)))) 47 T ELT))) -(((-213) (-10 -7 (-15 -4364 ((-661 (-1198)) (-1198) (-791))) (-15 -1572 ((-326 (-229)) (-326 (-229)))) (-15 -1573 ((-114) (-229) (-229) (-661 (-326 (-229))))) (-15 -1574 ((-114) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229))))))) (T -213)) -((-1574 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-1573 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-661 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-1572 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-661 (-1198))) (-5 *1 (-213)) (-5 *3 (-1198))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 28 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3066 (((-1056) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 70 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-214) (-912)) (T -214)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 24 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3066 (((-1056) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-215) (-912)) (T -215)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-1575 ((|#2| $ (-791) |#2|) 11 T ELT)) (-3515 ((|#2| $ (-791)) 10 T ELT)) (-4044 (($) 8 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 23 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 13 T ELT))) -(((-216 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -4044 ($)) (-15 -3515 (|#2| $ (-791))) (-15 -1575 (|#2| $ (-791) |#2|)))) (-938) (-1122)) (T -216)) -((-4044 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1122)))) (-3515 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *2 (-1122)) (-5 *1 (-216 *4 *2)) (-14 *4 (-938)))) (-1575 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-216 *4 *2)) (-14 *4 (-938)) (-4 *2 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2175 (((-1294) $) 37 T ELT) (((-1294) $ (-938) (-938)) 41 T ELT)) (-4230 (($ $ (-1010)) 19 T ELT) (((-252 (-1180)) $ (-1198)) 15 T ELT)) (-4047 (((-1294) $) 35 T ELT)) (-4376 (((-877) $) 32 T ELT) (($ (-661 |#1|)) 8 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) 27 T ELT)) (-4269 (($ $ $) 22 T ELT))) -(((-217 |#1|) (-13 (-1122) (-633 (-661 |#1|)) (-10 -8 (-15 -4230 ($ $ (-1010))) (-15 -4230 ((-252 (-1180)) $ (-1198))) (-15 -4269 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $)) (-15 -2175 ((-1294) $ (-938) (-938))))) (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $))))) (T -217)) -((-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-1010)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $))))))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-252 (-1180))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ *3)) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $))))))) (-4269 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $))))))) (-4267 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $))))))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 (*2 $)) (-15 -2175 (*2 $))))))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 (*2 $)) (-15 -2175 (*2 $))))))) (-2175 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1294)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 (*2 $)) (-15 -2175 (*2 $)))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 10 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3252 (($ (-655 |#1|)) 11 T ELT)) (-4376 (((-877) $) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-218 |#1|) (-13 (-857) (-10 -8 (-15 -3252 ($ (-655 |#1|))))) (-661 (-1198))) (T -218)) -((-3252 (*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-14 *3 (-661 (-1198))) (-5 *1 (-218 *3))))) -((-1576 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) -(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1576 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -219)) -((-1576 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1264 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) -((-1580 ((|#2| |#2| (-791) |#2|) 55 T ELT)) (-1579 ((|#2| |#2| (-791) |#2|) 51 T ELT)) (-2597 (((-661 |#2|) (-661 (-2 (|:| |deg| (-791)) (|:| -2974 |#2|)))) 79 T ELT)) (-1578 (((-661 (-2 (|:| |deg| (-791)) (|:| -2974 |#2|))) |#2|) 72 T ELT)) (-1581 (((-114) |#2|) 70 T ELT)) (-4163 (((-417 |#2|) |#2|) 92 T ELT)) (-4162 (((-417 |#2|) |#2|) 91 T ELT)) (-2598 ((|#2| |#2| (-791) |#2|) 49 T ELT)) (-1577 (((-2 (|:| |cont| |#1|) (|:| -1987 (-661 (-2 (|:| |irr| |#2|) (|:| -2626 (-558)))))) |#2| (-114)) 86 T ELT))) -(((-220 |#1| |#2|) (-10 -7 (-15 -4162 ((-417 |#2|) |#2|)) (-15 -4163 ((-417 |#2|) |#2|)) (-15 -1577 ((-2 (|:| |cont| |#1|) (|:| -1987 (-661 (-2 (|:| |irr| |#2|) (|:| -2626 (-558)))))) |#2| (-114))) (-15 -1578 ((-661 (-2 (|:| |deg| (-791)) (|:| -2974 |#2|))) |#2|)) (-15 -2597 ((-661 |#2|) (-661 (-2 (|:| |deg| (-791)) (|:| -2974 |#2|))))) (-15 -2598 (|#2| |#2| (-791) |#2|)) (-15 -1579 (|#2| |#2| (-791) |#2|)) (-15 -1580 (|#2| |#2| (-791) |#2|)) (-15 -1581 ((-114) |#2|))) (-363) (-1264 |#1|)) (T -220)) -((-1581 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1264 *4)))) (-1580 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1264 *4)))) (-1579 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1264 *4)))) (-2598 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1264 *4)))) (-2597 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |deg| (-791)) (|:| -2974 *5)))) (-4 *5 (-1264 *4)) (-4 *4 (-363)) (-5 *2 (-661 *5)) (-5 *1 (-220 *4 *5)))) (-1578 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -2974 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1264 *4)))) (-1577 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1264 *5)))) (-4163 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1264 *4)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1264 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-3574 (((-558) $) NIL T ELT) (((-1198) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-558) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-558) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-558) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-558) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| (-558) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-4388 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-558) (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3532 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1198)) (-661 (-558))) NIL (|has| (-558) (-526 (-1198) (-558))) ELT) (($ $ (-1198) (-558)) NIL (|has| (-558) (-526 (-1198) (-558))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) NIL T ELT)) (-1582 (($ (-419 (-558))) 9 T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-558) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-558) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1041)) ELT) (((-229) $) NIL (|has| (-558) (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1198)) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1025 10) $) 10 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-558) (-929))) (|has| (-558) (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-4379 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) -(((-221) (-13 (-1012 (-558)) (-630 (-419 (-558))) (-630 (-1025 10)) (-10 -8 (-15 -3530 ((-419 (-558)) $)) (-15 -1582 ($ (-419 (-558))))))) (T -221)) -((-3530 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221)))) (-1582 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3737 (((-1136) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3596 (((-495) $) 10 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 23 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-1156) $) 15 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-222) (-13 (-1104) (-10 -8 (-15 -3596 ((-495) $)) (-15 -3737 ((-1136) $)) (-15 -3651 ((-1156) $))))) (T -222)) -((-3596 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-222)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-222))))) -((-4242 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-661 (-855 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1113 (-855 |#2|)) (-1180)) 29 T ELT) (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-661 (-855 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1113 (-855 |#2|))) 25 T ELT)) (-1583 (((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-661 (-855 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1198) (-855 |#2|) (-855 |#2|) (-114)) 17 T ELT))) -(((-223 |#1| |#2|) (-10 -7 (-15 -4242 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-661 (-855 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1113 (-855 |#2|)))) (-15 -4242 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-661 (-855 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1113 (-855 |#2|)) (-1180))) (-15 -1583 ((-3 (|:| |f1| (-855 |#2|)) (|:| |f2| (-661 (-855 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1198) (-855 |#2|) (-855 |#2|) (-114)))) (-13 (-319) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-979) (-29 |#1|))) (T -223)) -((-1583 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1198)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-4 *3 (-13 (-1224) (-979) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-661 (-855 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-855 *3)))) (-4242 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1180)) (-4 *3 (-13 (-1224) (-979) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-661 (-855 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1224) (-979) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-661 (-855 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *5 *3))))) -((-4242 (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-965 |#1|)) (-1113 (-855 (-419 (-965 |#1|)))) (-1180)) 49 T ELT) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-965 |#1|)) (-1113 (-855 (-419 (-965 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-965 |#1|)) (-1113 (-855 (-326 |#1|))) (-1180)) 50 T ELT) (((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-965 |#1|)) (-1113 (-855 (-326 |#1|)))) 22 T ELT))) -(((-224 |#1|) (-10 -7 (-15 -4242 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-965 |#1|)) (-1113 (-855 (-326 |#1|))))) (-15 -4242 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-965 |#1|)) (-1113 (-855 (-326 |#1|))) (-1180))) (-15 -4242 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-965 |#1|)) (-1113 (-855 (-419 (-965 |#1|)))))) (-15 -4242 ((-3 (|:| |f1| (-855 (-326 |#1|))) (|:| |f2| (-661 (-855 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-965 |#1|)) (-1113 (-855 (-419 (-965 |#1|)))) (-1180)))) (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (T -224)) -((-4242 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-855 (-419 (-965 *6))))) (-5 *5 (-1180)) (-5 *3 (-419 (-965 *6))) (-4 *6 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-661 (-855 (-326 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-224 *6)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-855 (-419 (-965 *5))))) (-5 *3 (-419 (-965 *5))) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-661 (-855 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5)))) (-4242 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-965 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) (-5 *5 (-1180)) (-4 *6 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-661 (-855 (-326 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *6)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-661 (-855 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5))))) -((-4272 (((-2 (|:| -2214 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|)) 26 T ELT)) (-4393 (((-661 (-326 |#2|)) (-326 |#2|) (-938)) 51 T ELT))) -(((-225 |#1| |#2|) (-10 -7 (-15 -4272 ((-2 (|:| -2214 (-1192 |#1|)) (|:| |deg| (-938))) (-1192 |#1|))) (-15 -4393 ((-661 (-326 |#2|)) (-326 |#2|) (-938)))) (-1070) (-569)) (T -225)) -((-4393 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *6 (-569)) (-5 *2 (-661 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) (-4272 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2214 (-1192 *4)) (|:| |deg| (-938)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-569))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1627 ((|#1| $) NIL T ELT)) (-3744 ((|#1| $) 30 T ELT)) (-4154 (($) NIL T CONST)) (-3403 (($ $) NIL T ELT)) (-2510 (($ $) 39 T ELT)) (-3746 ((|#1| |#1| $) NIL T ELT)) (-3745 ((|#1| $) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4263 (((-791) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) NIL T ELT)) (-1625 ((|#1| |#1| $) 35 T ELT)) (-1624 ((|#1| |#1| $) 37 T ELT)) (-4037 (($ |#1| $) NIL T ELT)) (-3002 (((-791) $) 33 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-3402 ((|#1| $) NIL T ELT)) (-1623 ((|#1| $) 31 T ELT)) (-1622 ((|#1| $) 29 T ELT)) (-1390 ((|#1| $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3405 ((|#1| |#1| $) NIL T ELT)) (-3823 (((-114) $) 9 T ELT)) (-3993 (($) NIL T ELT)) (-3404 ((|#1| $) NIL T ELT)) (-1628 (($) NIL T ELT) (($ (-661 |#1|)) 16 T ELT)) (-3743 (((-791) $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1626 ((|#1| $) 13 T ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) NIL T ELT)) (-3401 ((|#1| $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -1628 ($ (-661 |#1|))))) (-1122)) (T -226)) -((-1628 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-226 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1585 (($ (-326 |#1|)) 24 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3063 (((-114) $) NIL T ELT)) (-3575 (((-3 (-326 |#1|) #1#) $) NIL T ELT)) (-3574 (((-326 |#1|) $) NIL T ELT)) (-4389 (($ $) 32 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4388 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-3592 (((-326 |#1|) $) NIL T ELT)) (-1587 (($ $) 31 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1586 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($ (-791)) NIL T ELT)) (-1584 (($ $) 33 T ELT)) (-4378 (((-558) $) NIL T ELT)) (-4376 (((-877) $) 65 T ELT) (($ (-558)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-4107 (((-326 |#1|) $ $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 26 T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) 29 T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 20 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT))) -(((-227 |#1| |#2|) (-13 (-638 (-326 |#1|)) (-1059 (-326 |#1|)) (-10 -8 (-15 -3592 ((-326 |#1|) $)) (-15 -1587 ($ $)) (-15 -4389 ($ $)) (-15 -4107 ((-326 |#1|) $ $)) (-15 -2640 ($ (-791))) (-15 -1586 ((-114) $)) (-15 -3063 ((-114) $)) (-15 -4378 ((-558) $)) (-15 -4388 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1585 ($ (-326 |#1|))) (-15 -1584 ($ $)))) (-13 (-1070) (-861)) (-661 (-1198))) (T -227)) -((-3592 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-661 (-1198))))) (-1587 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-661 (-1198))))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-661 (-1198))))) (-4107 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-661 (-1198))))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-661 (-1198))))) (-1586 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-661 (-1198))))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-661 (-1198))))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) (-14 *4 (-661 (-1198))))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-227 *3 *4)) (-14 *4 (-661 (-1198))))) (-1585 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-227 *3 *4)) (-14 *4 (-661 (-1198))))) (-1584 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1070) (-861))) (-14 *3 (-661 (-1198)))))) -((-1588 (((-114) (-1180)) 26 T ELT)) (-1589 (((-3 (-855 |#2|) #1="failed") (-628 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-114)) 35 T ELT)) (-1590 (((-3 (-114) #1#) (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-114)) 83 T ELT) (((-3 (-114) #1#) (-965 |#1|) (-1198) (-855 |#2|) (-855 |#2|) (-114)) 84 T ELT))) -(((-228 |#1| |#2|) (-10 -7 (-15 -1588 ((-114) (-1180))) (-15 -1589 ((-3 (-855 |#2|) #1="failed") (-628 |#2|) |#2| (-855 |#2|) (-855 |#2|) (-114))) (-15 -1590 ((-3 (-114) #1#) (-965 |#1|) (-1198) (-855 |#2|) (-855 |#2|) (-114))) (-15 -1590 ((-3 (-114) #1#) (-1192 |#2|) (-855 |#2|) (-855 |#2|) (-114)))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-29 |#1|))) (T -228)) -((-1590 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) (-4 *6 (-13 (-1224) (-29 *5))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-228 *5 *6)))) (-1590 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-965 *6)) (-5 *4 (-1198)) (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-4 *7 (-13 (-1224) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-1589 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-628 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1224) (-29 *6))) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-228 *6 *4)))) (-1588 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1224) (-29 *4)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 83 T ELT)) (-3531 (((-558) $) 17 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4201 (($ $) NIL T ELT)) (-3912 (($ $) 72 T ELT)) (-4069 (($ $) 60 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3438 (($ $) 51 T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3910 (($ $) 70 T ELT)) (-4068 (($ $) 58 T ELT)) (-4053 (((-558) $) 114 T ELT)) (-3914 (($ $) 75 T ELT)) (-4067 (($ $) 62 T ELT)) (-4154 (($) NIL T CONST)) (-3529 (($ $) NIL T ELT)) (-3575 (((-3 (-558) #1#) $) 113 T ELT) (((-3 (-419 (-558)) #1#) $) 110 T ELT)) (-3574 (((-558) $) 111 T ELT) (((-419 (-558)) $) 108 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 88 T ELT)) (-1947 (((-419 (-558)) $ (-791)) 103 T ELT) (((-419 (-558)) $ (-791) (-791)) 102 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2605 (((-938)) 11 T ELT) (((-938) (-938)) NIL (|has| $ (-6 -4416)) ELT)) (-3604 (((-114) $) 104 T ELT)) (-4057 (($) 30 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL T ELT)) (-4202 (((-558) $) 24 T ELT)) (-2641 (((-114) $) 84 T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-3534 (($ $) NIL T ELT)) (-3605 (((-114) $) 82 T ELT)) (-1591 (((-114) $) 140 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) 48 T ELT) (($) 20 (-12 (-2959 (|has| $ (-6 -4408))) (-2959 (|has| $ (-6 -4416)))) ELT)) (-3258 (($ $ $) 47 T ELT) (($) 19 (-12 (-2959 (|has| $ (-6 -4408))) (-2959 (|has| $ (-6 -4416)))) ELT)) (-2606 (((-558) $) 9 T ELT)) (-1946 (($ $) 15 T ELT)) (-1945 (($ $) 52 T ELT)) (-4372 (($ $) 57 T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-1977 (((-938) (-558)) NIL (|has| $ (-6 -4416)) ELT)) (-3661 (((-1141) $) 86 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL T ELT)) (-3532 (($ $) NIL T ELT)) (-3672 (($ (-558) (-558)) NIL T ELT) (($ (-558) (-558) (-938)) 95 T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2632 (((-558) $) 10 T ELT)) (-1944 (($) 29 T ELT)) (-4373 (($ $) 56 T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3014 (((-938)) NIL T ELT) (((-938) (-938)) NIL (|has| $ (-6 -4416)) ELT)) (-4188 (($ $) 89 T ELT) (($ $ (-791)) NIL T ELT)) (-1976 (((-938) (-558)) NIL (|has| $ (-6 -4416)) ELT)) (-3915 (($ $) 73 T ELT)) (-4066 (($ $) 63 T ELT)) (-3913 (($ $) 74 T ELT)) (-4065 (($ $) 61 T ELT)) (-3911 (($ $) 71 T ELT)) (-4064 (($ $) 59 T ELT)) (-4402 (((-391) $) 99 T ELT) (((-229) $) 96 T ELT) (((-905 (-391)) $) NIL T ELT) (((-547) $) 37 T ELT)) (-4376 (((-877) $) 34 T ELT) (($ (-558)) 139 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) 139 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (($ $) NIL T ELT)) (-1978 (((-938)) 18 T ELT) (((-938) (-938)) NIL (|has| $ (-6 -4416)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (((-938)) 7 T ELT)) (-3918 (($ $) 78 T ELT)) (-3906 (($ $) 66 T ELT) (($ $ $) 106 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 76 T ELT)) (-3904 (($ $) 64 T ELT)) (-3920 (($ $) 81 T ELT)) (-3908 (($ $) 69 T ELT)) (-3921 (($ $) 79 T ELT)) (-3909 (($ $) 67 T ELT)) (-3919 (($ $) 80 T ELT)) (-3907 (($ $) 68 T ELT)) (-3917 (($ $) 77 T ELT)) (-3905 (($ $) 65 T ELT)) (-3803 (($ $) 105 T ELT)) (-3059 (($) 26 T CONST)) (-3065 (($) 27 T CONST)) (-3807 (($ $) 92 T ELT)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3804 (($ $ $) 94 T ELT)) (-2965 (((-114) $ $) 41 T ELT)) (-2966 (((-114) $ $) 39 T ELT)) (-3454 (((-114) $ $) 49 T ELT)) (-3085 (((-114) $ $) 40 T ELT)) (-3086 (((-114) $ $) 38 T ELT)) (-4379 (($ $ $) 28 T ELT) (($ $ (-558)) 50 T ELT)) (-4267 (($ $) 42 T ELT) (($ $ $) 44 T ELT)) (-4269 (($ $ $) 43 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 53 T ELT) (($ $ (-419 (-558))) 138 T ELT) (($ $ $) 54 T ELT)) (* (($ (-938) $) 16 T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 46 T ELT) (($ $ $) 45 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-229) (-13 (-416) (-240) (-1224) (-631 (-547)) (-10 -8 (-15 -4379 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -1944 ($)) (-15 -1946 ($ $)) (-15 -1945 ($ $)) (-15 -3906 ($ $ $)) (-15 -3807 ($ $)) (-15 -3804 ($ $ $)) (-15 -1947 ((-419 (-558)) $ (-791))) (-15 -1947 ((-419 (-558)) $ (-791) (-791))) (-15 -1591 ((-114) $))))) (T -229)) -((** (*1 *1 *1 *1) (-5 *1 (-229))) (-4379 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-229)))) (-1944 (*1 *1) (-5 *1 (-229))) (-1946 (*1 *1 *1) (-5 *1 (-229))) (-1945 (*1 *1 *1) (-5 *1 (-229))) (-3906 (*1 *1 *1 *1) (-5 *1 (-229))) (-3807 (*1 *1 *1) (-5 *1 (-229))) (-3804 (*1 *1 *1 *1) (-5 *1 (-229))) (-1947 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) (-1947 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) (-1591 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) -((-3806 (((-171 (-229)) (-791) (-171 (-229))) 11 T ELT) (((-229) (-791) (-229)) 12 T ELT)) (-1592 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1593 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-3805 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3809 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3811 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-3808 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-3810 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-3813 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3812 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-3807 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-3804 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT))) -(((-230) (-10 -7 (-15 -3807 ((-229) (-229))) (-15 -3807 ((-171 (-229)) (-171 (-229)))) (-15 -3804 ((-229) (-229) (-229))) (-15 -3804 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1592 ((-229) (-229))) (-15 -1592 ((-171 (-229)) (-171 (-229)))) (-15 -3805 ((-229) (-229))) (-15 -3805 ((-171 (-229)) (-171 (-229)))) (-15 -3806 ((-229) (-791) (-229))) (-15 -3806 ((-171 (-229)) (-791) (-171 (-229)))) (-15 -3808 ((-229) (-229) (-229))) (-15 -3808 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3809 ((-229) (-229) (-229))) (-15 -3809 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3810 ((-229) (-229) (-229))) (-15 -3810 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3811 ((-229) (-229) (-229))) (-15 -3811 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3812 ((-171 (-229)) (-171 (-229)))) (-15 -3812 ((-229) (-229))) (-15 -3813 ((-229) (-229))) (-15 -3813 ((-171 (-229)) (-171 (-229)))) (-15 -1593 ((-229) (-229) (-229))) (-15 -1593 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230)) -((-1593 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1593 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3813 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3811 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3811 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-791)) (-5 *1 (-230)))) (-3806 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-791)) (-5 *1 (-230)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3805 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1592 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3804 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3804 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3807 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4268 (($ (-791) (-791)) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-3834 (($ (-1288 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4303 (($ |#1| |#1| |#1|) 33 T ELT)) (-3523 (((-114) $) NIL T ELT)) (-2568 (($ $ (-558) (-558)) NIL T ELT)) (-2567 (($ $ (-558) (-558)) NIL T ELT)) (-2566 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2571 (($ $) NIL T ELT)) (-3525 (((-114) $) NIL T ELT)) (-2565 (($ $ (-558) (-558) $) NIL T ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) NIL T ELT)) (-1364 (($ $ (-558) (-1288 |#1|)) NIL T ELT)) (-1363 (($ $ (-558) (-1288 |#1|)) NIL T ELT)) (-4277 (($ |#1| |#1| |#1|) 32 T ELT)) (-3753 (($ (-791) |#1|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3512 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3514 (((-1288 |#1|) $ (-558)) NIL T ELT)) (-1594 (($ |#1|) 31 T ELT)) (-1595 (($ |#1|) 30 T ELT)) (-1596 (($ |#1|) 29 T ELT)) (-3511 (((-791) $) NIL (|has| |#1| (-569)) ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3515 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL T ELT)) (-3510 (((-791) $) NIL (|has| |#1| (-569)) ELT)) (-3509 (((-661 (-1288 |#1|)) $) NIL (|has| |#1| (-569)) ELT)) (-3517 (((-791) $) NIL T ELT)) (-4044 (($ (-791) (-791) |#1|) NIL T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3747 ((|#1| $) NIL (|has| |#1| (-6 (-4427 #1="*"))) ELT)) (-3521 (((-558) $) NIL T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3526 (($ (-661 (-661 |#1|))) 11 T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4022 (((-661 (-661 |#1|)) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4018 (((-3 $ #2="failed") $) NIL (|has| |#1| (-376)) ELT)) (-1597 (($) 12 T ELT)) (-2570 (($ $ $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) NIL T ELT)) (-3886 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) NIL T ELT)) (-3752 (($ (-661 |#1|)) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-3748 ((|#1| $) NIL (|has| |#1| (-6 (-4427 #1#))) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3513 (((-1288 |#1|) $ (-558)) NIL T ELT)) (-4376 (($ (-1288 |#1|)) NIL T ELT) (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-1288 |#1|) $ (-1288 |#1|)) 15 T ELT) (((-1288 |#1|) (-1288 |#1|) $) NIL T ELT) (((-962 |#1|) $ (-962 |#1|)) 21 T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-231 |#1|) (-13 (-706 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 * ((-962 |#1|) $ (-962 |#1|))) (-15 -1597 ($)) (-15 -1596 ($ |#1|)) (-15 -1595 ($ |#1|)) (-15 -1594 ($ |#1|)) (-15 -4277 ($ |#1| |#1| |#1|)) (-15 -4303 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1224))) (T -231)) -((* (*1 *2 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224))) (-5 *1 (-231 *3)))) (-1597 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) (-1596 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) (-1595 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) (-1594 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) (-4277 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) (-4303 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224)))))) -((-1713 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-3825 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-1598 (($) NIL T ELT) (($ (-661 |#2|)) 11 T ELT)) (-3454 (((-114) $ $) 26 T ELT))) -(((-232 |#1| |#2|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -1713 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3825 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3825 (|#1| |#2| |#1|)) (-15 -1598 (|#1| (-661 |#2|))) (-15 -1598 (|#1|))) (-233 |#2|) (-1122)) (T -232)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 62 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) 61 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 54 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-233 |#1|) (-142) (-1122)) (T -233)) +((-4071 ((|#2| |#2|) 28 T ELT)) (-4074 (((-114) |#2|) 19 T ELT)) (-4072 (((-326 |#1|) |#2|) 12 T ELT)) (-4073 (((-326 |#1|) |#2|) 14 T ELT)) (-4069 ((|#2| |#2| (-1197)) 69 T ELT) ((|#2| |#2|) 70 T ELT)) (-4075 (((-171 (-326 |#1|)) |#2|) 10 T ELT)) (-4070 ((|#2| |#2| (-1197)) 66 T ELT) ((|#2| |#2|) 60 T ELT))) +(((-191 |#1| |#2|) (-10 -7 (-15 -4069 (|#2| |#2|)) (-15 -4069 (|#2| |#2| (-1197))) (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1197))) (-15 -4072 ((-326 |#1|) |#2|)) (-15 -4073 ((-326 |#1|) |#2|)) (-15 -4074 ((-114) |#2|)) (-15 -4071 (|#2| |#2|)) (-15 -4075 ((-171 (-326 |#1|)) |#2|))) (-13 (-569) (-1058 (-558))) (-13 (-27) (-1223) (-433 (-171 |#1|)))) (T -191)) +((-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-171 (-326 *4))) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 (-171 *3)))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) (-4073 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) (-4072 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) (-4070 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 (-171 *4)))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 (-171 *3)))))) (-4069 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 (-171 *4)))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 (-171 *3))))))) +((-1543 (((-1287 (-708 (-964 |#1|))) (-1287 (-708 |#1|))) 26 T ELT)) (-4375 (((-1287 (-708 (-419 (-964 |#1|)))) (-1287 (-708 |#1|))) 37 T ELT))) +(((-192 |#1|) (-10 -7 (-15 -1543 ((-1287 (-708 (-964 |#1|))) (-1287 (-708 |#1|)))) (-15 -4375 ((-1287 (-708 (-419 (-964 |#1|)))) (-1287 (-708 |#1|))))) (-175)) (T -192)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-1287 (-708 *4))) (-4 *4 (-175)) (-5 *2 (-1287 (-708 (-419 (-964 *4))))) (-5 *1 (-192 *4)))) (-1543 (*1 *2 *3) (-12 (-5 *3 (-1287 (-708 *4))) (-4 *4 (-175)) (-5 *2 (-1287 (-708 (-964 *4)))) (-5 *1 (-192 *4))))) +((-1551 (((-1199 (-419 (-558))) (-1199 (-419 (-558))) (-1199 (-419 (-558)))) 93 T ELT)) (-1553 (((-1199 (-419 (-558))) (-660 (-558)) (-660 (-558))) 106 T ELT)) (-1544 (((-1199 (-419 (-558))) (-937)) 54 T ELT)) (-4283 (((-1199 (-419 (-558))) (-937)) 79 T ELT)) (-4197 (((-419 (-558)) (-1199 (-419 (-558)))) 89 T ELT)) (-1545 (((-1199 (-419 (-558))) (-937)) 37 T ELT)) (-1548 (((-1199 (-419 (-558))) (-937)) 66 T ELT)) (-1547 (((-1199 (-419 (-558))) (-937)) 61 T ELT)) (-1550 (((-1199 (-419 (-558))) (-1199 (-419 (-558))) (-1199 (-419 (-558)))) 87 T ELT)) (-3291 (((-1199 (-419 (-558))) (-937)) 29 T ELT)) (-1549 (((-419 (-558)) (-1199 (-419 (-558))) (-1199 (-419 (-558)))) 91 T ELT)) (-1546 (((-1199 (-419 (-558))) (-937)) 35 T ELT)) (-1552 (((-1199 (-419 (-558))) (-660 (-937))) 100 T ELT))) +(((-193) (-10 -7 (-15 -3291 ((-1199 (-419 (-558))) (-937))) (-15 -1544 ((-1199 (-419 (-558))) (-937))) (-15 -1545 ((-1199 (-419 (-558))) (-937))) (-15 -1546 ((-1199 (-419 (-558))) (-937))) (-15 -1547 ((-1199 (-419 (-558))) (-937))) (-15 -1548 ((-1199 (-419 (-558))) (-937))) (-15 -4283 ((-1199 (-419 (-558))) (-937))) (-15 -1549 ((-419 (-558)) (-1199 (-419 (-558))) (-1199 (-419 (-558))))) (-15 -1550 ((-1199 (-419 (-558))) (-1199 (-419 (-558))) (-1199 (-419 (-558))))) (-15 -4197 ((-419 (-558)) (-1199 (-419 (-558))))) (-15 -1551 ((-1199 (-419 (-558))) (-1199 (-419 (-558))) (-1199 (-419 (-558))))) (-15 -1552 ((-1199 (-419 (-558))) (-660 (-937)))) (-15 -1553 ((-1199 (-419 (-558))) (-660 (-558)) (-660 (-558)))))) (T -193)) +((-1553 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1552 (*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1551 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-4197 (*1 *2 *3) (-12 (-5 *3 (-1199 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) (-1550 (*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1549 (*1 *2 *3 *3) (-12 (-5 *3 (-1199 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) (-4283 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1548 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1547 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1546 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1545 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-1544 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) (-3291 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +((-1555 (((-417 (-1191 (-558))) (-558)) 38 T ELT)) (-1554 (((-660 (-1191 (-558))) (-558)) 33 T ELT)) (-3201 (((-1191 (-558)) (-558)) 28 T ELT))) +(((-194) (-10 -7 (-15 -1554 ((-660 (-1191 (-558))) (-558))) (-15 -3201 ((-1191 (-558)) (-558))) (-15 -1555 ((-417 (-1191 (-558))) (-558))))) (T -194)) +((-1555 (*1 *2 *3) (-12 (-5 *2 (-417 (-1191 (-558)))) (-5 *1 (-194)) (-5 *3 (-558)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-194)) (-5 *3 (-558)))) (-1554 (*1 *2 *3) (-12 (-5 *2 (-660 (-1191 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) +((-1750 (((-1175 (-229)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 133 T ELT)) (-1771 (((-660 (-1179)) (-1175 (-229))) NIL T ELT)) (-1556 (((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1748 (((-660 (-229)) (-326 (-229)) (-1197) (-1109 (-854 (-229)))) NIL T ELT)) (-1770 (((-660 (-1179)) (-660 (-229))) NIL T ELT)) (-1772 (((-229) (-1109 (-854 (-229)))) 31 T ELT)) (-1773 (((-229) (-1109 (-854 (-229)))) 32 T ELT)) (-1558 (((-391) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 127 T ELT)) (-1557 (((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 67 T ELT)) (-1768 (((-1179) (-229)) NIL T ELT)) (-2969 (((-1179) (-660 (-1179))) 27 T ELT)) (-1559 (((-1055) (-1197) (-1197) (-1055)) 13 T ELT))) +(((-195) (-10 -7 (-15 -1556 ((-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1557 ((-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated")) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1772 ((-229) (-1109 (-854 (-229))))) (-15 -1773 ((-229) (-1109 (-854 (-229))))) (-15 -1558 ((-391) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1748 ((-660 (-229)) (-326 (-229)) (-1197) (-1109 (-854 (-229))))) (-15 -1750 ((-1175 (-229)) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1768 ((-1179) (-229))) (-15 -1770 ((-660 (-1179)) (-660 (-229)))) (-15 -1771 ((-660 (-1179)) (-1175 (-229)))) (-15 -2969 ((-1179) (-660 (-1179)))) (-15 -1559 ((-1055) (-1197) (-1197) (-1055))))) (T -195)) +((-1559 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1197)) (-5 *1 (-195)))) (-2969 (*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1179)) (-5 *1 (-195)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1175 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-195)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-195)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1179)) (-5 *1 (-195)))) (-1750 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-195)))) (-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1197)) (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-660 (-229))) (-5 *1 (-195)))) (-1558 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) (-1557 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (-5 *1 (-195)))) (-1556 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 61 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 33 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-196) (-806)) (T -196)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 66 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-197) (-806)) (T -197)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 80 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 46 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-198) (-806)) (T -198)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 63 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 36 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-199) (-806)) (T -199)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 76 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-200) (-806)) (T -200)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 93 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 49 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-201) (-806)) (T -201)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 90 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-202) (-806)) (T -202)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 78 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 44 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-203) (-806)) (T -203)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 76 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-204) (-806)) (T -204)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 77 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 42 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-205) (-806)) (T -205)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 105 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 86 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-206) (-806)) (T -206)) +NIL +((-1560 (((-3 (-2 (|:| -2908 (-115)) (|:| |w| (-229))) #1="failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 110 T ELT)) (-1562 (((-558) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 59 T ELT)) (-1561 (((-3 (-660 (-229)) #1#) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 91 T ELT))) +(((-207) (-10 -7 (-15 -1560 ((-3 (-2 (|:| -2908 (-115)) (|:| |w| (-229))) #1="failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1561 ((-3 (-660 (-229)) #1#) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1562 ((-558) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -207)) +((-1562 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-558)) (-5 *1 (-207)))) (-1561 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-660 (-229))) (-5 *1 (-207)))) (-1560 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -2908 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) +((-1567 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 47 T ELT)) (-1566 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 157 T ELT)) (-1565 (((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-708 (-326 (-229)))) 110 T ELT)) (-1564 (((-391) (-708 (-326 (-229)))) 138 T ELT)) (-2590 (((-708 (-326 (-229))) (-1287 (-326 (-229))) (-660 (-1197))) 134 T ELT)) (-1570 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 35 T ELT)) (-1568 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 51 T ELT)) (-4197 (((-708 (-326 (-229))) (-708 (-326 (-229))) (-660 (-1197)) (-1287 (-326 (-229)))) 123 T ELT)) (-1563 (((-391) (-391) (-660 (-391))) 131 T ELT) (((-391) (-391) (-391)) 126 T ELT)) (-1569 (((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 45 T ELT))) +(((-208) (-10 -7 (-15 -1563 ((-391) (-391) (-391))) (-15 -1563 ((-391) (-391) (-660 (-391)))) (-15 -1564 ((-391) (-708 (-326 (-229))))) (-15 -2590 ((-708 (-326 (-229))) (-1287 (-326 (-229))) (-660 (-1197)))) (-15 -4197 ((-708 (-326 (-229))) (-708 (-326 (-229))) (-660 (-1197)) (-1287 (-326 (-229))))) (-15 -1565 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-708 (-326 (-229))))) (-15 -1566 ((-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391))) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1567 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1568 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1569 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1570 ((-391) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -208)) +((-1570 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1569 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1568 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1567 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1566 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-1565 (*1 *2 *3) (-12 (-5 *3 (-708 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208)))) (-4197 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-708 (-326 (-229)))) (-5 *3 (-660 (-1197))) (-5 *4 (-1287 (-326 (-229)))) (-5 *1 (-208)))) (-2590 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *4 (-660 (-1197))) (-5 *2 (-708 (-326 (-229)))) (-5 *1 (-208)))) (-1564 (*1 *2 *3) (-12 (-5 *3 (-708 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1563 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-391))) (-5 *2 (-391)) (-5 *1 (-208)))) (-1563 (*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2879 (((-1055) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 74 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-209) (-821)) (T -209)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 43 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2879 (((-1055) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 73 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-210) (-821)) (T -210)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 40 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2879 (((-1055) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 76 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-211) (-821)) (T -211)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 48 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2879 (((-1055) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 87 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-212) (-821)) (T -212)) +NIL +((-4363 (((-660 (-1197)) (-1197) (-790)) 26 T ELT)) (-1571 (((-326 (-229)) (-326 (-229))) 35 T ELT)) (-1573 (((-114) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 87 T ELT)) (-1572 (((-114) (-229) (-229) (-660 (-326 (-229)))) 47 T ELT))) +(((-213) (-10 -7 (-15 -4363 ((-660 (-1197)) (-1197) (-790))) (-15 -1571 ((-326 (-229)) (-326 (-229)))) (-15 -1572 ((-114) (-229) (-229) (-660 (-326 (-229))))) (-15 -1573 ((-114) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229))))))) (T -213)) +((-1573 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213)))) (-1572 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-660 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213)))) (-1571 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213)))) (-4363 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-5 *2 (-660 (-1197))) (-5 *1 (-213)) (-5 *3 (-1197))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 28 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3065 (((-1055) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 70 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-214) (-911)) (T -214)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 24 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3065 (((-1055) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-215) (-911)) (T -215)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-1574 ((|#2| $ (-790) |#2|) 11 T ELT)) (-3514 ((|#2| $ (-790)) 10 T ELT)) (-4043 (($) 8 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 23 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 13 T ELT))) +(((-216 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4043 ($)) (-15 -3514 (|#2| $ (-790))) (-15 -1574 (|#2| $ (-790) |#2|)))) (-937) (-1121)) (T -216)) +((-4043 (*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1121)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *2 (-1121)) (-5 *1 (-216 *4 *2)) (-14 *4 (-937)))) (-1574 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-216 *4 *2)) (-14 *4 (-937)) (-4 *2 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2174 (((-1293) $) 37 T ELT) (((-1293) $ (-937) (-937)) 41 T ELT)) (-4229 (($ $ (-1009)) 19 T ELT) (((-252 (-1179)) $ (-1197)) 15 T ELT)) (-4046 (((-1293) $) 35 T ELT)) (-4375 (((-876) $) 32 T ELT) (($ (-660 |#1|)) 8 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $ $) 27 T ELT)) (-4268 (($ $ $) 22 T ELT))) +(((-217 |#1|) (-13 (-1121) (-632 (-660 |#1|)) (-10 -8 (-15 -4229 ($ $ (-1009))) (-15 -4229 ((-252 (-1179)) $ (-1197))) (-15 -4268 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $)) (-15 -2174 ((-1293) $ (-937) (-937))))) (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $))))) (T -217)) +((-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-1009)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $))))))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-252 (-1179))) (-5 *1 (-217 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ *3)) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $))))))) (-4268 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $))))))) (-4266 (*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $))))))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 (*2 $)) (-15 -2174 (*2 $))))))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-217 *3)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 (*2 $)) (-15 -2174 (*2 $))))))) (-2174 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1293)) (-5 *1 (-217 *4)) (-4 *4 (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 (*2 $)) (-15 -2174 (*2 $)))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 10 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3251 (($ (-654 |#1|)) 11 T ELT)) (-4375 (((-876) $) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-218 |#1|) (-13 (-856) (-10 -8 (-15 -3251 ($ (-654 |#1|))))) (-660 (-1197))) (T -218)) +((-3251 (*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-14 *3 (-660 (-1197))) (-5 *1 (-218 *3))))) +((-1575 ((|#2| |#4| (-1 |#2| |#2|)) 49 T ELT))) +(((-219 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1575 (|#2| |#4| (-1 |#2| |#2|)))) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -219)) +((-1575 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1263 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) +((-1579 ((|#2| |#2| (-790) |#2|) 55 T ELT)) (-1578 ((|#2| |#2| (-790) |#2|) 51 T ELT)) (-2596 (((-660 |#2|) (-660 (-2 (|:| |deg| (-790)) (|:| -2973 |#2|)))) 79 T ELT)) (-1577 (((-660 (-2 (|:| |deg| (-790)) (|:| -2973 |#2|))) |#2|) 72 T ELT)) (-1580 (((-114) |#2|) 70 T ELT)) (-4162 (((-417 |#2|) |#2|) 92 T ELT)) (-4161 (((-417 |#2|) |#2|) 91 T ELT)) (-2597 ((|#2| |#2| (-790) |#2|) 49 T ELT)) (-1576 (((-2 (|:| |cont| |#1|) (|:| -1986 (-660 (-2 (|:| |irr| |#2|) (|:| -2625 (-558)))))) |#2| (-114)) 86 T ELT))) +(((-220 |#1| |#2|) (-10 -7 (-15 -4161 ((-417 |#2|) |#2|)) (-15 -4162 ((-417 |#2|) |#2|)) (-15 -1576 ((-2 (|:| |cont| |#1|) (|:| -1986 (-660 (-2 (|:| |irr| |#2|) (|:| -2625 (-558)))))) |#2| (-114))) (-15 -1577 ((-660 (-2 (|:| |deg| (-790)) (|:| -2973 |#2|))) |#2|)) (-15 -2596 ((-660 |#2|) (-660 (-2 (|:| |deg| (-790)) (|:| -2973 |#2|))))) (-15 -2597 (|#2| |#2| (-790) |#2|)) (-15 -1578 (|#2| |#2| (-790) |#2|)) (-15 -1579 (|#2| |#2| (-790) |#2|)) (-15 -1580 ((-114) |#2|))) (-363) (-1263 |#1|)) (T -220)) +((-1580 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1263 *4)))) (-1579 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1263 *4)))) (-1578 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1263 *4)))) (-2597 (*1 *2 *2 *3 *2) (-12 (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1263 *4)))) (-2596 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |deg| (-790)) (|:| -2973 *5)))) (-4 *5 (-1263 *4)) (-4 *4 (-363)) (-5 *2 (-660 *5)) (-5 *1 (-220 *4 *5)))) (-1577 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-660 (-2 (|:| |deg| (-790)) (|:| -2973 *3)))) (-5 *1 (-220 *4 *3)) (-4 *3 (-1263 *4)))) (-1576 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) (-5 *1 (-220 *5 *3)) (-4 *3 (-1263 *5)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1263 *4)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1263 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-558) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-3573 (((-558) $) NIL T ELT) (((-1197) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-558) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-558) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-558) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| (-558) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-4387 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-558) (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3531 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-558)) (-660 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-1197)) (-660 (-558))) NIL (|has| (-558) (-526 (-1197) (-558))) ELT) (($ $ (-1197) (-558)) NIL (|has| (-558) (-526 (-1197) (-558))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-558) $) NIL T ELT)) (-1581 (($ (-419 (-558))) 9 T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-558) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-558) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1040)) ELT) (((-229) $) NIL (|has| (-558) (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1197)) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1024 10) $) 10 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-558) (-928))) (|has| (-558) (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| (-558) (-841)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-4378 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) +(((-221) (-13 (-1011 (-558)) (-629 (-419 (-558))) (-629 (-1024 10)) (-10 -8 (-15 -3529 ((-419 (-558)) $)) (-15 -1581 ($ (-419 (-558))))))) (T -221)) +((-3529 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221)))) (-1581 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3736 (((-1135) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3595 (((-495) $) 10 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 23 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-1155) $) 15 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-222) (-13 (-1103) (-10 -8 (-15 -3595 ((-495) $)) (-15 -3736 ((-1135) $)) (-15 -3650 ((-1155) $))))) (T -222)) +((-3595 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-222)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-222))))) +((-4241 (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-660 (-854 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1112 (-854 |#2|)) (-1179)) 29 T ELT) (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-660 (-854 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1112 (-854 |#2|))) 25 T ELT)) (-1582 (((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-660 (-854 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1197) (-854 |#2|) (-854 |#2|) (-114)) 17 T ELT))) +(((-223 |#1| |#2|) (-10 -7 (-15 -4241 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-660 (-854 |#2|))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) |#2| (-1112 (-854 |#2|)))) (-15 -4241 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-660 (-854 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1112 (-854 |#2|)) (-1179))) (-15 -1582 ((-3 (|:| |f1| (-854 |#2|)) (|:| |f2| (-660 (-854 |#2|))) (|:| |fail| #1#) (|:| |pole| #2#)) |#2| (-1197) (-854 |#2|) (-854 |#2|) (-114)))) (-13 (-319) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-978) (-29 |#1|))) (T -223)) +((-1582 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-1197)) (-5 *6 (-114)) (-4 *7 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-660 (-854 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *7 *3)) (-5 *5 (-854 *3)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1112 (-854 *3))) (-5 *5 (-1179)) (-4 *3 (-13 (-1223) (-978) (-29 *6))) (-4 *6 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-660 (-854 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-854 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-660 (-854 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *5 *3))))) +((-4241 (((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-964 |#1|)) (-1112 (-854 (-419 (-964 |#1|)))) (-1179)) 49 T ELT) (((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-964 |#1|)) (-1112 (-854 (-419 (-964 |#1|))))) 46 T ELT) (((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-964 |#1|)) (-1112 (-854 (-326 |#1|))) (-1179)) 50 T ELT) (((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-964 |#1|)) (-1112 (-854 (-326 |#1|)))) 22 T ELT))) +(((-224 |#1|) (-10 -7 (-15 -4241 ((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole")) (-419 (-964 |#1|)) (-1112 (-854 (-326 |#1|))))) (-15 -4241 ((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-964 |#1|)) (-1112 (-854 (-326 |#1|))) (-1179))) (-15 -4241 ((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-964 |#1|)) (-1112 (-854 (-419 (-964 |#1|)))))) (-15 -4241 ((-3 (|:| |f1| (-854 (-326 |#1|))) (|:| |f2| (-660 (-854 (-326 |#1|)))) (|:| |fail| #1#) (|:| |pole| #2#)) (-419 (-964 |#1|)) (-1112 (-854 (-419 (-964 |#1|)))) (-1179)))) (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (T -224)) +((-4241 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1112 (-854 (-419 (-964 *6))))) (-5 *5 (-1179)) (-5 *3 (-419 (-964 *6))) (-4 *6 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |f1| (-854 (-326 *6))) (|:| |f2| (-660 (-854 (-326 *6)))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-224 *6)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-854 (-419 (-964 *5))))) (-5 *3 (-419 (-964 *5))) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |f1| (-854 (-326 *5))) (|:| |f2| (-660 (-854 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-419 (-964 *6))) (-5 *4 (-1112 (-854 (-326 *6)))) (-5 *5 (-1179)) (-4 *6 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |f1| (-854 (-326 *6))) (|:| |f2| (-660 (-854 (-326 *6)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *6)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1112 (-854 (-326 *5)))) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |f1| (-854 (-326 *5))) (|:| |f2| (-660 (-854 (-326 *5)))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-224 *5))))) +((-4271 (((-2 (|:| -2213 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|)) 26 T ELT)) (-4392 (((-660 (-326 |#2|)) (-326 |#2|) (-937)) 51 T ELT))) +(((-225 |#1| |#2|) (-10 -7 (-15 -4271 ((-2 (|:| -2213 (-1191 |#1|)) (|:| |deg| (-937))) (-1191 |#1|))) (-15 -4392 ((-660 (-326 |#2|)) (-326 |#2|) (-937)))) (-1069) (-569)) (T -225)) +((-4392 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *6 (-569)) (-5 *2 (-660 (-326 *6))) (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1069)))) (-4271 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-2 (|:| -2213 (-1191 *4)) (|:| |deg| (-937)))) (-5 *1 (-225 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-569))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1626 ((|#1| $) NIL T ELT)) (-3743 ((|#1| $) 30 T ELT)) (-4153 (($) NIL T CONST)) (-3402 (($ $) NIL T ELT)) (-2509 (($ $) 39 T ELT)) (-3745 ((|#1| |#1| $) NIL T ELT)) (-3744 ((|#1| $) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4262 (((-790) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) NIL T ELT)) (-1624 ((|#1| |#1| $) 35 T ELT)) (-1623 ((|#1| |#1| $) 37 T ELT)) (-4036 (($ |#1| $) NIL T ELT)) (-3001 (((-790) $) 33 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-3401 ((|#1| $) NIL T ELT)) (-1622 ((|#1| $) 31 T ELT)) (-1621 ((|#1| $) 29 T ELT)) (-1389 ((|#1| $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3404 ((|#1| |#1| $) NIL T ELT)) (-3822 (((-114) $) 9 T ELT)) (-3992 (($) NIL T ELT)) (-3403 ((|#1| $) NIL T ELT)) (-1627 (($) NIL T ELT) (($ (-660 |#1|)) 16 T ELT)) (-3742 (((-790) $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1625 ((|#1| $) 13 T ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) NIL T ELT)) (-3400 ((|#1| $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-226 |#1|) (-13 (-263 |#1|) (-10 -8 (-15 -1627 ($ (-660 |#1|))))) (-1121)) (T -226)) +((-1627 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-226 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1584 (($ (-326 |#1|)) 24 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3062 (((-114) $) NIL T ELT)) (-3574 (((-3 (-326 |#1|) #1#) $) NIL T ELT)) (-3573 (((-326 |#1|) $) NIL T ELT)) (-4388 (($ $) 32 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4387 (($ (-1 (-326 |#1|) (-326 |#1|)) $) NIL T ELT)) (-3591 (((-326 |#1|) $) NIL T ELT)) (-1586 (($ $) 31 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1585 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($ (-790)) NIL T ELT)) (-1583 (($ $) 33 T ELT)) (-4377 (((-558) $) NIL T ELT)) (-4375 (((-876) $) 65 T ELT) (($ (-558)) NIL T ELT) (($ (-326 |#1|)) NIL T ELT)) (-4106 (((-326 |#1|) $ $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 26 T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) 29 T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 20 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 25 T ELT) (($ (-326 |#1|) $) 19 T ELT))) +(((-227 |#1| |#2|) (-13 (-637 (-326 |#1|)) (-1058 (-326 |#1|)) (-10 -8 (-15 -3591 ((-326 |#1|) $)) (-15 -1586 ($ $)) (-15 -4388 ($ $)) (-15 -4106 ((-326 |#1|) $ $)) (-15 -2639 ($ (-790))) (-15 -1585 ((-114) $)) (-15 -3062 ((-114) $)) (-15 -4377 ((-558) $)) (-15 -4387 ($ (-1 (-326 |#1|) (-326 |#1|)) $)) (-15 -1584 ($ (-326 |#1|))) (-15 -1583 ($ $)))) (-13 (-1069) (-860)) (-660 (-1197))) (T -227)) +((-3591 (*1 *2 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) (-14 *4 (-660 (-1197))))) (-1586 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1069) (-860))) (-14 *3 (-660 (-1197))))) (-4388 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1069) (-860))) (-14 *3 (-660 (-1197))))) (-4106 (*1 *2 *1 *1) (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) (-14 *4 (-660 (-1197))))) (-2639 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) (-14 *4 (-660 (-1197))))) (-1585 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) (-14 *4 (-660 (-1197))))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) (-14 *4 (-660 (-1197))))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) (-14 *4 (-660 (-1197))))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1069) (-860))) (-5 *1 (-227 *3 *4)) (-14 *4 (-660 (-1197))))) (-1584 (*1 *1 *2) (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1069) (-860))) (-5 *1 (-227 *3 *4)) (-14 *4 (-660 (-1197))))) (-1583 (*1 *1 *1) (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1069) (-860))) (-14 *3 (-660 (-1197)))))) +((-1587 (((-114) (-1179)) 26 T ELT)) (-1588 (((-3 (-854 |#2|) #1="failed") (-627 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-114)) 35 T ELT)) (-1589 (((-3 (-114) #1#) (-1191 |#2|) (-854 |#2|) (-854 |#2|) (-114)) 83 T ELT) (((-3 (-114) #1#) (-964 |#1|) (-1197) (-854 |#2|) (-854 |#2|) (-114)) 84 T ELT))) +(((-228 |#1| |#2|) (-10 -7 (-15 -1587 ((-114) (-1179))) (-15 -1588 ((-3 (-854 |#2|) #1="failed") (-627 |#2|) |#2| (-854 |#2|) (-854 |#2|) (-114))) (-15 -1589 ((-3 (-114) #1#) (-964 |#1|) (-1197) (-854 |#2|) (-854 |#2|) (-114))) (-15 -1589 ((-3 (-114) #1#) (-1191 |#2|) (-854 |#2|) (-854 |#2|) (-114)))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-29 |#1|))) (T -228)) +((-1589 (*1 *2 *3 *4 *4 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1191 *6)) (-5 *4 (-854 *6)) (-4 *6 (-13 (-1223) (-29 *5))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-228 *5 *6)))) (-1589 (*1 *2 *3 *4 *5 *5 *2) (|partial| -12 (-5 *2 (-114)) (-5 *3 (-964 *6)) (-5 *4 (-1197)) (-5 *5 (-854 *7)) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-228 *6 *7)))) (-1588 (*1 *2 *3 *4 *2 *2 *5) (|partial| -12 (-5 *2 (-854 *4)) (-5 *3 (-627 *4)) (-5 *5 (-114)) (-4 *4 (-13 (-1223) (-29 *6))) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-228 *6 *4)))) (-1587 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 83 T ELT)) (-3530 (((-558) $) 17 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4200 (($ $) NIL T ELT)) (-3911 (($ $) 72 T ELT)) (-4068 (($ $) 60 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3437 (($ $) 51 T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3909 (($ $) 70 T ELT)) (-4067 (($ $) 58 T ELT)) (-4052 (((-558) $) 114 T ELT)) (-3913 (($ $) 75 T ELT)) (-4066 (($ $) 62 T ELT)) (-4153 (($) NIL T CONST)) (-3528 (($ $) NIL T ELT)) (-3574 (((-3 (-558) #1#) $) 113 T ELT) (((-3 (-419 (-558)) #1#) $) 110 T ELT)) (-3573 (((-558) $) 111 T ELT) (((-419 (-558)) $) 108 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 88 T ELT)) (-1946 (((-419 (-558)) $ (-790)) 103 T ELT) (((-419 (-558)) $ (-790) (-790)) 102 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2604 (((-937)) 11 T ELT) (((-937) (-937)) NIL (|has| $ (-6 -4415)) ELT)) (-3603 (((-114) $) 104 T ELT)) (-4056 (($) 30 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL T ELT)) (-4201 (((-558) $) 24 T ELT)) (-2640 (((-114) $) 84 T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-3533 (($ $) NIL T ELT)) (-3604 (((-114) $) 82 T ELT)) (-1590 (((-114) $) 140 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) 48 T ELT) (($) 20 (-12 (-2958 (|has| $ (-6 -4407))) (-2958 (|has| $ (-6 -4415)))) ELT)) (-3257 (($ $ $) 47 T ELT) (($) 19 (-12 (-2958 (|has| $ (-6 -4407))) (-2958 (|has| $ (-6 -4415)))) ELT)) (-2605 (((-558) $) 9 T ELT)) (-1945 (($ $) 15 T ELT)) (-1944 (($ $) 52 T ELT)) (-4371 (($ $) 57 T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-1976 (((-937) (-558)) NIL (|has| $ (-6 -4415)) ELT)) (-3660 (((-1140) $) 86 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL T ELT)) (-3531 (($ $) NIL T ELT)) (-3671 (($ (-558) (-558)) NIL T ELT) (($ (-558) (-558) (-937)) 95 T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-2631 (((-558) $) 10 T ELT)) (-1943 (($) 29 T ELT)) (-4372 (($ $) 56 T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3013 (((-937)) NIL T ELT) (((-937) (-937)) NIL (|has| $ (-6 -4415)) ELT)) (-4187 (($ $) 89 T ELT) (($ $ (-790)) NIL T ELT)) (-1975 (((-937) (-558)) NIL (|has| $ (-6 -4415)) ELT)) (-3914 (($ $) 73 T ELT)) (-4065 (($ $) 63 T ELT)) (-3912 (($ $) 74 T ELT)) (-4064 (($ $) 61 T ELT)) (-3910 (($ $) 71 T ELT)) (-4063 (($ $) 59 T ELT)) (-4401 (((-391) $) 99 T ELT) (((-229) $) 96 T ELT) (((-904 (-391)) $) NIL T ELT) (((-547) $) 37 T ELT)) (-4375 (((-876) $) 34 T ELT) (($ (-558)) 139 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) 139 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (($ $) NIL T ELT)) (-1977 (((-937)) 18 T ELT) (((-937) (-937)) NIL (|has| $ (-6 -4415)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (((-937)) 7 T ELT)) (-3917 (($ $) 78 T ELT)) (-3905 (($ $) 66 T ELT) (($ $ $) 106 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3915 (($ $) 76 T ELT)) (-3903 (($ $) 64 T ELT)) (-3919 (($ $) 81 T ELT)) (-3907 (($ $) 69 T ELT)) (-3920 (($ $) 79 T ELT)) (-3908 (($ $) 67 T ELT)) (-3918 (($ $) 80 T ELT)) (-3906 (($ $) 68 T ELT)) (-3916 (($ $) 77 T ELT)) (-3904 (($ $) 65 T ELT)) (-3802 (($ $) 105 T ELT)) (-3058 (($) 26 T CONST)) (-3064 (($) 27 T CONST)) (-3806 (($ $) 92 T ELT)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3803 (($ $ $) 94 T ELT)) (-2964 (((-114) $ $) 41 T ELT)) (-2965 (((-114) $ $) 39 T ELT)) (-3453 (((-114) $ $) 49 T ELT)) (-3084 (((-114) $ $) 40 T ELT)) (-3085 (((-114) $ $) 38 T ELT)) (-4378 (($ $ $) 28 T ELT) (($ $ (-558)) 50 T ELT)) (-4266 (($ $) 42 T ELT) (($ $ $) 44 T ELT)) (-4268 (($ $ $) 43 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 53 T ELT) (($ $ (-419 (-558))) 138 T ELT) (($ $ $) 54 T ELT)) (* (($ (-937) $) 16 T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 46 T ELT) (($ $ $) 45 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-229) (-13 (-416) (-240) (-1223) (-630 (-547)) (-10 -8 (-15 -4378 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -1943 ($)) (-15 -1945 ($ $)) (-15 -1944 ($ $)) (-15 -3905 ($ $ $)) (-15 -3806 ($ $)) (-15 -3803 ($ $ $)) (-15 -1946 ((-419 (-558)) $ (-790))) (-15 -1946 ((-419 (-558)) $ (-790) (-790))) (-15 -1590 ((-114) $))))) (T -229)) +((** (*1 *1 *1 *1) (-5 *1 (-229))) (-4378 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-229)))) (-1943 (*1 *1) (-5 *1 (-229))) (-1945 (*1 *1 *1) (-5 *1 (-229))) (-1944 (*1 *1 *1) (-5 *1 (-229))) (-3905 (*1 *1 *1 *1) (-5 *1 (-229))) (-3806 (*1 *1 *1) (-5 *1 (-229))) (-3803 (*1 *1 *1 *1) (-5 *1 (-229))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) (-1946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) (-1590 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) +((-3805 (((-171 (-229)) (-790) (-171 (-229))) 11 T ELT) (((-229) (-790) (-229)) 12 T ELT)) (-1591 (((-171 (-229)) (-171 (-229))) 13 T ELT) (((-229) (-229)) 14 T ELT)) (-1592 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 19 T ELT) (((-229) (-229) (-229)) 22 T ELT)) (-3804 (((-171 (-229)) (-171 (-229))) 27 T ELT) (((-229) (-229)) 26 T ELT)) (-3808 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 57 T ELT) (((-229) (-229) (-229)) 49 T ELT)) (-3810 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 62 T ELT) (((-229) (-229) (-229)) 60 T ELT)) (-3807 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 15 T ELT) (((-229) (-229) (-229)) 16 T ELT)) (-3809 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 17 T ELT) (((-229) (-229) (-229)) 18 T ELT)) (-3812 (((-171 (-229)) (-171 (-229))) 74 T ELT) (((-229) (-229)) 73 T ELT)) (-3811 (((-229) (-229)) 68 T ELT) (((-171 (-229)) (-171 (-229))) 72 T ELT)) (-3806 (((-171 (-229)) (-171 (-229))) 8 T ELT) (((-229) (-229)) 9 T ELT)) (-3803 (((-171 (-229)) (-171 (-229)) (-171 (-229))) 35 T ELT) (((-229) (-229) (-229)) 31 T ELT))) +(((-230) (-10 -7 (-15 -3806 ((-229) (-229))) (-15 -3806 ((-171 (-229)) (-171 (-229)))) (-15 -3803 ((-229) (-229) (-229))) (-15 -3803 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -1591 ((-229) (-229))) (-15 -1591 ((-171 (-229)) (-171 (-229)))) (-15 -3804 ((-229) (-229))) (-15 -3804 ((-171 (-229)) (-171 (-229)))) (-15 -3805 ((-229) (-790) (-229))) (-15 -3805 ((-171 (-229)) (-790) (-171 (-229)))) (-15 -3807 ((-229) (-229) (-229))) (-15 -3807 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3808 ((-229) (-229) (-229))) (-15 -3808 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3809 ((-229) (-229) (-229))) (-15 -3809 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3810 ((-229) (-229) (-229))) (-15 -3810 ((-171 (-229)) (-171 (-229)) (-171 (-229)))) (-15 -3811 ((-171 (-229)) (-171 (-229)))) (-15 -3811 ((-229) (-229))) (-15 -3812 ((-229) (-229))) (-15 -3812 ((-171 (-229)) (-171 (-229)))) (-15 -1592 ((-229) (-229) (-229))) (-15 -1592 ((-171 (-229)) (-171 (-229)) (-171 (-229)))))) (T -230)) +((-1592 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1592 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3812 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3811 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3810 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3809 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3808 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3807 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3807 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3805 (*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-790)) (-5 *1 (-230)))) (-3805 (*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-790)) (-5 *1 (-230)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3804 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-1591 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3803 (*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) (-3806 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4267 (($ (-790) (-790)) NIL T ELT)) (-2568 (($ $ $) NIL T ELT)) (-3833 (($ (-1287 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-4302 (($ |#1| |#1| |#1|) 33 T ELT)) (-3522 (((-114) $) NIL T ELT)) (-2567 (($ $ (-558) (-558)) NIL T ELT)) (-2566 (($ $ (-558) (-558)) NIL T ELT)) (-2565 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2570 (($ $) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-2564 (($ $ (-558) (-558) $) NIL T ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558)) $) NIL T ELT)) (-1363 (($ $ (-558) (-1287 |#1|)) NIL T ELT)) (-1362 (($ $ (-558) (-1287 |#1|)) NIL T ELT)) (-4276 (($ |#1| |#1| |#1|) 32 T ELT)) (-3752 (($ (-790) |#1|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3511 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3513 (((-1287 |#1|) $ (-558)) NIL T ELT)) (-1593 (($ |#1|) 31 T ELT)) (-1594 (($ |#1|) 30 T ELT)) (-1595 (($ |#1|) 29 T ELT)) (-3510 (((-790) $) NIL (|has| |#1| (-569)) ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3514 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL T ELT)) (-3509 (((-790) $) NIL (|has| |#1| (-569)) ELT)) (-3508 (((-660 (-1287 |#1|)) $) NIL (|has| |#1| (-569)) ELT)) (-3516 (((-790) $) NIL T ELT)) (-4043 (($ (-790) (-790) |#1|) NIL T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3746 ((|#1| $) NIL (|has| |#1| (-6 (-4426 #1="*"))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3519 (((-558) $) NIL T ELT)) (-3517 (((-558) $) NIL T ELT)) (-3525 (($ (-660 (-660 |#1|))) 11 T ELT) (($ (-790) (-790) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4021 (((-660 (-660 |#1|)) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4017 (((-3 $ #2="failed") $) NIL (|has| |#1| (-376)) ELT)) (-1596 (($) 12 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) NIL T ELT)) (-3885 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558))) NIL T ELT)) (-3751 (($ (-660 |#1|)) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-3747 ((|#1| $) NIL (|has| |#1| (-6 (-4426 #1#))) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3512 (((-1287 |#1|) $ (-558)) NIL T ELT)) (-4375 (($ (-1287 |#1|)) NIL T ELT) (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) NIL T ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-1287 |#1|) $ (-1287 |#1|)) 15 T ELT) (((-1287 |#1|) (-1287 |#1|) $) NIL T ELT) (((-961 |#1|) $ (-961 |#1|)) 21 T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-231 |#1|) (-13 (-705 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 * ((-961 |#1|) $ (-961 |#1|))) (-15 -1596 ($)) (-15 -1595 ($ |#1|)) (-15 -1594 ($ |#1|)) (-15 -1593 ($ |#1|)) (-15 -4276 ($ |#1| |#1| |#1|)) (-15 -4302 ($ |#1| |#1| |#1|)))) (-13 (-376) (-1223))) (T -231)) +((* (*1 *2 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223))) (-5 *1 (-231 *3)))) (-1596 (*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) (-1595 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) (-1594 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) (-1593 (*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) (-4276 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) (-4302 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223)))))) +((-1712 (($ (-1 (-114) |#2|) $) 16 T ELT)) (-3824 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 28 T ELT)) (-1597 (($) NIL T ELT) (($ (-660 |#2|)) 11 T ELT)) (-3453 (((-114) $ $) 26 T ELT))) +(((-232 |#1| |#2|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -1712 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3824 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3824 (|#1| |#2| |#1|)) (-15 -1597 (|#1| (-660 |#2|))) (-15 -1597 (|#1|))) (-233 |#2|) (-1121)) (T -232)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 62 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) 61 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 |#1|)) 52 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 54 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-233 |#1|) (-142) (-1121)) (T -233)) NIL (-13 (-242 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $ (-1 |#1| |#1|) (-791)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1198)) 60 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 58 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 57 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 56 (|has| |#1| (-919 (-1198))) ELT) (($ $) 52 (|has| |#1| (-239)) ELT) (($ $ (-791)) 50 (|has| |#1| (-239)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 |#1| |#1|) (-791)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1198)) 59 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 55 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 54 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 53 (|has| |#1| (-919 (-1198))) ELT) (($ $) 51 (|has| |#1| (-239)) ELT) (($ $ (-791)) 49 (|has| |#1| (-239)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-234 |#1|) (-142) (-1070)) (T -234)) -NIL -(-13 (-1070) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-917 (-1198))) (-6 (-917 (-1198))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-236 $) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-911 $ (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-917 (-1198)) |has| |#1| (-917 (-1198))) ((-919 (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3070 ((|#2| $) 9 T ELT))) -(((-235 |#1| |#2|) (-10 -7 (-15 -3070 (|#2| |#1|))) (-236 |#2|) (-1238)) (T -235)) -NIL -((-4188 ((|#1| $) 7 T ELT)) (-3070 ((|#1| $) 6 T ELT))) -(((-236 |#1|) (-142) (-1238)) (T -236)) -((-4188 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1238)))) (-3070 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4188 (|t#1| $)) (-15 -3070 (|t#1| $)))) -(((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $ (-791)) 42 T ELT) (($ $) 40 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3070 (($ $ (-791)) 43 T ELT) (($ $) 41 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-237 |#1|) (-142) (-1070)) (T -237)) -NIL -(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-737 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-236 $) . T) ((-239) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-4188 (($ $) NIL T ELT) (($ $ (-791)) 9 T ELT)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) 11 T ELT))) -(((-238 |#1|) (-10 -7 (-15 -3070 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1| (-791))) (-15 -3070 (|#1| |#1|)) (-15 -4188 (|#1| |#1|))) (-239)) (T -238)) -NIL -((-4188 (($ $) 7 T ELT) (($ $ (-791)) 10 T ELT)) (-3070 (($ $) 6 T ELT) (($ $ (-791)) 9 T ELT))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $ (-1 |#1| |#1|) (-790)) 62 T ELT) (($ $ (-1 |#1| |#1|)) 61 T ELT) (($ $ (-1197)) 60 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 58 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 57 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 56 (|has| |#1| (-918 (-1197))) ELT) (($ $) 52 (|has| |#1| (-239)) ELT) (($ $ (-790)) 50 (|has| |#1| (-239)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 |#1| |#1|) (-790)) 64 T ELT) (($ $ (-1 |#1| |#1|)) 63 T ELT) (($ $ (-1197)) 59 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 55 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 54 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 53 (|has| |#1| (-918 (-1197))) ELT) (($ $) 51 (|has| |#1| (-239)) ELT) (($ $ (-790)) 49 (|has| |#1| (-239)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-234 |#1|) (-142) (-1069)) (T -234)) +NIL +(-13 (-1069) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-240)) (-6 (-240)) |%noBranch|) (IF (|has| |t#1| (-916 (-1197))) (-6 (-916 (-1197))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-236 $) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-240) |has| |#1| (-240)) ((-239) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-910 $ (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-916 (-1197)) |has| |#1| (-916 (-1197))) ((-918 (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3069 ((|#2| $) 9 T ELT))) +(((-235 |#1| |#2|) (-10 -7 (-15 -3069 (|#2| |#1|))) (-236 |#2|) (-1237)) (T -235)) +NIL +((-4187 ((|#1| $) 7 T ELT)) (-3069 ((|#1| $) 6 T ELT))) +(((-236 |#1|) (-142) (-1237)) (T -236)) +((-4187 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1237)))) (-3069 (*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1237))))) +(-13 (-1237) (-10 -8 (-15 -4187 (|t#1| $)) (-15 -3069 (|t#1| $)))) +(((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $ (-790)) 42 T ELT) (($ $) 40 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3069 (($ $ (-790)) 43 T ELT) (($ $) 41 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-237 |#1|) (-142) (-1069)) (T -237)) +NIL +(-13 (-111 |t#1| |t#1|) (-239) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-736 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-236 $) . T) ((-239) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-4187 (($ $) NIL T ELT) (($ $ (-790)) 9 T ELT)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) 11 T ELT))) +(((-238 |#1|) (-10 -7 (-15 -3069 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1| (-790))) (-15 -3069 (|#1| |#1|)) (-15 -4187 (|#1| |#1|))) (-239)) (T -238)) +NIL +((-4187 (($ $) 7 T ELT) (($ $ (-790)) 10 T ELT)) (-3069 (($ $) 6 T ELT) (($ $ (-790)) 9 T ELT))) (((-239) (-142)) (T -239)) -((-4188 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791)))) (-3070 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791))))) -(-13 (-236 $) (-10 -8 (-15 -4188 ($ $ (-791))) (-15 -3070 ($ $ (-791))))) -(((-236 $) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $ (-791)) 47 T ELT) (($ $) 45 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-791)) 48 T ELT) (($ $) 46 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4187 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-790)))) (-3069 (*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-790))))) +(-13 (-236 $) (-10 -8 (-15 -4187 ($ $ (-790))) (-15 -3069 ($ $ (-790))))) +(((-236 $) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $ (-790)) 47 T ELT) (($ $) 45 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-790)) 48 T ELT) (($ $) 46 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-240) (-142)) (T -240)) NIL -(-13 (-1070) (-239)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-236 $) . T) ((-239) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-1598 (($) 12 T ELT) (($ (-661 |#2|)) NIL T ELT)) (-3820 (($ $) 14 T ELT)) (-3950 (($ (-661 |#2|)) 10 T ELT)) (-4376 (((-877) $) 21 T ELT))) -(((-241 |#1| |#2|) (-10 -7 (-15 -4376 ((-877) |#1|)) (-15 -1598 (|#1| (-661 |#2|))) (-15 -1598 (|#1|)) (-15 -3950 (|#1| (-661 |#2|))) (-15 -3820 (|#1| |#1|))) (-242 |#2|) (-1122)) (T -241)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 62 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) 61 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 54 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-242 |#1|) (-142) (-1122)) (T -242)) -((-1598 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1122)))) (-1598 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-242 *3)))) (-3825 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-242 *2)) (-4 *2 (-1122)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-242 *3)) (-4 *3 (-1122)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-242 *3)) (-4 *3 (-1122))))) -(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -1598 ($)) (-15 -1598 ($ (-661 |t#1|))) (IF (|has| $ (-6 -4425)) (PROGN (-15 -3825 ($ |t#1| $)) (-15 -3825 ($ (-1 (-114) |t#1|) $)) (-15 -1713 ($ (-1 (-114) |t#1|) $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-1599 (((-2 (|:| |varOrder| (-661 (-1198))) (|:| |inhom| (-3 (-661 (-1288 (-791))) "failed")) (|:| |hom| (-661 (-1288 (-791))))) (-305 (-965 (-558)))) 42 T ELT))) -(((-243) (-10 -7 (-15 -1599 ((-2 (|:| |varOrder| (-661 (-1198))) (|:| |inhom| (-3 (-661 (-1288 (-791))) "failed")) (|:| |hom| (-661 (-1288 (-791))))) (-305 (-965 (-558))))))) (T -243)) -((-1599 (*1 *2 *3) (-12 (-5 *3 (-305 (-965 (-558)))) (-5 *2 (-2 (|:| |varOrder| (-661 (-1198))) (|:| |inhom| (-3 (-661 (-1288 (-791))) "failed")) (|:| |hom| (-661 (-1288 (-791)))))) (-5 *1 (-243))))) -((-3538 (((-791)) 56 T ELT)) (-2493 (((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-709 $) (-1288 $)) 53 T ELT) (((-709 |#3|) (-709 $)) 44 T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-4341 (((-136)) 62 T ELT)) (-4188 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-4376 (((-1288 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-877) $) NIL T ELT) (($ (-558)) 12 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3528 (((-791)) 15 T ELT)) (-4379 (($ $ |#3|) 59 T ELT))) -(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -4376 (|#1| (-419 (-558)))) (-15 -4376 (|#1| (-558))) (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4376 ((-877) |#1|)) (-15 -3528 ((-791))) (-15 -2493 ((-709 (-558)) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 |#1|) (-1288 |#1|))) (-15 -4376 (|#1| |#3|)) (-15 -4188 (|#1| |#1| (-1 |#3| |#3|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2493 ((-709 |#3|) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-709 |#1|) (-1288 |#1|))) (-15 -3538 ((-791))) (-15 -4379 (|#1| |#1| |#3|)) (-15 -4341 ((-136))) (-15 -4376 ((-1288 |#3|) |#1|))) (-245 |#2| |#3|) (-791) (-1238)) (T -244)) -((-4341 (*1 *2) (-12 (-14 *4 (-791)) (-4 *5 (-1238)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3538 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3528 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))) -((-2967 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-3606 (((-114) $) 80 (|has| |#2| (-23)) ELT)) (-4137 (($ (-938)) 134 (|has| |#2| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) 130 (|has| |#2| (-815)) ELT)) (-1426 (((-3 $ "failed") $ $) 82 (|has| |#2| (-133)) ELT)) (-3538 (((-791)) 119 (|has| |#2| (-381)) ELT)) (-4218 ((|#2| $ (-558) |#2|) 56 (|has| $ (-6 -4426)) ELT)) (-4154 (($) 7 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 75 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) 72 (-2961 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1122)) ELT)) (-3574 (((-558) $) 74 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-419 (-558)) $) 71 (-2961 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) ((|#2| $) 70 (|has| |#2| (-1122)) ELT)) (-2493 (((-709 (-558)) (-709 $)) 116 (-2961 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 115 (-2961 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) 114 (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-709 $)) 113 (|has| |#2| (-1070)) ELT)) (-3887 (((-3 $ "failed") $) 90 (|has| |#2| (-1070)) ELT)) (-3395 (($) 122 (|has| |#2| (-381)) ELT)) (-1719 ((|#2| $ (-558) |#2|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ (-558)) 55 T ELT)) (-3604 (((-114) $) 129 (|has| |#2| (-815)) ELT)) (-3290 (((-661 |#2|) $) 30 (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) 92 (|has| |#2| (-1070)) ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 123 (|has| |#2| (-861)) ELT)) (-3007 (((-661 |#2|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 124 (|has| |#2| (-861)) ELT)) (-2160 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2220 (((-938) $) 121 (|has| |#2| (-381)) ELT)) (-2494 (((-709 (-558)) (-1288 $)) 118 (-2961 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 117 (-2961 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 112 (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-1288 $)) 111 (|has| |#2| (-1070)) ELT)) (-3660 (((-1180) $) 22 (|has| |#2| (-1122)) ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-2631 (($ (-938)) 120 (|has| |#2| (-381)) ELT)) (-3661 (((-1141) $) 21 (|has| |#2| (-1122)) ELT)) (-4231 ((|#2| $) 46 (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#2|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#2| $ (-558) |#2|) 54 T ELT) ((|#2| $ (-558)) 53 T ELT)) (-4266 ((|#2| $ $) 133 (|has| |#2| (-1070)) ELT)) (-1600 (($ (-1288 |#2|)) 135 T ELT)) (-4341 (((-136)) 132 (|has| |#2| (-376)) ELT)) (-4188 (($ $ (-791)) 109 (-2961 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) 107 (-2961 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 103 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) 102 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) 101 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) 99 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) 97 (|has| |#2| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) 28 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-1288 |#2|) $) 136 T ELT) (($ (-558)) 76 (-3957 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ELT) (($ (-419 (-558))) 73 (-2961 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (($ |#2|) 68 (|has| |#2| (-1122)) ELT) (((-877) $) 17 (|has| |#2| (-630 (-877))) ELT)) (-3528 (((-791)) 94 (|has| |#2| (-1070)) CONST)) (-1378 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3059 (($) 79 (|has| |#2| (-23)) CONST)) (-3065 (($) 93 (|has| |#2| (-1070)) CONST)) (-3070 (($ $ (-791)) 110 (-2961 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) 108 (-2961 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 106 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) 105 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) 104 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) 100 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) 95 (|has| |#2| (-1070)) ELT)) (-2965 (((-114) $ $) 125 (|has| |#2| (-861)) ELT)) (-2966 (((-114) $ $) 127 (|has| |#2| (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-3085 (((-114) $ $) 126 (|has| |#2| (-861)) ELT)) (-3086 (((-114) $ $) 128 (|has| |#2| (-861)) ELT)) (-4379 (($ $ |#2|) 131 (|has| |#2| (-376)) ELT)) (-4267 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-4269 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) 91 (|has| |#2| (-1070)) ELT) (($ $ (-938)) 88 (|has| |#2| (-1070)) ELT)) (* (($ $ $) 89 (|has| |#2| (-1070)) ELT) (($ $ |#2|) 87 (|has| |#2| (-746)) ELT) (($ |#2| $) 86 (|has| |#2| (-746)) ELT) (($ (-558) $) 83 (|has| |#2| (-21)) ELT) (($ (-791) $) 81 (|has| |#2| (-23)) ELT) (($ (-938) $) 78 (|has| |#2| (-25)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-245 |#1| |#2|) (-142) (-791) (-1238)) (T -245)) -((-1600 (*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-245 *3 *4)))) (-4137 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1070)) (-4 *4 (-1238)))) (-4266 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) -(-13 (-616 (-558) |t#2|) (-630 (-1288 |t#2|)) (-10 -8 (-6 -4425) (-15 -1600 ($ (-1288 |t#2|))) (IF (|has| |t#2| (-1122)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1070)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -4137 ($ (-938))) (-15 -4266 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-746)) (-6 (-660 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-737 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |t#2| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#2| (-815)) (-6 (-815)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1296 |t#2|)) |%noBranch|))) -(((-21) -3957 (|has| |#2| (-1070)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -3957 (|has| |#2| (-1070)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3957 (|has| |#2| (-1070)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3957 (|has| |#2| (-1122)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-815)) (|has| |#2| (-746)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3957 (|has| |#2| (-1070)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -3957 (|has| |#2| (-1070)) (|has| |#2| (-815)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-633 (-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ((-633 (-558)) -3957 (|has| |#2| (-1070)) (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122)))) ((-633 |#2|) |has| |#2| (-1122)) ((-630 (-877)) -3957 (|has| |#2| (-1122)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-815)) (|has| |#2| (-746)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-630 (-877))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-630 (-1288 |#2|)) . T) ((-236 $) -3957 (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1070)))) ((-234 |#2|) |has| |#2| (-1070)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1070))) ((-239) -3957 (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1070)))) ((-274 |#2|) |has| |#2| (-1070)) ((-298 (-558) |#2|) . T) ((-300 (-558) |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1070)) ((-424 |#2|) |has| |#2| (-1122)) ((-501 |#2|) . T) ((-616 (-558) |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-666 (-558)) -3957 (|has| |#2| (-1070)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-666 |#2|) -3957 (|has| |#2| (-1070)) (|has| |#2| (-746)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-666 $) |has| |#2| (-1070)) ((-668 (-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ((-668 |#2|) -3957 (|has| |#2| (-1070)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-668 $) |has| |#2| (-1070)) ((-660 |#2|) -3957 (|has| |#2| (-746)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-658 (-558)) -12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ((-658 |#2|) |has| |#2| (-1070)) ((-737 |#2|) -3957 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-746) |has| |#2| (-1070)) ((-814) |has| |#2| (-815)) ((-815) |has| |#2| (-815)) ((-816) |has| |#2| (-815)) ((-819) |has| |#2| (-815)) ((-861) -3957 (|has| |#2| (-861)) (|has| |#2| (-815))) ((-864) -3957 (|has| |#2| (-861)) (|has| |#2| (-815))) ((-911 $ (-1198)) -3957 (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070)))) ((-917 (-1198)) -12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070))) ((-919 (-1198)) -3957 (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) (-12 (|has| |#2| (-917 (-1198))) (|has| |#2| (-1070)))) ((-1059 (-419 (-558))) -12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ((-1059 (-558)) -12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ((-1059 |#2|) |has| |#2| (-1122)) ((-1072 |#2|) -3957 (|has| |#2| (-1070)) (|has| |#2| (-746)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1077 |#2|) -3957 (|has| |#2| (-1070)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1070) |has| |#2| (-1070)) ((-1078) |has| |#2| (-1070)) ((-1133) |has| |#2| (-1070)) ((-1122) -3957 (|has| |#2| (-1122)) (|has| |#2| (-1070)) (|has| |#2| (-861)) (|has| |#2| (-815)) (|has| |#2| (-746)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1238) . T) ((-1296 |#2|) |has| |#2| (-376))) -((-2967 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3606 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4137 (($ (-938)) 63 (|has| |#2| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) 69 (|has| |#2| (-815)) ELT)) (-1426 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-133)) ELT)) (-3538 (((-791)) NIL (|has| |#2| (-381)) ELT)) (-4218 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1122)) ELT)) (-3574 (((-558) $) NIL (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) ((|#2| $) 29 (|has| |#2| (-1122)) ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-709 $)) NIL (|has| |#2| (-1070)) ELT)) (-3887 (((-3 $ #1#) $) 59 (|has| |#2| (-1070)) ELT)) (-3395 (($) NIL (|has| |#2| (-381)) ELT)) (-1719 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ (-558)) 57 T ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-815)) ELT)) (-3290 (((-661 |#2|) $) 14 (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL (|has| |#2| (-1070)) ELT)) (-2415 (((-558) $) 20 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-3007 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-2160 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#2| (-381)) ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)) ELT)) (-3660 (((-1180) $) NIL (|has| |#2| (-1122)) ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-2631 (($ (-938)) NIL (|has| |#2| (-381)) ELT)) (-3661 (((-1141) $) NIL (|has| |#2| (-1122)) ELT)) (-4231 ((|#2| $) NIL (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 24 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) 21 T ELT)) (-4266 ((|#2| $ $) NIL (|has| |#2| (-1070)) ELT)) (-1600 (($ (-1288 |#2|)) 18 T ELT)) (-4341 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4188 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1288 |#2|) $) 9 T ELT) (($ (-558)) NIL (-3957 (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (($ |#2|) 12 (|has| |#2| (-1122)) ELT) (((-877) $) NIL (|has| |#2| (-630 (-877))) ELT)) (-3528 (((-791)) NIL (|has| |#2| (-1070)) CONST)) (-1378 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3059 (($) 37 (|has| |#2| (-23)) CONST)) (-3065 (($) 41 (|has| |#2| (-1070)) CONST)) (-3070 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1070)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3454 (((-114) $ $) 28 (|has| |#2| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3086 (((-114) $ $) 67 (|has| |#2| (-861)) ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4269 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-938)) NIL (|has| |#2| (-1070)) ELT)) (* (($ $ $) 47 (|has| |#2| (-1070)) ELT) (($ $ |#2|) 45 (|has| |#2| (-746)) ELT) (($ |#2| $) 46 (|has| |#2| (-746)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-791) $) NIL (|has| |#2| (-23)) ELT) (($ (-938) $) NIL (|has| |#2| (-25)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-246 |#1| |#2|) (-245 |#1| |#2|) (-791) (-1238)) (T -246)) -NIL -((-4271 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-4272 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-4388 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) -(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -4271 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4272 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4388 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-791) (-1238) (-1238)) (T -247)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-247 *5 *6 *2)))) (-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-791)) (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5))))) -((-1604 (((-558) (-661 (-1180))) 36 T ELT) (((-558) (-1180)) 29 T ELT)) (-1603 (((-1294) (-661 (-1180))) 40 T ELT) (((-1294) (-1180)) 39 T ELT)) (-1601 (((-1180)) 16 T ELT)) (-1602 (((-1180) (-558) (-1180)) 23 T ELT)) (-4203 (((-661 (-1180)) (-661 (-1180)) (-558) (-1180)) 37 T ELT) (((-1180) (-1180) (-558) (-1180)) 35 T ELT)) (-3019 (((-661 (-1180)) (-661 (-1180))) 15 T ELT) (((-661 (-1180)) (-1180)) 11 T ELT))) -(((-248) (-10 -7 (-15 -3019 ((-661 (-1180)) (-1180))) (-15 -3019 ((-661 (-1180)) (-661 (-1180)))) (-15 -1601 ((-1180))) (-15 -1602 ((-1180) (-558) (-1180))) (-15 -4203 ((-1180) (-1180) (-558) (-1180))) (-15 -4203 ((-661 (-1180)) (-661 (-1180)) (-558) (-1180))) (-15 -1603 ((-1294) (-1180))) (-15 -1603 ((-1294) (-661 (-1180)))) (-15 -1604 ((-558) (-1180))) (-15 -1604 ((-558) (-661 (-1180)))))) (T -248)) -((-1604 (*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-558)) (-5 *1 (-248)))) (-1604 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-558)) (-5 *1 (-248)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1294)) (-5 *1 (-248)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-248)))) (-4203 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-661 (-1180))) (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *1 (-248)))) (-4203 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-558)) (-5 *1 (-248)))) (-1602 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-558)) (-5 *1 (-248)))) (-1601 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-248)))) (-3019 (*1 *2 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-248)))) (-3019 (*1 *2 *3) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-248)) (-5 *3 (-1180))))) -((** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 18 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-558)) $) 25 T ELT) (($ $ (-419 (-558))) NIL T ELT))) -(((-249 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|))) (-250)) (T -249)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 52 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 56 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 53 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-558)) $) 55 T ELT) (($ $ (-419 (-558))) 54 T ELT))) +(-13 (-1069) (-239)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-236 $) . T) ((-239) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-1597 (($) 12 T ELT) (($ (-660 |#2|)) NIL T ELT)) (-3819 (($ $) 14 T ELT)) (-3949 (($ (-660 |#2|)) 10 T ELT)) (-4375 (((-876) $) 21 T ELT))) +(((-241 |#1| |#2|) (-10 -7 (-15 -4375 ((-876) |#1|)) (-15 -1597 (|#1| (-660 |#2|))) (-15 -1597 (|#1|)) (-15 -3949 (|#1| (-660 |#2|))) (-15 -3819 (|#1| |#1|))) (-242 |#2|) (-1121)) (T -241)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 62 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) 61 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 |#1|)) 52 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 54 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-242 |#1|) (-142) (-1121)) (T -242)) +((-1597 (*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1121)))) (-1597 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-242 *3)))) (-3824 (*1 *1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-242 *2)) (-4 *2 (-1121)))) (-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-242 *3)) (-4 *3 (-1121)))) (-1712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-242 *3)) (-4 *3 (-1121))))) +(-13 (-107 |t#1|) (-153 |t#1|) (-10 -8 (-15 -1597 ($)) (-15 -1597 ($ (-660 |t#1|))) (IF (|has| $ (-6 -4424)) (PROGN (-15 -3824 ($ |t#1| $)) (-15 -3824 ($ (-1 (-114) |t#1|) $)) (-15 -1712 ($ (-1 (-114) |t#1|) $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-1598 (((-2 (|:| |varOrder| (-660 (-1197))) (|:| |inhom| (-3 (-660 (-1287 (-790))) "failed")) (|:| |hom| (-660 (-1287 (-790))))) (-305 (-964 (-558)))) 42 T ELT))) +(((-243) (-10 -7 (-15 -1598 ((-2 (|:| |varOrder| (-660 (-1197))) (|:| |inhom| (-3 (-660 (-1287 (-790))) "failed")) (|:| |hom| (-660 (-1287 (-790))))) (-305 (-964 (-558))))))) (T -243)) +((-1598 (*1 *2 *3) (-12 (-5 *3 (-305 (-964 (-558)))) (-5 *2 (-2 (|:| |varOrder| (-660 (-1197))) (|:| |inhom| (-3 (-660 (-1287 (-790))) "failed")) (|:| |hom| (-660 (-1287 (-790)))))) (-5 *1 (-243))))) +((-3537 (((-790)) 56 T ELT)) (-2492 (((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-708 $) (-1287 $)) 53 T ELT) (((-708 |#3|) (-708 $)) 44 T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT)) (-4340 (((-136)) 62 T ELT)) (-4187 (($ $ (-1 |#3| |#3|)) 18 T ELT) (($ $ (-1 |#3| |#3|) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-4375 (((-1287 |#3|) $) NIL T ELT) (($ |#3|) NIL T ELT) (((-876) $) NIL T ELT) (($ (-558)) 12 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3527 (((-790)) 15 T ELT)) (-4378 (($ $ |#3|) 59 T ELT))) +(((-244 |#1| |#2| |#3|) (-10 -7 (-15 -4375 (|#1| (-419 (-558)))) (-15 -4375 (|#1| (-558))) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4375 ((-876) |#1|)) (-15 -3527 ((-790))) (-15 -2492 ((-708 (-558)) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 |#1|) (-1287 |#1|))) (-15 -4375 (|#1| |#3|)) (-15 -4187 (|#1| |#1| (-1 |#3| |#3|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#3| |#3|))) (-15 -2492 ((-708 |#3|) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-708 |#1|) (-1287 |#1|))) (-15 -3537 ((-790))) (-15 -4378 (|#1| |#1| |#3|)) (-15 -4340 ((-136))) (-15 -4375 ((-1287 |#3|) |#1|))) (-245 |#2| |#3|) (-790) (-1237)) (T -244)) +((-4340 (*1 *2) (-12 (-14 *4 (-790)) (-4 *5 (-1237)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3537 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-790)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) (-3527 (*1 *2) (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-790)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5))))) +((-2966 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-3605 (((-114) $) 80 (|has| |#2| (-23)) ELT)) (-4136 (($ (-937)) 134 (|has| |#2| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) 130 (|has| |#2| (-814)) ELT)) (-1425 (((-3 $ "failed") $ $) 82 (|has| |#2| (-133)) ELT)) (-3537 (((-790)) 119 (|has| |#2| (-381)) ELT)) (-4217 ((|#2| $ (-558) |#2|) 56 (|has| $ (-6 -4425)) ELT)) (-4153 (($) 7 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 75 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) 72 (-2960 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (((-3 |#2| #1#) $) 69 (|has| |#2| (-1121)) ELT)) (-3573 (((-558) $) 74 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-419 (-558)) $) 71 (-2960 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) ((|#2| $) 70 (|has| |#2| (-1121)) ELT)) (-2492 (((-708 (-558)) (-708 $)) 116 (-2960 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 115 (-2960 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) 114 (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-708 $)) 113 (|has| |#2| (-1069)) ELT)) (-3886 (((-3 $ "failed") $) 90 (|has| |#2| (-1069)) ELT)) (-3394 (($) 122 (|has| |#2| (-381)) ELT)) (-1718 ((|#2| $ (-558) |#2|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ (-558)) 55 T ELT)) (-3603 (((-114) $) 129 (|has| |#2| (-814)) ELT)) (-3289 (((-660 |#2|) $) 30 (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) 92 (|has| |#2| (-1069)) ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 123 (|has| |#2| (-860)) ELT)) (-3006 (((-660 |#2|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 124 (|has| |#2| (-860)) ELT)) (-2159 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-2219 (((-937) $) 121 (|has| |#2| (-381)) ELT)) (-2493 (((-708 (-558)) (-1287 $)) 118 (-2960 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 117 (-2960 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 112 (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-1287 $)) 111 (|has| |#2| (-1069)) ELT)) (-3659 (((-1179) $) 22 (|has| |#2| (-1121)) ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-2630 (($ (-937)) 120 (|has| |#2| (-381)) ELT)) (-3660 (((-1140) $) 21 (|has| |#2| (-1121)) ELT)) (-4230 ((|#2| $) 46 (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#2|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#2| $ (-558) |#2|) 54 T ELT) ((|#2| $ (-558)) 53 T ELT)) (-4265 ((|#2| $ $) 133 (|has| |#2| (-1069)) ELT)) (-1599 (($ (-1287 |#2|)) 135 T ELT)) (-4340 (((-136)) 132 (|has| |#2| (-376)) ELT)) (-4187 (($ $ (-790)) 109 (-2960 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) 107 (-2960 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 103 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) 102 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) 101 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) 99 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) 98 (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) 97 (|has| |#2| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-1287 |#2|) $) 136 T ELT) (($ (-558)) 76 (-3956 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ELT) (($ (-419 (-558))) 73 (-2960 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (($ |#2|) 68 (|has| |#2| (-1121)) ELT) (((-876) $) 17 (|has| |#2| (-629 (-876))) ELT)) (-3527 (((-790)) 94 (|has| |#2| (-1069)) CONST)) (-1377 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3058 (($) 79 (|has| |#2| (-23)) CONST)) (-3064 (($) 93 (|has| |#2| (-1069)) CONST)) (-3069 (($ $ (-790)) 110 (-2960 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) 108 (-2960 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 106 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) 105 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) 104 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) 100 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) 96 (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) 95 (|has| |#2| (-1069)) ELT)) (-2964 (((-114) $ $) 125 (|has| |#2| (-860)) ELT)) (-2965 (((-114) $ $) 127 (|has| |#2| (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-3084 (((-114) $ $) 126 (|has| |#2| (-860)) ELT)) (-3085 (((-114) $ $) 128 (|has| |#2| (-860)) ELT)) (-4378 (($ $ |#2|) 131 (|has| |#2| (-376)) ELT)) (-4266 (($ $ $) 85 (|has| |#2| (-21)) ELT) (($ $) 84 (|has| |#2| (-21)) ELT)) (-4268 (($ $ $) 77 (|has| |#2| (-25)) ELT)) (** (($ $ (-790)) 91 (|has| |#2| (-1069)) ELT) (($ $ (-937)) 88 (|has| |#2| (-1069)) ELT)) (* (($ $ $) 89 (|has| |#2| (-1069)) ELT) (($ $ |#2|) 87 (|has| |#2| (-745)) ELT) (($ |#2| $) 86 (|has| |#2| (-745)) ELT) (($ (-558) $) 83 (|has| |#2| (-21)) ELT) (($ (-790) $) 81 (|has| |#2| (-23)) ELT) (($ (-937) $) 78 (|has| |#2| (-25)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-245 |#1| |#2|) (-142) (-790) (-1237)) (T -245)) +((-1599 (*1 *1 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-245 *3 *4)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1069)) (-4 *4 (-1237)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1069))))) +(-13 (-615 (-558) |t#2|) (-629 (-1287 |t#2|)) (-10 -8 (-6 -4424) (-15 -1599 ($ (-1287 |t#2|))) (IF (|has| |t#2| (-1121)) (-6 (-424 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-1069)) (PROGN (-6 (-111 |t#2| |t#2|)) (-6 (-234 |t#2|)) (-6 (-390 |t#2|)) (-15 -4136 ($ (-937))) (-15 -4265 (|t#2| $ $))) |%noBranch|) (IF (|has| |t#2| (-25)) (-6 (-25)) |%noBranch|) (IF (|has| |t#2| (-133)) (-6 (-133)) |%noBranch|) (IF (|has| |t#2| (-23)) (-6 (-23)) |%noBranch|) (IF (|has| |t#2| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#2| (-745)) (-6 (-659 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#2| (-175)) (-6 (-736 |t#2|)) |%noBranch|) (IF (|has| |t#2| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |t#2| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#2| (-814)) (-6 (-814)) |%noBranch|) (IF (|has| |t#2| (-376)) (-6 (-1295 |t#2|)) |%noBranch|))) +(((-21) -3956 (|has| |#2| (-1069)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-23) -3956 (|has| |#2| (-1069)) (|has| |#2| (-814)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-25) -3956 (|has| |#2| (-1069)) (|has| |#2| (-814)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-34) . T) ((-102) -3956 (|has| |#2| (-1121)) (|has| |#2| (-1069)) (|has| |#2| (-860)) (|has| |#2| (-814)) (|has| |#2| (-745)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-102)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-111 |#2| |#2|) -3956 (|has| |#2| (-1069)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-133) -3956 (|has| |#2| (-1069)) (|has| |#2| (-814)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-21))) ((-632 (-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ((-632 (-558)) -3956 (|has| |#2| (-1069)) (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121)))) ((-632 |#2|) |has| |#2| (-1121)) ((-629 (-876)) -3956 (|has| |#2| (-1121)) (|has| |#2| (-1069)) (|has| |#2| (-860)) (|has| |#2| (-814)) (|has| |#2| (-745)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-629 (-876))) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-629 (-1287 |#2|)) . T) ((-236 $) -3956 (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1069)))) ((-234 |#2|) |has| |#2| (-1069)) ((-240) -12 (|has| |#2| (-240)) (|has| |#2| (-1069))) ((-239) -3956 (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) (-12 (|has| |#2| (-240)) (|has| |#2| (-1069)))) ((-274 |#2|) |has| |#2| (-1069)) ((-298 (-558) |#2|) . T) ((-300 (-558) |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-381) |has| |#2| (-381)) ((-390 |#2|) |has| |#2| (-1069)) ((-424 |#2|) |has| |#2| (-1121)) ((-501 |#2|) . T) ((-615 (-558) |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-665 (-558)) -3956 (|has| |#2| (-1069)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-21))) ((-665 |#2|) -3956 (|has| |#2| (-1069)) (|has| |#2| (-745)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-665 $) |has| |#2| (-1069)) ((-667 (-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ((-667 |#2|) -3956 (|has| |#2| (-1069)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-667 $) |has| |#2| (-1069)) ((-659 |#2|) -3956 (|has| |#2| (-745)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-657 (-558)) -12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ((-657 |#2|) |has| |#2| (-1069)) ((-736 |#2|) -3956 (|has| |#2| (-376)) (|has| |#2| (-175))) ((-745) |has| |#2| (-1069)) ((-813) |has| |#2| (-814)) ((-814) |has| |#2| (-814)) ((-815) |has| |#2| (-814)) ((-818) |has| |#2| (-814)) ((-860) -3956 (|has| |#2| (-860)) (|has| |#2| (-814))) ((-863) -3956 (|has| |#2| (-860)) (|has| |#2| (-814))) ((-910 $ (-1197)) -3956 (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069)))) ((-916 (-1197)) -12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069))) ((-918 (-1197)) -3956 (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) (-12 (|has| |#2| (-916 (-1197))) (|has| |#2| (-1069)))) ((-1058 (-419 (-558))) -12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ((-1058 (-558)) -12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ((-1058 |#2|) |has| |#2| (-1121)) ((-1071 |#2|) -3956 (|has| |#2| (-1069)) (|has| |#2| (-745)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1076 |#2|) -3956 (|has| |#2| (-1069)) (|has| |#2| (-376)) (|has| |#2| (-175))) ((-1069) |has| |#2| (-1069)) ((-1077) |has| |#2| (-1069)) ((-1132) |has| |#2| (-1069)) ((-1121) -3956 (|has| |#2| (-1121)) (|has| |#2| (-1069)) (|has| |#2| (-860)) (|has| |#2| (-814)) (|has| |#2| (-745)) (|has| |#2| (-381)) (|has| |#2| (-376)) (|has| |#2| (-175)) (|has| |#2| (-133)) (|has| |#2| (-25)) (|has| |#2| (-23)) (|has| |#2| (-21))) ((-1237) . T) ((-1295 |#2|) |has| |#2| (-376))) +((-2966 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3605 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4136 (($ (-937)) 63 (|has| |#2| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) 69 (|has| |#2| (-814)) ELT)) (-1425 (((-3 $ #1="failed") $ $) 54 (|has| |#2| (-133)) ELT)) (-3537 (((-790)) NIL (|has| |#2| (-381)) ELT)) (-4217 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (((-3 |#2| #1#) $) 31 (|has| |#2| (-1121)) ELT)) (-3573 (((-558) $) NIL (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) ((|#2| $) 29 (|has| |#2| (-1121)) ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-708 $)) NIL (|has| |#2| (-1069)) ELT)) (-3886 (((-3 $ #1#) $) 59 (|has| |#2| (-1069)) ELT)) (-3394 (($) NIL (|has| |#2| (-381)) ELT)) (-1718 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ (-558)) 57 T ELT)) (-3603 (((-114) $) NIL (|has| |#2| (-814)) ELT)) (-3289 (((-660 |#2|) $) 14 (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL (|has| |#2| (-1069)) ELT)) (-2414 (((-558) $) 20 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-3006 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-2159 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#2| (-381)) ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-1287 $)) NIL (|has| |#2| (-1069)) ELT)) (-3659 (((-1179) $) NIL (|has| |#2| (-1121)) ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-2630 (($ (-937)) NIL (|has| |#2| (-381)) ELT)) (-3660 (((-1140) $) NIL (|has| |#2| (-1121)) ELT)) (-4230 ((|#2| $) NIL (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 24 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) 21 T ELT)) (-4265 ((|#2| $ $) NIL (|has| |#2| (-1069)) ELT)) (-1599 (($ (-1287 |#2|)) 18 T ELT)) (-4340 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $ (-790)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#2| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1287 |#2|) $) 9 T ELT) (($ (-558)) NIL (-3956 (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (($ |#2|) 12 (|has| |#2| (-1121)) ELT) (((-876) $) NIL (|has| |#2| (-629 (-876))) ELT)) (-3527 (((-790)) NIL (|has| |#2| (-1069)) CONST)) (-1377 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3058 (($) 37 (|has| |#2| (-23)) CONST)) (-3064 (($) 41 (|has| |#2| (-1069)) CONST)) (-3069 (($ $ (-790)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#2| (-1069)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3453 (((-114) $ $) 28 (|has| |#2| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3085 (((-114) $ $) 67 (|has| |#2| (-860)) ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4268 (($ $ $) 35 (|has| |#2| (-25)) ELT)) (** (($ $ (-790)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-937)) NIL (|has| |#2| (-1069)) ELT)) (* (($ $ $) 47 (|has| |#2| (-1069)) ELT) (($ $ |#2|) 45 (|has| |#2| (-745)) ELT) (($ |#2| $) 46 (|has| |#2| (-745)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-790) $) NIL (|has| |#2| (-23)) ELT) (($ (-937) $) NIL (|has| |#2| (-25)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-246 |#1| |#2|) (-245 |#1| |#2|) (-790) (-1237)) (T -246)) +NIL +((-4270 (((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 21 T ELT)) (-4271 ((|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|) 23 T ELT)) (-4387 (((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)) 18 T ELT))) +(((-247 |#1| |#2| |#3|) (-10 -7 (-15 -4270 ((-246 |#1| |#3|) (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4271 (|#3| (-1 |#3| |#2| |#3|) (-246 |#1| |#2|) |#3|)) (-15 -4387 ((-246 |#1| |#3|) (-1 |#3| |#2|) (-246 |#1| |#2|)))) (-790) (-1237) (-1237)) (T -247)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-790)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-790)) (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-247 *5 *6 *2)))) (-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-790)) (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5))))) +((-1603 (((-558) (-660 (-1179))) 36 T ELT) (((-558) (-1179)) 29 T ELT)) (-1602 (((-1293) (-660 (-1179))) 40 T ELT) (((-1293) (-1179)) 39 T ELT)) (-1600 (((-1179)) 16 T ELT)) (-1601 (((-1179) (-558) (-1179)) 23 T ELT)) (-4202 (((-660 (-1179)) (-660 (-1179)) (-558) (-1179)) 37 T ELT) (((-1179) (-1179) (-558) (-1179)) 35 T ELT)) (-3018 (((-660 (-1179)) (-660 (-1179))) 15 T ELT) (((-660 (-1179)) (-1179)) 11 T ELT))) +(((-248) (-10 -7 (-15 -3018 ((-660 (-1179)) (-1179))) (-15 -3018 ((-660 (-1179)) (-660 (-1179)))) (-15 -1600 ((-1179))) (-15 -1601 ((-1179) (-558) (-1179))) (-15 -4202 ((-1179) (-1179) (-558) (-1179))) (-15 -4202 ((-660 (-1179)) (-660 (-1179)) (-558) (-1179))) (-15 -1602 ((-1293) (-1179))) (-15 -1602 ((-1293) (-660 (-1179)))) (-15 -1603 ((-558) (-1179))) (-15 -1603 ((-558) (-660 (-1179)))))) (T -248)) +((-1603 (*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-558)) (-5 *1 (-248)))) (-1603 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-558)) (-5 *1 (-248)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1293)) (-5 *1 (-248)))) (-1602 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-248)))) (-4202 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-660 (-1179))) (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *1 (-248)))) (-4202 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-558)) (-5 *1 (-248)))) (-1601 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-558)) (-5 *1 (-248)))) (-1600 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-248)))) (-3018 (*1 *2 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-248)))) (-3018 (*1 *2 *3) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-248)) (-5 *3 (-1179))))) +((** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 18 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-558)) $) 25 T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-249 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-558))) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 ** (|#1| |#1| (-790))) (-15 * (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|))) (-250)) (T -249)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 52 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 56 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 53 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-558)) $) 55 T ELT) (($ $ (-419 (-558))) 54 T ELT))) (((-250) (-142)) (T -250)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-558)))) (-2874 (*1 *1 *1) (-4 *1 (-250)))) -(-13 (-302) (-38 (-419 (-558))) (-10 -8 (-15 ** ($ $ (-558))) (-15 -2874 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-302) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-737 (-419 (-558))) . T) ((-746) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-4227 (($ $) 63 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-1606 (($ $ $) 59 (|has| $ (-6 -4426)) ELT)) (-1605 (($ $ $) 58 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4154 (($) 7 T CONST)) (-1608 (($ $) 62 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-1607 (($ $) 61 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) 65 T ELT)) (-3596 (($ $) 64 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4221 (($ $ $) 60 (|has| $ (-6 -4426)) ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-251 |#1|) (-142) (-1238)) (T -251)) -((-4228 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-1608 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-1607 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-4221 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-1606 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-251 *2)) (-4 *2 (-1238)))) (-1605 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-251 *2)) (-4 *2 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -4228 (|t#1| $)) (-15 -3596 ($ $)) (-15 -4227 ($ $)) (-15 -1608 ($ $)) (-15 -1607 ($ $)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4221 ($ $ $)) (-15 -1606 ($ $ $)) (-15 -1605 ($ $ $))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1031 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) NIL T ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4227 (($ $) NIL T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) NIL (|has| |#1| (-861)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1933 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) 10 (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3862 (((-114) $ (-791)) NIL T ELT)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) NIL (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4226 ((|#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-4229 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2594 (($ $) NIL (|has| |#1| (-1122)) ELT)) (-1467 (($ $) 7 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) NIL (|has| |#1| (-1122)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3826 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3863 (((-114) $) NIL T ELT)) (-3839 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-4149 (((-114) $ (-791)) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3938 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3962 (($ |#1|) NIL T ELT)) (-4146 (((-114) $ (-791)) NIL T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4037 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2517 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3864 (((-114) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) ((|#1| $ (-558) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-791) $ "count") 16 T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-1714 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2518 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-1609 (($ (-661 |#1|)) 22 T ELT)) (-4063 (((-114) $) NIL T ELT)) (-4222 (($ $) NIL T ELT)) (-4220 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) NIL T ELT)) (-4224 (($ $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-4221 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4232 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-661 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4376 (($ (-661 |#1|)) 17 T ELT) (((-661 |#1|) $) 18 T ELT) (((-877) $) 21 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 14 (|has| $ (-6 -4425)) ELT))) -(((-252 |#1|) (-13 (-686 |#1|) (-502 (-661 |#1|)) (-10 -8 (-15 -1609 ($ (-661 |#1|))) (-15 -4230 ($ $ "unique")) (-15 -4230 ($ $ "sort")) (-15 -4230 ((-791) $ "count")))) (-861)) (T -252)) -((-1609 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-252 *3)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-861)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-861)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-791)) (-5 *1 (-252 *4)) (-4 *4 (-861))))) -((-1610 (((-3 (-791) "failed") |#1| |#1| (-791)) 40 T ELT))) -(((-253 |#1|) (-10 -7 (-15 -1610 ((-3 (-791) "failed") |#1| |#1| (-791)))) (-13 (-746) (-381) (-10 -7 (-15 ** (|#1| |#1| (-558)))))) (T -253)) -((-1610 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-791)) (-4 *3 (-13 (-746) (-381) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-253 *3))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $) 59 (|has| |#1| (-239)) ELT) (($ $ (-791)) 57 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 55 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 53 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 52 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 51 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1 |#1| |#1|) (-791)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3070 (($ $) 58 (|has| |#1| (-239)) ELT) (($ $ (-791)) 56 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 54 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 50 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 49 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 48 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1 |#1| |#1|) (-791)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-254 |#1|) (-142) (-1070)) (T -254)) -NIL -(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-919 (-1198))) (-6 (-916 |t#1| (-1198))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) -3957 (-12 (|has| |#1| (-175)) (|has| |#1| (-919 (-1198)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-737 |#1|) -3957 (-12 (|has| |#1| (-175)) (|has| |#1| (-919 (-1198)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-911 $ (-1198)) |has| |#1| (-919 (-1198))) ((-916 |#1| (-1198)) |has| |#1| (-919 (-1198))) ((-919 (-1198)) |has| |#1| (-919 (-1198))) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-878 |#1|)) $) NIL T ELT)) (-3486 (((-1192 $) $ (-878 |#1|)) NIL T ELT) (((-1192 |#2|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-878 |#1|))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-878 |#1|) $) NIL T ELT)) (-4186 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2148 (($ $ (-661 (-558))) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#2| (-929)) ELT)) (-1804 (($ $ |#2| (-246 (-4387 |#1|) (-791)) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#2|) (-878 |#1|)) NIL T ELT) (($ (-1192 $) (-878 |#1|)) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-246 (-4387 |#1|) (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-878 |#1|)) NIL T ELT)) (-3221 (((-246 (-4387 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-878 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) NIL T ELT)) (-1805 (($ (-1 (-246 (-4387 |#1|) (-791)) (-246 (-4387 |#1|) (-791))) $) NIL T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3485 (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#2| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#2| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-878 |#1|) |#2|) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 |#2|)) NIL T ELT) (($ $ (-878 |#1|) $) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 $)) NIL T ELT)) (-4187 (($ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4188 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-4378 (((-246 (-4387 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-878 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-878 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3218 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-878 |#1|)) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-246 (-4387 |#1|) (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#2| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-255 |#1| |#2|) (-13 (-969 |#2| (-246 (-4387 |#1|) (-791)) (-878 |#1|)) (-10 -8 (-15 -2148 ($ $ (-661 (-558)))))) (-661 (-1198)) (-1070)) (T -255)) -((-2148 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-255 *3 *4)) (-14 *3 (-661 (-1198))) (-4 *4 (-1070))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1611 (((-1294) $) 17 T ELT)) (-1613 (((-187 (-257)) $) 11 T ELT)) (-1612 (($ (-187 (-257))) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1614 (((-257) $) 7 T ELT)) (-4376 (((-877) $) 9 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 15 T ELT))) -(((-256) (-13 (-1122) (-10 -8 (-15 -1614 ((-257) $)) (-15 -1613 ((-187 (-257)) $)) (-15 -1612 ($ (-187 (-257)))) (-15 -1611 ((-1294) $))))) (T -256)) -((-1614 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-1613 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1612 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1611 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-256))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1538 (((-661 (-879)) $) NIL T ELT)) (-3970 (((-518) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1540 (((-190) $) NIL T ELT)) (-3032 (((-114) $ (-518)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1615 (((-345) $) 7 T ELT)) (-1539 (((-661 (-114)) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (((-186) $) 8 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2917 (((-55) $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-257) (-13 (-189) (-630 (-186)) (-10 -8 (-15 -1615 ((-345) $))))) (T -257)) -((-1615 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 (((-1203) $ (-791)) 13 T ELT)) (-4376 (((-877) $) 20 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 16 T ELT)) (-4387 (((-791) $) 9 T ELT))) -(((-258) (-13 (-1122) (-298 (-791) (-1203)) (-10 -8 (-15 -4387 ((-791) $))))) (T -258)) -((-4387 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-258))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4137 (($ (-938)) NIL (|has| |#4| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) NIL (|has| |#4| (-815)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#4| (-381)) ELT)) (-4218 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1122)) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#4| (-1059 (-558))) (|has| |#4| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#4| (-1059 (-419 (-558)))) (|has| |#4| (-1122))) ELT)) (-3574 ((|#4| $) NIL (|has| |#4| (-1122)) ELT) (((-558) $) NIL (-12 (|has| |#4| (-1059 (-558))) (|has| |#4| (-1122))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#4| (-1059 (-419 (-558)))) (|has| |#4| (-1122))) ELT)) (-2493 (((-2 (|:| -1783 (-709 |#4|)) (|:| |vec| (-1288 |#4|))) (-709 $) (-1288 $)) NIL (|has| |#4| (-1070)) ELT) (((-709 |#4|) (-709 $)) NIL (|has| |#4| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1070))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1070))) ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| |#4| (-1070)) ELT)) (-3395 (($) NIL (|has| |#4| (-381)) ELT)) (-1719 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#4| $ (-558)) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#4| (-815)) ELT)) (-3290 (((-661 |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL (|has| |#4| (-1070)) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#4| (-861)) ELT)) (-3007 (((-661 |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#4| (-861)) ELT)) (-2160 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#4| (-381)) ELT)) (-2494 (((-2 (|:| -1783 (-709 |#4|)) (|:| |vec| (-1288 |#4|))) (-1288 $) $) NIL (|has| |#4| (-1070)) ELT) (((-709 |#4|) (-1288 $)) NIL (|has| |#4| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1070))) ELT) (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#4| (-658 (-558))) (|has| |#4| (-1070))) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-2631 (($ (-938)) NIL (|has| |#4| (-381)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 ((|#4| $) NIL (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#4|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-2420 (((-661 |#4|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#4| $ (-558) |#4|) NIL T ELT) ((|#4| $ (-558)) 12 T ELT)) (-4266 ((|#4| $ $) NIL (|has| |#4| (-1070)) ELT)) (-1600 (($ (-1288 |#4|)) NIL T ELT)) (-4341 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-4188 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070)) ELT) (($ $ (-1 |#4| |#4|) (-791)) NIL (|has| |#4| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1070)))) ELT) (($ $) NIL (-3957 (-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1070)))) ELT)) (-2157 (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1288 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1122)) ELT) (((-877) $) NIL T ELT) (($ (-558)) NIL (-3957 (-12 (|has| |#4| (-1059 (-558))) (|has| |#4| (-1122))) (|has| |#4| (-1070))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#4| (-1059 (-419 (-558)))) (|has| |#4| (-1122))) ELT)) (-3528 (((-791)) NIL (|has| |#4| (-1070)) CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL (|has| |#4| (-1070)) CONST)) (-3070 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1070)) ELT) (($ $ (-1 |#4| |#4|) (-791)) NIL (|has| |#4| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#4| (-917 (-1198))) (|has| |#4| (-1070))) (-12 (|has| |#4| (-919 (-1198))) (|has| |#4| (-1070)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1070)))) ELT) (($ $) NIL (-3957 (-12 (|has| |#4| (-240)) (|has| |#4| (-1070))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1070)))) ELT)) (-2965 (((-114) $ $) NIL (|has| |#4| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#4| (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#4| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#4| (-861)) ELT)) (-4379 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL (|has| |#4| (-1070)) ELT) (($ $ (-938)) NIL (|has| |#4| (-1070)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-938) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-746)) ELT) (($ |#4| $) NIL (|has| |#4| (-746)) ELT) (($ $ $) NIL (|has| |#4| (-1070)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-668 |#2|) (-668 |#3|)) (-938) (-1070) (-1144 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-668 |#2|)) (T -259)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4137 (($ (-938)) NIL (|has| |#3| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#3| (-381)) ELT)) (-4218 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1122)) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122))) ELT)) (-3574 ((|#3| $) NIL (|has| |#3| (-1122)) ELT) (((-558) $) NIL (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122))) ELT)) (-2493 (((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-709 $) (-1288 $)) NIL (|has| |#3| (-1070)) ELT) (((-709 |#3|) (-709 $)) NIL (|has| |#3| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| |#3| (-1070)) ELT)) (-3395 (($) NIL (|has| |#3| (-381)) ELT)) (-1719 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#3| $ (-558)) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#3| (-815)) ELT)) (-3290 (((-661 |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL (|has| |#3| (-1070)) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#3| (-861)) ELT)) (-3007 (((-661 |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#3| (-861)) ELT)) (-2160 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#3| (-381)) ELT)) (-2494 (((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070)) ELT) (((-709 |#3|) (-1288 $)) NIL (|has| |#3| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT) (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-2631 (($ (-938)) NIL (|has| |#3| (-381)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 ((|#3| $) NIL (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#3|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-661 |#3|) (-661 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-2420 (((-661 |#3|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#3| $ (-558) |#3|) NIL T ELT) ((|#3| $ (-558)) 11 T ELT)) (-4266 ((|#3| $ $) NIL (|has| |#3| (-1070)) ELT)) (-1600 (($ (-1288 |#3|)) NIL T ELT)) (-4341 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4188 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070)))) ELT) (($ $) NIL (-3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070)))) ELT)) (-2157 (((-791) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1288 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1122)) ELT) (((-877) $) NIL T ELT) (($ (-558)) NIL (-3957 (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) (|has| |#3| (-1070))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122))) ELT)) (-3528 (((-791)) NIL (|has| |#3| (-1070)) CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL (|has| |#3| (-1070)) CONST)) (-3070 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#3| (-917 (-1198))) (|has| |#3| (-1070))) (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070)))) ELT) (($ $) NIL (-3957 (-12 (|has| |#3| (-240)) (|has| |#3| (-1070))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1070)))) ELT)) (-2965 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-4379 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-938)) NIL (|has| |#3| (-1070)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-938) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-746)) ELT) (($ |#3| $) NIL (|has| |#3| (-746)) ELT) (($ $ $) NIL (|has| |#3| (-1070)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-668 |#2|)) (-791) (-1070) (-668 |#2|)) (T -260)) -NIL -((-1620 (((-661 (-791)) $) 56 T ELT) (((-661 (-791)) $ |#3|) 59 T ELT)) (-1654 (((-791) $) 58 T ELT) (((-791) $ |#3|) 61 T ELT)) (-1616 (($ $) 76 T ELT)) (-3575 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-4202 (((-791) $ |#3|) 43 T ELT) (((-791) $) 38 T ELT)) (-1655 (((-1 $ (-791)) |#3|) 15 T ELT) (((-1 $ (-791)) $) 88 T ELT)) (-1618 ((|#4| $) 69 T ELT)) (-1619 (((-114) $) 67 T ELT)) (-1617 (($ $) 75 T ELT)) (-4198 (($ $ (-661 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-661 |#4|) (-661 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-661 |#4|) (-661 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-661 |#3|) (-661 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-661 |#3|) (-661 |#2|)) 97 T ELT)) (-4188 (($ $ (-661 |#4|) (-661 (-791))) NIL T ELT) (($ $ |#4| (-791)) NIL T ELT) (($ $ (-661 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-1621 (((-661 |#3|) $) 86 T ELT)) (-4378 ((|#5| $) NIL T ELT) (((-791) $ |#4|) NIL T ELT) (((-661 (-791)) $ (-661 |#4|)) NIL T ELT) (((-791) $ |#3|) 49 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT))) -(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4376 (|#1| |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4198 (|#1| |#1| (-661 |#3|) (-661 |#2|))) (-15 -4198 (|#1| |#1| |#3| |#2|)) (-15 -4198 (|#1| |#1| (-661 |#3|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#3| |#1|)) (-15 -1655 ((-1 |#1| (-791)) |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1617 (|#1| |#1|)) (-15 -1618 (|#4| |#1|)) (-15 -1619 ((-114) |#1|)) (-15 -1654 ((-791) |#1| |#3|)) (-15 -1620 ((-661 (-791)) |#1| |#3|)) (-15 -1654 ((-791) |#1|)) (-15 -1620 ((-661 (-791)) |#1|)) (-15 -4378 ((-791) |#1| |#3|)) (-15 -4202 ((-791) |#1|)) (-15 -4202 ((-791) |#1| |#3|)) (-15 -1621 ((-661 |#3|) |#1|)) (-15 -1655 ((-1 |#1| (-791)) |#3|)) (-15 -4376 (|#1| |#3|)) (-15 -3575 ((-3 |#3| #1="failed") |#1|)) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4378 ((-661 (-791)) |#1| (-661 |#4|))) (-15 -4378 ((-791) |#1| |#4|)) (-15 -4376 (|#1| |#4|)) (-15 -3575 ((-3 |#4| #1#) |#1|)) (-15 -4198 (|#1| |#1| (-661 |#4|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#4| |#1|)) (-15 -4198 (|#1| |#1| (-661 |#4|) (-661 |#2|))) (-15 -4198 (|#1| |#1| |#4| |#2|)) (-15 -4198 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#1| |#1|)) (-15 -4198 (|#1| |#1| (-305 |#1|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4378 (|#5| |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -4188 (|#1| |#1| |#4|)) (-15 -4188 (|#1| |#1| (-661 |#4|))) (-15 -4188 (|#1| |#1| |#4| (-791))) (-15 -4188 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1070) (-861) (-277 |#3|) (-815)) (T -261)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1620 (((-661 (-791)) $) 248 T ELT) (((-661 (-791)) $ |#2|) 246 T ELT)) (-1654 (((-791) $) 247 T ELT) (((-791) $ |#2|) 245 T ELT)) (-3484 (((-661 |#3|) $) 120 T ELT)) (-3486 (((-1192 $) $ |#3|) 135 T ELT) (((-1192 |#1|) $) 134 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) 122 T ELT) (((-791) $ (-661 |#3|)) 121 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 110 (|has| |#1| (-929)) ELT)) (-4205 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 113 (|has| |#1| (-929)) ELT)) (-1616 (($ $) 241 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1059 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3574 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1059 (-558))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-4186 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4389 (($ $) 168 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3923 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) 119 T ELT)) (-4153 (((-114) $) 106 (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| |#4| $) 186 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 94 (-12 (|has| |#3| (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 93 (-12 (|has| |#3| (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-4202 (((-791) $ |#2|) 251 T ELT) (((-791) $) 250 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2649 (((-791) $) 183 T ELT)) (-3487 (($ (-1192 |#1|) |#3|) 127 T ELT) (($ (-1192 $) |#3|) 126 T ELT)) (-3222 (((-661 $) $) 136 T ELT)) (-4367 (((-114) $) 166 T ELT)) (-3294 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-791)) 129 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 128 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#3|) 130 T ELT)) (-3221 ((|#4| $) 184 T ELT) (((-791) $ |#3|) 132 T ELT) (((-661 (-791)) $ (-661 |#3|)) 131 T ELT)) (-1805 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1655 (((-1 $ (-791)) |#2|) 253 T ELT) (((-1 $ (-791)) $) 240 (|has| |#1| (-240)) ELT)) (-3485 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 142 T ELT) (((-709 |#1|) (-1288 $)) 141 T ELT)) (-3295 (($ $) 163 T ELT)) (-3592 ((|#1| $) 162 T ELT)) (-1618 ((|#3| $) 243 T ELT)) (-2102 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1619 (((-114) $) 244 T ELT)) (-3224 (((-3 (-661 $) #3#) $) 124 T ELT)) (-3223 (((-3 (-661 $) #3#) $) 125 T ELT)) (-3225 (((-3 (-2 (|:| |var| |#3|) (|:| -2632 (-791))) #3#) $) 123 T ELT)) (-1617 (($ $) 242 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2005 (((-114) $) 180 T ELT)) (-2004 ((|#1| $) 181 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 105 (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 112 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 111 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) 109 (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-661 |#3|) (-661 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-661 |#3|) (-661 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 $)) 238 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 |#1|)) 236 (|has| |#1| (-240)) ELT)) (-4187 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 |#3|) (-661 (-791))) 49 T ELT) (($ $ |#3| (-791)) 48 T ELT) (($ $ (-661 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 259 T ELT) (($ $) 235 (|has| |#1| (-239)) ELT) (($ $ (-791)) 233 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 231 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 229 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 228 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 227 (|has| |#1| (-919 (-1198))) ELT)) (-1621 (((-661 |#2|) $) 252 T ELT)) (-4378 ((|#4| $) 164 T ELT) (((-791) $ |#3|) 140 T ELT) (((-661 (-791)) $ (-661 |#3|)) 139 T ELT) (((-791) $ |#2|) 249 T ELT)) (-4402 (((-905 (-391)) $) 92 (-12 (|has| |#3| (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) 91 (-12 (|has| |#3| (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 114 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-419 (-558))) 88 (-3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) 182 T ELT)) (-4107 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-791)) 138 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 137 T ELT)) (-3103 (((-711 $) $) 89 (-3957 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 37 T CONST)) (-1803 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-661 |#3|) (-661 (-791))) 52 T ELT) (($ $ |#3| (-791)) 51 T ELT) (($ $ (-661 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 257 T ELT) (($ $) 234 (|has| |#1| (-239)) ELT) (($ $ (-791)) 232 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 230 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 226 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 225 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 224 (|has| |#1| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-262 |#1| |#2| |#3| |#4|) (-142) (-1070) (-861) (-277 |t#2|) (-815)) (T -262)) -((-1655 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *4 *3 *5 *6)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 *4)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 (-791))))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) (-1620 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-661 (-791))))) (-1654 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-815)) (-4 *2 (-277 *4)))) (-1617 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-1616 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-277 *3)) (-4 *5 (-815)))) (-1655 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *3 *4 *5 *6))))) -(-13 (-969 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1059 |t#2|) (-10 -8 (-15 -1655 ((-1 $ (-791)) |t#2|)) (-15 -1621 ((-661 |t#2|) $)) (-15 -4202 ((-791) $ |t#2|)) (-15 -4202 ((-791) $)) (-15 -4378 ((-791) $ |t#2|)) (-15 -1620 ((-661 (-791)) $)) (-15 -1654 ((-791) $)) (-15 -1620 ((-661 (-791)) $ |t#2|)) (-15 -1654 ((-791) $ |t#2|)) (-15 -1619 ((-114) $)) (-15 -1618 (|t#3| $)) (-15 -1617 ($ $)) (-15 -1616 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-321 $)) (-15 -1655 ((-1 $ (-791)) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 |#2|) . T) ((-633 |#3|) . T) ((-633 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ((-631 (-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#3| (-631 (-905 (-391))))) ((-631 (-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#3| (-631 (-905 (-558))))) ((-236 $) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3957 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-240)) ((-526 |#2| $) |has| |#1| (-240)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-746) . T) ((-911 $ (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-911 $ |#3|) . T) ((-917 (-1198)) |has| |#1| (-917 (-1198))) ((-917 |#3|) . T) ((-919 (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-919 |#3|) . T) ((-901 (-391)) -12 (|has| |#1| (-901 (-391))) (|has| |#3| (-901 (-391)))) ((-901 (-558)) -12 (|has| |#1| (-901 (-558))) (|has| |#3| (-901 (-558)))) ((-969 |#1| |#4| |#3|) . T) ((-929) |has| |#1| (-929)) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1059 |#2|) . T) ((-1059 |#3|) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) |has| |#1| (-929))) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1627 ((|#1| $) 58 T ELT)) (-3744 ((|#1| $) 48 T ELT)) (-4154 (($) 7 T CONST)) (-3403 (($ $) 64 T ELT)) (-2510 (($ $) 52 T ELT)) (-3746 ((|#1| |#1| $) 50 T ELT)) (-3745 ((|#1| $) 49 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4263 (((-791) $) 65 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-1625 ((|#1| |#1| $) 56 T ELT)) (-1624 ((|#1| |#1| $) 55 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3002 (((-791) $) 59 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-3402 ((|#1| $) 66 T ELT)) (-1623 ((|#1| $) 54 T ELT)) (-1622 ((|#1| $) 53 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3405 ((|#1| |#1| $) 62 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-3404 ((|#1| $) 63 T ELT)) (-1628 (($) 61 T ELT) (($ (-661 |#1|)) 60 T ELT)) (-3743 (((-791) $) 47 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1626 ((|#1| $) 57 T ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-3401 ((|#1| $) 67 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-263 |#1|) (-142) (-1238)) (T -263)) -((-1628 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-1628 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-4 *1 (-263 *3)))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1238)) (-5 *2 (-791)))) (-1627 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-1625 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-1624 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-1623 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) (-2510 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(-13 (-1142 |t#1|) (-1016 |t#1|) (-10 -8 (-15 -1628 ($)) (-15 -1628 ($ (-661 |t#1|))) (-15 -3002 ((-791) $)) (-15 -1627 (|t#1| $)) (-15 -1626 (|t#1| $)) (-15 -1625 (|t#1| |t#1| $)) (-15 -1624 (|t#1| |t#1| $)) (-15 -1623 (|t#1| $)) (-15 -1622 (|t#1| $)) (-15 -2510 ($ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1016 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1142 |#1|) . T) ((-1238) . T)) -((-1629 (((-1154 (-229)) (-897 |#1|) (-1113 (-391)) (-1113 (-391))) 75 T ELT) (((-1154 (-229)) (-897 |#1|) (-1113 (-391)) (-1113 (-391)) (-661 (-270))) 74 T ELT) (((-1154 (-229)) |#1| (-1113 (-391)) (-1113 (-391))) 65 T ELT) (((-1154 (-229)) |#1| (-1113 (-391)) (-1113 (-391)) (-661 (-270))) 64 T ELT) (((-1154 (-229)) (-894 |#1|) (-1113 (-391))) 56 T ELT) (((-1154 (-229)) (-894 |#1|) (-1113 (-391)) (-661 (-270))) 55 T ELT)) (-1636 (((-1292) (-897 |#1|) (-1113 (-391)) (-1113 (-391))) 78 T ELT) (((-1292) (-897 |#1|) (-1113 (-391)) (-1113 (-391)) (-661 (-270))) 77 T ELT) (((-1292) |#1| (-1113 (-391)) (-1113 (-391))) 68 T ELT) (((-1292) |#1| (-1113 (-391)) (-1113 (-391)) (-661 (-270))) 67 T ELT) (((-1292) (-894 |#1|) (-1113 (-391))) 60 T ELT) (((-1292) (-894 |#1|) (-1113 (-391)) (-661 (-270))) 59 T ELT) (((-1291) (-892 |#1|) (-1113 (-391))) 47 T ELT) (((-1291) (-892 |#1|) (-1113 (-391)) (-661 (-270))) 46 T ELT) (((-1291) |#1| (-1113 (-391))) 38 T ELT) (((-1291) |#1| (-1113 (-391)) (-661 (-270))) 36 T ELT))) -(((-264 |#1|) (-10 -7 (-15 -1636 ((-1291) |#1| (-1113 (-391)) (-661 (-270)))) (-15 -1636 ((-1291) |#1| (-1113 (-391)))) (-15 -1636 ((-1291) (-892 |#1|) (-1113 (-391)) (-661 (-270)))) (-15 -1636 ((-1291) (-892 |#1|) (-1113 (-391)))) (-15 -1636 ((-1292) (-894 |#1|) (-1113 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-894 |#1|) (-1113 (-391)))) (-15 -1629 ((-1154 (-229)) (-894 |#1|) (-1113 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-894 |#1|) (-1113 (-391)))) (-15 -1636 ((-1292) |#1| (-1113 (-391)) (-1113 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) |#1| (-1113 (-391)) (-1113 (-391)))) (-15 -1629 ((-1154 (-229)) |#1| (-1113 (-391)) (-1113 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) |#1| (-1113 (-391)) (-1113 (-391)))) (-15 -1636 ((-1292) (-897 |#1|) (-1113 (-391)) (-1113 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-897 |#1|) (-1113 (-391)) (-1113 (-391)))) (-15 -1629 ((-1154 (-229)) (-897 |#1|) (-1113 (-391)) (-1113 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-897 |#1|) (-1113 (-391)) (-1113 (-391))))) (-13 (-631 (-547)) (-1122))) (T -264)) -((-1629 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-391))) (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *5)))) (-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *6)))) (-1636 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-391))) (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *5)))) (-1636 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *6)))) (-1629 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) (-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) (-1636 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1113 (-391))) (-5 *2 (-1292)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) (-1636 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-391))) (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *5)))) (-1629 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *6)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-391))) (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *5)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *6)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-391))) (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-264 *5)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-264 *6)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-391))) (-5 *2 (-1291)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122)))))) -((-1630 (((-1 (-962 (-229)) (-229) (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 158 T ELT)) (-1629 (((-1154 (-229)) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391))) 178 T ELT) (((-1154 (-229)) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391)) (-661 (-270))) 176 T ELT) (((-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391))) 181 T ELT) (((-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270))) 177 T ELT) (((-1154 (-229)) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391))) 169 T ELT) (((-1154 (-229)) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270))) 168 T ELT) (((-1154 (-229)) (-1 (-962 (-229)) (-229)) (-1110 (-391))) 150 T ELT) (((-1154 (-229)) (-1 (-962 (-229)) (-229)) (-1110 (-391)) (-661 (-270))) 148 T ELT) (((-1154 (-229)) (-894 (-1 (-229) (-229))) (-1110 (-391))) 149 T ELT) (((-1154 (-229)) (-894 (-1 (-229) (-229))) (-1110 (-391)) (-661 (-270))) 146 T ELT)) (-1636 (((-1292) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391))) 180 T ELT) (((-1292) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391)) (-661 (-270))) 179 T ELT) (((-1292) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391))) 183 T ELT) (((-1292) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270))) 182 T ELT) (((-1292) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391))) 171 T ELT) (((-1292) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270))) 170 T ELT) (((-1292) (-1 (-962 (-229)) (-229)) (-1110 (-391))) 156 T ELT) (((-1292) (-1 (-962 (-229)) (-229)) (-1110 (-391)) (-661 (-270))) 155 T ELT) (((-1292) (-894 (-1 (-229) (-229))) (-1110 (-391))) 154 T ELT) (((-1292) (-894 (-1 (-229) (-229))) (-1110 (-391)) (-661 (-270))) 153 T ELT) (((-1291) (-892 (-1 (-229) (-229))) (-1110 (-391))) 118 T ELT) (((-1291) (-892 (-1 (-229) (-229))) (-1110 (-391)) (-661 (-270))) 117 T ELT) (((-1291) (-1 (-229) (-229)) (-1110 (-391))) 112 T ELT) (((-1291) (-1 (-229) (-229)) (-1110 (-391)) (-661 (-270))) 110 T ELT))) -(((-265) (-10 -7 (-15 -1636 ((-1291) (-1 (-229) (-229)) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1291) (-1 (-229) (-229)) (-1110 (-391)))) (-15 -1636 ((-1291) (-892 (-1 (-229) (-229))) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1291) (-892 (-1 (-229) (-229))) (-1110 (-391)))) (-15 -1636 ((-1292) (-894 (-1 (-229) (-229))) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-894 (-1 (-229) (-229))) (-1110 (-391)))) (-15 -1636 ((-1292) (-1 (-962 (-229)) (-229)) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-1 (-962 (-229)) (-229)) (-1110 (-391)))) (-15 -1629 ((-1154 (-229)) (-894 (-1 (-229) (-229))) (-1110 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-894 (-1 (-229) (-229))) (-1110 (-391)))) (-15 -1629 ((-1154 (-229)) (-1 (-962 (-229)) (-229)) (-1110 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-1 (-962 (-229)) (-229)) (-1110 (-391)))) (-15 -1636 ((-1292) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391)))) (-15 -1629 ((-1154 (-229)) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-1 (-229) (-229) (-229)) (-1110 (-391)) (-1110 (-391)))) (-15 -1636 ((-1292) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391)))) (-15 -1629 ((-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-391)) (-1110 (-391)))) (-15 -1636 ((-1292) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391)) (-661 (-270)))) (-15 -1636 ((-1292) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391)))) (-15 -1629 ((-1154 (-229)) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391)) (-661 (-270)))) (-15 -1629 ((-1154 (-229)) (-897 (-1 (-229) (-229) (-229))) (-1110 (-391)) (-1110 (-391)))) (-15 -1630 ((-1 (-962 (-229)) (-229) (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265)) -((-1630 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-962 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1629 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1636 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-265))))) -((-1636 (((-1291) (-305 |#2|) (-1198) (-1198) (-661 (-270))) 102 T ELT))) -(((-266 |#1| |#2|) (-10 -7 (-15 -1636 ((-1291) (-305 |#2|) (-1198) (-1198) (-661 (-270))))) (-13 (-569) (-861) (-1059 (-558))) (-433 |#1|)) (T -266)) -((-1636 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1198)) (-5 *5 (-661 (-270))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-861) (-1059 (-558)))) (-5 *2 (-1291)) (-5 *1 (-266 *6 *7))))) -((-1633 (((-558) (-558)) 71 T ELT)) (-1634 (((-558) (-558)) 72 T ELT)) (-1635 (((-229) (-229)) 73 T ELT)) (-1632 (((-1292) (-1 (-171 (-229)) (-171 (-229))) (-1110 (-229)) (-1110 (-229))) 70 T ELT)) (-1631 (((-1292) (-1 (-171 (-229)) (-171 (-229))) (-1110 (-229)) (-1110 (-229)) (-114)) 68 T ELT))) -(((-267) (-10 -7 (-15 -1631 ((-1292) (-1 (-171 (-229)) (-171 (-229))) (-1110 (-229)) (-1110 (-229)) (-114))) (-15 -1632 ((-1292) (-1 (-171 (-229)) (-171 (-229))) (-1110 (-229)) (-1110 (-229)))) (-15 -1633 ((-558) (-558))) (-15 -1634 ((-558) (-558))) (-15 -1635 ((-229) (-229))))) (T -267)) -((-1635 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-1634 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267)))) (-1632 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1110 (-229))) (-5 *2 (-1292)) (-5 *1 (-267)))) (-1631 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1110 (-229))) (-5 *5 (-114)) (-5 *2 (-1292)) (-5 *1 (-267))))) -((-4376 (((-1113 (-391)) (-1113 (-326 |#1|))) 16 T ELT))) -(((-268 |#1|) (-10 -7 (-15 -4376 ((-1113 (-391)) (-1113 (-326 |#1|))))) (-13 (-861) (-569) (-631 (-391)))) (T -268)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-1113 (-326 *4))) (-4 *4 (-13 (-861) (-569) (-631 (-391)))) (-5 *2 (-1113 (-391))) (-5 *1 (-268 *4))))) -((-1636 (((-1292) (-661 (-229)) (-661 (-229)) (-661 (-229)) (-661 (-270))) 23 T ELT) (((-1292) (-661 (-229)) (-661 (-229)) (-661 (-229))) 24 T ELT) (((-1291) (-661 (-962 (-229))) (-661 (-270))) 16 T ELT) (((-1291) (-661 (-962 (-229)))) 17 T ELT) (((-1291) (-661 (-229)) (-661 (-229)) (-661 (-270))) 20 T ELT) (((-1291) (-661 (-229)) (-661 (-229))) 21 T ELT))) -(((-269) (-10 -7 (-15 -1636 ((-1291) (-661 (-229)) (-661 (-229)))) (-15 -1636 ((-1291) (-661 (-229)) (-661 (-229)) (-661 (-270)))) (-15 -1636 ((-1291) (-661 (-962 (-229))))) (-15 -1636 ((-1291) (-661 (-962 (-229))) (-661 (-270)))) (-15 -1636 ((-1292) (-661 (-229)) (-661 (-229)) (-661 (-229)))) (-15 -1636 ((-1292) (-661 (-229)) (-661 (-229)) (-661 (-229)) (-661 (-270)))))) (T -269)) -((-1636 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-269)))) (-1636 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1292)) (-5 *1 (-269)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-962 (-229)))) (-5 *4 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-269)))) (-1636 (*1 *2 *3) (-12 (-5 *3 (-661 (-962 (-229)))) (-5 *2 (-1291)) (-5 *1 (-269)))) (-1636 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-269)))) (-1636 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1291)) (-5 *1 (-269))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4311 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-1649 (($ (-938)) 81 T ELT)) (-1648 (($ (-938)) 80 T ELT)) (-1980 (($ (-661 (-391))) 87 T ELT)) (-1652 (($ (-391)) 66 T ELT)) (-1651 (($ (-938)) 82 T ELT)) (-1645 (($ (-114)) 33 T ELT)) (-4313 (($ (-1180)) 28 T ELT)) (-1644 (($ (-1180)) 29 T ELT)) (-1650 (($ (-1154 (-229))) 76 T ELT)) (-2139 (($ (-661 (-1110 (-391)))) 72 T ELT)) (-1638 (($ (-661 (-1110 (-391)))) 68 T ELT) (($ (-661 (-1110 (-419 (-558))))) 71 T ELT)) (-1641 (($ (-391)) 38 T ELT) (($ (-888)) 42 T ELT)) (-1637 (((-114) (-661 $) (-1198)) 100 T ELT)) (-1653 (((-3 (-51) "failed") (-661 $) (-1198)) 102 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1640 (($ (-391)) 43 T ELT) (($ (-888)) 44 T ELT)) (-3642 (($ (-1 (-962 (-229)) (-962 (-229)))) 65 T ELT)) (-2480 (($ (-1 (-962 (-229)) (-962 (-229)))) 83 T ELT)) (-1639 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-4376 (((-877) $) 93 T ELT)) (-1642 (($ (-114)) 34 T ELT) (($ (-661 (-1110 (-391)))) 60 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2134 (($ (-114)) 35 T ELT)) (-3454 (((-114) $ $) 97 T ELT))) -(((-270) (-13 (-1122) (-10 -8 (-15 -2134 ($ (-114))) (-15 -1642 ($ (-114))) (-15 -4311 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4313 ($ (-1180))) (-15 -1644 ($ (-1180))) (-15 -1645 ($ (-114))) (-15 -1642 ($ (-661 (-1110 (-391))))) (-15 -3642 ($ (-1 (-962 (-229)) (-962 (-229))))) (-15 -1641 ($ (-391))) (-15 -1641 ($ (-888))) (-15 -1640 ($ (-391))) (-15 -1640 ($ (-888))) (-15 -1639 ($ (-1 (-229) (-229)))) (-15 -1639 ($ (-1 (-229) (-229) (-229)))) (-15 -1639 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1652 ($ (-391))) (-15 -1638 ($ (-661 (-1110 (-391))))) (-15 -1638 ($ (-661 (-1110 (-419 (-558)))))) (-15 -2139 ($ (-661 (-1110 (-391))))) (-15 -1650 ($ (-1154 (-229)))) (-15 -1648 ($ (-938))) (-15 -1649 ($ (-938))) (-15 -1651 ($ (-938))) (-15 -2480 ($ (-1 (-962 (-229)) (-962 (-229))))) (-15 -1980 ($ (-661 (-391)))) (-15 -1653 ((-3 (-51) "failed") (-661 $) (-1198))) (-15 -1637 ((-114) (-661 $) (-1198)))))) (T -270)) -((-2134 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-4311 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-4313 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) (-1645 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1642 (*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-270)))) (-3642 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-229)) (-962 (-229)))) (-5 *1 (-270)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-1652 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-419 (-558))))) (-5 *1 (-270)))) (-2139 (*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-270)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) (-2480 (*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-229)) (-962 (-229)))) (-5 *1 (-270)))) (-1980 (*1 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-270)))) (-1653 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1198)) (-5 *2 (-51)) (-5 *1 (-270)))) (-1637 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-270))) (-5 *4 (-1198)) (-5 *2 (-114)) (-5 *1 (-270))))) -((-4311 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-661 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-1649 (((-938) (-661 (-270)) (-938)) 52 T ELT)) (-1648 (((-938) (-661 (-270)) (-938)) 51 T ELT)) (-4281 (((-661 (-391)) (-661 (-270)) (-661 (-391))) 68 T ELT)) (-1652 (((-391) (-661 (-270)) (-391)) 57 T ELT)) (-1651 (((-938) (-661 (-270)) (-938)) 53 T ELT)) (-1645 (((-114) (-661 (-270)) (-114)) 27 T ELT)) (-4313 (((-1180) (-661 (-270)) (-1180)) 19 T ELT)) (-1644 (((-1180) (-661 (-270)) (-1180)) 26 T ELT)) (-1650 (((-1154 (-229)) (-661 (-270))) 46 T ELT)) (-2139 (((-661 (-1110 (-391))) (-661 (-270)) (-661 (-1110 (-391)))) 40 T ELT)) (-1646 (((-888) (-661 (-270)) (-888)) 32 T ELT)) (-1647 (((-888) (-661 (-270)) (-888)) 33 T ELT)) (-2480 (((-1 (-962 (-229)) (-962 (-229))) (-661 (-270)) (-1 (-962 (-229)) (-962 (-229)))) 63 T ELT)) (-1643 (((-114) (-661 (-270)) (-114)) 14 T ELT)) (-2134 (((-114) (-661 (-270)) (-114)) 13 T ELT))) -(((-271) (-10 -7 (-15 -2134 ((-114) (-661 (-270)) (-114))) (-15 -1643 ((-114) (-661 (-270)) (-114))) (-15 -4311 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-661 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4313 ((-1180) (-661 (-270)) (-1180))) (-15 -1644 ((-1180) (-661 (-270)) (-1180))) (-15 -1645 ((-114) (-661 (-270)) (-114))) (-15 -1646 ((-888) (-661 (-270)) (-888))) (-15 -1647 ((-888) (-661 (-270)) (-888))) (-15 -2139 ((-661 (-1110 (-391))) (-661 (-270)) (-661 (-1110 (-391))))) (-15 -1648 ((-938) (-661 (-270)) (-938))) (-15 -1649 ((-938) (-661 (-270)) (-938))) (-15 -1650 ((-1154 (-229)) (-661 (-270)))) (-15 -1651 ((-938) (-661 (-270)) (-938))) (-15 -1652 ((-391) (-661 (-270)) (-391))) (-15 -2480 ((-1 (-962 (-229)) (-962 (-229))) (-661 (-270)) (-1 (-962 (-229)) (-962 (-229))))) (-15 -4281 ((-661 (-391)) (-661 (-270)) (-661 (-391)))))) (T -271)) -((-4281 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-391))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-2480 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-962 (-229)) (-962 (-229)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1652 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1651 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1650 (*1 *2 *3) (-12 (-5 *3 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-271)))) (-1649 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-2139 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1647 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1646 (*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1645 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1644 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-4313 (*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-4311 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-1643 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) (-2134 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -((-1653 (((-3 |#1| "failed") (-661 (-270)) (-1198)) 17 T ELT))) -(((-272 |#1|) (-10 -7 (-15 -1653 ((-3 |#1| "failed") (-661 (-270)) (-1198)))) (-1238)) (T -272)) -((-1653 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1198)) (-5 *1 (-272 *2)) (-4 *2 (-1238))))) -((-4188 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) 11 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) 19 T ELT) (($ $ (-791)) NIL T ELT) (($ $) 16 T ELT)) (-3070 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-791)) 14 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT))) -(((-273 |#1| |#2|) (-10 -7 (-15 -4188 (|#1| |#1|)) (-15 -3070 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -3070 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -3070 (|#1| |#1| (-1198))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -3070 (|#1| |#1| (-661 (-1198)))) (-15 -3070 (|#1| |#1| (-1198) (-791))) (-15 -3070 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -3070 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -3070 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1238)) (T -273)) -NIL -((-4188 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 22 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) 16 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 15 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 14 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198)) 12 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-791)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-3070 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 20 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) 19 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 18 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 17 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198)) 13 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-791)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT))) -(((-274 |#1|) (-142) (-1238)) (T -274)) -((-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1238)))) (-4188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1238)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1238)))) (-3070 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4188 ($ $ (-1 |t#1| |t#1|))) (-15 -4188 ($ $ (-1 |t#1| |t#1|) (-791))) (-15 -3070 ($ $ (-1 |t#1| |t#1|))) (-15 -3070 ($ $ (-1 |t#1| |t#1|) (-791))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-919 (-1198))) (-6 (-919 (-1198))) |%noBranch|))) -(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-911 $ (-1198)) |has| |#1| (-919 (-1198))) ((-919 (-1198)) |has| |#1| (-919 (-1198))) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1620 (((-661 (-791)) $) NIL T ELT) (((-661 (-791)) $ |#2|) NIL T ELT)) (-1654 (((-791) $) NIL T ELT) (((-791) $ |#2|) NIL T ELT)) (-3484 (((-661 |#3|) $) NIL T ELT)) (-3486 (((-1192 $) $ |#3|) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 |#3|)) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-1616 (($ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1146 |#1| |#2|) #1#) $) 23 T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1146 |#1| |#2|) $) NIL T ELT)) (-4186 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-543 |#3|) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| |#1| (-901 (-391))) (|has| |#3| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| |#1| (-901 (-558))) (|has| |#3| (-901 (-558)))) ELT)) (-4202 (((-791) $ |#2|) NIL T ELT) (((-791) $) 10 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#1|) |#3|) NIL T ELT) (($ (-1192 $) |#3|) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-543 |#3|)) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#3|) NIL T ELT)) (-3221 (((-543 |#3|) $) NIL T ELT) (((-791) $ |#3|) NIL T ELT) (((-661 (-791)) $ (-661 |#3|)) NIL T ELT)) (-1805 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1655 (((-1 $ (-791)) |#2|) NIL T ELT) (((-1 $ (-791)) $) NIL (|has| |#1| (-240)) ELT)) (-3485 (((-3 |#3| #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-1618 ((|#3| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1619 (((-114) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| |#3|) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-661 |#3|) (-661 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-661 |#3|) (-661 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 |#2|) (-661 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4187 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-1621 (((-661 |#2|) $) NIL T ELT)) (-4378 (((-543 |#3|) $) NIL T ELT) (((-791) $ |#3|) NIL T ELT) (((-661 (-791)) $ (-661 |#3|)) NIL T ELT) (((-791) $ |#2|) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#3| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#3| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1146 |#1| |#2|)) 32 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-543 |#3|)) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 |#3|) (-661 (-791))) NIL T ELT) (($ $ |#3| (-791)) NIL T ELT) (($ $ (-661 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-543 |#3|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861) (-277 |#2|)) (T -275)) -NIL -((-1654 (((-791) $) 37 T ELT)) (-3575 (((-3 |#2| "failed") $) 22 T ELT)) (-3574 ((|#2| $) 33 T ELT)) (-4188 (($ $ (-791)) 18 T ELT) (($ $) 14 T ELT)) (-4376 (((-877) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3454 (((-114) $ $) 26 T ELT)) (-3086 (((-114) $ $) 36 T ELT))) -(((-276 |#1| |#2|) (-10 -7 (-15 -1654 ((-791) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -3575 ((-3 |#2| "failed") |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -3086 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-277 |#2|) (-861)) (T -276)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-1654 (((-791) $) 26 T ELT)) (-4261 ((|#1| $) 27 T ELT)) (-3575 (((-3 |#1| "failed") $) 31 T ELT)) (-3574 ((|#1| $) 32 T ELT)) (-4202 (((-791) $) 28 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-1655 (($ |#1| (-791)) 29 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $ (-791)) 35 T ELT) (($ $) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3070 (($ $ (-791)) 36 T ELT) (($ $) 34 T ELT)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT))) -(((-277 |#1|) (-142) (-861)) (T -277)) -((-4376 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-861)))) (-1655 (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-277 *2)) (-4 *2 (-861)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-861)) (-5 *2 (-791)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-861)))) (-1654 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-861)) (-5 *2 (-791))))) -(-13 (-861) (-239) (-1059 |t#1|) (-10 -8 (-15 -1655 ($ |t#1| (-791))) (-15 -4202 ((-791) $)) (-15 -4261 (|t#1| $)) (-15 -1654 ((-791) $)) (-15 -4376 ($ |t#1|)))) -(((-102) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-236 $) . T) ((-239) . T) ((-861) . T) ((-864) . T) ((-1059 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-3484 (((-661 (-1198)) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 52 T ELT)) (-4364 (((-661 (-1198)) (-326 (-229)) (-791)) 94 T ELT)) (-1658 (((-3 (-326 (-229)) "failed") (-326 (-229))) 62 T ELT)) (-1659 (((-326 (-229)) (-326 (-229))) 78 T ELT)) (-1657 (((-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 37 T ELT)) (-1660 (((-114) (-661 (-326 (-229)))) 104 T ELT)) (-1664 (((-114) (-326 (-229))) 35 T ELT)) (-1666 (((-661 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) 132 T ELT)) (-1663 (((-661 (-326 (-229))) (-661 (-326 (-229)))) 108 T ELT)) (-1662 (((-661 (-326 (-229))) (-661 (-326 (-229)))) 106 T ELT)) (-1661 (((-709 (-229)) (-661 (-326 (-229))) (-791)) 120 T ELT)) (-3328 (((-114) (-326 (-229))) 30 T ELT) (((-114) (-661 (-326 (-229)))) 105 T ELT)) (-1656 (((-661 (-229)) (-661 (-855 (-229))) (-229)) 15 T ELT)) (-1760 (((-391) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 126 T ELT)) (-1665 (((-1056) (-1198) (-1056)) 45 T ELT))) -(((-278) (-10 -7 (-15 -1656 ((-661 (-229)) (-661 (-855 (-229))) (-229))) (-15 -1657 ((-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229))))))) (-15 -1658 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1659 ((-326 (-229)) (-326 (-229)))) (-15 -1660 ((-114) (-661 (-326 (-229))))) (-15 -3328 ((-114) (-661 (-326 (-229))))) (-15 -3328 ((-114) (-326 (-229)))) (-15 -1661 ((-709 (-229)) (-661 (-326 (-229))) (-791))) (-15 -1662 ((-661 (-326 (-229))) (-661 (-326 (-229))))) (-15 -1663 ((-661 (-326 (-229))) (-661 (-326 (-229))))) (-15 -1664 ((-114) (-326 (-229)))) (-15 -3484 ((-661 (-1198)) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) (-15 -4364 ((-661 (-1198)) (-326 (-229)) (-791))) (-15 -1665 ((-1056) (-1198) (-1056))) (-15 -1760 ((-391) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) (-15 -1666 ((-661 (-1180)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))))))) (T -278)) -((-1666 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) (-5 *2 (-661 (-1180))) (-5 *1 (-278)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-1665 (*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1198)) (-5 *1 (-278)))) (-4364 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-791)) (-5 *2 (-661 (-1198))) (-5 *1 (-278)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) (-5 *2 (-661 (-1198))) (-5 *1 (-278)))) (-1664 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1663 (*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278)))) (-1661 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) (-5 *1 (-278)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3328 (*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1660 (*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1659 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1658 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1657 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (-5 *1 (-278)))) (-1656 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-855 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 *4)) (-5 *1 (-278))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 56 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 32 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-279) (-852)) (T -279)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 72 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 63 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 41 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 43 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-280) (-852)) (T -280)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 90 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 85 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 52 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 65 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-281) (-852)) (T -281)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 73 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 45 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-282) (-852)) (T -282)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 65 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 31 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-283) (-852)) (T -283)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 90 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 33 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-284) (-852)) (T -284)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 87 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 32 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-285) (-852)) (T -285)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1668 (((-661 (-558)) $) 28 T ELT)) (-4378 (((-791) $) 26 T ELT)) (-4376 (((-877) $) 32 T ELT) (($ (-661 (-558))) 22 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1667 (($ (-791)) 29 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 9 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 17 T ELT))) -(((-286) (-13 (-861) (-10 -8 (-15 -4376 ($ (-661 (-558)))) (-15 -4378 ((-791) $)) (-15 -1668 ((-661 (-558)) $)) (-15 -1667 ($ (-791)))))) (T -286)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-286)))) (-1668 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286)))) (-1667 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-286))))) -((-3912 ((|#2| |#2|) 77 T ELT)) (-4069 ((|#2| |#2|) 65 T ELT)) (-1697 (((-3 |#2| "failed") |#2| (-661 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 123 T ELT)) (-3910 ((|#2| |#2|) 75 T ELT)) (-4068 ((|#2| |#2|) 63 T ELT)) (-3914 ((|#2| |#2|) 79 T ELT)) (-4067 ((|#2| |#2|) 67 T ELT)) (-4057 ((|#2|) 46 T ELT)) (-4023 (((-115) (-115)) 97 T ELT)) (-4372 ((|#2| |#2|) 61 T ELT)) (-1698 (((-114) |#2|) 146 T ELT)) (-1687 ((|#2| |#2|) 193 T ELT)) (-1675 ((|#2| |#2|) 169 T ELT)) (-1670 ((|#2|) 59 T ELT)) (-1669 ((|#2|) 58 T ELT)) (-1685 ((|#2| |#2|) 189 T ELT)) (-1673 ((|#2| |#2|) 165 T ELT)) (-1689 ((|#2| |#2|) 197 T ELT)) (-1677 ((|#2| |#2|) 173 T ELT)) (-1672 ((|#2| |#2|) 161 T ELT)) (-1671 ((|#2| |#2|) 163 T ELT)) (-1690 ((|#2| |#2|) 199 T ELT)) (-1678 ((|#2| |#2|) 175 T ELT)) (-1688 ((|#2| |#2|) 195 T ELT)) (-1676 ((|#2| |#2|) 171 T ELT)) (-1686 ((|#2| |#2|) 191 T ELT)) (-1674 ((|#2| |#2|) 167 T ELT)) (-1693 ((|#2| |#2|) 205 T ELT)) (-1681 ((|#2| |#2|) 181 T ELT)) (-1691 ((|#2| |#2|) 201 T ELT)) (-1679 ((|#2| |#2|) 177 T ELT)) (-1695 ((|#2| |#2|) 209 T ELT)) (-1683 ((|#2| |#2|) 185 T ELT)) (-1696 ((|#2| |#2|) 211 T ELT)) (-1684 ((|#2| |#2|) 187 T ELT)) (-1694 ((|#2| |#2|) 207 T ELT)) (-1682 ((|#2| |#2|) 183 T ELT)) (-1692 ((|#2| |#2|) 203 T ELT)) (-1680 ((|#2| |#2|) 179 T ELT)) (-4373 ((|#2| |#2|) 62 T ELT)) (-3915 ((|#2| |#2|) 80 T ELT)) (-4066 ((|#2| |#2|) 68 T ELT)) (-3913 ((|#2| |#2|) 78 T ELT)) (-4065 ((|#2| |#2|) 66 T ELT)) (-3911 ((|#2| |#2|) 76 T ELT)) (-4064 ((|#2| |#2|) 64 T ELT)) (-2468 (((-114) (-115)) 95 T ELT)) (-3918 ((|#2| |#2|) 83 T ELT)) (-3906 ((|#2| |#2|) 71 T ELT)) (-3916 ((|#2| |#2|) 81 T ELT)) (-3904 ((|#2| |#2|) 69 T ELT)) (-3920 ((|#2| |#2|) 85 T ELT)) (-3908 ((|#2| |#2|) 73 T ELT)) (-3921 ((|#2| |#2|) 86 T ELT)) (-3909 ((|#2| |#2|) 74 T ELT)) (-3919 ((|#2| |#2|) 84 T ELT)) (-3907 ((|#2| |#2|) 72 T ELT)) (-3917 ((|#2| |#2|) 82 T ELT)) (-3905 ((|#2| |#2|) 70 T ELT))) -(((-287 |#1| |#2|) (-10 -7 (-15 -4373 (|#2| |#2|)) (-15 -4372 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4069 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -3921 (|#2| |#2|)) (-15 -4057 (|#2|)) (-15 -2468 ((-114) (-115))) (-15 -4023 ((-115) (-115))) (-15 -1669 (|#2|)) (-15 -1670 (|#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1679 (|#2| |#2|)) (-15 -1680 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1696 (|#2| |#2|)) (-15 -1697 ((-3 |#2| "failed") |#2| (-661 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1698 ((-114) |#2|))) (-569) (-13 (-433 |#1|) (-1023))) (T -287)) -((-1698 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-433 *4) (-1023))))) (-1697 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-661 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-433 *4) (-1023))) (-4 *4 (-569)) (-5 *1 (-287 *4 *2)))) (-1696 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1672 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-1670 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1023))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-1669 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1023))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-433 *3) (-1023))))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-433 *4) (-1023))))) (-4057 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1023))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) -((-1701 (((-3 |#2| "failed") (-661 (-628 |#2|)) |#2| (-1198)) 151 T ELT)) (-1703 ((|#2| (-419 (-558)) |#2|) 49 T ELT)) (-1702 ((|#2| |#2| (-628 |#2|)) 144 T ELT)) (-1699 (((-2 (|:| |func| |#2|) (|:| |kers| (-661 (-628 |#2|))) (|:| |vals| (-661 |#2|))) |#2| (-1198)) 143 T ELT)) (-1700 ((|#2| |#2| (-1198)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2832 ((|#2| |#2| (-1198)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) -(((-288 |#1| |#2|) (-10 -7 (-15 -2832 (|#2| |#2|)) (-15 -2832 (|#2| |#2| (-1198))) (-15 -1699 ((-2 (|:| |func| |#2|) (|:| |kers| (-661 (-628 |#2|))) (|:| |vals| (-661 |#2|))) |#2| (-1198))) (-15 -1700 (|#2| |#2|)) (-15 -1700 (|#2| |#2| (-1198))) (-15 -1701 ((-3 |#2| "failed") (-661 (-628 |#2|)) |#2| (-1198))) (-15 -1702 (|#2| |#2| (-628 |#2|))) (-15 -1703 (|#2| (-419 (-558)) |#2|))) (-13 (-569) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -288)) -((-1703 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) (-1702 (*1 *2 *2 *3) (-12 (-5 *3 (-628 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)))) (-1701 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-1198)) (-4 *2 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *5 *2)))) (-1700 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) (-1700 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3))))) (-1699 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-661 (-628 *3))) (|:| |vals| (-661 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-2832 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) (-2832 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3)))))) -((-3376 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3912 ((|#3| |#3|) 142 T ELT)) (-3364 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-4069 ((|#3| |#3|) 132 T ELT)) (-3374 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3910 ((|#3| |#3|) 140 T ELT)) (-3362 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-4068 ((|#3| |#3|) 130 T ELT)) (-3378 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3914 ((|#3| |#3|) 144 T ELT)) (-3366 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-4067 ((|#3| |#3|) 134 T ELT)) (-3359 (((-3 |#3| #1#) |#3| (-791)) 41 T ELT)) (-3361 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4372 ((|#3| |#3|) 129 T ELT)) (-3360 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4373 ((|#3| |#3|) 128 T ELT)) (-3379 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3915 ((|#3| |#3|) 145 T ELT)) (-3367 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-4066 ((|#3| |#3|) 135 T ELT)) (-3377 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3913 ((|#3| |#3|) 143 T ELT)) (-3365 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-4065 ((|#3| |#3|) 133 T ELT)) (-3375 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3911 ((|#3| |#3|) 141 T ELT)) (-3363 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-4064 ((|#3| |#3|) 131 T ELT)) (-3382 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3918 ((|#3| |#3|) 148 T ELT)) (-3370 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3906 ((|#3| |#3|) 152 T ELT)) (-3380 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3916 ((|#3| |#3|) 146 T ELT)) (-3368 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3904 ((|#3| |#3|) 136 T ELT)) (-3384 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3920 ((|#3| |#3|) 150 T ELT)) (-3372 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3908 ((|#3| |#3|) 138 T ELT)) (-3385 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3921 ((|#3| |#3|) 151 T ELT)) (-3373 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3909 ((|#3| |#3|) 139 T ELT)) (-3383 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3919 ((|#3| |#3|) 149 T ELT)) (-3371 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3907 ((|#3| |#3|) 153 T ELT)) (-3381 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3917 ((|#3| |#3|) 147 T ELT)) (-3369 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3905 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-419 (-558))) 47 (|has| |#1| (-376)) ELT))) -(((-289 |#1| |#2| |#3|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4373 (|#3| |#3|)) (-15 -4372 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)))) (-38 (-419 (-558))) (-1281 |#1|) (-1252 |#1| |#2|)) (T -289)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1281 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1252 *4 *5)))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1252 *3 *4))))) -((-3376 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3912 ((|#3| |#3|) 137 T ELT)) (-3364 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-4069 ((|#3| |#3|) 125 T ELT)) (-3374 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3910 ((|#3| |#3|) 135 T ELT)) (-3362 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-4068 ((|#3| |#3|) 123 T ELT)) (-3378 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3914 ((|#3| |#3|) 139 T ELT)) (-3366 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-4067 ((|#3| |#3|) 127 T ELT)) (-3359 (((-3 |#3| #1#) |#3| (-791)) 38 T ELT)) (-3361 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4372 ((|#3| |#3|) 111 T ELT)) (-3360 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4373 ((|#3| |#3|) 122 T ELT)) (-3379 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3915 ((|#3| |#3|) 140 T ELT)) (-3367 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-4066 ((|#3| |#3|) 128 T ELT)) (-3377 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3913 ((|#3| |#3|) 138 T ELT)) (-3365 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-4065 ((|#3| |#3|) 126 T ELT)) (-3375 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3911 ((|#3| |#3|) 136 T ELT)) (-3363 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-4064 ((|#3| |#3|) 124 T ELT)) (-3382 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3918 ((|#3| |#3|) 143 T ELT)) (-3370 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3906 ((|#3| |#3|) 131 T ELT)) (-3380 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3916 ((|#3| |#3|) 141 T ELT)) (-3368 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3904 ((|#3| |#3|) 129 T ELT)) (-3384 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3920 ((|#3| |#3|) 145 T ELT)) (-3372 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3908 ((|#3| |#3|) 133 T ELT)) (-3385 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3921 ((|#3| |#3|) 146 T ELT)) (-3373 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3909 ((|#3| |#3|) 134 T ELT)) (-3383 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3919 ((|#3| |#3|) 144 T ELT)) (-3371 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3907 ((|#3| |#3|) 132 T ELT)) (-3381 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3917 ((|#3| |#3|) 142 T ELT)) (-3369 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3905 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-419 (-558))) 44 (|has| |#1| (-376)) ELT))) -(((-290 |#1| |#2| |#3| |#4|) (-13 (-1004 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4373 (|#3| |#3|)) (-15 -4372 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4069 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)) (-15 -3921 (|#3| |#3|)))) (-38 (-419 (-558))) (-1250 |#1|) (-1273 |#1| |#2|) (-1004 |#2|)) (T -290)) -((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1273 *4 *5)) (-4 *6 (-1004 *5)))) (-4373 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) (-3921 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4))))) -((-1706 (((-114) $) 20 T ELT)) (-1708 (((-1203) $) 9 T ELT)) (-3997 (((-3 (-518) #1="failed") $) 15 T ELT)) (-3996 (((-3 (-661 $) #1#) $) NIL T ELT)) (-1705 (((-3 (-518) #1#) $) 21 T ELT)) (-1707 (((-3 (-1124) #1#) $) 19 T ELT)) (-4383 (((-114) $) 17 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1704 (((-114) $) 10 T ELT))) -(((-291) (-13 (-630 (-877)) (-10 -8 (-15 -1708 ((-1203) $)) (-15 -4383 ((-114) $)) (-15 -1707 ((-3 (-1124) #1="failed") $)) (-15 -1706 ((-114) $)) (-15 -1705 ((-3 (-518) #1#) $)) (-15 -1704 ((-114) $)) (-15 -3997 ((-3 (-518) #1#) $)) (-15 -3996 ((-3 (-661 $) #1#) $))))) (T -291)) -((-1708 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-291)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1707 (*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-291)))) (-1706 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1705 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-1704 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-3997 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-3996 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-291))) (-5 *1 (-291))))) -((-1710 (((-609) $) 10 T ELT)) (-1711 (((-598) $) 8 T ELT)) (-1709 (((-303) $) 12 T ELT)) (-1712 (($ (-598) (-609) (-303)) NIL T ELT)) (-4376 (((-877) $) 19 T ELT))) -(((-292) (-13 (-630 (-877)) (-10 -8 (-15 -1712 ($ (-598) (-609) (-303))) (-15 -1711 ((-598) $)) (-15 -1710 ((-609) $)) (-15 -1709 ((-303) $))))) (T -292)) -((-1712 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-609)) (-5 *4 (-303)) (-5 *1 (-292)))) (-1711 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-292)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-292)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) -((-4140 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-1467 (($ $) 38 T ELT)) (-3825 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3826 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-3257 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2517 (($ |#2| $ (-558)) 20 T ELT) (($ $ $ (-558)) 22 T ELT)) (-2518 (($ $ (-558)) 11 T ELT) (($ $ (-1255 (-558))) 14 T ELT)) (-4221 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-4232 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-661 $)) NIL T ELT))) -(((-293 |#1| |#2|) (-10 -7 (-15 -3257 (|#1| |#1| |#1|)) (-15 -3825 (|#1| |#2| |#1|)) (-15 -3257 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3825 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -2517 (|#1| |#1| |#1| (-558))) (-15 -2517 (|#1| |#2| |#1| (-558))) (-15 -2518 (|#1| |#1| (-1255 (-558)))) (-15 -2518 (|#1| |#1| (-558))) (-15 -4232 (|#1| (-661 |#1|))) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#2| |#1|)) (-15 -4232 (|#1| |#1| |#2|)) (-15 -3826 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4140 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3826 (|#1| |#2| |#1|)) (-15 -1467 (|#1| |#1|))) (-294 |#2|) (-1238)) (T -293)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) 94 T ELT)) (-4140 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2594 (($ $) 92 (|has| |#1| (-1122)) ELT)) (-1467 (($ $) 84 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ (-1 (-114) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1122)) ELT)) (-3826 (($ |#1| $) 83 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 55 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-3257 (($ (-1 (-114) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4037 (($ |#1| $ (-558)) 97 T ELT) (($ $ $ (-558)) 96 T ELT)) (-2517 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2414 (($ $ |#1|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-1714 (($ $ (-558)) 100 T ELT) (($ $ (-1255 (-558))) 99 T ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 76 T ELT)) (-4221 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-4232 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-294 |#1|) (-142) (-1238)) (T -294)) -((-4221 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)))) (-4221 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) (-1714 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-558))) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) (-4037 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-294 *2)) (-4 *2 (-1238)))) (-4037 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) (-3257 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) (-1713 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) (-3825 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)) (-4 *2 (-1122)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)) (-4 *2 (-1122)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) -(-13 (-671 |t#1|) (-10 -8 (-6 -4426) (-15 -4221 ($ $ |t#1|)) (-15 -4221 ($ $ $)) (-15 -1714 ($ $ (-558))) (-15 -1714 ($ $ (-1255 (-558)))) (-15 -3825 ($ (-1 (-114) |t#1|) $)) (-15 -4037 ($ |t#1| $ (-558))) (-15 -4037 ($ $ $ (-558))) (-15 -3257 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -1713 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3825 ($ |t#1| $)) (-15 -2594 ($ $))) |%noBranch|) (IF (|has| |t#1| (-861)) (-15 -3257 ($ $ $)) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-558)))) (-2873 (*1 *1 *1) (-4 *1 (-250)))) +(-13 (-302) (-38 (-419 (-558))) (-10 -8 (-15 ** ($ $ (-558))) (-15 -2873 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-302) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-736 (-419 (-558))) . T) ((-745) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-4226 (($ $) 63 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-1605 (($ $ $) 59 (|has| $ (-6 -4425)) ELT)) (-1604 (($ $ $) 58 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4153 (($) 7 T CONST)) (-1607 (($ $) 62 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-1606 (($ $) 61 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) 65 T ELT)) (-3595 (($ $) 64 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4220 (($ $ $) 60 (|has| $ (-6 -4425)) ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-251 |#1|) (-142) (-1237)) (T -251)) +((-4227 (*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-4226 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-1607 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-1606 (*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-4220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-1605 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-251 *2)) (-4 *2 (-1237)))) (-1604 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-251 *2)) (-4 *2 (-1237))))) +(-13 (-1030 |t#1|) (-10 -8 (-15 -4227 (|t#1| $)) (-15 -3595 ($ $)) (-15 -4226 ($ $)) (-15 -1607 ($ $)) (-15 -1606 ($ $)) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4220 ($ $ $)) (-15 -1605 ($ $ $)) (-15 -1604 ($ $ $))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1030 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) NIL T ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4226 (($ $) NIL T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) NIL (|has| |#1| (-860)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1932 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) 10 (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3861 (((-114) $ (-790)) NIL T ELT)) (-3425 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) NIL (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-4228 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2593 (($ $) NIL (|has| |#1| (-1121)) ELT)) (-1466 (($ $) 7 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) NIL (|has| |#1| (-1121)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3825 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3862 (((-114) $) NIL T ELT)) (-3838 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-4148 (((-114) $ (-790)) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3961 (($ |#1|) NIL T ELT)) (-4145 (((-114) $ (-790)) NIL T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4036 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2516 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3863 (((-114) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) ((|#1| $ (-558) |#1|) NIL T ELT) (($ $ "unique") 9 T ELT) (($ $ "sort") 12 T ELT) (((-790) $ "count") 16 T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-1713 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2517 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-1608 (($ (-660 |#1|)) 22 T ELT)) (-4062 (((-114) $) NIL T ELT)) (-4221 (($ $) NIL T ELT)) (-4219 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) NIL T ELT)) (-4223 (($ $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-4220 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4231 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-660 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4375 (($ (-660 |#1|)) 17 T ELT) (((-660 |#1|) $) 18 T ELT) (((-876) $) 21 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 14 (|has| $ (-6 -4424)) ELT))) +(((-252 |#1|) (-13 (-685 |#1|) (-502 (-660 |#1|)) (-10 -8 (-15 -1608 ($ (-660 |#1|))) (-15 -4229 ($ $ "unique")) (-15 -4229 ($ $ "sort")) (-15 -4229 ((-790) $ "count")))) (-860)) (T -252)) +((-1608 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-252 *3)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-860)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-860)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 "count") (-5 *2 (-790)) (-5 *1 (-252 *4)) (-4 *4 (-860))))) +((-1609 (((-3 (-790) "failed") |#1| |#1| (-790)) 40 T ELT))) +(((-253 |#1|) (-10 -7 (-15 -1609 ((-3 (-790) "failed") |#1| |#1| (-790)))) (-13 (-745) (-381) (-10 -7 (-15 ** (|#1| |#1| (-558)))))) (T -253)) +((-1609 (*1 *2 *3 *3 *2) (|partial| -12 (-5 *2 (-790)) (-4 *3 (-13 (-745) (-381) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-253 *3))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $) 59 (|has| |#1| (-239)) ELT) (($ $ (-790)) 57 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 55 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 53 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 52 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 51 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1 |#1| |#1|) (-790)) 45 T ELT) (($ $ (-1 |#1| |#1|)) 44 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3069 (($ $) 58 (|has| |#1| (-239)) ELT) (($ $ (-790)) 56 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 54 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 50 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 49 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 48 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1 |#1| |#1|) (-790)) 47 T ELT) (($ $ (-1 |#1| |#1|)) 46 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-254 |#1|) (-142) (-1069)) (T -254)) +NIL +(-13 (-111 |t#1| |t#1|) (-274 |t#1|) (-10 -7 (IF (|has| |t#1| (-239)) (-6 (-237 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-918 (-1197))) (-6 (-915 |t#1| (-1197))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-236 $) |has| |#1| (-239)) ((-237 |#1|) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-274 |#1|) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) -3956 (-12 (|has| |#1| (-175)) (|has| |#1| (-918 (-1197)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-736 |#1|) -3956 (-12 (|has| |#1| (-175)) (|has| |#1| (-918 (-1197)))) (-12 (|has| |#1| (-175)) (|has| |#1| (-239)))) ((-910 $ (-1197)) |has| |#1| (-918 (-1197))) ((-915 |#1| (-1197)) |has| |#1| (-918 (-1197))) ((-918 (-1197)) |has| |#1| (-918 (-1197))) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-877 |#1|)) $) NIL T ELT)) (-3485 (((-1191 $) $ (-877 |#1|)) NIL T ELT) (((-1191 |#2|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-877 |#1|))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-877 |#1|) $) NIL T ELT)) (-4185 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2147 (($ $ (-660 (-558))) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#2| (-928)) ELT)) (-1803 (($ $ |#2| (-246 (-4386 |#1|) (-790)) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#2|) (-877 |#1|)) NIL T ELT) (($ (-1191 $) (-877 |#1|)) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-246 (-4386 |#1|) (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-877 |#1|)) NIL T ELT)) (-3220 (((-246 (-4386 |#1|) (-790)) $) NIL T ELT) (((-790) $ (-877 |#1|)) NIL T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) NIL T ELT)) (-1804 (($ (-1 (-246 (-4386 |#1|) (-790)) (-246 (-4386 |#1|) (-790))) $) NIL T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3484 (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#2| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#2| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-877 |#1|) |#2|) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 |#2|)) NIL T ELT) (($ $ (-877 |#1|) $) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 $)) NIL T ELT)) (-4186 (($ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4187 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-4377 (((-246 (-4386 |#1|) (-790)) $) NIL T ELT) (((-790) $ (-877 |#1|)) NIL T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-877 |#1|) (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT)) (-3217 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-877 |#1|)) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-246 (-4386 |#1|) (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#2| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#2| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-255 |#1| |#2|) (-13 (-968 |#2| (-246 (-4386 |#1|) (-790)) (-877 |#1|)) (-10 -8 (-15 -2147 ($ $ (-660 (-558)))))) (-660 (-1197)) (-1069)) (T -255)) +((-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-255 *3 *4)) (-14 *3 (-660 (-1197))) (-4 *4 (-1069))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1610 (((-1293) $) 17 T ELT)) (-1612 (((-187 (-257)) $) 11 T ELT)) (-1611 (($ (-187 (-257))) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1613 (((-257) $) 7 T ELT)) (-4375 (((-876) $) 9 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 15 T ELT))) +(((-256) (-13 (-1121) (-10 -8 (-15 -1613 ((-257) $)) (-15 -1612 ((-187 (-257)) $)) (-15 -1611 ($ (-187 (-257)))) (-15 -1610 ((-1293) $))))) (T -256)) +((-1613 (*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256)))) (-1612 (*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1611 (*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256)))) (-1610 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-256))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1537 (((-660 (-878)) $) NIL T ELT)) (-3969 (((-518) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1539 (((-190) $) NIL T ELT)) (-3031 (((-114) $ (-518)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1614 (((-345) $) 7 T ELT)) (-1538 (((-660 (-114)) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (((-186) $) 8 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2916 (((-55) $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-257) (-13 (-189) (-629 (-186)) (-10 -8 (-15 -1614 ((-345) $))))) (T -257)) +((-1614 (*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 (((-1202) $ (-790)) 13 T ELT)) (-4375 (((-876) $) 20 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 16 T ELT)) (-4386 (((-790) $) 9 T ELT))) +(((-258) (-13 (-1121) (-298 (-790) (-1202)) (-10 -8 (-15 -4386 ((-790) $))))) (T -258)) +((-4386 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-258))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4136 (($ (-937)) NIL (|has| |#4| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) NIL (|has| |#4| (-814)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#4| (-381)) ELT)) (-4217 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#4| #1#) $) NIL (|has| |#4| (-1121)) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#4| (-1058 (-558))) (|has| |#4| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#4| (-1058 (-419 (-558)))) (|has| |#4| (-1121))) ELT)) (-3573 ((|#4| $) NIL (|has| |#4| (-1121)) ELT) (((-558) $) NIL (-12 (|has| |#4| (-1058 (-558))) (|has| |#4| (-1121))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#4| (-1058 (-419 (-558)))) (|has| |#4| (-1121))) ELT)) (-2492 (((-2 (|:| -1782 (-708 |#4|)) (|:| |vec| (-1287 |#4|))) (-708 $) (-1287 $)) NIL (|has| |#4| (-1069)) ELT) (((-708 |#4|) (-708 $)) NIL (|has| |#4| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#4| (-657 (-558))) (|has| |#4| (-1069))) ELT) (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#4| (-657 (-558))) (|has| |#4| (-1069))) ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| |#4| (-1069)) ELT)) (-3394 (($) NIL (|has| |#4| (-381)) ELT)) (-1718 ((|#4| $ (-558) |#4|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#4| $ (-558)) NIL T ELT)) (-3603 (((-114) $) NIL (|has| |#4| (-814)) ELT)) (-3289 (((-660 |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL (|has| |#4| (-1069)) ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#4| (-860)) ELT)) (-3006 (((-660 |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#4| (-860)) ELT)) (-2159 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#4| (-381)) ELT)) (-2493 (((-2 (|:| -1782 (-708 |#4|)) (|:| |vec| (-1287 |#4|))) (-1287 $) $) NIL (|has| |#4| (-1069)) ELT) (((-708 |#4|) (-1287 $)) NIL (|has| |#4| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#4| (-657 (-558))) (|has| |#4| (-1069))) ELT) (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#4| (-657 (-558))) (|has| |#4| (-1069))) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-2630 (($ (-937)) NIL (|has| |#4| (-381)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 ((|#4| $) NIL (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#4|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-2419 (((-660 |#4|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#4| $ (-558) |#4|) NIL T ELT) ((|#4| $ (-558)) 12 T ELT)) (-4265 ((|#4| $ $) NIL (|has| |#4| (-1069)) ELT)) (-1599 (($ (-1287 |#4|)) NIL T ELT)) (-4340 (((-136)) NIL (|has| |#4| (-376)) ELT)) (-4187 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1069)) ELT) (($ $ (-1 |#4| |#4|) (-790)) NIL (|has| |#4| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1069)))) ELT) (($ $) NIL (-3956 (-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1069)))) ELT)) (-2156 (((-790) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1287 |#4|) $) NIL T ELT) (($ |#4|) NIL (|has| |#4| (-1121)) ELT) (((-876) $) NIL T ELT) (($ (-558)) NIL (-3956 (-12 (|has| |#4| (-1058 (-558))) (|has| |#4| (-1121))) (|has| |#4| (-1069))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#4| (-1058 (-419 (-558)))) (|has| |#4| (-1121))) ELT)) (-3527 (((-790)) NIL (|has| |#4| (-1069)) CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL (|has| |#4| (-1069)) CONST)) (-3069 (($ $ (-1 |#4| |#4|)) NIL (|has| |#4| (-1069)) ELT) (($ $ (-1 |#4| |#4|) (-790)) NIL (|has| |#4| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#4| (-916 (-1197))) (|has| |#4| (-1069))) (-12 (|has| |#4| (-918 (-1197))) (|has| |#4| (-1069)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1069)))) ELT) (($ $) NIL (-3956 (-12 (|has| |#4| (-240)) (|has| |#4| (-1069))) (-12 (|has| |#4| (-239)) (|has| |#4| (-1069)))) ELT)) (-2964 (((-114) $ $) NIL (|has| |#4| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#4| (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#4| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#4| (-860)) ELT)) (-4378 (($ $ |#4|) NIL (|has| |#4| (-376)) ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL (|has| |#4| (-1069)) ELT) (($ $ (-937)) NIL (|has| |#4| (-1069)) ELT)) (* (($ |#2| $) 14 T ELT) (($ (-558) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-937) $) NIL T ELT) (($ |#3| $) 18 T ELT) (($ $ |#4|) NIL (|has| |#4| (-745)) ELT) (($ |#4| $) NIL (|has| |#4| (-745)) ELT) (($ $ $) NIL (|has| |#4| (-1069)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-259 |#1| |#2| |#3| |#4|) (-13 (-245 |#1| |#4|) (-667 |#2|) (-667 |#3|)) (-937) (-1069) (-1143 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-667 |#2|)) (T -259)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4136 (($ (-937)) NIL (|has| |#3| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) NIL (|has| |#3| (-814)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#3| (-381)) ELT)) (-4217 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#3| #1#) $) NIL (|has| |#3| (-1121)) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121))) ELT)) (-3573 ((|#3| $) NIL (|has| |#3| (-1121)) ELT) (((-558) $) NIL (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121))) ELT)) (-2492 (((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-708 $) (-1287 $)) NIL (|has| |#3| (-1069)) ELT) (((-708 |#3|) (-708 $)) NIL (|has| |#3| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT) (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| |#3| (-1069)) ELT)) (-3394 (($) NIL (|has| |#3| (-381)) ELT)) (-1718 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#3| $ (-558)) NIL T ELT)) (-3603 (((-114) $) NIL (|has| |#3| (-814)) ELT)) (-3289 (((-660 |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL (|has| |#3| (-1069)) ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#3| (-860)) ELT)) (-3006 (((-660 |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#3| (-860)) ELT)) (-2159 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#3| (-381)) ELT)) (-2493 (((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL (|has| |#3| (-1069)) ELT) (((-708 |#3|) (-1287 $)) NIL (|has| |#3| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT) (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-2630 (($ (-937)) NIL (|has| |#3| (-381)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 ((|#3| $) NIL (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#3|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-2419 (((-660 |#3|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#3| $ (-558) |#3|) NIL T ELT) ((|#3| $ (-558)) 11 T ELT)) (-4265 ((|#3| $ $) NIL (|has| |#3| (-1069)) ELT)) (-1599 (($ (-1287 |#3|)) NIL T ELT)) (-4340 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4187 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-1 |#3| |#3|) (-790)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069)))) ELT) (($ $) NIL (-3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069)))) ELT)) (-2156 (((-790) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1287 |#3|) $) NIL T ELT) (($ |#3|) NIL (|has| |#3| (-1121)) ELT) (((-876) $) NIL T ELT) (($ (-558)) NIL (-3956 (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) (|has| |#3| (-1069))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121))) ELT)) (-3527 (((-790)) NIL (|has| |#3| (-1069)) CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL (|has| |#3| (-1069)) CONST)) (-3069 (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-1 |#3| |#3|) (-790)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#3| (-916 (-1197))) (|has| |#3| (-1069))) (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069)))) ELT) (($ $) NIL (-3956 (-12 (|has| |#3| (-240)) (|has| |#3| (-1069))) (-12 (|has| |#3| (-239)) (|has| |#3| (-1069)))) ELT)) (-2964 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-4378 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-937)) NIL (|has| |#3| (-1069)) ELT)) (* (($ |#2| $) 13 T ELT) (($ (-558) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-937) $) NIL T ELT) (($ $ |#3|) NIL (|has| |#3| (-745)) ELT) (($ |#3| $) NIL (|has| |#3| (-745)) ELT) (($ $ $) NIL (|has| |#3| (-1069)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-260 |#1| |#2| |#3|) (-13 (-245 |#1| |#3|) (-667 |#2|)) (-790) (-1069) (-667 |#2|)) (T -260)) +NIL +((-1619 (((-660 (-790)) $) 56 T ELT) (((-660 (-790)) $ |#3|) 59 T ELT)) (-1653 (((-790) $) 58 T ELT) (((-790) $ |#3|) 61 T ELT)) (-1615 (($ $) 76 T ELT)) (-3574 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 83 T ELT)) (-4201 (((-790) $ |#3|) 43 T ELT) (((-790) $) 38 T ELT)) (-1654 (((-1 $ (-790)) |#3|) 15 T ELT) (((-1 $ (-790)) $) 88 T ELT)) (-1617 ((|#4| $) 69 T ELT)) (-1618 (((-114) $) 67 T ELT)) (-1616 (($ $) 75 T ELT)) (-4197 (($ $ (-660 (-305 $))) 111 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-660 |#4|) (-660 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-660 |#4|) (-660 $)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-660 |#3|) (-660 $)) 103 T ELT) (($ $ |#3| |#2|) NIL T ELT) (($ $ (-660 |#3|) (-660 |#2|)) 97 T ELT)) (-4187 (($ $ (-660 |#4|) (-660 (-790))) NIL T ELT) (($ $ |#4| (-790)) NIL T ELT) (($ $ (-660 |#4|)) NIL T ELT) (($ $ |#4|) NIL T ELT) (($ $ (-1 |#2| |#2|)) 32 T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-1620 (((-660 |#3|) $) 86 T ELT)) (-4377 ((|#5| $) NIL T ELT) (((-790) $ |#4|) NIL T ELT) (((-660 (-790)) $ (-660 |#4|)) NIL T ELT) (((-790) $ |#3|) 49 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (($ |#3|) 78 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT))) +(((-261 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4375 (|#1| |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4197 (|#1| |#1| (-660 |#3|) (-660 |#2|))) (-15 -4197 (|#1| |#1| |#3| |#2|)) (-15 -4197 (|#1| |#1| (-660 |#3|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#3| |#1|)) (-15 -1654 ((-1 |#1| (-790)) |#1|)) (-15 -1615 (|#1| |#1|)) (-15 -1616 (|#1| |#1|)) (-15 -1617 (|#4| |#1|)) (-15 -1618 ((-114) |#1|)) (-15 -1653 ((-790) |#1| |#3|)) (-15 -1619 ((-660 (-790)) |#1| |#3|)) (-15 -1653 ((-790) |#1|)) (-15 -1619 ((-660 (-790)) |#1|)) (-15 -4377 ((-790) |#1| |#3|)) (-15 -4201 ((-790) |#1|)) (-15 -4201 ((-790) |#1| |#3|)) (-15 -1620 ((-660 |#3|) |#1|)) (-15 -1654 ((-1 |#1| (-790)) |#3|)) (-15 -4375 (|#1| |#3|)) (-15 -3574 ((-3 |#3| #1="failed") |#1|)) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4377 ((-660 (-790)) |#1| (-660 |#4|))) (-15 -4377 ((-790) |#1| |#4|)) (-15 -4375 (|#1| |#4|)) (-15 -3574 ((-3 |#4| #1#) |#1|)) (-15 -4197 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#4| |#1|)) (-15 -4197 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -4197 (|#1| |#1| |#4| |#2|)) (-15 -4197 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| (-305 |#1|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4377 (|#5| |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -4187 (|#1| |#1| |#4|)) (-15 -4187 (|#1| |#1| (-660 |#4|))) (-15 -4187 (|#1| |#1| |#4| (-790))) (-15 -4187 (|#1| |#1| (-660 |#4|) (-660 (-790)))) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-262 |#2| |#3| |#4| |#5|) (-1069) (-860) (-277 |#3|) (-814)) (T -261)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1619 (((-660 (-790)) $) 248 T ELT) (((-660 (-790)) $ |#2|) 246 T ELT)) (-1653 (((-790) $) 247 T ELT) (((-790) $ |#2|) 245 T ELT)) (-3483 (((-660 |#3|) $) 120 T ELT)) (-3485 (((-1191 $) $ |#3|) 135 T ELT) (((-1191 |#1|) $) 134 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) 122 T ELT) (((-790) $ (-660 |#3|)) 121 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 110 (|has| |#1| (-928)) ELT)) (-4204 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 113 (|has| |#1| (-928)) ELT)) (-1615 (($ $) 241 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1058 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 |#2| #2#) $) 255 T ELT)) (-3573 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1058 (-558))) ELT) ((|#3| $) 151 T ELT) ((|#2| $) 256 T ELT)) (-4185 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4388 (($ $) 168 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 146 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 145 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 144 T ELT) (((-708 |#1|) (-708 $)) 143 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3922 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) 119 T ELT)) (-4152 (((-114) $) 106 (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| |#4| $) 186 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 94 (-12 (|has| |#3| (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 93 (-12 (|has| |#3| (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-4201 (((-790) $ |#2|) 251 T ELT) (((-790) $) 250 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2648 (((-790) $) 183 T ELT)) (-3486 (($ (-1191 |#1|) |#3|) 127 T ELT) (($ (-1191 $) |#3|) 126 T ELT)) (-3221 (((-660 $) $) 136 T ELT)) (-4366 (((-114) $) 166 T ELT)) (-3293 (($ |#1| |#4|) 167 T ELT) (($ $ |#3| (-790)) 129 T ELT) (($ $ (-660 |#3|) (-660 (-790))) 128 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#3|) 130 T ELT)) (-3220 ((|#4| $) 184 T ELT) (((-790) $ |#3|) 132 T ELT) (((-660 (-790)) $ (-660 |#3|)) 131 T ELT)) (-1804 (($ (-1 |#4| |#4|) $) 185 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-1654 (((-1 $ (-790)) |#2|) 253 T ELT) (((-1 $ (-790)) $) 240 (|has| |#1| (-240)) ELT)) (-3484 (((-3 |#3| #3="failed") $) 133 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 148 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 147 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 142 T ELT) (((-708 |#1|) (-1287 $)) 141 T ELT)) (-3294 (($ $) 163 T ELT)) (-3591 ((|#1| $) 162 T ELT)) (-1617 ((|#3| $) 243 T ELT)) (-2101 (($ (-660 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1618 (((-114) $) 244 T ELT)) (-3223 (((-3 (-660 $) #3#) $) 124 T ELT)) (-3222 (((-3 (-660 $) #3#) $) 125 T ELT)) (-3224 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-790))) #3#) $) 123 T ELT)) (-1616 (($ $) 242 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2004 (((-114) $) 180 T ELT)) (-2003 ((|#1| $) 181 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 105 (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 112 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 111 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) 109 (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-660 $) (-660 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-660 |#3|) (-660 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-660 |#3|) (-660 $)) 152 T ELT) (($ $ |#2| $) 239 (|has| |#1| (-240)) ELT) (($ $ (-660 |#2|) (-660 $)) 238 (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) 237 (|has| |#1| (-240)) ELT) (($ $ (-660 |#2|) (-660 |#1|)) 236 (|has| |#1| (-240)) ELT)) (-4186 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 |#3|) (-660 (-790))) 49 T ELT) (($ $ |#3| (-790)) 48 T ELT) (($ $ (-660 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT) (($ $ (-1 |#1| |#1|)) 260 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 259 T ELT) (($ $) 235 (|has| |#1| (-239)) ELT) (($ $ (-790)) 233 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 231 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 229 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 228 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 227 (|has| |#1| (-918 (-1197))) ELT)) (-1620 (((-660 |#2|) $) 252 T ELT)) (-4377 ((|#4| $) 164 T ELT) (((-790) $ |#3|) 140 T ELT) (((-660 (-790)) $ (-660 |#3|)) 139 T ELT) (((-790) $ |#2|) 249 T ELT)) (-4401 (((-904 (-391)) $) 92 (-12 (|has| |#3| (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) 91 (-12 (|has| |#3| (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 114 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ |#2|) 254 T ELT) (($ (-419 (-558))) 88 (-3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) 182 T ELT)) (-4106 ((|#1| $ |#4|) 169 T ELT) (($ $ |#3| (-790)) 138 T ELT) (($ $ (-660 |#3|) (-660 (-790))) 137 T ELT)) (-3102 (((-710 $) $) 89 (-3956 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 37 T CONST)) (-1802 (($ $ $ (-790)) 187 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-660 |#3|) (-660 (-790))) 52 T ELT) (($ $ |#3| (-790)) 51 T ELT) (($ $ (-660 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT) (($ $ (-1 |#1| |#1|)) 258 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 257 T ELT) (($ $) 234 (|has| |#1| (-239)) ELT) (($ $ (-790)) 232 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 230 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 226 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 225 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 224 (|has| |#1| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-262 |#1| |#2| |#3| |#4|) (-142) (-1069) (-860) (-277 |t#2|) (-814)) (T -262)) +((-1654 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *3 (-860)) (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-1 *1 (-790))) (-4 *1 (-262 *4 *3 *5 *6)))) (-1620 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-660 *4)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-790)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-790)))) (-4377 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-790)))) (-1619 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-660 (-790))))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-790)))) (-1619 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-660 (-790))))) (-1653 (*1 *2 *1 *3) (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-790)))) (-1618 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-114)))) (-1617 (*1 *2 *1) (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-814)) (-4 *2 (-277 *4)))) (-1616 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-860)) (-4 *4 (-277 *3)) (-4 *5 (-814)))) (-1615 (*1 *1 *1) (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-860)) (-4 *4 (-277 *3)) (-4 *5 (-814)))) (-1654 (*1 *2 *1) (-12 (-4 *3 (-240)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-1 *1 (-790))) (-4 *1 (-262 *3 *4 *5 *6))))) +(-13 (-968 |t#1| |t#4| |t#3|) (-234 |t#1|) (-1058 |t#2|) (-10 -8 (-15 -1654 ((-1 $ (-790)) |t#2|)) (-15 -1620 ((-660 |t#2|) $)) (-15 -4201 ((-790) $ |t#2|)) (-15 -4201 ((-790) $)) (-15 -4377 ((-790) $ |t#2|)) (-15 -1619 ((-660 (-790)) $)) (-15 -1653 ((-790) $)) (-15 -1619 ((-660 (-790)) $ |t#2|)) (-15 -1653 ((-790) $ |t#2|)) (-15 -1618 ((-114) $)) (-15 -1617 (|t#3| $)) (-15 -1616 ($ $)) (-15 -1615 ($ $)) (IF (|has| |t#1| (-240)) (PROGN (-6 (-526 |t#2| |t#1|)) (-6 (-526 |t#2| $)) (-6 (-321 $)) (-15 -1654 ((-1 $ (-790)) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#4|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 |#2|) . T) ((-632 |#3|) . T) ((-632 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-630 (-547)) -12 (|has| |#1| (-630 (-547))) (|has| |#3| (-630 (-547)))) ((-630 (-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#3| (-630 (-904 (-391))))) ((-630 (-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#3| (-630 (-904 (-558))))) ((-236 $) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-302) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#4|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3956 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#2| |#1|) |has| |#1| (-240)) ((-526 |#2| $) |has| |#1| (-240)) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-745) . T) ((-910 $ (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-910 $ |#3|) . T) ((-916 (-1197)) |has| |#1| (-916 (-1197))) ((-916 |#3|) . T) ((-918 (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-918 |#3|) . T) ((-900 (-391)) -12 (|has| |#1| (-900 (-391))) (|has| |#3| (-900 (-391)))) ((-900 (-558)) -12 (|has| |#1| (-900 (-558))) (|has| |#3| (-900 (-558)))) ((-968 |#1| |#4| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1058 |#2|) . T) ((-1058 |#3|) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) |has| |#1| (-928))) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1626 ((|#1| $) 58 T ELT)) (-3743 ((|#1| $) 48 T ELT)) (-4153 (($) 7 T CONST)) (-3402 (($ $) 64 T ELT)) (-2509 (($ $) 52 T ELT)) (-3745 ((|#1| |#1| $) 50 T ELT)) (-3744 ((|#1| $) 49 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4262 (((-790) $) 65 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-1624 ((|#1| |#1| $) 56 T ELT)) (-1623 ((|#1| |#1| $) 55 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3001 (((-790) $) 59 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-3401 ((|#1| $) 66 T ELT)) (-1622 ((|#1| $) 54 T ELT)) (-1621 ((|#1| $) 53 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3404 ((|#1| |#1| $) 62 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-3403 ((|#1| $) 63 T ELT)) (-1627 (($) 61 T ELT) (($ (-660 |#1|)) 60 T ELT)) (-3742 (((-790) $) 47 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1625 ((|#1| $) 57 T ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-3400 ((|#1| $) 67 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-263 |#1|) (-142) (-1237)) (T -263)) +((-1627 (*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-1627 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-4 *1 (-263 *3)))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1237)) (-5 *2 (-790)))) (-1626 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-1625 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-1624 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-1623 (*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-1622 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-1621 (*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) (-2509 (*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(-13 (-1141 |t#1|) (-1015 |t#1|) (-10 -8 (-15 -1627 ($)) (-15 -1627 ($ (-660 |t#1|))) (-15 -3001 ((-790) $)) (-15 -1626 (|t#1| $)) (-15 -1625 (|t#1| $)) (-15 -1624 (|t#1| |t#1| $)) (-15 -1623 (|t#1| |t#1| $)) (-15 -1622 (|t#1| $)) (-15 -1621 (|t#1| $)) (-15 -2509 ($ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1015 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1141 |#1|) . T) ((-1237) . T)) +((-1628 (((-1153 (-229)) (-896 |#1|) (-1112 (-391)) (-1112 (-391))) 75 T ELT) (((-1153 (-229)) (-896 |#1|) (-1112 (-391)) (-1112 (-391)) (-660 (-270))) 74 T ELT) (((-1153 (-229)) |#1| (-1112 (-391)) (-1112 (-391))) 65 T ELT) (((-1153 (-229)) |#1| (-1112 (-391)) (-1112 (-391)) (-660 (-270))) 64 T ELT) (((-1153 (-229)) (-893 |#1|) (-1112 (-391))) 56 T ELT) (((-1153 (-229)) (-893 |#1|) (-1112 (-391)) (-660 (-270))) 55 T ELT)) (-1635 (((-1291) (-896 |#1|) (-1112 (-391)) (-1112 (-391))) 78 T ELT) (((-1291) (-896 |#1|) (-1112 (-391)) (-1112 (-391)) (-660 (-270))) 77 T ELT) (((-1291) |#1| (-1112 (-391)) (-1112 (-391))) 68 T ELT) (((-1291) |#1| (-1112 (-391)) (-1112 (-391)) (-660 (-270))) 67 T ELT) (((-1291) (-893 |#1|) (-1112 (-391))) 60 T ELT) (((-1291) (-893 |#1|) (-1112 (-391)) (-660 (-270))) 59 T ELT) (((-1290) (-891 |#1|) (-1112 (-391))) 47 T ELT) (((-1290) (-891 |#1|) (-1112 (-391)) (-660 (-270))) 46 T ELT) (((-1290) |#1| (-1112 (-391))) 38 T ELT) (((-1290) |#1| (-1112 (-391)) (-660 (-270))) 36 T ELT))) +(((-264 |#1|) (-10 -7 (-15 -1635 ((-1290) |#1| (-1112 (-391)) (-660 (-270)))) (-15 -1635 ((-1290) |#1| (-1112 (-391)))) (-15 -1635 ((-1290) (-891 |#1|) (-1112 (-391)) (-660 (-270)))) (-15 -1635 ((-1290) (-891 |#1|) (-1112 (-391)))) (-15 -1635 ((-1291) (-893 |#1|) (-1112 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-893 |#1|) (-1112 (-391)))) (-15 -1628 ((-1153 (-229)) (-893 |#1|) (-1112 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-893 |#1|) (-1112 (-391)))) (-15 -1635 ((-1291) |#1| (-1112 (-391)) (-1112 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) |#1| (-1112 (-391)) (-1112 (-391)))) (-15 -1628 ((-1153 (-229)) |#1| (-1112 (-391)) (-1112 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) |#1| (-1112 (-391)) (-1112 (-391)))) (-15 -1635 ((-1291) (-896 |#1|) (-1112 (-391)) (-1112 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-896 |#1|) (-1112 (-391)) (-1112 (-391)))) (-15 -1628 ((-1153 (-229)) (-896 |#1|) (-1112 (-391)) (-1112 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-896 |#1|) (-1112 (-391)) (-1112 (-391))))) (-13 (-630 (-547)) (-1121))) (T -264)) +((-1628 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-391))) (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *5)))) (-1628 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *6)))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-391))) (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *5)))) (-1635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *6)))) (-1628 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1112 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) (-1628 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1112 (-391))) (-5 *2 (-1291)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) (-1635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) (-1628 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-391))) (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *5)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *6)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-391))) (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *5)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *6)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-891 *5)) (-5 *4 (-1112 (-391))) (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-264 *5)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-264 *6)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-391))) (-5 *2 (-1290)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121)))))) +((-1629 (((-1 (-961 (-229)) (-229) (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 158 T ELT)) (-1628 (((-1153 (-229)) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391))) 178 T ELT) (((-1153 (-229)) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391)) (-660 (-270))) 176 T ELT) (((-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391))) 181 T ELT) (((-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270))) 177 T ELT) (((-1153 (-229)) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391))) 169 T ELT) (((-1153 (-229)) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270))) 168 T ELT) (((-1153 (-229)) (-1 (-961 (-229)) (-229)) (-1109 (-391))) 150 T ELT) (((-1153 (-229)) (-1 (-961 (-229)) (-229)) (-1109 (-391)) (-660 (-270))) 148 T ELT) (((-1153 (-229)) (-893 (-1 (-229) (-229))) (-1109 (-391))) 149 T ELT) (((-1153 (-229)) (-893 (-1 (-229) (-229))) (-1109 (-391)) (-660 (-270))) 146 T ELT)) (-1635 (((-1291) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391))) 180 T ELT) (((-1291) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391)) (-660 (-270))) 179 T ELT) (((-1291) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391))) 183 T ELT) (((-1291) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270))) 182 T ELT) (((-1291) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391))) 171 T ELT) (((-1291) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270))) 170 T ELT) (((-1291) (-1 (-961 (-229)) (-229)) (-1109 (-391))) 156 T ELT) (((-1291) (-1 (-961 (-229)) (-229)) (-1109 (-391)) (-660 (-270))) 155 T ELT) (((-1291) (-893 (-1 (-229) (-229))) (-1109 (-391))) 154 T ELT) (((-1291) (-893 (-1 (-229) (-229))) (-1109 (-391)) (-660 (-270))) 153 T ELT) (((-1290) (-891 (-1 (-229) (-229))) (-1109 (-391))) 118 T ELT) (((-1290) (-891 (-1 (-229) (-229))) (-1109 (-391)) (-660 (-270))) 117 T ELT) (((-1290) (-1 (-229) (-229)) (-1109 (-391))) 112 T ELT) (((-1290) (-1 (-229) (-229)) (-1109 (-391)) (-660 (-270))) 110 T ELT))) +(((-265) (-10 -7 (-15 -1635 ((-1290) (-1 (-229) (-229)) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1290) (-1 (-229) (-229)) (-1109 (-391)))) (-15 -1635 ((-1290) (-891 (-1 (-229) (-229))) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1290) (-891 (-1 (-229) (-229))) (-1109 (-391)))) (-15 -1635 ((-1291) (-893 (-1 (-229) (-229))) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-893 (-1 (-229) (-229))) (-1109 (-391)))) (-15 -1635 ((-1291) (-1 (-961 (-229)) (-229)) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-1 (-961 (-229)) (-229)) (-1109 (-391)))) (-15 -1628 ((-1153 (-229)) (-893 (-1 (-229) (-229))) (-1109 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-893 (-1 (-229) (-229))) (-1109 (-391)))) (-15 -1628 ((-1153 (-229)) (-1 (-961 (-229)) (-229)) (-1109 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-1 (-961 (-229)) (-229)) (-1109 (-391)))) (-15 -1635 ((-1291) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391)))) (-15 -1628 ((-1153 (-229)) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-1 (-229) (-229) (-229)) (-1109 (-391)) (-1109 (-391)))) (-15 -1635 ((-1291) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391)))) (-15 -1628 ((-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-391)) (-1109 (-391)))) (-15 -1635 ((-1291) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391)) (-660 (-270)))) (-15 -1635 ((-1291) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391)))) (-15 -1628 ((-1153 (-229)) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391)) (-660 (-270)))) (-15 -1628 ((-1153 (-229)) (-896 (-1 (-229) (-229) (-229))) (-1109 (-391)) (-1109 (-391)))) (-15 -1629 ((-1 (-961 (-229)) (-229) (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -265)) +((-1629 (*1 *2 *2 *3) (-12 (-5 *2 (-1 (-961 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1628 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-891 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-891 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) (-1635 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-265))))) +((-1635 (((-1290) (-305 |#2|) (-1197) (-1197) (-660 (-270))) 102 T ELT))) +(((-266 |#1| |#2|) (-10 -7 (-15 -1635 ((-1290) (-305 |#2|) (-1197) (-1197) (-660 (-270))))) (-13 (-569) (-860) (-1058 (-558))) (-433 |#1|)) (T -266)) +((-1635 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-1197)) (-5 *5 (-660 (-270))) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-860) (-1058 (-558)))) (-5 *2 (-1290)) (-5 *1 (-266 *6 *7))))) +((-1632 (((-558) (-558)) 71 T ELT)) (-1633 (((-558) (-558)) 72 T ELT)) (-1634 (((-229) (-229)) 73 T ELT)) (-1631 (((-1291) (-1 (-171 (-229)) (-171 (-229))) (-1109 (-229)) (-1109 (-229))) 70 T ELT)) (-1630 (((-1291) (-1 (-171 (-229)) (-171 (-229))) (-1109 (-229)) (-1109 (-229)) (-114)) 68 T ELT))) +(((-267) (-10 -7 (-15 -1630 ((-1291) (-1 (-171 (-229)) (-171 (-229))) (-1109 (-229)) (-1109 (-229)) (-114))) (-15 -1631 ((-1291) (-1 (-171 (-229)) (-171 (-229))) (-1109 (-229)) (-1109 (-229)))) (-15 -1632 ((-558) (-558))) (-15 -1633 ((-558) (-558))) (-15 -1634 ((-229) (-229))))) (T -267)) +((-1634 (*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267)))) (-1633 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267)))) (-1632 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267)))) (-1631 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1109 (-229))) (-5 *2 (-1291)) (-5 *1 (-267)))) (-1630 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1109 (-229))) (-5 *5 (-114)) (-5 *2 (-1291)) (-5 *1 (-267))))) +((-4375 (((-1112 (-391)) (-1112 (-326 |#1|))) 16 T ELT))) +(((-268 |#1|) (-10 -7 (-15 -4375 ((-1112 (-391)) (-1112 (-326 |#1|))))) (-13 (-860) (-569) (-630 (-391)))) (T -268)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-1112 (-326 *4))) (-4 *4 (-13 (-860) (-569) (-630 (-391)))) (-5 *2 (-1112 (-391))) (-5 *1 (-268 *4))))) +((-1635 (((-1291) (-660 (-229)) (-660 (-229)) (-660 (-229)) (-660 (-270))) 23 T ELT) (((-1291) (-660 (-229)) (-660 (-229)) (-660 (-229))) 24 T ELT) (((-1290) (-660 (-961 (-229))) (-660 (-270))) 16 T ELT) (((-1290) (-660 (-961 (-229)))) 17 T ELT) (((-1290) (-660 (-229)) (-660 (-229)) (-660 (-270))) 20 T ELT) (((-1290) (-660 (-229)) (-660 (-229))) 21 T ELT))) +(((-269) (-10 -7 (-15 -1635 ((-1290) (-660 (-229)) (-660 (-229)))) (-15 -1635 ((-1290) (-660 (-229)) (-660 (-229)) (-660 (-270)))) (-15 -1635 ((-1290) (-660 (-961 (-229))))) (-15 -1635 ((-1290) (-660 (-961 (-229))) (-660 (-270)))) (-15 -1635 ((-1291) (-660 (-229)) (-660 (-229)) (-660 (-229)))) (-15 -1635 ((-1291) (-660 (-229)) (-660 (-229)) (-660 (-229)) (-660 (-270)))))) (T -269)) +((-1635 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-660 (-229))) (-5 *4 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-269)))) (-1635 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-1291)) (-5 *1 (-269)))) (-1635 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-961 (-229)))) (-5 *4 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-269)))) (-1635 (*1 *2 *3) (-12 (-5 *3 (-660 (-961 (-229)))) (-5 *2 (-1290)) (-5 *1 (-269)))) (-1635 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-229))) (-5 *4 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-269)))) (-1635 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-1290)) (-5 *1 (-269))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4310 (($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 24 T ELT)) (-1648 (($ (-937)) 81 T ELT)) (-1647 (($ (-937)) 80 T ELT)) (-1979 (($ (-660 (-391))) 87 T ELT)) (-1651 (($ (-391)) 66 T ELT)) (-1650 (($ (-937)) 82 T ELT)) (-1644 (($ (-114)) 33 T ELT)) (-4312 (($ (-1179)) 28 T ELT)) (-1643 (($ (-1179)) 29 T ELT)) (-1649 (($ (-1153 (-229))) 76 T ELT)) (-2138 (($ (-660 (-1109 (-391)))) 72 T ELT)) (-1637 (($ (-660 (-1109 (-391)))) 68 T ELT) (($ (-660 (-1109 (-419 (-558))))) 71 T ELT)) (-1640 (($ (-391)) 38 T ELT) (($ (-887)) 42 T ELT)) (-1636 (((-114) (-660 $) (-1197)) 100 T ELT)) (-1652 (((-3 (-51) "failed") (-660 $) (-1197)) 102 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1639 (($ (-391)) 43 T ELT) (($ (-887)) 44 T ELT)) (-3641 (($ (-1 (-961 (-229)) (-961 (-229)))) 65 T ELT)) (-2479 (($ (-1 (-961 (-229)) (-961 (-229)))) 83 T ELT)) (-1638 (($ (-1 (-229) (-229))) 48 T ELT) (($ (-1 (-229) (-229) (-229))) 52 T ELT) (($ (-1 (-229) (-229) (-229) (-229))) 56 T ELT)) (-4375 (((-876) $) 93 T ELT)) (-1641 (($ (-114)) 34 T ELT) (($ (-660 (-1109 (-391)))) 60 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2133 (($ (-114)) 35 T ELT)) (-3453 (((-114) $ $) 97 T ELT))) +(((-270) (-13 (-1121) (-10 -8 (-15 -2133 ($ (-114))) (-15 -1641 ($ (-114))) (-15 -4310 ($ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4312 ($ (-1179))) (-15 -1643 ($ (-1179))) (-15 -1644 ($ (-114))) (-15 -1641 ($ (-660 (-1109 (-391))))) (-15 -3641 ($ (-1 (-961 (-229)) (-961 (-229))))) (-15 -1640 ($ (-391))) (-15 -1640 ($ (-887))) (-15 -1639 ($ (-391))) (-15 -1639 ($ (-887))) (-15 -1638 ($ (-1 (-229) (-229)))) (-15 -1638 ($ (-1 (-229) (-229) (-229)))) (-15 -1638 ($ (-1 (-229) (-229) (-229) (-229)))) (-15 -1651 ($ (-391))) (-15 -1637 ($ (-660 (-1109 (-391))))) (-15 -1637 ($ (-660 (-1109 (-419 (-558)))))) (-15 -2138 ($ (-660 (-1109 (-391))))) (-15 -1649 ($ (-1153 (-229)))) (-15 -1647 ($ (-937))) (-15 -1648 ($ (-937))) (-15 -1650 ($ (-937))) (-15 -2479 ($ (-1 (-961 (-229)) (-961 (-229))))) (-15 -1979 ($ (-660 (-391)))) (-15 -1652 ((-3 (-51) "failed") (-660 $) (-1197))) (-15 -1636 ((-114) (-660 $) (-1197)))))) (T -270)) +((-2133 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-4310 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) (-4312 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-1643 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) (-1644 (*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) (-1641 (*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-270)))) (-3641 (*1 *1 *2) (-12 (-5 *2 (-1 (-961 (-229)) (-961 (-229)))) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1640 (*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1639 (*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) (-1638 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) (-1651 (*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-270)))) (-1637 (*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-419 (-558))))) (-5 *1 (-270)))) (-2138 (*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-270)))) (-1649 (*1 *1 *2) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-270)))) (-1647 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-1648 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-1650 (*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) (-2479 (*1 *1 *2) (-12 (-5 *2 (-1 (-961 (-229)) (-961 (-229)))) (-5 *1 (-270)))) (-1979 (*1 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-270)))) (-1652 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-660 (-270))) (-5 *4 (-1197)) (-5 *2 (-51)) (-5 *1 (-270)))) (-1636 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-270))) (-5 *4 (-1197)) (-5 *2 (-114)) (-5 *1 (-270))))) +((-4310 (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-660 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 25 T ELT)) (-1648 (((-937) (-660 (-270)) (-937)) 52 T ELT)) (-1647 (((-937) (-660 (-270)) (-937)) 51 T ELT)) (-4280 (((-660 (-391)) (-660 (-270)) (-660 (-391))) 68 T ELT)) (-1651 (((-391) (-660 (-270)) (-391)) 57 T ELT)) (-1650 (((-937) (-660 (-270)) (-937)) 53 T ELT)) (-1644 (((-114) (-660 (-270)) (-114)) 27 T ELT)) (-4312 (((-1179) (-660 (-270)) (-1179)) 19 T ELT)) (-1643 (((-1179) (-660 (-270)) (-1179)) 26 T ELT)) (-1649 (((-1153 (-229)) (-660 (-270))) 46 T ELT)) (-2138 (((-660 (-1109 (-391))) (-660 (-270)) (-660 (-1109 (-391)))) 40 T ELT)) (-1645 (((-887) (-660 (-270)) (-887)) 32 T ELT)) (-1646 (((-887) (-660 (-270)) (-887)) 33 T ELT)) (-2479 (((-1 (-961 (-229)) (-961 (-229))) (-660 (-270)) (-1 (-961 (-229)) (-961 (-229)))) 63 T ELT)) (-1642 (((-114) (-660 (-270)) (-114)) 14 T ELT)) (-2133 (((-114) (-660 (-270)) (-114)) 13 T ELT))) +(((-271) (-10 -7 (-15 -2133 ((-114) (-660 (-270)) (-114))) (-15 -1642 ((-114) (-660 (-270)) (-114))) (-15 -4310 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) (-660 (-270)) (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4312 ((-1179) (-660 (-270)) (-1179))) (-15 -1643 ((-1179) (-660 (-270)) (-1179))) (-15 -1644 ((-114) (-660 (-270)) (-114))) (-15 -1645 ((-887) (-660 (-270)) (-887))) (-15 -1646 ((-887) (-660 (-270)) (-887))) (-15 -2138 ((-660 (-1109 (-391))) (-660 (-270)) (-660 (-1109 (-391))))) (-15 -1647 ((-937) (-660 (-270)) (-937))) (-15 -1648 ((-937) (-660 (-270)) (-937))) (-15 -1649 ((-1153 (-229)) (-660 (-270)))) (-15 -1650 ((-937) (-660 (-270)) (-937))) (-15 -1651 ((-391) (-660 (-270)) (-391))) (-15 -2479 ((-1 (-961 (-229)) (-961 (-229))) (-660 (-270)) (-1 (-961 (-229)) (-961 (-229))))) (-15 -4280 ((-660 (-391)) (-660 (-270)) (-660 (-391)))))) (T -271)) +((-4280 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-391))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-2479 (*1 *2 *3 *2) (-12 (-5 *2 (-1 (-961 (-229)) (-961 (-229)))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1651 (*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1650 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1649 (*1 *2 *3) (-12 (-5 *3 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-271)))) (-1648 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1647 (*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-2138 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1646 (*1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1645 (*1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1644 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1643 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-4312 (*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-4310 (*1 *2 *3 *2) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-1642 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) (-2133 (*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +((-1652 (((-3 |#1| "failed") (-660 (-270)) (-1197)) 17 T ELT))) +(((-272 |#1|) (-10 -7 (-15 -1652 ((-3 |#1| "failed") (-660 (-270)) (-1197)))) (-1237)) (T -272)) +((-1652 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-660 (-270))) (-5 *4 (-1197)) (-5 *1 (-272 *2)) (-4 *2 (-1237))))) +((-4187 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-790)) 11 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) 19 T ELT) (($ $ (-790)) NIL T ELT) (($ $) 16 T ELT)) (-3069 (($ $ (-1 |#2| |#2|)) 12 T ELT) (($ $ (-1 |#2| |#2|) (-790)) 14 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT))) +(((-273 |#1| |#2|) (-10 -7 (-15 -4187 (|#1| |#1|)) (-15 -3069 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -3069 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -3069 (|#1| |#1| (-1197))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -3069 (|#1| |#1| (-660 (-1197)))) (-15 -3069 (|#1| |#1| (-1197) (-790))) (-15 -3069 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -3069 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -3069 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|)))) (-274 |#2|) (-1237)) (T -273)) +NIL +((-4187 (($ $ (-1 |#1| |#1|)) 23 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 22 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) 16 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 15 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 14 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197)) 12 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-790)) 10 (|has| |#1| (-239)) ELT) (($ $) 8 (|has| |#1| (-239)) ELT)) (-3069 (($ $ (-1 |#1| |#1|)) 21 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 20 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) 19 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 18 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 17 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197)) 13 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-790)) 11 (|has| |#1| (-239)) ELT) (($ $) 9 (|has| |#1| (-239)) ELT))) +(((-274 |#1|) (-142) (-1237)) (T -274)) +((-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1237)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-790)) (-4 *1 (-274 *4)) (-4 *4 (-1237)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1237)))) (-3069 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-790)) (-4 *1 (-274 *4)) (-4 *4 (-1237))))) +(-13 (-1237) (-10 -8 (-15 -4187 ($ $ (-1 |t#1| |t#1|))) (-15 -4187 ($ $ (-1 |t#1| |t#1|) (-790))) (-15 -3069 ($ $ (-1 |t#1| |t#1|))) (-15 -3069 ($ $ (-1 |t#1| |t#1|) (-790))) (IF (|has| |t#1| (-239)) (-6 (-239)) |%noBranch|) (IF (|has| |t#1| (-918 (-1197))) (-6 (-918 (-1197))) |%noBranch|))) +(((-236 $) |has| |#1| (-239)) ((-239) |has| |#1| (-239)) ((-910 $ (-1197)) |has| |#1| (-918 (-1197))) ((-918 (-1197)) |has| |#1| (-918 (-1197))) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1619 (((-660 (-790)) $) NIL T ELT) (((-660 (-790)) $ |#2|) NIL T ELT)) (-1653 (((-790) $) NIL T ELT) (((-790) $ |#2|) NIL T ELT)) (-3483 (((-660 |#3|) $) NIL T ELT)) (-3485 (((-1191 $) $ |#3|) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 |#3|)) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-1615 (($ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1145 |#1| |#2|) #1#) $) 23 T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) ((|#3| $) NIL T ELT) ((|#2| $) NIL T ELT) (((-1145 |#1| |#2|) $) NIL T ELT)) (-4185 (($ $ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-543 |#3|) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| |#1| (-900 (-391))) (|has| |#3| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| |#1| (-900 (-558))) (|has| |#3| (-900 (-558)))) ELT)) (-4201 (((-790) $ |#2|) NIL T ELT) (((-790) $) 10 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#1|) |#3|) NIL T ELT) (($ (-1191 $) |#3|) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-543 |#3|)) NIL T ELT) (($ $ |#3| (-790)) NIL T ELT) (($ $ (-660 |#3|) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#3|) NIL T ELT)) (-3220 (((-543 |#3|) $) NIL T ELT) (((-790) $ |#3|) NIL T ELT) (((-660 (-790)) $ (-660 |#3|)) NIL T ELT)) (-1804 (($ (-1 (-543 |#3|) (-543 |#3|)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1654 (((-1 $ (-790)) |#2|) NIL T ELT) (((-1 $ (-790)) $) NIL (|has| |#1| (-240)) ELT)) (-3484 (((-3 |#3| #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-1617 ((|#3| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1618 (((-114) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-1616 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#3| |#1|) NIL T ELT) (($ $ (-660 |#3|) (-660 |#1|)) NIL T ELT) (($ $ |#3| $) NIL T ELT) (($ $ (-660 |#3|) (-660 $)) NIL T ELT) (($ $ |#2| $) NIL (|has| |#1| (-240)) ELT) (($ $ (-660 |#2|) (-660 $)) NIL (|has| |#1| (-240)) ELT) (($ $ |#2| |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-660 |#2|) (-660 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4186 (($ $ |#3|) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 |#3|) (-660 (-790))) NIL T ELT) (($ $ |#3| (-790)) NIL T ELT) (($ $ (-660 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-1620 (((-660 |#2|) $) NIL T ELT)) (-4377 (((-543 |#3|) $) NIL T ELT) (((-790) $ |#3|) NIL T ELT) (((-660 (-790)) $ (-660 |#3|)) NIL T ELT) (((-790) $ |#2|) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#3| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#3| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-630 (-547))) (|has| |#3| (-630 (-547)))) ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ |#3|) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 26 T ELT) (($ |#3|) 25 T ELT) (($ |#2|) NIL T ELT) (($ (-1145 |#1| |#2|)) 32 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-543 |#3|)) NIL T ELT) (($ $ |#3| (-790)) NIL T ELT) (($ $ (-660 |#3|) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 |#3|) (-660 (-790))) NIL T ELT) (($ $ |#3| (-790)) NIL T ELT) (($ $ (-660 |#3|)) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-275 |#1| |#2| |#3|) (-13 (-262 |#1| |#2| |#3| (-543 |#3|)) (-1058 (-1145 |#1| |#2|))) (-1069) (-860) (-277 |#2|)) (T -275)) +NIL +((-1653 (((-790) $) 37 T ELT)) (-3574 (((-3 |#2| "failed") $) 22 T ELT)) (-3573 ((|#2| $) 33 T ELT)) (-4187 (($ $ (-790)) 18 T ELT) (($ $) 14 T ELT)) (-4375 (((-876) $) 32 T ELT) (($ |#2|) 11 T ELT)) (-3453 (((-114) $ $) 26 T ELT)) (-3085 (((-114) $ $) 36 T ELT))) +(((-276 |#1| |#2|) (-10 -7 (-15 -1653 ((-790) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -3574 ((-3 |#2| "failed") |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -3085 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-277 |#2|) (-860)) (T -276)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-1653 (((-790) $) 26 T ELT)) (-4260 ((|#1| $) 27 T ELT)) (-3574 (((-3 |#1| "failed") $) 31 T ELT)) (-3573 ((|#1| $) 32 T ELT)) (-4201 (((-790) $) 28 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-1654 (($ |#1| (-790)) 29 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $ (-790)) 35 T ELT) (($ $) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ |#1|) 30 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3069 (($ $ (-790)) 36 T ELT) (($ $) 34 T ELT)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT))) +(((-277 |#1|) (-142) (-860)) (T -277)) +((-4375 (*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-860)))) (-1654 (*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-277 *2)) (-4 *2 (-860)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-860)) (-5 *2 (-790)))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-860)))) (-1653 (*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-860)) (-5 *2 (-790))))) +(-13 (-860) (-239) (-1058 |t#1|) (-10 -8 (-15 -1654 ($ |t#1| (-790))) (-15 -4201 ((-790) $)) (-15 -4260 (|t#1| $)) (-15 -1653 ((-790) $)) (-15 -4375 ($ |t#1|)))) +(((-102) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-236 $) . T) ((-239) . T) ((-860) . T) ((-863) . T) ((-1058 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-3483 (((-660 (-1197)) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 52 T ELT)) (-4363 (((-660 (-1197)) (-326 (-229)) (-790)) 94 T ELT)) (-1657 (((-3 (-326 (-229)) "failed") (-326 (-229))) 62 T ELT)) (-1658 (((-326 (-229)) (-326 (-229))) 78 T ELT)) (-1656 (((-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 37 T ELT)) (-1659 (((-114) (-660 (-326 (-229)))) 104 T ELT)) (-1663 (((-114) (-326 (-229))) 35 T ELT)) (-1665 (((-660 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) 132 T ELT)) (-1662 (((-660 (-326 (-229))) (-660 (-326 (-229)))) 108 T ELT)) (-1661 (((-660 (-326 (-229))) (-660 (-326 (-229)))) 106 T ELT)) (-1660 (((-708 (-229)) (-660 (-326 (-229))) (-790)) 120 T ELT)) (-3327 (((-114) (-326 (-229))) 30 T ELT) (((-114) (-660 (-326 (-229)))) 105 T ELT)) (-1655 (((-660 (-229)) (-660 (-854 (-229))) (-229)) 15 T ELT)) (-1759 (((-391) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 126 T ELT)) (-1664 (((-1055) (-1197) (-1055)) 45 T ELT))) +(((-278) (-10 -7 (-15 -1655 ((-660 (-229)) (-660 (-854 (-229))) (-229))) (-15 -1656 ((-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229))))) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229))))))) (-15 -1657 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1658 ((-326 (-229)) (-326 (-229)))) (-15 -1659 ((-114) (-660 (-326 (-229))))) (-15 -3327 ((-114) (-660 (-326 (-229))))) (-15 -3327 ((-114) (-326 (-229)))) (-15 -1660 ((-708 (-229)) (-660 (-326 (-229))) (-790))) (-15 -1661 ((-660 (-326 (-229))) (-660 (-326 (-229))))) (-15 -1662 ((-660 (-326 (-229))) (-660 (-326 (-229))))) (-15 -1663 ((-114) (-326 (-229)))) (-15 -3483 ((-660 (-1197)) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) (-15 -4363 ((-660 (-1197)) (-326 (-229)) (-790))) (-15 -1664 ((-1055) (-1197) (-1055))) (-15 -1759 ((-391) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) (-15 -1665 ((-660 (-1179)) (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))))))) (T -278)) +((-1665 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) (-5 *2 (-660 (-1179))) (-5 *1 (-278)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) (-1664 (*1 *2 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1197)) (-5 *1 (-278)))) (-4363 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-790)) (-5 *2 (-660 (-1197))) (-5 *1 (-278)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) (-5 *2 (-660 (-1197))) (-5 *1 (-278)))) (-1663 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1662 (*1 *2 *2) (-12 (-5 *2 (-660 (-326 (-229)))) (-5 *1 (-278)))) (-1661 (*1 *2 *2) (-12 (-5 *2 (-660 (-326 (-229)))) (-5 *1 (-278)))) (-1660 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-326 (-229)))) (-5 *4 (-790)) (-5 *2 (-708 (-229))) (-5 *1 (-278)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) (-3327 (*1 *2 *3) (-12 (-5 *3 (-660 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1659 (*1 *2 *3) (-12 (-5 *3 (-660 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) (-1658 (*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1657 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278)))) (-1656 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (-5 *1 (-278)))) (-1655 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-854 (-229)))) (-5 *4 (-229)) (-5 *2 (-660 *4)) (-5 *1 (-278))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 56 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 32 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-279) (-851)) (T -279)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 72 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 63 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 41 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 43 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-280) (-851)) (T -280)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 90 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 85 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 52 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 65 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-281) (-851)) (T -281)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 73 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 45 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-282) (-851)) (T -282)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 65 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 31 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-283) (-851)) (T -283)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 90 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 33 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-284) (-851)) (T -284)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 87 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 32 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-285) (-851)) (T -285)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1667 (((-660 (-558)) $) 28 T ELT)) (-4377 (((-790) $) 26 T ELT)) (-4375 (((-876) $) 32 T ELT) (($ (-660 (-558))) 22 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1666 (($ (-790)) 29 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 9 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 17 T ELT))) +(((-286) (-13 (-860) (-10 -8 (-15 -4375 ($ (-660 (-558)))) (-15 -4377 ((-790) $)) (-15 -1667 ((-660 (-558)) $)) (-15 -1666 ($ (-790)))))) (T -286)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-286)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-286)))) (-1667 (*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-286)))) (-1666 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-286))))) +((-3911 ((|#2| |#2|) 77 T ELT)) (-4068 ((|#2| |#2|) 65 T ELT)) (-1696 (((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-114))))) 123 T ELT)) (-3909 ((|#2| |#2|) 75 T ELT)) (-4067 ((|#2| |#2|) 63 T ELT)) (-3913 ((|#2| |#2|) 79 T ELT)) (-4066 ((|#2| |#2|) 67 T ELT)) (-4056 ((|#2|) 46 T ELT)) (-4022 (((-115) (-115)) 97 T ELT)) (-4371 ((|#2| |#2|) 61 T ELT)) (-1697 (((-114) |#2|) 146 T ELT)) (-1686 ((|#2| |#2|) 193 T ELT)) (-1674 ((|#2| |#2|) 169 T ELT)) (-1669 ((|#2|) 59 T ELT)) (-1668 ((|#2|) 58 T ELT)) (-1684 ((|#2| |#2|) 189 T ELT)) (-1672 ((|#2| |#2|) 165 T ELT)) (-1688 ((|#2| |#2|) 197 T ELT)) (-1676 ((|#2| |#2|) 173 T ELT)) (-1671 ((|#2| |#2|) 161 T ELT)) (-1670 ((|#2| |#2|) 163 T ELT)) (-1689 ((|#2| |#2|) 199 T ELT)) (-1677 ((|#2| |#2|) 175 T ELT)) (-1687 ((|#2| |#2|) 195 T ELT)) (-1675 ((|#2| |#2|) 171 T ELT)) (-1685 ((|#2| |#2|) 191 T ELT)) (-1673 ((|#2| |#2|) 167 T ELT)) (-1692 ((|#2| |#2|) 205 T ELT)) (-1680 ((|#2| |#2|) 181 T ELT)) (-1690 ((|#2| |#2|) 201 T ELT)) (-1678 ((|#2| |#2|) 177 T ELT)) (-1694 ((|#2| |#2|) 209 T ELT)) (-1682 ((|#2| |#2|) 185 T ELT)) (-1695 ((|#2| |#2|) 211 T ELT)) (-1683 ((|#2| |#2|) 187 T ELT)) (-1693 ((|#2| |#2|) 207 T ELT)) (-1681 ((|#2| |#2|) 183 T ELT)) (-1691 ((|#2| |#2|) 203 T ELT)) (-1679 ((|#2| |#2|) 179 T ELT)) (-4372 ((|#2| |#2|) 62 T ELT)) (-3914 ((|#2| |#2|) 80 T ELT)) (-4065 ((|#2| |#2|) 68 T ELT)) (-3912 ((|#2| |#2|) 78 T ELT)) (-4064 ((|#2| |#2|) 66 T ELT)) (-3910 ((|#2| |#2|) 76 T ELT)) (-4063 ((|#2| |#2|) 64 T ELT)) (-2467 (((-114) (-115)) 95 T ELT)) (-3917 ((|#2| |#2|) 83 T ELT)) (-3905 ((|#2| |#2|) 71 T ELT)) (-3915 ((|#2| |#2|) 81 T ELT)) (-3903 ((|#2| |#2|) 69 T ELT)) (-3919 ((|#2| |#2|) 85 T ELT)) (-3907 ((|#2| |#2|) 73 T ELT)) (-3920 ((|#2| |#2|) 86 T ELT)) (-3908 ((|#2| |#2|) 74 T ELT)) (-3918 ((|#2| |#2|) 84 T ELT)) (-3906 ((|#2| |#2|) 72 T ELT)) (-3916 ((|#2| |#2|) 82 T ELT)) (-3904 ((|#2| |#2|) 70 T ELT))) +(((-287 |#1| |#2|) (-10 -7 (-15 -4372 (|#2| |#2|)) (-15 -4371 (|#2| |#2|)) (-15 -4067 (|#2| |#2|)) (-15 -4063 (|#2| |#2|)) (-15 -4068 (|#2| |#2|)) (-15 -4064 (|#2| |#2|)) (-15 -4066 (|#2| |#2|)) (-15 -4065 (|#2| |#2|)) (-15 -3903 (|#2| |#2|)) (-15 -3904 (|#2| |#2|)) (-15 -3905 (|#2| |#2|)) (-15 -3906 (|#2| |#2|)) (-15 -3907 (|#2| |#2|)) (-15 -3908 (|#2| |#2|)) (-15 -3909 (|#2| |#2|)) (-15 -3910 (|#2| |#2|)) (-15 -3911 (|#2| |#2|)) (-15 -3912 (|#2| |#2|)) (-15 -3913 (|#2| |#2|)) (-15 -3914 (|#2| |#2|)) (-15 -3915 (|#2| |#2|)) (-15 -3916 (|#2| |#2|)) (-15 -3917 (|#2| |#2|)) (-15 -3918 (|#2| |#2|)) (-15 -3919 (|#2| |#2|)) (-15 -3920 (|#2| |#2|)) (-15 -4056 (|#2|)) (-15 -2467 ((-114) (-115))) (-15 -4022 ((-115) (-115))) (-15 -1668 (|#2|)) (-15 -1669 (|#2|)) (-15 -1670 (|#2| |#2|)) (-15 -1671 (|#2| |#2|)) (-15 -1672 (|#2| |#2|)) (-15 -1673 (|#2| |#2|)) (-15 -1674 (|#2| |#2|)) (-15 -1675 (|#2| |#2|)) (-15 -1676 (|#2| |#2|)) (-15 -1677 (|#2| |#2|)) (-15 -1678 (|#2| |#2|)) (-15 -1679 (|#2| |#2|)) (-15 -1680 (|#2| |#2|)) (-15 -1681 (|#2| |#2|)) (-15 -1682 (|#2| |#2|)) (-15 -1683 (|#2| |#2|)) (-15 -1684 (|#2| |#2|)) (-15 -1685 (|#2| |#2|)) (-15 -1686 (|#2| |#2|)) (-15 -1687 (|#2| |#2|)) (-15 -1688 (|#2| |#2|)) (-15 -1689 (|#2| |#2|)) (-15 -1690 (|#2| |#2|)) (-15 -1691 (|#2| |#2|)) (-15 -1692 (|#2| |#2|)) (-15 -1693 (|#2| |#2|)) (-15 -1694 (|#2| |#2|)) (-15 -1695 (|#2| |#2|)) (-15 -1696 ((-3 |#2| "failed") |#2| (-660 (-2 (|:| |func| |#2|) (|:| |pole| (-114)))))) (-15 -1697 ((-114) |#2|))) (-569) (-13 (-433 |#1|) (-1022))) (T -287)) +((-1697 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) (-4 *3 (-13 (-433 *4) (-1022))))) (-1696 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-660 (-2 (|:| |func| *2) (|:| |pole| (-114))))) (-4 *2 (-13 (-433 *4) (-1022))) (-4 *4 (-569)) (-5 *1 (-287 *4 *2)))) (-1695 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1694 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1693 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1692 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1691 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1690 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1689 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1688 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1687 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1686 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1685 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1684 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1683 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1682 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1681 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1680 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1679 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1678 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1677 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1676 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1675 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1674 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1673 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1672 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1671 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1670 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-1669 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1022))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-1668 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1022))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-287 *3 *4)) (-4 *4 (-13 (-433 *3) (-1022))))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) (-4 *5 (-13 (-433 *4) (-1022))))) (-4056 (*1 *2) (-12 (-4 *2 (-13 (-433 *3) (-1022))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) +((-1700 (((-3 |#2| "failed") (-660 (-627 |#2|)) |#2| (-1197)) 151 T ELT)) (-1702 ((|#2| (-419 (-558)) |#2|) 49 T ELT)) (-1701 ((|#2| |#2| (-627 |#2|)) 144 T ELT)) (-1698 (((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-627 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1197)) 143 T ELT)) (-1699 ((|#2| |#2| (-1197)) 20 T ELT) ((|#2| |#2|) 23 T ELT)) (-2831 ((|#2| |#2| (-1197)) 157 T ELT) ((|#2| |#2|) 155 T ELT))) +(((-288 |#1| |#2|) (-10 -7 (-15 -2831 (|#2| |#2|)) (-15 -2831 (|#2| |#2| (-1197))) (-15 -1698 ((-2 (|:| |func| |#2|) (|:| |kers| (-660 (-627 |#2|))) (|:| |vals| (-660 |#2|))) |#2| (-1197))) (-15 -1699 (|#2| |#2|)) (-15 -1699 (|#2| |#2| (-1197))) (-15 -1700 ((-3 |#2| "failed") (-660 (-627 |#2|)) |#2| (-1197))) (-15 -1701 (|#2| |#2| (-627 |#2|))) (-15 -1702 (|#2| (-419 (-558)) |#2|))) (-13 (-569) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -288)) +((-1702 (*1 *2 *3 *2) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) (-1701 (*1 *2 *2 *3) (-12 (-5 *3 (-627 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *4 *2)))) (-1700 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-660 (-627 *2))) (-5 *4 (-1197)) (-4 *2 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *5 *2)))) (-1699 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) (-1699 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3))))) (-1698 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-2 (|:| |func| *3) (|:| |kers| (-660 (-627 *3))) (|:| |vals| (-660 *3)))) (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-2831 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) (-2831 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3)))))) +((-3375 (((-3 |#3| #1="failed") |#3|) 120 T ELT)) (-3911 ((|#3| |#3|) 142 T ELT)) (-3363 (((-3 |#3| #1#) |#3|) 89 T ELT)) (-4068 ((|#3| |#3|) 132 T ELT)) (-3373 (((-3 |#3| #1#) |#3|) 65 T ELT)) (-3909 ((|#3| |#3|) 140 T ELT)) (-3361 (((-3 |#3| #1#) |#3|) 53 T ELT)) (-4067 ((|#3| |#3|) 130 T ELT)) (-3377 (((-3 |#3| #1#) |#3|) 122 T ELT)) (-3913 ((|#3| |#3|) 144 T ELT)) (-3365 (((-3 |#3| #1#) |#3|) 91 T ELT)) (-4066 ((|#3| |#3|) 134 T ELT)) (-3358 (((-3 |#3| #1#) |#3| (-790)) 41 T ELT)) (-3360 (((-3 |#3| #1#) |#3|) 81 T ELT)) (-4371 ((|#3| |#3|) 129 T ELT)) (-3359 (((-3 |#3| #1#) |#3|) 51 T ELT)) (-4372 ((|#3| |#3|) 128 T ELT)) (-3378 (((-3 |#3| #1#) |#3|) 123 T ELT)) (-3914 ((|#3| |#3|) 145 T ELT)) (-3366 (((-3 |#3| #1#) |#3|) 92 T ELT)) (-4065 ((|#3| |#3|) 135 T ELT)) (-3376 (((-3 |#3| #1#) |#3|) 121 T ELT)) (-3912 ((|#3| |#3|) 143 T ELT)) (-3364 (((-3 |#3| #1#) |#3|) 90 T ELT)) (-4064 ((|#3| |#3|) 133 T ELT)) (-3374 (((-3 |#3| #1#) |#3|) 67 T ELT)) (-3910 ((|#3| |#3|) 141 T ELT)) (-3362 (((-3 |#3| #1#) |#3|) 55 T ELT)) (-4063 ((|#3| |#3|) 131 T ELT)) (-3381 (((-3 |#3| #1#) |#3|) 73 T ELT)) (-3917 ((|#3| |#3|) 148 T ELT)) (-3369 (((-3 |#3| #1#) |#3|) 114 T ELT)) (-3905 ((|#3| |#3|) 152 T ELT)) (-3379 (((-3 |#3| #1#) |#3|) 69 T ELT)) (-3915 ((|#3| |#3|) 146 T ELT)) (-3367 (((-3 |#3| #1#) |#3|) 57 T ELT)) (-3903 ((|#3| |#3|) 136 T ELT)) (-3383 (((-3 |#3| #1#) |#3|) 77 T ELT)) (-3919 ((|#3| |#3|) 150 T ELT)) (-3371 (((-3 |#3| #1#) |#3|) 61 T ELT)) (-3907 ((|#3| |#3|) 138 T ELT)) (-3384 (((-3 |#3| #1#) |#3|) 79 T ELT)) (-3920 ((|#3| |#3|) 151 T ELT)) (-3372 (((-3 |#3| #1#) |#3|) 63 T ELT)) (-3908 ((|#3| |#3|) 139 T ELT)) (-3382 (((-3 |#3| #1#) |#3|) 75 T ELT)) (-3918 ((|#3| |#3|) 149 T ELT)) (-3370 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3906 ((|#3| |#3|) 153 T ELT)) (-3380 (((-3 |#3| #1#) |#3|) 71 T ELT)) (-3916 ((|#3| |#3|) 147 T ELT)) (-3368 (((-3 |#3| #1#) |#3|) 59 T ELT)) (-3904 ((|#3| |#3|) 137 T ELT)) (** ((|#3| |#3| (-419 (-558))) 47 (|has| |#1| (-376)) ELT))) +(((-289 |#1| |#2| |#3|) (-13 (-1003 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4372 (|#3| |#3|)) (-15 -4371 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4063 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)))) (-38 (-419 (-558))) (-1280 |#1|) (-1251 |#1| |#2|)) (T -289)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1280 *4)) (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1251 *4 *5)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) (-4 *2 (-1251 *3 *4))))) +((-3375 (((-3 |#3| #1="failed") |#3|) 70 T ELT)) (-3911 ((|#3| |#3|) 137 T ELT)) (-3363 (((-3 |#3| #1#) |#3|) 54 T ELT)) (-4068 ((|#3| |#3|) 125 T ELT)) (-3373 (((-3 |#3| #1#) |#3|) 66 T ELT)) (-3909 ((|#3| |#3|) 135 T ELT)) (-3361 (((-3 |#3| #1#) |#3|) 50 T ELT)) (-4067 ((|#3| |#3|) 123 T ELT)) (-3377 (((-3 |#3| #1#) |#3|) 74 T ELT)) (-3913 ((|#3| |#3|) 139 T ELT)) (-3365 (((-3 |#3| #1#) |#3|) 58 T ELT)) (-4066 ((|#3| |#3|) 127 T ELT)) (-3358 (((-3 |#3| #1#) |#3| (-790)) 38 T ELT)) (-3360 (((-3 |#3| #1#) |#3|) 48 T ELT)) (-4371 ((|#3| |#3|) 111 T ELT)) (-3359 (((-3 |#3| #1#) |#3|) 46 T ELT)) (-4372 ((|#3| |#3|) 122 T ELT)) (-3378 (((-3 |#3| #1#) |#3|) 76 T ELT)) (-3914 ((|#3| |#3|) 140 T ELT)) (-3366 (((-3 |#3| #1#) |#3|) 60 T ELT)) (-4065 ((|#3| |#3|) 128 T ELT)) (-3376 (((-3 |#3| #1#) |#3|) 72 T ELT)) (-3912 ((|#3| |#3|) 138 T ELT)) (-3364 (((-3 |#3| #1#) |#3|) 56 T ELT)) (-4064 ((|#3| |#3|) 126 T ELT)) (-3374 (((-3 |#3| #1#) |#3|) 68 T ELT)) (-3910 ((|#3| |#3|) 136 T ELT)) (-3362 (((-3 |#3| #1#) |#3|) 52 T ELT)) (-4063 ((|#3| |#3|) 124 T ELT)) (-3381 (((-3 |#3| #1#) |#3|) 78 T ELT)) (-3917 ((|#3| |#3|) 143 T ELT)) (-3369 (((-3 |#3| #1#) |#3|) 62 T ELT)) (-3905 ((|#3| |#3|) 131 T ELT)) (-3379 (((-3 |#3| #1#) |#3|) 112 T ELT)) (-3915 ((|#3| |#3|) 141 T ELT)) (-3367 (((-3 |#3| #1#) |#3|) 100 T ELT)) (-3903 ((|#3| |#3|) 129 T ELT)) (-3383 (((-3 |#3| #1#) |#3|) 116 T ELT)) (-3919 ((|#3| |#3|) 145 T ELT)) (-3371 (((-3 |#3| #1#) |#3|) 107 T ELT)) (-3907 ((|#3| |#3|) 133 T ELT)) (-3384 (((-3 |#3| #1#) |#3|) 117 T ELT)) (-3920 ((|#3| |#3|) 146 T ELT)) (-3372 (((-3 |#3| #1#) |#3|) 109 T ELT)) (-3908 ((|#3| |#3|) 134 T ELT)) (-3382 (((-3 |#3| #1#) |#3|) 80 T ELT)) (-3918 ((|#3| |#3|) 144 T ELT)) (-3370 (((-3 |#3| #1#) |#3|) 64 T ELT)) (-3906 ((|#3| |#3|) 132 T ELT)) (-3380 (((-3 |#3| #1#) |#3|) 113 T ELT)) (-3916 ((|#3| |#3|) 142 T ELT)) (-3368 (((-3 |#3| #1#) |#3|) 103 T ELT)) (-3904 ((|#3| |#3|) 130 T ELT)) (** ((|#3| |#3| (-419 (-558))) 44 (|has| |#1| (-376)) ELT))) +(((-290 |#1| |#2| |#3| |#4|) (-13 (-1003 |#3|) (-10 -7 (IF (|has| |#1| (-376)) (-15 ** (|#3| |#3| (-419 (-558)))) |%noBranch|) (-15 -4372 (|#3| |#3|)) (-15 -4371 (|#3| |#3|)) (-15 -4067 (|#3| |#3|)) (-15 -4063 (|#3| |#3|)) (-15 -4068 (|#3| |#3|)) (-15 -4064 (|#3| |#3|)) (-15 -4066 (|#3| |#3|)) (-15 -4065 (|#3| |#3|)) (-15 -3903 (|#3| |#3|)) (-15 -3904 (|#3| |#3|)) (-15 -3905 (|#3| |#3|)) (-15 -3906 (|#3| |#3|)) (-15 -3907 (|#3| |#3|)) (-15 -3908 (|#3| |#3|)) (-15 -3909 (|#3| |#3|)) (-15 -3910 (|#3| |#3|)) (-15 -3911 (|#3| |#3|)) (-15 -3912 (|#3| |#3|)) (-15 -3913 (|#3| |#3|)) (-15 -3914 (|#3| |#3|)) (-15 -3915 (|#3| |#3|)) (-15 -3916 (|#3| |#3|)) (-15 -3917 (|#3| |#3|)) (-15 -3918 (|#3| |#3|)) (-15 -3919 (|#3| |#3|)) (-15 -3920 (|#3| |#3|)))) (-38 (-419 (-558))) (-1249 |#1|) (-1272 |#1| |#2|) (-1003 |#2|)) (T -290)) +((** (*1 *2 *2 *3) (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1249 *4)) (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1272 *4 *5)) (-4 *6 (-1003 *5)))) (-4372 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4371 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4067 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4063 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4068 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4064 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4066 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-4065 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3903 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3904 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3905 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3906 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3907 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3908 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3909 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3910 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3911 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3912 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3913 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3914 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3915 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3916 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3917 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3918 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3919 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) (-3920 (*1 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4))))) +((-1705 (((-114) $) 20 T ELT)) (-1707 (((-1202) $) 9 T ELT)) (-3996 (((-3 (-518) #1="failed") $) 15 T ELT)) (-3995 (((-3 (-660 $) #1#) $) NIL T ELT)) (-1704 (((-3 (-518) #1#) $) 21 T ELT)) (-1706 (((-3 (-1123) #1#) $) 19 T ELT)) (-4382 (((-114) $) 17 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1703 (((-114) $) 10 T ELT))) +(((-291) (-13 (-629 (-876)) (-10 -8 (-15 -1707 ((-1202) $)) (-15 -4382 ((-114) $)) (-15 -1706 ((-3 (-1123) #1="failed") $)) (-15 -1705 ((-114) $)) (-15 -1704 ((-3 (-518) #1#) $)) (-15 -1703 ((-114) $)) (-15 -3996 ((-3 (-518) #1#) $)) (-15 -3995 ((-3 (-660 $) #1#) $))))) (T -291)) +((-1707 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-291)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1706 (*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-291)))) (-1705 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-1704 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-1703 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) (-3996 (*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) (-3995 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-291))) (-5 *1 (-291))))) +((-1709 (((-608) $) 10 T ELT)) (-1710 (((-598) $) 8 T ELT)) (-1708 (((-303) $) 12 T ELT)) (-1711 (($ (-598) (-608) (-303)) NIL T ELT)) (-4375 (((-876) $) 19 T ELT))) +(((-292) (-13 (-629 (-876)) (-10 -8 (-15 -1711 ($ (-598) (-608) (-303))) (-15 -1710 ((-598) $)) (-15 -1709 ((-608) $)) (-15 -1708 ((-303) $))))) (T -292)) +((-1711 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-598)) (-5 *3 (-608)) (-5 *4 (-303)) (-5 *1 (-292)))) (-1710 (*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-292)))) (-1709 (*1 *2 *1) (-12 (-5 *2 (-608)) (-5 *1 (-292)))) (-1708 (*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) +((-4139 (($ (-1 (-114) |#2|) $) 24 T ELT)) (-1466 (($ $) 38 T ELT)) (-3824 (($ (-1 (-114) |#2|) $) NIL T ELT) (($ |#2| $) 36 T ELT)) (-3825 (($ |#2| $) 34 T ELT) (($ (-1 (-114) |#2|) $) 18 T ELT)) (-3256 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 42 T ELT)) (-2516 (($ |#2| $ (-558)) 20 T ELT) (($ $ $ (-558)) 22 T ELT)) (-2517 (($ $ (-558)) 11 T ELT) (($ $ (-1254 (-558))) 14 T ELT)) (-4220 (($ $ |#2|) 32 T ELT) (($ $ $) NIL T ELT)) (-4231 (($ $ |#2|) 31 T ELT) (($ |#2| $) NIL T ELT) (($ $ $) 26 T ELT) (($ (-660 $)) NIL T ELT))) +(((-293 |#1| |#2|) (-10 -7 (-15 -3256 (|#1| |#1| |#1|)) (-15 -3824 (|#1| |#2| |#1|)) (-15 -3256 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -3824 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4220 (|#1| |#1| |#1|)) (-15 -4220 (|#1| |#1| |#2|)) (-15 -2516 (|#1| |#1| |#1| (-558))) (-15 -2516 (|#1| |#2| |#1| (-558))) (-15 -2517 (|#1| |#1| (-1254 (-558)))) (-15 -2517 (|#1| |#1| (-558))) (-15 -4231 (|#1| (-660 |#1|))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#1| |#2| |#1|)) (-15 -4231 (|#1| |#1| |#2|)) (-15 -3825 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4139 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3825 (|#1| |#2| |#1|)) (-15 -1466 (|#1| |#1|))) (-294 |#2|) (-1237)) (T -293)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) 94 T ELT)) (-4139 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2593 (($ $) 92 (|has| |#1| (-1121)) ELT)) (-1466 (($ $) 84 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ (-1 (-114) |#1|) $) 98 T ELT) (($ |#1| $) 93 (|has| |#1| (-1121)) ELT)) (-3825 (($ |#1| $) 83 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 55 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-3256 (($ (-1 (-114) |#1| |#1|) $ $) 95 T ELT) (($ $ $) 91 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4036 (($ |#1| $ (-558)) 97 T ELT) (($ $ $ (-558)) 96 T ELT)) (-2516 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2413 (($ $ |#1|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-1713 (($ $ (-558)) 100 T ELT) (($ $ (-1254 (-558))) 99 T ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 76 T ELT)) (-4220 (($ $ |#1|) 102 T ELT) (($ $ $) 101 T ELT)) (-4231 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-294 |#1|) (-142) (-1237)) (T -294)) +((-4220 (*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)))) (-4220 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)))) (-1713 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) (-1713 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-558))) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) (-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) (-4036 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-294 *2)) (-4 *2 (-1237)))) (-4036 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) (-3256 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) (-1712 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) (-3824 (*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)) (-4 *2 (-1121)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)) (-4 *2 (-1121)))) (-3256 (*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)) (-4 *2 (-860))))) +(-13 (-670 |t#1|) (-10 -8 (-6 -4425) (-15 -4220 ($ $ |t#1|)) (-15 -4220 ($ $ $)) (-15 -1713 ($ $ (-558))) (-15 -1713 ($ $ (-1254 (-558)))) (-15 -3824 ($ (-1 (-114) |t#1|) $)) (-15 -4036 ($ |t#1| $ (-558))) (-15 -4036 ($ $ $ (-558))) (-15 -3256 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -1712 ($ (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3824 ($ |t#1| $)) (-15 -2593 ($ $))) |%noBranch|) (IF (|has| |t#1| (-860)) (-15 -3256 ($ $ $)) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) ((** (($ $ $) 10 T ELT))) (((-295 |#1|) (-10 -7 (-15 ** (|#1| |#1| |#1|))) (-296)) (T -295)) NIL -((-4372 (($ $) 6 T ELT)) (-4373 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) +((-4371 (($ $) 6 T ELT)) (-4372 (($ $) 7 T ELT)) (** (($ $ $) 8 T ELT))) (((-296) (-142)) (T -296)) -((** (*1 *1 *1 *1) (-4 *1 (-296))) (-4373 (*1 *1 *1) (-4 *1 (-296))) (-4372 (*1 *1 *1) (-4 *1 (-296)))) -(-13 (-10 -8 (-15 -4372 ($ $)) (-15 -4373 ($ $)) (-15 ** ($ $ $)))) -((-1718 (((-661 (-1176 |#1|)) (-1176 |#1|) |#1|) 35 T ELT)) (-1715 ((|#2| |#2| |#1|) 39 T ELT)) (-1717 ((|#2| |#2| |#1|) 41 T ELT)) (-1716 ((|#2| |#2| |#1|) 40 T ELT))) -(((-297 |#1| |#2|) (-10 -7 (-15 -1715 (|#2| |#2| |#1|)) (-15 -1716 (|#2| |#2| |#1|)) (-15 -1717 (|#2| |#2| |#1|)) (-15 -1718 ((-661 (-1176 |#1|)) (-1176 |#1|) |#1|))) (-376) (-1281 |#1|)) (T -297)) -((-1718 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-661 (-1176 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1176 *4)) (-4 *5 (-1281 *4)))) (-1717 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1281 *3)))) (-1716 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1281 *3)))) (-1715 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1281 *3))))) -((-4230 ((|#2| $ |#1|) 6 T ELT))) -(((-298 |#1| |#2|) (-142) (-1238) (-1238)) (T -298)) -((-4230 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4230 (|t#2| $ |t#1|)))) -(((-1238) . T)) -((-1719 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3515 ((|#3| $ |#2|) 10 T ELT))) -(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -1719 (|#3| |#1| |#2| |#3|)) (-15 -3515 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1122) (-1238)) (T -299)) -NIL -((-4218 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4426)) ELT)) (-1719 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) 11 T ELT)) (-4230 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) -(((-300 |#1| |#2|) (-142) (-1122) (-1238)) (T -300)) -((-4230 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238)))) (-3515 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238)))) (-4218 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238)))) (-1719 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238))))) -(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -4230 (|t#2| $ |t#1| |t#2|)) (-15 -3515 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4218 (|t#2| $ |t#1| |t#2|)) (-15 -1719 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) -(((-298 |#1| |#2|) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 37 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 44 T ELT)) (-2273 (($ $) 41 T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) 35 T ELT)) (-4272 (($ |#2| |#3|) 18 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-3013 ((|#3| $) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 19 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2633 (((-3 $ #1#) $ $) NIL T ELT)) (-1787 (((-791) $) 36 T ELT)) (-4230 ((|#2| $ |#2|) 46 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 23 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 31 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 40 T ELT))) -(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3013 (|#3| $)) (-15 -4376 (|#2| $)) (-15 -4272 ($ |#2| |#3|)) (-15 -2633 ((-3 $ #1="failed") $ $)) (-15 -3887 ((-3 $ #1#) $)) (-15 -2874 ($ $)))) (-175) (-1264 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -301)) -((-3887 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3013 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4376 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4272 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1264 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2633 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2874 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((** (*1 *1 *1 *1) (-4 *1 (-296))) (-4372 (*1 *1 *1) (-4 *1 (-296))) (-4371 (*1 *1 *1) (-4 *1 (-296)))) +(-13 (-10 -8 (-15 -4371 ($ $)) (-15 -4372 ($ $)) (-15 ** ($ $ $)))) +((-1717 (((-660 (-1175 |#1|)) (-1175 |#1|) |#1|) 35 T ELT)) (-1714 ((|#2| |#2| |#1|) 39 T ELT)) (-1716 ((|#2| |#2| |#1|) 41 T ELT)) (-1715 ((|#2| |#2| |#1|) 40 T ELT))) +(((-297 |#1| |#2|) (-10 -7 (-15 -1714 (|#2| |#2| |#1|)) (-15 -1715 (|#2| |#2| |#1|)) (-15 -1716 (|#2| |#2| |#1|)) (-15 -1717 ((-660 (-1175 |#1|)) (-1175 |#1|) |#1|))) (-376) (-1280 |#1|)) (T -297)) +((-1717 (*1 *2 *3 *4) (-12 (-4 *4 (-376)) (-5 *2 (-660 (-1175 *4))) (-5 *1 (-297 *4 *5)) (-5 *3 (-1175 *4)) (-4 *5 (-1280 *4)))) (-1716 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1280 *3)))) (-1715 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1280 *3)))) (-1714 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1280 *3))))) +((-4229 ((|#2| $ |#1|) 6 T ELT))) +(((-298 |#1| |#2|) (-142) (-1237) (-1237)) (T -298)) +((-4229 (*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237))))) +(-13 (-1237) (-10 -8 (-15 -4229 (|t#2| $ |t#1|)))) +(((-1237) . T)) +((-1718 ((|#3| $ |#2| |#3|) 12 T ELT)) (-3514 ((|#3| $ |#2|) 10 T ELT))) +(((-299 |#1| |#2| |#3|) (-10 -7 (-15 -1718 (|#3| |#1| |#2| |#3|)) (-15 -3514 (|#3| |#1| |#2|))) (-300 |#2| |#3|) (-1121) (-1237)) (T -299)) +NIL +((-4217 ((|#2| $ |#1| |#2|) 10 (|has| $ (-6 -4425)) ELT)) (-1718 ((|#2| $ |#1| |#2|) 9 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) 11 T ELT)) (-4229 ((|#2| $ |#1|) 6 T ELT) ((|#2| $ |#1| |#2|) 12 T ELT))) +(((-300 |#1| |#2|) (-142) (-1121) (-1237)) (T -300)) +((-4229 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237)))) (-3514 (*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237)))) (-4217 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237)))) (-1718 (*1 *2 *1 *3 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237))))) +(-13 (-298 |t#1| |t#2|) (-10 -8 (-15 -4229 (|t#2| $ |t#1| |t#2|)) (-15 -3514 (|t#2| $ |t#1|)) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4217 (|t#2| $ |t#1| |t#2|)) (-15 -1718 (|t#2| $ |t#1| |t#2|))) |%noBranch|))) +(((-298 |#1| |#2|) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 37 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 44 T ELT)) (-2272 (($ $) 41 T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) 35 T ELT)) (-4271 (($ |#2| |#3|) 18 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-3012 ((|#3| $) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 19 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-2632 (((-3 $ #1#) $ $) NIL T ELT)) (-1786 (((-790) $) 36 T ELT)) (-4229 ((|#2| $ |#2|) 46 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 23 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) ((|#2| $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 31 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 40 T ELT))) +(((-301 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-319) (-298 |#2| |#2|) (-10 -8 (-15 -3012 (|#3| $)) (-15 -4375 (|#2| $)) (-15 -4271 ($ |#2| |#3|)) (-15 -2632 ((-3 $ #1="failed") $ $)) (-15 -3886 ((-3 $ #1#) $)) (-15 -2873 ($ $)))) (-175) (-1263 |#1|) (-23) (-1 |#2| |#2| |#3|) (-1 (-3 |#3| #1#) |#3| |#3|) (-1 (-3 |#2| #1#) |#2| |#2| |#3|)) (T -301)) +((-3886 (*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1="failed") *4 *4)) (-14 *7 (-1 (-3 *3 #2="failed") *3 *3 *4)))) (-3012 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 #1#) *2 *2)) (-14 *7 (-1 (-3 *4 #2#) *4 *4 *2)))) (-4375 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *4)))) (-4271 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 #1#) *3 *3)) (-14 *7 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2632 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4)))) (-2873 (*1 *1 *1) (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 #1#) *4 *4)) (-14 *7 (-1 (-3 *3 #2#) *3 *3 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-302) (-142)) (T -302)) NIL -(-13 (-1070) (-111 $ $) (-10 -7 (-6 -4418))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-1727 (((-661 (-1106)) $) 10 T ELT)) (-1725 (($ (-518) (-518) (-1124) $) 19 T ELT)) (-1723 (($ (-518) (-661 (-984)) $) 23 T ELT)) (-1721 (($) 25 T ELT)) (-1726 (((-711 (-1124)) (-518) (-518) $) 18 T ELT)) (-1724 (((-661 (-984)) (-518) $) 22 T ELT)) (-3993 (($) 7 T ELT)) (-1722 (($) 24 T ELT)) (-4376 (((-877) $) 29 T ELT)) (-1720 (($) 26 T ELT))) -(((-303) (-13 (-630 (-877)) (-10 -8 (-15 -3993 ($)) (-15 -1727 ((-661 (-1106)) $)) (-15 -1726 ((-711 (-1124)) (-518) (-518) $)) (-15 -1725 ($ (-518) (-518) (-1124) $)) (-15 -1724 ((-661 (-984)) (-518) $)) (-15 -1723 ($ (-518) (-661 (-984)) $)) (-15 -1722 ($)) (-15 -1721 ($)) (-15 -1720 ($))))) (T -303)) -((-3993 (*1 *1) (-5 *1 (-303))) (-1727 (*1 *2 *1) (-12 (-5 *2 (-661 (-1106))) (-5 *1 (-303)))) (-1726 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-1124))) (-5 *1 (-303)))) (-1725 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-303)))) (-1724 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-661 (-984))) (-5 *1 (-303)))) (-1723 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-984))) (-5 *1 (-303)))) (-1722 (*1 *1) (-5 *1 (-303))) (-1721 (*1 *1) (-5 *1 (-303))) (-1720 (*1 *1) (-5 *1 (-303)))) -((-1731 (((-661 (-2 (|:| |eigval| (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (|:| |geneigvec| (-661 (-709 (-419 (-965 |#1|))))))) (-709 (-419 (-965 |#1|)))) 103 T ELT)) (-1730 (((-661 (-709 (-419 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-965 |#1|)))))) (-709 (-419 (-965 |#1|)))) 98 T ELT) (((-661 (-709 (-419 (-965 |#1|)))) (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|))) (-709 (-419 (-965 |#1|))) (-791) (-791)) 42 T ELT)) (-1732 (((-661 (-2 (|:| |eigval| (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-965 |#1|))))))) (-709 (-419 (-965 |#1|)))) 100 T ELT)) (-1729 (((-661 (-709 (-419 (-965 |#1|)))) (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|))) (-709 (-419 (-965 |#1|)))) 76 T ELT)) (-1728 (((-661 (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (-709 (-419 (-965 |#1|)))) 75 T ELT)) (-2838 (((-965 |#1|) (-709 (-419 (-965 |#1|)))) 56 T ELT) (((-965 |#1|) (-709 (-419 (-965 |#1|))) (-1198)) 57 T ELT))) -(((-304 |#1|) (-10 -7 (-15 -2838 ((-965 |#1|) (-709 (-419 (-965 |#1|))) (-1198))) (-15 -2838 ((-965 |#1|) (-709 (-419 (-965 |#1|))))) (-15 -1728 ((-661 (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (-709 (-419 (-965 |#1|))))) (-15 -1729 ((-661 (-709 (-419 (-965 |#1|)))) (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|))) (-709 (-419 (-965 |#1|))))) (-15 -1730 ((-661 (-709 (-419 (-965 |#1|)))) (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|))) (-709 (-419 (-965 |#1|))) (-791) (-791))) (-15 -1730 ((-661 (-709 (-419 (-965 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-965 |#1|)))))) (-709 (-419 (-965 |#1|))))) (-15 -1731 ((-661 (-2 (|:| |eigval| (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (|:| |geneigvec| (-661 (-709 (-419 (-965 |#1|))))))) (-709 (-419 (-965 |#1|))))) (-15 -1732 ((-661 (-2 (|:| |eigval| (-3 (-419 (-965 |#1|)) (-1187 (-1198) (-965 |#1|)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-965 |#1|))))))) (-709 (-419 (-965 |#1|)))))) (-464)) (T -304)) -((-1732 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-661 (-2 (|:| |eigval| (-3 (-419 (-965 *4)) (-1187 (-1198) (-965 *4)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-965 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-965 *4)))))) (-1731 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-661 (-2 (|:| |eigval| (-3 (-419 (-965 *4)) (-1187 (-1198) (-965 *4)))) (|:| |geneigvec| (-661 (-709 (-419 (-965 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-965 *4)))))) (-1730 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-965 *5)) (-1187 (-1198) (-965 *5)))) (|:| |eigmult| (-791)) (|:| |eigvec| (-661 *4)))) (-4 *5 (-464)) (-5 *2 (-661 (-709 (-419 (-965 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-709 (-419 (-965 *5)))))) (-1730 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-965 *6)) (-1187 (-1198) (-965 *6)))) (-5 *5 (-791)) (-4 *6 (-464)) (-5 *2 (-661 (-709 (-419 (-965 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-709 (-419 (-965 *6)))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-965 *5)) (-1187 (-1198) (-965 *5)))) (-4 *5 (-464)) (-5 *2 (-661 (-709 (-419 (-965 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-709 (-419 (-965 *5)))))) (-1728 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-965 *4)))) (-4 *4 (-464)) (-5 *2 (-661 (-3 (-419 (-965 *4)) (-1187 (-1198) (-965 *4))))) (-5 *1 (-304 *4)))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-965 *4)))) (-5 *2 (-965 *4)) (-5 *1 (-304 *4)) (-4 *4 (-464)))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-965 *5)))) (-5 *4 (-1198)) (-5 *2 (-965 *5)) (-5 *1 (-304 *5)) (-4 *5 (-464))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3606 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1738 (($ $) 12 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1747 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-4154 (($) NIL (-3957 (|has| |#1| (-21)) (|has| |#1| (-746))) CONST)) (-1736 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1734 (((-3 $ #1#) $) 62 (|has| |#1| (-746)) ELT)) (-3948 ((|#1| $) 11 T ELT)) (-3887 (((-3 $ #1#) $) 60 (|has| |#1| (-746)) ELT)) (-2641 (((-114) $) NIL (|has| |#1| (-746)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3949 ((|#1| $) 10 T ELT)) (-1737 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1735 (((-3 $ #1#) $) 61 (|has| |#1| (-746)) ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2874 (($ $) 64 (-3957 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-1733 (((-661 $) $) 85 (|has| |#1| (-569)) ELT)) (-4198 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-1198) |#1|) 17 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 21 (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-3644 (($ |#1| |#1|) 9 T ELT)) (-4341 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) 87 (|has| |#1| (-917 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-917 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-917 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-917 (-1198))) ELT)) (-3410 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2824 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4376 (($ (-558)) NIL (|has| |#1| (-1070)) ELT) (((-114) $) 37 (|has| |#1| (-1122)) ELT) (((-877) $) 36 (|has| |#1| (-1122)) ELT)) (-3528 (((-791)) 67 (|has| |#1| (-1070)) CONST)) (-1378 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3059 (($) 47 (|has| |#1| (-21)) CONST)) (-3065 (($) 57 (|has| |#1| (-746)) CONST)) (-3070 (($ $ (-1198)) NIL (|has| |#1| (-917 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-917 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-917 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-917 (-1198))) ELT)) (-3454 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1122)) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-3957 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-4267 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4269 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-558)) NIL (|has| |#1| (-485)) ELT) (($ $ (-791)) NIL (|has| |#1| (-746)) ELT) (($ $ (-938)) NIL (|has| |#1| (-1133)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1133)) ELT) (($ |#1| $) 54 (|has| |#1| (-1133)) ELT) (($ $ $) 53 (|has| |#1| (-1133)) ELT) (($ (-558) $) 70 (|has| |#1| (-21)) ELT) (($ (-791) $) NIL (|has| |#1| (-21)) ELT) (($ (-938) $) NIL (|has| |#1| (-25)) ELT))) -(((-305 |#1|) (-13 (-1238) (-10 -8 (-15 -3454 ($ |#1| |#1|)) (-15 -3644 ($ |#1| |#1|)) (-15 -1738 ($ $)) (-15 -3949 (|#1| $)) (-15 -3948 (|#1| $)) (-15 -4388 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1198) |#1|)) (-6 (-526 (-1198) |#1|)) |%noBranch|) (IF (|has| |#1| (-1122)) (PROGN (-6 (-1122)) (-6 (-630 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4198 ($ $ $)) (-15 -4198 ($ $ (-661 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4269 ($ |#1| $)) (-15 -4269 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1737 ($ $)) (-15 -1736 ($ $)) (-15 -4267 ($ |#1| $)) (-15 -4267 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1133)) (PROGN (-6 (-1133)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-746)) (PROGN (-6 (-746)) (-15 -1735 ((-3 $ #1="failed") $)) (-15 -1734 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1735 ((-3 $ #1#) $)) (-15 -1734 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-737 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -1733 ((-661 $) $)) |%noBranch|) (IF (|has| |#1| (-917 (-1198))) (-6 (-917 (-1198))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1296 |#1|)) (-15 -4379 ($ $ $)) (-15 -2874 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1747 ($ $ $)) |%noBranch|))) (-1238)) (T -305)) -((-3454 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) (-3644 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) (-1738 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) (-3949 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) (-3948 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-305 *3)))) (-4198 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1122)) (-4 *2 (-1238)) (-5 *1 (-305 *2)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1122)) (-4 *3 (-1238)) (-5 *1 (-305 *3)))) (-4269 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-4269 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) (-1737 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-1736 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-4267 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-4267 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) (-1735 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1238)))) (-1734 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1238)))) (-1733 (*1 *2 *1) (-12 (-5 *2 (-661 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1238)))) (-1747 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1238)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) (-4379 (*1 *1 *1 *1) (-3957 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1238))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) (-2874 (*1 *1 *1) (-3957 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1238))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1238)))))) -((-4388 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) -(((-306 |#1| |#2|) (-10 -7 (-15 -4388 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1238) (-1238)) (T -306)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-2884 (((-661 |#1|) $) NIL T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #1#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-307 |#1| |#2|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4425))) (-1122) (-1122)) (T -307)) -NIL -((-1739 (((-323) (-1180) (-661 (-1180))) 17 T ELT) (((-323) (-1180) (-1180)) 16 T ELT) (((-323) (-661 (-1180))) 15 T ELT) (((-323) (-1180)) 14 T ELT))) -(((-308) (-10 -7 (-15 -1739 ((-323) (-1180))) (-15 -1739 ((-323) (-661 (-1180)))) (-15 -1739 ((-323) (-1180) (-1180))) (-15 -1739 ((-323) (-1180) (-661 (-1180)))))) (T -308)) -((-1739 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1180))) (-5 *3 (-1180)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1739 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-323)) (-5 *1 (-308)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-323)) (-5 *1 (-308))))) -((-1743 (((-661 (-628 $)) $) 27 T ELT)) (-1747 (($ $ (-305 $)) 78 T ELT) (($ $ (-661 (-305 $))) 139 T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-3575 (((-3 (-628 $) #1="failed") $) 127 T ELT)) (-3574 (((-628 $) $) 126 T ELT)) (-2972 (($ $) 17 T ELT) (($ (-661 $)) 54 T ELT)) (-1742 (((-661 (-115)) $) 35 T ELT)) (-4023 (((-115) (-115)) 88 T ELT)) (-3074 (((-114) $) 150 T ELT)) (-4388 (($ (-1 $ $) (-628 $)) 86 T ELT)) (-1745 (((-3 (-628 $) #1#) $) 94 T ELT)) (-2449 (($ (-115) $) 59 T ELT) (($ (-115) (-661 $)) 110 T ELT)) (-3032 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1198)) 131 T ELT)) (-3002 (((-791) $) 44 T ELT)) (-1741 (((-114) $ $) 57 T ELT) (((-114) $ (-1198)) 49 T ELT)) (-3075 (((-114) $) 148 T ELT)) (-4198 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) 81 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1198) (-1 $ (-661 $))) 67 T ELT) (($ $ (-1198) (-1 $ $)) 72 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 80 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-661 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-4230 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-661 $)) 123 T ELT)) (-1746 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2989 (($ $) 15 T ELT) (($ (-661 $)) 53 T ELT)) (-2468 (((-114) (-115)) 21 T ELT))) -(((-309 |#1|) (-10 -7 (-15 -3074 ((-114) |#1|)) (-15 -3075 ((-114) |#1|)) (-15 -4198 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4198 (|#1| |#1| (-115) (-1 |#1| (-661 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4198 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| |#1|)))) (-15 -4198 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -4198 (|#1| |#1| (-1198) (-1 |#1| (-661 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 (-1 |#1| |#1|)))) (-15 -1741 ((-114) |#1| (-1198))) (-15 -1741 ((-114) |#1| |#1|)) (-15 -4388 (|#1| (-1 |#1| |#1|) (-628 |#1|))) (-15 -2449 (|#1| (-115) (-661 |#1|))) (-15 -2449 (|#1| (-115) |#1|)) (-15 -3032 ((-114) |#1| (-1198))) (-15 -3032 ((-114) |#1| (-115))) (-15 -2468 ((-114) (-115))) (-15 -4023 ((-115) (-115))) (-15 -1742 ((-661 (-115)) |#1|)) (-15 -1743 ((-661 (-628 |#1|)) |#1|)) (-15 -1745 ((-3 (-628 |#1|) #1="failed") |#1|)) (-15 -3002 ((-791) |#1|)) (-15 -1746 (|#1| |#1| |#1|)) (-15 -1746 (|#1| |#1|)) (-15 -2972 (|#1| (-661 |#1|))) (-15 -2972 (|#1| |#1|)) (-15 -2989 (|#1| (-661 |#1|))) (-15 -2989 (|#1| |#1|)) (-15 -1747 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -1747 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -1747 (|#1| |#1| (-305 |#1|))) (-15 -4230 (|#1| (-115) (-661 |#1|))) (-15 -4230 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4230 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4230 (|#1| (-115) |#1| |#1|)) (-15 -4230 (|#1| (-115) |#1|)) (-15 -4198 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#1| |#1|)) (-15 -4198 (|#1| |#1| (-305 |#1|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -4198 (|#1| |#1| (-628 |#1|) |#1|)) (-15 -3575 ((-3 (-628 |#1|) #1#) |#1|)) (-15 -3574 ((-628 |#1|) |#1|))) (-310)) (T -309)) -((-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) -((-2967 (((-114) $ $) 7 T ELT)) (-1743 (((-661 (-628 $)) $) 42 T ELT)) (-1747 (($ $ (-305 $)) 54 T ELT) (($ $ (-661 (-305 $))) 53 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 52 T ELT)) (-3575 (((-3 (-628 $) "failed") $) 67 T ELT)) (-3574 (((-628 $) $) 68 T ELT)) (-2972 (($ $) 49 T ELT) (($ (-661 $)) 48 T ELT)) (-1742 (((-661 (-115)) $) 41 T ELT)) (-4023 (((-115) (-115)) 40 T ELT)) (-3074 (((-114) $) 20 (|has| $ (-1059 (-558))) ELT)) (-1740 (((-1192 $) (-628 $)) 23 (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) 34 T ELT)) (-1745 (((-3 (-628 $) "failed") $) 44 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1744 (((-661 (-628 $)) $) 43 T ELT)) (-2449 (($ (-115) $) 36 T ELT) (($ (-115) (-661 $)) 35 T ELT)) (-3032 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1198)) 37 T ELT)) (-3002 (((-791) $) 45 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1741 (((-114) $ $) 33 T ELT) (((-114) $ (-1198)) 32 T ELT)) (-3075 (((-114) $) 21 (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-628 $) $) 65 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 64 T ELT) (($ $ (-661 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-661 $) (-661 $)) 60 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) 31 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) 30 T ELT) (($ $ (-1198) (-1 $ (-661 $))) 29 T ELT) (($ $ (-1198) (-1 $ $)) 28 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 27 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-661 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT)) (-4230 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-661 $)) 55 T ELT)) (-1746 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3603 (($ $) 22 (|has| $ (-1070)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-628 $)) 66 T ELT)) (-2989 (($ $) 51 T ELT) (($ (-661 $)) 50 T ELT)) (-2468 (((-114) (-115)) 39 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +(-13 (-1069) (-111 $ $) (-10 -7 (-6 -4417))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-1726 (((-660 (-1105)) $) 10 T ELT)) (-1724 (($ (-518) (-518) (-1123) $) 19 T ELT)) (-1722 (($ (-518) (-660 (-983)) $) 23 T ELT)) (-1720 (($) 25 T ELT)) (-1725 (((-710 (-1123)) (-518) (-518) $) 18 T ELT)) (-1723 (((-660 (-983)) (-518) $) 22 T ELT)) (-3992 (($) 7 T ELT)) (-1721 (($) 24 T ELT)) (-4375 (((-876) $) 29 T ELT)) (-1719 (($) 26 T ELT))) +(((-303) (-13 (-629 (-876)) (-10 -8 (-15 -3992 ($)) (-15 -1726 ((-660 (-1105)) $)) (-15 -1725 ((-710 (-1123)) (-518) (-518) $)) (-15 -1724 ($ (-518) (-518) (-1123) $)) (-15 -1723 ((-660 (-983)) (-518) $)) (-15 -1722 ($ (-518) (-660 (-983)) $)) (-15 -1721 ($)) (-15 -1720 ($)) (-15 -1719 ($))))) (T -303)) +((-3992 (*1 *1) (-5 *1 (-303))) (-1726 (*1 *2 *1) (-12 (-5 *2 (-660 (-1105))) (-5 *1 (-303)))) (-1725 (*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-1123))) (-5 *1 (-303)))) (-1724 (*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-303)))) (-1723 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-660 (-983))) (-5 *1 (-303)))) (-1722 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-983))) (-5 *1 (-303)))) (-1721 (*1 *1) (-5 *1 (-303))) (-1720 (*1 *1) (-5 *1 (-303))) (-1719 (*1 *1) (-5 *1 (-303)))) +((-1730 (((-660 (-2 (|:| |eigval| (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (|:| |geneigvec| (-660 (-708 (-419 (-964 |#1|))))))) (-708 (-419 (-964 |#1|)))) 103 T ELT)) (-1729 (((-660 (-708 (-419 (-964 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (|:| |eigmult| (-790)) (|:| |eigvec| (-660 (-708 (-419 (-964 |#1|)))))) (-708 (-419 (-964 |#1|)))) 98 T ELT) (((-660 (-708 (-419 (-964 |#1|)))) (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|))) (-708 (-419 (-964 |#1|))) (-790) (-790)) 42 T ELT)) (-1731 (((-660 (-2 (|:| |eigval| (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (|:| |eigmult| (-790)) (|:| |eigvec| (-660 (-708 (-419 (-964 |#1|))))))) (-708 (-419 (-964 |#1|)))) 100 T ELT)) (-1728 (((-660 (-708 (-419 (-964 |#1|)))) (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|))) (-708 (-419 (-964 |#1|)))) 76 T ELT)) (-1727 (((-660 (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (-708 (-419 (-964 |#1|)))) 75 T ELT)) (-2837 (((-964 |#1|) (-708 (-419 (-964 |#1|)))) 56 T ELT) (((-964 |#1|) (-708 (-419 (-964 |#1|))) (-1197)) 57 T ELT))) +(((-304 |#1|) (-10 -7 (-15 -2837 ((-964 |#1|) (-708 (-419 (-964 |#1|))) (-1197))) (-15 -2837 ((-964 |#1|) (-708 (-419 (-964 |#1|))))) (-15 -1727 ((-660 (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (-708 (-419 (-964 |#1|))))) (-15 -1728 ((-660 (-708 (-419 (-964 |#1|)))) (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|))) (-708 (-419 (-964 |#1|))))) (-15 -1729 ((-660 (-708 (-419 (-964 |#1|)))) (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|))) (-708 (-419 (-964 |#1|))) (-790) (-790))) (-15 -1729 ((-660 (-708 (-419 (-964 |#1|)))) (-2 (|:| |eigval| (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (|:| |eigmult| (-790)) (|:| |eigvec| (-660 (-708 (-419 (-964 |#1|)))))) (-708 (-419 (-964 |#1|))))) (-15 -1730 ((-660 (-2 (|:| |eigval| (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (|:| |geneigvec| (-660 (-708 (-419 (-964 |#1|))))))) (-708 (-419 (-964 |#1|))))) (-15 -1731 ((-660 (-2 (|:| |eigval| (-3 (-419 (-964 |#1|)) (-1186 (-1197) (-964 |#1|)))) (|:| |eigmult| (-790)) (|:| |eigvec| (-660 (-708 (-419 (-964 |#1|))))))) (-708 (-419 (-964 |#1|)))))) (-464)) (T -304)) +((-1731 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-660 (-2 (|:| |eigval| (-3 (-419 (-964 *4)) (-1186 (-1197) (-964 *4)))) (|:| |eigmult| (-790)) (|:| |eigvec| (-660 (-708 (-419 (-964 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-708 (-419 (-964 *4)))))) (-1730 (*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 (-660 (-2 (|:| |eigval| (-3 (-419 (-964 *4)) (-1186 (-1197) (-964 *4)))) (|:| |geneigvec| (-660 (-708 (-419 (-964 *4)))))))) (-5 *1 (-304 *4)) (-5 *3 (-708 (-419 (-964 *4)))))) (-1729 (*1 *2 *3 *4) (-12 (-5 *3 (-2 (|:| |eigval| (-3 (-419 (-964 *5)) (-1186 (-1197) (-964 *5)))) (|:| |eigmult| (-790)) (|:| |eigvec| (-660 *4)))) (-4 *5 (-464)) (-5 *2 (-660 (-708 (-419 (-964 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-708 (-419 (-964 *5)))))) (-1729 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-3 (-419 (-964 *6)) (-1186 (-1197) (-964 *6)))) (-5 *5 (-790)) (-4 *6 (-464)) (-5 *2 (-660 (-708 (-419 (-964 *6))))) (-5 *1 (-304 *6)) (-5 *4 (-708 (-419 (-964 *6)))))) (-1728 (*1 *2 *3 *4) (-12 (-5 *3 (-3 (-419 (-964 *5)) (-1186 (-1197) (-964 *5)))) (-4 *5 (-464)) (-5 *2 (-660 (-708 (-419 (-964 *5))))) (-5 *1 (-304 *5)) (-5 *4 (-708 (-419 (-964 *5)))))) (-1727 (*1 *2 *3) (-12 (-5 *3 (-708 (-419 (-964 *4)))) (-4 *4 (-464)) (-5 *2 (-660 (-3 (-419 (-964 *4)) (-1186 (-1197) (-964 *4))))) (-5 *1 (-304 *4)))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-708 (-419 (-964 *4)))) (-5 *2 (-964 *4)) (-5 *1 (-304 *4)) (-4 *4 (-464)))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-419 (-964 *5)))) (-5 *4 (-1197)) (-5 *2 (-964 *5)) (-5 *1 (-304 *5)) (-4 *5 (-464))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1737 (($ $) 12 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-1746 (($ $ $) 95 (|has| |#1| (-310)) ELT)) (-4153 (($) NIL (-3956 (|has| |#1| (-21)) (|has| |#1| (-745))) CONST)) (-1735 (($ $) 51 (|has| |#1| (-21)) ELT)) (-1733 (((-3 $ #1#) $) 62 (|has| |#1| (-745)) ELT)) (-3947 ((|#1| $) 11 T ELT)) (-3886 (((-3 $ #1#) $) 60 (|has| |#1| (-745)) ELT)) (-2640 (((-114) $) NIL (|has| |#1| (-745)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 14 T ELT)) (-3948 ((|#1| $) 10 T ELT)) (-1736 (($ $) 50 (|has| |#1| (-21)) ELT)) (-1734 (((-3 $ #1#) $) 61 (|has| |#1| (-745)) ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2873 (($ $) 64 (-3956 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-1732 (((-660 $) $) 85 (|has| |#1| (-569)) ELT)) (-4197 (($ $ $) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 $)) 28 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 21 (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-3643 (($ |#1| |#1|) 9 T ELT)) (-4340 (((-136)) 90 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) 87 (|has| |#1| (-916 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-916 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-916 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-916 (-1197))) ELT)) (-3409 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2823 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4375 (($ (-558)) NIL (|has| |#1| (-1069)) ELT) (((-114) $) 37 (|has| |#1| (-1121)) ELT) (((-876) $) 36 (|has| |#1| (-1121)) ELT)) (-3527 (((-790)) 67 (|has| |#1| (-1069)) CONST)) (-1377 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3058 (($) 47 (|has| |#1| (-21)) CONST)) (-3064 (($) 57 (|has| |#1| (-745)) CONST)) (-3069 (($ $ (-1197)) NIL (|has| |#1| (-916 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-916 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-916 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-916 (-1197))) ELT)) (-3453 (($ |#1| |#1|) 8 T ELT) (((-114) $ $) 32 (|has| |#1| (-1121)) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 92 (-3956 (|has| |#1| (-376)) (|has| |#1| (-485))) ELT)) (-4266 (($ |#1| $) 45 (|has| |#1| (-21)) ELT) (($ $ |#1|) 46 (|has| |#1| (-21)) ELT) (($ $ $) 44 (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4268 (($ |#1| $) 40 (|has| |#1| (-25)) ELT) (($ $ |#1|) 41 (|has| |#1| (-25)) ELT) (($ $ $) 39 (|has| |#1| (-25)) ELT)) (** (($ $ (-558)) NIL (|has| |#1| (-485)) ELT) (($ $ (-790)) NIL (|has| |#1| (-745)) ELT) (($ $ (-937)) NIL (|has| |#1| (-1132)) ELT)) (* (($ $ |#1|) 55 (|has| |#1| (-1132)) ELT) (($ |#1| $) 54 (|has| |#1| (-1132)) ELT) (($ $ $) 53 (|has| |#1| (-1132)) ELT) (($ (-558) $) 70 (|has| |#1| (-21)) ELT) (($ (-790) $) NIL (|has| |#1| (-21)) ELT) (($ (-937) $) NIL (|has| |#1| (-25)) ELT))) +(((-305 |#1|) (-13 (-1237) (-10 -8 (-15 -3453 ($ |#1| |#1|)) (-15 -3643 ($ |#1| |#1|)) (-15 -1737 ($ $)) (-15 -3948 (|#1| $)) (-15 -3947 (|#1| $)) (-15 -4387 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-526 (-1197) |#1|)) (-6 (-526 (-1197) |#1|)) |%noBranch|) (IF (|has| |#1| (-1121)) (PROGN (-6 (-1121)) (-6 (-629 (-114))) (IF (|has| |#1| (-321 |#1|)) (PROGN (-15 -4197 ($ $ $)) (-15 -4197 ($ $ (-660 $)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-25)) (PROGN (-6 (-25)) (-15 -4268 ($ |#1| $)) (-15 -4268 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-21)) (PROGN (-6 (-21)) (-15 -1736 ($ $)) (-15 -1735 ($ $)) (-15 -4266 ($ |#1| $)) (-15 -4266 ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-1132)) (PROGN (-6 (-1132)) (-15 * ($ |#1| $)) (-15 * ($ $ |#1|))) |%noBranch|) (IF (|has| |#1| (-745)) (PROGN (-6 (-745)) (-15 -1734 ((-3 $ #1="failed") $)) (-15 -1733 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-485)) (PROGN (-6 (-485)) (-15 -1734 ((-3 $ #1#) $)) (-15 -1733 ((-3 $ #1#) $))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-111 |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-736 |#1|)) |%noBranch|) (IF (|has| |#1| (-569)) (-15 -1732 ((-660 $) $)) |%noBranch|) (IF (|has| |#1| (-916 (-1197))) (-6 (-916 (-1197))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-1295 |#1|)) (-15 -4378 ($ $ $)) (-15 -2873 ($ $))) |%noBranch|) (IF (|has| |#1| (-310)) (-15 -1746 ($ $ $)) |%noBranch|))) (-1237)) (T -305)) +((-3453 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) (-3643 (*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) (-1737 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) (-3948 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) (-3947 (*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-305 *3)))) (-4197 (*1 *1 *1 *1) (-12 (-4 *2 (-321 *2)) (-4 *2 (-1121)) (-4 *2 (-1237)) (-5 *1 (-305 *2)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1121)) (-4 *3 (-1237)) (-5 *1 (-305 *3)))) (-4268 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-4268 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) (-1736 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-1735 (*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4266 (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-4266 (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) (-1734 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-745)) (-4 *2 (-1237)))) (-1733 (*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-745)) (-4 *2 (-1237)))) (-1732 (*1 *2 *1) (-12 (-5 *2 (-660 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) (-4 *3 (-1237)))) (-1746 (*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1237)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) (* (*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) (-4378 (*1 *1 *1 *1) (-3956 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1237))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) (-2873 (*1 *1 *1) (-3956 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1237))) (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1237)))))) +((-4387 (((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)) 14 T ELT))) +(((-306 |#1| |#2|) (-10 -7 (-15 -4387 ((-305 |#2|) (-1 |#2| |#1|) (-305 |#1|)))) (-1237) (-1237)) (T -306)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-2883 (((-660 |#1|) $) NIL T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #1#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-307 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4424))) (-1121) (-1121)) (T -307)) +NIL +((-1738 (((-323) (-1179) (-660 (-1179))) 17 T ELT) (((-323) (-1179) (-1179)) 16 T ELT) (((-323) (-660 (-1179))) 15 T ELT) (((-323) (-1179)) 14 T ELT))) +(((-308) (-10 -7 (-15 -1738 ((-323) (-1179))) (-15 -1738 ((-323) (-660 (-1179)))) (-15 -1738 ((-323) (-1179) (-1179))) (-15 -1738 ((-323) (-1179) (-660 (-1179)))))) (T -308)) +((-1738 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1179))) (-5 *3 (-1179)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1738 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-323)) (-5 *1 (-308)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-323)) (-5 *1 (-308)))) (-1738 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-323)) (-5 *1 (-308))))) +((-1742 (((-660 (-627 $)) $) 27 T ELT)) (-1746 (($ $ (-305 $)) 78 T ELT) (($ $ (-660 (-305 $))) 139 T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT)) (-3574 (((-3 (-627 $) #1="failed") $) 127 T ELT)) (-3573 (((-627 $) $) 126 T ELT)) (-2971 (($ $) 17 T ELT) (($ (-660 $)) 54 T ELT)) (-1741 (((-660 (-115)) $) 35 T ELT)) (-4022 (((-115) (-115)) 88 T ELT)) (-3073 (((-114) $) 150 T ELT)) (-4387 (($ (-1 $ $) (-627 $)) 86 T ELT)) (-1744 (((-3 (-627 $) #1#) $) 94 T ELT)) (-2448 (($ (-115) $) 59 T ELT) (($ (-115) (-660 $)) 110 T ELT)) (-3031 (((-114) $ (-115)) 132 T ELT) (((-114) $ (-1197)) 131 T ELT)) (-3001 (((-790) $) 44 T ELT)) (-1740 (((-114) $ $) 57 T ELT) (((-114) $ (-1197)) 49 T ELT)) (-3074 (((-114) $) 148 T ELT)) (-4197 (($ $ (-627 $) $) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) 137 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) 81 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1197) (-1 $ (-660 $))) 67 T ELT) (($ $ (-1197) (-1 $ $)) 72 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 80 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 82 T ELT) (($ $ (-115) (-1 $ (-660 $))) 68 T ELT) (($ $ (-115) (-1 $ $)) 74 T ELT)) (-4229 (($ (-115) $) 60 T ELT) (($ (-115) $ $) 61 T ELT) (($ (-115) $ $ $) 62 T ELT) (($ (-115) $ $ $ $) 63 T ELT) (($ (-115) (-660 $)) 123 T ELT)) (-1745 (($ $) 51 T ELT) (($ $ $) 135 T ELT)) (-2988 (($ $) 15 T ELT) (($ (-660 $)) 53 T ELT)) (-2467 (((-114) (-115)) 21 T ELT))) +(((-309 |#1|) (-10 -7 (-15 -3073 ((-114) |#1|)) (-15 -3074 ((-114) |#1|)) (-15 -4197 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4197 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4197 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -4197 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -4197 (|#1| |#1| (-1197) (-1 |#1| (-660 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 (-1 |#1| |#1|)))) (-15 -1740 ((-114) |#1| (-1197))) (-15 -1740 ((-114) |#1| |#1|)) (-15 -4387 (|#1| (-1 |#1| |#1|) (-627 |#1|))) (-15 -2448 (|#1| (-115) (-660 |#1|))) (-15 -2448 (|#1| (-115) |#1|)) (-15 -3031 ((-114) |#1| (-1197))) (-15 -3031 ((-114) |#1| (-115))) (-15 -2467 ((-114) (-115))) (-15 -4022 ((-115) (-115))) (-15 -1741 ((-660 (-115)) |#1|)) (-15 -1742 ((-660 (-627 |#1|)) |#1|)) (-15 -1744 ((-3 (-627 |#1|) #1="failed") |#1|)) (-15 -3001 ((-790) |#1|)) (-15 -1745 (|#1| |#1| |#1|)) (-15 -1745 (|#1| |#1|)) (-15 -2971 (|#1| (-660 |#1|))) (-15 -2971 (|#1| |#1|)) (-15 -2988 (|#1| (-660 |#1|))) (-15 -2988 (|#1| |#1|)) (-15 -1746 (|#1| |#1| (-660 (-627 |#1|)) (-660 |#1|))) (-15 -1746 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -1746 (|#1| |#1| (-305 |#1|))) (-15 -4229 (|#1| (-115) (-660 |#1|))) (-15 -4229 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4229 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4229 (|#1| (-115) |#1| |#1|)) (-15 -4229 (|#1| (-115) |#1|)) (-15 -4197 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| (-305 |#1|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-627 |#1|)) (-660 |#1|))) (-15 -4197 (|#1| |#1| (-627 |#1|) |#1|)) (-15 -3574 ((-3 (-627 |#1|) #1#) |#1|)) (-15 -3573 ((-627 |#1|) |#1|))) (-310)) (T -309)) +((-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310))))) +((-2966 (((-114) $ $) 7 T ELT)) (-1742 (((-660 (-627 $)) $) 42 T ELT)) (-1746 (($ $ (-305 $)) 54 T ELT) (($ $ (-660 (-305 $))) 53 T ELT) (($ $ (-660 (-627 $)) (-660 $)) 52 T ELT)) (-3574 (((-3 (-627 $) "failed") $) 67 T ELT)) (-3573 (((-627 $) $) 68 T ELT)) (-2971 (($ $) 49 T ELT) (($ (-660 $)) 48 T ELT)) (-1741 (((-660 (-115)) $) 41 T ELT)) (-4022 (((-115) (-115)) 40 T ELT)) (-3073 (((-114) $) 20 (|has| $ (-1058 (-558))) ELT)) (-1739 (((-1191 $) (-627 $)) 23 (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) 34 T ELT)) (-1744 (((-3 (-627 $) "failed") $) 44 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1743 (((-660 (-627 $)) $) 43 T ELT)) (-2448 (($ (-115) $) 36 T ELT) (($ (-115) (-660 $)) 35 T ELT)) (-3031 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1197)) 37 T ELT)) (-3001 (((-790) $) 45 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1740 (((-114) $ $) 33 T ELT) (((-114) $ (-1197)) 32 T ELT)) (-3074 (((-114) $) 21 (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-627 $) $) 65 T ELT) (($ $ (-660 (-627 $)) (-660 $)) 64 T ELT) (($ $ (-660 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-660 $) (-660 $)) 60 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) 31 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) 30 T ELT) (($ $ (-1197) (-1 $ (-660 $))) 29 T ELT) (($ $ (-1197) (-1 $ $)) 28 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 27 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-660 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT)) (-4229 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-660 $)) 55 T ELT)) (-1745 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-3602 (($ $) 22 (|has| $ (-1069)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-627 $)) 66 T ELT)) (-2988 (($ $) 51 T ELT) (($ (-660 $)) 50 T ELT)) (-2467 (((-114) (-115)) 39 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-310) (-142)) (T -310)) -((-4230 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4230 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4230 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4230 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4230 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-1747 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *1))) (-4 *1 (-310)))) (-1747 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-628 *1))) (-5 *3 (-661 *1)) (-4 *1 (-310)))) (-2989 (*1 *1 *1) (-4 *1 (-310))) (-2989 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) (-2972 (*1 *1 *1) (-4 *1 (-310))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) (-1746 (*1 *1 *1) (-4 *1 (-310))) (-1746 (*1 *1 *1 *1) (-4 *1 (-310))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-791)))) (-1745 (*1 *2 *1) (|partial| -12 (-5 *2 (-628 *1)) (-4 *1 (-310)))) (-1744 (*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310)))) (-1742 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-661 (-115))))) (-4023 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2468 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3032 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3032 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1198)) (-5 *2 (-114)))) (-2449 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2449 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) (-4388 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-628 *1)) (-4 *1 (-310)))) (-1741 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-1741 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1198)) (-5 *2 (-114)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-1740 (*1 *2 *3) (-12 (-5 *3 (-628 *1)) (-4 *1 (-1070)) (-4 *1 (-310)) (-5 *2 (-1192 *1)))) (-3603 (*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-310)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-1059 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-1059 (-558))) (-4 *1 (-310)) (-5 *2 (-114))))) -(-13 (-1122) (-1059 (-628 $)) (-526 (-628 $) $) (-321 $) (-10 -8 (-15 -4230 ($ (-115) $)) (-15 -4230 ($ (-115) $ $)) (-15 -4230 ($ (-115) $ $ $)) (-15 -4230 ($ (-115) $ $ $ $)) (-15 -4230 ($ (-115) (-661 $))) (-15 -1747 ($ $ (-305 $))) (-15 -1747 ($ $ (-661 (-305 $)))) (-15 -1747 ($ $ (-661 (-628 $)) (-661 $))) (-15 -2989 ($ $)) (-15 -2989 ($ (-661 $))) (-15 -2972 ($ $)) (-15 -2972 ($ (-661 $))) (-15 -1746 ($ $)) (-15 -1746 ($ $ $)) (-15 -3002 ((-791) $)) (-15 -1745 ((-3 (-628 $) "failed") $)) (-15 -1744 ((-661 (-628 $)) $)) (-15 -1743 ((-661 (-628 $)) $)) (-15 -1742 ((-661 (-115)) $)) (-15 -4023 ((-115) (-115))) (-15 -2468 ((-114) (-115))) (-15 -3032 ((-114) $ (-115))) (-15 -3032 ((-114) $ (-1198))) (-15 -2449 ($ (-115) $)) (-15 -2449 ($ (-115) (-661 $))) (-15 -4388 ($ (-1 $ $) (-628 $))) (-15 -1741 ((-114) $ $)) (-15 -1741 ((-114) $ (-1198))) (-15 -4198 ($ $ (-661 (-1198)) (-661 (-1 $ $)))) (-15 -4198 ($ $ (-661 (-1198)) (-661 (-1 $ (-661 $))))) (-15 -4198 ($ $ (-1198) (-1 $ (-661 $)))) (-15 -4198 ($ $ (-1198) (-1 $ $))) (-15 -4198 ($ $ (-661 (-115)) (-661 (-1 $ $)))) (-15 -4198 ($ $ (-661 (-115)) (-661 (-1 $ (-661 $))))) (-15 -4198 ($ $ (-115) (-1 $ (-661 $)))) (-15 -4198 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1070)) (PROGN (-15 -1740 ((-1192 $) (-628 $))) (-15 -3603 ($ $))) |%noBranch|) (IF (|has| $ (-1059 (-558))) (PROGN (-15 -3075 ((-114) $)) (-15 -3074 ((-114) $))) |%noBranch|))) -(((-102) . T) ((-633 (-628 $)) . T) ((-630 (-877)) . T) ((-321 $) . T) ((-526 (-628 $) $) . T) ((-526 $ $) . T) ((-1059 (-628 $)) . T) ((-1122) . T) ((-1238) . T)) -((-4388 ((|#2| (-1 |#2| |#1|) (-1180) (-628 |#1|)) 18 T ELT))) -(((-311 |#1| |#2|) (-10 -7 (-15 -4388 (|#2| (-1 |#2| |#1|) (-1180) (-628 |#1|)))) (-310) (-1238)) (T -311)) -((-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1180)) (-5 *5 (-628 *6)) (-4 *6 (-310)) (-4 *2 (-1238)) (-5 *1 (-311 *6 *2))))) -((-4388 ((|#2| (-1 |#2| |#1|) (-628 |#1|)) 17 T ELT))) -(((-312 |#1| |#2|) (-10 -7 (-15 -4388 (|#2| (-1 |#2| |#1|) (-628 |#1|)))) (-310) (-310)) (T -312)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-628 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))) -((-1750 (((-1176 (-229)) (-326 (-229)) (-661 (-1198)) (-1110 (-855 (-229)))) 117 T ELT)) (-1751 (((-1176 (-229)) (-1288 (-326 (-229))) (-661 (-1198)) (-1110 (-855 (-229)))) 134 T ELT) (((-1176 (-229)) (-326 (-229)) (-661 (-1198)) (-1110 (-855 (-229)))) 71 T ELT)) (-1772 (((-661 (-1180)) (-1176 (-229))) NIL T ELT)) (-1749 (((-661 (-229)) (-326 (-229)) (-1198) (-1110 (-855 (-229)))) 68 T ELT)) (-1752 (((-661 (-229)) (-965 (-419 (-558))) (-1198) (-1110 (-855 (-229)))) 58 T ELT)) (-1771 (((-661 (-1180)) (-661 (-229))) NIL T ELT)) (-1773 (((-229) (-1110 (-855 (-229)))) 29 T ELT)) (-1774 (((-229) (-1110 (-855 (-229)))) 30 T ELT)) (-1748 (((-114) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 63 T ELT)) (-1769 (((-1180) (-229)) NIL T ELT))) -(((-313) (-10 -7 (-15 -1773 ((-229) (-1110 (-855 (-229))))) (-15 -1774 ((-229) (-1110 (-855 (-229))))) (-15 -1748 ((-114) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1749 ((-661 (-229)) (-326 (-229)) (-1198) (-1110 (-855 (-229))))) (-15 -1750 ((-1176 (-229)) (-326 (-229)) (-661 (-1198)) (-1110 (-855 (-229))))) (-15 -1751 ((-1176 (-229)) (-326 (-229)) (-661 (-1198)) (-1110 (-855 (-229))))) (-15 -1751 ((-1176 (-229)) (-1288 (-326 (-229))) (-661 (-1198)) (-1110 (-855 (-229))))) (-15 -1752 ((-661 (-229)) (-965 (-419 (-558))) (-1198) (-1110 (-855 (-229))))) (-15 -1769 ((-1180) (-229))) (-15 -1771 ((-661 (-1180)) (-661 (-229)))) (-15 -1772 ((-661 (-1180)) (-1176 (-229)))))) (T -313)) -((-1772 (*1 *2 *3) (-12 (-5 *3 (-1176 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-313)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-313)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1180)) (-5 *1 (-313)))) (-1752 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-965 (-419 (-558)))) (-5 *4 (-1198)) (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-313)))) (-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *4 (-661 (-1198))) (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-313)))) (-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1198))) (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-313)))) (-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1198))) (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-313)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1198)) (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-313)))) (-1748 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))) -((-2187 (((-114) (-229)) 12 T ELT))) -(((-314 |#1| |#2|) (-10 -7 (-15 -2187 ((-114) (-229)))) (-229) (-229)) (T -314)) -((-2187 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-1768 (((-1288 (-326 (-391))) (-1288 (-326 (-229)))) 110 T ELT)) (-1756 (((-1110 (-855 (-229))) (-1110 (-855 (-391)))) 43 T ELT)) (-1772 (((-661 (-1180)) (-1176 (-229))) 92 T ELT)) (-1779 (((-326 (-391)) (-965 (-229))) 53 T ELT)) (-1780 (((-229) (-965 (-229))) 49 T ELT)) (-1775 (((-1180) (-391)) 193 T ELT)) (-1755 (((-855 (-229)) (-855 (-391))) 37 T ELT)) (-1761 (((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1288 (-326 (-229)))) 164 T ELT)) (-1776 (((-1056) (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) 205 T ELT) (((-1056) (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) 203 T ELT)) (-1783 (((-709 (-229)) (-661 (-229)) (-791)) 19 T ELT)) (-1766 (((-1288 (-719)) (-661 (-229))) 99 T ELT)) (-1771 (((-661 (-1180)) (-661 (-229))) 79 T ELT)) (-3057 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-2187 (((-114) (-229) (-1110 (-855 (-229)))) 117 T ELT)) (-1778 (((-1056) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 222 T ELT)) (-1773 (((-229) (-1110 (-855 (-229)))) 112 T ELT)) (-1774 (((-229) (-1110 (-855 (-229)))) 113 T ELT)) (-1782 (((-229) (-419 (-558))) 31 T ELT)) (-1770 (((-1180) (-391)) 77 T ELT)) (-1753 (((-229) (-391)) 22 T ELT)) (-1760 (((-391) (-1288 (-326 (-229)))) 175 T ELT)) (-1754 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-1758 (((-419 (-558)) (-326 (-229))) 56 T ELT)) (-1762 (((-326 (-419 (-558))) (-326 (-229))) 73 T ELT)) (-1767 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-1759 (((-229) (-326 (-229))) 57 T ELT)) (-1764 (((-661 (-229)) (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) 68 T ELT)) (-1763 (((-1110 (-855 (-229))) (-1110 (-855 (-229)))) 65 T ELT)) (-1769 (((-1180) (-229)) 76 T ELT)) (-1765 (((-719) (-229)) 95 T ELT)) (-1757 (((-419 (-558)) (-229)) 58 T ELT)) (-1781 (((-326 (-391)) (-229)) 52 T ELT)) (-4402 (((-661 (-1110 (-855 (-229)))) (-661 (-1110 (-855 (-391))))) 46 T ELT)) (-4232 (((-1056) (-661 (-1056))) 189 T ELT) (((-1056) (-1056) (-1056)) 183 T ELT)) (-1777 (((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1638 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) -(((-315) (-10 -7 (-15 -1753 ((-229) (-391))) (-15 -1754 ((-326 (-229)) (-326 (-391)))) (-15 -1755 ((-855 (-229)) (-855 (-391)))) (-15 -1756 ((-1110 (-855 (-229))) (-1110 (-855 (-391))))) (-15 -4402 ((-661 (-1110 (-855 (-229)))) (-661 (-1110 (-855 (-391)))))) (-15 -1757 ((-419 (-558)) (-229))) (-15 -1758 ((-419 (-558)) (-326 (-229)))) (-15 -1759 ((-229) (-326 (-229)))) (-15 -3057 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1760 ((-391) (-1288 (-326 (-229))))) (-15 -1761 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1288 (-326 (-229))))) (-15 -1762 ((-326 (-419 (-558))) (-326 (-229)))) (-15 -1763 ((-1110 (-855 (-229))) (-1110 (-855 (-229))))) (-15 -1764 ((-661 (-229)) (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))))) (-15 -1765 ((-719) (-229))) (-15 -1766 ((-1288 (-719)) (-661 (-229)))) (-15 -1767 ((-326 (-391)) (-326 (-229)))) (-15 -1768 ((-1288 (-326 (-391))) (-1288 (-326 (-229))))) (-15 -2187 ((-114) (-229) (-1110 (-855 (-229))))) (-15 -1769 ((-1180) (-229))) (-15 -1770 ((-1180) (-391))) (-15 -1771 ((-661 (-1180)) (-661 (-229)))) (-15 -1772 ((-661 (-1180)) (-1176 (-229)))) (-15 -1773 ((-229) (-1110 (-855 (-229))))) (-15 -1774 ((-229) (-1110 (-855 (-229))))) (-15 -4232 ((-1056) (-1056) (-1056))) (-15 -4232 ((-1056) (-661 (-1056)))) (-15 -1775 ((-1180) (-391))) (-15 -1776 ((-1056) (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))))) (-15 -1776 ((-1056) (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056))))) (-15 -1777 ((-1056) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1638 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1778 ((-1056) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1779 ((-326 (-391)) (-965 (-229)))) (-15 -1780 ((-229) (-965 (-229)))) (-15 -1781 ((-326 (-391)) (-229))) (-15 -1782 ((-229) (-419 (-558)))) (-15 -1783 ((-709 (-229)) (-661 (-229)) (-791))))) (T -315)) -((-1783 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-229))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) (-5 *1 (-315)))) (-1782 (*1 *2 *3) (-12 (-5 *3 (-419 (-558))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-965 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-965 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1638 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-4232 (*1 *2 *3) (-12 (-5 *3 (-661 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) (-4232 (*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1176 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-315)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-315)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1180)) (-5 *1 (-315)))) (-2187 (*1 *2 *3 *4) (-12 (-5 *4 (-1110 (-855 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *2 (-1288 (-326 (-391)))) (-5 *1 (-315)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1288 (-719))) (-5 *1 (-315)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-719)) (-5 *1 (-315)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *2 (-661 (-229))) (-5 *1 (-315)))) (-1763 (*1 *2 *2) (-12 (-5 *2 (-1110 (-855 (-229)))) (-5 *1 (-315)))) (-1762 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-558)))) (-5 *1 (-315)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-315)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-3057 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-558))) (-5 *1 (-315)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-558))) (-5 *1 (-315)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-661 (-1110 (-855 (-391))))) (-5 *2 (-661 (-1110 (-855 (-229))))) (-5 *1 (-315)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-391)))) (-5 *2 (-1110 (-855 (-229)))) (-5 *1 (-315)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-855 (-391))) (-5 *2 (-855 (-229))) (-5 *1 (-315)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) -((-1784 (((-661 |#1|) (-661 |#1|)) 10 T ELT))) -(((-316 |#1|) (-10 -7 (-15 -1784 ((-661 |#1|) (-661 |#1|)))) (-860)) (T -316)) -((-1784 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-860)) (-5 *1 (-316 *3))))) -((-4388 (((-709 |#2|) (-1 |#2| |#1|) (-709 |#1|)) 17 T ELT))) -(((-317 |#1| |#2|) (-10 -7 (-15 -4388 ((-709 |#2|) (-1 |#2| |#1|) (-709 |#1|)))) (-1070) (-1070)) (T -317)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-709 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-709 *6)) (-5 *1 (-317 *5 *6))))) -((-1788 (((-114) $ $) 14 T ELT)) (-2963 (($ $ $) 18 T ELT)) (-2962 (($ $ $) 17 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 50 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 67 T ELT)) (-3562 (($ $ $) 25 T ELT) (($ (-661 $)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3886 (((-3 $ #1#) $ $) 21 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 55 T ELT))) -(((-318 |#1|) (-10 -7 (-15 -1785 ((-3 (-661 |#1|) #1="failed") (-661 |#1|) |#1|)) (-15 -1786 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1786 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2640 |#1|)) |#1| |#1|)) (-15 -2963 (|#1| |#1| |#1|)) (-15 -2962 (|#1| |#1| |#1|)) (-15 -1788 ((-114) |#1| |#1|)) (-15 -3141 ((-711 (-661 |#1|)) (-661 |#1|) |#1|)) (-15 -3142 ((-2 (|:| -4384 (-661 |#1|)) (|:| -2640 |#1|)) (-661 |#1|))) (-15 -3562 (|#1| (-661 |#1|))) (-15 -3562 (|#1| |#1| |#1|)) (-15 -3886 ((-3 |#1| #1#) |#1| |#1|))) (-319)) (T -318)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-1785 (((-3 (-661 $) "failed") (-661 $) $) 65 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4229 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4229 (*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4229 (*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4229 (*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-4229 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-310)))) (-1746 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310)))) (-1746 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *1))) (-4 *1 (-310)))) (-1746 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-627 *1))) (-5 *3 (-660 *1)) (-4 *1 (-310)))) (-2988 (*1 *1 *1) (-4 *1 (-310))) (-2988 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-310)))) (-2971 (*1 *1 *1) (-4 *1 (-310))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-310)))) (-1745 (*1 *1 *1) (-4 *1 (-310))) (-1745 (*1 *1 *1 *1) (-4 *1 (-310))) (-3001 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-790)))) (-1744 (*1 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-310)))) (-1743 (*1 *2 *1) (-12 (-5 *2 (-660 (-627 *1))) (-4 *1 (-310)))) (-1742 (*1 *2 *1) (-12 (-5 *2 (-660 (-627 *1))) (-4 *1 (-310)))) (-1741 (*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-660 (-115))))) (-4022 (*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2467 (*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3031 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) (-3031 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1197)) (-5 *2 (-114)))) (-2448 (*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) (-2448 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-310)))) (-4387 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-627 *1)) (-4 *1 (-310)))) (-1740 (*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114)))) (-1740 (*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1197)) (-5 *2 (-114)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-310)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) (-1739 (*1 *2 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-1069)) (-4 *1 (-310)) (-5 *2 (-1191 *1)))) (-3602 (*1 *1 *1) (-12 (-4 *1 (-1069)) (-4 *1 (-310)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-1058 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) (-3073 (*1 *2 *1) (-12 (-4 *1 (-1058 (-558))) (-4 *1 (-310)) (-5 *2 (-114))))) +(-13 (-1121) (-1058 (-627 $)) (-526 (-627 $) $) (-321 $) (-10 -8 (-15 -4229 ($ (-115) $)) (-15 -4229 ($ (-115) $ $)) (-15 -4229 ($ (-115) $ $ $)) (-15 -4229 ($ (-115) $ $ $ $)) (-15 -4229 ($ (-115) (-660 $))) (-15 -1746 ($ $ (-305 $))) (-15 -1746 ($ $ (-660 (-305 $)))) (-15 -1746 ($ $ (-660 (-627 $)) (-660 $))) (-15 -2988 ($ $)) (-15 -2988 ($ (-660 $))) (-15 -2971 ($ $)) (-15 -2971 ($ (-660 $))) (-15 -1745 ($ $)) (-15 -1745 ($ $ $)) (-15 -3001 ((-790) $)) (-15 -1744 ((-3 (-627 $) "failed") $)) (-15 -1743 ((-660 (-627 $)) $)) (-15 -1742 ((-660 (-627 $)) $)) (-15 -1741 ((-660 (-115)) $)) (-15 -4022 ((-115) (-115))) (-15 -2467 ((-114) (-115))) (-15 -3031 ((-114) $ (-115))) (-15 -3031 ((-114) $ (-1197))) (-15 -2448 ($ (-115) $)) (-15 -2448 ($ (-115) (-660 $))) (-15 -4387 ($ (-1 $ $) (-627 $))) (-15 -1740 ((-114) $ $)) (-15 -1740 ((-114) $ (-1197))) (-15 -4197 ($ $ (-660 (-1197)) (-660 (-1 $ $)))) (-15 -4197 ($ $ (-660 (-1197)) (-660 (-1 $ (-660 $))))) (-15 -4197 ($ $ (-1197) (-1 $ (-660 $)))) (-15 -4197 ($ $ (-1197) (-1 $ $))) (-15 -4197 ($ $ (-660 (-115)) (-660 (-1 $ $)))) (-15 -4197 ($ $ (-660 (-115)) (-660 (-1 $ (-660 $))))) (-15 -4197 ($ $ (-115) (-1 $ (-660 $)))) (-15 -4197 ($ $ (-115) (-1 $ $))) (IF (|has| $ (-1069)) (PROGN (-15 -1739 ((-1191 $) (-627 $))) (-15 -3602 ($ $))) |%noBranch|) (IF (|has| $ (-1058 (-558))) (PROGN (-15 -3074 ((-114) $)) (-15 -3073 ((-114) $))) |%noBranch|))) +(((-102) . T) ((-632 (-627 $)) . T) ((-629 (-876)) . T) ((-321 $) . T) ((-526 (-627 $) $) . T) ((-526 $ $) . T) ((-1058 (-627 $)) . T) ((-1121) . T) ((-1237) . T)) +((-4387 ((|#2| (-1 |#2| |#1|) (-1179) (-627 |#1|)) 18 T ELT))) +(((-311 |#1| |#2|) (-10 -7 (-15 -4387 (|#2| (-1 |#2| |#1|) (-1179) (-627 |#1|)))) (-310) (-1237)) (T -311)) +((-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-627 *6)) (-4 *6 (-310)) (-4 *2 (-1237)) (-5 *1 (-311 *6 *2))))) +((-4387 ((|#2| (-1 |#2| |#1|) (-627 |#1|)) 17 T ELT))) +(((-312 |#1| |#2|) (-10 -7 (-15 -4387 (|#2| (-1 |#2| |#1|) (-627 |#1|)))) (-310) (-310)) (T -312)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-627 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2))))) +((-1749 (((-1175 (-229)) (-326 (-229)) (-660 (-1197)) (-1109 (-854 (-229)))) 117 T ELT)) (-1750 (((-1175 (-229)) (-1287 (-326 (-229))) (-660 (-1197)) (-1109 (-854 (-229)))) 134 T ELT) (((-1175 (-229)) (-326 (-229)) (-660 (-1197)) (-1109 (-854 (-229)))) 71 T ELT)) (-1771 (((-660 (-1179)) (-1175 (-229))) NIL T ELT)) (-1748 (((-660 (-229)) (-326 (-229)) (-1197) (-1109 (-854 (-229)))) 68 T ELT)) (-1751 (((-660 (-229)) (-964 (-419 (-558))) (-1197) (-1109 (-854 (-229)))) 58 T ELT)) (-1770 (((-660 (-1179)) (-660 (-229))) NIL T ELT)) (-1772 (((-229) (-1109 (-854 (-229)))) 29 T ELT)) (-1773 (((-229) (-1109 (-854 (-229)))) 30 T ELT)) (-1747 (((-114) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 63 T ELT)) (-1768 (((-1179) (-229)) NIL T ELT))) +(((-313) (-10 -7 (-15 -1772 ((-229) (-1109 (-854 (-229))))) (-15 -1773 ((-229) (-1109 (-854 (-229))))) (-15 -1747 ((-114) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -1748 ((-660 (-229)) (-326 (-229)) (-1197) (-1109 (-854 (-229))))) (-15 -1749 ((-1175 (-229)) (-326 (-229)) (-660 (-1197)) (-1109 (-854 (-229))))) (-15 -1750 ((-1175 (-229)) (-326 (-229)) (-660 (-1197)) (-1109 (-854 (-229))))) (-15 -1750 ((-1175 (-229)) (-1287 (-326 (-229))) (-660 (-1197)) (-1109 (-854 (-229))))) (-15 -1751 ((-660 (-229)) (-964 (-419 (-558))) (-1197) (-1109 (-854 (-229))))) (-15 -1768 ((-1179) (-229))) (-15 -1770 ((-660 (-1179)) (-660 (-229)))) (-15 -1771 ((-660 (-1179)) (-1175 (-229)))))) (T -313)) +((-1771 (*1 *2 *3) (-12 (-5 *3 (-1175 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-313)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-313)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1179)) (-5 *1 (-313)))) (-1751 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-964 (-419 (-558)))) (-5 *4 (-1197)) (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-660 (-229))) (-5 *1 (-313)))) (-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *4 (-660 (-1197))) (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-313)))) (-1750 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-660 (-1197))) (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-313)))) (-1749 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-660 (-1197))) (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-313)))) (-1748 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1197)) (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-660 (-229))) (-5 *1 (-313)))) (-1747 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-313))))) +((-2186 (((-114) (-229)) 12 T ELT))) +(((-314 |#1| |#2|) (-10 -7 (-15 -2186 ((-114) (-229)))) (-229) (-229)) (T -314)) +((-2186 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-1767 (((-1287 (-326 (-391))) (-1287 (-326 (-229)))) 110 T ELT)) (-1755 (((-1109 (-854 (-229))) (-1109 (-854 (-391)))) 43 T ELT)) (-1771 (((-660 (-1179)) (-1175 (-229))) 92 T ELT)) (-1778 (((-326 (-391)) (-964 (-229))) 53 T ELT)) (-1779 (((-229) (-964 (-229))) 49 T ELT)) (-1774 (((-1179) (-391)) 193 T ELT)) (-1754 (((-854 (-229)) (-854 (-391))) 37 T ELT)) (-1760 (((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1287 (-326 (-229)))) 164 T ELT)) (-1775 (((-1055) (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) 205 T ELT) (((-1055) (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) 203 T ELT)) (-1782 (((-708 (-229)) (-660 (-229)) (-790)) 19 T ELT)) (-1765 (((-1287 (-718)) (-660 (-229))) 99 T ELT)) (-1770 (((-660 (-1179)) (-660 (-229))) 79 T ELT)) (-3056 (((-3 (-326 (-229)) "failed") (-326 (-229))) 128 T ELT)) (-2186 (((-114) (-229) (-1109 (-854 (-229)))) 117 T ELT)) (-1777 (((-1055) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) 222 T ELT)) (-1772 (((-229) (-1109 (-854 (-229)))) 112 T ELT)) (-1773 (((-229) (-1109 (-854 (-229)))) 113 T ELT)) (-1781 (((-229) (-419 (-558))) 31 T ELT)) (-1769 (((-1179) (-391)) 77 T ELT)) (-1752 (((-229) (-391)) 22 T ELT)) (-1759 (((-391) (-1287 (-326 (-229)))) 175 T ELT)) (-1753 (((-326 (-229)) (-326 (-391))) 28 T ELT)) (-1757 (((-419 (-558)) (-326 (-229))) 56 T ELT)) (-1761 (((-326 (-419 (-558))) (-326 (-229))) 73 T ELT)) (-1766 (((-326 (-391)) (-326 (-229))) 103 T ELT)) (-1758 (((-229) (-326 (-229))) 57 T ELT)) (-1763 (((-660 (-229)) (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) 68 T ELT)) (-1762 (((-1109 (-854 (-229))) (-1109 (-854 (-229)))) 65 T ELT)) (-1768 (((-1179) (-229)) 76 T ELT)) (-1764 (((-718) (-229)) 95 T ELT)) (-1756 (((-419 (-558)) (-229)) 58 T ELT)) (-1780 (((-326 (-391)) (-229)) 52 T ELT)) (-4401 (((-660 (-1109 (-854 (-229)))) (-660 (-1109 (-854 (-391))))) 46 T ELT)) (-4231 (((-1055) (-660 (-1055))) 189 T ELT) (((-1055) (-1055) (-1055)) 183 T ELT)) (-1776 (((-1055) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) 219 T ELT))) +(((-315) (-10 -7 (-15 -1752 ((-229) (-391))) (-15 -1753 ((-326 (-229)) (-326 (-391)))) (-15 -1754 ((-854 (-229)) (-854 (-391)))) (-15 -1755 ((-1109 (-854 (-229))) (-1109 (-854 (-391))))) (-15 -4401 ((-660 (-1109 (-854 (-229)))) (-660 (-1109 (-854 (-391)))))) (-15 -1756 ((-419 (-558)) (-229))) (-15 -1757 ((-419 (-558)) (-326 (-229)))) (-15 -1758 ((-229) (-326 (-229)))) (-15 -3056 ((-3 (-326 (-229)) "failed") (-326 (-229)))) (-15 -1759 ((-391) (-1287 (-326 (-229))))) (-15 -1760 ((-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558))) (-1287 (-326 (-229))))) (-15 -1761 ((-326 (-419 (-558))) (-326 (-229)))) (-15 -1762 ((-1109 (-854 (-229))) (-1109 (-854 (-229))))) (-15 -1763 ((-660 (-229)) (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))))) (-15 -1764 ((-718) (-229))) (-15 -1765 ((-1287 (-718)) (-660 (-229)))) (-15 -1766 ((-326 (-391)) (-326 (-229)))) (-15 -1767 ((-1287 (-326 (-391))) (-1287 (-326 (-229))))) (-15 -2186 ((-114) (-229) (-1109 (-854 (-229))))) (-15 -1768 ((-1179) (-229))) (-15 -1769 ((-1179) (-391))) (-15 -1770 ((-660 (-1179)) (-660 (-229)))) (-15 -1771 ((-660 (-1179)) (-1175 (-229)))) (-15 -1772 ((-229) (-1109 (-854 (-229))))) (-15 -1773 ((-229) (-1109 (-854 (-229))))) (-15 -4231 ((-1055) (-1055) (-1055))) (-15 -4231 ((-1055) (-660 (-1055)))) (-15 -1774 ((-1179) (-391))) (-15 -1775 ((-1055) (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))))) (-15 -1775 ((-1055) (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055))))) (-15 -1776 ((-1055) (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))) (-15 -1777 ((-1055) (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))) (-15 -1778 ((-326 (-391)) (-964 (-229)))) (-15 -1779 ((-229) (-964 (-229)))) (-15 -1780 ((-326 (-391)) (-229))) (-15 -1781 ((-229) (-419 (-558)))) (-15 -1782 ((-708 (-229)) (-660 (-229)) (-790))))) (T -315)) +((-1782 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-229))) (-5 *4 (-790)) (-5 *2 (-708 (-229))) (-5 *1 (-315)))) (-1781 (*1 *2 *3) (-12 (-5 *3 (-419 (-558))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1780 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1779 (*1 *2 *3) (-12 (-5 *3 (-964 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1778 (*1 *2 *3) (-12 (-5 *3 (-964 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1777 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-1776 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") (|:| |lowerSingular| "There is a singularity at the lower end point") (|:| |upperSingular| "There is a singularity at the upper end point") (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-1775 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-1774 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-4231 (*1 *2 *3) (-12 (-5 *3 (-660 (-1055))) (-5 *2 (-1055)) (-5 *1 (-315)))) (-4231 (*1 *2 *2 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-315)))) (-1773 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1772 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1771 (*1 *2 *3) (-12 (-5 *3 (-1175 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-315)))) (-1770 (*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-315)))) (-1769 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-1768 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1179)) (-5 *1 (-315)))) (-2186 (*1 *2 *3 *4) (-12 (-5 *4 (-1109 (-854 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) (-1767 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *2 (-1287 (-326 (-391)))) (-5 *1 (-315)))) (-1766 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315)))) (-1765 (*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-1287 (-718))) (-5 *1 (-315)))) (-1764 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-718)) (-5 *1 (-315)))) (-1763 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *2 (-660 (-229))) (-5 *1 (-315)))) (-1762 (*1 *2 *2) (-12 (-5 *2 (-1109 (-854 (-229)))) (-5 *1 (-315)))) (-1761 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-558)))) (-5 *1 (-315)))) (-1760 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-315)))) (-1759 (*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315)))) (-3056 (*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1758 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315)))) (-1757 (*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-558))) (-5 *1 (-315)))) (-1756 (*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-558))) (-5 *1 (-315)))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-660 (-1109 (-854 (-391))))) (-5 *2 (-660 (-1109 (-854 (-229))))) (-5 *1 (-315)))) (-1755 (*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-391)))) (-5 *2 (-1109 (-854 (-229)))) (-5 *1 (-315)))) (-1754 (*1 *2 *3) (-12 (-5 *3 (-854 (-391))) (-5 *2 (-854 (-229))) (-5 *1 (-315)))) (-1753 (*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315)))) (-1752 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) +((-1783 (((-660 |#1|) (-660 |#1|)) 10 T ELT))) +(((-316 |#1|) (-10 -7 (-15 -1783 ((-660 |#1|) (-660 |#1|)))) (-859)) (T -316)) +((-1783 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-859)) (-5 *1 (-316 *3))))) +((-4387 (((-708 |#2|) (-1 |#2| |#1|) (-708 |#1|)) 17 T ELT))) +(((-317 |#1| |#2|) (-10 -7 (-15 -4387 ((-708 |#2|) (-1 |#2| |#1|) (-708 |#1|)))) (-1069) (-1069)) (T -317)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-708 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-708 *6)) (-5 *1 (-317 *5 *6))))) +((-1787 (((-114) $ $) 14 T ELT)) (-2962 (($ $ $) 18 T ELT)) (-2961 (($ $ $) 17 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 50 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 67 T ELT)) (-3561 (($ $ $) 25 T ELT) (($ (-660 $)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 35 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 40 T ELT)) (-3885 (((-3 $ #1#) $ $) 21 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 55 T ELT))) +(((-318 |#1|) (-10 -7 (-15 -1784 ((-3 (-660 |#1|) #1="failed") (-660 |#1|) |#1|)) (-15 -1785 ((-3 (-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|)) #1#) |#1| |#1| |#1|)) (-15 -1785 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2639 |#1|)) |#1| |#1|)) (-15 -2962 (|#1| |#1| |#1|)) (-15 -2961 (|#1| |#1| |#1|)) (-15 -1787 ((-114) |#1| |#1|)) (-15 -3140 ((-710 (-660 |#1|)) (-660 |#1|) |#1|)) (-15 -3141 ((-2 (|:| -4383 (-660 |#1|)) (|:| -2639 |#1|)) (-660 |#1|))) (-15 -3561 (|#1| (-660 |#1|))) (-15 -3561 (|#1| |#1| |#1|)) (-15 -3885 ((-3 |#1| #1#) |#1| |#1|))) (-319)) (T -318)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-1784 (((-3 (-660 $) "failed") (-660 $) $) 65 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-319) (-142)) (T -319)) -((-1788 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-1787 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-791)))) (-3280 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-319)))) (-2962 (*1 *1 *1 *1) (-4 *1 (-319))) (-2963 (*1 *1 *1 *1) (-4 *1 (-319))) (-1786 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2640 *1))) (-4 *1 (-319)))) (-1786 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-1785 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-661 *1)) (-4 *1 (-319))))) -(-13 (-940) (-10 -8 (-15 -1788 ((-114) $ $)) (-15 -1787 ((-791) $)) (-15 -3280 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -2962 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -1786 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $)) (-15 -1786 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1785 ((-3 (-661 $) "failed") (-661 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-4198 (($ $ (-661 |#2|) (-661 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-661 (-305 |#2|))) NIL T ELT))) -(((-320 |#1| |#2|) (-10 -7 (-15 -4198 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -4198 (|#1| |#1| (-305 |#2|))) (-15 -4198 (|#1| |#1| |#2| |#2|)) (-15 -4198 (|#1| |#1| (-661 |#2|) (-661 |#2|)))) (-321 |#2|) (-1122)) (T -320)) -NIL -((-4198 (($ $ (-661 |#1|) (-661 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 13 T ELT) (($ $ (-661 (-305 |#1|))) 12 T ELT))) -(((-321 |#1|) (-142) (-1122)) (T -321)) -((-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1122)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1122))))) -(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -4198 ($ $ (-305 |t#1|))) (-15 -4198 ($ $ (-661 (-305 |t#1|)))))) +((-1787 (*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114)))) (-1786 (*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-790)))) (-3279 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-319)))) (-2961 (*1 *1 *1 *1) (-4 *1 (-319))) (-2962 (*1 *1 *1 *1) (-4 *1 (-319))) (-1785 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2639 *1))) (-4 *1 (-319)))) (-1785 (*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) (-1784 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-319))))) +(-13 (-939) (-10 -8 (-15 -1787 ((-114) $ $)) (-15 -1786 ((-790) $)) (-15 -3279 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -2961 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -1785 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $)) (-15 -1785 ((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) "failed") $ $ $)) (-15 -1784 ((-3 (-660 $) "failed") (-660 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-4197 (($ $ (-660 |#2|) (-660 |#2|)) 14 T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-305 |#2|)) 11 T ELT) (($ $ (-660 (-305 |#2|))) NIL T ELT))) +(((-320 |#1| |#2|) (-10 -7 (-15 -4197 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -4197 (|#1| |#1| (-305 |#2|))) (-15 -4197 (|#1| |#1| |#2| |#2|)) (-15 -4197 (|#1| |#1| (-660 |#2|) (-660 |#2|)))) (-321 |#2|) (-1121)) (T -320)) +NIL +((-4197 (($ $ (-660 |#1|) (-660 |#1|)) 7 T ELT) (($ $ |#1| |#1|) 6 T ELT) (($ $ (-305 |#1|)) 13 T ELT) (($ $ (-660 (-305 |#1|))) 12 T ELT))) +(((-321 |#1|) (-142) (-1121)) (T -321)) +((-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1121)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1121))))) +(-13 (-526 |t#1| |t#1|) (-10 -8 (-15 -4197 ($ $ (-305 |t#1|))) (-15 -4197 ($ $ (-660 (-305 |t#1|)))))) (((-526 |#1| |#1|) . T)) -((-4198 ((|#1| (-1 |#1| (-558)) (-1200 (-419 (-558)))) 26 T ELT))) -(((-322 |#1|) (-10 -7 (-15 -4198 (|#1| (-1 |#1| (-558)) (-1200 (-419 (-558)))))) (-38 (-419 (-558)))) (T -322)) -((-4198 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1200 (-419 (-558)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-419 (-558))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 7 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 9 T ELT))) -(((-323) (-1122)) (T -323)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3926 (((-558) $) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3624 (((-1156) $) 9 T ELT)) (-4376 (((-877) $) 19 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-324) (-13 (-1104) (-10 -8 (-15 -3624 ((-1156) $)) (-15 -3926 ((-558) $))))) (T -324)) -((-3624 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-324)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-324))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 60 T ELT)) (-3531 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-1275 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-558))) ELT) (((-3 (-1269 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3574 (((-1275 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1198) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-558))) ELT) (((-1269 |#2| |#3| |#4|) $) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-1275 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1275 |#1| |#2| |#3| |#4|)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-1275 |#1| |#2| |#3| |#4|)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-1275 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3865 (((-711 $) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-861)) ELT)) (-4388 (($ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-4214 (((-3 (-855 |#2|) #1#) $) 80 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-1275 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1288 (-1275 |#1| |#2| |#3| |#4|)))) (-1288 $) $) NIL T ELT) (((-709 (-1275 |#1| |#2| |#3| |#4|)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3532 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-1275 |#1| |#2| |#3| |#4|)) (-661 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-321 (-1275 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-321 (-1275 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-321 (-1275 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-661 (-305 (-1275 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-321 (-1275 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-661 (-1198)) (-661 (-1275 |#1| |#2| |#3| |#4|))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1198) (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-526 (-1198) (-1275 |#1| |#2| |#3| |#4|))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-1275 |#1| |#2| |#3| |#4|)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-298 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-1275 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1041)) ELT) (((-229) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-1275 |#1| |#2| |#3| |#4|) (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-1275 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-1059 (-1198))) ELT) (($ (-1269 |#2| |#3| |#4|)) 37 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-1275 |#1| |#2| |#3| |#4|) (-929))) (|has| (-1275 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (((-1275 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-842)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-919 (-1198))) ELT) (($ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-1275 |#1| |#2| |#3| |#4|) (-861)) ELT)) (-4379 (($ $ $) 35 T ELT) (($ (-1275 |#1| |#2| |#3| |#4|) (-1275 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-1275 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1275 |#1| |#2| |#3| |#4|)) NIL T ELT))) -(((-325 |#1| |#2| |#3| |#4|) (-13 (-1012 (-1275 |#1| |#2| |#3| |#4|)) (-1059 (-1269 |#2| |#3| |#4|)) (-10 -8 (-15 -4214 ((-3 (-855 |#2|) "failed") $)) (-15 -4376 ($ (-1269 |#2| |#3| |#4|))))) (-13 (-1059 (-558)) (-658 (-558)) (-464)) (-13 (-27) (-1224) (-433 |#1|)) (-1198) |#2|) (T -325)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1269 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-433 *3))) (-14 *5 (-1198)) (-14 *6 *4) (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) (-5 *1 (-325 *3 *4 *5 *6)))) (-4214 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-433 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) -((-2967 (((-114) $ $) NIL T ELT)) (-1750 (((-661 $) $ (-1198)) NIL (|has| |#1| (-569)) ELT) (((-661 $) $) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1192 $) (-1198)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1192 $)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-965 $)) NIL (|has| |#1| (-569)) ELT)) (-1323 (($ $ (-1198)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1192 $) (-1198)) NIL (|has| |#1| (-569)) ELT) (($ (-1192 $)) NIL (|has| |#1| (-569)) ELT) (($ (-965 $)) NIL (|has| |#1| (-569)) ELT)) (-3606 (((-114) $) 27 (-3957 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT)) (-3484 (((-661 (-1198)) $) 368 T ELT)) (-3486 (((-419 (-1192 $)) $ (-628 $)) NIL (|has| |#1| (-569)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1743 (((-661 (-628 $)) $) NIL T ELT)) (-3912 (($ $) 171 (|has| |#1| (-569)) ELT)) (-4069 (($ $) 147 (|has| |#1| (-569)) ELT)) (-1486 (($ $ (-1113 $)) 232 (|has| |#1| (-569)) ELT) (($ $ (-1198)) 228 (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (-3957 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT)) (-1747 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) 386 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 430 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-569))) ELT)) (-4205 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-569)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-569)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3910 (($ $) 167 (|has| |#1| (-569)) ELT)) (-4068 (($ $) 143 (|has| |#1| (-569)) ELT)) (-1789 (($ $ (-558)) 73 (|has| |#1| (-569)) ELT)) (-3914 (($ $) 175 (|has| |#1| (-569)) ELT)) (-4067 (($ $) 151 (|has| |#1| (-569)) ELT)) (-4154 (($) NIL (-3957 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) (|has| |#1| (-1133))) CONST)) (-1324 (((-661 $) $ (-1198)) NIL (|has| |#1| (-569)) ELT) (((-661 $) $) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1192 $) (-1198)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-1192 $)) NIL (|has| |#1| (-569)) ELT) (((-661 $) (-965 $)) NIL (|has| |#1| (-569)) ELT)) (-3601 (($ $ (-1198)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1192 $) (-1198)) 134 (|has| |#1| (-569)) ELT) (($ (-1192 $)) NIL (|has| |#1| (-569)) ELT) (($ (-965 $)) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 (-628 $) #1#) $) 18 T ELT) (((-3 (-1198) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-965 |#1|)) #1#) $) NIL (|has| |#1| (-569)) ELT) (((-3 (-965 |#1|) #1#) $) NIL (|has| |#1| (-1070)) ELT) (((-3 (-419 (-558)) #1#) $) 46 (-3957 (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3574 (((-628 $) $) 12 T ELT) (((-1198) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-965 |#1|)) $) NIL (|has| |#1| (-569)) ELT) (((-965 |#1|) $) NIL (|has| |#1| (-1070)) ELT) (((-419 (-558)) $) 319 (-3957 (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2493 (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 125 (|has| |#1| (-1070)) ELT) (((-709 |#1|) (-709 $)) 115 (|has| |#1| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT)) (-4272 (($ $) 96 (|has| |#1| (-569)) ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| |#1| (-1133)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4374 (($ $ (-1113 $)) 236 (|has| |#1| (-569)) ELT) (($ $ (-1198)) 234 (|has| |#1| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-569)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3806 (($ $ $) 202 (|has| |#1| (-569)) ELT)) (-4057 (($) 137 (|has| |#1| (-569)) ELT)) (-1483 (($ $ $) 222 (|has| |#1| (-569)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 392 (|has| |#1| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 399 (|has| |#1| (-901 (-391))) ELT)) (-2972 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1742 (((-661 (-115)) $) NIL T ELT)) (-4023 (((-115) (-115)) 276 T ELT)) (-2641 (((-114) $) 25 (|has| |#1| (-1133)) ELT)) (-3074 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-3397 (($ $) 72 (|has| |#1| (-1070)) ELT)) (-3399 (((-1146 |#1| (-628 $)) $) 91 (|has| |#1| (-1070)) ELT)) (-1790 (((-114) $) 62 (|has| |#1| (-569)) ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-569)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-569)) ELT)) (-1740 (((-1192 $) (-628 $)) 277 (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) 426 T ELT)) (-1745 (((-3 (-628 $) #1#) $) NIL T ELT)) (-4372 (($ $) 141 (|has| |#1| (-569)) ELT)) (-2471 (($ $) 247 (|has| |#1| (-569)) ELT)) (-2494 (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL (|has| |#1| (-1070)) ELT) (((-709 |#1|) (-1288 $)) NIL (|has| |#1| (-1070)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT) (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1744 (((-661 (-628 $)) $) 49 T ELT)) (-2449 (($ (-115) $) NIL T ELT) (($ (-115) (-661 $)) 431 T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL (|has| |#1| (-1133)) ELT)) (-3226 (((-3 (-2 (|:| |val| $) (|:| -2632 (-558))) #1#) $) NIL (|has| |#1| (-1070)) ELT)) (-3223 (((-3 (-661 $) #1#) $) 436 (|has| |#1| (-25)) ELT)) (-2002 (((-3 (-2 (|:| -4384 (-558)) (|:| |var| (-628 $))) #1#) $) 440 (|has| |#1| (-25)) ELT)) (-3225 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #1#) $) NIL (|has| |#1| (-1133)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #1#) $ (-115)) NIL (|has| |#1| (-1070)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #1#) $ (-1198)) NIL (|has| |#1| (-1070)) ELT)) (-3032 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1198)) 51 T ELT)) (-2874 (($ $) NIL (-3957 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-3233 (($ $ (-1198)) 251 (|has| |#1| (-569)) ELT) (($ $ (-1113 $)) 253 (|has| |#1| (-569)) ELT)) (-3002 (((-791) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) 43 T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 301 (|has| |#1| (-569)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1741 (((-114) $ $) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-1487 (($ $ (-1198)) 226 (|has| |#1| (-569)) ELT) (($ $) 224 (|has| |#1| (-569)) ELT)) (-1481 (($ $) 218 (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-569))) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-569)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-569)) ELT)) (-4373 (($ $) 139 (|has| |#1| (-569)) ELT)) (-3075 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) 425 T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1198) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1198) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 379 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-631 (-547))) ELT) (($ $) NIL (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) $ (-1198)) 366 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-115)) (-661 $) (-1198)) 365 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ $))) NIL (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ (-661 $)))) NIL (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791) (-1 $ (-661 $))) NIL (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791) (-1 $ $)) NIL (|has| |#1| (-1070)) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-569)) ELT)) (-2469 (($ $) 239 (|has| |#1| (-569)) ELT)) (-4230 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2470 (($ $) 249 (|has| |#1| (-569)) ELT)) (-3805 (($ $) 200 (|has| |#1| (-569)) ELT)) (-4188 (($ $ (-1198)) NIL (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-1070)) ELT)) (-3396 (($ $) 74 (|has| |#1| (-569)) ELT)) (-3398 (((-1146 |#1| (-628 $)) $) 93 (|has| |#1| (-569)) ELT)) (-3603 (($ $) 317 (|has| $ (-1070)) ELT)) (-3915 (($ $) 177 (|has| |#1| (-569)) ELT)) (-4066 (($ $) 153 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 173 (|has| |#1| (-569)) ELT)) (-4065 (($ $) 149 (|has| |#1| (-569)) ELT)) (-3911 (($ $) 169 (|has| |#1| (-569)) ELT)) (-4064 (($ $) 145 (|has| |#1| (-569)) ELT)) (-4402 (((-905 (-558)) $) NIL (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| |#1| (-631 (-905 (-391)))) ELT) (($ (-417 $)) NIL (|has| |#1| (-569)) ELT) (((-547) $) 363 (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2824 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4376 (((-877) $) 424 T ELT) (($ (-628 $)) 415 T ELT) (($ (-1198)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558)))) ELT) (($ (-1146 |#1| (-628 $))) 95 (|has| |#1| (-1070)) ELT) (($ (-419 |#1|)) NIL (|has| |#1| (-569)) ELT) (($ (-965 (-419 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-965 (-419 |#1|)))) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-965 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-965 |#1|)) NIL (|has| |#1| (-1070)) ELT) (($ (-558)) 34 (-3957 (|has| |#1| (-1059 (-558))) (|has| |#1| (-1070))) ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-569)) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL (|has| |#1| (-1070)) CONST)) (-2989 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3504 (($ $ $) 220 (|has| |#1| (-569)) ELT)) (-3809 (($ $ $) 206 (|has| |#1| (-569)) ELT)) (-3811 (($ $ $) 210 (|has| |#1| (-569)) ELT)) (-3808 (($ $ $) 204 (|has| |#1| (-569)) ELT)) (-3810 (($ $ $) 208 (|has| |#1| (-569)) ELT)) (-2468 (((-114) (-115)) 10 T ELT)) (-1378 (((-114) $ $) 86 T ELT)) (-3918 (($ $) 183 (|has| |#1| (-569)) ELT)) (-3906 (($ $) 159 (|has| |#1| (-569)) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) 179 (|has| |#1| (-569)) ELT)) (-3904 (($ $) 155 (|has| |#1| (-569)) ELT)) (-3920 (($ $) 187 (|has| |#1| (-569)) ELT)) (-3908 (($ $) 163 (|has| |#1| (-569)) ELT)) (-2003 (($ (-1198) $) NIL T ELT) (($ (-1198) $ $) NIL T ELT) (($ (-1198) $ $ $) NIL T ELT) (($ (-1198) $ $ $ $) NIL T ELT) (($ (-1198) (-661 $)) NIL T ELT)) (-3813 (($ $) 214 (|has| |#1| (-569)) ELT)) (-3812 (($ $) 212 (|has| |#1| (-569)) ELT)) (-3921 (($ $) 189 (|has| |#1| (-569)) ELT)) (-3909 (($ $) 165 (|has| |#1| (-569)) ELT)) (-3919 (($ $) 185 (|has| |#1| (-569)) ELT)) (-3907 (($ $) 161 (|has| |#1| (-569)) ELT)) (-3917 (($ $) 181 (|has| |#1| (-569)) ELT)) (-3905 (($ $) 157 (|has| |#1| (-569)) ELT)) (-3803 (($ $) 192 (|has| |#1| (-569)) ELT)) (-3059 (($) 21 (-3957 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) CONST)) (-2473 (($ $) 243 (|has| |#1| (-569)) ELT)) (-3065 (($) 23 (|has| |#1| (-1133)) CONST)) (-3807 (($ $) 194 (|has| |#1| (-569)) ELT) (($ $ $) 196 (|has| |#1| (-569)) ELT)) (-2474 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3070 (($ $ (-1198)) NIL (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-1070)) ELT)) (-2472 (($ $) 245 (|has| |#1| (-569)) ELT)) (-3804 (($ $ $) 198 (|has| |#1| (-569)) ELT)) (-3454 (((-114) $ $) 88 T ELT)) (-4379 (($ (-1146 |#1| (-628 $)) (-1146 |#1| (-628 $))) 106 (|has| |#1| (-569)) ELT) (($ $ $) 42 (-3957 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-4267 (($ $ $) 40 (-3957 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT) (($ $) 29 (-3957 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT)) (-4269 (($ $ $) 38 (-3957 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) 314 (|has| |#1| (-569)) ELT) (($ $ (-558)) 80 (-3957 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT) (($ $ (-791)) 75 (|has| |#1| (-1133)) ELT) (($ $ (-938)) 84 (|has| |#1| (-1133)) ELT)) (* (($ (-419 (-558)) $) NIL (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-569)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1070)) ELT) (($ $ $) 36 (|has| |#1| (-1133)) ELT) (($ (-558) $) 32 (-3957 (|has| |#1| (-21)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT) (($ (-791) $) NIL (-3957 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT) (($ (-938) $) NIL (-3957 (|has| |#1| (-25)) (-12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070)))) ELT))) -(((-326 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1224)) (-6 (-162)) (-6 (-647)) (-6 (-1160)) (-15 -4272 ($ $)) (-15 -1790 ((-114) $)) (-15 -1789 ($ $ (-558))) (IF (|has| |#1| (-464)) (PROGN (-15 -3107 ((-417 (-1192 $)) (-1192 $))) (-15 -3108 ((-417 (-1192 $)) (-1192 $)))) |%noBranch|) (IF (|has| |#1| (-1059 (-558))) (-6 (-1059 (-48))) |%noBranch|)) |%noBranch|))) (-1122)) (T -326)) -((-4272 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-569)) (-4 *2 (-1122)))) (-1790 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1122)))) (-1789 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1122)))) (-3107 (*1 *2 *3) (-12 (-5 *2 (-417 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1122)))) (-3108 (*1 *2 *3) (-12 (-5 *2 (-417 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1122))))) -((-4388 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT))) -(((-327 |#1| |#2|) (-10 -7 (-15 -4388 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1122) (-1122)) (T -327)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))) -((-4159 (((-51) |#2| (-305 |#2|) (-791)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-791)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1198)) 26 T ELT)) (-4248 (((-51) |#2| (-305 |#2|) (-419 (-558))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-419 (-558))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1198)) 55 T ELT)) (-4212 (((-51) |#2| (-305 |#2|) (-419 (-558))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-419 (-558))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1198)) 50 T ELT)) (-4209 (((-51) |#2| (-305 |#2|) (-558)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-558)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1198)) 43 T ELT))) -(((-328 |#1| |#2|) (-10 -7 (-15 -4159 ((-51) (-1198))) (-15 -4159 ((-51) |#2|)) (-15 -4159 ((-51) |#2| (-791))) (-15 -4159 ((-51) |#2| (-305 |#2|))) (-15 -4159 ((-51) |#2| (-305 |#2|) (-791))) (-15 -4209 ((-51) (-1198))) (-15 -4209 ((-51) |#2|)) (-15 -4209 ((-51) |#2| (-558))) (-15 -4209 ((-51) |#2| (-305 |#2|))) (-15 -4209 ((-51) |#2| (-305 |#2|) (-558))) (-15 -4212 ((-51) (-1198))) (-15 -4212 ((-51) |#2|)) (-15 -4212 ((-51) |#2| (-419 (-558)))) (-15 -4212 ((-51) |#2| (-305 |#2|))) (-15 -4212 ((-51) |#2| (-305 |#2|) (-419 (-558)))) (-15 -4248 ((-51) (-1198))) (-15 -4248 ((-51) |#2|)) (-15 -4248 ((-51) |#2| (-419 (-558)))) (-15 -4248 ((-51) |#2| (-305 |#2|))) (-15 -4248 ((-51) |#2| (-305 |#2|) (-419 (-558))))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -328)) -((-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-4248 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) (-4212 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4212 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-4212 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) (-4212 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) (-4209 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-464) (-1059 *5) (-658 *5))) (-5 *5 (-558)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4209 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-13 (-464) (-1059 *4) (-658 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-4209 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) (-4209 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-791)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-4159 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) (-4159 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4)))))) -((-1791 (((-51) |#2| (-115) (-305 |#2|) (-661 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|))) 81 T ELT) (((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 |#2|)) 83 T ELT) (((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 |#2|)) 84 T ELT) (((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) -(((-329 |#1| |#2|) (-10 -7 (-15 -1791 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1791 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|))) (-15 -1791 ((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|)))) (-15 -1791 ((-51) (-661 (-305 |#2|)) (-661 (-115)) (-305 |#2|) (-661 |#2|))) (-15 -1791 ((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 |#2|))) (-15 -1791 ((-51) (-661 |#2|) (-661 (-115)) (-305 |#2|) (-661 (-305 |#2|)))) (-15 -1791 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1791 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1791 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1791 ((-51) |#2| (-115) (-305 |#2|) (-661 |#2|)))) (-13 (-569) (-631 (-547))) (-433 |#1|)) (T -329)) -((-1791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-661 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-1791 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1791 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1791 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-1791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-115))) (-5 *6 (-661 (-305 *8))) (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1791 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1791 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-661 (-305 *8))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-661 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1791 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1791 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-661 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1791 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6))))) -((-1793 (((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-229) (-558) (-1180)) 67 T ELT) (((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-229) (-558)) 68 T ELT) (((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-1 (-229) (-229)) (-558) (-1180)) 64 T ELT) (((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-1 (-229) (-229)) (-558)) 65 T ELT)) (-1792 (((-1 (-229) (-229)) (-229)) 66 T ELT))) -(((-330) (-10 -7 (-15 -1792 ((-1 (-229) (-229)) (-229))) (-15 -1793 ((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-1 (-229) (-229)) (-558))) (-15 -1793 ((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-1 (-229) (-229)) (-558) (-1180))) (-15 -1793 ((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-229) (-558))) (-15 -1793 ((-1234 (-946)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-229) (-558) (-1180))))) (T -330)) -((-1793 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) (-5 *6 (-229)) (-5 *7 (-558)) (-5 *8 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) (-1793 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) (-5 *6 (-229)) (-5 *7 (-558)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) (-1793 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) (-5 *6 (-558)) (-5 *7 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) (-1793 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) (-5 *6 (-558)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) (-1792 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 26 T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 20 T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) 36 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3604 (((-114) $) NIL T ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) 16 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-419 (-558))) NIL T ELT) (($ $ (-1103) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4242 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-1794 (((-419 (-558)) $) 17 T ELT)) (-3493 (($ (-1269 |#1| |#2| |#3|)) 11 T ELT)) (-2632 (((-1269 |#1| |#2| |#3|) $) 12 T ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4378 (((-419 (-558)) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 10 T ELT)) (-4376 (((-877) $) 42 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) 34 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 28 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 37 T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-331 |#1| |#2| |#3|) (-13 (-1271 |#1|) (-814) (-10 -8 (-15 -3493 ($ (-1269 |#1| |#2| |#3|))) (-15 -2632 ((-1269 |#1| |#2| |#3|) $)) (-15 -1794 ((-419 (-558)) $)))) (-376) (-1198) |#1|) (T -331)) -((-3493 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-1269 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1198)) (-14 *5 *3))) (-1794 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1198)) (-14 *5 *3)))) -((-3412 (((-2 (|:| -2632 (-791)) (|:| -4384 |#1|) (|:| |radicand| (-661 |#1|))) (-417 |#1|) (-791)) 35 T ELT)) (-4372 (((-661 (-2 (|:| -4384 (-791)) (|:| |logand| |#1|))) (-417 |#1|)) 40 T ELT))) -(((-332 |#1|) (-10 -7 (-15 -3412 ((-2 (|:| -2632 (-791)) (|:| -4384 |#1|) (|:| |radicand| (-661 |#1|))) (-417 |#1|) (-791))) (-15 -4372 ((-661 (-2 (|:| -4384 (-791)) (|:| |logand| |#1|))) (-417 |#1|)))) (-569)) (T -332)) -((-4372 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-569)) (-5 *2 (-661 (-2 (|:| -4384 (-791)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-3412 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *5) (|:| |radicand| (-661 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-791))))) -((-3484 (((-661 |#2|) (-1192 |#4|)) 44 T ELT)) (-1799 ((|#3| (-558)) 47 T ELT)) (-1797 (((-1192 |#4|) (-1192 |#3|)) 30 T ELT)) (-1798 (((-1192 |#4|) (-1192 |#4|) (-558)) 66 T ELT)) (-1796 (((-1192 |#3|) (-1192 |#4|)) 21 T ELT)) (-4378 (((-661 (-791)) (-1192 |#4|) (-661 |#2|)) 41 T ELT)) (-1795 (((-1192 |#3|) (-1192 |#4|) (-661 |#2|) (-661 |#3|)) 35 T ELT))) -(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1795 ((-1192 |#3|) (-1192 |#4|) (-661 |#2|) (-661 |#3|))) (-15 -4378 ((-661 (-791)) (-1192 |#4|) (-661 |#2|))) (-15 -3484 ((-661 |#2|) (-1192 |#4|))) (-15 -1796 ((-1192 |#3|) (-1192 |#4|))) (-15 -1797 ((-1192 |#4|) (-1192 |#3|))) (-15 -1798 ((-1192 |#4|) (-1192 |#4|) (-558))) (-15 -1799 (|#3| (-558)))) (-815) (-861) (-1070) (-969 |#3| |#1| |#2|)) (T -333)) -((-1799 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1070)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-969 *2 *4 *5)))) (-1798 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *7)) (-5 *3 (-558)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1797 (*1 *2 *3) (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-1192 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-1192 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-1192 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *2 (-661 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-4378 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *8)) (-5 *4 (-661 *6)) (-4 *6 (-861)) (-4 *8 (-969 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1070)) (-5 *2 (-661 (-791))) (-5 *1 (-333 *5 *6 *7 *8)))) (-1795 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1192 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 19 T ELT)) (-4204 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-558)))) $) 21 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2512 ((|#1| $ (-558)) NIL T ELT)) (-1802 (((-558) $ (-558)) NIL T ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2504 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1801 (($ (-1 (-558) (-558)) $) 11 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1800 (($ $ $) NIL (|has| (-558) (-814)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4107 (((-558) |#1| $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 30 (|has| |#1| (-861)) ELT)) (-4267 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-4269 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ (-558) |#1|) 28 T ELT))) -(((-334 |#1|) (-13 (-21) (-737 (-558)) (-335 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-861)) (-6 (-861)) |%noBranch|))) (-1122)) (T -334)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4204 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 |#2|))) $) 33 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3538 (((-791) $) 34 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| "failed") $) 38 T ELT)) (-3574 ((|#1| $) 39 T ELT)) (-2512 ((|#1| $ (-558)) 31 T ELT)) (-1802 ((|#2| $ (-558)) 32 T ELT)) (-2504 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1801 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1800 (($ $ $) 27 (|has| |#2| (-814)) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-4107 ((|#2| |#1| $) 30 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) -(((-335 |#1| |#2|) (-142) (-1122) (-133)) (T -335)) -((-4269 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-133)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)) (-5 *2 (-791)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)) (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 *4)))))) (-1802 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1122)) (-4 *2 (-133)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1122)))) (-4107 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-133)))) (-1801 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)))) (-1800 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-133)) (-4 *3 (-814))))) -(-13 (-133) (-1059 |t#1|) (-10 -8 (-15 -4269 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3538 ((-791) $)) (-15 -4204 ((-661 (-2 (|:| |gen| |t#1|) (|:| -4373 |t#2|))) $)) (-15 -1802 (|t#2| $ (-558))) (-15 -2512 (|t#1| $ (-558))) (-15 -4107 (|t#2| |t#1| $)) (-15 -1801 ($ (-1 |t#2| |t#2|) $)) (-15 -2504 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-814)) (-15 -1800 ($ $ $)) |%noBranch|))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-1059 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-791)))) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2512 ((|#1| $ (-558)) NIL T ELT)) (-1802 (((-791) $ (-558)) NIL T ELT)) (-2504 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1801 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1800 (($ $ $) NIL (|has| (-791) (-814)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4107 (((-791) |#1| $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-791) |#1|) NIL T ELT))) -(((-336 |#1|) (-335 |#1| (-791)) (-1122)) (T -336)) -NIL -((-3923 (($ $) 72 T ELT)) (-1804 (($ $ |#2| |#3| $) 14 T ELT)) (-1805 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-2005 (((-114) $) 42 T ELT)) (-2004 ((|#2| $) 44 T ELT)) (-3886 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-3218 ((|#2| $) 68 T ELT)) (-4247 (((-661 |#2|) $) 56 T ELT)) (-1803 (($ $ $ (-791)) 37 T ELT)) (-4379 (($ $ |#2|) 60 T ELT))) -(((-337 |#1| |#2| |#3|) (-10 -7 (-15 -3923 (|#1| |#1|)) (-15 -3218 (|#2| |#1|)) (-15 -3886 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1803 (|#1| |#1| |#1| (-791))) (-15 -1804 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1805 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4247 ((-661 |#2|) |#1|)) (-15 -2004 (|#2| |#1|)) (-15 -2005 ((-114) |#1|)) (-15 -3886 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4379 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1070) (-814)) (T -337)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 106 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 104 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3574 (((-558) $) 105 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 103 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 102 T ELT)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3923 (($ $) 90 (|has| |#1| (-464)) ELT)) (-1804 (($ $ |#1| |#2| $) 94 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2649 (((-791) $) 97 T ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| |#2|) 78 T ELT)) (-3221 ((|#2| $) 96 T ELT)) (-1805 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2005 (((-114) $) 100 T ELT)) (-2004 ((|#1| $) 99 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-569)) ELT)) (-4378 ((|#2| $) 81 T ELT)) (-3218 ((|#1| $) 91 (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 T ELT) (($ (-419 (-558))) 74 (-3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4247 (((-661 |#1|) $) 98 T ELT)) (-4107 ((|#1| $ |#2|) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1803 (($ $ $ (-791)) 93 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-338 |#1| |#2|) (-142) (-1070) (-814)) (T -338)) -((-2005 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-114)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-661 *3)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-791)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-1805 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)))) (-1804 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) (-1803 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-4 *3 (-175)))) (-3886 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *2 (-569)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *2 (-464))))) -(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -2005 ((-114) $)) (-15 -2004 (|t#1| $)) (-15 -4247 ((-661 |t#1|) $)) (-15 -2649 ((-791) $)) (-15 -3221 (|t#2| $)) (-15 -1805 ($ (-1 |t#2| |t#2|) $)) (-15 -1804 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -1803 ($ $ $ (-791))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3886 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3218 (|t#1| $)) (-15 -3923 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-2196 (((-114) (-114)) NIL T ELT)) (-4218 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-2594 (($ $) NIL (|has| |#1| (-1122)) ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) NIL (|has| |#1| (-1122)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-2197 (($ $ (-558)) NIL T ELT)) (-2198 (((-791) $) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4037 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2199 (($ (-661 |#1|)) NIL T ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-1714 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-4221 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2199 ($ (-661 |#1|))) (-15 -2198 ((-791) $)) (-15 -2197 ($ $ (-558))) (-15 -2196 ((-114) (-114))))) (-1238)) (T -339)) -((-2199 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-339 *3)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-339 *3)) (-4 *3 (-1238)))) (-2197 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-339 *3)) (-4 *3 (-1238)))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1238))))) -((-4362 (((-114) $) 47 T ELT)) (-4359 (((-791)) 23 T ELT)) (-3750 ((|#2| $) 51 T ELT) (($ $ (-938)) 123 T ELT)) (-3538 (((-791)) 124 T ELT)) (-2000 (($ (-1288 |#2|)) 20 T ELT)) (-2221 (((-114) $) 136 T ELT)) (-3534 ((|#2| $) 53 T ELT) (($ $ (-938)) 120 T ELT)) (-2224 (((-1192 |#2|) $) NIL T ELT) (((-1192 $) $ (-938)) 111 T ELT)) (-1807 (((-1192 |#2|) $) 95 T ELT)) (-1806 (((-1192 |#2|) $) 91 T ELT) (((-3 (-1192 |#2|) "failed") $ $) 88 T ELT)) (-1808 (($ $ (-1192 |#2|)) 58 T ELT)) (-4360 (((-845 (-938))) 30 T ELT) (((-938)) 48 T ELT)) (-4341 (((-136)) 27 T ELT)) (-4378 (((-845 (-938)) $) 32 T ELT) (((-938) $) 139 T ELT)) (-1809 (($) 130 T ELT)) (-3642 (((-1288 |#2|) $) NIL T ELT) (((-709 |#2|) (-1288 $)) 42 T ELT)) (-3103 (($ $) NIL T ELT) (((-711 $) $) 100 T ELT)) (-4363 (((-114) $) 45 T ELT))) -(((-340 |#1| |#2|) (-10 -7 (-15 -3103 ((-711 |#1|) |#1|)) (-15 -3538 ((-791))) (-15 -3103 (|#1| |#1|)) (-15 -1806 ((-3 (-1192 |#2|) "failed") |#1| |#1|)) (-15 -1806 ((-1192 |#2|) |#1|)) (-15 -1807 ((-1192 |#2|) |#1|)) (-15 -1808 (|#1| |#1| (-1192 |#2|))) (-15 -2221 ((-114) |#1|)) (-15 -1809 (|#1|)) (-15 -3750 (|#1| |#1| (-938))) (-15 -3534 (|#1| |#1| (-938))) (-15 -2224 ((-1192 |#1|) |#1| (-938))) (-15 -3750 (|#2| |#1|)) (-15 -3534 (|#2| |#1|)) (-15 -4378 ((-938) |#1|)) (-15 -4360 ((-938))) (-15 -2224 ((-1192 |#2|) |#1|)) (-15 -2000 (|#1| (-1288 |#2|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1|)) (-15 -4359 ((-791))) (-15 -4360 ((-845 (-938)))) (-15 -4378 ((-845 (-938)) |#1|)) (-15 -4362 ((-114) |#1|)) (-15 -4363 ((-114) |#1|)) (-15 -4341 ((-136)))) (-341 |#2|) (-376)) (T -340)) -((-4341 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4360 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-845 (-938))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4359 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4360 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-938)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3538 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-4362 (((-114) $) 111 T ELT)) (-4359 (((-791)) 107 T ELT)) (-3750 ((|#1| $) 159 T ELT) (($ $ (-938)) 156 (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 141 (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-3538 (((-791)) 131 (|has| |#1| (-381)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| "failed") $) 118 T ELT)) (-3574 ((|#1| $) 119 T ELT)) (-2000 (($ (-1288 |#1|)) 165 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3395 (($) 128 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-3234 (($) 143 (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) 144 (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) 104 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) 86 T ELT)) (-4202 (((-938) $) 146 (|has| |#1| (-381)) ELT) (((-845 (-938)) $) 101 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) 40 T ELT)) (-2223 (($) 154 (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) 153 (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) 160 T ELT) (($ $ (-938)) 157 (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) 132 (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2224 (((-1192 |#1|) $) 164 T ELT) (((-1192 $) $ (-938)) 158 (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) 129 (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) 150 (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) 149 (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) "failed") $ $) 148 (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) 151 (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3866 (($) 133 (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) 130 (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) 110 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2640 (($) 152 (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 140 (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-4360 (((-845 (-938))) 108 T ELT) (((-938)) 162 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-1975 (((-791) $) 145 (|has| |#1| (-381)) ELT) (((-3 (-791) "failed") $ $) 102 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) 116 T ELT)) (-4188 (($ $ (-791)) 136 (|has| |#1| (-381)) ELT) (($ $) 134 (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) 109 T ELT) (((-938) $) 161 T ELT)) (-3603 (((-1192 |#1|)) 163 T ELT)) (-1877 (($) 142 (|has| |#1| (-381)) ELT)) (-1809 (($) 155 (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) 167 T ELT) (((-709 |#1|) (-1288 $)) 166 T ELT)) (-3104 (((-3 (-1288 $) "failed") (-709 $)) 139 (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3103 (($ $) 138 (|has| |#1| (-381)) ELT) (((-711 $) $) 100 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2222 (((-1288 $)) 169 T ELT) (((-1288 $) (-938)) 168 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-4363 (((-114) $) 112 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-4358 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-791)) 105 (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) 137 (|has| |#1| (-381)) ELT) (($ $) 135 (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +((-4197 ((|#1| (-1 |#1| (-558)) (-1199 (-419 (-558)))) 26 T ELT))) +(((-322 |#1|) (-10 -7 (-15 -4197 (|#1| (-1 |#1| (-558)) (-1199 (-419 (-558)))))) (-38 (-419 (-558)))) (T -322)) +((-4197 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1199 (-419 (-558)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-419 (-558))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 7 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 9 T ELT))) +(((-323) (-1121)) (T -323)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3925 (((-558) $) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3623 (((-1155) $) 9 T ELT)) (-4375 (((-876) $) 19 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-324) (-13 (-1103) (-10 -8 (-15 -3623 ((-1155) $)) (-15 -3925 ((-558) $))))) (T -324)) +((-3623 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-324)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-324))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 60 T ELT)) (-3530 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-1274 |#1| |#2| |#3| |#4|) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-558))) ELT) (((-3 (-1268 |#2| |#3| |#4|) #1#) $) 26 T ELT)) (-3573 (((-1274 |#1| |#2| |#3| |#4|) $) NIL T ELT) (((-1197) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-558))) ELT) (((-1268 |#2| |#3| |#4|) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1274 |#1| |#2| |#3| |#4|)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-1274 |#1| |#2| |#3| |#4|)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-1274 |#1| |#2| |#3| |#4|) $) 22 T ELT)) (-3864 (((-710 $) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-860)) ELT)) (-4387 (($ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) $) NIL T ELT)) (-4213 (((-3 (-854 |#2|) #1#) $) 80 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-1274 |#1| |#2| |#3| |#4|))) (|:| |vec| (-1287 (-1274 |#1| |#2| |#3| |#4|)))) (-1287 $) $) NIL T ELT) (((-708 (-1274 |#1| |#2| |#3| |#4|)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-319)) ELT)) (-3531 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-1274 |#1| |#2| |#3| |#4|)) (-660 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-321 (-1274 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-321 (-1274 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-305 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-321 (-1274 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-660 (-305 (-1274 |#1| |#2| |#3| |#4|)))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-321 (-1274 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-660 (-1197)) (-660 (-1274 |#1| |#2| |#3| |#4|))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))) ELT) (($ $ (-1197) (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-526 (-1197) (-1274 |#1| |#2| |#3| |#4|))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-298 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-790)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-1274 |#1| |#2| |#3| |#4|) $) 19 T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1040)) ELT) (((-229) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-1274 |#1| |#2| |#3| |#4|)) 30 T ELT) (($ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-1058 (-1197))) ELT) (($ (-1268 |#2| |#3| |#4|)) 37 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-1274 |#1| |#2| |#3| |#4|) (-928))) (|has| (-1274 |#1| |#2| |#3| |#4|) (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (((-1274 |#1| |#2| |#3| |#4|) $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-841)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|))) NIL T ELT) (($ $ (-1 (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-918 (-1197))) ELT) (($ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-239)) ELT) (($ $ (-790)) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-1274 |#1| |#2| |#3| |#4|) (-860)) ELT)) (-4378 (($ $ $) 35 T ELT) (($ (-1274 |#1| |#2| |#3| |#4|) (-1274 |#1| |#2| |#3| |#4|)) 32 T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-1274 |#1| |#2| |#3| |#4|) $) 31 T ELT) (($ $ (-1274 |#1| |#2| |#3| |#4|)) NIL T ELT))) +(((-325 |#1| |#2| |#3| |#4|) (-13 (-1011 (-1274 |#1| |#2| |#3| |#4|)) (-1058 (-1268 |#2| |#3| |#4|)) (-10 -8 (-15 -4213 ((-3 (-854 |#2|) "failed") $)) (-15 -4375 ($ (-1268 |#2| |#3| |#4|))))) (-13 (-1058 (-558)) (-657 (-558)) (-464)) (-13 (-27) (-1223) (-433 |#1|)) (-1197) |#2|) (T -325)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1268 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-433 *3))) (-14 *5 (-1197)) (-14 *6 *4) (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) (-5 *1 (-325 *3 *4 *5 *6)))) (-4213 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) (-5 *2 (-854 *4)) (-5 *1 (-325 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-433 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) +((-2966 (((-114) $ $) NIL T ELT)) (-1749 (((-660 $) $ (-1197)) NIL (|has| |#1| (-569)) ELT) (((-660 $) $) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1191 $) (-1197)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1191 $)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-964 $)) NIL (|has| |#1| (-569)) ELT)) (-1322 (($ $ (-1197)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1191 $) (-1197)) NIL (|has| |#1| (-569)) ELT) (($ (-1191 $)) NIL (|has| |#1| (-569)) ELT) (($ (-964 $)) NIL (|has| |#1| (-569)) ELT)) (-3605 (((-114) $) 27 (-3956 (|has| |#1| (-25)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT)) (-3483 (((-660 (-1197)) $) 368 T ELT)) (-3485 (((-419 (-1191 $)) $ (-627 $)) NIL (|has| |#1| (-569)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1742 (((-660 (-627 $)) $) NIL T ELT)) (-3911 (($ $) 171 (|has| |#1| (-569)) ELT)) (-4068 (($ $) 147 (|has| |#1| (-569)) ELT)) (-1485 (($ $ (-1112 $)) 232 (|has| |#1| (-569)) ELT) (($ $ (-1197)) 228 (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (-3956 (|has| |#1| (-21)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT)) (-1746 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) 386 T ELT) (($ $ (-660 (-627 $)) (-660 $)) 430 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 308 (-12 (|has| |#1| (-464)) (|has| |#1| (-569))) ELT)) (-4204 (($ $) NIL (|has| |#1| (-569)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-569)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-569)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3909 (($ $) 167 (|has| |#1| (-569)) ELT)) (-4067 (($ $) 143 (|has| |#1| (-569)) ELT)) (-1788 (($ $ (-558)) 73 (|has| |#1| (-569)) ELT)) (-3913 (($ $) 175 (|has| |#1| (-569)) ELT)) (-4066 (($ $) 151 (|has| |#1| (-569)) ELT)) (-4153 (($) NIL (-3956 (|has| |#1| (-25)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) (|has| |#1| (-1132))) CONST)) (-1323 (((-660 $) $ (-1197)) NIL (|has| |#1| (-569)) ELT) (((-660 $) $) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1191 $) (-1197)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-1191 $)) NIL (|has| |#1| (-569)) ELT) (((-660 $) (-964 $)) NIL (|has| |#1| (-569)) ELT)) (-3600 (($ $ (-1197)) NIL (|has| |#1| (-569)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-1191 $) (-1197)) 134 (|has| |#1| (-569)) ELT) (($ (-1191 $)) NIL (|has| |#1| (-569)) ELT) (($ (-964 $)) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 (-627 $) #1#) $) 18 T ELT) (((-3 (-1197) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 441 T ELT) (((-3 (-48) #1#) $) 336 (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-964 |#1|)) #1#) $) NIL (|has| |#1| (-569)) ELT) (((-3 (-964 |#1|) #1#) $) NIL (|has| |#1| (-1069)) ELT) (((-3 (-419 (-558)) #1#) $) 46 (-3956 (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3573 (((-627 $) $) 12 T ELT) (((-1197) $) NIL T ELT) ((|#1| $) 421 T ELT) (((-48) $) NIL (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-964 |#1|)) $) NIL (|has| |#1| (-569)) ELT) (((-964 |#1|) $) NIL (|has| |#1| (-1069)) ELT) (((-419 (-558)) $) 319 (-3956 (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-2492 (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 125 (|has| |#1| (-1069)) ELT) (((-708 |#1|) (-708 $)) 115 (|has| |#1| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT) (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT)) (-4271 (($ $) 96 (|has| |#1| (-569)) ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| |#1| (-1132)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4373 (($ $ (-1112 $)) 236 (|has| |#1| (-569)) ELT) (($ $ (-1197)) 234 (|has| |#1| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-569)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3805 (($ $ $) 202 (|has| |#1| (-569)) ELT)) (-4056 (($) 137 (|has| |#1| (-569)) ELT)) (-1482 (($ $ $) 222 (|has| |#1| (-569)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 392 (|has| |#1| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 399 (|has| |#1| (-900 (-391))) ELT)) (-2971 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1741 (((-660 (-115)) $) NIL T ELT)) (-4022 (((-115) (-115)) 276 T ELT)) (-2640 (((-114) $) 25 (|has| |#1| (-1132)) ELT)) (-3073 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-3396 (($ $) 72 (|has| |#1| (-1069)) ELT)) (-3398 (((-1145 |#1| (-627 $)) $) 91 (|has| |#1| (-1069)) ELT)) (-1789 (((-114) $) 62 (|has| |#1| (-569)) ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-569)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-569)) ELT)) (-1739 (((-1191 $) (-627 $)) 277 (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) 426 T ELT)) (-1744 (((-3 (-627 $) #1#) $) NIL T ELT)) (-4371 (($ $) 141 (|has| |#1| (-569)) ELT)) (-2470 (($ $) 247 (|has| |#1| (-569)) ELT)) (-2493 (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL (|has| |#1| (-1069)) ELT) (((-708 |#1|) (-1287 $)) NIL (|has| |#1| (-1069)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT) (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1743 (((-660 (-627 $)) $) 49 T ELT)) (-2448 (($ (-115) $) NIL T ELT) (($ (-115) (-660 $)) 431 T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL (|has| |#1| (-1132)) ELT)) (-3225 (((-3 (-2 (|:| |val| $) (|:| -2631 (-558))) #1#) $) NIL (|has| |#1| (-1069)) ELT)) (-3222 (((-3 (-660 $) #1#) $) 436 (|has| |#1| (-25)) ELT)) (-2001 (((-3 (-2 (|:| -4383 (-558)) (|:| |var| (-627 $))) #1#) $) 440 (|has| |#1| (-25)) ELT)) (-3224 (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #1#) $) NIL (|has| |#1| (-1132)) ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #1#) $ (-115)) NIL (|has| |#1| (-1069)) ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #1#) $ (-1197)) NIL (|has| |#1| (-1069)) ELT)) (-3031 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1197)) 51 T ELT)) (-2873 (($ $) NIL (-3956 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-3232 (($ $ (-1197)) 251 (|has| |#1| (-569)) ELT) (($ $ (-1112 $)) 253 (|has| |#1| (-569)) ELT)) (-3001 (((-790) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) 43 T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 301 (|has| |#1| (-569)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-1740 (((-114) $ $) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-1486 (($ $ (-1197)) 226 (|has| |#1| (-569)) ELT) (($ $) 224 (|has| |#1| (-569)) ELT)) (-1480 (($ $) 218 (|has| |#1| (-569)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 306 (-12 (|has| |#1| (-464)) (|has| |#1| (-569))) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-569)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-569)) ELT)) (-4372 (($ $) 139 (|has| |#1| (-569)) ELT)) (-3074 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-627 $) $) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) 425 T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1197) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1197) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 379 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-630 (-547))) ELT) (($ $) NIL (|has| |#1| (-630 (-547))) ELT) (($ $ (-115) $ (-1197)) 366 (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-115)) (-660 $) (-1197)) 365 (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ $))) NIL (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ (-660 $)))) NIL (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790) (-1 $ (-660 $))) NIL (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790) (-1 $ $)) NIL (|has| |#1| (-1069)) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-569)) ELT)) (-2468 (($ $) 239 (|has| |#1| (-569)) ELT)) (-4229 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-1745 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-2469 (($ $) 249 (|has| |#1| (-569)) ELT)) (-3804 (($ $) 200 (|has| |#1| (-569)) ELT)) (-4187 (($ $ (-1197)) NIL (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-1069)) ELT)) (-3395 (($ $) 74 (|has| |#1| (-569)) ELT)) (-3397 (((-1145 |#1| (-627 $)) $) 93 (|has| |#1| (-569)) ELT)) (-3602 (($ $) 317 (|has| $ (-1069)) ELT)) (-3914 (($ $) 177 (|has| |#1| (-569)) ELT)) (-4065 (($ $) 153 (|has| |#1| (-569)) ELT)) (-3912 (($ $) 173 (|has| |#1| (-569)) ELT)) (-4064 (($ $) 149 (|has| |#1| (-569)) ELT)) (-3910 (($ $) 169 (|has| |#1| (-569)) ELT)) (-4063 (($ $) 145 (|has| |#1| (-569)) ELT)) (-4401 (((-904 (-558)) $) NIL (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| |#1| (-630 (-904 (-391)))) ELT) (($ (-417 $)) NIL (|has| |#1| (-569)) ELT) (((-547) $) 363 (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-2823 (($ $ $) NIL (|has| |#1| (-485)) ELT)) (-4375 (((-876) $) 424 T ELT) (($ (-627 $)) 415 T ELT) (($ (-1197)) 381 T ELT) (($ |#1|) 337 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-48)) 312 (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558)))) ELT) (($ (-1145 |#1| (-627 $))) 95 (|has| |#1| (-1069)) ELT) (($ (-419 |#1|)) NIL (|has| |#1| (-569)) ELT) (($ (-964 (-419 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-964 (-419 |#1|)))) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-964 |#1|))) NIL (|has| |#1| (-569)) ELT) (($ (-964 |#1|)) NIL (|has| |#1| (-1069)) ELT) (($ (-558)) 34 (-3956 (|has| |#1| (-1058 (-558))) (|has| |#1| (-1069))) ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-569)) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL (|has| |#1| (-1069)) CONST)) (-2988 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3503 (($ $ $) 220 (|has| |#1| (-569)) ELT)) (-3808 (($ $ $) 206 (|has| |#1| (-569)) ELT)) (-3810 (($ $ $) 210 (|has| |#1| (-569)) ELT)) (-3807 (($ $ $) 204 (|has| |#1| (-569)) ELT)) (-3809 (($ $ $) 208 (|has| |#1| (-569)) ELT)) (-2467 (((-114) (-115)) 10 T ELT)) (-1377 (((-114) $ $) 86 T ELT)) (-3917 (($ $) 183 (|has| |#1| (-569)) ELT)) (-3905 (($ $) 159 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) 179 (|has| |#1| (-569)) ELT)) (-3903 (($ $) 155 (|has| |#1| (-569)) ELT)) (-3919 (($ $) 187 (|has| |#1| (-569)) ELT)) (-3907 (($ $) 163 (|has| |#1| (-569)) ELT)) (-2002 (($ (-1197) $) NIL T ELT) (($ (-1197) $ $) NIL T ELT) (($ (-1197) $ $ $) NIL T ELT) (($ (-1197) $ $ $ $) NIL T ELT) (($ (-1197) (-660 $)) NIL T ELT)) (-3812 (($ $) 214 (|has| |#1| (-569)) ELT)) (-3811 (($ $) 212 (|has| |#1| (-569)) ELT)) (-3920 (($ $) 189 (|has| |#1| (-569)) ELT)) (-3908 (($ $) 165 (|has| |#1| (-569)) ELT)) (-3918 (($ $) 185 (|has| |#1| (-569)) ELT)) (-3906 (($ $) 161 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 181 (|has| |#1| (-569)) ELT)) (-3904 (($ $) 157 (|has| |#1| (-569)) ELT)) (-3802 (($ $) 192 (|has| |#1| (-569)) ELT)) (-3058 (($) 21 (-3956 (|has| |#1| (-25)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) CONST)) (-2472 (($ $) 243 (|has| |#1| (-569)) ELT)) (-3064 (($) 23 (|has| |#1| (-1132)) CONST)) (-3806 (($ $) 194 (|has| |#1| (-569)) ELT) (($ $ $) 196 (|has| |#1| (-569)) ELT)) (-2473 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3069 (($ $ (-1197)) NIL (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-1069)) ELT)) (-2471 (($ $) 245 (|has| |#1| (-569)) ELT)) (-3803 (($ $ $) 198 (|has| |#1| (-569)) ELT)) (-3453 (((-114) $ $) 88 T ELT)) (-4378 (($ (-1145 |#1| (-627 $)) (-1145 |#1| (-627 $))) 106 (|has| |#1| (-569)) ELT) (($ $ $) 42 (-3956 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-4266 (($ $ $) 40 (-3956 (|has| |#1| (-21)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT) (($ $) 29 (-3956 (|has| |#1| (-21)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT)) (-4268 (($ $ $) 38 (-3956 (|has| |#1| (-25)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT)) (** (($ $ $) 64 (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) 314 (|has| |#1| (-569)) ELT) (($ $ (-558)) 80 (-3956 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT) (($ $ (-790)) 75 (|has| |#1| (-1132)) ELT) (($ $ (-937)) 84 (|has| |#1| (-1132)) ELT)) (* (($ (-419 (-558)) $) NIL (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-569)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT) (($ |#1| $) NIL (|has| |#1| (-1069)) ELT) (($ $ $) 36 (|has| |#1| (-1132)) ELT) (($ (-558) $) 32 (-3956 (|has| |#1| (-21)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT) (($ (-790) $) NIL (-3956 (|has| |#1| (-25)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT) (($ (-937) $) NIL (-3956 (|has| |#1| (-25)) (-12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069)))) ELT))) +(((-326 |#1|) (-13 (-433 |#1|) (-10 -8 (IF (|has| |#1| (-569)) (PROGN (-6 (-29 |#1|)) (-6 (-1223)) (-6 (-162)) (-6 (-646)) (-6 (-1159)) (-15 -4271 ($ $)) (-15 -1789 ((-114) $)) (-15 -1788 ($ $ (-558))) (IF (|has| |#1| (-464)) (PROGN (-15 -3106 ((-417 (-1191 $)) (-1191 $))) (-15 -3107 ((-417 (-1191 $)) (-1191 $)))) |%noBranch|) (IF (|has| |#1| (-1058 (-558))) (-6 (-1058 (-48))) |%noBranch|)) |%noBranch|))) (-1121)) (T -326)) +((-4271 (*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-569)) (-4 *2 (-1121)))) (-1789 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1121)))) (-1788 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1121)))) (-3106 (*1 *2 *3) (-12 (-5 *2 (-417 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1121)))) (-3107 (*1 *2 *3) (-12 (-5 *2 (-417 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1121))))) +((-4387 (((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)) 13 T ELT))) +(((-327 |#1| |#2|) (-10 -7 (-15 -4387 ((-326 |#2|) (-1 |#2| |#1|) (-326 |#1|)))) (-1121) (-1121)) (T -327)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6))))) +((-4158 (((-51) |#2| (-305 |#2|) (-790)) 40 T ELT) (((-51) |#2| (-305 |#2|)) 32 T ELT) (((-51) |#2| (-790)) 35 T ELT) (((-51) |#2|) 33 T ELT) (((-51) (-1197)) 26 T ELT)) (-4247 (((-51) |#2| (-305 |#2|) (-419 (-558))) 59 T ELT) (((-51) |#2| (-305 |#2|)) 56 T ELT) (((-51) |#2| (-419 (-558))) 58 T ELT) (((-51) |#2|) 57 T ELT) (((-51) (-1197)) 55 T ELT)) (-4211 (((-51) |#2| (-305 |#2|) (-419 (-558))) 54 T ELT) (((-51) |#2| (-305 |#2|)) 51 T ELT) (((-51) |#2| (-419 (-558))) 53 T ELT) (((-51) |#2|) 52 T ELT) (((-51) (-1197)) 50 T ELT)) (-4208 (((-51) |#2| (-305 |#2|) (-558)) 47 T ELT) (((-51) |#2| (-305 |#2|)) 44 T ELT) (((-51) |#2| (-558)) 46 T ELT) (((-51) |#2|) 45 T ELT) (((-51) (-1197)) 43 T ELT))) +(((-328 |#1| |#2|) (-10 -7 (-15 -4158 ((-51) (-1197))) (-15 -4158 ((-51) |#2|)) (-15 -4158 ((-51) |#2| (-790))) (-15 -4158 ((-51) |#2| (-305 |#2|))) (-15 -4158 ((-51) |#2| (-305 |#2|) (-790))) (-15 -4208 ((-51) (-1197))) (-15 -4208 ((-51) |#2|)) (-15 -4208 ((-51) |#2| (-558))) (-15 -4208 ((-51) |#2| (-305 |#2|))) (-15 -4208 ((-51) |#2| (-305 |#2|) (-558))) (-15 -4211 ((-51) (-1197))) (-15 -4211 ((-51) |#2|)) (-15 -4211 ((-51) |#2| (-419 (-558)))) (-15 -4211 ((-51) |#2| (-305 |#2|))) (-15 -4211 ((-51) |#2| (-305 |#2|) (-419 (-558)))) (-15 -4247 ((-51) (-1197))) (-15 -4247 ((-51) |#2|)) (-15 -4247 ((-51) |#2| (-419 (-558)))) (-15 -4247 ((-51) |#2| (-305 |#2|))) (-15 -4247 ((-51) |#2| (-305 |#2|) (-419 (-558))))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -328)) +((-4247 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4247 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4247 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-4247 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) (-4247 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) (-4211 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4211 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-4211 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) (-4211 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) (-4208 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-464) (-1058 *5) (-657 *5))) (-5 *5 (-558)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4208 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-13 (-464) (-1058 *4) (-657 *4))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-4208 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) (-4208 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) (-4158 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-790)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-4158 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) (-4158 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4)))))) +((-1790 (((-51) |#2| (-115) (-305 |#2|) (-660 |#2|)) 89 T ELT) (((-51) |#2| (-115) (-305 |#2|) (-305 |#2|)) 85 T ELT) (((-51) |#2| (-115) (-305 |#2|) |#2|) 87 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|) 88 T ELT) (((-51) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|))) 81 T ELT) (((-51) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|)) 83 T ELT) (((-51) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|)) 84 T ELT) (((-51) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|))) 82 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|)) 90 T ELT) (((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|)) 86 T ELT))) +(((-329 |#1| |#2|) (-10 -7 (-15 -1790 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-305 |#2|))) (-15 -1790 ((-51) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -1790 ((-51) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1790 ((-51) (-660 (-305 |#2|)) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1790 ((-51) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 |#2|))) (-15 -1790 ((-51) (-660 |#2|) (-660 (-115)) (-305 |#2|) (-660 (-305 |#2|)))) (-15 -1790 ((-51) (-305 |#2|) (-115) (-305 |#2|) |#2|)) (-15 -1790 ((-51) |#2| (-115) (-305 |#2|) |#2|)) (-15 -1790 ((-51) |#2| (-115) (-305 |#2|) (-305 |#2|))) (-15 -1790 ((-51) |#2| (-115) (-305 |#2|) (-660 |#2|)))) (-13 (-569) (-630 (-547))) (-433 |#1|)) (T -329)) +((-1790 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-660 *3)) (-4 *3 (-433 *7)) (-4 *7 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3)))) (-1790 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1790 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) (-1790 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) (-1790 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-115))) (-5 *6 (-660 (-305 *8))) (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1790 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1790 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 (-305 *8))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *8)) (-5 *6 (-660 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) (-1790 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1790 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-660 *7)) (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) (-1790 (*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) (-4 *5 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6))))) +((-1792 (((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-229) (-558) (-1179)) 67 T ELT) (((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-229) (-558)) 68 T ELT) (((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-1 (-229) (-229)) (-558) (-1179)) 64 T ELT) (((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-1 (-229) (-229)) (-558)) 65 T ELT)) (-1791 (((-1 (-229) (-229)) (-229)) 66 T ELT))) +(((-330) (-10 -7 (-15 -1791 ((-1 (-229) (-229)) (-229))) (-15 -1792 ((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-1 (-229) (-229)) (-558))) (-15 -1792 ((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-1 (-229) (-229)) (-558) (-1179))) (-15 -1792 ((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-229) (-558))) (-15 -1792 ((-1233 (-945)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-229) (-558) (-1179))))) (T -330)) +((-1792 (*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) (-5 *6 (-229)) (-5 *7 (-558)) (-5 *8 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) (-1792 (*1 *2 *3 *3 *3 *4 *5 *6 *7) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) (-5 *6 (-229)) (-5 *7 (-558)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) (-1792 (*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) (-5 *6 (-558)) (-5 *7 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) (-1792 (*1 *2 *3 *3 *3 *4 *5 *4 *6) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) (-5 *6 (-558)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) (-1791 (*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 26 T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 20 T ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) 36 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3603 (((-114) $) NIL T ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) 16 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-419 (-558))) NIL T ELT) (($ $ (-1102) (-419 (-558))) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4241 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-1793 (((-419 (-558)) $) 17 T ELT)) (-3492 (($ (-1268 |#1| |#2| |#3|)) 11 T ELT)) (-2631 (((-1268 |#1| |#2| |#3|) $) 12 T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4377 (((-419 (-558)) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 10 T ELT)) (-4375 (((-876) $) 42 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) 34 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 28 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 37 T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-331 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-813) (-10 -8 (-15 -3492 ($ (-1268 |#1| |#2| |#3|))) (-15 -2631 ((-1268 |#1| |#2| |#3|) $)) (-15 -1793 ((-419 (-558)) $)))) (-376) (-1197) |#1|) (T -331)) +((-3492 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-1268 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1197)) (-14 *5 *3))) (-1793 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1197)) (-14 *5 *3)))) +((-3411 (((-2 (|:| -2631 (-790)) (|:| -4383 |#1|) (|:| |radicand| (-660 |#1|))) (-417 |#1|) (-790)) 35 T ELT)) (-4371 (((-660 (-2 (|:| -4383 (-790)) (|:| |logand| |#1|))) (-417 |#1|)) 40 T ELT))) +(((-332 |#1|) (-10 -7 (-15 -3411 ((-2 (|:| -2631 (-790)) (|:| -4383 |#1|) (|:| |radicand| (-660 |#1|))) (-417 |#1|) (-790))) (-15 -4371 ((-660 (-2 (|:| -4383 (-790)) (|:| |logand| |#1|))) (-417 |#1|)))) (-569)) (T -332)) +((-4371 (*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-569)) (-5 *2 (-660 (-2 (|:| -4383 (-790)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) (-3411 (*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-569)) (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *5) (|:| |radicand| (-660 *5)))) (-5 *1 (-332 *5)) (-5 *4 (-790))))) +((-3483 (((-660 |#2|) (-1191 |#4|)) 44 T ELT)) (-1798 ((|#3| (-558)) 47 T ELT)) (-1796 (((-1191 |#4|) (-1191 |#3|)) 30 T ELT)) (-1797 (((-1191 |#4|) (-1191 |#4|) (-558)) 66 T ELT)) (-1795 (((-1191 |#3|) (-1191 |#4|)) 21 T ELT)) (-4377 (((-660 (-790)) (-1191 |#4|) (-660 |#2|)) 41 T ELT)) (-1794 (((-1191 |#3|) (-1191 |#4|) (-660 |#2|) (-660 |#3|)) 35 T ELT))) +(((-333 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -1794 ((-1191 |#3|) (-1191 |#4|) (-660 |#2|) (-660 |#3|))) (-15 -4377 ((-660 (-790)) (-1191 |#4|) (-660 |#2|))) (-15 -3483 ((-660 |#2|) (-1191 |#4|))) (-15 -1795 ((-1191 |#3|) (-1191 |#4|))) (-15 -1796 ((-1191 |#4|) (-1191 |#3|))) (-15 -1797 ((-1191 |#4|) (-1191 |#4|) (-558))) (-15 -1798 (|#3| (-558)))) (-814) (-860) (-1069) (-968 |#3| |#1| |#2|)) (T -333)) +((-1798 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1069)) (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5)))) (-1797 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *7)) (-5 *3 (-558)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-5 *1 (-333 *4 *5 *6 *7)))) (-1796 (*1 *2 *3) (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-1191 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-1795 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-5 *2 (-1191 *6)) (-5 *1 (-333 *4 *5 *6 *7)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-1191 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-5 *2 (-660 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) (-4377 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *8)) (-5 *4 (-660 *6)) (-4 *6 (-860)) (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-814)) (-4 *7 (-1069)) (-5 *2 (-660 (-790))) (-5 *1 (-333 *5 *6 *7 *8)))) (-1794 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 *8)) (-4 *7 (-860)) (-4 *8 (-1069)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-1191 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 19 T ELT)) (-4203 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-558)))) $) 21 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2511 ((|#1| $ (-558)) NIL T ELT)) (-1801 (((-558) $ (-558)) NIL T ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2503 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1800 (($ (-1 (-558) (-558)) $) 11 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1799 (($ $ $) NIL (|has| (-558) (-813)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4106 (((-558) |#1| $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 30 (|has| |#1| (-860)) ELT)) (-4266 (($ $) 12 T ELT) (($ $ $) 29 T ELT)) (-4268 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ (-558) |#1|) 28 T ELT))) +(((-334 |#1|) (-13 (-21) (-736 (-558)) (-335 |#1| (-558)) (-10 -7 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|))) (-1121)) (T -334)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4203 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 |#2|))) $) 33 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3537 (((-790) $) 34 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| "failed") $) 38 T ELT)) (-3573 ((|#1| $) 39 T ELT)) (-2511 ((|#1| $ (-558)) 31 T ELT)) (-1801 ((|#2| $ (-558)) 32 T ELT)) (-2503 (($ (-1 |#1| |#1|) $) 28 T ELT)) (-1800 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1799 (($ $ $) 27 (|has| |#2| (-813)) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ |#1|) 37 T ELT)) (-4106 ((|#2| |#1| $) 30 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT) (($ |#1| $) 36 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ |#2| |#1|) 35 T ELT))) +(((-335 |#1| |#2|) (-142) (-1121) (-133)) (T -335)) +((-4268 (*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-133)))) (* (*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-133)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)) (-5 *2 (-790)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)) (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 *4)))))) (-1801 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1121)) (-4 *2 (-133)))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1121)))) (-4106 (*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-133)))) (-1800 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)))) (-1799 (*1 *1 *1 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-133)) (-4 *3 (-813))))) +(-13 (-133) (-1058 |t#1|) (-10 -8 (-15 -4268 ($ |t#1| $)) (-15 * ($ |t#2| |t#1|)) (-15 -3537 ((-790) $)) (-15 -4203 ((-660 (-2 (|:| |gen| |t#1|) (|:| -4372 |t#2|))) $)) (-15 -1801 (|t#2| $ (-558))) (-15 -2511 (|t#1| $ (-558))) (-15 -4106 (|t#2| |t#1| $)) (-15 -1800 ($ (-1 |t#2| |t#2|) $)) (-15 -2503 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#2| (-813)) (-15 -1799 ($ $ $)) |%noBranch|))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-1058 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-790)))) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2511 ((|#1| $ (-558)) NIL T ELT)) (-1801 (((-790) $ (-558)) NIL T ELT)) (-2503 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1800 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1799 (($ $ $) NIL (|has| (-790) (-813)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-4106 (((-790) |#1| $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-790) |#1|) NIL T ELT))) +(((-336 |#1|) (-335 |#1| (-790)) (-1121)) (T -336)) +NIL +((-3922 (($ $) 72 T ELT)) (-1803 (($ $ |#2| |#3| $) 14 T ELT)) (-1804 (($ (-1 |#3| |#3|) $) 51 T ELT)) (-2004 (((-114) $) 42 T ELT)) (-2003 ((|#2| $) 44 T ELT)) (-3885 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#2|) 64 T ELT)) (-3217 ((|#2| $) 68 T ELT)) (-4246 (((-660 |#2|) $) 56 T ELT)) (-1802 (($ $ $ (-790)) 37 T ELT)) (-4378 (($ $ |#2|) 60 T ELT))) +(((-337 |#1| |#2| |#3|) (-10 -7 (-15 -3922 (|#1| |#1|)) (-15 -3217 (|#2| |#1|)) (-15 -3885 ((-3 |#1| #1="failed") |#1| |#2|)) (-15 -1802 (|#1| |#1| |#1| (-790))) (-15 -1803 (|#1| |#1| |#2| |#3| |#1|)) (-15 -1804 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4246 ((-660 |#2|) |#1|)) (-15 -2003 (|#2| |#1|)) (-15 -2004 ((-114) |#1|)) (-15 -3885 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4378 (|#1| |#1| |#2|))) (-338 |#2| |#3|) (-1069) (-813)) (T -337)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 106 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 104 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 101 T ELT)) (-3573 (((-558) $) 105 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 103 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 102 T ELT)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3922 (($ $) 90 (|has| |#1| (-464)) ELT)) (-1803 (($ $ |#1| |#2| $) 94 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2648 (((-790) $) 97 T ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| |#2|) 78 T ELT)) (-3220 ((|#2| $) 96 T ELT)) (-1804 (($ (-1 |#2| |#2|) $) 95 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2004 (((-114) $) 100 T ELT)) (-2003 ((|#1| $) 99 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ |#1|) 92 (|has| |#1| (-569)) ELT)) (-4377 ((|#2| $) 81 T ELT)) (-3217 ((|#1| $) 91 (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 T ELT) (($ (-419 (-558))) 74 (-3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4246 (((-660 |#1|) $) 98 T ELT)) (-4106 ((|#1| $ |#2|) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1802 (($ $ $ (-790)) 93 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-338 |#1| |#2|) (-142) (-1069) (-813)) (T -338)) +((-2004 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-114)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-660 *3)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-790)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-1804 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)))) (-1803 (*1 *1 *1 *2 *3 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) (-1802 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-4 *3 (-175)))) (-3885 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *2 (-569)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)) (-4 *2 (-464)))) (-3922 (*1 *1 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *2 (-464))))) +(-13 (-47 |t#1| |t#2|) (-424 |t#1|) (-10 -8 (-15 -2004 ((-114) $)) (-15 -2003 (|t#1| $)) (-15 -4246 ((-660 |t#1|) $)) (-15 -2648 ((-790) $)) (-15 -3220 (|t#2| $)) (-15 -1804 ($ (-1 |t#2| |t#2|) $)) (-15 -1803 ($ $ |t#1| |t#2| $)) (IF (|has| |t#1| (-175)) (-15 -1802 ($ $ $ (-790))) |%noBranch|) (IF (|has| |t#1| (-569)) (-15 -3885 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3217 (|t#1| $)) (-15 -3922 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-424 |#1|) . T) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) . T) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-2195 (((-114) (-114)) NIL T ELT)) (-4217 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-2593 (($ $) NIL (|has| |#1| (-1121)) ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) NIL (|has| |#1| (-1121)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-2196 (($ $ (-558)) NIL T ELT)) (-2197 (((-790) $) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4036 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2198 (($ (-660 |#1|)) NIL T ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-1713 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-4220 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-339 |#1|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2198 ($ (-660 |#1|))) (-15 -2197 ((-790) $)) (-15 -2196 ($ $ (-558))) (-15 -2195 ((-114) (-114))))) (-1237)) (T -339)) +((-2198 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-339 *3)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-339 *3)) (-4 *3 (-1237)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-339 *3)) (-4 *3 (-1237)))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1237))))) +((-4361 (((-114) $) 47 T ELT)) (-4358 (((-790)) 23 T ELT)) (-3749 ((|#2| $) 51 T ELT) (($ $ (-937)) 123 T ELT)) (-3537 (((-790)) 124 T ELT)) (-1999 (($ (-1287 |#2|)) 20 T ELT)) (-2220 (((-114) $) 136 T ELT)) (-3533 ((|#2| $) 53 T ELT) (($ $ (-937)) 120 T ELT)) (-2223 (((-1191 |#2|) $) NIL T ELT) (((-1191 $) $ (-937)) 111 T ELT)) (-1806 (((-1191 |#2|) $) 95 T ELT)) (-1805 (((-1191 |#2|) $) 91 T ELT) (((-3 (-1191 |#2|) "failed") $ $) 88 T ELT)) (-1807 (($ $ (-1191 |#2|)) 58 T ELT)) (-4359 (((-844 (-937))) 30 T ELT) (((-937)) 48 T ELT)) (-4340 (((-136)) 27 T ELT)) (-4377 (((-844 (-937)) $) 32 T ELT) (((-937) $) 139 T ELT)) (-1808 (($) 130 T ELT)) (-3641 (((-1287 |#2|) $) NIL T ELT) (((-708 |#2|) (-1287 $)) 42 T ELT)) (-3102 (($ $) NIL T ELT) (((-710 $) $) 100 T ELT)) (-4362 (((-114) $) 45 T ELT))) +(((-340 |#1| |#2|) (-10 -7 (-15 -3102 ((-710 |#1|) |#1|)) (-15 -3537 ((-790))) (-15 -3102 (|#1| |#1|)) (-15 -1805 ((-3 (-1191 |#2|) "failed") |#1| |#1|)) (-15 -1805 ((-1191 |#2|) |#1|)) (-15 -1806 ((-1191 |#2|) |#1|)) (-15 -1807 (|#1| |#1| (-1191 |#2|))) (-15 -2220 ((-114) |#1|)) (-15 -1808 (|#1|)) (-15 -3749 (|#1| |#1| (-937))) (-15 -3533 (|#1| |#1| (-937))) (-15 -2223 ((-1191 |#1|) |#1| (-937))) (-15 -3749 (|#2| |#1|)) (-15 -3533 (|#2| |#1|)) (-15 -4377 ((-937) |#1|)) (-15 -4359 ((-937))) (-15 -2223 ((-1191 |#2|) |#1|)) (-15 -1999 (|#1| (-1287 |#2|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1|)) (-15 -4358 ((-790))) (-15 -4359 ((-844 (-937)))) (-15 -4377 ((-844 (-937)) |#1|)) (-15 -4361 ((-114) |#1|)) (-15 -4362 ((-114) |#1|)) (-15 -4340 ((-136)))) (-341 |#2|) (-376)) (T -340)) +((-4340 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4359 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-844 (-937))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4358 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-790)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-4359 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-937)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) (-3537 (*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-790)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-4361 (((-114) $) 111 T ELT)) (-4358 (((-790)) 107 T ELT)) (-3749 ((|#1| $) 159 T ELT) (($ $ (-937)) 156 (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 141 (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-3537 (((-790)) 131 (|has| |#1| (-381)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| "failed") $) 118 T ELT)) (-3573 ((|#1| $) 119 T ELT)) (-1999 (($ (-1287 |#1|)) 165 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 147 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3394 (($) 128 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-3233 (($) 143 (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) 144 (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) 104 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) 86 T ELT)) (-4201 (((-937) $) 146 (|has| |#1| (-381)) ELT) (((-844 (-937)) $) 101 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) 40 T ELT)) (-2222 (($) 154 (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) 153 (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) 160 T ELT) (($ $ (-937)) 157 (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) 132 (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-2223 (((-1191 |#1|) $) 164 T ELT) (((-1191 $) $ (-937)) 158 (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) 129 (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) 150 (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) 149 (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) "failed") $ $) 148 (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) 151 (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3865 (($) 133 (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) 130 (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) 110 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2639 (($) 152 (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 140 (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-4359 (((-844 (-937))) 108 T ELT) (((-937)) 162 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-1974 (((-790) $) 145 (|has| |#1| (-381)) ELT) (((-3 (-790) "failed") $ $) 102 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) 116 T ELT)) (-4187 (($ $ (-790)) 136 (|has| |#1| (-381)) ELT) (($ $) 134 (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) 109 T ELT) (((-937) $) 161 T ELT)) (-3602 (((-1191 |#1|)) 163 T ELT)) (-1876 (($) 142 (|has| |#1| (-381)) ELT)) (-1808 (($) 155 (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) 167 T ELT) (((-708 |#1|) (-1287 $)) 166 T ELT)) (-3103 (((-3 (-1287 $) "failed") (-708 $)) 139 (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3102 (($ $) 138 (|has| |#1| (-381)) ELT) (((-710 $) $) 100 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2221 (((-1287 $)) 169 T ELT) (((-1287 $) (-937)) 168 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-4362 (((-114) $) 112 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-4357 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-790)) 105 (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) 137 (|has| |#1| (-381)) ELT) (($ $) 135 (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) (((-341 |#1|) (-142) (-376)) (T -341)) -((-2222 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1288 *1)) (-4 *1 (-341 *3)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-376)) (-5 *2 (-1288 *1)) (-4 *1 (-341 *4)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1288 *3)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1192 *3)))) (-3603 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1192 *3)))) (-4360 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-938)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-938)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-2224 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1192 *1)) (-4 *1 (-341 *4)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3750 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-1809 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2223 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2221 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-2640 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-1808 (*1 *1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1807 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1192 *3)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1192 *3)))) (-1806 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1192 *3))))) -(-13 (-1307 |t#1|) (-1059 |t#1|) (-10 -8 (-15 -2222 ((-1288 $))) (-15 -2222 ((-1288 $) (-938))) (-15 -3642 ((-1288 |t#1|) $)) (-15 -3642 ((-709 |t#1|) (-1288 $))) (-15 -2000 ($ (-1288 |t#1|))) (-15 -2224 ((-1192 |t#1|) $)) (-15 -3603 ((-1192 |t#1|))) (-15 -4360 ((-938))) (-15 -4378 ((-938) $)) (-15 -3534 (|t#1| $)) (-15 -3750 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -2224 ((-1192 $) $ (-938))) (-15 -3534 ($ $ (-938))) (-15 -3750 ($ $ (-938))) (-15 -1809 ($)) (-15 -2223 ($)) (-15 -2221 ((-114) $)) (-15 -2640 ($)) (-15 -1808 ($ $ (-1192 |t#1|))) (-15 -1807 ((-1192 |t#1|) $)) (-15 -1806 ((-1192 |t#1|) $)) (-15 -1806 ((-3 (-1192 |t#1|) "failed") $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3957 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1307 |#1|) . T) ((-376) . T) ((-414) -3957 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 |#1|) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) |has| |#1| (-381)) ((-1238) . T) ((-1243) . T) ((-1296 |#1|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-1827 (($ (-1197) $) 101 T ELT)) (-1818 (($) 90 T ELT)) (-1810 (((-1141) (-1141)) 9 T ELT)) (-1817 (($) 91 T ELT)) (-1821 (($) 105 T ELT) (($ (-326 (-719))) 113 T ELT) (($ (-326 (-721))) 109 T ELT) (($ (-326 (-714))) 117 T ELT) (($ (-326 (-391))) 124 T ELT) (($ (-326 (-558))) 120 T ELT) (($ (-326 (-171 (-391)))) 128 T ELT)) (-1826 (($ (-1197) $) 102 T ELT)) (-1816 (($ (-661 (-877))) 92 T ELT)) (-1812 (((-1294) $) 88 T ELT)) (-1814 (((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1825 (($ (-1141)) 59 T ELT)) (-1811 (((-1124) $) 29 T ELT)) (-1828 (($ (-1113 (-965 (-558))) $) 98 T ELT) (($ (-1113 (-965 (-558))) (-965 (-558)) $) 99 T ELT)) (-1824 (($ (-1141)) 100 T ELT)) (-1820 (($ (-1197) $) 130 T ELT) (($ (-1197) $ $) 131 T ELT)) (-1815 (($ (-1198) (-661 (-1198))) 89 T ELT)) (-1823 (($ (-1180)) 95 T ELT) (($ (-661 (-1180))) 93 T ELT)) (-4376 (((-877) $) 133 T ELT)) (-1813 (((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-661 (-965 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3823 (-114)) (|:| -3822 (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) (|:| |blockBranch| (-661 $)) (|:| |commentBranch| (-661 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1638 (-1113 (-965 (-558)))) (|:| |span| (-965 (-558))) (|:| -3651 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -3651 $))) (|:| |commonBranch| (-2 (|:| -3970 (-1198)) (|:| |contents| (-661 (-1198))))) (|:| |printBranch| (-661 (-877)))) $) 50 T ELT)) (-1822 (($ (-1180)) 203 T ELT)) (-1819 (($ (-661 $)) 129 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2985 (($ (-1198) (-1180)) 136 T ELT) (($ (-1198) (-326 (-721))) 176 T ELT) (($ (-1198) (-326 (-719))) 177 T ELT) (($ (-1198) (-326 (-714))) 178 T ELT) (($ (-1198) (-709 (-721))) 139 T ELT) (($ (-1198) (-709 (-719))) 142 T ELT) (($ (-1198) (-709 (-714))) 145 T ELT) (($ (-1198) (-1288 (-721))) 148 T ELT) (($ (-1198) (-1288 (-719))) 151 T ELT) (($ (-1198) (-1288 (-714))) 154 T ELT) (($ (-1198) (-709 (-326 (-721)))) 157 T ELT) (($ (-1198) (-709 (-326 (-719)))) 160 T ELT) (($ (-1198) (-709 (-326 (-714)))) 163 T ELT) (($ (-1198) (-1288 (-326 (-721)))) 166 T ELT) (($ (-1198) (-1288 (-326 (-719)))) 169 T ELT) (($ (-1198) (-1288 (-326 (-714)))) 172 T ELT) (($ (-1198) (-661 (-965 (-558))) (-326 (-721))) 173 T ELT) (($ (-1198) (-661 (-965 (-558))) (-326 (-719))) 174 T ELT) (($ (-1198) (-661 (-965 (-558))) (-326 (-714))) 175 T ELT) (($ (-1198) (-326 (-558))) 200 T ELT) (($ (-1198) (-326 (-391))) 201 T ELT) (($ (-1198) (-326 (-171 (-391)))) 202 T ELT) (($ (-1198) (-709 (-326 (-558)))) 181 T ELT) (($ (-1198) (-709 (-326 (-391)))) 184 T ELT) (($ (-1198) (-709 (-326 (-171 (-391))))) 187 T ELT) (($ (-1198) (-1288 (-326 (-558)))) 190 T ELT) (($ (-1198) (-1288 (-326 (-391)))) 193 T ELT) (($ (-1198) (-1288 (-326 (-171 (-391))))) 196 T ELT) (($ (-1198) (-661 (-965 (-558))) (-326 (-558))) 197 T ELT) (($ (-1198) (-661 (-965 (-558))) (-326 (-391))) 198 T ELT) (($ (-1198) (-661 (-965 (-558))) (-326 (-171 (-391)))) 199 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-342) (-13 (-1122) (-10 -8 (-15 -1828 ($ (-1113 (-965 (-558))) $)) (-15 -1828 ($ (-1113 (-965 (-558))) (-965 (-558)) $)) (-15 -1827 ($ (-1197) $)) (-15 -1826 ($ (-1197) $)) (-15 -1825 ($ (-1141))) (-15 -1824 ($ (-1141))) (-15 -1823 ($ (-1180))) (-15 -1823 ($ (-661 (-1180)))) (-15 -1822 ($ (-1180))) (-15 -1821 ($)) (-15 -1821 ($ (-326 (-719)))) (-15 -1821 ($ (-326 (-721)))) (-15 -1821 ($ (-326 (-714)))) (-15 -1821 ($ (-326 (-391)))) (-15 -1821 ($ (-326 (-558)))) (-15 -1821 ($ (-326 (-171 (-391))))) (-15 -1820 ($ (-1197) $)) (-15 -1820 ($ (-1197) $ $)) (-15 -2985 ($ (-1198) (-1180))) (-15 -2985 ($ (-1198) (-326 (-721)))) (-15 -2985 ($ (-1198) (-326 (-719)))) (-15 -2985 ($ (-1198) (-326 (-714)))) (-15 -2985 ($ (-1198) (-709 (-721)))) (-15 -2985 ($ (-1198) (-709 (-719)))) (-15 -2985 ($ (-1198) (-709 (-714)))) (-15 -2985 ($ (-1198) (-1288 (-721)))) (-15 -2985 ($ (-1198) (-1288 (-719)))) (-15 -2985 ($ (-1198) (-1288 (-714)))) (-15 -2985 ($ (-1198) (-709 (-326 (-721))))) (-15 -2985 ($ (-1198) (-709 (-326 (-719))))) (-15 -2985 ($ (-1198) (-709 (-326 (-714))))) (-15 -2985 ($ (-1198) (-1288 (-326 (-721))))) (-15 -2985 ($ (-1198) (-1288 (-326 (-719))))) (-15 -2985 ($ (-1198) (-1288 (-326 (-714))))) (-15 -2985 ($ (-1198) (-661 (-965 (-558))) (-326 (-721)))) (-15 -2985 ($ (-1198) (-661 (-965 (-558))) (-326 (-719)))) (-15 -2985 ($ (-1198) (-661 (-965 (-558))) (-326 (-714)))) (-15 -2985 ($ (-1198) (-326 (-558)))) (-15 -2985 ($ (-1198) (-326 (-391)))) (-15 -2985 ($ (-1198) (-326 (-171 (-391))))) (-15 -2985 ($ (-1198) (-709 (-326 (-558))))) (-15 -2985 ($ (-1198) (-709 (-326 (-391))))) (-15 -2985 ($ (-1198) (-709 (-326 (-171 (-391)))))) (-15 -2985 ($ (-1198) (-1288 (-326 (-558))))) (-15 -2985 ($ (-1198) (-1288 (-326 (-391))))) (-15 -2985 ($ (-1198) (-1288 (-326 (-171 (-391)))))) (-15 -2985 ($ (-1198) (-661 (-965 (-558))) (-326 (-558)))) (-15 -2985 ($ (-1198) (-661 (-965 (-558))) (-326 (-391)))) (-15 -2985 ($ (-1198) (-661 (-965 (-558))) (-326 (-171 (-391))))) (-15 -1819 ($ (-661 $))) (-15 -1818 ($)) (-15 -1817 ($)) (-15 -1816 ($ (-661 (-877)))) (-15 -1815 ($ (-1198) (-661 (-1198)))) (-15 -1814 ((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1813 ((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-661 (-965 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3823 (-114)) (|:| -3822 (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) (|:| |blockBranch| (-661 $)) (|:| |commentBranch| (-661 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1638 (-1113 (-965 (-558)))) (|:| |span| (-965 (-558))) (|:| -3651 $))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -3651 $))) (|:| |commonBranch| (-2 (|:| -3970 (-1198)) (|:| |contents| (-661 (-1198))))) (|:| |printBranch| (-661 (-877)))) $)) (-15 -1812 ((-1294) $)) (-15 -1811 ((-1124) $)) (-15 -1810 ((-1141) (-1141)))))) (T -342)) -((-1828 (*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-965 (-558)))) (-5 *1 (-342)))) (-1828 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1113 (-965 (-558)))) (-5 *3 (-965 (-558))) (-5 *1 (-342)))) (-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342)))) (-1826 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342)))) (-1825 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-342)))) (-1824 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-342)))) (-1823 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-342)))) (-1823 (*1 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-342)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-342)))) (-1821 (*1 *1) (-5 *1 (-342))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1820 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342)))) (-1820 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-719))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-714))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-721))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-719))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-714))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-721))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-719))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-714))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-721)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-719)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-714)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-721)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-719)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-714)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-721))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-719))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-714))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-558))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-558)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-391)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-558)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-391)))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-558))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-2985 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1819 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-5 *1 (-342)))) (-1818 (*1 *1) (-5 *1 (-342))) (-1817 (*1 *1) (-5 *1 (-342))) (-1816 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-342)))) (-1815 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1198)) (-5 *1 (-342)))) (-1814 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-661 (-965 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1197)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -3823 (-114)) (|:| -3822 (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) (|:| |blockBranch| (-661 (-342))) (|:| |commentBranch| (-661 (-1180))) (|:| |callBranch| (-1180)) (|:| |forBranch| (-2 (|:| -1638 (-1113 (-965 (-558)))) (|:| |span| (-965 (-558))) (|:| -3651 (-342)))) (|:| |labelBranch| (-1141)) (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -3651 (-342)))) (|:| |commonBranch| (-2 (|:| -3970 (-1198)) (|:| |contents| (-661 (-1198))))) (|:| |printBranch| (-661 (-877))))) (-5 *1 (-342)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-342)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-342)))) (-1810 (*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-342))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1829 (((-114) $) 13 T ELT)) (-4068 (($ |#1|) 10 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4064 (($ |#1|) 12 T ELT)) (-4376 (((-877) $) 19 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2450 ((|#1| $) 14 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 21 T ELT))) -(((-343 |#1|) (-13 (-861) (-10 -8 (-15 -4068 ($ |#1|)) (-15 -4064 ($ |#1|)) (-15 -1829 ((-114) $)) (-15 -2450 (|#1| $)))) (-861)) (T -343)) -((-4068 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-861)))) (-4064 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-861)))) (-1829 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-861)))) (-2450 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-861))))) -((-1830 (((-342) (-1198) (-965 (-558))) 23 T ELT)) (-1831 (((-342) (-1198) (-965 (-558))) 27 T ELT)) (-2547 (((-342) (-1198) (-1113 (-965 (-558))) (-1113 (-965 (-558)))) 26 T ELT) (((-342) (-1198) (-965 (-558)) (-965 (-558))) 24 T ELT)) (-1832 (((-342) (-1198) (-965 (-558))) 31 T ELT))) -(((-344) (-10 -7 (-15 -1830 ((-342) (-1198) (-965 (-558)))) (-15 -2547 ((-342) (-1198) (-965 (-558)) (-965 (-558)))) (-15 -2547 ((-342) (-1198) (-1113 (-965 (-558))) (-1113 (-965 (-558))))) (-15 -1831 ((-342) (-1198) (-965 (-558)))) (-15 -1832 ((-342) (-1198) (-965 (-558)))))) (T -344)) -((-1832 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-1113 (-965 (-558)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2547 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1833 (((-518) $) 20 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1834 (((-977 (-791)) $) 18 T ELT)) (-1836 (((-258) $) 7 T ELT)) (-4376 (((-877) $) 26 T ELT)) (-2421 (((-977 (-187 (-141))) $) 16 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1835 (((-661 (-887 (-1203) (-791))) $) 12 T ELT)) (-3454 (((-114) $ $) 22 T ELT))) -(((-345) (-13 (-1122) (-10 -8 (-15 -1836 ((-258) $)) (-15 -1835 ((-661 (-887 (-1203) (-791))) $)) (-15 -1834 ((-977 (-791)) $)) (-15 -2421 ((-977 (-187 (-141))) $)) (-15 -1833 ((-518) $))))) (T -345)) -((-1836 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-1835 (*1 *2 *1) (-12 (-5 *2 (-661 (-887 (-1203) (-791)))) (-5 *1 (-345)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-977 (-791))) (-5 *1 (-345)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-977 (-187 (-141)))) (-5 *1 (-345)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4272 (($ $) 33 T ELT)) (-1839 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1837 (((-1288 |#4|) $) 132 T ELT)) (-2180 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (((-3 |#4| #1#) $) 36 T ELT)) (-1838 (((-1288 |#4|) $) 124 T ELT)) (-1840 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-558)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3855 (((-2 (|:| -2555 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4376 (((-877) $) 17 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 14 T CONST)) (-3454 (((-114) $ $) 20 T ELT)) (-4267 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 25 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 23 T ELT))) -(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1838 ((-1288 |#4|) $)) (-15 -1837 ((-1288 |#4|) $)))) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -346)) -((-1838 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-1837 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) -((-4388 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT))) -(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4388 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1264 |#5|) (-1264 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -347)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11))))) -((-1839 (((-114) $) 14 T ELT))) -(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1839 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1264 |#2|) (-1264 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -348)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-4272 (($ $) 34 T ELT)) (-1839 (((-114) $) 33 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2180 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 40 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2640 (((-3 |#4| "failed") $) 32 T ELT)) (-1840 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-558)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3855 (((-2 (|:| -2555 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT))) -(((-349 |#1| |#2| |#3| |#4|) (-142) (-376) (-1264 |t#1|) (-1264 (-419 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -349)) -((-2180 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1840 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-1840 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-1840 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-1840 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-376)) (-4 *4 (-1264 *2)) (-4 *5 (-1264 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-3855 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -2555 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-4272 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) (-1839 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-2640 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) (-1840 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))) -(-13 (-21) (-10 -8 (-15 -2180 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1840 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1840 ($ |t#4|)) (-15 -1840 ($ |t#1| |t#1|)) (-15 -1840 ($ |t#1| |t#1| (-558))) (-15 -3855 ((-2 (|:| -2555 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4272 ($ $)) (-15 -1839 ((-114) $)) (-15 -2640 ((-3 |t#4| "failed") $)) (-15 -1840 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-1122) . T) ((-1238) . T)) -((-4198 (($ $ (-1198) |#2|) NIL T ELT) (($ $ (-661 (-1198)) (-661 |#2|)) 20 T ELT) (($ $ (-661 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL T ELT)) (-4230 (($ $ |#2|) 11 T ELT))) -(((-350 |#1| |#2|) (-10 -7 (-15 -4230 (|#1| |#1| |#2|)) (-15 -4198 (|#1| |#1| (-661 |#2|) (-661 |#2|))) (-15 -4198 (|#1| |#1| |#2| |#2|)) (-15 -4198 (|#1| |#1| (-305 |#2|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 |#2|))) (-15 -4198 (|#1| |#1| (-1198) |#2|))) (-351 |#2|) (-1122)) (T -350)) -NIL -((-4388 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-4198 (($ $ (-1198) |#1|) 17 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 16 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-4230 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT))) -(((-351 |#1|) (-142) (-1122)) (T -351)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1122))))) -(-13 (-10 -8 (-15 -4388 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1198) |t#1|)) (-6 (-526 (-1198) |t#1|)) |%noBranch|))) -(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1238) |has| |#1| (-298 |#1| |#1|))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1198)) $) NIL T ELT)) (-1841 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-1743 (((-661 (-628 $)) $) NIL T ELT)) (-3912 (($ $) NIL T ELT)) (-4069 (($ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1747 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-3438 (($ $) NIL T ELT)) (-3910 (($ $) NIL T ELT)) (-4068 (($ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-628 $) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ #1#) (-326 |#3|)) 76 T ELT) (((-3 $ #1#) (-1198)) 103 T ELT) (((-3 $ #1#) (-326 (-558))) 64 (|has| |#3| (-1059 (-558))) ELT) (((-3 $ #1#) (-419 (-965 (-558)))) 70 (|has| |#3| (-1059 (-558))) ELT) (((-3 $ #1#) (-965 (-558))) 65 (|has| |#3| (-1059 (-558))) ELT) (((-3 $ #1#) (-326 (-391))) 94 (|has| |#3| (-1059 (-391))) ELT) (((-3 $ #1#) (-419 (-965 (-391)))) 88 (|has| |#3| (-1059 (-391))) ELT) (((-3 $ #1#) (-965 (-391))) 83 (|has| |#3| (-1059 (-391))) ELT)) (-3574 (((-628 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1198)) 104 T ELT) (($ (-326 (-558))) 66 (|has| |#3| (-1059 (-558))) ELT) (($ (-419 (-965 (-558)))) 71 (|has| |#3| (-1059 (-558))) ELT) (($ (-965 (-558))) 67 (|has| |#3| (-1059 (-558))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1059 (-391))) ELT) (($ (-419 (-965 (-391)))) 89 (|has| |#3| (-1059 (-391))) ELT) (($ (-965 (-391))) 85 (|has| |#3| (-1059 (-391))) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4057 (($) 101 T ELT)) (-2972 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1742 (((-661 (-115)) $) NIL T ELT)) (-4023 (((-115) (-115)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3074 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-1740 (((-1192 $) (-628 $)) NIL (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) NIL T ELT)) (-1745 (((-3 (-628 $) #1#) $) NIL T ELT)) (-1945 (($ $) 99 T ELT)) (-4372 (($ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1744 (((-661 (-628 $)) $) NIL T ELT)) (-2449 (($ (-115) $) 98 T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3032 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-3002 (((-791) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1741 (((-114) $ $) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-4373 (($ $) NIL T ELT)) (-3075 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1198) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1198) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4230 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4188 (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-3603 (($ $) NIL (|has| $ (-1070)) ELT)) (-3911 (($ $) NIL T ELT)) (-4064 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-628 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-558)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-3528 (((-791)) NIL T CONST)) (-2989 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-2468 (((-114) (-115)) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-3904 (($ $) NIL T ELT)) (-3905 (($ $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-3059 (($) 100 T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-938) $) NIL T ELT))) -(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1059 |#3|) (-917 (-1198)) (-10 -8 (-15 -3574 ($ (-326 |#3|))) (-15 -3575 ((-3 $ #1="failed") (-326 |#3|))) (-15 -3574 ($ (-1198))) (-15 -3575 ((-3 $ #1#) (-1198))) (-15 -4376 ((-326 |#3|) $)) (IF (|has| |#3| (-1059 (-558))) (PROGN (-15 -3574 ($ (-326 (-558)))) (-15 -3575 ((-3 $ #1#) (-326 (-558)))) (-15 -3574 ($ (-419 (-965 (-558))))) (-15 -3575 ((-3 $ #1#) (-419 (-965 (-558))))) (-15 -3574 ($ (-965 (-558)))) (-15 -3575 ((-3 $ #1#) (-965 (-558))))) |%noBranch|) (IF (|has| |#3| (-1059 (-391))) (PROGN (-15 -3574 ($ (-326 (-391)))) (-15 -3575 ((-3 $ #1#) (-326 (-391)))) (-15 -3574 ($ (-419 (-965 (-391))))) (-15 -3575 ((-3 $ #1#) (-419 (-965 (-391))))) (-15 -3574 ($ (-965 (-391)))) (-15 -3575 ((-3 $ #1#) (-965 (-391))))) |%noBranch|) (-15 -3803 ($ $)) (-15 -3438 ($ $)) (-15 -4373 ($ $)) (-15 -4372 ($ $)) (-15 -1945 ($ $)) (-15 -4068 ($ $)) (-15 -4064 ($ $)) (-15 -4069 ($ $)) (-15 -3904 ($ $)) (-15 -3905 ($ $)) (-15 -3906 ($ $)) (-15 -3910 ($ $)) (-15 -3911 ($ $)) (-15 -3912 ($ $)) (-15 -4057 ($)) (-15 -3484 ((-661 (-1198)) $)) (-15 -1841 ((-114))) (-15 -1841 ((-114) (-114))))) (-661 (-1198)) (-661 (-1198)) (-401)) (T -352)) -((-3574 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) (-14 *4 (-661 *2)) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) (-14 *4 (-661 *2)) (-4 *5 (-401)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-558)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-965 (-558)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-965 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-965 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-965 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-3803 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3438 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-4373 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-4372 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-1945 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-4068 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-4064 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-4069 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3906 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3912 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-4057 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) (-4 *4 (-401)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-1841 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) (-1841 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 (((-925 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-925 |#1|) #1#) $) NIL T ELT)) (-3574 (((-925 |#1|) $) NIL T ELT)) (-2000 (($ (-1288 (-925 |#1|))) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1883 (((-114) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT) (($ $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2221 (((-114) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3534 (((-925 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 (-925 |#1|)) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2220 (((-938) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1807 (((-1192 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1806 (((-1192 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-3 (-1192 (-925 |#1|)) #1#) $ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1808 (($ $ (-1192 (-925 |#1|))) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-925 |#1|) (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 (-925 |#1|))) NIL T ELT)) (-1877 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1809 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3642 (((-1288 (-925 |#1|)) $) NIL T ELT) (((-709 (-925 |#1|)) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-925 |#1|)) NIL T ELT)) (-3103 (($ $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ (-925 |#1|)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-925 |#1|)) NIL T ELT) (($ (-925 |#1|) $) NIL T ELT))) -(((-353 |#1| |#2|) (-341 (-925 |#1|)) (-938) (-938)) (T -353)) -NIL -((-1850 (((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-2000 (($ (-1288 (-419 |#3|)) (-1288 $)) NIL T ELT) (($ (-1288 (-419 |#3|))) NIL T ELT) (($ (-1288 |#3|) |#3|) 172 T ELT)) (-1855 (((-1288 $) (-1288 $)) 156 T ELT)) (-1842 (((-661 (-661 |#2|))) 126 T ELT)) (-1867 (((-114) |#2| |#2|) 76 T ELT)) (-3923 (($ $) 148 T ELT)) (-3797 (((-791)) 171 T ELT)) (-1856 (((-1288 $) (-1288 $)) 219 T ELT)) (-1843 (((-661 (-965 |#2|)) (-1198)) 115 T ELT)) (-1859 (((-114) $) 168 T ELT)) (-1858 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 223 T ELT)) (-1845 (((-3 |#3| #1="failed")) 52 T ELT)) (-1869 (((-791)) 183 T ELT)) (-4230 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1846 (((-3 |#3| #1#)) 71 T ELT)) (-4188 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL T ELT) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-791)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-1857 (((-1288 $) (-1288 $)) 162 T ELT)) (-1844 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1868 (((-114)) 34 T ELT))) -(((-354 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -1842 ((-661 (-661 |#2|)))) (-15 -1843 ((-661 (-965 |#2|)) (-1198))) (-15 -1844 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1845 ((-3 |#3| #1="failed"))) (-15 -1846 ((-3 |#3| #1#))) (-15 -4230 (|#2| |#1| |#2| |#2|)) (-15 -3923 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1858 ((-114) |#1| |#3|)) (-15 -1858 ((-114) |#1| |#2|)) (-15 -2000 (|#1| (-1288 |#3|) |#3|)) (-15 -1850 ((-2 (|:| |num| (-1288 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1855 ((-1288 |#1|) (-1288 |#1|))) (-15 -1856 ((-1288 |#1|) (-1288 |#1|))) (-15 -1857 ((-1288 |#1|) (-1288 |#1|))) (-15 -1858 ((-114) |#1|)) (-15 -1859 ((-114) |#1|)) (-15 -1867 ((-114) |#2| |#2|)) (-15 -1868 ((-114))) (-15 -1869 ((-791))) (-15 -3797 ((-791))) (-15 -4188 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-791))) (-15 -4188 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -2000 (|#1| (-1288 (-419 |#3|)))) (-15 -2000 (|#1| (-1288 (-419 |#3|)) (-1288 |#1|)))) (-355 |#2| |#3| |#4|) (-1243) (-1264 |#2|) (-1264 (-419 |#3|))) (T -354)) -((-3797 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1869 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1868 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1867 (*1 *2 *3 *3) (-12 (-4 *3 (-1243)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-1846 (*1 *2) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1845 (*1 *2) (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *5 (-1243)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-661 (-965 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-1842 (*1 *2) (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-661 (-661 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1850 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 111 (|has| (-419 |#2|) (-376)) ELT)) (-2273 (($ $) 112 (|has| (-419 |#2|) (-376)) ELT)) (-2271 (((-114) $) 114 (|has| (-419 |#2|) (-376)) ELT)) (-1990 (((-709 (-419 |#2|)) (-1288 $)) 58 T ELT) (((-709 (-419 |#2|))) 74 T ELT)) (-3750 (((-419 |#2|) $) 64 T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 164 (|has| (-419 |#2|) (-363)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 131 (|has| (-419 |#2|) (-376)) ELT)) (-4401 (((-417 $) $) 132 (|has| (-419 |#2|) (-376)) ELT)) (-1788 (((-114) $ $) 122 (|has| (-419 |#2|) (-376)) ELT)) (-3538 (((-791)) 105 (|has| (-419 |#2|) (-381)) ELT)) (-1864 (((-114)) 239 T ELT)) (-1863 (((-114) |#1|) 238 T ELT) (((-114) |#2|) 237 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 191 (|has| (-419 |#2|) (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| (-419 |#2|) (-1059 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) 186 T ELT)) (-3574 (((-558) $) 190 (|has| (-419 |#2|) (-1059 (-558))) ELT) (((-419 (-558)) $) 188 (|has| (-419 |#2|) (-1059 (-419 (-558)))) ELT) (((-419 |#2|) $) 187 T ELT)) (-2000 (($ (-1288 (-419 |#2|)) (-1288 $)) 60 T ELT) (($ (-1288 (-419 |#2|))) 77 T ELT) (($ (-1288 |#2|) |#2|) 221 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-419 |#2|) (-363)) ELT)) (-2963 (($ $ $) 126 (|has| (-419 |#2|) (-376)) ELT)) (-1989 (((-709 (-419 |#2|)) $ (-1288 $)) 65 T ELT) (((-709 (-419 |#2|)) $) 72 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 183 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 182 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-709 $) (-1288 $)) 181 T ELT) (((-709 (-419 |#2|)) (-709 $)) 180 T ELT)) (-1855 (((-1288 $) (-1288 $)) 227 T ELT)) (-4272 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-419 |#3|)) 172 (|has| (-419 |#2|) (-376)) ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-1842 (((-661 (-661 |#1|))) 208 (|has| |#1| (-381)) ELT)) (-1867 (((-114) |#1| |#1|) 243 T ELT)) (-3511 (((-938)) 66 T ELT)) (-3395 (($) 108 (|has| (-419 |#2|) (-381)) ELT)) (-1862 (((-114)) 236 T ELT)) (-1861 (((-114) |#1|) 235 T ELT) (((-114) |#2|) 234 T ELT)) (-2962 (($ $ $) 125 (|has| (-419 |#2|) (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 120 (|has| (-419 |#2|) (-376)) ELT)) (-3923 (($ $) 214 T ELT)) (-3234 (($) 166 (|has| (-419 |#2|) (-363)) ELT)) (-1883 (((-114) $) 167 (|has| (-419 |#2|) (-363)) ELT)) (-1974 (($ $ (-791)) 158 (|has| (-419 |#2|) (-363)) ELT) (($ $) 157 (|has| (-419 |#2|) (-363)) ELT)) (-4153 (((-114) $) 133 (|has| (-419 |#2|) (-376)) ELT)) (-4202 (((-938) $) 169 (|has| (-419 |#2|) (-363)) ELT) (((-845 (-938)) $) 155 (|has| (-419 |#2|) (-363)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3797 (((-791)) 246 T ELT)) (-1856 (((-1288 $) (-1288 $)) 228 T ELT)) (-3534 (((-419 |#2|) $) 63 T ELT)) (-1843 (((-661 (-965 |#1|)) (-1198)) 209 (|has| |#1| (-376)) ELT)) (-3865 (((-711 $) $) 159 (|has| (-419 |#2|) (-363)) ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 129 (|has| (-419 |#2|) (-376)) ELT)) (-2224 ((|#3| $) 56 (|has| (-419 |#2|) (-376)) ELT)) (-2220 (((-938) $) 107 (|has| (-419 |#2|) (-381)) ELT)) (-3480 ((|#3| $) 173 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 185 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 184 (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) 179 T ELT) (((-709 (-419 |#2|)) (-1288 $)) 178 T ELT)) (-2102 (($ (-661 $)) 118 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 117 (|has| (-419 |#2|) (-376)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1851 (((-709 (-419 |#2|))) 223 T ELT)) (-1853 (((-709 (-419 |#2|))) 225 T ELT)) (-2874 (($ $) 134 (|has| (-419 |#2|) (-376)) ELT)) (-1848 (($ (-1288 |#2|) |#2|) 219 T ELT)) (-1852 (((-709 (-419 |#2|))) 224 T ELT)) (-1854 (((-709 (-419 |#2|))) 226 T ELT)) (-1847 (((-2 (|:| |num| (-709 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1849 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1860 (((-1288 $)) 232 T ELT)) (-4348 (((-1288 $)) 233 T ELT)) (-1859 (((-114) $) 231 T ELT)) (-1858 (((-114) $) 230 T ELT) (((-114) $ |#1|) 217 T ELT) (((-114) $ |#2|) 216 T ELT)) (-3866 (($) 160 (|has| (-419 |#2|) (-363)) CONST)) (-2631 (($ (-938)) 106 (|has| (-419 |#2|) (-381)) ELT)) (-1845 (((-3 |#2| "failed")) 211 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1869 (((-791)) 245 T ELT)) (-2640 (($) 177 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 119 (|has| (-419 |#2|) (-376)) ELT)) (-3562 (($ (-661 $)) 116 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 115 (|has| (-419 |#2|) (-376)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 163 (|has| (-419 |#2|) (-363)) ELT)) (-4162 (((-417 $) $) 130 (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 127 (|has| (-419 |#2|) (-376)) ELT)) (-3886 (((-3 $ "failed") $ $) 110 (|has| (-419 |#2|) (-376)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 121 (|has| (-419 |#2|) (-376)) ELT)) (-1787 (((-791) $) 123 (|has| (-419 |#2|) (-376)) ELT)) (-4230 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1846 (((-3 |#2| "failed")) 212 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 124 (|has| (-419 |#2|) (-376)) ELT)) (-4187 (((-419 |#2|) (-1288 $)) 59 T ELT) (((-419 |#2|)) 73 T ELT)) (-1975 (((-791) $) 168 (|has| (-419 |#2|) (-363)) ELT) (((-3 (-791) "failed") $ $) 156 (|has| (-419 |#2|) (-363)) ELT)) (-4188 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 142 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) 141 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-661 (-1198)) (-661 (-791))) 147 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1198) (-791)) 146 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-661 (-1198))) 145 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1198)) 143 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-791)) 153 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2961 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 151 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2961 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2639 (((-709 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) 171 (|has| (-419 |#2|) (-376)) ELT)) (-3603 ((|#3|) 176 T ELT)) (-1877 (($) 165 (|has| (-419 |#2|) (-363)) ELT)) (-3642 (((-1288 (-419 |#2|)) $ (-1288 $)) 62 T ELT) (((-709 (-419 |#2|)) (-1288 $) (-1288 $)) 61 T ELT) (((-1288 (-419 |#2|)) $) 79 T ELT) (((-709 (-419 |#2|)) (-1288 $)) 78 T ELT)) (-4402 (((-1288 (-419 |#2|)) $) 76 T ELT) (($ (-1288 (-419 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-3104 (((-3 (-1288 $) "failed") (-709 $)) 162 (|has| (-419 |#2|) (-363)) ELT)) (-1857 (((-1288 $) (-1288 $)) 229 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 |#2|)) 49 T ELT) (($ (-419 (-558))) 104 (-3957 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1059 (-419 (-558))))) ELT) (($ $) 109 (|has| (-419 |#2|) (-376)) ELT)) (-3103 (($ $) 161 (|has| (-419 |#2|) (-363)) ELT) (((-711 $) $) 55 (|has| (-419 |#2|) (-147)) ELT)) (-2838 ((|#3| $) 57 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1866 (((-114)) 242 T ELT)) (-1865 (((-114) |#1|) 241 T ELT) (((-114) |#2|) 240 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2222 (((-1288 $)) 80 T ELT)) (-2272 (((-114) $ $) 113 (|has| (-419 |#2|) (-376)) ELT)) (-1844 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1868 (((-114)) 244 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 140 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) 139 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 150 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1198) (-791)) 149 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-661 (-1198))) 148 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1198)) 144 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-2961 (|has| (-419 |#2|) (-919 (-1198))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-791)) 154 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2961 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 152 (-3957 (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2961 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2961 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 138 (|has| (-419 |#2|) (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 135 (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 |#2|)) 51 T ELT) (($ (-419 |#2|) $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| (-419 |#2|) (-376)) ELT))) -(((-355 |#1| |#2| |#3|) (-142) (-1243) (-1264 |t#1|) (-1264 (-419 |t#2|))) (T -355)) -((-3797 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-791)))) (-1869 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-791)))) (-1868 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1867 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1866 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1865 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1865 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) (-1864 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1863 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) (-1862 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1861 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1861 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) (-4348 (*1 *2) (-12 (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1860 (*1 *2) (-12 (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1859 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1857 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1855 (*1 *2 *2) (-12 (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-1854 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1853 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1852 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1851 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4))))) (-1850 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-2000 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1243)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4))))) (-1848 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1243)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) (-1847 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| (-709 *5)) (|:| |den| *5))))) (-1858 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) (-1858 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) (-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-4230 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))))) (-1846 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1243)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-1845 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1243)) (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3)))) (-1844 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1243)) (-4 *6 (-1264 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1843 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-376)) (-5 *2 (-661 (-965 *4))))) (-1842 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-661 (-661 *3)))))) -(-13 (-744 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3797 ((-791))) (-15 -1869 ((-791))) (-15 -1868 ((-114))) (-15 -1867 ((-114) |t#1| |t#1|)) (-15 -1866 ((-114))) (-15 -1865 ((-114) |t#1|)) (-15 -1865 ((-114) |t#2|)) (-15 -1864 ((-114))) (-15 -1863 ((-114) |t#1|)) (-15 -1863 ((-114) |t#2|)) (-15 -1862 ((-114))) (-15 -1861 ((-114) |t#1|)) (-15 -1861 ((-114) |t#2|)) (-15 -4348 ((-1288 $))) (-15 -1860 ((-1288 $))) (-15 -1859 ((-114) $)) (-15 -1858 ((-114) $)) (-15 -1857 ((-1288 $) (-1288 $))) (-15 -1856 ((-1288 $) (-1288 $))) (-15 -1855 ((-1288 $) (-1288 $))) (-15 -1854 ((-709 (-419 |t#2|)))) (-15 -1853 ((-709 (-419 |t#2|)))) (-15 -1852 ((-709 (-419 |t#2|)))) (-15 -1851 ((-709 (-419 |t#2|)))) (-15 -1850 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -2000 ($ (-1288 |t#2|) |t#2|)) (-15 -1849 ((-2 (|:| |num| (-1288 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1848 ($ (-1288 |t#2|) |t#2|)) (-15 -1847 ((-2 (|:| |num| (-709 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1858 ((-114) $ |t#1|)) (-15 -1858 ((-114) $ |t#2|)) (-15 -4188 ($ $ (-1 |t#2| |t#2|))) (-15 -3923 ($ $)) (-15 -4230 (|t#1| $ |t#1| |t#1|)) (-15 -1846 ((-3 |t#2| "failed"))) (-15 -1845 ((-3 |t#2| "failed"))) (-15 -1844 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1843 ((-661 (-965 |t#1|)) (-1198))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -1842 ((-661 (-661 |t#1|)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-38 (-419 |#2|)) . T) ((-38 $) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-111 (-419 |#2|) (-419 |#2|)) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-147))) ((-149) |has| (-419 |#2|) (-149)) ((-633 (-419 (-558))) -3957 (|has| (-419 |#2|) (-1059 (-419 (-558)))) (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-633 (-419 |#2|)) . T) ((-633 (-558)) . T) ((-633 $) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-630 (-877)) . T) ((-175) . T) ((-631 |#3|) . T) ((-236 $) -3957 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-234 (-419 |#2|)) |has| (-419 |#2|) (-376)) ((-240) -3957 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-239) -3957 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-274 (-419 |#2|)) |has| (-419 |#2|) (-376)) ((-250) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-302) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-319) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-376) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-414) |has| (-419 |#2|) (-363)) ((-381) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-381))) ((-363) |has| (-419 |#2|) (-363)) ((-383 (-419 |#2|) |#3|) . T) ((-422 (-419 |#2|) |#3|) . T) ((-390 (-419 |#2|)) . T) ((-424 (-419 |#2|)) . T) ((-464) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-569) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-666 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-666 (-419 |#2|)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-668 (-419 |#2|)) . T) ((-668 (-558)) |has| (-419 |#2|) (-658 (-558))) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-660 (-419 |#2|)) . T) ((-660 $) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-658 (-419 |#2|)) . T) ((-658 (-558)) |has| (-419 |#2|) (-658 (-558))) ((-737 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-737 (-419 |#2|)) . T) ((-737 $) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-744 (-419 |#2|) |#3|) . T) ((-746) . T) ((-911 $ (-1198)) -3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198))))) ((-917 (-1198)) -12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) ((-919 (-1198)) -3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198))))) ((-940) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1059 (-419 (-558))) |has| (-419 |#2|) (-1059 (-419 (-558)))) ((-1059 (-419 |#2|)) . T) ((-1059 (-558)) |has| (-419 |#2|) (-1059 (-558))) ((-1072 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1072 (-419 |#2|)) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1077 (-419 |#2|)) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) |has| (-419 |#2|) (-363)) ((-1238) . T) ((-1243) -3957 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376)))) -((-4388 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) -(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4388 (|#8| (-1 |#5| |#1|) |#4|))) (-1243) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-1243) (-1264 |#5|) (-1264 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -356)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1243)) (-4 *8 (-1243)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1264 (-419 *9)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 (((-925 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-925 |#1|) #1#) $) NIL T ELT)) (-3574 (((-925 |#1|) $) NIL T ELT)) (-2000 (($ (-1288 (-925 |#1|))) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1883 (((-114) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT) (($ $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2221 (((-114) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3534 (((-925 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 (-925 |#1|)) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2220 (((-938) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1807 (((-1192 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1806 (((-1192 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-3 (-1192 (-925 |#1|)) #1#) $ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1808 (($ $ (-1192 (-925 |#1|))) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-925 |#1|) (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1870 (((-977 (-1141))) NIL T ELT)) (-2640 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 (-925 |#1|))) NIL T ELT)) (-1877 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1809 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3642 (((-1288 (-925 |#1|)) $) NIL T ELT) (((-709 (-925 |#1|)) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-925 |#1|)) NIL T ELT)) (-3103 (($ $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ (-925 |#1|)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-925 |#1|)) NIL T ELT) (($ (-925 |#1|) $) NIL T ELT))) -(((-357 |#1| |#2|) (-13 (-341 (-925 |#1|)) (-10 -7 (-15 -1870 ((-977 (-1141)))))) (-938) (-938)) (T -357)) -((-1870 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-357 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 58 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 56 (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 141 T ELT)) (-3574 ((|#1| $) 113 T ELT)) (-2000 (($ (-1288 |#1|)) 130 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) 124 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) 159 (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) 60 (|has| |#1| (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) 62 T ELT)) (-2223 (($) 161 (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 |#1|) $) 117 T ELT) (((-1192 $) $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) 170 (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 177 T ELT)) (-3866 (($) NIL (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) 96 (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) 146 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1870 (((-977 (-1141))) 57 T ELT)) (-2640 (($) 157 (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 119 (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) 90 T ELT) (((-938)) 91 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) 160 (|has| |#1| (-381)) ELT) (((-3 (-791) #1#) $ $) 153 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 |#1|)) 122 T ELT)) (-1877 (($) 158 (|has| |#1| (-381)) ELT)) (-1809 (($) 166 (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) 77 T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) 173 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3103 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) 154 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) 143 T ELT) (((-1288 $) (-938)) 98 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) 67 T CONST)) (-3065 (($) 103 T CONST)) (-4358 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) 65 T ELT)) (-4379 (($ $ $) 175 T ELT) (($ $ |#1|) 176 T ELT)) (-4267 (($ $) 156 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 86 T ELT)) (** (($ $ (-938)) 179 T ELT) (($ $ (-791)) 180 T ELT) (($ $ (-558)) 178 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 174 T ELT))) -(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1870 ((-977 (-1141)))))) (-363) (-1192 |#1|)) (T -358)) -((-1870 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1192 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2000 (($ (-1288 |#1|)) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 |#1|) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1870 (((-977 (-1141))) NIL T ELT)) (-2640 (($) NIL (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 |#1|)) NIL T ELT)) (-1877 (($) NIL (|has| |#1| (-381)) ELT)) (-1809 (($) NIL (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3103 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1870 ((-977 (-1141)))))) (-363) (-938)) (T -359)) -((-1870 (*1 *2) (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938))))) -((-1880 (((-791) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141)))))) 61 T ELT)) (-1871 (((-977 (-1141)) (-1192 |#1|)) 112 T ELT)) (-1872 (((-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))) (-1192 |#1|)) 103 T ELT)) (-1873 (((-709 |#1|) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141)))))) 113 T ELT)) (-1874 (((-3 (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))) "failed") (-938)) 13 T ELT)) (-1875 (((-3 (-1192 |#1|) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141)))))) (-938)) 18 T ELT))) -(((-360 |#1|) (-10 -7 (-15 -1871 ((-977 (-1141)) (-1192 |#1|))) (-15 -1872 ((-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))) (-1192 |#1|))) (-15 -1873 ((-709 |#1|) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))))) (-15 -1880 ((-791) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))))) (-15 -1874 ((-3 (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))) "failed") (-938))) (-15 -1875 ((-3 (-1192 |#1|) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141)))))) (-938)))) (-363)) (T -360)) -((-1875 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-3 (-1192 *4) (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1874 (*1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-5 *2 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1880 (*1 *2 *3) (-12 (-5 *3 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) (-4 *4 (-363)) (-5 *2 (-791)) (-5 *1 (-360 *4)))) (-1873 (*1 *2 *3) (-12 (-5 *3 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) (-4 *4 (-363)) (-5 *2 (-709 *4)) (-5 *1 (-360 *4)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) (-5 *1 (-360 *4)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-977 (-1141))) (-5 *1 (-360 *4))))) -((-4376 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) -(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -4376 (|#3| |#1|)) (-15 -4376 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361)) -((-4376 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-4376 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4))))) -((-1883 (((-114) $) 65 T ELT)) (-4202 (((-845 (-938)) $) 26 T ELT) (((-938) $) 69 T ELT)) (-3865 (((-711 $) $) 21 T ELT)) (-3866 (($) 9 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 120 T ELT)) (-1975 (((-3 (-791) #1="failed") $ $) 98 T ELT) (((-791) $) 84 T ELT)) (-4188 (($ $) 8 T ELT) (($ $ (-791)) NIL T ELT)) (-1877 (($) 58 T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 41 T ELT)) (-3103 (((-711 $) $) 50 T ELT) (($ $) 47 T ELT))) -(((-362 |#1|) (-10 -7 (-15 -4202 ((-938) |#1|)) (-15 -1975 ((-791) |#1|)) (-15 -1883 ((-114) |#1|)) (-15 -1877 (|#1|)) (-15 -3104 ((-3 (-1288 |#1|) #1="failed") (-709 |#1|))) (-15 -3103 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 -3866 (|#1|)) (-15 -3865 ((-711 |#1|) |#1|)) (-15 -1975 ((-3 (-791) #1#) |#1| |#1|)) (-15 -4202 ((-845 (-938)) |#1|)) (-15 -3103 ((-711 |#1|) |#1|)) (-15 -3109 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-363)) (T -362)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 110 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-3538 (((-791)) 120 T ELT)) (-4154 (($) 22 T CONST)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3395 (($) 123 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-3234 (($) 108 T ELT)) (-1883 (((-114) $) 107 T ELT)) (-1974 (($ $) 94 T ELT) (($ $ (-791)) 93 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-4202 (((-845 (-938)) $) 96 T ELT) (((-938) $) 105 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3865 (((-711 $) $) 119 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2220 (((-938) $) 122 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3866 (($) 118 T CONST)) (-2631 (($ (-938)) 121 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 111 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-1975 (((-3 (-791) "failed") $ $) 95 T ELT) (((-791) $) 106 T ELT)) (-4188 (($ $) 117 T ELT) (($ $ (-791)) 115 T ELT)) (-1877 (($) 109 T ELT)) (-3104 (((-3 (-1288 $) "failed") (-709 $)) 112 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3103 (((-711 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $) 116 T ELT) (($ $ (-791)) 114 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +((-2221 (*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1287 *1)) (-4 *1 (-341 *3)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-376)) (-5 *2 (-1287 *1)) (-4 *1 (-341 *4)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1287 *3)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-708 *4)))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1191 *3)))) (-3602 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1191 *3)))) (-4359 (*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-937)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-937)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) (-2223 (*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1191 *1)) (-4 *1 (-341 *4)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-3749 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) (-1808 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2222 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) (-2639 (*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) (-1807 (*1 *1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376)))) (-1806 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1191 *3)))) (-1805 (*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1191 *3)))) (-1805 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1191 *3))))) +(-13 (-1306 |t#1|) (-1058 |t#1|) (-10 -8 (-15 -2221 ((-1287 $))) (-15 -2221 ((-1287 $) (-937))) (-15 -3641 ((-1287 |t#1|) $)) (-15 -3641 ((-708 |t#1|) (-1287 $))) (-15 -1999 ($ (-1287 |t#1|))) (-15 -2223 ((-1191 |t#1|) $)) (-15 -3602 ((-1191 |t#1|))) (-15 -4359 ((-937))) (-15 -4377 ((-937) $)) (-15 -3533 (|t#1| $)) (-15 -3749 (|t#1| $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-363)) (-15 -2223 ((-1191 $) $ (-937))) (-15 -3533 ($ $ (-937))) (-15 -3749 ($ $ (-937))) (-15 -1808 ($)) (-15 -2222 ($)) (-15 -2220 ((-114) $)) (-15 -2639 ($)) (-15 -1807 ($ $ (-1191 |t#1|))) (-15 -1806 ((-1191 |t#1|) $)) (-15 -1805 ((-1191 |t#1|) $)) (-15 -1805 ((-3 (-1191 |t#1|) "failed") $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3956 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-236 $) |has| |#1| (-381)) ((-240) |has| |#1| (-381)) ((-239) |has| |#1| (-381)) ((-250) . T) ((-302) . T) ((-319) . T) ((-1306 |#1|) . T) ((-376) . T) ((-414) -3956 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-381) |has| |#1| (-381)) ((-363) |has| |#1| (-381)) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 |#1|) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) |has| |#1| (-381)) ((-1237) . T) ((-1242) . T) ((-1295 |#1|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-1826 (($ (-1196) $) 101 T ELT)) (-1817 (($) 90 T ELT)) (-1809 (((-1140) (-1140)) 9 T ELT)) (-1816 (($) 91 T ELT)) (-1820 (($) 105 T ELT) (($ (-326 (-718))) 113 T ELT) (($ (-326 (-720))) 109 T ELT) (($ (-326 (-713))) 117 T ELT) (($ (-326 (-391))) 124 T ELT) (($ (-326 (-558))) 120 T ELT) (($ (-326 (-171 (-391)))) 128 T ELT)) (-1825 (($ (-1196) $) 102 T ELT)) (-1815 (($ (-660 (-876))) 92 T ELT)) (-1811 (((-1293) $) 88 T ELT)) (-1813 (((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $) 32 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1824 (($ (-1140)) 59 T ELT)) (-1810 (((-1123) $) 29 T ELT)) (-1827 (($ (-1112 (-964 (-558))) $) 98 T ELT) (($ (-1112 (-964 (-558))) (-964 (-558)) $) 99 T ELT)) (-1823 (($ (-1140)) 100 T ELT)) (-1819 (($ (-1196) $) 130 T ELT) (($ (-1196) $ $) 131 T ELT)) (-1814 (($ (-1197) (-660 (-1197))) 89 T ELT)) (-1822 (($ (-1179)) 95 T ELT) (($ (-660 (-1179))) 93 T ELT)) (-4375 (((-876) $) 133 T ELT)) (-1812 (((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-660 (-964 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3822 (-114)) (|:| -3821 (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1637 (-1112 (-964 (-558)))) (|:| |span| (-964 (-558))) (|:| -3650 $))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -3650 $))) (|:| |commonBranch| (-2 (|:| -3969 (-1197)) (|:| |contents| (-660 (-1197))))) (|:| |printBranch| (-660 (-876)))) $) 50 T ELT)) (-1821 (($ (-1179)) 203 T ELT)) (-1818 (($ (-660 $)) 129 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2984 (($ (-1197) (-1179)) 136 T ELT) (($ (-1197) (-326 (-720))) 176 T ELT) (($ (-1197) (-326 (-718))) 177 T ELT) (($ (-1197) (-326 (-713))) 178 T ELT) (($ (-1197) (-708 (-720))) 139 T ELT) (($ (-1197) (-708 (-718))) 142 T ELT) (($ (-1197) (-708 (-713))) 145 T ELT) (($ (-1197) (-1287 (-720))) 148 T ELT) (($ (-1197) (-1287 (-718))) 151 T ELT) (($ (-1197) (-1287 (-713))) 154 T ELT) (($ (-1197) (-708 (-326 (-720)))) 157 T ELT) (($ (-1197) (-708 (-326 (-718)))) 160 T ELT) (($ (-1197) (-708 (-326 (-713)))) 163 T ELT) (($ (-1197) (-1287 (-326 (-720)))) 166 T ELT) (($ (-1197) (-1287 (-326 (-718)))) 169 T ELT) (($ (-1197) (-1287 (-326 (-713)))) 172 T ELT) (($ (-1197) (-660 (-964 (-558))) (-326 (-720))) 173 T ELT) (($ (-1197) (-660 (-964 (-558))) (-326 (-718))) 174 T ELT) (($ (-1197) (-660 (-964 (-558))) (-326 (-713))) 175 T ELT) (($ (-1197) (-326 (-558))) 200 T ELT) (($ (-1197) (-326 (-391))) 201 T ELT) (($ (-1197) (-326 (-171 (-391)))) 202 T ELT) (($ (-1197) (-708 (-326 (-558)))) 181 T ELT) (($ (-1197) (-708 (-326 (-391)))) 184 T ELT) (($ (-1197) (-708 (-326 (-171 (-391))))) 187 T ELT) (($ (-1197) (-1287 (-326 (-558)))) 190 T ELT) (($ (-1197) (-1287 (-326 (-391)))) 193 T ELT) (($ (-1197) (-1287 (-326 (-171 (-391))))) 196 T ELT) (($ (-1197) (-660 (-964 (-558))) (-326 (-558))) 197 T ELT) (($ (-1197) (-660 (-964 (-558))) (-326 (-391))) 198 T ELT) (($ (-1197) (-660 (-964 (-558))) (-326 (-171 (-391)))) 199 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-342) (-13 (-1121) (-10 -8 (-15 -1827 ($ (-1112 (-964 (-558))) $)) (-15 -1827 ($ (-1112 (-964 (-558))) (-964 (-558)) $)) (-15 -1826 ($ (-1196) $)) (-15 -1825 ($ (-1196) $)) (-15 -1824 ($ (-1140))) (-15 -1823 ($ (-1140))) (-15 -1822 ($ (-1179))) (-15 -1822 ($ (-660 (-1179)))) (-15 -1821 ($ (-1179))) (-15 -1820 ($)) (-15 -1820 ($ (-326 (-718)))) (-15 -1820 ($ (-326 (-720)))) (-15 -1820 ($ (-326 (-713)))) (-15 -1820 ($ (-326 (-391)))) (-15 -1820 ($ (-326 (-558)))) (-15 -1820 ($ (-326 (-171 (-391))))) (-15 -1819 ($ (-1196) $)) (-15 -1819 ($ (-1196) $ $)) (-15 -2984 ($ (-1197) (-1179))) (-15 -2984 ($ (-1197) (-326 (-720)))) (-15 -2984 ($ (-1197) (-326 (-718)))) (-15 -2984 ($ (-1197) (-326 (-713)))) (-15 -2984 ($ (-1197) (-708 (-720)))) (-15 -2984 ($ (-1197) (-708 (-718)))) (-15 -2984 ($ (-1197) (-708 (-713)))) (-15 -2984 ($ (-1197) (-1287 (-720)))) (-15 -2984 ($ (-1197) (-1287 (-718)))) (-15 -2984 ($ (-1197) (-1287 (-713)))) (-15 -2984 ($ (-1197) (-708 (-326 (-720))))) (-15 -2984 ($ (-1197) (-708 (-326 (-718))))) (-15 -2984 ($ (-1197) (-708 (-326 (-713))))) (-15 -2984 ($ (-1197) (-1287 (-326 (-720))))) (-15 -2984 ($ (-1197) (-1287 (-326 (-718))))) (-15 -2984 ($ (-1197) (-1287 (-326 (-713))))) (-15 -2984 ($ (-1197) (-660 (-964 (-558))) (-326 (-720)))) (-15 -2984 ($ (-1197) (-660 (-964 (-558))) (-326 (-718)))) (-15 -2984 ($ (-1197) (-660 (-964 (-558))) (-326 (-713)))) (-15 -2984 ($ (-1197) (-326 (-558)))) (-15 -2984 ($ (-1197) (-326 (-391)))) (-15 -2984 ($ (-1197) (-326 (-171 (-391))))) (-15 -2984 ($ (-1197) (-708 (-326 (-558))))) (-15 -2984 ($ (-1197) (-708 (-326 (-391))))) (-15 -2984 ($ (-1197) (-708 (-326 (-171 (-391)))))) (-15 -2984 ($ (-1197) (-1287 (-326 (-558))))) (-15 -2984 ($ (-1197) (-1287 (-326 (-391))))) (-15 -2984 ($ (-1197) (-1287 (-326 (-171 (-391)))))) (-15 -2984 ($ (-1197) (-660 (-964 (-558))) (-326 (-558)))) (-15 -2984 ($ (-1197) (-660 (-964 (-558))) (-326 (-391)))) (-15 -2984 ($ (-1197) (-660 (-964 (-558))) (-326 (-171 (-391))))) (-15 -1818 ($ (-660 $))) (-15 -1817 ($)) (-15 -1816 ($)) (-15 -1815 ($ (-660 (-876)))) (-15 -1814 ($ (-1197) (-660 (-1197)))) (-15 -1813 ((-3 (|:| |Null| #1="null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print")) $)) (-15 -1812 ((-3 (|:| |nullBranch| #1#) (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-660 (-964 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| $) (|:| |elseClause| $))) (|:| |returnBranch| (-2 (|:| -3822 (-114)) (|:| -3821 (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |blockBranch| (-660 $)) (|:| |commentBranch| (-660 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1637 (-1112 (-964 (-558)))) (|:| |span| (-964 (-558))) (|:| -3650 $))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -3650 $))) (|:| |commonBranch| (-2 (|:| -3969 (-1197)) (|:| |contents| (-660 (-1197))))) (|:| |printBranch| (-660 (-876)))) $)) (-15 -1811 ((-1293) $)) (-15 -1810 ((-1123) $)) (-15 -1809 ((-1140) (-1140)))))) (T -342)) +((-1827 (*1 *1 *2 *1) (-12 (-5 *2 (-1112 (-964 (-558)))) (-5 *1 (-342)))) (-1827 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-1112 (-964 (-558)))) (-5 *3 (-964 (-558))) (-5 *1 (-342)))) (-1826 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342)))) (-1825 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342)))) (-1824 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-342)))) (-1823 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-342)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-342)))) (-1822 (*1 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-342)))) (-1821 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-342)))) (-1820 (*1 *1) (-5 *1 (-342))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-326 (-718))) (-5 *1 (-342)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-326 (-720))) (-5 *1 (-342)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-342)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-342)))) (-1820 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1819 (*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342)))) (-1819 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-720))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-718))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-720))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-718))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-713))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-720))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-718))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-713))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-720)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-718)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-713)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-720)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-718)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-720))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-718))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-713))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-558))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-558)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-391)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-558)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-391)))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-171 (-391))))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-558))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) (-2984 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) (-1818 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-5 *1 (-342)))) (-1817 (*1 *1) (-5 *1 (-342))) (-1816 (*1 *1) (-5 *1 (-342))) (-1815 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-342)))) (-1814 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1197)) (-5 *1 (-342)))) (-1813 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |Null| "null") (|:| |Assignment| "assignment") (|:| |Conditional| "conditional") (|:| |Return| "return") (|:| |Block| "block") (|:| |Comment| "comment") (|:| |Call| "call") (|:| |For| "for") (|:| |While| "while") (|:| |Repeat| "repeat") (|:| |Goto| "goto") (|:| |Continue| "continue") (|:| |ArrayAssignment| "arrayAssignment") (|:| |Save| "save") (|:| |Stop| "stop") (|:| |Common| "common") (|:| |Print| "print"))) (-5 *1 (-342)))) (-1812 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-660 (-964 (-558)))) (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |arrayAssignmentBranch| (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| (-2 (|:| -3822 (-114)) (|:| -3821 (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |blockBranch| (-660 (-342))) (|:| |commentBranch| (-660 (-1179))) (|:| |callBranch| (-1179)) (|:| |forBranch| (-2 (|:| -1637 (-1112 (-964 (-558)))) (|:| |span| (-964 (-558))) (|:| -3650 (-342)))) (|:| |labelBranch| (-1140)) (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -3650 (-342)))) (|:| |commonBranch| (-2 (|:| -3969 (-1197)) (|:| |contents| (-660 (-1197))))) (|:| |printBranch| (-660 (-876))))) (-5 *1 (-342)))) (-1811 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-342)))) (-1810 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-342)))) (-1809 (*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-342))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1828 (((-114) $) 13 T ELT)) (-4067 (($ |#1|) 10 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4063 (($ |#1|) 12 T ELT)) (-4375 (((-876) $) 19 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2449 ((|#1| $) 14 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 21 T ELT))) +(((-343 |#1|) (-13 (-860) (-10 -8 (-15 -4067 ($ |#1|)) (-15 -4063 ($ |#1|)) (-15 -1828 ((-114) $)) (-15 -2449 (|#1| $)))) (-860)) (T -343)) +((-4067 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-860)))) (-4063 (*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-860)))) (-1828 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-860)))) (-2449 (*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-860))))) +((-1829 (((-342) (-1197) (-964 (-558))) 23 T ELT)) (-1830 (((-342) (-1197) (-964 (-558))) 27 T ELT)) (-2546 (((-342) (-1197) (-1112 (-964 (-558))) (-1112 (-964 (-558)))) 26 T ELT) (((-342) (-1197) (-964 (-558)) (-964 (-558))) 24 T ELT)) (-1831 (((-342) (-1197) (-964 (-558))) 31 T ELT))) +(((-344) (-10 -7 (-15 -1829 ((-342) (-1197) (-964 (-558)))) (-15 -2546 ((-342) (-1197) (-964 (-558)) (-964 (-558)))) (-15 -2546 ((-342) (-1197) (-1112 (-964 (-558))) (-1112 (-964 (-558))))) (-15 -1830 ((-342) (-1197) (-964 (-558)))) (-15 -1831 ((-342) (-1197) (-964 (-558)))))) (T -344)) +((-1831 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1830 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2546 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1112 (-964 (-558)))) (-5 *2 (-342)) (-5 *1 (-344)))) (-2546 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) (-1829 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1832 (((-518) $) 20 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1833 (((-976 (-790)) $) 18 T ELT)) (-1835 (((-258) $) 7 T ELT)) (-4375 (((-876) $) 26 T ELT)) (-2420 (((-976 (-187 (-141))) $) 16 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1834 (((-660 (-886 (-1202) (-790))) $) 12 T ELT)) (-3453 (((-114) $ $) 22 T ELT))) +(((-345) (-13 (-1121) (-10 -8 (-15 -1835 ((-258) $)) (-15 -1834 ((-660 (-886 (-1202) (-790))) $)) (-15 -1833 ((-976 (-790)) $)) (-15 -2420 ((-976 (-187 (-141))) $)) (-15 -1832 ((-518) $))))) (T -345)) +((-1835 (*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345)))) (-1834 (*1 *2 *1) (-12 (-5 *2 (-660 (-886 (-1202) (-790)))) (-5 *1 (-345)))) (-1833 (*1 *2 *1) (-12 (-5 *2 (-976 (-790))) (-5 *1 (-345)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-976 (-187 (-141)))) (-5 *1 (-345)))) (-1832 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4271 (($ $) 33 T ELT)) (-1838 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1836 (((-1287 |#4|) $) 132 T ELT)) (-2179 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 31 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (((-3 |#4| #1#) $) 36 T ELT)) (-1837 (((-1287 |#4|) $) 124 T ELT)) (-1839 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 41 T ELT) (($ |#4|) 43 T ELT) (($ |#1| |#1|) 45 T ELT) (($ |#1| |#1| (-558)) 47 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 49 T ELT)) (-3854 (((-2 (|:| -2554 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 39 T ELT)) (-4375 (((-876) $) 17 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 14 T CONST)) (-3453 (((-114) $ $) 20 T ELT)) (-4266 (($ $) 27 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 25 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 23 T ELT))) +(((-346 |#1| |#2| |#3| |#4|) (-13 (-349 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -1837 ((-1287 |#4|) $)) (-15 -1836 ((-1287 |#4|) $)))) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -346)) +((-1837 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5)))) (-1836 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) +((-4387 (((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)) 33 T ELT))) +(((-347 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4387 ((-346 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-346 |#1| |#2| |#3| |#4|)))) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-376) (-1263 |#5|) (-1263 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -347)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *9 (-376)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11))))) +((-1838 (((-114) $) 14 T ELT))) +(((-348 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -1838 ((-114) |#1|))) (-349 |#2| |#3| |#4| |#5|) (-376) (-1263 |#2|) (-1263 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -348)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-4271 (($ $) 34 T ELT)) (-1838 (((-114) $) 33 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2179 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 40 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2639 (((-3 |#4| "failed") $) 32 T ELT)) (-1839 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 39 T ELT) (($ |#4|) 38 T ELT) (($ |#1| |#1|) 37 T ELT) (($ |#1| |#1| (-558)) 36 T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 31 T ELT)) (-3854 (((-2 (|:| -2554 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 35 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT))) +(((-349 |#1| |#2| |#3| |#4|) (-142) (-376) (-1263 |t#1|) (-1263 (-419 |t#2|)) (-355 |t#1| |t#2| |t#3|)) (T -349)) +((-2179 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) (-1839 (*1 *1 *2) (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6)))) (-1839 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) (-1839 (*1 *1 *2 *2) (-12 (-4 *2 (-376)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) (-1839 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-376)) (-4 *4 (-1263 *2)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) (-3854 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-2 (|:| -2554 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) (-4271 (*1 *1 *1) (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) (-1838 (*1 *2 *1) (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114)))) (-2639 (*1 *2 *1) (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) (-1839 (*1 *1 *2 *3 *3 *3 *4) (-12 (-4 *4 (-376)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5))))) +(-13 (-21) (-10 -8 (-15 -2179 ((-425 |t#2| (-419 |t#2|) |t#3| |t#4|) $)) (-15 -1839 ($ (-425 |t#2| (-419 |t#2|) |t#3| |t#4|))) (-15 -1839 ($ |t#4|)) (-15 -1839 ($ |t#1| |t#1|)) (-15 -1839 ($ |t#1| |t#1| (-558))) (-15 -3854 ((-2 (|:| -2554 (-425 |t#2| (-419 |t#2|) |t#3| |t#4|)) (|:| |principalPart| |t#4|)) $)) (-15 -4271 ($ $)) (-15 -1838 ((-114) $)) (-15 -2639 ((-3 |t#4| "failed") $)) (-15 -1839 ($ |t#4| |t#2| |t#2| |t#2| |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-1121) . T) ((-1237) . T)) +((-4197 (($ $ (-1197) |#2|) NIL T ELT) (($ $ (-660 (-1197)) (-660 |#2|)) 20 T ELT) (($ $ (-660 (-305 |#2|))) 15 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL T ELT)) (-4229 (($ $ |#2|) 11 T ELT))) +(((-350 |#1| |#2|) (-10 -7 (-15 -4229 (|#1| |#1| |#2|)) (-15 -4197 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -4197 (|#1| |#1| |#2| |#2|)) (-15 -4197 (|#1| |#1| (-305 |#2|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 |#2|))) (-15 -4197 (|#1| |#1| (-1197) |#2|))) (-351 |#2|) (-1121)) (T -350)) +NIL +((-4387 (($ (-1 |#1| |#1|) $) 6 T ELT)) (-4197 (($ $ (-1197) |#1|) 17 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 16 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 15 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 14 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 13 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 12 (|has| |#1| (-321 |#1|)) ELT)) (-4229 (($ $ |#1|) 11 (|has| |#1| (-298 |#1| |#1|)) ELT))) +(((-351 |#1|) (-142) (-1121)) (T -351)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1121))))) +(-13 (-10 -8 (-15 -4387 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-298 |t#1| |t#1|)) (-6 (-298 |t#1| $)) |%noBranch|) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-526 (-1197) |t#1|)) (-6 (-526 (-1197) |t#1|)) |%noBranch|))) +(((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-1237) |has| |#1| (-298 |#1| |#1|))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1197)) $) NIL T ELT)) (-1840 (((-114)) 96 T ELT) (((-114) (-114)) 97 T ELT)) (-1742 (((-660 (-627 $)) $) NIL T ELT)) (-3911 (($ $) NIL T ELT)) (-4068 (($ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1746 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT)) (-3437 (($ $) NIL T ELT)) (-3909 (($ $) NIL T ELT)) (-4067 (($ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-627 $) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) NIL T ELT) (((-3 $ #1#) (-326 |#3|)) 76 T ELT) (((-3 $ #1#) (-1197)) 103 T ELT) (((-3 $ #1#) (-326 (-558))) 64 (|has| |#3| (-1058 (-558))) ELT) (((-3 $ #1#) (-419 (-964 (-558)))) 70 (|has| |#3| (-1058 (-558))) ELT) (((-3 $ #1#) (-964 (-558))) 65 (|has| |#3| (-1058 (-558))) ELT) (((-3 $ #1#) (-326 (-391))) 94 (|has| |#3| (-1058 (-391))) ELT) (((-3 $ #1#) (-419 (-964 (-391)))) 88 (|has| |#3| (-1058 (-391))) ELT) (((-3 $ #1#) (-964 (-391))) 83 (|has| |#3| (-1058 (-391))) ELT)) (-3573 (((-627 $) $) NIL T ELT) ((|#3| $) NIL T ELT) (($ (-326 |#3|)) 77 T ELT) (($ (-1197)) 104 T ELT) (($ (-326 (-558))) 66 (|has| |#3| (-1058 (-558))) ELT) (($ (-419 (-964 (-558)))) 71 (|has| |#3| (-1058 (-558))) ELT) (($ (-964 (-558))) 67 (|has| |#3| (-1058 (-558))) ELT) (($ (-326 (-391))) 95 (|has| |#3| (-1058 (-391))) ELT) (($ (-419 (-964 (-391)))) 89 (|has| |#3| (-1058 (-391))) ELT) (($ (-964 (-391))) 85 (|has| |#3| (-1058 (-391))) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4056 (($) 101 T ELT)) (-2971 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1741 (((-660 (-115)) $) NIL T ELT)) (-4022 (((-115) (-115)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3073 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-1739 (((-1191 $) (-627 $)) NIL (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) NIL T ELT)) (-1744 (((-3 (-627 $) #1#) $) NIL T ELT)) (-1944 (($ $) 99 T ELT)) (-4371 (($ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1743 (((-660 (-627 $)) $) NIL T ELT)) (-2448 (($ (-115) $) 98 T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3031 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-3001 (((-790) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1740 (((-114) $ $) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-4372 (($ $) NIL T ELT)) (-3074 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-627 $) $) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1197) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1197) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-4229 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-1745 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4187 (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-3602 (($ $) NIL (|has| $ (-1069)) ELT)) (-3910 (($ $) NIL T ELT)) (-4063 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-627 $)) NIL T ELT) (($ |#3|) NIL T ELT) (($ (-558)) NIL T ELT) (((-326 |#3|) $) 102 T ELT)) (-3527 (((-790)) NIL T CONST)) (-2988 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2467 (((-114) (-115)) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3905 (($ $) NIL T ELT)) (-3903 (($ $) NIL T ELT)) (-3904 (($ $) NIL T ELT)) (-3802 (($ $) NIL T ELT)) (-3058 (($) 100 T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT)) (* (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-937) $) NIL T ELT))) +(((-352 |#1| |#2| |#3|) (-13 (-310) (-38 |#3|) (-1058 |#3|) (-916 (-1197)) (-10 -8 (-15 -3573 ($ (-326 |#3|))) (-15 -3574 ((-3 $ #1="failed") (-326 |#3|))) (-15 -3573 ($ (-1197))) (-15 -3574 ((-3 $ #1#) (-1197))) (-15 -4375 ((-326 |#3|) $)) (IF (|has| |#3| (-1058 (-558))) (PROGN (-15 -3573 ($ (-326 (-558)))) (-15 -3574 ((-3 $ #1#) (-326 (-558)))) (-15 -3573 ($ (-419 (-964 (-558))))) (-15 -3574 ((-3 $ #1#) (-419 (-964 (-558))))) (-15 -3573 ($ (-964 (-558)))) (-15 -3574 ((-3 $ #1#) (-964 (-558))))) |%noBranch|) (IF (|has| |#3| (-1058 (-391))) (PROGN (-15 -3573 ($ (-326 (-391)))) (-15 -3574 ((-3 $ #1#) (-326 (-391)))) (-15 -3573 ($ (-419 (-964 (-391))))) (-15 -3574 ((-3 $ #1#) (-419 (-964 (-391))))) (-15 -3573 ($ (-964 (-391)))) (-15 -3574 ((-3 $ #1#) (-964 (-391))))) |%noBranch|) (-15 -3802 ($ $)) (-15 -3437 ($ $)) (-15 -4372 ($ $)) (-15 -4371 ($ $)) (-15 -1944 ($ $)) (-15 -4067 ($ $)) (-15 -4063 ($ $)) (-15 -4068 ($ $)) (-15 -3903 ($ $)) (-15 -3904 ($ $)) (-15 -3905 ($ $)) (-15 -3909 ($ $)) (-15 -3910 ($ $)) (-15 -3911 ($ $)) (-15 -4056 ($)) (-15 -3483 ((-660 (-1197)) $)) (-15 -1840 ((-114))) (-15 -1840 ((-114) (-114))))) (-660 (-1197)) (-660 (-1197)) (-401)) (T -352)) +((-3573 (*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 *2)) (-14 *4 (-660 *2)) (-4 *5 (-401)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-558)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-964 (-558)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-964 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-964 (-391)))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-964 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-3802 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3437 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-4372 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-4371 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-1944 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-4067 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-4063 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-4068 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3903 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3904 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3905 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3909 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3910 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3911 (*1 *1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-4056 (*1 *1) (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) (-1840 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) (-1840 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 (((-924 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-924 |#1|) #1#) $) NIL T ELT)) (-3573 (((-924 |#1|) $) NIL T ELT)) (-1999 (($ (-1287 (-924 |#1|))) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1882 (((-114) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT) (($ $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2220 (((-114) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3533 (((-924 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 (-924 |#1|)) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2219 (((-937) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1806 (((-1191 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1805 (((-1191 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-3 (-1191 (-924 |#1|)) #1#) $ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1807 (($ $ (-1191 (-924 |#1|))) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-924 |#1|) (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 (-924 |#1|))) NIL T ELT)) (-1876 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1808 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3641 (((-1287 (-924 |#1|)) $) NIL T ELT) (((-708 (-924 |#1|)) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-924 |#1|)) NIL T ELT)) (-3102 (($ $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ (-924 |#1|)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-924 |#1|)) NIL T ELT) (($ (-924 |#1|) $) NIL T ELT))) +(((-353 |#1| |#2|) (-341 (-924 |#1|)) (-937) (-937)) (T -353)) +NIL +((-1849 (((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) $) 39 T ELT)) (-1999 (($ (-1287 (-419 |#3|)) (-1287 $)) NIL T ELT) (($ (-1287 (-419 |#3|))) NIL T ELT) (($ (-1287 |#3|) |#3|) 172 T ELT)) (-1854 (((-1287 $) (-1287 $)) 156 T ELT)) (-1841 (((-660 (-660 |#2|))) 126 T ELT)) (-1866 (((-114) |#2| |#2|) 76 T ELT)) (-3922 (($ $) 148 T ELT)) (-3796 (((-790)) 171 T ELT)) (-1855 (((-1287 $) (-1287 $)) 219 T ELT)) (-1842 (((-660 (-964 |#2|)) (-1197)) 115 T ELT)) (-1858 (((-114) $) 168 T ELT)) (-1857 (((-114) $) 27 T ELT) (((-114) $ |#2|) 31 T ELT) (((-114) $ |#3|) 223 T ELT)) (-1844 (((-3 |#3| #1="failed")) 52 T ELT)) (-1868 (((-790)) 183 T ELT)) (-4229 ((|#2| $ |#2| |#2|) 140 T ELT)) (-1845 (((-3 |#3| #1#)) 71 T ELT)) (-4187 (($ $ (-1 (-419 |#3|) (-419 |#3|))) NIL T ELT) (($ $ (-1 (-419 |#3|) (-419 |#3|)) (-790)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 227 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-1856 (((-1287 $) (-1287 $)) 162 T ELT)) (-1843 (((-2 (|:| |num| $) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) $ (-1 |#3| |#3|)) 68 T ELT)) (-1867 (((-114)) 34 T ELT))) +(((-354 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -1841 ((-660 (-660 |#2|)))) (-15 -1842 ((-660 (-964 |#2|)) (-1197))) (-15 -1843 ((-2 (|:| |num| |#1|) (|:| |den| |#3|) (|:| |derivden| |#3|) (|:| |gd| |#3|)) |#1| (-1 |#3| |#3|))) (-15 -1844 ((-3 |#3| #1="failed"))) (-15 -1845 ((-3 |#3| #1#))) (-15 -4229 (|#2| |#1| |#2| |#2|)) (-15 -3922 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-1 |#3| |#3|))) (-15 -1857 ((-114) |#1| |#3|)) (-15 -1857 ((-114) |#1| |#2|)) (-15 -1999 (|#1| (-1287 |#3|) |#3|)) (-15 -1849 ((-2 (|:| |num| (-1287 |#3|)) (|:| |den| |#3|)) |#1|)) (-15 -1854 ((-1287 |#1|) (-1287 |#1|))) (-15 -1855 ((-1287 |#1|) (-1287 |#1|))) (-15 -1856 ((-1287 |#1|) (-1287 |#1|))) (-15 -1857 ((-114) |#1|)) (-15 -1858 ((-114) |#1|)) (-15 -1866 ((-114) |#2| |#2|)) (-15 -1867 ((-114))) (-15 -1868 ((-790))) (-15 -3796 ((-790))) (-15 -4187 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)) (-790))) (-15 -4187 (|#1| |#1| (-1 (-419 |#3|) (-419 |#3|)))) (-15 -1999 (|#1| (-1287 (-419 |#3|)))) (-15 -1999 (|#1| (-1287 (-419 |#3|)) (-1287 |#1|)))) (-355 |#2| |#3| |#4|) (-1242) (-1263 |#2|) (-1263 (-419 |#3|))) (T -354)) +((-3796 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-790)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1868 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-790)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1867 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) (-1866 (*1 *2 *3 *3) (-12 (-4 *3 (-1242)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) (-1845 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1844 (*1 *2) (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-660 (-964 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) (-1841 (*1 *2) (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-660 (-660 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1849 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 222 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 111 (|has| (-419 |#2|) (-376)) ELT)) (-2272 (($ $) 112 (|has| (-419 |#2|) (-376)) ELT)) (-2270 (((-114) $) 114 (|has| (-419 |#2|) (-376)) ELT)) (-1989 (((-708 (-419 |#2|)) (-1287 $)) 58 T ELT) (((-708 (-419 |#2|))) 74 T ELT)) (-3749 (((-419 |#2|) $) 64 T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 164 (|has| (-419 |#2|) (-363)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 131 (|has| (-419 |#2|) (-376)) ELT)) (-4400 (((-417 $) $) 132 (|has| (-419 |#2|) (-376)) ELT)) (-1787 (((-114) $ $) 122 (|has| (-419 |#2|) (-376)) ELT)) (-3537 (((-790)) 105 (|has| (-419 |#2|) (-381)) ELT)) (-1863 (((-114)) 239 T ELT)) (-1862 (((-114) |#1|) 238 T ELT) (((-114) |#2|) 237 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 191 (|has| (-419 |#2|) (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| (-419 |#2|) (-1058 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) 186 T ELT)) (-3573 (((-558) $) 190 (|has| (-419 |#2|) (-1058 (-558))) ELT) (((-419 (-558)) $) 188 (|has| (-419 |#2|) (-1058 (-419 (-558)))) ELT) (((-419 |#2|) $) 187 T ELT)) (-1999 (($ (-1287 (-419 |#2|)) (-1287 $)) 60 T ELT) (($ (-1287 (-419 |#2|))) 77 T ELT) (($ (-1287 |#2|) |#2|) 221 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| (-419 |#2|) (-363)) ELT)) (-2962 (($ $ $) 126 (|has| (-419 |#2|) (-376)) ELT)) (-1988 (((-708 (-419 |#2|)) $ (-1287 $)) 65 T ELT) (((-708 (-419 |#2|)) $) 72 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 183 (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 182 (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-708 $) (-1287 $)) 181 T ELT) (((-708 (-419 |#2|)) (-708 $)) 180 T ELT)) (-1854 (((-1287 $) (-1287 $)) 227 T ELT)) (-4271 (($ |#3|) 175 T ELT) (((-3 $ "failed") (-419 |#3|)) 172 (|has| (-419 |#2|) (-376)) ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-1841 (((-660 (-660 |#1|))) 208 (|has| |#1| (-381)) ELT)) (-1866 (((-114) |#1| |#1|) 243 T ELT)) (-3510 (((-937)) 66 T ELT)) (-3394 (($) 108 (|has| (-419 |#2|) (-381)) ELT)) (-1861 (((-114)) 236 T ELT)) (-1860 (((-114) |#1|) 235 T ELT) (((-114) |#2|) 234 T ELT)) (-2961 (($ $ $) 125 (|has| (-419 |#2|) (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 120 (|has| (-419 |#2|) (-376)) ELT)) (-3922 (($ $) 214 T ELT)) (-3233 (($) 166 (|has| (-419 |#2|) (-363)) ELT)) (-1882 (((-114) $) 167 (|has| (-419 |#2|) (-363)) ELT)) (-1973 (($ $ (-790)) 158 (|has| (-419 |#2|) (-363)) ELT) (($ $) 157 (|has| (-419 |#2|) (-363)) ELT)) (-4152 (((-114) $) 133 (|has| (-419 |#2|) (-376)) ELT)) (-4201 (((-937) $) 169 (|has| (-419 |#2|) (-363)) ELT) (((-844 (-937)) $) 155 (|has| (-419 |#2|) (-363)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3796 (((-790)) 246 T ELT)) (-1855 (((-1287 $) (-1287 $)) 228 T ELT)) (-3533 (((-419 |#2|) $) 63 T ELT)) (-1842 (((-660 (-964 |#1|)) (-1197)) 209 (|has| |#1| (-376)) ELT)) (-3864 (((-710 $) $) 159 (|has| (-419 |#2|) (-363)) ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 129 (|has| (-419 |#2|) (-376)) ELT)) (-2223 ((|#3| $) 56 (|has| (-419 |#2|) (-376)) ELT)) (-2219 (((-937) $) 107 (|has| (-419 |#2|) (-381)) ELT)) (-3479 ((|#3| $) 173 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 185 (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 184 (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) 179 T ELT) (((-708 (-419 |#2|)) (-1287 $)) 178 T ELT)) (-2101 (($ (-660 $)) 118 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 117 (|has| (-419 |#2|) (-376)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1850 (((-708 (-419 |#2|))) 223 T ELT)) (-1852 (((-708 (-419 |#2|))) 225 T ELT)) (-2873 (($ $) 134 (|has| (-419 |#2|) (-376)) ELT)) (-1847 (($ (-1287 |#2|) |#2|) 219 T ELT)) (-1851 (((-708 (-419 |#2|))) 224 T ELT)) (-1853 (((-708 (-419 |#2|))) 226 T ELT)) (-1846 (((-2 (|:| |num| (-708 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 218 T ELT)) (-1848 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 220 T ELT)) (-1859 (((-1287 $)) 232 T ELT)) (-4347 (((-1287 $)) 233 T ELT)) (-1858 (((-114) $) 231 T ELT)) (-1857 (((-114) $) 230 T ELT) (((-114) $ |#1|) 217 T ELT) (((-114) $ |#2|) 216 T ELT)) (-3865 (($) 160 (|has| (-419 |#2|) (-363)) CONST)) (-2630 (($ (-937)) 106 (|has| (-419 |#2|) (-381)) ELT)) (-1844 (((-3 |#2| "failed")) 211 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1868 (((-790)) 245 T ELT)) (-2639 (($) 177 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 119 (|has| (-419 |#2|) (-376)) ELT)) (-3561 (($ (-660 $)) 116 (|has| (-419 |#2|) (-376)) ELT) (($ $ $) 115 (|has| (-419 |#2|) (-376)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 163 (|has| (-419 |#2|) (-363)) ELT)) (-4161 (((-417 $) $) 130 (|has| (-419 |#2|) (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 127 (|has| (-419 |#2|) (-376)) ELT)) (-3885 (((-3 $ "failed") $ $) 110 (|has| (-419 |#2|) (-376)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 121 (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-790) $) 123 (|has| (-419 |#2|) (-376)) ELT)) (-4229 ((|#1| $ |#1| |#1|) 213 T ELT)) (-1845 (((-3 |#2| "failed")) 212 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 124 (|has| (-419 |#2|) (-376)) ELT)) (-4186 (((-419 |#2|) (-1287 $)) 59 T ELT) (((-419 |#2|)) 73 T ELT)) (-1974 (((-790) $) 168 (|has| (-419 |#2|) (-363)) ELT) (((-3 (-790) "failed") $ $) 156 (|has| (-419 |#2|) (-363)) ELT)) (-4187 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 142 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-790)) 141 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) 215 T ELT) (($ $ (-660 (-1197)) (-660 (-790))) 147 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1197) (-790)) 146 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-660 (-1197))) 145 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1197)) 143 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-790)) 153 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2960 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 151 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2960 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2638 (((-708 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) 171 (|has| (-419 |#2|) (-376)) ELT)) (-3602 ((|#3|) 176 T ELT)) (-1876 (($) 165 (|has| (-419 |#2|) (-363)) ELT)) (-3641 (((-1287 (-419 |#2|)) $ (-1287 $)) 62 T ELT) (((-708 (-419 |#2|)) (-1287 $) (-1287 $)) 61 T ELT) (((-1287 (-419 |#2|)) $) 79 T ELT) (((-708 (-419 |#2|)) (-1287 $)) 78 T ELT)) (-4401 (((-1287 (-419 |#2|)) $) 76 T ELT) (($ (-1287 (-419 |#2|))) 75 T ELT) ((|#3| $) 192 T ELT) (($ |#3|) 174 T ELT)) (-3103 (((-3 (-1287 $) "failed") (-708 $)) 162 (|has| (-419 |#2|) (-363)) ELT)) (-1856 (((-1287 $) (-1287 $)) 229 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 |#2|)) 49 T ELT) (($ (-419 (-558))) 104 (-3956 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1058 (-419 (-558))))) ELT) (($ $) 109 (|has| (-419 |#2|) (-376)) ELT)) (-3102 (($ $) 161 (|has| (-419 |#2|) (-363)) ELT) (((-710 $) $) 55 (|has| (-419 |#2|) (-147)) ELT)) (-2837 ((|#3| $) 57 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1865 (((-114)) 242 T ELT)) (-1864 (((-114) |#1|) 241 T ELT) (((-114) |#2|) 240 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2221 (((-1287 $)) 80 T ELT)) (-2271 (((-114) $ $) 113 (|has| (-419 |#2|) (-376)) ELT)) (-1843 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) 210 T ELT)) (-1867 (((-114)) 244 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 (-419 |#2|) (-419 |#2|))) 140 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-790)) 139 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 150 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1197) (-790)) 149 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-660 (-1197))) 148 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-1197)) 144 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-2960 (|has| (-419 |#2|) (-918 (-1197))) (|has| (-419 |#2|) (-376)))) ELT) (($ $ (-790)) 154 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2960 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) 152 (-3956 (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-239))) (-2960 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-240))) (-2960 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 138 (|has| (-419 |#2|) (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 135 (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 |#2|)) 51 T ELT) (($ (-419 |#2|) $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| (-419 |#2|) (-376)) ELT))) +(((-355 |#1| |#2| |#3|) (-142) (-1242) (-1263 |t#1|) (-1263 (-419 |t#2|))) (T -355)) +((-3796 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-790)))) (-1868 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-790)))) (-1867 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1866 (*1 *2 *3 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1865 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1864 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1864 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) (-1863 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1862 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1862 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) (-1861 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1860 (*1 *2 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1860 (*1 *2 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) (-4347 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1859 (*1 *2) (-12 (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)))) (-1858 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1857 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1856 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1855 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1854 (*1 *2 *2) (-12 (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-1853 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4))))) (-1852 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4))))) (-1851 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4))))) (-1850 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4))))) (-1849 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-1999 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1242)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-1848 (*1 *2 *1) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4))))) (-1847 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1242)) (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) (-1846 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| (-708 *5)) (|:| |den| *5))))) (-1857 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) (-1857 (*1 *2 *1 *3) (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) (-3922 (*1 *1 *1) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-4229 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))))) (-1845 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-1844 (*1 *2) (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1242)) (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3)))) (-1843 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1242)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6)))) (-1842 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-376)) (-5 *2 (-660 (-964 *4))))) (-1841 (*1 *2) (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-660 (-660 *3)))))) +(-13 (-743 (-419 |t#2|) |t#3|) (-10 -8 (-15 -3796 ((-790))) (-15 -1868 ((-790))) (-15 -1867 ((-114))) (-15 -1866 ((-114) |t#1| |t#1|)) (-15 -1865 ((-114))) (-15 -1864 ((-114) |t#1|)) (-15 -1864 ((-114) |t#2|)) (-15 -1863 ((-114))) (-15 -1862 ((-114) |t#1|)) (-15 -1862 ((-114) |t#2|)) (-15 -1861 ((-114))) (-15 -1860 ((-114) |t#1|)) (-15 -1860 ((-114) |t#2|)) (-15 -4347 ((-1287 $))) (-15 -1859 ((-1287 $))) (-15 -1858 ((-114) $)) (-15 -1857 ((-114) $)) (-15 -1856 ((-1287 $) (-1287 $))) (-15 -1855 ((-1287 $) (-1287 $))) (-15 -1854 ((-1287 $) (-1287 $))) (-15 -1853 ((-708 (-419 |t#2|)))) (-15 -1852 ((-708 (-419 |t#2|)))) (-15 -1851 ((-708 (-419 |t#2|)))) (-15 -1850 ((-708 (-419 |t#2|)))) (-15 -1849 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1999 ($ (-1287 |t#2|) |t#2|)) (-15 -1848 ((-2 (|:| |num| (-1287 |t#2|)) (|:| |den| |t#2|)) $)) (-15 -1847 ($ (-1287 |t#2|) |t#2|)) (-15 -1846 ((-2 (|:| |num| (-708 |t#2|)) (|:| |den| |t#2|)) (-1 |t#2| |t#2|))) (-15 -1857 ((-114) $ |t#1|)) (-15 -1857 ((-114) $ |t#2|)) (-15 -4187 ($ $ (-1 |t#2| |t#2|))) (-15 -3922 ($ $)) (-15 -4229 (|t#1| $ |t#1| |t#1|)) (-15 -1845 ((-3 |t#2| "failed"))) (-15 -1844 ((-3 |t#2| "failed"))) (-15 -1843 ((-2 (|:| |num| $) (|:| |den| |t#2|) (|:| |derivden| |t#2|) (|:| |gd| |t#2|)) $ (-1 |t#2| |t#2|))) (IF (|has| |t#1| (-376)) (-15 -1842 ((-660 (-964 |t#1|)) (-1197))) |%noBranch|) (IF (|has| |t#1| (-381)) (-15 -1841 ((-660 (-660 |t#1|)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-38 (-419 |#2|)) . T) ((-38 $) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-111 (-419 |#2|) (-419 |#2|)) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-147))) ((-149) |has| (-419 |#2|) (-149)) ((-632 (-419 (-558))) -3956 (|has| (-419 |#2|) (-1058 (-419 (-558)))) (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-632 (-419 |#2|)) . T) ((-632 (-558)) . T) ((-632 $) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-629 (-876)) . T) ((-175) . T) ((-630 |#3|) . T) ((-236 $) -3956 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-234 (-419 |#2|)) |has| (-419 |#2|) (-376)) ((-240) -3956 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-239) -3956 (|has| (-419 |#2|) (-363)) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376)))) ((-274 (-419 |#2|)) |has| (-419 |#2|) (-376)) ((-250) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-302) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-319) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-376) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-414) |has| (-419 |#2|) (-363)) ((-381) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-381))) ((-363) |has| (-419 |#2|) (-363)) ((-383 (-419 |#2|) |#3|) . T) ((-422 (-419 |#2|) |#3|) . T) ((-390 (-419 |#2|)) . T) ((-424 (-419 |#2|)) . T) ((-464) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-569) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-665 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-665 (-419 |#2|)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-667 (-419 |#2|)) . T) ((-667 (-558)) |has| (-419 |#2|) (-657 (-558))) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-659 (-419 |#2|)) . T) ((-659 $) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-657 (-419 |#2|)) . T) ((-657 (-558)) |has| (-419 |#2|) (-657 (-558))) ((-736 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-736 (-419 |#2|)) . T) ((-736 $) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-743 (-419 |#2|) |#3|) . T) ((-745) . T) ((-910 $ (-1197)) -3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197))))) ((-916 (-1197)) -12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) ((-918 (-1197)) -3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197))))) ((-939) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1058 (-419 (-558))) |has| (-419 |#2|) (-1058 (-419 (-558)))) ((-1058 (-419 |#2|)) . T) ((-1058 (-558)) |has| (-419 |#2|) (-1058 (-558))) ((-1071 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1071 (-419 |#2|)) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376))) ((-1076 (-419 |#2|)) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) |has| (-419 |#2|) (-363)) ((-1237) . T) ((-1242) -3956 (|has| (-419 |#2|) (-363)) (|has| (-419 |#2|) (-376)))) +((-4387 ((|#8| (-1 |#5| |#1|) |#4|) 19 T ELT))) +(((-356 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4387 (|#8| (-1 |#5| |#1|) |#4|))) (-1242) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-1242) (-1263 |#5|) (-1263 (-419 |#6|)) (-355 |#5| |#6| |#7|)) (T -356)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) (-4 *10 (-1263 (-419 *9)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 (((-924 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-924 |#1|) #1#) $) NIL T ELT)) (-3573 (((-924 |#1|) $) NIL T ELT)) (-1999 (($ (-1287 (-924 |#1|))) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1882 (((-114) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT) (($ $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2220 (((-114) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3533 (((-924 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 (-924 |#1|)) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2219 (((-937) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1806 (((-1191 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1805 (((-1191 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-3 (-1191 (-924 |#1|)) #1#) $ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1807 (($ $ (-1191 (-924 |#1|))) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-924 |#1|) (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1869 (((-976 (-1140))) NIL T ELT)) (-2639 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 (-924 |#1|))) NIL T ELT)) (-1876 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1808 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3641 (((-1287 (-924 |#1|)) $) NIL T ELT) (((-708 (-924 |#1|)) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-924 |#1|)) NIL T ELT)) (-3102 (($ $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ (-924 |#1|)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-924 |#1|)) NIL T ELT) (($ (-924 |#1|) $) NIL T ELT))) +(((-357 |#1| |#2|) (-13 (-341 (-924 |#1|)) (-10 -7 (-15 -1869 ((-976 (-1140)))))) (-937) (-937)) (T -357)) +((-1869 (*1 *2) (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-357 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 58 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 56 (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 141 T ELT)) (-3573 ((|#1| $) 113 T ELT)) (-1999 (($ (-1287 |#1|)) 130 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 121 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) 124 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) 159 (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) 66 (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) 60 (|has| |#1| (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) 62 T ELT)) (-2222 (($) 161 (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 |#1|) $) 117 T ELT) (((-1191 $) $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) 170 (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 177 T ELT)) (-3865 (($) NIL (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) 96 (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) 146 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1869 (((-976 (-1140))) 57 T ELT)) (-2639 (($) 157 (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 119 (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) 90 T ELT) (((-937)) 91 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) 160 (|has| |#1| (-381)) ELT) (((-3 (-790) #1#) $ $) 153 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 |#1|)) 122 T ELT)) (-1876 (($) 158 (|has| |#1| (-381)) ELT)) (-1808 (($) 166 (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) 77 T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) 173 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 100 T ELT)) (-3102 (($ $) NIL (|has| |#1| (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) 154 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) 143 T ELT) (((-1287 $) (-937)) 98 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) 67 T CONST)) (-3064 (($) 103 T CONST)) (-4357 (($ $) 107 (|has| |#1| (-381)) ELT) (($ $ (-790)) NIL (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) 65 T ELT)) (-4378 (($ $ $) 175 T ELT) (($ $ |#1|) 176 T ELT)) (-4266 (($ $) 156 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 86 T ELT)) (** (($ $ (-937)) 179 T ELT) (($ $ (-790)) 180 T ELT) (($ $ (-558)) 178 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 102 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 174 T ELT))) +(((-358 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1869 ((-976 (-1140)))))) (-363) (-1191 |#1|)) (T -358)) +((-1869 (*1 *2) (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) (-14 *4 (-1191 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-1999 (($ (-1287 |#1|)) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 |#1|) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1869 (((-976 (-1140))) NIL T ELT)) (-2639 (($) NIL (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 |#1|)) NIL T ELT)) (-1876 (($) NIL (|has| |#1| (-381)) ELT)) (-1808 (($) NIL (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3102 (($ $) NIL (|has| |#1| (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-790)) NIL (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-359 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1869 ((-976 (-1140)))))) (-363) (-937)) (T -359)) +((-1869 (*1 *2) (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937))))) +((-1879 (((-790) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140)))))) 61 T ELT)) (-1870 (((-976 (-1140)) (-1191 |#1|)) 112 T ELT)) (-1871 (((-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))) (-1191 |#1|)) 103 T ELT)) (-1872 (((-708 |#1|) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140)))))) 113 T ELT)) (-1873 (((-3 (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))) "failed") (-937)) 13 T ELT)) (-1874 (((-3 (-1191 |#1|) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140)))))) (-937)) 18 T ELT))) +(((-360 |#1|) (-10 -7 (-15 -1870 ((-976 (-1140)) (-1191 |#1|))) (-15 -1871 ((-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))) (-1191 |#1|))) (-15 -1872 ((-708 |#1|) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))))) (-15 -1879 ((-790) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))))) (-15 -1873 ((-3 (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))) "failed") (-937))) (-15 -1874 ((-3 (-1191 |#1|) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140)))))) (-937)))) (-363)) (T -360)) +((-1874 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-3 (-1191 *4) (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140))))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1873 (*1 *2 *3) (|partial| -12 (-5 *3 (-937)) (-5 *2 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-5 *1 (-360 *4)) (-4 *4 (-363)))) (-1879 (*1 *2 *3) (-12 (-5 *3 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-4 *4 (-363)) (-5 *2 (-790)) (-5 *1 (-360 *4)))) (-1872 (*1 *2 *3) (-12 (-5 *3 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-4 *4 (-363)) (-5 *2 (-708 *4)) (-5 *1 (-360 *4)))) (-1871 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-5 *1 (-360 *4)))) (-1870 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-976 (-1140))) (-5 *1 (-360 *4))))) +((-4375 ((|#1| |#3|) 104 T ELT) ((|#3| |#1|) 87 T ELT))) +(((-361 |#1| |#2| |#3|) (-10 -7 (-15 -4375 (|#3| |#1|)) (-15 -4375 (|#1| |#3|))) (-341 |#2|) (-363) (-341 |#2|)) (T -361)) +((-4375 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) (-4375 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4))))) +((-1882 (((-114) $) 65 T ELT)) (-4201 (((-844 (-937)) $) 26 T ELT) (((-937) $) 69 T ELT)) (-3864 (((-710 $) $) 21 T ELT)) (-3865 (($) 9 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 120 T ELT)) (-1974 (((-3 (-790) #1="failed") $ $) 98 T ELT) (((-790) $) 84 T ELT)) (-4187 (($ $) 8 T ELT) (($ $ (-790)) NIL T ELT)) (-1876 (($) 58 T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 41 T ELT)) (-3102 (((-710 $) $) 50 T ELT) (($ $) 47 T ELT))) +(((-362 |#1|) (-10 -7 (-15 -4201 ((-937) |#1|)) (-15 -1974 ((-790) |#1|)) (-15 -1882 ((-114) |#1|)) (-15 -1876 (|#1|)) (-15 -3103 ((-3 (-1287 |#1|) #1="failed") (-708 |#1|))) (-15 -3102 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 -3865 (|#1|)) (-15 -3864 ((-710 |#1|) |#1|)) (-15 -1974 ((-3 (-790) #1#) |#1| |#1|)) (-15 -4201 ((-844 (-937)) |#1|)) (-15 -3102 ((-710 |#1|) |#1|)) (-15 -3108 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-363)) (T -362)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 110 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-3537 (((-790)) 120 T ELT)) (-4153 (($) 22 T CONST)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 104 T ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3394 (($) 123 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-3233 (($) 108 T ELT)) (-1882 (((-114) $) 107 T ELT)) (-1973 (($ $) 94 T ELT) (($ $ (-790)) 93 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-4201 (((-844 (-937)) $) 96 T ELT) (((-937) $) 105 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3864 (((-710 $) $) 119 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-2219 (((-937) $) 122 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3865 (($) 118 T CONST)) (-2630 (($ (-937)) 121 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 111 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-1974 (((-3 (-790) "failed") $ $) 95 T ELT) (((-790) $) 106 T ELT)) (-4187 (($ $) 117 T ELT) (($ $ (-790)) 115 T ELT)) (-1876 (($) 109 T ELT)) (-3103 (((-3 (-1287 $) "failed") (-708 $)) 112 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3102 (((-710 $) $) 97 T ELT) (($ $) 113 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $) 116 T ELT) (($ $ (-790)) 114 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-363) (-142)) (T -363)) -((-3103 (*1 *1 *1) (-4 *1 (-363))) (-3104 (*1 *2 *3) (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-363)) (-5 *2 (-1288 *1)))) (-1879 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))))) (-1878 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-558)) (-5 *2 (-1210 (-938) (-791))))) (-1877 (*1 *1) (-4 *1 (-363))) (-3234 (*1 *1) (-4 *1 (-363))) (-1883 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-1975 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-791)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-938)))) (-1876 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) -(-13 (-414) (-381) (-1173) (-240) (-10 -8 (-15 -3103 ($ $)) (-15 -3104 ((-3 (-1288 $) "failed") (-709 $))) (-15 -1879 ((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558)))))) (-15 -1878 ((-1210 (-938) (-791)) (-558))) (-15 -1877 ($)) (-15 -3234 ($)) (-15 -1883 ((-114) $)) (-15 -1975 ((-791) $)) (-15 -4202 ((-938) $)) (-15 -1876 ((-3 "prime" "polynomial" "normal" "cyclic"))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) . T) ((-381) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) . T) ((-1238) . T) ((-1243) . T)) -((-4349 (((-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) |#1|) 55 T ELT)) (-4348 (((-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))) 53 T ELT))) -(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -4348 ((-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))))) (-15 -4349 ((-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $)))) (-1264 |#1|) (-422 |#1| |#2|)) (T -364)) -((-4349 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4348 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 (((-925 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1880 (((-791)) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-925 |#1|) #1#) $) NIL T ELT)) (-3574 (((-925 |#1|) $) NIL T ELT)) (-2000 (($ (-1288 (-925 |#1|))) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1883 (((-114) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT) (($ $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2221 (((-114) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3534 (((-925 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 (-925 |#1|)) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2220 (((-938) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1807 (((-1192 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1806 (((-1192 (-925 |#1|)) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-3 (-1192 (-925 |#1|)) #1#) $ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1808 (($ $ (-1192 (-925 |#1|))) NIL (|has| (-925 |#1|) (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-925 |#1|) (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1882 (((-1288 (-661 (-2 (|:| -3822 (-925 |#1|)) (|:| -2631 (-1141)))))) NIL T ELT)) (-1881 (((-709 (-925 |#1|))) NIL T ELT)) (-2640 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 (-925 |#1|))) NIL T ELT)) (-1877 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-1809 (($) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3642 (((-1288 (-925 |#1|)) $) NIL T ELT) (((-709 (-925 |#1|)) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-925 |#1|)) NIL T ELT)) (-3103 (($ $) NIL (|has| (-925 |#1|) (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| (-925 |#1|) (-147)) (|has| (-925 |#1|) (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| (-925 |#1|) (-381)) ELT) (($ $) NIL (|has| (-925 |#1|) (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ (-925 |#1|)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-925 |#1|)) NIL T ELT) (($ (-925 |#1|) $) NIL T ELT))) -(((-365 |#1| |#2|) (-13 (-341 (-925 |#1|)) (-10 -7 (-15 -1882 ((-1288 (-661 (-2 (|:| -3822 (-925 |#1|)) (|:| -2631 (-1141))))))) (-15 -1881 ((-709 (-925 |#1|)))) (-15 -1880 ((-791))))) (-938) (-938)) (T -365)) -((-1882 (*1 *2) (-12 (-5 *2 (-1288 (-661 (-2 (|:| -3822 (-925 *3)) (|:| -2631 (-1141)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-1881 (*1 *2) (-12 (-5 *2 (-709 (-925 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-1880 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-365 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938))))) -((-2967 (((-114) $ $) 73 T ELT)) (-3606 (((-114) $) 88 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 ((|#1| $) 106 T ELT) (($ $ (-938)) 104 (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 170 (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1880 (((-791)) 103 T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) 187 (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 127 T ELT)) (-3574 ((|#1| $) 105 T ELT)) (-2000 (($ (-1288 |#1|)) 71 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) 182 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) 171 (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) 113 (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) 108 T ELT) (($ $ (-938)) 107 (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 |#1|) $) 214 T ELT) (((-1192 $) $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) 148 (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) #1#) $ $) 96 (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 218 T ELT)) (-3866 (($) NIL (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) 150 (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) 123 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1882 (((-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141)))))) 97 T ELT)) (-1881 (((-709 |#1|)) 101 T ELT)) (-2640 (($) 110 (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 173 (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) 174 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) 75 T ELT)) (-3603 (((-1192 |#1|)) 175 T ELT)) (-1877 (($) 147 (|has| |#1| (-381)) ELT)) (-1809 (($) NIL (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) 121 T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) 140 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3103 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) 180 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) 197 T ELT) (((-1288 $) (-938)) 116 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) 186 T CONST)) (-3065 (($) 161 T CONST)) (-4358 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-791)) 114 (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) 208 T ELT)) (-4379 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-4267 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-4269 (($ $ $) 204 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 153 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) -(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1882 ((-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))))) (-15 -1881 ((-709 |#1|))) (-15 -1880 ((-791))))) (-363) (-3 (-1192 |#1|) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))))) (T -366)) -((-1882 (*1 *2) (-12 (-5 *2 (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1192 *3) *2)))) (-1881 (*1 *2) (-12 (-5 *2 (-709 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1192 *3) (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141))))))))) (-1880 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1192 *3) (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141)))))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1880 (((-791)) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2000 (($ (-1288 |#1|)) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 |#1|) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1882 (((-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141)))))) NIL T ELT)) (-1881 (((-709 |#1|)) NIL T ELT)) (-2640 (($) NIL (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 |#1|)) NIL T ELT)) (-1877 (($) NIL (|has| |#1| (-381)) ELT)) (-1809 (($) NIL (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3103 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1882 ((-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))))) (-15 -1881 ((-709 |#1|))) (-15 -1880 ((-791))))) (-363) (-938)) (T -367)) -((-1882 (*1 *2) (-12 (-5 *2 (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938)))) (-1881 (*1 *2) (-12 (-5 *2 (-709 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938)))) (-1880 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 129 (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) 155 (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 103 T ELT)) (-3574 ((|#1| $) 100 T ELT)) (-2000 (($ (-1288 |#1|)) 95 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) 92 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) 51 (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) 130 (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) 47 T ELT) (($ $ (-938)) 52 (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 |#1|) $) 75 T ELT) (((-1192 $) $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) 107 (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) 105 (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) 157 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) 44 (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 124 (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) 154 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) 67 T ELT)) (-3603 (((-1192 |#1|)) 98 T ELT)) (-1877 (($) 135 (|has| |#1| (-381)) ELT)) (-1809 (($) NIL (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) 63 T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) 153 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3103 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) 159 T CONST)) (-1378 (((-114) $ $) 161 T ELT)) (-2222 (((-1288 $)) 119 T ELT) (((-1288 $) (-938)) 58 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) 121 T CONST)) (-3065 (($) 40 T CONST)) (-4358 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) 117 T ELT)) (-4379 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-4267 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-4269 (($ $ $) 113 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 53 T ELT) (($ $ (-558)) 138 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) -(((-368 |#1| |#2|) (-341 |#1|) (-363) (-1192 |#1|)) (T -368)) -NIL -((-1898 (((-977 (-1192 |#1|)) (-1192 |#1|)) 49 T ELT)) (-3395 (((-1192 |#1|) (-938) (-938)) 159 T ELT) (((-1192 |#1|) (-938)) 155 T ELT)) (-1883 (((-114) (-1192 |#1|)) 110 T ELT)) (-1885 (((-938) (-938)) 85 T ELT)) (-1886 (((-938) (-938)) 94 T ELT)) (-1884 (((-938) (-938)) 83 T ELT)) (-2221 (((-114) (-1192 |#1|)) 114 T ELT)) (-1893 (((-3 (-1192 |#1|) #1="failed") (-1192 |#1|)) 139 T ELT)) (-1896 (((-3 (-1192 |#1|) #1#) (-1192 |#1|)) 144 T ELT)) (-1895 (((-3 (-1192 |#1|) #1#) (-1192 |#1|)) 143 T ELT)) (-1894 (((-3 (-1192 |#1|) #1#) (-1192 |#1|)) 142 T ELT)) (-1892 (((-3 (-1192 |#1|) #1#) (-1192 |#1|)) 134 T ELT)) (-1897 (((-1192 |#1|) (-1192 |#1|)) 71 T ELT)) (-1888 (((-1192 |#1|) (-938)) 149 T ELT)) (-1891 (((-1192 |#1|) (-938)) 152 T ELT)) (-1890 (((-1192 |#1|) (-938)) 151 T ELT)) (-1889 (((-1192 |#1|) (-938)) 150 T ELT)) (-1887 (((-1192 |#1|) (-938)) 147 T ELT))) -(((-369 |#1|) (-10 -7 (-15 -1883 ((-114) (-1192 |#1|))) (-15 -2221 ((-114) (-1192 |#1|))) (-15 -1884 ((-938) (-938))) (-15 -1885 ((-938) (-938))) (-15 -1886 ((-938) (-938))) (-15 -1887 ((-1192 |#1|) (-938))) (-15 -1888 ((-1192 |#1|) (-938))) (-15 -1889 ((-1192 |#1|) (-938))) (-15 -1890 ((-1192 |#1|) (-938))) (-15 -1891 ((-1192 |#1|) (-938))) (-15 -1892 ((-3 (-1192 |#1|) #1="failed") (-1192 |#1|))) (-15 -1893 ((-3 (-1192 |#1|) #1#) (-1192 |#1|))) (-15 -1894 ((-3 (-1192 |#1|) #1#) (-1192 |#1|))) (-15 -1895 ((-3 (-1192 |#1|) #1#) (-1192 |#1|))) (-15 -1896 ((-3 (-1192 |#1|) #1#) (-1192 |#1|))) (-15 -3395 ((-1192 |#1|) (-938))) (-15 -3395 ((-1192 |#1|) (-938) (-938))) (-15 -1897 ((-1192 |#1|) (-1192 |#1|))) (-15 -1898 ((-977 (-1192 |#1|)) (-1192 |#1|)))) (-363)) (T -369)) -((-1898 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-977 (-1192 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1192 *4)))) (-1897 (*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3395 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1896 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1895 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1894 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1893 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1892 (*1 *2 *2) (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1891 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1886 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-1883 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) -((-1899 ((|#1| (-1192 |#2|)) 60 T ELT))) -(((-370 |#1| |#2|) (-10 -7 (-15 -1899 (|#1| (-1192 |#2|)))) (-13 (-414) (-10 -7 (-15 -4376 (|#1| |#2|)) (-15 -2220 ((-938) |#1|)) (-15 -2222 ((-1288 |#1|) (-938))) (-15 -4358 (|#1| |#1|)))) (-363)) (T -370)) -((-1899 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4376 (*2 *4)) (-15 -2220 ((-938) *2)) (-15 -2222 ((-1288 *2) (-938))) (-15 -4358 (*2 *2))))) (-5 *1 (-370 *2 *4))))) -((-3105 (((-3 (-661 |#3|) "failed") (-661 |#3|) |#3|) 40 T ELT))) -(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3105 ((-3 (-661 |#3|) "failed") (-661 |#3|) |#3|))) (-363) (-1264 |#1|) (-1264 |#2|)) (T -371)) -((-3105 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2000 (($ (-1288 |#1|)) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| |#1| (-381)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| |#1| (-381)) ELT)) (-2221 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3534 ((|#1| $) NIL T ELT) (($ $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 |#1|) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-1807 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1192 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1192 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1808 (($ $ (-1192 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| |#1| (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) NIL (|has| |#1| (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 |#1|)) NIL T ELT)) (-1877 (($) NIL (|has| |#1| (-381)) ELT)) (-1809 (($) NIL (|has| |#1| (-381)) ELT)) (-3642 (((-1288 |#1|) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3103 (($ $) NIL (|has| |#1| (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-791)) NIL (|has| |#1| (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-372 |#1| |#2|) (-341 |#1|) (-363) (-938)) (T -372)) -NIL -((-2463 (((-114) (-661 (-965 |#1|))) 41 T ELT)) (-2465 (((-661 (-965 |#1|)) (-661 (-965 |#1|))) 53 T ELT)) (-2464 (((-3 (-661 (-965 |#1|)) "failed") (-661 (-965 |#1|))) 48 T ELT))) -(((-373 |#1| |#2|) (-10 -7 (-15 -2463 ((-114) (-661 (-965 |#1|)))) (-15 -2464 ((-3 (-661 (-965 |#1|)) "failed") (-661 (-965 |#1|)))) (-15 -2465 ((-661 (-965 |#1|)) (-661 (-965 |#1|))))) (-464) (-661 (-1198))) (T -373)) -((-2465 (*1 *2 *2) (-12 (-5 *2 (-661 (-965 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-661 (-1198))))) (-2464 (*1 *2 *2) (|partial| -12 (-5 *2 (-661 (-965 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-661 (-1198))))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-464)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-661 (-1198)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) 17 T ELT)) (-2512 ((|#1| $ (-558)) NIL T ELT)) (-2513 (((-558) $ (-558)) NIL T ELT)) (-2504 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2505 (($ (-1 (-558) (-558)) $) 26 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 28 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1987 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-558)))) $) 30 T ELT)) (-3410 (($ $ $) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-4376 (((-877) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 7 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ |#1| (-558)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) -(((-374 |#1|) (-13 (-485) (-1059 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -3538 ((-791) $)) (-15 -2513 ((-558) $ (-558))) (-15 -2512 (|#1| $ (-558))) (-15 -2505 ($ (-1 (-558) (-558)) $)) (-15 -2504 ($ (-1 |#1| |#1|) $)) (-15 -1987 ((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-558)))) $)))) (-1122)) (T -374)) -((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1122)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1122)))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-374 *3)) (-4 *3 (-1122)))) (-2513 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-374 *3)) (-4 *3 (-1122)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1122)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-374 *3)) (-4 *3 (-1122)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-374 *3)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 (-558))))) (-5 *1 (-374 *3)) (-4 *3 (-1122))))) -((-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 13 T ELT)) (-2273 (($ $) 14 T ELT)) (-4401 (((-417 $) $) 31 T ELT)) (-4153 (((-114) $) 27 T ELT)) (-2874 (($ $) 19 T ELT)) (-3562 (($ $ $) 22 T ELT) (($ (-661 $)) NIL T ELT)) (-4162 (((-417 $) $) 32 T ELT)) (-3886 (((-3 $ "failed") $ $) 21 T ELT)) (-1787 (((-791) $) 25 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 36 T ELT)) (-2272 (((-114) $ $) 16 T ELT)) (-4379 (($ $ $) 34 T ELT))) -(((-375 |#1|) (-10 -7 (-15 -4379 (|#1| |#1| |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -4153 ((-114) |#1|)) (-15 -4401 ((-417 |#1|) |#1|)) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -3280 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -1787 ((-791) |#1|)) (-15 -3562 (|#1| (-661 |#1|))) (-15 -3562 (|#1| |#1| |#1|)) (-15 -2272 ((-114) |#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2274 ((-2 (|:| -1980 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3886 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +((-3102 (*1 *1 *1) (-4 *1 (-363))) (-3103 (*1 *2 *3) (|partial| -12 (-5 *3 (-708 *1)) (-4 *1 (-363)) (-5 *2 (-1287 *1)))) (-1878 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))))) (-1877 (*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-558)) (-5 *2 (-1209 (-937) (-790))))) (-1876 (*1 *1) (-4 *1 (-363))) (-3233 (*1 *1) (-4 *1 (-363))) (-1882 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) (-1974 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-790)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-937)))) (-1875 (*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) +(-13 (-414) (-381) (-1172) (-240) (-10 -8 (-15 -3102 ($ $)) (-15 -3103 ((-3 (-1287 $) "failed") (-708 $))) (-15 -1878 ((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558)))))) (-15 -1877 ((-1209 (-937) (-790)) (-558))) (-15 -1876 ($)) (-15 -3233 ($)) (-15 -1882 ((-114) $)) (-15 -1974 ((-790) $)) (-15 -4201 ((-937) $)) (-15 -1875 ((-3 "prime" "polynomial" "normal" "cyclic"))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) . T) ((-381) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) . T) ((-1237) . T) ((-1242) . T)) +((-4348 (((-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))) |#1|) 55 T ELT)) (-4347 (((-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|)))) 53 T ELT))) +(((-364 |#1| |#2| |#3|) (-10 -7 (-15 -4347 ((-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))))) (-15 -4348 ((-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))) |#1|))) (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $)))) (-1263 |#1|) (-422 |#1| |#2|)) (T -364)) +((-4348 (*1 *2 *3) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4347 (*1 *2) (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 (((-924 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1879 (((-790)) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-924 |#1|) #1#) $) NIL T ELT)) (-3573 (((-924 |#1|) $) NIL T ELT)) (-1999 (($ (-1287 (-924 |#1|))) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1882 (((-114) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT) (($ $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2220 (((-114) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3533 (((-924 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 (-924 |#1|)) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2219 (((-937) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1806 (((-1191 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1805 (((-1191 (-924 |#1|)) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-3 (-1191 (-924 |#1|)) #1#) $ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1807 (($ $ (-1191 (-924 |#1|))) NIL (|has| (-924 |#1|) (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-924 |#1|) (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1881 (((-1287 (-660 (-2 (|:| -3821 (-924 |#1|)) (|:| -2630 (-1140)))))) NIL T ELT)) (-1880 (((-708 (-924 |#1|))) NIL T ELT)) (-2639 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 (-924 |#1|))) NIL T ELT)) (-1876 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-1808 (($) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3641 (((-1287 (-924 |#1|)) $) NIL T ELT) (((-708 (-924 |#1|)) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-924 |#1|)) NIL T ELT)) (-3102 (($ $) NIL (|has| (-924 |#1|) (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| (-924 |#1|) (-147)) (|has| (-924 |#1|) (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| (-924 |#1|) (-381)) ELT) (($ $) NIL (|has| (-924 |#1|) (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ (-924 |#1|)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-924 |#1|)) NIL T ELT) (($ (-924 |#1|) $) NIL T ELT))) +(((-365 |#1| |#2|) (-13 (-341 (-924 |#1|)) (-10 -7 (-15 -1881 ((-1287 (-660 (-2 (|:| -3821 (-924 |#1|)) (|:| -2630 (-1140))))))) (-15 -1880 ((-708 (-924 |#1|)))) (-15 -1879 ((-790))))) (-937) (-937)) (T -365)) +((-1881 (*1 *2) (-12 (-5 *2 (-1287 (-660 (-2 (|:| -3821 (-924 *3)) (|:| -2630 (-1140)))))) (-5 *1 (-365 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-1880 (*1 *2) (-12 (-5 *2 (-708 (-924 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-1879 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-365 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937))))) +((-2966 (((-114) $ $) 73 T ELT)) (-3605 (((-114) $) 88 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 ((|#1| $) 106 T ELT) (($ $ (-937)) 104 (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 170 (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1879 (((-790)) 103 T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) 187 (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 127 T ELT)) (-3573 ((|#1| $) 105 T ELT)) (-1999 (($ (-1287 |#1|)) 71 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 213 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) 182 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) 171 (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) 113 (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) 200 (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) 108 T ELT) (($ $ (-937)) 107 (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 |#1|) $) 214 T ELT) (((-1191 $) $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) 148 (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) 87 (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) 84 (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) #1#) $ $) 96 (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) 83 (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 218 T ELT)) (-3865 (($) NIL (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) 150 (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) 123 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1881 (((-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140)))))) 97 T ELT)) (-1880 (((-708 |#1|)) 101 T ELT)) (-2639 (($) 110 (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 173 (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) 174 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) 75 T ELT)) (-3602 (((-1191 |#1|)) 175 T ELT)) (-1876 (($) 147 (|has| |#1| (-381)) ELT)) (-1808 (($) NIL (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) 121 T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) 140 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 70 T ELT)) (-3102 (($ $) NIL (|has| |#1| (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) 180 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) 197 T ELT) (((-1287 $) (-937)) 116 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) 186 T CONST)) (-3064 (($) 161 T CONST)) (-4357 (($ $) 122 (|has| |#1| (-381)) ELT) (($ $ (-790)) 114 (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) 208 T ELT)) (-4378 (($ $ $) 119 T ELT) (($ $ |#1|) 120 T ELT)) (-4266 (($ $) 202 T ELT) (($ $ $) 206 T ELT)) (-4268 (($ $ $) 204 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 153 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 211 T ELT) (($ $ $) 164 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 118 T ELT))) +(((-366 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1881 ((-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))))) (-15 -1880 ((-708 |#1|))) (-15 -1879 ((-790))))) (-363) (-3 (-1191 |#1|) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))))) (T -366)) +((-1881 (*1 *2) (-12 (-5 *2 (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140)))))) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1191 *3) *2)))) (-1880 (*1 *2) (-12 (-5 *2 (-708 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1191 *3) (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140))))))))) (-1879 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1191 *3) (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140)))))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1879 (((-790)) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-1999 (($ (-1287 |#1|)) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 |#1|) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1881 (((-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140)))))) NIL T ELT)) (-1880 (((-708 |#1|)) NIL T ELT)) (-2639 (($) NIL (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 |#1|)) NIL T ELT)) (-1876 (($) NIL (|has| |#1| (-381)) ELT)) (-1808 (($) NIL (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3102 (($ $) NIL (|has| |#1| (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-790)) NIL (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-367 |#1| |#2|) (-13 (-341 |#1|) (-10 -7 (-15 -1881 ((-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))))) (-15 -1880 ((-708 |#1|))) (-15 -1879 ((-790))))) (-363) (-937)) (T -367)) +((-1881 (*1 *2) (-12 (-5 *2 (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140)))))) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937)))) (-1880 (*1 *2) (-12 (-5 *2 (-708 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937)))) (-1879 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 129 (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) 155 (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 103 T ELT)) (-3573 ((|#1| $) 100 T ELT)) (-1999 (($ (-1287 |#1|)) 95 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 126 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) 92 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) 51 (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) 130 (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) 84 (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) 47 T ELT) (($ $ (-937)) 52 (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 |#1|) $) 75 T ELT) (((-1191 $) $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) 107 (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) 105 (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) 157 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) 44 (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 124 (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) 154 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) 67 T ELT)) (-3602 (((-1191 |#1|)) 98 T ELT)) (-1876 (($) 135 (|has| |#1| (-381)) ELT)) (-1808 (($) NIL (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) 63 T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) 153 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 97 T ELT)) (-3102 (($ $) NIL (|has| |#1| (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) 159 T CONST)) (-1377 (((-114) $ $) 161 T ELT)) (-2221 (((-1287 $)) 119 T ELT) (((-1287 $) (-937)) 58 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) 121 T CONST)) (-3064 (($) 40 T CONST)) (-4357 (($ $) 78 (|has| |#1| (-381)) ELT) (($ $ (-790)) NIL (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) 117 T ELT)) (-4378 (($ $ $) 109 T ELT) (($ $ |#1|) 110 T ELT)) (-4266 (($ $) 90 T ELT) (($ $ $) 115 T ELT)) (-4268 (($ $ $) 113 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 53 T ELT) (($ $ (-558)) 138 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 88 T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 86 T ELT))) +(((-368 |#1| |#2|) (-341 |#1|) (-363) (-1191 |#1|)) (T -368)) +NIL +((-1897 (((-976 (-1191 |#1|)) (-1191 |#1|)) 49 T ELT)) (-3394 (((-1191 |#1|) (-937) (-937)) 159 T ELT) (((-1191 |#1|) (-937)) 155 T ELT)) (-1882 (((-114) (-1191 |#1|)) 110 T ELT)) (-1884 (((-937) (-937)) 85 T ELT)) (-1885 (((-937) (-937)) 94 T ELT)) (-1883 (((-937) (-937)) 83 T ELT)) (-2220 (((-114) (-1191 |#1|)) 114 T ELT)) (-1892 (((-3 (-1191 |#1|) #1="failed") (-1191 |#1|)) 139 T ELT)) (-1895 (((-3 (-1191 |#1|) #1#) (-1191 |#1|)) 144 T ELT)) (-1894 (((-3 (-1191 |#1|) #1#) (-1191 |#1|)) 143 T ELT)) (-1893 (((-3 (-1191 |#1|) #1#) (-1191 |#1|)) 142 T ELT)) (-1891 (((-3 (-1191 |#1|) #1#) (-1191 |#1|)) 134 T ELT)) (-1896 (((-1191 |#1|) (-1191 |#1|)) 71 T ELT)) (-1887 (((-1191 |#1|) (-937)) 149 T ELT)) (-1890 (((-1191 |#1|) (-937)) 152 T ELT)) (-1889 (((-1191 |#1|) (-937)) 151 T ELT)) (-1888 (((-1191 |#1|) (-937)) 150 T ELT)) (-1886 (((-1191 |#1|) (-937)) 147 T ELT))) +(((-369 |#1|) (-10 -7 (-15 -1882 ((-114) (-1191 |#1|))) (-15 -2220 ((-114) (-1191 |#1|))) (-15 -1883 ((-937) (-937))) (-15 -1884 ((-937) (-937))) (-15 -1885 ((-937) (-937))) (-15 -1886 ((-1191 |#1|) (-937))) (-15 -1887 ((-1191 |#1|) (-937))) (-15 -1888 ((-1191 |#1|) (-937))) (-15 -1889 ((-1191 |#1|) (-937))) (-15 -1890 ((-1191 |#1|) (-937))) (-15 -1891 ((-3 (-1191 |#1|) #1="failed") (-1191 |#1|))) (-15 -1892 ((-3 (-1191 |#1|) #1#) (-1191 |#1|))) (-15 -1893 ((-3 (-1191 |#1|) #1#) (-1191 |#1|))) (-15 -1894 ((-3 (-1191 |#1|) #1#) (-1191 |#1|))) (-15 -1895 ((-3 (-1191 |#1|) #1#) (-1191 |#1|))) (-15 -3394 ((-1191 |#1|) (-937))) (-15 -3394 ((-1191 |#1|) (-937) (-937))) (-15 -1896 ((-1191 |#1|) (-1191 |#1|))) (-15 -1897 ((-976 (-1191 |#1|)) (-1191 |#1|)))) (-363)) (T -369)) +((-1897 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-976 (-1191 *4))) (-5 *1 (-369 *4)) (-5 *3 (-1191 *4)))) (-1896 (*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-3394 (*1 *2 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1895 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1894 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1893 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1892 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1891 (*1 *2 *2) (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3)))) (-1890 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1889 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1888 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1887 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1886 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) (-1885 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1884 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-1883 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-369 *3)) (-4 *3 (-363)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) (-1882 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) +((-1898 ((|#1| (-1191 |#2|)) 60 T ELT))) +(((-370 |#1| |#2|) (-10 -7 (-15 -1898 (|#1| (-1191 |#2|)))) (-13 (-414) (-10 -7 (-15 -4375 (|#1| |#2|)) (-15 -2219 ((-937) |#1|)) (-15 -2221 ((-1287 |#1|) (-937))) (-15 -4357 (|#1| |#1|)))) (-363)) (T -370)) +((-1898 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-414) (-10 -7 (-15 -4375 (*2 *4)) (-15 -2219 ((-937) *2)) (-15 -2221 ((-1287 *2) (-937))) (-15 -4357 (*2 *2))))) (-5 *1 (-370 *2 *4))))) +((-3104 (((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|) 40 T ELT))) +(((-371 |#1| |#2| |#3|) (-10 -7 (-15 -3104 ((-3 (-660 |#3|) "failed") (-660 |#3|) |#3|))) (-363) (-1263 |#1|) (-1263 |#2|)) (T -371)) +((-3104 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| |#1| (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-1999 (($ (-1287 |#1|)) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| |#1| (-381)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| |#1| (-381)) ELT)) (-2220 (((-114) $) NIL (|has| |#1| (-381)) ELT)) (-3533 ((|#1| $) NIL T ELT) (($ $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 |#1|) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-1806 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT)) (-1805 (((-1191 |#1|) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-1191 |#1|) #1#) $ $) NIL (|has| |#1| (-381)) ELT)) (-1807 (($ $ (-1191 |#1|)) NIL (|has| |#1| (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| |#1| (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) NIL (|has| |#1| (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| |#1| (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 |#1|)) NIL T ELT)) (-1876 (($) NIL (|has| |#1| (-381)) ELT)) (-1808 (($) NIL (|has| |#1| (-381)) ELT)) (-3641 (((-1287 |#1|) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) NIL T ELT)) (-3102 (($ $) NIL (|has| |#1| (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| |#1| (-381)) ELT) (($ $ (-790)) NIL (|has| |#1| (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| |#1| (-381)) ELT) (($ $) NIL (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-372 |#1| |#2|) (-341 |#1|) (-363) (-937)) (T -372)) +NIL +((-2462 (((-114) (-660 (-964 |#1|))) 41 T ELT)) (-2464 (((-660 (-964 |#1|)) (-660 (-964 |#1|))) 53 T ELT)) (-2463 (((-3 (-660 (-964 |#1|)) "failed") (-660 (-964 |#1|))) 48 T ELT))) +(((-373 |#1| |#2|) (-10 -7 (-15 -2462 ((-114) (-660 (-964 |#1|)))) (-15 -2463 ((-3 (-660 (-964 |#1|)) "failed") (-660 (-964 |#1|)))) (-15 -2464 ((-660 (-964 |#1|)) (-660 (-964 |#1|))))) (-464) (-660 (-1197))) (T -373)) +((-2464 (*1 *2 *2) (-12 (-5 *2 (-660 (-964 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-660 (-1197))))) (-2463 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-964 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) (-14 *4 (-660 (-1197))))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-464)) (-5 *2 (-114)) (-5 *1 (-373 *4 *5)) (-14 *5 (-660 (-1197)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) 17 T ELT)) (-2511 ((|#1| $ (-558)) NIL T ELT)) (-2512 (((-558) $ (-558)) NIL T ELT)) (-2503 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2504 (($ (-1 (-558) (-558)) $) 26 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 28 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1986 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-558)))) $) 30 T ELT)) (-3409 (($ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-4375 (((-876) $) 40 T ELT) (($ |#1|) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 7 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ |#1| (-558)) 19 T ELT)) (* (($ $ $) 53 T ELT) (($ |#1| $) 23 T ELT) (($ $ |#1|) 21 T ELT))) +(((-374 |#1|) (-13 (-485) (-1058 |#1|) (-10 -8 (-15 * ($ |#1| $)) (-15 * ($ $ |#1|)) (-15 ** ($ |#1| (-558))) (-15 -3537 ((-790) $)) (-15 -2512 ((-558) $ (-558))) (-15 -2511 (|#1| $ (-558))) (-15 -2504 ($ (-1 (-558) (-558)) $)) (-15 -2503 ($ (-1 |#1| |#1|) $)) (-15 -1986 ((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-558)))) $)))) (-1121)) (T -374)) +((* (*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1121)))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-374 *3)) (-4 *3 (-1121)))) (-2512 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-374 *3)) (-4 *3 (-1121)))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1121)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-374 *3)) (-4 *3 (-1121)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-374 *3)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 (-558))))) (-5 *1 (-374 *3)) (-4 *3 (-1121))))) +((-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 13 T ELT)) (-2272 (($ $) 14 T ELT)) (-4400 (((-417 $) $) 31 T ELT)) (-4152 (((-114) $) 27 T ELT)) (-2873 (($ $) 19 T ELT)) (-3561 (($ $ $) 22 T ELT) (($ (-660 $)) NIL T ELT)) (-4161 (((-417 $) $) 32 T ELT)) (-3885 (((-3 $ "failed") $ $) 21 T ELT)) (-1786 (((-790) $) 25 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 36 T ELT)) (-2271 (((-114) $ $) 16 T ELT)) (-4378 (($ $ $) 34 T ELT))) +(((-375 |#1|) (-10 -7 (-15 -4378 (|#1| |#1| |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -4152 ((-114) |#1|)) (-15 -4400 ((-417 |#1|) |#1|)) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -3279 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -1786 ((-790) |#1|)) (-15 -3561 (|#1| (-660 |#1|))) (-15 -3561 (|#1| |#1| |#1|)) (-15 -2271 ((-114) |#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -2273 ((-2 (|:| -1979 |#1|) (|:| -4411 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3885 ((-3 |#1| "failed") |#1| |#1|))) (-376)) (T -375)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-376) (-142)) (T -376)) -((-4379 (*1 *1 *1 *1) (-4 *1 (-376)))) -(-13 (-319) (-1243) (-250) (-10 -8 (-15 -4379 ($ $ $)) (-6 -4423) (-6 -4417))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-1900 ((|#1| $ |#1|) 35 T ELT)) (-1904 (($ $ (-1180)) 23 T ELT)) (-4049 (((-3 |#1| "failed") $) 34 T ELT)) (-1901 ((|#1| $) 32 T ELT)) (-1905 (($ (-402)) 22 T ELT) (($ (-402) (-1180)) 21 T ELT)) (-3970 (((-402) $) 25 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1902 (((-1180) $) 26 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 20 T ELT)) (-1903 (($ $) 24 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 19 T ELT))) -(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -4049 ((-3 |#1| "failed") $)))) (-1122)) (T -377)) -((-4049 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1122))))) -((-2967 (((-114) $ $) 7 T ELT)) (-1900 ((|#2| $ |#2|) 17 T ELT)) (-1904 (($ $ (-1180)) 22 T ELT)) (-1901 ((|#2| $) 18 T ELT)) (-1905 (($ |#1|) 24 T ELT) (($ |#1| (-1180)) 23 T ELT)) (-3970 ((|#1| $) 20 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1902 (((-1180) $) 19 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1903 (($ $) 21 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-378 |#1| |#2|) (-142) (-1122) (-1122)) (T -378)) -((-1905 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-1905 (*1 *1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1122)) (-4 *4 (-1122)))) (-1904 (*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-1903 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-1902 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-1180)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-1900 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -1905 ($ |t#1|)) (-15 -1905 ($ |t#1| (-1180))) (-15 -1904 ($ $ (-1180))) (-15 -1903 ($ $)) (-15 -3970 (|t#1| $)) (-15 -1902 ((-1180) $)) (-15 -1901 (|t#2| $)) (-15 -1900 (|t#2| $ |t#2|)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-3641 (((-1288 (-709 |#2|)) (-1288 $)) 67 T ELT)) (-1996 (((-709 |#2|) (-1288 $)) 139 T ELT)) (-1930 ((|#2| $) 36 T ELT)) (-1994 (((-709 |#2|) $ (-1288 $)) 142 T ELT)) (-2635 (((-3 $ #1="failed") $) 89 T ELT)) (-1928 ((|#2| $) 39 T ELT)) (-1908 (((-1192 |#2|) $) 98 T ELT)) (-1998 ((|#2| (-1288 $)) 122 T ELT)) (-1926 (((-1192 |#2|) $) 32 T ELT)) (-1920 (((-114)) 116 T ELT)) (-2000 (($ (-1288 |#2|) (-1288 $)) 132 T ELT)) (-3887 (((-3 $ #1#) $) 93 T ELT)) (-1913 (((-114)) 111 T ELT)) (-1911 (((-114)) 106 T ELT)) (-1915 (((-114)) 58 T ELT)) (-1997 (((-709 |#2|) (-1288 $)) 137 T ELT)) (-1931 ((|#2| $) 35 T ELT)) (-1995 (((-709 |#2|) $ (-1288 $)) 141 T ELT)) (-2636 (((-3 $ #1#) $) 87 T ELT)) (-1929 ((|#2| $) 38 T ELT)) (-1909 (((-1192 |#2|) $) 97 T ELT)) (-1999 ((|#2| (-1288 $)) 120 T ELT)) (-1927 (((-1192 |#2|) $) 30 T ELT)) (-1921 (((-114)) 115 T ELT)) (-1912 (((-114)) 108 T ELT)) (-1914 (((-114)) 56 T ELT)) (-1916 (((-114)) 103 T ELT)) (-1919 (((-114)) 117 T ELT)) (-3642 (((-1288 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) (-1288 $) (-1288 $)) 128 T ELT)) (-1925 (((-114)) 113 T ELT)) (-1910 (((-661 (-1288 |#2|))) 102 T ELT)) (-1923 (((-114)) 114 T ELT)) (-1924 (((-114)) 112 T ELT)) (-1922 (((-114)) 51 T ELT)) (-1918 (((-114)) 118 T ELT))) -(((-379 |#1| |#2|) (-10 -7 (-15 -1908 ((-1192 |#2|) |#1|)) (-15 -1909 ((-1192 |#2|) |#1|)) (-15 -1910 ((-661 (-1288 |#2|)))) (-15 -2635 ((-3 |#1| #1="failed") |#1|)) (-15 -2636 ((-3 |#1| #1#) |#1|)) (-15 -3887 ((-3 |#1| #1#) |#1|)) (-15 -1911 ((-114))) (-15 -1912 ((-114))) (-15 -1913 ((-114))) (-15 -1914 ((-114))) (-15 -1915 ((-114))) (-15 -1916 ((-114))) (-15 -1918 ((-114))) (-15 -1919 ((-114))) (-15 -1920 ((-114))) (-15 -1921 ((-114))) (-15 -1922 ((-114))) (-15 -1923 ((-114))) (-15 -1924 ((-114))) (-15 -1925 ((-114))) (-15 -1926 ((-1192 |#2|) |#1|)) (-15 -1927 ((-1192 |#2|) |#1|)) (-15 -1996 ((-709 |#2|) (-1288 |#1|))) (-15 -1997 ((-709 |#2|) (-1288 |#1|))) (-15 -1998 (|#2| (-1288 |#1|))) (-15 -1999 (|#2| (-1288 |#1|))) (-15 -2000 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1928 (|#2| |#1|)) (-15 -1929 (|#2| |#1|)) (-15 -1930 (|#2| |#1|)) (-15 -1931 (|#2| |#1|)) (-15 -1994 ((-709 |#2|) |#1| (-1288 |#1|))) (-15 -1995 ((-709 |#2|) |#1| (-1288 |#1|))) (-15 -3641 ((-1288 (-709 |#2|)) (-1288 |#1|)))) (-380 |#2|) (-175)) (T -379)) -((-1925 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1924 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1923 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1921 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1920 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1919 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1918 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1916 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1915 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1914 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1913 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1912 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1911 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1910 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-661 (-1288 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1980 (((-3 $ "failed")) 47 (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3641 (((-1288 (-709 |#1|)) (-1288 $)) 88 T ELT)) (-1932 (((-1288 $)) 91 T ELT)) (-4154 (($) 22 T CONST)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) "failed")) 50 (|has| |#1| (-569)) ELT)) (-1906 (((-3 $ "failed")) 48 (|has| |#1| (-569)) ELT)) (-1996 (((-709 |#1|) (-1288 $)) 75 T ELT)) (-1930 ((|#1| $) 84 T ELT)) (-1994 (((-709 |#1|) $ (-1288 $)) 86 T ELT)) (-2635 (((-3 $ "failed") $) 55 (|has| |#1| (-569)) ELT)) (-2638 (($ $ (-938)) 36 T ELT)) (-1928 ((|#1| $) 82 T ELT)) (-1908 (((-1192 |#1|) $) 52 (|has| |#1| (-569)) ELT)) (-1998 ((|#1| (-1288 $)) 77 T ELT)) (-1926 (((-1192 |#1|) $) 73 T ELT)) (-1920 (((-114)) 67 T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) 79 T ELT)) (-3887 (((-3 $ "failed") $) 57 (|has| |#1| (-569)) ELT)) (-3511 (((-938)) 90 T ELT)) (-1917 (((-114)) 64 T ELT)) (-2662 (($ $ (-938)) 43 T ELT)) (-1913 (((-114)) 60 T ELT)) (-1911 (((-114)) 58 T ELT)) (-1915 (((-114)) 62 T ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) "failed")) 51 (|has| |#1| (-569)) ELT)) (-1907 (((-3 $ "failed")) 49 (|has| |#1| (-569)) ELT)) (-1997 (((-709 |#1|) (-1288 $)) 76 T ELT)) (-1931 ((|#1| $) 85 T ELT)) (-1995 (((-709 |#1|) $ (-1288 $)) 87 T ELT)) (-2636 (((-3 $ "failed") $) 56 (|has| |#1| (-569)) ELT)) (-2637 (($ $ (-938)) 37 T ELT)) (-1929 ((|#1| $) 83 T ELT)) (-1909 (((-1192 |#1|) $) 53 (|has| |#1| (-569)) ELT)) (-1999 ((|#1| (-1288 $)) 78 T ELT)) (-1927 (((-1192 |#1|) $) 74 T ELT)) (-1921 (((-114)) 68 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1912 (((-114)) 59 T ELT)) (-1914 (((-114)) 61 T ELT)) (-1916 (((-114)) 63 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1919 (((-114)) 66 T ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 81 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) 80 T ELT)) (-2103 (((-661 (-965 |#1|)) (-1288 $)) 89 T ELT)) (-2824 (($ $ $) 33 T ELT)) (-1925 (((-114)) 72 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-1910 (((-661 (-1288 |#1|))) 54 (|has| |#1| (-569)) ELT)) (-2825 (($ $ $ $) 34 T ELT)) (-1923 (((-114)) 70 T ELT)) (-2823 (($ $ $) 32 T ELT)) (-1924 (((-114)) 71 T ELT)) (-1922 (((-114)) 69 T ELT)) (-1918 (((-114)) 65 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 38 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +((-4378 (*1 *1 *1 *1) (-4 *1 (-376)))) +(-13 (-319) (-1242) (-250) (-10 -8 (-15 -4378 ($ $ $)) (-6 -4422) (-6 -4416))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-1899 ((|#1| $ |#1|) 35 T ELT)) (-1903 (($ $ (-1179)) 23 T ELT)) (-4048 (((-3 |#1| "failed") $) 34 T ELT)) (-1900 ((|#1| $) 32 T ELT)) (-1904 (($ (-402)) 22 T ELT) (($ (-402) (-1179)) 21 T ELT)) (-3969 (((-402) $) 25 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1901 (((-1179) $) 26 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 20 T ELT)) (-1902 (($ $) 24 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 19 T ELT))) +(((-377 |#1|) (-13 (-378 (-402) |#1|) (-10 -8 (-15 -4048 ((-3 |#1| "failed") $)))) (-1121)) (T -377)) +((-4048 (*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1121))))) +((-2966 (((-114) $ $) 7 T ELT)) (-1899 ((|#2| $ |#2|) 17 T ELT)) (-1903 (($ $ (-1179)) 22 T ELT)) (-1900 ((|#2| $) 18 T ELT)) (-1904 (($ |#1|) 24 T ELT) (($ |#1| (-1179)) 23 T ELT)) (-3969 ((|#1| $) 20 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1901 (((-1179) $) 19 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1902 (($ $) 21 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-378 |#1| |#2|) (-142) (-1121) (-1121)) (T -378)) +((-1904 (*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-1904 (*1 *1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) (-1903 (*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-1902 (*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1901 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-1179)))) (-1900 (*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-1899 (*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -1904 ($ |t#1|)) (-15 -1904 ($ |t#1| (-1179))) (-15 -1903 ($ $ (-1179))) (-15 -1902 ($ $)) (-15 -3969 (|t#1| $)) (-15 -1901 ((-1179) $)) (-15 -1900 (|t#2| $)) (-15 -1899 (|t#2| $ |t#2|)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-3640 (((-1287 (-708 |#2|)) (-1287 $)) 67 T ELT)) (-1995 (((-708 |#2|) (-1287 $)) 139 T ELT)) (-1929 ((|#2| $) 36 T ELT)) (-1993 (((-708 |#2|) $ (-1287 $)) 142 T ELT)) (-2634 (((-3 $ #1="failed") $) 89 T ELT)) (-1927 ((|#2| $) 39 T ELT)) (-1907 (((-1191 |#2|) $) 98 T ELT)) (-1997 ((|#2| (-1287 $)) 122 T ELT)) (-1925 (((-1191 |#2|) $) 32 T ELT)) (-1919 (((-114)) 116 T ELT)) (-1999 (($ (-1287 |#2|) (-1287 $)) 132 T ELT)) (-3886 (((-3 $ #1#) $) 93 T ELT)) (-1912 (((-114)) 111 T ELT)) (-1910 (((-114)) 106 T ELT)) (-1914 (((-114)) 58 T ELT)) (-1996 (((-708 |#2|) (-1287 $)) 137 T ELT)) (-1930 ((|#2| $) 35 T ELT)) (-1994 (((-708 |#2|) $ (-1287 $)) 141 T ELT)) (-2635 (((-3 $ #1#) $) 87 T ELT)) (-1928 ((|#2| $) 38 T ELT)) (-1908 (((-1191 |#2|) $) 97 T ELT)) (-1998 ((|#2| (-1287 $)) 120 T ELT)) (-1926 (((-1191 |#2|) $) 30 T ELT)) (-1920 (((-114)) 115 T ELT)) (-1911 (((-114)) 108 T ELT)) (-1913 (((-114)) 56 T ELT)) (-1915 (((-114)) 103 T ELT)) (-1918 (((-114)) 117 T ELT)) (-3641 (((-1287 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) (-1287 $) (-1287 $)) 128 T ELT)) (-1924 (((-114)) 113 T ELT)) (-1909 (((-660 (-1287 |#2|))) 102 T ELT)) (-1922 (((-114)) 114 T ELT)) (-1923 (((-114)) 112 T ELT)) (-1921 (((-114)) 51 T ELT)) (-1917 (((-114)) 118 T ELT))) +(((-379 |#1| |#2|) (-10 -7 (-15 -1907 ((-1191 |#2|) |#1|)) (-15 -1908 ((-1191 |#2|) |#1|)) (-15 -1909 ((-660 (-1287 |#2|)))) (-15 -2634 ((-3 |#1| #1="failed") |#1|)) (-15 -2635 ((-3 |#1| #1#) |#1|)) (-15 -3886 ((-3 |#1| #1#) |#1|)) (-15 -1910 ((-114))) (-15 -1911 ((-114))) (-15 -1912 ((-114))) (-15 -1913 ((-114))) (-15 -1914 ((-114))) (-15 -1915 ((-114))) (-15 -1917 ((-114))) (-15 -1918 ((-114))) (-15 -1919 ((-114))) (-15 -1920 ((-114))) (-15 -1921 ((-114))) (-15 -1922 ((-114))) (-15 -1923 ((-114))) (-15 -1924 ((-114))) (-15 -1925 ((-1191 |#2|) |#1|)) (-15 -1926 ((-1191 |#2|) |#1|)) (-15 -1995 ((-708 |#2|) (-1287 |#1|))) (-15 -1996 ((-708 |#2|) (-1287 |#1|))) (-15 -1997 (|#2| (-1287 |#1|))) (-15 -1998 (|#2| (-1287 |#1|))) (-15 -1999 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -1927 (|#2| |#1|)) (-15 -1928 (|#2| |#1|)) (-15 -1929 (|#2| |#1|)) (-15 -1930 (|#2| |#1|)) (-15 -1993 ((-708 |#2|) |#1| (-1287 |#1|))) (-15 -1994 ((-708 |#2|) |#1| (-1287 |#1|))) (-15 -3640 ((-1287 (-708 |#2|)) (-1287 |#1|)))) (-380 |#2|) (-175)) (T -379)) +((-1924 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1923 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1922 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1921 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1920 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1919 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1918 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1917 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1915 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1914 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1913 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1912 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1911 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1910 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) (-1909 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-660 (-1287 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1979 (((-3 $ "failed")) 47 (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3640 (((-1287 (-708 |#1|)) (-1287 $)) 88 T ELT)) (-1931 (((-1287 $)) 91 T ELT)) (-4153 (($) 22 T CONST)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) "failed")) 50 (|has| |#1| (-569)) ELT)) (-1905 (((-3 $ "failed")) 48 (|has| |#1| (-569)) ELT)) (-1995 (((-708 |#1|) (-1287 $)) 75 T ELT)) (-1929 ((|#1| $) 84 T ELT)) (-1993 (((-708 |#1|) $ (-1287 $)) 86 T ELT)) (-2634 (((-3 $ "failed") $) 55 (|has| |#1| (-569)) ELT)) (-2637 (($ $ (-937)) 36 T ELT)) (-1927 ((|#1| $) 82 T ELT)) (-1907 (((-1191 |#1|) $) 52 (|has| |#1| (-569)) ELT)) (-1997 ((|#1| (-1287 $)) 77 T ELT)) (-1925 (((-1191 |#1|) $) 73 T ELT)) (-1919 (((-114)) 67 T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) 79 T ELT)) (-3886 (((-3 $ "failed") $) 57 (|has| |#1| (-569)) ELT)) (-3510 (((-937)) 90 T ELT)) (-1916 (((-114)) 64 T ELT)) (-2661 (($ $ (-937)) 43 T ELT)) (-1912 (((-114)) 60 T ELT)) (-1910 (((-114)) 58 T ELT)) (-1914 (((-114)) 62 T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) "failed")) 51 (|has| |#1| (-569)) ELT)) (-1906 (((-3 $ "failed")) 49 (|has| |#1| (-569)) ELT)) (-1996 (((-708 |#1|) (-1287 $)) 76 T ELT)) (-1930 ((|#1| $) 85 T ELT)) (-1994 (((-708 |#1|) $ (-1287 $)) 87 T ELT)) (-2635 (((-3 $ "failed") $) 56 (|has| |#1| (-569)) ELT)) (-2636 (($ $ (-937)) 37 T ELT)) (-1928 ((|#1| $) 83 T ELT)) (-1908 (((-1191 |#1|) $) 53 (|has| |#1| (-569)) ELT)) (-1998 ((|#1| (-1287 $)) 78 T ELT)) (-1926 (((-1191 |#1|) $) 74 T ELT)) (-1920 (((-114)) 68 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1911 (((-114)) 59 T ELT)) (-1913 (((-114)) 61 T ELT)) (-1915 (((-114)) 63 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1918 (((-114)) 66 T ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 81 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) 80 T ELT)) (-2102 (((-660 (-964 |#1|)) (-1287 $)) 89 T ELT)) (-2823 (($ $ $) 33 T ELT)) (-1924 (((-114)) 72 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-1909 (((-660 (-1287 |#1|))) 54 (|has| |#1| (-569)) ELT)) (-2824 (($ $ $ $) 34 T ELT)) (-1922 (((-114)) 70 T ELT)) (-2822 (($ $ $) 32 T ELT)) (-1923 (((-114)) 71 T ELT)) (-1921 (((-114)) 69 T ELT)) (-1917 (((-114)) 65 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 38 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) (((-380 |#1|) (-142) (-175)) (T -380)) -((-1932 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1288 *1)) (-4 *1 (-380 *3)))) (-3511 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-938)))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-661 (-965 *4))))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1288 (-709 *4))))) (-1995 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-1994 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-1931 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3642 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1288 *4)))) (-3642 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-2000 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-1999 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1192 *3)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1192 *3)))) (-1925 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1924 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1923 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1922 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1921 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1920 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1919 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1918 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1917 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1916 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1915 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1914 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1913 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1912 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1911 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3887 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-2636 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-2635 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-1910 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-661 (-1288 *3))))) (-1909 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1192 *3)))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1192 *3)))) (-2118 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2222 (-661 *1)))) (-4 *1 (-380 *3)))) (-2117 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2222 (-661 *1)))) (-4 *1 (-380 *3)))) (-1907 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) (-1906 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) (-1980 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) -(-13 (-764 |t#1|) (-10 -8 (-15 -1932 ((-1288 $))) (-15 -3511 ((-938))) (-15 -2103 ((-661 (-965 |t#1|)) (-1288 $))) (-15 -3641 ((-1288 (-709 |t#1|)) (-1288 $))) (-15 -1995 ((-709 |t#1|) $ (-1288 $))) (-15 -1994 ((-709 |t#1|) $ (-1288 $))) (-15 -1931 (|t#1| $)) (-15 -1930 (|t#1| $)) (-15 -1929 (|t#1| $)) (-15 -1928 (|t#1| $)) (-15 -3642 ((-1288 |t#1|) $ (-1288 $))) (-15 -3642 ((-709 |t#1|) (-1288 $) (-1288 $))) (-15 -2000 ($ (-1288 |t#1|) (-1288 $))) (-15 -1999 (|t#1| (-1288 $))) (-15 -1998 (|t#1| (-1288 $))) (-15 -1997 ((-709 |t#1|) (-1288 $))) (-15 -1996 ((-709 |t#1|) (-1288 $))) (-15 -1927 ((-1192 |t#1|) $)) (-15 -1926 ((-1192 |t#1|) $)) (-15 -1925 ((-114))) (-15 -1924 ((-114))) (-15 -1923 ((-114))) (-15 -1922 ((-114))) (-15 -1921 ((-114))) (-15 -1920 ((-114))) (-15 -1919 ((-114))) (-15 -1918 ((-114))) (-15 -1917 ((-114))) (-15 -1916 ((-114))) (-15 -1915 ((-114))) (-15 -1914 ((-114))) (-15 -1913 ((-114))) (-15 -1912 ((-114))) (-15 -1911 ((-114))) (IF (|has| |t#1| (-569)) (PROGN (-15 -3887 ((-3 $ "failed") $)) (-15 -2636 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $)) (-15 -1910 ((-661 (-1288 |t#1|)))) (-15 -1909 ((-1192 |t#1|) $)) (-15 -1908 ((-1192 |t#1|) $)) (-15 -2118 ((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) "failed"))) (-15 -2117 ((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) "failed"))) (-15 -1907 ((-3 $ "failed"))) (-15 -1906 ((-3 $ "failed"))) (-15 -1980 ((-3 $ "failed"))) (-6 -4422)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-740) . T) ((-764 |#1|) . T) ((-781) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3538 (((-791)) 20 T ELT)) (-3395 (($) 17 T ELT)) (-2220 (((-938) $) 18 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2631 (($ (-938)) 19 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +((-1931 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1287 *1)) (-4 *1 (-380 *3)))) (-3510 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-937)))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-660 (-964 *4))))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1287 (-708 *4))))) (-1994 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) (-1993 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) (-1930 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1929 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1928 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1927 (*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-3641 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1287 *4)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) (-1999 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) (-1998 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1997 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) (-1996 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) (-1995 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) (-1926 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1191 *3)))) (-1925 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1191 *3)))) (-1924 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1923 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1922 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1921 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1920 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1919 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1918 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1917 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1916 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1915 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1914 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1913 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1912 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1911 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-1910 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114)))) (-3886 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-2635 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-2634 (*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) (-1909 (*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-660 (-1287 *3))))) (-1908 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1191 *3)))) (-1907 (*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1191 *3)))) (-2117 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2221 (-660 *1)))) (-4 *1 (-380 *3)))) (-2116 (*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-5 *2 (-2 (|:| |particular| *1) (|:| -2221 (-660 *1)))) (-4 *1 (-380 *3)))) (-1906 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) (-1905 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) (-1979 (*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) +(-13 (-763 |t#1|) (-10 -8 (-15 -1931 ((-1287 $))) (-15 -3510 ((-937))) (-15 -2102 ((-660 (-964 |t#1|)) (-1287 $))) (-15 -3640 ((-1287 (-708 |t#1|)) (-1287 $))) (-15 -1994 ((-708 |t#1|) $ (-1287 $))) (-15 -1993 ((-708 |t#1|) $ (-1287 $))) (-15 -1930 (|t#1| $)) (-15 -1929 (|t#1| $)) (-15 -1928 (|t#1| $)) (-15 -1927 (|t#1| $)) (-15 -3641 ((-1287 |t#1|) $ (-1287 $))) (-15 -3641 ((-708 |t#1|) (-1287 $) (-1287 $))) (-15 -1999 ($ (-1287 |t#1|) (-1287 $))) (-15 -1998 (|t#1| (-1287 $))) (-15 -1997 (|t#1| (-1287 $))) (-15 -1996 ((-708 |t#1|) (-1287 $))) (-15 -1995 ((-708 |t#1|) (-1287 $))) (-15 -1926 ((-1191 |t#1|) $)) (-15 -1925 ((-1191 |t#1|) $)) (-15 -1924 ((-114))) (-15 -1923 ((-114))) (-15 -1922 ((-114))) (-15 -1921 ((-114))) (-15 -1920 ((-114))) (-15 -1919 ((-114))) (-15 -1918 ((-114))) (-15 -1917 ((-114))) (-15 -1916 ((-114))) (-15 -1915 ((-114))) (-15 -1914 ((-114))) (-15 -1913 ((-114))) (-15 -1912 ((-114))) (-15 -1911 ((-114))) (-15 -1910 ((-114))) (IF (|has| |t#1| (-569)) (PROGN (-15 -3886 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $)) (-15 -2634 ((-3 $ "failed") $)) (-15 -1909 ((-660 (-1287 |t#1|)))) (-15 -1908 ((-1191 |t#1|) $)) (-15 -1907 ((-1191 |t#1|) $)) (-15 -2117 ((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) "failed"))) (-15 -2116 ((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) "failed"))) (-15 -1906 ((-3 $ "failed"))) (-15 -1905 ((-3 $ "failed"))) (-15 -1979 ((-3 $ "failed"))) (-6 -4421)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-739) . T) ((-763 |#1|) . T) ((-780) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3537 (((-790)) 20 T ELT)) (-3394 (($) 17 T ELT)) (-2219 (((-937) $) 18 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2630 (($ (-937)) 19 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-381) (-142)) (T -381)) -((-3538 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-791)))) (-2631 (*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-381)))) (-2220 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-938)))) (-3395 (*1 *1) (-4 *1 (-381)))) -(-13 (-1122) (-10 -8 (-15 -3538 ((-791))) (-15 -2631 ($ (-938))) (-15 -2220 ((-938) $)) (-15 -3395 ($)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-1990 (((-709 |#2|) (-1288 $)) 45 T ELT)) (-2000 (($ (-1288 |#2|) (-1288 $)) 39 T ELT)) (-1989 (((-709 |#2|) $ (-1288 $)) 47 T ELT)) (-4187 ((|#2| (-1288 $)) 13 T ELT)) (-3642 (((-1288 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) (-1288 $) (-1288 $)) 27 T ELT))) -(((-382 |#1| |#2| |#3|) (-10 -7 (-15 -1990 ((-709 |#2|) (-1288 |#1|))) (-15 -4187 (|#2| (-1288 |#1|))) (-15 -2000 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1989 ((-709 |#2|) |#1| (-1288 |#1|)))) (-383 |#2| |#3|) (-175) (-1264 |#2|)) (T -382)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1990 (((-709 |#1|) (-1288 $)) 58 T ELT)) (-3750 ((|#1| $) 64 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2000 (($ (-1288 |#1|) (-1288 $)) 60 T ELT)) (-1989 (((-709 |#1|) $ (-1288 $)) 65 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3511 (((-938)) 66 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3534 ((|#1| $) 63 T ELT)) (-2224 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4187 ((|#1| (-1288 $)) 59 T ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 62 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) 61 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3103 (((-711 $) $) 55 (|has| |#1| (-147)) ELT)) (-2838 ((|#2| $) 57 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-383 |#1| |#2|) (-142) (-175) (-1264 |t#1|)) (T -383)) -((-3511 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-938)))) (-1989 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-175)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-175)))) (-3642 (*1 *2 *1 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) (-3642 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) (-2000 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1264 *4)))) (-4187 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1264 *2)) (-4 *2 (-175)))) (-1990 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) (-2838 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1264 *3)))) (-2224 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1264 *3))))) -(-13 (-38 |t#1|) (-10 -8 (-15 -3511 ((-938))) (-15 -1989 ((-709 |t#1|) $ (-1288 $))) (-15 -3750 (|t#1| $)) (-15 -3534 (|t#1| $)) (-15 -3642 ((-1288 |t#1|) $ (-1288 $))) (-15 -3642 ((-709 |t#1|) (-1288 $) (-1288 $))) (-15 -2000 ($ (-1288 |t#1|) (-1288 $))) (-15 -4187 (|t#1| (-1288 $))) (-15 -1990 ((-709 |t#1|) (-1288 $))) (-15 -2838 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -2224 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-1935 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-1933 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3310 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2511 (($ $) 25 T ELT)) (-3839 (((-558) (-1 (-114) |#2|) $) NIL T ELT) (((-558) |#2| $) 11 T ELT) (((-558) |#2| $ (-558)) NIL T ELT)) (-3938 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) -(((-384 |#1| |#2|) (-10 -7 (-15 -1933 (|#1| |#1|)) (-15 -1933 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1935 ((-114) |#1|)) (-15 -3310 (|#1| |#1|)) (-15 -3938 (|#1| |#1| |#1|)) (-15 -3839 ((-558) |#2| |#1| (-558))) (-15 -3839 ((-558) |#2| |#1|)) (-15 -3839 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1935 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3310 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2511 (|#1| |#1|)) (-15 -3938 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1238)) (T -384)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4426)) ELT) (($ $) 97 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4426))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2510 (($ $) 99 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 109 T ELT)) (-1467 (($ $) 84 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 83 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 55 T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 91 (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 92 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2414 (($ $ |#1|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1934 (($ $ $ (-558)) 100 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 76 T ELT)) (-4232 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 93 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 95 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) 94 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 96 (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-385 |#1|) (-142) (-1238)) (T -385)) -((-3938 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1238)))) (-2511 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1238)))) (-3310 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1238)))) (-1935 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) (-3839 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1238)) (-5 *2 (-558)))) (-3839 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-558)))) (-3839 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-385 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-3310 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) (-1935 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-114)))) (-1934 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4426)) (-4 *1 (-385 *3)) (-4 *3 (-1238)))) (-2510 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-385 *2)) (-4 *2 (-1238)))) (-1933 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-385 *3)) (-4 *3 (-1238)))) (-1933 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-385 *2)) (-4 *2 (-1238)) (-4 *2 (-861))))) -(-13 (-671 |t#1|) (-10 -8 (-6 -4425) (-15 -3938 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -2511 ($ $)) (-15 -3310 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -1935 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -3839 ((-558) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3839 ((-558) |t#1| $)) (-15 -3839 ((-558) |t#1| $ (-558)))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-6 (-861)) (-15 -3938 ($ $ $)) (-15 -3310 ($ $)) (-15 -1935 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -1934 ($ $ $ (-558))) (-15 -2510 ($ $)) (-15 -1933 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-15 -1933 ($ $)) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1122) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861))) ((-1238) . T)) -((-4271 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-4272 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4388 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) -(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4272 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4271 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1238) (-385 |#1|) (-1238) (-385 |#3|)) (T -386)) -((-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4364 (((-661 |#1|) $) 42 T ELT)) (-4377 (($ $ (-791)) 43 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-4369 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 46 T ELT)) (-4366 (($ $) 44 T ELT)) (-4370 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 47 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4198 (($ $ |#1| $) 41 T ELT) (($ $ (-661 |#1|) (-661 $)) 40 T ELT)) (-4378 (((-791) $) 48 T ELT)) (-3950 (($ $ $) 39 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1304 |#1| |#2|) $) 50 T ELT) (((-1313 |#1| |#2|) $) 49 T ELT)) (-4384 ((|#2| (-1313 |#1| |#2|) $) 52 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-1936 (($ (-692 |#1|)) 45 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#2|) 38 (|has| |#2| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) -(((-387 |#1| |#2|) (-142) (-861) (-175)) (T -387)) -((-4384 (*1 *2 *3 *1) (-12 (-5 *3 (-1313 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-861)) (-4 *2 (-175)))) (-4376 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-861)) (-4 *3 (-175)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *2 (-1304 *3 *4)))) (-4376 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *2 (-1313 *3 *4)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *2 (-791)))) (-4370 (*1 *2 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-4369 (*1 *2 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-1936 (*1 *1 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-861)) (-4 *3 (-175)))) (-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *2 (-661 *3)))) (-4198 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-861)) (-4 *3 (-175)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-861)) (-4 *5 (-175))))) -(-13 (-652 |t#2|) (-10 -8 (-15 -4384 (|t#2| (-1313 |t#1| |t#2|) $)) (-15 -4376 ($ |t#1|)) (-15 -4376 ((-1304 |t#1| |t#2|) $)) (-15 -4376 ((-1313 |t#1| |t#2|) $)) (-15 -4378 ((-791) $)) (-15 -4370 ((-1313 |t#1| |t#2|) (-1313 |t#1| |t#2|) $)) (-15 -4369 ((-1313 |t#1| |t#2|) (-1313 |t#1| |t#2|) $)) (-15 -1936 ($ (-692 |t#1|))) (-15 -4366 ($ $)) (-15 -4377 ($ $ (-791))) (-15 -4364 ((-661 |t#1|) $)) (-15 -4198 ($ $ |t#1| $)) (-15 -4198 ($ $ (-661 |t#1|) (-661 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-668 |#2|) . T) ((-652 |#2|) . T) ((-660 |#2|) . T) ((-737 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1122) . T) ((-1238) . T)) -((-1939 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-1937 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-1938 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT))) -(((-388 |#1| |#2|) (-10 -7 (-15 -1937 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1938 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1939 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1238) (-13 (-385 |#1|) (-10 -7 (-6 -4426)))) (T -388)) -((-1939 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426)))))) (-1938 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426)))))) (-1937 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426))))))) -((-2493 (((-709 |#2|) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 22 T ELT) (((-709 (-558)) (-709 $)) 14 T ELT))) -(((-389 |#1| |#2|) (-10 -7 (-15 -2493 ((-709 (-558)) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-709 |#2|) (-709 |#1|)))) (-390 |#2|) (-1070)) (T -389)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2493 (((-709 |#1|) (-709 $)) 35 T ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 34 T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 46 (|has| |#1| (-658 (-558))) ELT) (((-709 (-558)) (-709 $)) 45 (|has| |#1| (-658 (-558))) ELT)) (-2494 (((-709 |#1|) (-1288 $)) 37 T ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 36 T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 44 (|has| |#1| (-658 (-558))) ELT) (((-709 (-558)) (-1288 $)) 43 (|has| |#1| (-658 (-558))) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-390 |#1|) (-142) (-1070)) (T -390)) -NIL -(-13 (-658 |t#1|) (-10 -7 (IF (|has| |t#1| (-658 (-558))) (-6 (-658 (-558))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 16 T ELT)) (-3531 (((-558) $) 44 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4201 (($ $) 120 T ELT)) (-3912 (($ $) 81 T ELT)) (-4069 (($ $) 72 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3438 (($ $) 28 T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3910 (($ $) 79 T ELT)) (-4068 (($ $) 67 T ELT)) (-4053 (((-558) $) 60 T ELT)) (-2830 (($ $ (-558)) 55 T ELT)) (-3914 (($ $) NIL T ELT)) (-4067 (($ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3529 (($ $) 122 T ELT)) (-3575 (((-3 (-558) #1#) $) 217 T ELT) (((-3 (-419 (-558)) #1#) $) 213 T ELT)) (-3574 (((-558) $) 215 T ELT) (((-419 (-558)) $) 211 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-1948 (((-558) $ $) 110 T ELT)) (-3887 (((-3 $ #1#) $) 125 T ELT)) (-1947 (((-419 (-558)) $ (-791)) 218 T ELT) (((-419 (-558)) $ (-791) (-791)) 210 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2605 (((-938)) 106 T ELT) (((-938) (-938)) 107 (|has| $ (-6 -4416)) ELT)) (-3604 (((-114) $) 38 T ELT)) (-4057 (($) 22 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL T ELT)) (-1940 (((-1294) (-791)) 177 T ELT)) (-1941 (((-1294)) 182 T ELT) (((-1294) (-791)) 183 T ELT)) (-1943 (((-1294)) 184 T ELT) (((-1294) (-791)) 185 T ELT)) (-1942 (((-1294)) 180 T ELT) (((-1294) (-791)) 181 T ELT)) (-4202 (((-558) $) 50 T ELT)) (-2641 (((-114) $) 21 T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-2832 (($ $) 32 T ELT)) (-3534 (($ $) NIL T ELT)) (-3605 (((-114) $) 18 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL (-12 (-2959 (|has| $ (-6 -4408))) (-2959 (|has| $ (-6 -4416)))) ELT)) (-3258 (($ $ $) NIL T ELT) (($) NIL (-12 (-2959 (|has| $ (-6 -4408))) (-2959 (|has| $ (-6 -4416)))) ELT)) (-2606 (((-558) $) 112 T ELT)) (-1946 (($) 90 T ELT) (($ $) 97 T ELT)) (-1945 (($) 96 T ELT) (($ $) 98 T ELT)) (-4372 (($ $) 84 T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 127 T ELT)) (-1977 (((-938) (-558)) 27 (|has| $ (-6 -4416)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) 41 T ELT)) (-3532 (($ $) 119 T ELT)) (-3672 (($ (-558) (-558)) 115 T ELT) (($ (-558) (-558) (-938)) 116 T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2632 (((-558) $) 113 T ELT)) (-1944 (($) 99 T ELT)) (-4373 (($ $) 78 T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3014 (((-938)) 108 T ELT) (((-938) (-938)) 109 (|has| $ (-6 -4416)) ELT)) (-4188 (($ $) 126 T ELT) (($ $ (-791)) NIL T ELT)) (-1976 (((-938) (-558)) 31 (|has| $ (-6 -4416)) ELT)) (-3915 (($ $) NIL T ELT)) (-4066 (($ $) NIL T ELT)) (-3913 (($ $) NIL T ELT)) (-4065 (($ $) NIL T ELT)) (-3911 (($ $) 80 T ELT)) (-4064 (($ $) 71 T ELT)) (-4402 (((-391) $) 202 T ELT) (((-229) $) 204 T ELT) (((-905 (-391)) $) NIL T ELT) (((-1180) $) 188 T ELT) (((-547) $) 200 T ELT) (($ (-229)) 209 T ELT)) (-4376 (((-877) $) 192 T ELT) (($ (-558)) 214 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) 214 T ELT) (($ (-419 (-558))) NIL T ELT) (((-229) $) 205 T ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (($ $) 121 T ELT)) (-1978 (((-938)) 42 T ELT) (((-938) (-938)) 62 (|has| $ (-6 -4416)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (((-938)) 111 T ELT)) (-3918 (($ $) 87 T ELT)) (-3906 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 85 T ELT)) (-3904 (($ $) 20 T ELT)) (-3920 (($ $) NIL T ELT)) (-3908 (($ $) NIL T ELT)) (-3921 (($ $) NIL T ELT)) (-3909 (($ $) NIL T ELT)) (-3919 (($ $) NIL T ELT)) (-3907 (($ $) NIL T ELT)) (-3917 (($ $) 86 T ELT)) (-3905 (($ $) 33 T ELT)) (-3803 (($ $) 39 T ELT)) (-3059 (($) 17 T CONST)) (-3065 (($) 24 T CONST)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2965 (((-114) $ $) 189 T ELT)) (-2966 (((-114) $ $) 26 T ELT)) (-3454 (((-114) $ $) 37 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 43 T ELT)) (-4379 (($ $ $) 29 T ELT) (($ $ (-558)) 23 T ELT)) (-4267 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-4269 (($ $ $) 54 T ELT)) (** (($ $ (-938)) 65 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 91 T ELT) (($ $ (-419 (-558))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-938) $) 61 T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-391) (-13 (-416) (-240) (-631 (-1180)) (-630 (-229)) (-1224) (-631 (-547)) (-635 (-229)) (-10 -8 (-15 -4379 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2832 ($ $)) (-15 -1948 ((-558) $ $)) (-15 -2830 ($ $ (-558))) (-15 -1947 ((-419 (-558)) $ (-791))) (-15 -1947 ((-419 (-558)) $ (-791) (-791))) (-15 -1946 ($)) (-15 -1945 ($)) (-15 -1944 ($)) (-15 -3906 ($ $ $)) (-15 -1946 ($ $)) (-15 -1945 ($ $)) (-15 -1943 ((-1294))) (-15 -1943 ((-1294) (-791))) (-15 -1942 ((-1294))) (-15 -1942 ((-1294) (-791))) (-15 -1941 ((-1294))) (-15 -1941 ((-1294) (-791))) (-15 -1940 ((-1294) (-791))) (-6 -4416) (-6 -4408)))) (T -391)) -((** (*1 *1 *1 *1) (-5 *1 (-391))) (-4379 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-2832 (*1 *1 *1) (-5 *1 (-391))) (-1948 (*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-1947 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) (-1947 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) (-1946 (*1 *1) (-5 *1 (-391))) (-1945 (*1 *1) (-5 *1 (-391))) (-1944 (*1 *1) (-5 *1 (-391))) (-3906 (*1 *1 *1 *1) (-5 *1 (-391))) (-1946 (*1 *1 *1) (-5 *1 (-391))) (-1945 (*1 *1 *1) (-5 *1 (-391))) (-1943 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-391)))) (-1943 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391)))) (-1942 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-391)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391)))) (-1941 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-391)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391))))) -((-1949 (((-661 (-305 (-965 (-171 |#1|)))) (-305 (-419 (-965 (-171 (-558))))) |#1|) 51 T ELT) (((-661 (-305 (-965 (-171 |#1|)))) (-419 (-965 (-171 (-558)))) |#1|) 50 T ELT) (((-661 (-661 (-305 (-965 (-171 |#1|))))) (-661 (-305 (-419 (-965 (-171 (-558)))))) |#1|) 47 T ELT) (((-661 (-661 (-305 (-965 (-171 |#1|))))) (-661 (-419 (-965 (-171 (-558))))) |#1|) 41 T ELT)) (-1950 (((-661 (-661 (-171 |#1|))) (-661 (-419 (-965 (-171 (-558))))) (-661 (-1198)) |#1|) 30 T ELT) (((-661 (-171 |#1|)) (-419 (-965 (-171 (-558)))) |#1|) 18 T ELT))) -(((-392 |#1|) (-10 -7 (-15 -1949 ((-661 (-661 (-305 (-965 (-171 |#1|))))) (-661 (-419 (-965 (-171 (-558))))) |#1|)) (-15 -1949 ((-661 (-661 (-305 (-965 (-171 |#1|))))) (-661 (-305 (-419 (-965 (-171 (-558)))))) |#1|)) (-15 -1949 ((-661 (-305 (-965 (-171 |#1|)))) (-419 (-965 (-171 (-558)))) |#1|)) (-15 -1949 ((-661 (-305 (-965 (-171 |#1|)))) (-305 (-419 (-965 (-171 (-558))))) |#1|)) (-15 -1950 ((-661 (-171 |#1|)) (-419 (-965 (-171 (-558)))) |#1|)) (-15 -1950 ((-661 (-661 (-171 |#1|))) (-661 (-419 (-965 (-171 (-558))))) (-661 (-1198)) |#1|))) (-13 (-376) (-860))) (T -392)) -((-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-419 (-965 (-171 (-558)))))) (-5 *4 (-661 (-1198))) (-5 *2 (-661 (-661 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-860))))) (-1950 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 (-171 (-558))))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-860))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-965 (-171 (-558)))))) (-5 *2 (-661 (-305 (-965 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-860))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 (-171 (-558))))) (-5 *2 (-661 (-305 (-965 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-860))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-305 (-419 (-965 (-171 (-558))))))) (-5 *2 (-661 (-661 (-305 (-965 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-860))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-965 (-171 (-558)))))) (-5 *2 (-661 (-661 (-305 (-965 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-860)))))) -((-4001 (((-661 (-305 (-965 |#1|))) (-305 (-419 (-965 (-558)))) |#1|) 46 T ELT) (((-661 (-305 (-965 |#1|))) (-419 (-965 (-558))) |#1|) 45 T ELT) (((-661 (-661 (-305 (-965 |#1|)))) (-661 (-305 (-419 (-965 (-558))))) |#1|) 42 T ELT) (((-661 (-661 (-305 (-965 |#1|)))) (-661 (-419 (-965 (-558)))) |#1|) 36 T ELT)) (-1951 (((-661 |#1|) (-419 (-965 (-558))) |#1|) 20 T ELT) (((-661 (-661 |#1|)) (-661 (-419 (-965 (-558)))) (-661 (-1198)) |#1|) 30 T ELT))) -(((-393 |#1|) (-10 -7 (-15 -4001 ((-661 (-661 (-305 (-965 |#1|)))) (-661 (-419 (-965 (-558)))) |#1|)) (-15 -4001 ((-661 (-661 (-305 (-965 |#1|)))) (-661 (-305 (-419 (-965 (-558))))) |#1|)) (-15 -4001 ((-661 (-305 (-965 |#1|))) (-419 (-965 (-558))) |#1|)) (-15 -4001 ((-661 (-305 (-965 |#1|))) (-305 (-419 (-965 (-558)))) |#1|)) (-15 -1951 ((-661 (-661 |#1|)) (-661 (-419 (-965 (-558)))) (-661 (-1198)) |#1|)) (-15 -1951 ((-661 |#1|) (-419 (-965 (-558))) |#1|))) (-13 (-860) (-376))) (T -393)) -((-1951 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376))))) (-1951 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-419 (-965 (-558))))) (-5 *4 (-661 (-1198))) (-5 *2 (-661 (-661 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-860) (-376))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-965 (-558))))) (-5 *2 (-661 (-305 (-965 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 (-558)))) (-5 *2 (-661 (-305 (-965 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-305 (-419 (-965 (-558)))))) (-5 *2 (-661 (-661 (-305 (-965 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-965 (-558))))) (-5 *2 (-661 (-661 (-305 (-965 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) NIL T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3294 (($ |#1| |#2|) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2195 ((|#2| $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 33 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 12 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) -(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-737 |#1|)) |%noBranch|))) (-1070) (-864)) (T -394)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) 29 T ELT)) (-3574 ((|#2| $) 31 T ELT)) (-4389 (($ $) NIL T ELT)) (-2649 (((-791) $) 11 T ELT)) (-3222 (((-661 $) $) 23 T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ |#2| |#1|) 21 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1952 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3295 ((|#2| $) 18 T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-4247 (((-661 |#1|) $) 20 T ELT)) (-4107 ((|#1| $ |#2|) 54 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 32 T CONST)) (-3064 (((-661 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) -(((-395 |#1| |#2|) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1070) (-861)) (T -395)) -((* (*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861))))) -((-3800 (((-1294) $) 7 T ELT)) (-4376 (((-877) $) 8 T ELT) (($ (-709 (-719))) 14 T ELT) (($ (-661 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 11 T ELT))) +((-3537 (*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-790)))) (-2630 (*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-381)))) (-2219 (*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-937)))) (-3394 (*1 *1) (-4 *1 (-381)))) +(-13 (-1121) (-10 -8 (-15 -3537 ((-790))) (-15 -2630 ($ (-937))) (-15 -2219 ((-937) $)) (-15 -3394 ($)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-1989 (((-708 |#2|) (-1287 $)) 45 T ELT)) (-1999 (($ (-1287 |#2|) (-1287 $)) 39 T ELT)) (-1988 (((-708 |#2|) $ (-1287 $)) 47 T ELT)) (-4186 ((|#2| (-1287 $)) 13 T ELT)) (-3641 (((-1287 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) (-1287 $) (-1287 $)) 27 T ELT))) +(((-382 |#1| |#2| |#3|) (-10 -7 (-15 -1989 ((-708 |#2|) (-1287 |#1|))) (-15 -4186 (|#2| (-1287 |#1|))) (-15 -1999 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -1988 ((-708 |#2|) |#1| (-1287 |#1|)))) (-383 |#2| |#3|) (-175) (-1263 |#2|)) (T -382)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1989 (((-708 |#1|) (-1287 $)) 58 T ELT)) (-3749 ((|#1| $) 64 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-1999 (($ (-1287 |#1|) (-1287 $)) 60 T ELT)) (-1988 (((-708 |#1|) $ (-1287 $)) 65 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3510 (((-937)) 66 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3533 ((|#1| $) 63 T ELT)) (-2223 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4186 ((|#1| (-1287 $)) 59 T ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 62 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) 61 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3102 (((-710 $) $) 55 (|has| |#1| (-147)) ELT)) (-2837 ((|#2| $) 57 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-383 |#1| |#2|) (-142) (-175) (-1263 |t#1|)) (T -383)) +((-3510 (*1 *2) (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-937)))) (-1988 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-175)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-175)))) (-3641 (*1 *2 *1 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) (-3641 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) (-1999 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-175)) (-4 *1 (-383 *4 *5)) (-4 *5 (-1263 *4)))) (-4186 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1263 *2)) (-4 *2 (-175)))) (-1989 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) (-2837 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1263 *3)))) (-2223 (*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1263 *3))))) +(-13 (-38 |t#1|) (-10 -8 (-15 -3510 ((-937))) (-15 -1988 ((-708 |t#1|) $ (-1287 $))) (-15 -3749 (|t#1| $)) (-15 -3533 (|t#1| $)) (-15 -3641 ((-1287 |t#1|) $ (-1287 $))) (-15 -3641 ((-708 |t#1|) (-1287 $) (-1287 $))) (-15 -1999 ($ (-1287 |t#1|) (-1287 $))) (-15 -4186 (|t#1| (-1287 $))) (-15 -1989 ((-708 |t#1|) (-1287 $))) (-15 -2837 (|t#2| $)) (IF (|has| |t#1| (-376)) (-15 -2223 (|t#2| $)) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-745) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-1934 (((-114) (-1 (-114) |#2| |#2|) $) NIL T ELT) (((-114) $) 18 T ELT)) (-1932 (($ (-1 (-114) |#2| |#2|) $) NIL T ELT) (($ $) 28 T ELT)) (-3309 (($ (-1 (-114) |#2| |#2|) $) 27 T ELT) (($ $) 22 T ELT)) (-2510 (($ $) 25 T ELT)) (-3838 (((-558) (-1 (-114) |#2|) $) NIL T ELT) (((-558) |#2| $) 11 T ELT) (((-558) |#2| $ (-558)) NIL T ELT)) (-3937 (($ (-1 (-114) |#2| |#2|) $ $) NIL T ELT) (($ $ $) 20 T ELT))) +(((-384 |#1| |#2|) (-10 -7 (-15 -1932 (|#1| |#1|)) (-15 -1932 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1934 ((-114) |#1|)) (-15 -3309 (|#1| |#1|)) (-15 -3937 (|#1| |#1| |#1|)) (-15 -3838 ((-558) |#2| |#1| (-558))) (-15 -3838 ((-558) |#2| |#1|)) (-15 -3838 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -1934 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3309 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -2510 (|#1| |#1|)) (-15 -3937 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|))) (-385 |#2|) (-1237)) (T -384)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4425)) ELT) (($ $) 97 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4425))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2509 (($ $) 99 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 109 T ELT)) (-1466 (($ $) 84 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 83 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 55 T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 91 (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 92 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2413 (($ $ |#1|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1933 (($ $ $ (-558)) 100 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 76 T ELT)) (-4231 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 93 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 95 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) 94 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 96 (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-385 |#1|) (-142) (-1237)) (T -385)) +((-3937 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1237)))) (-2510 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1237)))) (-3309 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1237)))) (-1934 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) (-3838 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1237)) (-5 *2 (-558)))) (-3838 (*1 *2 *3 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-558)))) (-3838 (*1 *2 *3 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-385 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1237)) (-4 *2 (-860)))) (-3309 (*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1237)) (-4 *2 (-860)))) (-1934 (*1 *2 *1) (-12 (-4 *1 (-385 *3)) (-4 *3 (-1237)) (-4 *3 (-860)) (-5 *2 (-114)))) (-1933 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4425)) (-4 *1 (-385 *3)) (-4 *3 (-1237)))) (-2509 (*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-385 *2)) (-4 *2 (-1237)))) (-1932 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4425)) (-4 *1 (-385 *3)) (-4 *3 (-1237)))) (-1932 (*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-385 *2)) (-4 *2 (-1237)) (-4 *2 (-860))))) +(-13 (-670 |t#1|) (-10 -8 (-6 -4424) (-15 -3937 ($ (-1 (-114) |t#1| |t#1|) $ $)) (-15 -2510 ($ $)) (-15 -3309 ($ (-1 (-114) |t#1| |t#1|) $)) (-15 -1934 ((-114) (-1 (-114) |t#1| |t#1|) $)) (-15 -3838 ((-558) (-1 (-114) |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3838 ((-558) |t#1| $)) (-15 -3838 ((-558) |t#1| $ (-558)))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-6 (-860)) (-15 -3937 ($ $ $)) (-15 -3309 ($ $)) (-15 -1934 ((-114) $))) |%noBranch|) (IF (|has| $ (-6 -4425)) (PROGN (-15 -1933 ($ $ $ (-558))) (-15 -2509 ($ $)) (-15 -1932 ($ (-1 (-114) |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-15 -1932 ($ $)) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1121) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860))) ((-1237) . T)) +((-4270 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 25 T ELT)) (-4271 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 17 T ELT)) (-4387 ((|#4| (-1 |#3| |#1|) |#2|) 23 T ELT))) +(((-386 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4271 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4270 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1237) (-385 |#1|) (-1237) (-385 |#3|)) (T -386)) +((-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4363 (((-660 |#1|) $) 42 T ELT)) (-4376 (($ $ (-790)) 43 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-4368 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 46 T ELT)) (-4365 (($ $) 44 T ELT)) (-4369 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 47 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4197 (($ $ |#1| $) 41 T ELT) (($ $ (-660 |#1|) (-660 $)) 40 T ELT)) (-4377 (((-790) $) 48 T ELT)) (-3949 (($ $ $) 39 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ |#1|) 51 T ELT) (((-1303 |#1| |#2|) $) 50 T ELT) (((-1312 |#1| |#2|) $) 49 T ELT)) (-4383 ((|#2| (-1312 |#1| |#2|) $) 52 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-1935 (($ (-691 |#1|)) 45 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#2|) 38 (|has| |#2| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 36 T ELT))) +(((-387 |#1| |#2|) (-142) (-860) (-175)) (T -387)) +((-4383 (*1 *2 *3 *1) (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-860)) (-4 *2 (-175)))) (-4375 (*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-860)) (-4 *3 (-175)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *2 (-1303 *3 *4)))) (-4375 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *2 (-1312 *3 *4)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *2 (-790)))) (-4369 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-4368 (*1 *2 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-1935 (*1 *1 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175)))) (-4365 (*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-860)) (-4 *3 (-175)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *2 (-660 *3)))) (-4197 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-860)) (-4 *3 (-175)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-860)) (-4 *5 (-175))))) +(-13 (-651 |t#2|) (-10 -8 (-15 -4383 (|t#2| (-1312 |t#1| |t#2|) $)) (-15 -4375 ($ |t#1|)) (-15 -4375 ((-1303 |t#1| |t#2|) $)) (-15 -4375 ((-1312 |t#1| |t#2|) $)) (-15 -4377 ((-790) $)) (-15 -4369 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -4368 ((-1312 |t#1| |t#2|) (-1312 |t#1| |t#2|) $)) (-15 -1935 ($ (-691 |t#1|))) (-15 -4365 ($ $)) (-15 -4376 ($ $ (-790))) (-15 -4363 ((-660 |t#1|) $)) (-15 -4197 ($ $ |t#1| $)) (-15 -4197 ($ $ (-660 |t#1|) (-660 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#2|) . T) ((-667 |#2|) . T) ((-651 |#2|) . T) ((-659 |#2|) . T) ((-736 |#2|) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1121) . T) ((-1237) . T)) +((-1938 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 40 T ELT)) (-1936 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 13 T ELT)) (-1937 ((|#2| (-1 (-114) |#1| |#1|) |#2|) 33 T ELT))) +(((-388 |#1| |#2|) (-10 -7 (-15 -1936 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1937 (|#2| (-1 (-114) |#1| |#1|) |#2|)) (-15 -1938 (|#2| (-1 (-114) |#1| |#1|) |#2|))) (-1237) (-13 (-385 |#1|) (-10 -7 (-6 -4425)))) (T -388)) +((-1938 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425)))))) (-1937 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425)))))) (-1936 (*1 *2 *3 *2) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-388 *4 *2)) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425))))))) +((-2492 (((-708 |#2|) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 22 T ELT) (((-708 (-558)) (-708 $)) 14 T ELT))) +(((-389 |#1| |#2|) (-10 -7 (-15 -2492 ((-708 (-558)) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-708 |#2|) (-708 |#1|)))) (-390 |#2|) (-1069)) (T -389)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2492 (((-708 |#1|) (-708 $)) 35 T ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 34 T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 46 (|has| |#1| (-657 (-558))) ELT) (((-708 (-558)) (-708 $)) 45 (|has| |#1| (-657 (-558))) ELT)) (-2493 (((-708 |#1|) (-1287 $)) 37 T ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 36 T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 44 (|has| |#1| (-657 (-558))) ELT) (((-708 (-558)) (-1287 $)) 43 (|has| |#1| (-657 (-558))) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-390 |#1|) (-142) (-1069)) (T -390)) +NIL +(-13 (-657 |t#1|) (-10 -7 (IF (|has| |t#1| (-657 (-558))) (-6 (-657 (-558))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 16 T ELT)) (-3530 (((-558) $) 44 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4200 (($ $) 120 T ELT)) (-3911 (($ $) 81 T ELT)) (-4068 (($ $) 72 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3437 (($ $) 28 T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3909 (($ $) 79 T ELT)) (-4067 (($ $) 67 T ELT)) (-4052 (((-558) $) 60 T ELT)) (-2829 (($ $ (-558)) 55 T ELT)) (-3913 (($ $) NIL T ELT)) (-4066 (($ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3528 (($ $) 122 T ELT)) (-3574 (((-3 (-558) #1#) $) 217 T ELT) (((-3 (-419 (-558)) #1#) $) 213 T ELT)) (-3573 (((-558) $) 215 T ELT) (((-419 (-558)) $) 211 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-1947 (((-558) $ $) 110 T ELT)) (-3886 (((-3 $ #1#) $) 125 T ELT)) (-1946 (((-419 (-558)) $ (-790)) 218 T ELT) (((-419 (-558)) $ (-790) (-790)) 210 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2604 (((-937)) 106 T ELT) (((-937) (-937)) 107 (|has| $ (-6 -4415)) ELT)) (-3603 (((-114) $) 38 T ELT)) (-4056 (($) 22 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL T ELT)) (-1939 (((-1293) (-790)) 177 T ELT)) (-1940 (((-1293)) 182 T ELT) (((-1293) (-790)) 183 T ELT)) (-1942 (((-1293)) 184 T ELT) (((-1293) (-790)) 185 T ELT)) (-1941 (((-1293)) 180 T ELT) (((-1293) (-790)) 181 T ELT)) (-4201 (((-558) $) 50 T ELT)) (-2640 (((-114) $) 21 T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-2831 (($ $) 32 T ELT)) (-3533 (($ $) NIL T ELT)) (-3604 (((-114) $) 18 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL (-12 (-2958 (|has| $ (-6 -4407))) (-2958 (|has| $ (-6 -4415)))) ELT)) (-3257 (($ $ $) NIL T ELT) (($) NIL (-12 (-2958 (|has| $ (-6 -4407))) (-2958 (|has| $ (-6 -4415)))) ELT)) (-2605 (((-558) $) 112 T ELT)) (-1945 (($) 90 T ELT) (($ $) 97 T ELT)) (-1944 (($) 96 T ELT) (($ $) 98 T ELT)) (-4371 (($ $) 84 T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 127 T ELT)) (-1976 (((-937) (-558)) 27 (|has| $ (-6 -4415)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) 41 T ELT)) (-3531 (($ $) 119 T ELT)) (-3671 (($ (-558) (-558)) 115 T ELT) (($ (-558) (-558) (-937)) 116 T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-2631 (((-558) $) 113 T ELT)) (-1943 (($) 99 T ELT)) (-4372 (($ $) 78 T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3013 (((-937)) 108 T ELT) (((-937) (-937)) 109 (|has| $ (-6 -4415)) ELT)) (-4187 (($ $) 126 T ELT) (($ $ (-790)) NIL T ELT)) (-1975 (((-937) (-558)) 31 (|has| $ (-6 -4415)) ELT)) (-3914 (($ $) NIL T ELT)) (-4065 (($ $) NIL T ELT)) (-3912 (($ $) NIL T ELT)) (-4064 (($ $) NIL T ELT)) (-3910 (($ $) 80 T ELT)) (-4063 (($ $) 71 T ELT)) (-4401 (((-391) $) 202 T ELT) (((-229) $) 204 T ELT) (((-904 (-391)) $) NIL T ELT) (((-1179) $) 188 T ELT) (((-547) $) 200 T ELT) (($ (-229)) 209 T ELT)) (-4375 (((-876) $) 192 T ELT) (($ (-558)) 214 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) 214 T ELT) (($ (-419 (-558))) NIL T ELT) (((-229) $) 205 T ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (($ $) 121 T ELT)) (-1977 (((-937)) 42 T ELT) (((-937) (-937)) 62 (|has| $ (-6 -4415)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (((-937)) 111 T ELT)) (-3917 (($ $) 87 T ELT)) (-3905 (($ $) 30 T ELT) (($ $ $) 40 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3915 (($ $) 85 T ELT)) (-3903 (($ $) 20 T ELT)) (-3919 (($ $) NIL T ELT)) (-3907 (($ $) NIL T ELT)) (-3920 (($ $) NIL T ELT)) (-3908 (($ $) NIL T ELT)) (-3918 (($ $) NIL T ELT)) (-3906 (($ $) NIL T ELT)) (-3916 (($ $) 86 T ELT)) (-3904 (($ $) 33 T ELT)) (-3802 (($ $) 39 T ELT)) (-3058 (($) 17 T CONST)) (-3064 (($) 24 T CONST)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2964 (((-114) $ $) 189 T ELT)) (-2965 (((-114) $ $) 26 T ELT)) (-3453 (((-114) $ $) 37 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 43 T ELT)) (-4378 (($ $ $) 29 T ELT) (($ $ (-558)) 23 T ELT)) (-4266 (($ $) 19 T ELT) (($ $ $) 34 T ELT)) (-4268 (($ $ $) 54 T ELT)) (** (($ $ (-937)) 65 T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 91 T ELT) (($ $ (-419 (-558))) 137 T ELT) (($ $ $) 129 T ELT)) (* (($ (-937) $) 61 T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 53 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-391) (-13 (-416) (-240) (-630 (-1179)) (-629 (-229)) (-1223) (-630 (-547)) (-634 (-229)) (-10 -8 (-15 -4378 ($ $ (-558))) (-15 ** ($ $ $)) (-15 -2831 ($ $)) (-15 -1947 ((-558) $ $)) (-15 -2829 ($ $ (-558))) (-15 -1946 ((-419 (-558)) $ (-790))) (-15 -1946 ((-419 (-558)) $ (-790) (-790))) (-15 -1945 ($)) (-15 -1944 ($)) (-15 -1943 ($)) (-15 -3905 ($ $ $)) (-15 -1945 ($ $)) (-15 -1944 ($ $)) (-15 -1942 ((-1293))) (-15 -1942 ((-1293) (-790))) (-15 -1941 ((-1293))) (-15 -1941 ((-1293) (-790))) (-15 -1940 ((-1293))) (-15 -1940 ((-1293) (-790))) (-15 -1939 ((-1293) (-790))) (-6 -4415) (-6 -4407)))) (T -391)) +((** (*1 *1 *1 *1) (-5 *1 (-391))) (-4378 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-2831 (*1 *1 *1) (-5 *1 (-391))) (-1947 (*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) (-1946 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) (-1946 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) (-1945 (*1 *1) (-5 *1 (-391))) (-1944 (*1 *1) (-5 *1 (-391))) (-1943 (*1 *1) (-5 *1 (-391))) (-3905 (*1 *1 *1 *1) (-5 *1 (-391))) (-1945 (*1 *1 *1) (-5 *1 (-391))) (-1944 (*1 *1 *1) (-5 *1 (-391))) (-1942 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-391)))) (-1942 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391)))) (-1941 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-391)))) (-1941 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391)))) (-1940 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-391)))) (-1940 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391)))) (-1939 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391))))) +((-1948 (((-660 (-305 (-964 (-171 |#1|)))) (-305 (-419 (-964 (-171 (-558))))) |#1|) 51 T ELT) (((-660 (-305 (-964 (-171 |#1|)))) (-419 (-964 (-171 (-558)))) |#1|) 50 T ELT) (((-660 (-660 (-305 (-964 (-171 |#1|))))) (-660 (-305 (-419 (-964 (-171 (-558)))))) |#1|) 47 T ELT) (((-660 (-660 (-305 (-964 (-171 |#1|))))) (-660 (-419 (-964 (-171 (-558))))) |#1|) 41 T ELT)) (-1949 (((-660 (-660 (-171 |#1|))) (-660 (-419 (-964 (-171 (-558))))) (-660 (-1197)) |#1|) 30 T ELT) (((-660 (-171 |#1|)) (-419 (-964 (-171 (-558)))) |#1|) 18 T ELT))) +(((-392 |#1|) (-10 -7 (-15 -1948 ((-660 (-660 (-305 (-964 (-171 |#1|))))) (-660 (-419 (-964 (-171 (-558))))) |#1|)) (-15 -1948 ((-660 (-660 (-305 (-964 (-171 |#1|))))) (-660 (-305 (-419 (-964 (-171 (-558)))))) |#1|)) (-15 -1948 ((-660 (-305 (-964 (-171 |#1|)))) (-419 (-964 (-171 (-558)))) |#1|)) (-15 -1948 ((-660 (-305 (-964 (-171 |#1|)))) (-305 (-419 (-964 (-171 (-558))))) |#1|)) (-15 -1949 ((-660 (-171 |#1|)) (-419 (-964 (-171 (-558)))) |#1|)) (-15 -1949 ((-660 (-660 (-171 |#1|))) (-660 (-419 (-964 (-171 (-558))))) (-660 (-1197)) |#1|))) (-13 (-376) (-859))) (T -392)) +((-1949 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-419 (-964 (-171 (-558)))))) (-5 *4 (-660 (-1197))) (-5 *2 (-660 (-660 (-171 *5)))) (-5 *1 (-392 *5)) (-4 *5 (-13 (-376) (-859))))) (-1949 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 (-171 (-558))))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-859))))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-964 (-171 (-558)))))) (-5 *2 (-660 (-305 (-964 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-859))))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 (-171 (-558))))) (-5 *2 (-660 (-305 (-964 (-171 *4))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-859))))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-419 (-964 (-171 (-558))))))) (-5 *2 (-660 (-660 (-305 (-964 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-859))))) (-1948 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-419 (-964 (-171 (-558)))))) (-5 *2 (-660 (-660 (-305 (-964 (-171 *4)))))) (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-859)))))) +((-4000 (((-660 (-305 (-964 |#1|))) (-305 (-419 (-964 (-558)))) |#1|) 46 T ELT) (((-660 (-305 (-964 |#1|))) (-419 (-964 (-558))) |#1|) 45 T ELT) (((-660 (-660 (-305 (-964 |#1|)))) (-660 (-305 (-419 (-964 (-558))))) |#1|) 42 T ELT) (((-660 (-660 (-305 (-964 |#1|)))) (-660 (-419 (-964 (-558)))) |#1|) 36 T ELT)) (-1950 (((-660 |#1|) (-419 (-964 (-558))) |#1|) 20 T ELT) (((-660 (-660 |#1|)) (-660 (-419 (-964 (-558)))) (-660 (-1197)) |#1|) 30 T ELT))) +(((-393 |#1|) (-10 -7 (-15 -4000 ((-660 (-660 (-305 (-964 |#1|)))) (-660 (-419 (-964 (-558)))) |#1|)) (-15 -4000 ((-660 (-660 (-305 (-964 |#1|)))) (-660 (-305 (-419 (-964 (-558))))) |#1|)) (-15 -4000 ((-660 (-305 (-964 |#1|))) (-419 (-964 (-558))) |#1|)) (-15 -4000 ((-660 (-305 (-964 |#1|))) (-305 (-419 (-964 (-558)))) |#1|)) (-15 -1950 ((-660 (-660 |#1|)) (-660 (-419 (-964 (-558)))) (-660 (-1197)) |#1|)) (-15 -1950 ((-660 |#1|) (-419 (-964 (-558))) |#1|))) (-13 (-859) (-376))) (T -393)) +((-1950 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 (-558)))) (-5 *2 (-660 *4)) (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376))))) (-1950 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-419 (-964 (-558))))) (-5 *4 (-660 (-1197))) (-5 *2 (-660 (-660 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-859) (-376))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-964 (-558))))) (-5 *2 (-660 (-305 (-964 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 (-558)))) (-5 *2 (-660 (-305 (-964 *4)))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-419 (-964 (-558)))))) (-5 *2 (-660 (-660 (-305 (-964 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-419 (-964 (-558))))) (-5 *2 (-660 (-660 (-305 (-964 *4))))) (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) NIL T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3293 (($ |#1| |#2|) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2194 ((|#2| $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 33 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 12 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) 15 T ELT) (($ $ |#1|) 18 T ELT))) +(((-394 |#1| |#2|) (-13 (-111 |#1| |#1|) (-521 |#1| |#2|) (-10 -7 (IF (|has| |#1| (-175)) (-6 (-736 |#1|)) |%noBranch|))) (-1069) (-863)) (T -394)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) 29 T ELT)) (-3573 ((|#2| $) 31 T ELT)) (-4388 (($ $) NIL T ELT)) (-2648 (((-790) $) 11 T ELT)) (-3221 (((-660 $) $) 23 T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ |#2| |#1|) 21 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1951 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 17 T ELT)) (-3294 ((|#2| $) 18 T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 50 T ELT) (($ |#2|) 30 T ELT)) (-4246 (((-660 |#1|) $) 20 T ELT)) (-4106 ((|#1| $ |#2|) 54 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 32 T CONST)) (-3063 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 14 T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) 35 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 38 T ELT) (($ |#2| |#1|) 39 T ELT))) +(((-395 |#1| |#2|) (-13 (-397 |#1| |#2|) (-10 -8 (-15 * ($ |#2| |#1|)))) (-1069) (-860)) (T -395)) +((* (*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-860))))) +((-3799 (((-1293) $) 7 T ELT)) (-4375 (((-876) $) 8 T ELT) (($ (-708 (-718))) 14 T ELT) (($ (-660 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 11 T ELT))) (((-396) (-142)) (T -396)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-709 (-719))) (-4 *1 (-396)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-396)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) (-4 *1 (-396))))) -(-13 (-408) (-10 -8 (-15 -4376 ($ (-709 (-719)))) (-15 -4376 ($ (-661 (-342)))) (-15 -4376 ($ (-342))) (-15 -4376 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342)))))))) -(((-630 (-877)) . T) ((-408) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#2| "failed") $) 54 T ELT)) (-3574 ((|#2| $) 55 T ELT)) (-4389 (($ $) 40 T ELT)) (-2649 (((-791) $) 44 T ELT)) (-3222 (((-661 $) $) 45 T ELT)) (-4367 (((-114) $) 48 T ELT)) (-4368 (($ |#2| |#1|) 49 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1952 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3295 ((|#2| $) 43 T ELT)) (-3592 ((|#1| $) 42 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-4247 (((-661 |#1|) $) 46 T ELT)) (-4107 ((|#1| $ |#2|) 51 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3064 (((-661 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) -(((-397 |#1| |#2|) (-142) (-1070) (-1122)) (T -397)) -((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1122)))) (-4107 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1070)))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)))) (-4368 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1122)))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-114)))) (-3064 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-661 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-661 *3)))) (-3222 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-661 *1)) (-4 *1 (-397 *3 *4)))) (-2649 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-791)))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1122)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1070)))) (-1952 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1122))))) -(-13 (-111 |t#1| |t#1|) (-1059 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4107 (|t#1| $ |t#2|)) (-15 -4388 ($ (-1 |t#1| |t#1|) $)) (-15 -4368 ($ |t#2| |t#1|)) (-15 -4367 ((-114) $)) (-15 -3064 ((-661 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4247 ((-661 |t#1|) $)) (-15 -3222 ((-661 $) $)) (-15 -2649 ((-791) $)) (-15 -3295 (|t#2| $)) (-15 -3592 (|t#1| $)) (-15 -1952 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4389 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-737 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 |#2|) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-1059 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-3575 (((-3 $ "failed") (-709 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-709 (-326 (-558)))) 19 T ELT) (((-3 $ "failed") (-709 (-965 (-391)))) 17 T ELT) (((-3 $ "failed") (-709 (-965 (-558)))) 15 T ELT) (((-3 $ "failed") (-709 (-419 (-965 (-391))))) 13 T ELT) (((-3 $ "failed") (-709 (-419 (-965 (-558))))) 11 T ELT)) (-3574 (($ (-709 (-326 (-391)))) 22 T ELT) (($ (-709 (-326 (-558)))) 20 T ELT) (($ (-709 (-965 (-391)))) 18 T ELT) (($ (-709 (-965 (-558)))) 16 T ELT) (($ (-709 (-419 (-965 (-391))))) 14 T ELT) (($ (-709 (-419 (-965 (-558))))) 12 T ELT)) (-3800 (((-1294) $) 7 T ELT)) (-4376 (((-877) $) 8 T ELT) (($ (-661 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 23 T ELT))) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-708 (-718))) (-4 *1 (-396)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-396)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-396))))) +(-13 (-408) (-10 -8 (-15 -4375 ($ (-708 (-718)))) (-15 -4375 ($ (-660 (-342)))) (-15 -4375 ($ (-342))) (-15 -4375 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342)))))))) +(((-629 (-876)) . T) ((-408) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#2| "failed") $) 54 T ELT)) (-3573 ((|#2| $) 55 T ELT)) (-4388 (($ $) 40 T ELT)) (-2648 (((-790) $) 44 T ELT)) (-3221 (((-660 $) $) 45 T ELT)) (-4366 (((-114) $) 48 T ELT)) (-4367 (($ |#2| |#1|) 49 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 50 T ELT)) (-1951 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) 41 T ELT)) (-3294 ((|#2| $) 43 T ELT)) (-3591 ((|#1| $) 42 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ |#2|) 53 T ELT)) (-4246 (((-660 |#1|) $) 46 T ELT)) (-4106 ((|#1| $ |#2|) 51 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3063 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 47 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT) (($ |#1| |#2|) 52 T ELT))) +(((-397 |#1| |#2|) (-142) (-1069) (-1121)) (T -397)) +((* (*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1121)))) (-4106 (*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1069)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)))) (-4367 (*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1121)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-114)))) (-3063 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-660 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-660 *3)))) (-3221 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-397 *3 *4)))) (-2648 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-790)))) (-3294 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1121)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1069)))) (-1951 (*1 *2 *1) (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3))))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1121))))) +(-13 (-111 |t#1| |t#1|) (-1058 |t#2|) (-10 -8 (-15 * ($ |t#1| |t#2|)) (-15 -4106 (|t#1| $ |t#2|)) (-15 -4387 ($ (-1 |t#1| |t#1|) $)) (-15 -4367 ($ |t#2| |t#1|)) (-15 -4366 ((-114) $)) (-15 -3063 ((-660 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4246 ((-660 |t#1|) $)) (-15 -3221 ((-660 $) $)) (-15 -2648 ((-790) $)) (-15 -3294 (|t#2| $)) (-15 -3591 (|t#1| $)) (-15 -1951 ((-2 (|:| |k| |t#2|) (|:| |c| |t#1|)) $)) (-15 -4388 ($ $)) (IF (|has| |t#1| (-175)) (-6 (-736 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 |#2|) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-1058 |#2|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-3574 (((-3 $ "failed") (-708 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-708 (-326 (-558)))) 19 T ELT) (((-3 $ "failed") (-708 (-964 (-391)))) 17 T ELT) (((-3 $ "failed") (-708 (-964 (-558)))) 15 T ELT) (((-3 $ "failed") (-708 (-419 (-964 (-391))))) 13 T ELT) (((-3 $ "failed") (-708 (-419 (-964 (-558))))) 11 T ELT)) (-3573 (($ (-708 (-326 (-391)))) 22 T ELT) (($ (-708 (-326 (-558)))) 20 T ELT) (($ (-708 (-964 (-391)))) 18 T ELT) (($ (-708 (-964 (-558)))) 16 T ELT) (($ (-708 (-419 (-964 (-391))))) 14 T ELT) (($ (-708 (-419 (-964 (-558))))) 12 T ELT)) (-3799 (((-1293) $) 7 T ELT)) (-4375 (((-876) $) 8 T ELT) (($ (-660 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 23 T ELT))) (((-398) (-142)) (T -398)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-398)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-709 (-965 (-391)))) (-4 *1 (-398)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-965 (-391)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-709 (-965 (-558)))) (-4 *1 (-398)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-965 (-558)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-965 (-391))))) (-4 *1 (-398)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-419 (-965 (-391))))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-965 (-558))))) (-4 *1 (-398)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-419 (-965 (-558))))) (-4 *1 (-398))))) -(-13 (-408) (-10 -8 (-15 -4376 ($ (-661 (-342)))) (-15 -4376 ($ (-342))) (-15 -4376 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342)))))) (-15 -3574 ($ (-709 (-326 (-391))))) (-15 -3575 ((-3 $ "failed") (-709 (-326 (-391))))) (-15 -3574 ($ (-709 (-326 (-558))))) (-15 -3575 ((-3 $ "failed") (-709 (-326 (-558))))) (-15 -3574 ($ (-709 (-965 (-391))))) (-15 -3575 ((-3 $ "failed") (-709 (-965 (-391))))) (-15 -3574 ($ (-709 (-965 (-558))))) (-15 -3575 ((-3 $ "failed") (-709 (-965 (-558))))) (-15 -3574 ($ (-709 (-419 (-965 (-391)))))) (-15 -3575 ((-3 $ "failed") (-709 (-419 (-965 (-391)))))) (-15 -3574 ($ (-709 (-419 (-965 (-558)))))) (-15 -3575 ((-3 $ "failed") (-709 (-419 (-965 (-558)))))))) -(((-630 (-877)) . T) ((-408) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3538 (((-791) $) 40 T ELT)) (-4154 (($) 23 T CONST)) (-4369 (((-3 $ "failed") $ $) 43 T ELT)) (-3575 (((-3 |#1| "failed") $) 51 T ELT)) (-3574 ((|#1| $) 52 T ELT)) (-3887 (((-3 $ "failed") $) 20 T ELT)) (-1953 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2641 (((-114) $) 22 T ELT)) (-2512 ((|#1| $ (-558)) 37 T ELT)) (-2513 (((-791) $ (-558)) 38 T ELT)) (-2930 (($ $ $) 29 (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) 30 (|has| |#1| (-861)) ELT)) (-2504 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2505 (($ (-1 (-791) (-791)) $) 36 T ELT)) (-4370 (((-3 $ "failed") $ $) 44 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1954 (($ $ $) 45 T ELT)) (-1955 (($ $ $) 46 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1987 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-791)))) $) 39 T ELT)) (-3280 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3065 (($) 24 T CONST)) (-2965 (((-114) $ $) 31 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 33 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 32 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 34 (|has| |#1| (-861)) ELT)) (** (($ $ (-938)) 17 T ELT) (($ $ (-791)) 21 T ELT) (($ |#1| (-791)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) -(((-399 |#1|) (-142) (-1122)) (T -399)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (-1955 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (-1954 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (-4370 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (-4369 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (-3280 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1953 (*1 *2 *1 *1) (-12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3538 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1122)) (-5 *2 (-791)))) (-1987 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1122)) (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 (-791))))))) (-2513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *4)) (-4 *4 (-1122)) (-5 *2 (-791)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *2)) (-4 *2 (-1122)))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-791) (-791))) (-4 *1 (-399 *3)) (-4 *3 (-1122)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1122))))) -(-13 (-746) (-1059 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-791))) (-15 -1955 ($ $ $)) (-15 -1954 ($ $ $)) (-15 -4370 ((-3 $ "failed") $ $)) (-15 -4369 ((-3 $ "failed") $ $)) (-15 -3280 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1953 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3538 ((-791) $)) (-15 -1987 ((-661 (-2 (|:| |gen| |t#1|) (|:| -4373 (-791)))) $)) (-15 -2513 ((-791) $ (-558))) (-15 -2512 (|t#1| $ (-558))) (-15 -2505 ($ (-1 (-791) (-791)) $)) (-15 -2504 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-746) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 |#1|) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791) $) 74 T ELT)) (-4154 (($) NIL T CONST)) (-4369 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-1953 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2641 (((-114) $) 17 T ELT)) (-2512 ((|#1| $ (-558)) NIL T ELT)) (-2513 (((-791) $ (-558)) NIL T ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2504 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2505 (($ (-1 (-791) (-791)) $) 37 T ELT)) (-4370 (((-3 $ #1#) $ $) 60 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1954 (($ $ $) 28 T ELT)) (-1955 (($ $ $) 26 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1987 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-791)))) $) 34 T ELT)) (-3280 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4376 (((-877) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 7 T CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 83 (|has| |#1| (-861)) ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ |#1| (-791)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) -(((-400 |#1|) (-399 |#1|) (-1122)) (T -400)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) "failed") $) 59 T ELT)) (-3574 (((-558) $) 60 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2930 (($ $ $) 61 T ELT)) (-3258 (($ $ $) 62 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 58 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 63 T ELT)) (-2966 (((-114) $ $) 65 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 64 T ELT)) (-3086 (((-114) $ $) 66 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-398)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-708 (-326 (-391)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-326 (-391)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-708 (-326 (-558)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-326 (-558)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-708 (-964 (-391)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-964 (-391)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-708 (-964 (-558)))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-964 (-558)))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-708 (-419 (-964 (-391))))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-419 (-964 (-391))))) (-4 *1 (-398)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-708 (-419 (-964 (-558))))) (-4 *1 (-398)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-419 (-964 (-558))))) (-4 *1 (-398))))) +(-13 (-408) (-10 -8 (-15 -4375 ($ (-660 (-342)))) (-15 -4375 ($ (-342))) (-15 -4375 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342)))))) (-15 -3573 ($ (-708 (-326 (-391))))) (-15 -3574 ((-3 $ "failed") (-708 (-326 (-391))))) (-15 -3573 ($ (-708 (-326 (-558))))) (-15 -3574 ((-3 $ "failed") (-708 (-326 (-558))))) (-15 -3573 ($ (-708 (-964 (-391))))) (-15 -3574 ((-3 $ "failed") (-708 (-964 (-391))))) (-15 -3573 ($ (-708 (-964 (-558))))) (-15 -3574 ((-3 $ "failed") (-708 (-964 (-558))))) (-15 -3573 ($ (-708 (-419 (-964 (-391)))))) (-15 -3574 ((-3 $ "failed") (-708 (-419 (-964 (-391)))))) (-15 -3573 ($ (-708 (-419 (-964 (-558)))))) (-15 -3574 ((-3 $ "failed") (-708 (-419 (-964 (-558)))))))) +(((-629 (-876)) . T) ((-408) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3537 (((-790) $) 40 T ELT)) (-4153 (($) 23 T CONST)) (-4368 (((-3 $ "failed") $ $) 43 T ELT)) (-3574 (((-3 |#1| "failed") $) 51 T ELT)) (-3573 ((|#1| $) 52 T ELT)) (-3886 (((-3 $ "failed") $) 20 T ELT)) (-1952 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 41 T ELT)) (-2640 (((-114) $) 22 T ELT)) (-2511 ((|#1| $ (-558)) 37 T ELT)) (-2512 (((-790) $ (-558)) 38 T ELT)) (-2929 (($ $ $) 29 (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) 30 (|has| |#1| (-860)) ELT)) (-2503 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2504 (($ (-1 (-790) (-790)) $) 36 T ELT)) (-4369 (((-3 $ "failed") $ $) 44 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1953 (($ $ $) 45 T ELT)) (-1954 (($ $ $) 46 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1986 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-790)))) $) 39 T ELT)) (-3279 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $) 42 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ |#1|) 50 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3064 (($) 24 T CONST)) (-2964 (((-114) $ $) 31 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 33 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 32 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 34 (|has| |#1| (-860)) ELT)) (** (($ $ (-937)) 17 T ELT) (($ $ (-790)) 21 T ELT) (($ |#1| (-790)) 47 T ELT)) (* (($ $ $) 18 T ELT) (($ |#1| $) 49 T ELT) (($ $ |#1|) 48 T ELT))) +(((-399 |#1|) (-142) (-1121)) (T -399)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (** (*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (-1954 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (-1953 (*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (-4369 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (-4368 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (-3279 (*1 *2 *1 *1) (|partial| -12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-1952 (*1 *2 *1 *1) (-12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) (-3537 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1121)) (-5 *2 (-790)))) (-1986 (*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1121)) (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 (-790))))))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *4)) (-4 *4 (-1121)) (-5 *2 (-790)))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *2)) (-4 *2 (-1121)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-790) (-790))) (-4 *1 (-399 *3)) (-4 *3 (-1121)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1121))))) +(-13 (-745) (-1058 |t#1|) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 ** ($ |t#1| (-790))) (-15 -1954 ($ $ $)) (-15 -1953 ($ $ $)) (-15 -4369 ((-3 $ "failed") $ $)) (-15 -4368 ((-3 $ "failed") $ $)) (-15 -3279 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) "failed") $ $)) (-15 -1952 ((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $)) (-15 -3537 ((-790) $)) (-15 -1986 ((-660 (-2 (|:| |gen| |t#1|) (|:| -4372 (-790)))) $)) (-15 -2512 ((-790) $ (-558))) (-15 -2511 (|t#1| $ (-558))) (-15 -2504 ($ (-1 (-790) (-790)) $)) (-15 -2503 ($ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|))) +(((-102) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-745) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1058 |#1|) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790) $) 74 T ELT)) (-4153 (($) NIL T CONST)) (-4368 (((-3 $ #1="failed") $ $) 77 T ELT)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-1952 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) 64 T ELT)) (-2640 (((-114) $) 17 T ELT)) (-2511 ((|#1| $ (-558)) NIL T ELT)) (-2512 (((-790) $ (-558)) NIL T ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2503 (($ (-1 |#1| |#1|) $) 40 T ELT)) (-2504 (($ (-1 (-790) (-790)) $) 37 T ELT)) (-4369 (((-3 $ #1#) $ $) 60 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1953 (($ $ $) 28 T ELT)) (-1954 (($ $ $) 26 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1986 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-790)))) $) 34 T ELT)) (-3279 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) 70 T ELT)) (-4375 (((-876) $) 24 T ELT) (($ |#1|) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 7 T CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 83 (|has| |#1| (-860)) ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ |#1| (-790)) 42 T ELT)) (* (($ $ $) 52 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 30 T ELT))) +(((-400 |#1|) (-399 |#1|) (-1121)) (T -400)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) "failed") $) 59 T ELT)) (-3573 (((-558) $) 60 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2929 (($ $ $) 61 T ELT)) (-3257 (($ $ $) 62 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 58 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 63 T ELT)) (-2965 (((-114) $ $) 65 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 64 T ELT)) (-3085 (((-114) $ $) 66 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-401) (-142)) (T -401)) NIL -(-13 (-569) (-861) (-1059 (-558))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-861) . T) ((-864) . T) ((-1059 (-558)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-1956 (((-114) $) 25 T ELT)) (-1957 (((-114) $) 22 T ELT)) (-4044 (($ (-1180) (-1180) (-1180)) 26 T ELT)) (-3970 (((-1180) $) 16 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1961 (($ (-1180) (-1180) (-1180)) 14 T ELT)) (-1959 (((-1180) $) 17 T ELT)) (-1958 (((-114) $) 18 T ELT)) (-1960 (((-1180) $) 15 T ELT)) (-4376 (((-877) $) 12 T ELT) (($ (-1180)) 13 T ELT) (((-1180) $) 9 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 7 T ELT))) +(-13 (-569) (-860) (-1058 (-558))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-860) . T) ((-863) . T) ((-1058 (-558)) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-1955 (((-114) $) 25 T ELT)) (-1956 (((-114) $) 22 T ELT)) (-4043 (($ (-1179) (-1179) (-1179)) 26 T ELT)) (-3969 (((-1179) $) 16 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1960 (($ (-1179) (-1179) (-1179)) 14 T ELT)) (-1958 (((-1179) $) 17 T ELT)) (-1957 (((-114) $) 18 T ELT)) (-1959 (((-1179) $) 15 T ELT)) (-4375 (((-876) $) 12 T ELT) (($ (-1179)) 13 T ELT) (((-1179) $) 9 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 7 T ELT))) (((-402) (-403)) (T -402)) NIL -((-2967 (((-114) $ $) 7 T ELT)) (-1956 (((-114) $) 20 T ELT)) (-1957 (((-114) $) 21 T ELT)) (-4044 (($ (-1180) (-1180) (-1180)) 19 T ELT)) (-3970 (((-1180) $) 24 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1961 (($ (-1180) (-1180) (-1180)) 26 T ELT)) (-1959 (((-1180) $) 23 T ELT)) (-1958 (((-114) $) 22 T ELT)) (-1960 (((-1180) $) 25 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-1180)) 28 T ELT) (((-1180) $) 27 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) +((-2966 (((-114) $ $) 7 T ELT)) (-1955 (((-114) $) 20 T ELT)) (-1956 (((-114) $) 21 T ELT)) (-4043 (($ (-1179) (-1179) (-1179)) 19 T ELT)) (-3969 (((-1179) $) 24 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1960 (($ (-1179) (-1179) (-1179)) 26 T ELT)) (-1958 (((-1179) $) 23 T ELT)) (-1957 (((-114) $) 22 T ELT)) (-1959 (((-1179) $) 25 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-1179)) 28 T ELT) (((-1179) $) 27 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) (((-403) (-142)) (T -403)) -((-1961 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-403)))) (-1960 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1180)))) (-3970 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1180)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1180)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4044 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-403))))) -(-13 (-1122) (-502 (-1180)) (-10 -8 (-15 -1961 ($ (-1180) (-1180) (-1180))) (-15 -1960 ((-1180) $)) (-15 -3970 ((-1180) $)) (-15 -1959 ((-1180) $)) (-15 -1958 ((-114) $)) (-15 -1957 ((-114) $)) (-15 -1956 ((-114) $)) (-15 -4044 ($ (-1180) (-1180) (-1180))))) -(((-102) . T) ((-633 (-1180)) . T) ((-630 (-877)) . T) ((-630 (-1180)) . T) ((-502 (-1180)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-1962 (((-877) $) 64 T ELT)) (-4154 (($) NIL T CONST)) (-2638 (($ $ (-938)) NIL T ELT)) (-2662 (($ $ (-938)) NIL T ELT)) (-2637 (($ $ (-938)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($ (-791)) 38 T ELT)) (-4341 (((-791)) 18 T ELT)) (-1963 (((-877) $) 66 T ELT)) (-2824 (($ $ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2825 (($ $ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-3059 (($) 24 T CONST)) (-3454 (((-114) $ $) 41 T ELT)) (-4267 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-4269 (($ $ $) 51 T ELT)) (** (($ $ (-938)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) -(((-404 |#1| |#2| |#3|) (-13 (-764 |#3|) (-10 -8 (-15 -4341 ((-791))) (-15 -1963 ((-877) $)) (-15 -1962 ((-877) $)) (-15 -2640 ($ (-791))))) (-791) (-791) (-175)) (T -404)) -((-4341 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-1963 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) (-4 *5 (-175)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) (-4 *5 (-175)))) (-2640 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175))))) -((-1968 (((-1180)) 12 T ELT)) (-1965 (((-1169 (-1180))) 30 T ELT)) (-1967 (((-1294) (-1180)) 27 T ELT) (((-1294) (-402)) 26 T ELT)) (-1966 (((-1294)) 28 T ELT)) (-1964 (((-1169 (-1180))) 29 T ELT))) -(((-405) (-10 -7 (-15 -1964 ((-1169 (-1180)))) (-15 -1965 ((-1169 (-1180)))) (-15 -1966 ((-1294))) (-15 -1967 ((-1294) (-402))) (-15 -1967 ((-1294) (-1180))) (-15 -1968 ((-1180))))) (T -405)) -((-1968 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-405)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-405)))) (-1967 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1294)) (-5 *1 (-405)))) (-1966 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-405)))) (-1965 (*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-405)))) (-1964 (*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-405))))) -((-4202 (((-791) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT))) -(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4202 ((-791) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -406)) -((-4202 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-791)) (-5 *1 (-406 *4 *5 *6 *7))))) -((-1970 (((-661 (-1180)) (-661 (-1180))) 9 T ELT)) (-3800 (((-1294) (-402)) 26 T ELT)) (-1969 (((-1124) (-1198) (-661 (-1198)) (-1201) (-661 (-1198))) 59 T ELT) (((-1124) (-1198) (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198)))) (-661 (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198))))) (-661 (-1198)) (-1198)) 34 T ELT) (((-1124) (-1198) (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198)))) (-661 (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198))))) (-661 (-1198))) 33 T ELT))) -(((-407) (-10 -7 (-15 -1969 ((-1124) (-1198) (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198)))) (-661 (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198))))) (-661 (-1198)))) (-15 -1969 ((-1124) (-1198) (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198)))) (-661 (-661 (-3 (|:| |array| (-661 (-1198))) (|:| |scalar| (-1198))))) (-661 (-1198)) (-1198))) (-15 -1969 ((-1124) (-1198) (-661 (-1198)) (-1201) (-661 (-1198)))) (-15 -3800 ((-1294) (-402))) (-15 -1970 ((-661 (-1180)) (-661 (-1180)))))) (T -407)) -((-1970 (*1 *2 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-407)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1294)) (-5 *1 (-407)))) (-1969 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-661 (-1198))) (-5 *5 (-1201)) (-5 *3 (-1198)) (-5 *2 (-1124)) (-5 *1 (-407)))) (-1969 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1198))))) (-5 *6 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1124)) (-5 *1 (-407)))) (-1969 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1198))))) (-5 *6 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1124)) (-5 *1 (-407))))) -((-3800 (((-1294) $) 7 T ELT)) (-4376 (((-877) $) 8 T ELT))) +((-1960 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-403)))) (-1959 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1179)))) (-3969 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1179)))) (-1958 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1179)))) (-1957 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1956 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-1955 (*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114)))) (-4043 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-403))))) +(-13 (-1121) (-502 (-1179)) (-10 -8 (-15 -1960 ($ (-1179) (-1179) (-1179))) (-15 -1959 ((-1179) $)) (-15 -3969 ((-1179) $)) (-15 -1958 ((-1179) $)) (-15 -1957 ((-114) $)) (-15 -1956 ((-114) $)) (-15 -1955 ((-114) $)) (-15 -4043 ($ (-1179) (-1179) (-1179))))) +(((-102) . T) ((-632 (-1179)) . T) ((-629 (-876)) . T) ((-629 (-1179)) . T) ((-502 (-1179)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-1961 (((-876) $) 64 T ELT)) (-4153 (($) NIL T CONST)) (-2637 (($ $ (-937)) NIL T ELT)) (-2661 (($ $ (-937)) NIL T ELT)) (-2636 (($ $ (-937)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($ (-790)) 38 T ELT)) (-4340 (((-790)) 18 T ELT)) (-1962 (((-876) $) 66 T ELT)) (-2823 (($ $ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2824 (($ $ $ $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-3058 (($) 24 T CONST)) (-3453 (((-114) $ $) 41 T ELT)) (-4266 (($ $) 48 T ELT) (($ $ $) 50 T ELT)) (-4268 (($ $ $) 51 T ELT)) (** (($ $ (-937)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 52 T ELT) (($ $ |#3|) NIL T ELT) (($ |#3| $) 47 T ELT))) +(((-404 |#1| |#2| |#3|) (-13 (-763 |#3|) (-10 -8 (-15 -4340 ((-790))) (-15 -1962 ((-876) $)) (-15 -1961 ((-876) $)) (-15 -2639 ($ (-790))))) (-790) (-790) (-175)) (T -404)) +((-4340 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) (-1962 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-790)) (-14 *4 (-790)) (-4 *5 (-175)))) (-1961 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-790)) (-14 *4 (-790)) (-4 *5 (-175)))) (-2639 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175))))) +((-1967 (((-1179)) 12 T ELT)) (-1964 (((-1168 (-1179))) 30 T ELT)) (-1966 (((-1293) (-1179)) 27 T ELT) (((-1293) (-402)) 26 T ELT)) (-1965 (((-1293)) 28 T ELT)) (-1963 (((-1168 (-1179))) 29 T ELT))) +(((-405) (-10 -7 (-15 -1963 ((-1168 (-1179)))) (-15 -1964 ((-1168 (-1179)))) (-15 -1965 ((-1293))) (-15 -1966 ((-1293) (-402))) (-15 -1966 ((-1293) (-1179))) (-15 -1967 ((-1179))))) (T -405)) +((-1967 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-405)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-405)))) (-1966 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1293)) (-5 *1 (-405)))) (-1965 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-405)))) (-1964 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-405)))) (-1963 (*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-405))))) +((-4201 (((-790) (-346 |#1| |#2| |#3| |#4|)) 16 T ELT))) +(((-406 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4201 ((-790) (-346 |#1| |#2| |#3| |#4|)))) (-13 (-381) (-376)) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -406)) +((-4201 (*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) (-5 *2 (-790)) (-5 *1 (-406 *4 *5 *6 *7))))) +((-1969 (((-660 (-1179)) (-660 (-1179))) 9 T ELT)) (-3799 (((-1293) (-402)) 26 T ELT)) (-1968 (((-1123) (-1197) (-660 (-1197)) (-1200) (-660 (-1197))) 59 T ELT) (((-1123) (-1197) (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197)))) (-660 (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197))))) (-660 (-1197)) (-1197)) 34 T ELT) (((-1123) (-1197) (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197)))) (-660 (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197))))) (-660 (-1197))) 33 T ELT))) +(((-407) (-10 -7 (-15 -1968 ((-1123) (-1197) (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197)))) (-660 (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197))))) (-660 (-1197)))) (-15 -1968 ((-1123) (-1197) (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197)))) (-660 (-660 (-3 (|:| |array| (-660 (-1197))) (|:| |scalar| (-1197))))) (-660 (-1197)) (-1197))) (-15 -1968 ((-1123) (-1197) (-660 (-1197)) (-1200) (-660 (-1197)))) (-15 -3799 ((-1293) (-402))) (-15 -1969 ((-660 (-1179)) (-660 (-1179)))))) (T -407)) +((-1969 (*1 *2 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-407)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1293)) (-5 *1 (-407)))) (-1968 (*1 *2 *3 *4 *5 *4) (-12 (-5 *4 (-660 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) (-5 *2 (-1123)) (-5 *1 (-407)))) (-1968 (*1 *2 *3 *4 *5 *6 *3) (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1123)) (-5 *1 (-407)))) (-1968 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1197))))) (-5 *6 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1123)) (-5 *1 (-407))))) +((-3799 (((-1293) $) 7 T ELT)) (-4375 (((-876) $) 8 T ELT))) (((-408) (-142)) (T -408)) -((-3800 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1294))))) -(-13 (-1238) (-630 (-877)) (-10 -8 (-15 -3800 ((-1294) $)))) -(((-630 (-877)) . T) ((-1238) . T)) -((-3575 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-558))) 19 T ELT) (((-3 $ "failed") (-965 (-391))) 17 T ELT) (((-3 $ "failed") (-965 (-558))) 15 T ELT) (((-3 $ "failed") (-419 (-965 (-391)))) 13 T ELT) (((-3 $ "failed") (-419 (-965 (-558)))) 11 T ELT)) (-3574 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-558))) 20 T ELT) (($ (-965 (-391))) 18 T ELT) (($ (-965 (-558))) 16 T ELT) (($ (-419 (-965 (-391)))) 14 T ELT) (($ (-419 (-965 (-558)))) 12 T ELT)) (-3800 (((-1294) $) 7 T ELT)) (-4376 (((-877) $) 8 T ELT) (($ (-661 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 23 T ELT))) +((-3799 (*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1293))))) +(-13 (-1237) (-629 (-876)) (-10 -8 (-15 -3799 ((-1293) $)))) +(((-629 (-876)) . T) ((-1237) . T)) +((-3574 (((-3 $ "failed") (-326 (-391))) 21 T ELT) (((-3 $ "failed") (-326 (-558))) 19 T ELT) (((-3 $ "failed") (-964 (-391))) 17 T ELT) (((-3 $ "failed") (-964 (-558))) 15 T ELT) (((-3 $ "failed") (-419 (-964 (-391)))) 13 T ELT) (((-3 $ "failed") (-419 (-964 (-558)))) 11 T ELT)) (-3573 (($ (-326 (-391))) 22 T ELT) (($ (-326 (-558))) 20 T ELT) (($ (-964 (-391))) 18 T ELT) (($ (-964 (-558))) 16 T ELT) (($ (-419 (-964 (-391)))) 14 T ELT) (($ (-419 (-964 (-558)))) 12 T ELT)) (-3799 (((-1293) $) 7 T ELT)) (-4375 (((-876) $) 8 T ELT) (($ (-660 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 23 T ELT))) (((-409) (-142)) (T -409)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-409)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-965 (-391))) (-4 *1 (-409)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-391))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-965 (-558))) (-4 *1 (-409)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-558))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-391)))) (-4 *1 (-409)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-965 (-391)))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-558)))) (-4 *1 (-409)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-965 (-558)))) (-4 *1 (-409))))) -(-13 (-408) (-10 -8 (-15 -4376 ($ (-661 (-342)))) (-15 -4376 ($ (-342))) (-15 -4376 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342)))))) (-15 -3574 ($ (-326 (-391)))) (-15 -3575 ((-3 $ "failed") (-326 (-391)))) (-15 -3574 ($ (-326 (-558)))) (-15 -3575 ((-3 $ "failed") (-326 (-558)))) (-15 -3574 ($ (-965 (-391)))) (-15 -3575 ((-3 $ "failed") (-965 (-391)))) (-15 -3574 ($ (-965 (-558)))) (-15 -3575 ((-3 $ "failed") (-965 (-558)))) (-15 -3574 ($ (-419 (-965 (-391))))) (-15 -3575 ((-3 $ "failed") (-419 (-965 (-391))))) (-15 -3574 ($ (-419 (-965 (-558))))) (-15 -3575 ((-3 $ "failed") (-419 (-965 (-558))))))) -(((-630 (-877)) . T) ((-408) . T) ((-1238) . T)) -((-3800 (((-1294) $) 35 T ELT)) (-4376 (((-877) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-661 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 96 T ELT) (($ (-326 (-721))) 52 T ELT) (($ (-326 (-719))) 72 T ELT) (($ (-326 (-714))) 85 T ELT) (($ (-305 (-326 (-721)))) 67 T ELT) (($ (-305 (-326 (-719)))) 80 T ELT) (($ (-305 (-326 (-714)))) 93 T ELT) (($ (-326 (-558))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-558)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT))) -(((-410 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -4376 ($ (-342))) (-15 -4376 ($ (-661 (-342)))) (-15 -4376 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342)))))) (-15 -4376 ($ (-326 (-721)))) (-15 -4376 ($ (-326 (-719)))) (-15 -4376 ($ (-326 (-714)))) (-15 -4376 ($ (-305 (-326 (-721))))) (-15 -4376 ($ (-305 (-326 (-719))))) (-15 -4376 ($ (-305 (-326 (-714))))) (-15 -4376 ($ (-326 (-558)))) (-15 -4376 ($ (-326 (-391)))) (-15 -4376 ($ (-326 (-171 (-391))))) (-15 -4376 ($ (-305 (-326 (-558))))) (-15 -4376 ($ (-305 (-326 (-391))))) (-15 -4376 ($ (-305 (-326 (-171 (-391)))))))) (-1198) (-3 (|:| |fst| (-446)) (|:| -4340 "void")) (-661 (-1198)) (-1202)) (T -410)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1="void"))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-719)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-558)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) (-14 *6 (-1202))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1972 ((|#2| $) 38 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1973 (($ (-419 |#2|)) 93 T ELT)) (-1971 (((-661 (-2 (|:| -2632 (-791)) (|:| -4203 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-4188 (($ $ (-791)) 36 T ELT) (($ $) 34 T ELT)) (-4402 (((-419 |#2|) $) 49 T ELT)) (-3950 (($ (-661 (-2 (|:| -2632 (-791)) (|:| -4203 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4376 (((-877) $) 131 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3070 (($ $ (-791)) 37 T ELT) (($ $) 35 T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4269 (($ |#2| $) 41 T ELT))) -(((-411 |#1| |#2|) (-13 (-1122) (-239) (-631 (-419 |#2|)) (-10 -8 (-15 -4269 ($ |#2| $)) (-15 -1973 ($ (-419 |#2|))) (-15 -1972 (|#2| $)) (-15 -1971 ((-661 (-2 (|:| -2632 (-791)) (|:| -4203 |#2|) (|:| |num| |#2|))) $)) (-15 -3950 ($ (-661 (-2 (|:| -2632 (-791)) (|:| -4203 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1264 |#1|)) (T -411)) -((-4269 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1264 *3)))) (-1973 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) (-1972 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-1971 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-661 (-2 (|:| -2632 (-791)) (|:| -4203 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -2632 (-791)) (|:| -4203 *4) (|:| |num| *4)))) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4))))) -((-2967 (((-114) $ $) 10 (-3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 16 (|has| |#1| (-901 (-391))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 15 (|has| |#1| (-901 (-558))) ELT)) (-3660 (((-1180) $) 14 (-3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ELT)) (-3661 (((-1141) $) 13 (-3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ELT)) (-4376 (((-877) $) 12 (-3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ELT)) (-1378 (((-114) $ $) 11 (-3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ELT)) (-3454 (((-114) $ $) 9 (-3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ELT))) -(((-412 |#1|) (-142) (-1238)) (T -412)) -NIL -(-13 (-1238) (-10 -7 (IF (|has| |t#1| (-901 (-558))) (-6 (-901 (-558))) |%noBranch|) (IF (|has| |t#1| (-901 (-391))) (-6 (-901 (-391))) |%noBranch|))) -(((-102) -3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ((-630 (-877)) -3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ((-901 (-391)) |has| |#1| (-901 (-391))) ((-901 (-558)) |has| |#1| (-901 (-558))) ((-1122) -3957 (|has| |#1| (-901 (-558))) (|has| |#1| (-901 (-391)))) ((-1238) . T)) -((-1974 (($ $) 10 T ELT) (($ $ (-791)) 12 T ELT))) -(((-413 |#1|) (-10 -7 (-15 -1974 (|#1| |#1| (-791))) (-15 -1974 (|#1| |#1|))) (-414)) (T -413)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-1974 (($ $) 94 T ELT) (($ $ (-791)) 93 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-4202 (((-845 (-938)) $) 96 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-1975 (((-3 (-791) "failed") $ $) 95 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3103 (((-711 $) $) 97 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-409)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-964 (-391))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-391))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-964 (-558))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-558))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-391)))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-964 (-391)))) (-4 *1 (-409)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-558)))) (-4 *1 (-409)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-964 (-558)))) (-4 *1 (-409))))) +(-13 (-408) (-10 -8 (-15 -4375 ($ (-660 (-342)))) (-15 -4375 ($ (-342))) (-15 -4375 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342)))))) (-15 -3573 ($ (-326 (-391)))) (-15 -3574 ((-3 $ "failed") (-326 (-391)))) (-15 -3573 ($ (-326 (-558)))) (-15 -3574 ((-3 $ "failed") (-326 (-558)))) (-15 -3573 ($ (-964 (-391)))) (-15 -3574 ((-3 $ "failed") (-964 (-391)))) (-15 -3573 ($ (-964 (-558)))) (-15 -3574 ((-3 $ "failed") (-964 (-558)))) (-15 -3573 ($ (-419 (-964 (-391))))) (-15 -3574 ((-3 $ "failed") (-419 (-964 (-391))))) (-15 -3573 ($ (-419 (-964 (-558))))) (-15 -3574 ((-3 $ "failed") (-419 (-964 (-558))))))) +(((-629 (-876)) . T) ((-408) . T) ((-1237) . T)) +((-3799 (((-1293) $) 35 T ELT)) (-4375 (((-876) $) 97 T ELT) (($ (-342)) 99 T ELT) (($ (-660 (-342))) 98 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 96 T ELT) (($ (-326 (-720))) 52 T ELT) (($ (-326 (-718))) 72 T ELT) (($ (-326 (-713))) 85 T ELT) (($ (-305 (-326 (-720)))) 67 T ELT) (($ (-305 (-326 (-718)))) 80 T ELT) (($ (-305 (-326 (-713)))) 93 T ELT) (($ (-326 (-558))) 104 T ELT) (($ (-326 (-391))) 117 T ELT) (($ (-326 (-171 (-391)))) 130 T ELT) (($ (-305 (-326 (-558)))) 112 T ELT) (($ (-305 (-326 (-391)))) 125 T ELT) (($ (-305 (-326 (-171 (-391))))) 138 T ELT))) +(((-410 |#1| |#2| |#3| |#4|) (-13 (-408) (-10 -8 (-15 -4375 ($ (-342))) (-15 -4375 ($ (-660 (-342)))) (-15 -4375 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342)))))) (-15 -4375 ($ (-326 (-720)))) (-15 -4375 ($ (-326 (-718)))) (-15 -4375 ($ (-326 (-713)))) (-15 -4375 ($ (-305 (-326 (-720))))) (-15 -4375 ($ (-305 (-326 (-718))))) (-15 -4375 ($ (-305 (-326 (-713))))) (-15 -4375 ($ (-326 (-558)))) (-15 -4375 ($ (-326 (-391)))) (-15 -4375 ($ (-326 (-171 (-391))))) (-15 -4375 ($ (-305 (-326 (-558))))) (-15 -4375 ($ (-305 (-326 (-391))))) (-15 -4375 ($ (-305 (-326 (-171 (-391)))))))) (-1197) (-3 (|:| |fst| (-446)) (|:| -4339 "void")) (-660 (-1197)) (-1201)) (T -410)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1="void"))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-326 (-720))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-326 (-718))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-720)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-718)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-558)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) (-14 *6 (-1201))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1971 ((|#2| $) 38 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1972 (($ (-419 |#2|)) 93 T ELT)) (-1970 (((-660 (-2 (|:| -2631 (-790)) (|:| -4202 |#2|) (|:| |num| |#2|))) $) 39 T ELT)) (-4187 (($ $ (-790)) 36 T ELT) (($ $) 34 T ELT)) (-4401 (((-419 |#2|) $) 49 T ELT)) (-3949 (($ (-660 (-2 (|:| -2631 (-790)) (|:| -4202 |#2|) (|:| |num| |#2|)))) 33 T ELT)) (-4375 (((-876) $) 131 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3069 (($ $ (-790)) 37 T ELT) (($ $) 35 T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4268 (($ |#2| $) 41 T ELT))) +(((-411 |#1| |#2|) (-13 (-1121) (-239) (-630 (-419 |#2|)) (-10 -8 (-15 -4268 ($ |#2| $)) (-15 -1972 ($ (-419 |#2|))) (-15 -1971 (|#2| $)) (-15 -1970 ((-660 (-2 (|:| -2631 (-790)) (|:| -4202 |#2|) (|:| |num| |#2|))) $)) (-15 -3949 ($ (-660 (-2 (|:| -2631 (-790)) (|:| -4202 |#2|) (|:| |num| |#2|))))))) (-13 (-376) (-149)) (-1263 |#1|)) (T -411)) +((-4268 (*1 *1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1263 *3)))) (-1972 (*1 *1 *2) (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) (-1971 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149))))) (-1970 (*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) (-5 *2 (-660 (-2 (|:| -2631 (-790)) (|:| -4202 *4) (|:| |num| *4)))) (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -2631 (-790)) (|:| -4202 *4) (|:| |num| *4)))) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4))))) +((-2966 (((-114) $ $) 10 (-3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 16 (|has| |#1| (-900 (-391))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 15 (|has| |#1| (-900 (-558))) ELT)) (-3659 (((-1179) $) 14 (-3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ELT)) (-3660 (((-1140) $) 13 (-3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ELT)) (-4375 (((-876) $) 12 (-3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ELT)) (-1377 (((-114) $ $) 11 (-3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ELT)) (-3453 (((-114) $ $) 9 (-3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ELT))) +(((-412 |#1|) (-142) (-1237)) (T -412)) +NIL +(-13 (-1237) (-10 -7 (IF (|has| |t#1| (-900 (-558))) (-6 (-900 (-558))) |%noBranch|) (IF (|has| |t#1| (-900 (-391))) (-6 (-900 (-391))) |%noBranch|))) +(((-102) -3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ((-629 (-876)) -3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ((-900 (-391)) |has| |#1| (-900 (-391))) ((-900 (-558)) |has| |#1| (-900 (-558))) ((-1121) -3956 (|has| |#1| (-900 (-558))) (|has| |#1| (-900 (-391)))) ((-1237) . T)) +((-1973 (($ $) 10 T ELT) (($ $ (-790)) 12 T ELT))) +(((-413 |#1|) (-10 -7 (-15 -1973 (|#1| |#1| (-790))) (-15 -1973 (|#1| |#1|))) (-414)) (T -413)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-1973 (($ $) 94 T ELT) (($ $ (-790)) 93 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-4201 (((-844 (-937)) $) 96 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-1974 (((-3 (-790) "failed") $ $) 95 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT)) (-3102 (((-710 $) $) 97 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-414) (-142)) (T -414)) -((-4202 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) (-1975 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-791)))) (-1974 (*1 *1 *1) (-4 *1 (-414))) (-1974 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-791))))) -(-13 (-376) (-147) (-10 -8 (-15 -4202 ((-845 (-938)) $)) (-15 -1975 ((-3 (-791) "failed") $ $)) (-15 -1974 ($ $)) (-15 -1974 ($ $ (-791))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-3672 (($ (-558) (-558)) 11 T ELT) (($ (-558) (-558) (-938)) NIL T ELT)) (-3014 (((-938)) 19 T ELT) (((-938) (-938)) NIL T ELT))) -(((-415 |#1|) (-10 -7 (-15 -3014 ((-938) (-938))) (-15 -3014 ((-938))) (-15 -3672 (|#1| (-558) (-558) (-938))) (-15 -3672 (|#1| (-558) (-558)))) (-416)) (T -415)) -((-3014 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3531 (((-558) $) 105 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-4201 (($ $) 103 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-3438 (($ $) 113 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4053 (((-558) $) 130 T ELT)) (-4154 (($) 22 T CONST)) (-3529 (($ $) 102 T ELT)) (-3575 (((-3 (-558) #1="failed") $) 118 T ELT) (((-3 (-419 (-558)) #1#) $) 115 T ELT)) (-3574 (((-558) $) 119 T ELT) (((-419 (-558)) $) 116 T ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-2605 (((-938)) 146 T ELT) (((-938) (-938)) 143 (|has| $ (-6 -4416)) ELT)) (-3604 (((-114) $) 128 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 109 T ELT)) (-4202 (((-558) $) 152 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 112 T ELT)) (-3534 (($ $) 108 T ELT)) (-3605 (((-114) $) 129 T ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 65 T ELT)) (-2930 (($ $ $) 122 T ELT) (($) 140 (-12 (-2959 (|has| $ (-6 -4416))) (-2959 (|has| $ (-6 -4408)))) ELT)) (-3258 (($ $ $) 123 T ELT) (($) 139 (-12 (-2959 (|has| $ (-6 -4416))) (-2959 (|has| $ (-6 -4408)))) ELT)) (-2606 (((-558) $) 149 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-1977 (((-938) (-558)) 142 (|has| $ (-6 -4416)) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3530 (($ $) 104 T ELT)) (-3532 (($ $) 106 T ELT)) (-3672 (($ (-558) (-558)) 154 T ELT) (($ (-558) (-558) (-938)) 153 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-2632 (((-558) $) 150 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-3014 (((-938)) 147 T ELT) (((-938) (-938)) 144 (|has| $ (-6 -4416)) ELT)) (-1976 (((-938) (-558)) 141 (|has| $ (-6 -4416)) ELT)) (-4402 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-905 (-391)) $) 110 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-558)) 117 T ELT) (($ (-419 (-558))) 114 T ELT)) (-3528 (((-791)) 37 T CONST)) (-3533 (($ $) 107 T ELT)) (-1978 (((-938)) 148 T ELT) (((-938) (-938)) 145 (|has| $ (-6 -4416)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3095 (((-938)) 151 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3803 (($ $) 131 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 124 T ELT)) (-2966 (((-114) $ $) 126 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 125 T ELT)) (-3086 (((-114) $ $) 127 T ELT)) (-4379 (($ $ $) 80 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 111 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +((-4201 (*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-844 (-937))))) (-1974 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-790)))) (-1973 (*1 *1 *1) (-4 *1 (-414))) (-1973 (*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-790))))) +(-13 (-376) (-147) (-10 -8 (-15 -4201 ((-844 (-937)) $)) (-15 -1974 ((-3 (-790) "failed") $ $)) (-15 -1973 ($ $)) (-15 -1973 ($ $ (-790))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-147) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-3671 (($ (-558) (-558)) 11 T ELT) (($ (-558) (-558) (-937)) NIL T ELT)) (-3013 (((-937)) 19 T ELT) (((-937) (-937)) NIL T ELT))) +(((-415 |#1|) (-10 -7 (-15 -3013 ((-937) (-937))) (-15 -3013 ((-937))) (-15 -3671 (|#1| (-558) (-558) (-937))) (-15 -3671 (|#1| (-558) (-558)))) (-416)) (T -415)) +((-3013 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) (-3013 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3530 (((-558) $) 105 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-4200 (($ $) 103 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-3437 (($ $) 113 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4052 (((-558) $) 130 T ELT)) (-4153 (($) 22 T CONST)) (-3528 (($ $) 102 T ELT)) (-3574 (((-3 (-558) #1="failed") $) 118 T ELT) (((-3 (-419 (-558)) #1#) $) 115 T ELT)) (-3573 (((-558) $) 119 T ELT) (((-419 (-558)) $) 116 T ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-2604 (((-937)) 146 T ELT) (((-937) (-937)) 143 (|has| $ (-6 -4415)) ELT)) (-3603 (((-114) $) 128 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 109 T ELT)) (-4201 (((-558) $) 152 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 112 T ELT)) (-3533 (($ $) 108 T ELT)) (-3604 (((-114) $) 129 T ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 65 T ELT)) (-2929 (($ $ $) 122 T ELT) (($) 140 (-12 (-2958 (|has| $ (-6 -4415))) (-2958 (|has| $ (-6 -4407)))) ELT)) (-3257 (($ $ $) 123 T ELT) (($) 139 (-12 (-2958 (|has| $ (-6 -4415))) (-2958 (|has| $ (-6 -4407)))) ELT)) (-2605 (((-558) $) 149 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-1976 (((-937) (-558)) 142 (|has| $ (-6 -4415)) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3529 (($ $) 104 T ELT)) (-3531 (($ $) 106 T ELT)) (-3671 (($ (-558) (-558)) 154 T ELT) (($ (-558) (-558) (-937)) 153 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-2631 (((-558) $) 150 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-3013 (((-937)) 147 T ELT) (((-937) (-937)) 144 (|has| $ (-6 -4415)) ELT)) (-1975 (((-937) (-558)) 141 (|has| $ (-6 -4415)) ELT)) (-4401 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-904 (-391)) $) 110 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-558)) 117 T ELT) (($ (-419 (-558))) 114 T ELT)) (-3527 (((-790)) 37 T CONST)) (-3532 (($ $) 107 T ELT)) (-1977 (((-937)) 148 T ELT) (((-937) (-937)) 145 (|has| $ (-6 -4415)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3094 (((-937)) 151 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3802 (($ $) 131 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 124 T ELT)) (-2965 (((-114) $ $) 126 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 125 T ELT)) (-3085 (((-114) $ $) 127 T ELT)) (-4378 (($ $ $) 80 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 111 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) (((-416) (-142)) (T -416)) -((-3672 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-416)))) (-3672 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-938)) (-4 *1 (-416)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-3095 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-2632 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-2606 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-1978 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-3014 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-2605 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) (-1978 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4416)) (-4 *1 (-416)))) (-3014 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4416)) (-4 *1 (-416)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4416)) (-4 *1 (-416)))) (-1977 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4416)) (-4 *1 (-416)) (-5 *2 (-938)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4416)) (-4 *1 (-416)) (-5 *2 (-938)))) (-2930 (*1 *1) (-12 (-4 *1 (-416)) (-2959 (|has| *1 (-6 -4416))) (-2959 (|has| *1 (-6 -4408))))) (-3258 (*1 *1) (-12 (-4 *1 (-416)) (-2959 (|has| *1 (-6 -4416))) (-2959 (|has| *1 (-6 -4408)))))) -(-13 (-1081) (-10 -8 (-6 -4200) (-15 -3672 ($ (-558) (-558))) (-15 -3672 ($ (-558) (-558) (-938))) (-15 -4202 ((-558) $)) (-15 -3095 ((-938))) (-15 -2632 ((-558) $)) (-15 -2606 ((-558) $)) (-15 -1978 ((-938))) (-15 -3014 ((-938))) (-15 -2605 ((-938))) (IF (|has| $ (-6 -4416)) (PROGN (-15 -1978 ((-938) (-938))) (-15 -3014 ((-938) (-938))) (-15 -2605 ((-938) (-938))) (-15 -1977 ((-938) (-558))) (-15 -1976 ((-938) (-558)))) |%noBranch|) (IF (|has| $ (-6 -4408)) |%noBranch| (IF (|has| $ (-6 -4416)) |%noBranch| (PROGN (-15 -2930 ($)) (-15 -3258 ($))))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-631 (-229)) . T) ((-631 (-391)) . T) ((-631 (-905 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-391)) . T) ((-940) . T) ((-1023) . T) ((-1041) . T) ((-1081) . T) ((-1059 (-419 (-558))) . T) ((-1059 (-558)) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 59 T ELT)) (-1979 (($ $) 77 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 190 T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) 48 T ELT)) (-1980 ((|#1| $) 16 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-1243)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-1243)) ELT)) (-1982 (($ |#1| (-558)) 42 T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 73 T ELT)) (-3887 (((-3 $ #1#) $) 164 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 84 (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) 80 (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) 91 (|has| |#1| (-557)) ELT)) (-1983 (($ |#1| (-558)) 44 T ELT)) (-4153 (((-114) $) 210 (|has| |#1| (-1243)) ELT)) (-2641 (((-114) $) 61 T ELT)) (-2045 (((-791) $) 51 T ELT)) (-1984 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-558)) 175 T ELT)) (-2512 ((|#1| $ (-558)) 174 T ELT)) (-1985 (((-558) $ (-558)) 173 T ELT)) (-1988 (($ |#1| (-558)) 41 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-2042 (($ |#1| (-661 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558))))) 78 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1986 (($ |#1| (-558)) 43 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 191 (|has| |#1| (-464)) ELT)) (-1981 (($ |#1| (-558) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1987 (((-661 (-2 (|:| -4162 |#1|) (|:| -2632 (-558)))) $) 72 T ELT)) (-2163 (((-661 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $) 12 T ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-1243)) ELT)) (-3886 (((-3 $ #1#) $ $) 176 T ELT)) (-2632 (((-558) $) 167 T ELT)) (-4393 ((|#1| $) 74 T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 100 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 106 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) $) NIL (|has| |#1| (-526 (-1198) $)) ELT) (($ $ (-661 (-1198)) (-661 $)) 107 (|has| |#1| (-526 (-1198) $)) ELT) (($ $ (-661 (-305 $))) 103 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-661 $) (-661 $)) NIL (|has| |#1| (-321 $)) ELT)) (-4230 (($ $ |#1|) 92 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-298 $ $)) ELT)) (-4188 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-4402 (((-547) $) 39 (|has| |#1| (-631 (-547))) ELT) (((-391) $) 113 (|has| |#1| (-1041)) ELT) (((-229) $) 119 (|has| |#1| (-1041)) ELT)) (-4376 (((-877) $) 146 T ELT) (($ (-558)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT)) (-3528 (((-791)) 66 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 53 T CONST)) (-3065 (($) 52 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) 159 T ELT)) (-4267 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 180 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 125 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) -(((-417 |#1|) (-13 (-569) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-424 |#1|) (-10 -8 (-15 -4393 (|#1| $)) (-15 -2632 ((-558) $)) (-15 -2042 ($ |#1| (-661 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -2163 ((-661 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -1988 ($ |#1| (-558))) (-15 -1987 ((-661 (-2 (|:| -4162 |#1|) (|:| -2632 (-558)))) $)) (-15 -1986 ($ |#1| (-558))) (-15 -1985 ((-558) $ (-558))) (-15 -2512 (|#1| $ (-558))) (-15 -1984 ((-3 #1# #2# #3# #4#) $ (-558))) (-15 -2045 ((-791) $)) (-15 -1983 ($ |#1| (-558))) (-15 -1982 ($ |#1| (-558))) (-15 -1981 ($ |#1| (-558) (-3 #1# #2# #3# #4#))) (-15 -1980 (|#1| $)) (-15 -1979 ($ $)) (-15 -4388 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |#1| (-1243)) (-6 (-1243)) |%noBranch|) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1198) $)) (-6 (-526 (-1198) $)) |%noBranch|))) (-569)) (T -417)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-417 *3)))) (-4393 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-2632 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-2042 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-558))))) (-4 *2 (-569)) (-5 *1 (-417 *2)))) (-2163 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1988 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1987 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4162 *3) (|:| -2632 (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1986 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1985 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1984 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *4)) (-4 *4 (-569)))) (-2045 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1983 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1982 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1981 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1980 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1979 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569))))) -((-4388 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20 T ELT))) -(((-418 |#1| |#2|) (-10 -7 (-15 -4388 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-569) (-569)) (T -418)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-417 *6)) (-5 *1 (-418 *5 *6))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 13 T ELT)) (-3531 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| |#1| (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1198) #1#) $) NIL (|has| |#1| (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) 54 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT)) (-3574 ((|#1| $) 15 T ELT) (((-1198) $) NIL (|has| |#1| (-1059 (-1198))) ELT) (((-419 (-558)) $) 51 (|has| |#1| (-1059 (-558))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) 32 T ELT)) (-3395 (($) NIL (|has| |#1| (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| |#1| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| |#1| (-901 (-391))) ELT)) (-2641 (((-114) $) 38 T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 ((|#1| $) 55 T ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-1173)) ELT)) (-3605 (((-114) $) 22 (|has| |#1| (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| |#1| (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 82 T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3532 ((|#1| $) 26 (|has| |#1| (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 135 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 128 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 ((|#1| $) 57 T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| |#1| (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT) (((-391) $) NIL (|has| |#1| (-1041)) ELT) (((-229) $) NIL (|has| |#1| (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 112 (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1198)) NIL (|has| |#1| (-1059 (-1198))) ELT)) (-3103 (((-711 $) $) 92 (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 93 T CONST)) (-3533 ((|#1| $) 24 (|has| |#1| (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| |#1| (-842)) ELT)) (-3059 (($) 28 T CONST)) (-3065 (($) 8 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 48 T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4379 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-4267 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-4269 (($ $ $) 35 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 122 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) -(((-419 |#1|) (-13 (-1012 |#1|) (-10 -7 (IF (|has| |#1| (-6 -4412)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4423)) (-6 -4412) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -419)) -NIL -((-4388 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13 T ELT))) -(((-420 |#1| |#2|) (-10 -7 (-15 -4388 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-569) (-569)) (T -420)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))) -((-1990 (((-709 |#2|) (-1288 $)) NIL T ELT) (((-709 |#2|)) 18 T ELT)) (-2000 (($ (-1288 |#2|) (-1288 $)) NIL T ELT) (($ (-1288 |#2|)) 24 T ELT)) (-1989 (((-709 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) $) 40 T ELT)) (-2224 ((|#3| $) 69 T ELT)) (-4187 ((|#2| (-1288 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3642 (((-1288 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#2|) $) 22 T ELT) (((-709 |#2|) (-1288 $)) 38 T ELT)) (-4402 (((-1288 |#2|) $) 11 T ELT) (($ (-1288 |#2|)) 13 T ELT)) (-2838 ((|#3| $) 55 T ELT))) -(((-421 |#1| |#2| |#3|) (-10 -7 (-15 -1989 ((-709 |#2|) |#1|)) (-15 -4187 (|#2|)) (-15 -1990 ((-709 |#2|))) (-15 -4402 (|#1| (-1288 |#2|))) (-15 -4402 ((-1288 |#2|) |#1|)) (-15 -2000 (|#1| (-1288 |#2|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1|)) (-15 -2224 (|#3| |#1|)) (-15 -2838 (|#3| |#1|)) (-15 -1990 ((-709 |#2|) (-1288 |#1|))) (-15 -4187 (|#2| (-1288 |#1|))) (-15 -2000 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1989 ((-709 |#2|) |#1| (-1288 |#1|)))) (-422 |#2| |#3|) (-175) (-1264 |#2|)) (T -421)) -((-1990 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-4187 (*1 *2) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1990 (((-709 |#1|) (-1288 $)) 58 T ELT) (((-709 |#1|)) 74 T ELT)) (-3750 ((|#1| $) 64 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2000 (($ (-1288 |#1|) (-1288 $)) 60 T ELT) (($ (-1288 |#1|)) 77 T ELT)) (-1989 (((-709 |#1|) $ (-1288 $)) 65 T ELT) (((-709 |#1|) $) 72 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3511 (((-938)) 66 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3534 ((|#1| $) 63 T ELT)) (-2224 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4187 ((|#1| (-1288 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 62 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) 61 T ELT) (((-1288 |#1|) $) 79 T ELT) (((-709 |#1|) (-1288 $)) 78 T ELT)) (-4402 (((-1288 |#1|) $) 76 T ELT) (($ (-1288 |#1|)) 75 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3103 (((-711 $) $) 55 (|has| |#1| (-147)) ELT)) (-2838 ((|#2| $) 57 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2222 (((-1288 $)) 80 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-422 |#1| |#2|) (-142) (-175) (-1264 |t#1|)) (T -422)) -((-2222 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) (-4 *1 (-422 *3 *4)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1264 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *3)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1264 *3)))) (-1990 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-709 *3)))) (-4187 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-175)))) (-1989 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-709 *3))))) -(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -2222 ((-1288 $))) (-15 -3642 ((-1288 |t#1|) $)) (-15 -3642 ((-709 |t#1|) (-1288 $))) (-15 -2000 ($ (-1288 |t#1|))) (-15 -4402 ((-1288 |t#1|) $)) (-15 -4402 ($ (-1288 |t#1|))) (-15 -1990 ((-709 |t#1|))) (-15 -4187 (|t#1|)) (-15 -1989 ((-709 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-383 |#1| |#2|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3575 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) 27 T ELT) (((-3 (-558) #1#) $) 19 T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) 24 T ELT) (((-558) $) 14 T ELT)) (-4376 (($ |#2|) NIL T ELT) (($ (-419 (-558))) 22 T ELT) (($ (-558)) 11 T ELT))) -(((-423 |#1| |#2|) (-10 -7 (-15 -4376 (|#1| (-558))) (-15 -3575 ((-3 (-558) #1="failed") |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -4376 (|#1| |#2|))) (-424 |#2|) (-1238)) (T -423)) -NIL -((-3575 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-419 (-558)) #1#) $) 16 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) 13 (|has| |#1| (-1059 (-558))) ELT)) (-3574 ((|#1| $) 8 T ELT) (((-419 (-558)) $) 17 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) 14 (|has| |#1| (-1059 (-558))) ELT)) (-4376 (($ |#1|) 6 T ELT) (($ (-419 (-558))) 15 (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ (-558)) 12 (|has| |#1| (-1059 (-558))) ELT))) -(((-424 |#1|) (-142) (-1238)) (T -424)) -NIL -(-13 (-1059 |t#1|) (-10 -7 (IF (|has| |t#1| (-1059 (-558))) (-6 (-1059 (-558))) |%noBranch|) (IF (|has| |t#1| (-1059 (-419 (-558)))) (-6 (-1059 (-419 (-558)))) |%noBranch|))) -(((-633 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-633 (-558)) |has| |#1| (-1059 (-558))) ((-633 |#1|) . T) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT)) (-1991 ((|#4| (-791) (-1288 |#4|)) 55 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3399 (((-1288 |#4|) $) 15 T ELT)) (-3534 ((|#2| $) 53 T ELT)) (-1992 (($ $) 156 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 103 T ELT)) (-2180 (($ (-1288 |#4|)) 102 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3398 ((|#1| $) 16 T ELT)) (-3410 (($ $ $) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-4376 (((-877) $) 147 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 |#4|) $) 140 T ELT)) (-3065 (($) 11 T CONST)) (-3454 (((-114) $ $) 39 T ELT)) (-4379 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 133 T ELT)) (* (($ $ $) 130 T ELT))) -(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2180 ($ (-1288 |#4|))) (-15 -2222 ((-1288 |#4|) $)) (-15 -3534 (|#2| $)) (-15 -3399 ((-1288 |#4|) $)) (-15 -3398 (|#1| $)) (-15 -1992 ($ $)) (-15 -1991 (|#4| (-791) (-1288 |#4|))))) (-319) (-1012 |#1|) (-1264 |#2|) (-13 (-422 |#2| |#3|) (-1059 |#2|))) (T -425)) -((-2180 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-422 *4 *5) (-1059 *4))) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-319)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2222 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1059 *4))))) (-3534 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1059 *2))))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1059 *4))))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-1012 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-319)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1059 *3))))) (-1992 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1012 *2)) (-4 *4 (-1264 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1059 *3))))) (-1991 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1288 *2)) (-4 *5 (-319)) (-4 *6 (-1012 *5)) (-4 *2 (-13 (-422 *6 *7) (-1059 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1264 *6))))) -((-4388 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35 T ELT))) -(((-426 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4388 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-319) (-1012 |#1|) (-1264 |#2|) (-13 (-422 |#2| |#3|) (-1059 |#2|)) (-319) (-1012 |#5|) (-1264 |#6|) (-13 (-422 |#6| |#7|) (-1059 |#6|))) (T -426)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1012 *5)) (-4 *7 (-1264 *6)) (-4 *8 (-13 (-422 *6 *7) (-1059 *6))) (-4 *9 (-319)) (-4 *10 (-1012 *9)) (-4 *11 (-1264 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1059 *10)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3534 ((|#2| $) 71 T ELT)) (-1993 (($ (-1288 |#4|)) 27 T ELT) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1059 |#2|)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 37 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 |#4|) $) 28 T ELT)) (-3065 (($) 25 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ $ $) 82 T ELT))) -(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-746) (-10 -8 (-15 -2222 ((-1288 |#4|) $)) (-15 -3534 (|#2| $)) (-15 -1993 ($ (-1288 |#4|))) (IF (|has| |#4| (-1059 |#2|)) (-15 -1993 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1012 |#1|) (-1264 |#2|) (-422 |#2| |#3|) (-1288 |#4|)) (T -427)) -((-2222 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-3534 (*1 *2 *1) (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1288 *5)))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-1288 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1993 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1288 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) -((-4388 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) -(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-175) (-430 |#4|) (-175)) (T -428)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) -((-1980 (((-3 $ #1="failed")) 99 T ELT)) (-3641 (((-1288 (-709 |#2|)) (-1288 $)) NIL T ELT) (((-1288 (-709 |#2|))) 104 T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) 97 T ELT)) (-1906 (((-3 $ #1#)) 96 T ELT)) (-1996 (((-709 |#2|) (-1288 $)) NIL T ELT) (((-709 |#2|)) 115 T ELT)) (-1994 (((-709 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) $) 123 T ELT)) (-2111 (((-1192 (-965 |#2|))) 64 T ELT)) (-1998 ((|#2| (-1288 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-2000 (($ (-1288 |#2|) (-1288 $)) NIL T ELT) (($ (-1288 |#2|)) 125 T ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) 95 T ELT)) (-1907 (((-3 $ #1#)) 87 T ELT)) (-1997 (((-709 |#2|) (-1288 $)) NIL T ELT) (((-709 |#2|)) 113 T ELT)) (-1995 (((-709 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) $) 121 T ELT)) (-2115 (((-1192 (-965 |#2|))) 63 T ELT)) (-1999 ((|#2| (-1288 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3642 (((-1288 |#2|) $ (-1288 $)) NIL T ELT) (((-709 |#2|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#2|) $) 124 T ELT) (((-709 |#2|) (-1288 $)) 133 T ELT)) (-4402 (((-1288 |#2|) $) 109 T ELT) (($ (-1288 |#2|)) 111 T ELT)) (-2103 (((-661 (-965 |#2|)) (-1288 $)) NIL T ELT) (((-661 (-965 |#2|))) 107 T ELT)) (-2944 (($ (-709 |#2|) $) 103 T ELT))) -(((-429 |#1| |#2|) (-10 -7 (-15 -2944 (|#1| (-709 |#2|) |#1|)) (-15 -2111 ((-1192 (-965 |#2|)))) (-15 -2115 ((-1192 (-965 |#2|)))) (-15 -1994 ((-709 |#2|) |#1|)) (-15 -1995 ((-709 |#2|) |#1|)) (-15 -1996 ((-709 |#2|))) (-15 -1997 ((-709 |#2|))) (-15 -1998 (|#2|)) (-15 -1999 (|#2|)) (-15 -4402 (|#1| (-1288 |#2|))) (-15 -4402 ((-1288 |#2|) |#1|)) (-15 -2000 (|#1| (-1288 |#2|))) (-15 -2103 ((-661 (-965 |#2|)))) (-15 -3641 ((-1288 (-709 |#2|)))) (-15 -3642 ((-709 |#2|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1|)) (-15 -1980 ((-3 |#1| #1="failed"))) (-15 -1906 ((-3 |#1| #1#))) (-15 -1907 ((-3 |#1| #1#))) (-15 -2117 ((-3 (-2 (|:| |particular| |#1|) (|:| -2222 (-661 |#1|))) #1#))) (-15 -2118 ((-3 (-2 (|:| |particular| |#1|) (|:| -2222 (-661 |#1|))) #1#))) (-15 -1996 ((-709 |#2|) (-1288 |#1|))) (-15 -1997 ((-709 |#2|) (-1288 |#1|))) (-15 -1998 (|#2| (-1288 |#1|))) (-15 -1999 (|#2| (-1288 |#1|))) (-15 -2000 (|#1| (-1288 |#2|) (-1288 |#1|))) (-15 -3642 ((-709 |#2|) (-1288 |#1|) (-1288 |#1|))) (-15 -3642 ((-1288 |#2|) |#1| (-1288 |#1|))) (-15 -1994 ((-709 |#2|) |#1| (-1288 |#1|))) (-15 -1995 ((-709 |#2|) |#1| (-1288 |#1|))) (-15 -3641 ((-1288 (-709 |#2|)) (-1288 |#1|))) (-15 -2103 ((-661 (-965 |#2|)) (-1288 |#1|)))) (-430 |#2|) (-175)) (T -429)) -((-3641 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1288 (-709 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2103 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-661 (-965 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1999 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-1998 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-1997 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1996 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2115 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1192 (-965 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2111 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1192 (-965 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1980 (((-3 $ #1="failed")) 47 (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3641 (((-1288 (-709 |#1|)) (-1288 $)) 88 T ELT) (((-1288 (-709 |#1|))) 114 T ELT)) (-1932 (((-1288 $)) 91 T ELT)) (-4154 (($) 22 T CONST)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) 50 (|has| |#1| (-569)) ELT)) (-1906 (((-3 $ #1#)) 48 (|has| |#1| (-569)) ELT)) (-1996 (((-709 |#1|) (-1288 $)) 75 T ELT) (((-709 |#1|)) 106 T ELT)) (-1930 ((|#1| $) 84 T ELT)) (-1994 (((-709 |#1|) $ (-1288 $)) 86 T ELT) (((-709 |#1|) $) 104 T ELT)) (-2635 (((-3 $ #1#) $) 55 (|has| |#1| (-569)) ELT)) (-2111 (((-1192 (-965 |#1|))) 102 (|has| |#1| (-376)) ELT)) (-2638 (($ $ (-938)) 36 T ELT)) (-1928 ((|#1| $) 82 T ELT)) (-1908 (((-1192 |#1|) $) 52 (|has| |#1| (-569)) ELT)) (-1998 ((|#1| (-1288 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1926 (((-1192 |#1|) $) 73 T ELT)) (-1920 (((-114)) 67 T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) 79 T ELT) (($ (-1288 |#1|)) 112 T ELT)) (-3887 (((-3 $ #1#) $) 57 (|has| |#1| (-569)) ELT)) (-3511 (((-938)) 90 T ELT)) (-1917 (((-114)) 64 T ELT)) (-2662 (($ $ (-938)) 43 T ELT)) (-1913 (((-114)) 60 T ELT)) (-1911 (((-114)) 58 T ELT)) (-1915 (((-114)) 62 T ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) 51 (|has| |#1| (-569)) ELT)) (-1907 (((-3 $ #1#)) 49 (|has| |#1| (-569)) ELT)) (-1997 (((-709 |#1|) (-1288 $)) 76 T ELT) (((-709 |#1|)) 107 T ELT)) (-1931 ((|#1| $) 85 T ELT)) (-1995 (((-709 |#1|) $ (-1288 $)) 87 T ELT) (((-709 |#1|) $) 105 T ELT)) (-2636 (((-3 $ #1#) $) 56 (|has| |#1| (-569)) ELT)) (-2115 (((-1192 (-965 |#1|))) 103 (|has| |#1| (-376)) ELT)) (-2637 (($ $ (-938)) 37 T ELT)) (-1929 ((|#1| $) 83 T ELT)) (-1909 (((-1192 |#1|) $) 53 (|has| |#1| (-569)) ELT)) (-1999 ((|#1| (-1288 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1927 (((-1192 |#1|) $) 74 T ELT)) (-1921 (((-114)) 68 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1912 (((-114)) 59 T ELT)) (-1914 (((-114)) 61 T ELT)) (-1916 (((-114)) 63 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1919 (((-114)) 66 T ELT)) (-4230 ((|#1| $ (-558)) 118 T ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 81 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) 80 T ELT) (((-1288 |#1|) $) 116 T ELT) (((-709 |#1|) (-1288 $)) 115 T ELT)) (-4402 (((-1288 |#1|) $) 111 T ELT) (($ (-1288 |#1|)) 110 T ELT)) (-2103 (((-661 (-965 |#1|)) (-1288 $)) 89 T ELT) (((-661 (-965 |#1|))) 113 T ELT)) (-2824 (($ $ $) 33 T ELT)) (-1925 (((-114)) 72 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2222 (((-1288 $)) 117 T ELT)) (-1910 (((-661 (-1288 |#1|))) 54 (|has| |#1| (-569)) ELT)) (-2825 (($ $ $ $) 34 T ELT)) (-1923 (((-114)) 70 T ELT)) (-2944 (($ (-709 |#1|) $) 101 T ELT)) (-2823 (($ $ $) 32 T ELT)) (-1924 (((-114)) 71 T ELT)) (-1922 (((-114)) 69 T ELT)) (-1918 (((-114)) 65 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 38 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +((-3671 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-416)))) (-3671 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-937)) (-4 *1 (-416)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-3094 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-2631 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-2605 (*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) (-1977 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-3013 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-2604 (*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) (-1977 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4415)) (-4 *1 (-416)))) (-3013 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4415)) (-4 *1 (-416)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4415)) (-4 *1 (-416)))) (-1976 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4415)) (-4 *1 (-416)) (-5 *2 (-937)))) (-1975 (*1 *2 *3) (-12 (-5 *3 (-558)) (|has| *1 (-6 -4415)) (-4 *1 (-416)) (-5 *2 (-937)))) (-2929 (*1 *1) (-12 (-4 *1 (-416)) (-2958 (|has| *1 (-6 -4415))) (-2958 (|has| *1 (-6 -4407))))) (-3257 (*1 *1) (-12 (-4 *1 (-416)) (-2958 (|has| *1 (-6 -4415))) (-2958 (|has| *1 (-6 -4407)))))) +(-13 (-1080) (-10 -8 (-6 -4199) (-15 -3671 ($ (-558) (-558))) (-15 -3671 ($ (-558) (-558) (-937))) (-15 -4201 ((-558) $)) (-15 -3094 ((-937))) (-15 -2631 ((-558) $)) (-15 -2605 ((-558) $)) (-15 -1977 ((-937))) (-15 -3013 ((-937))) (-15 -2604 ((-937))) (IF (|has| $ (-6 -4415)) (PROGN (-15 -1977 ((-937) (-937))) (-15 -3013 ((-937) (-937))) (-15 -2604 ((-937) (-937))) (-15 -1976 ((-937) (-558))) (-15 -1975 ((-937) (-558)))) |%noBranch|) (IF (|has| $ (-6 -4407)) |%noBranch| (IF (|has| $ (-6 -4415)) |%noBranch| (PROGN (-15 -2929 ($)) (-15 -3257 ($))))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-630 (-229)) . T) ((-630 (-391)) . T) ((-630 (-904 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 $) . T) ((-745) . T) ((-811) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-859) . T) ((-860) . T) ((-863) . T) ((-900 (-391)) . T) ((-939) . T) ((-1022) . T) ((-1040) . T) ((-1080) . T) ((-1058 (-419 (-558))) . T) ((-1058 (-558)) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 59 T ELT)) (-1978 (($ $) 77 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 190 T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) 48 T ELT)) (-1979 ((|#1| $) 16 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-1242)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-1242)) ELT)) (-1981 (($ |#1| (-558)) 42 T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 148 T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 73 T ELT)) (-3886 (((-3 $ #1#) $) 164 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 84 (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) 80 (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) 91 (|has| |#1| (-557)) ELT)) (-1982 (($ |#1| (-558)) 44 T ELT)) (-4152 (((-114) $) 210 (|has| |#1| (-1242)) ELT)) (-2640 (((-114) $) 61 T ELT)) (-2044 (((-790) $) 51 T ELT)) (-1983 (((-3 #2="nil" #3="sqfr" #4="irred" #5="prime") $ (-558)) 175 T ELT)) (-2511 ((|#1| $ (-558)) 174 T ELT)) (-1984 (((-558) $ (-558)) 173 T ELT)) (-1987 (($ |#1| (-558)) 41 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 183 T ELT)) (-2041 (($ |#1| (-660 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558))))) 78 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1985 (($ |#1| (-558)) 43 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 191 (|has| |#1| (-464)) ELT)) (-1980 (($ |#1| (-558) (-3 #2# #3# #4# #5#)) 40 T ELT)) (-1986 (((-660 (-2 (|:| -4161 |#1|) (|:| -2631 (-558)))) $) 72 T ELT)) (-2162 (((-660 (-2 (|:| |flg| (-3 #2# #3# #4# #5#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $) 12 T ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-1242)) ELT)) (-3885 (((-3 $ #1#) $ $) 176 T ELT)) (-2631 (((-558) $) 167 T ELT)) (-4392 ((|#1| $) 74 T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 100 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 106 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) $) NIL (|has| |#1| (-526 (-1197) $)) ELT) (($ $ (-660 (-1197)) (-660 $)) 107 (|has| |#1| (-526 (-1197) $)) ELT) (($ $ (-660 (-305 $))) 103 (|has| |#1| (-321 $)) ELT) (($ $ (-305 $)) NIL (|has| |#1| (-321 $)) ELT) (($ $ $ $) NIL (|has| |#1| (-321 $)) ELT) (($ $ (-660 $) (-660 $)) NIL (|has| |#1| (-321 $)) ELT)) (-4229 (($ $ |#1|) 92 (|has| |#1| (-298 |#1| |#1|)) ELT) (($ $ $) 93 (|has| |#1| (-298 $ $)) ELT)) (-4187 (($ $ (-1 |#1| |#1|)) 182 T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-4401 (((-547) $) 39 (|has| |#1| (-630 (-547))) ELT) (((-391) $) 113 (|has| |#1| (-1040)) ELT) (((-229) $) 119 (|has| |#1| (-1040)) ELT)) (-4375 (((-876) $) 146 T ELT) (($ (-558)) 64 T ELT) (($ $) NIL T ELT) (($ |#1|) 63 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT)) (-3527 (((-790)) 66 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 53 T CONST)) (-3064 (($) 52 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) 159 T ELT)) (-4266 (($ $) 161 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 180 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 125 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 68 T ELT) (($ $ $) 67 T ELT) (($ |#1| $) 69 T ELT) (($ $ |#1|) NIL T ELT))) +(((-417 |#1|) (-13 (-569) (-234 |#1|) (-38 |#1|) (-351 |#1|) (-424 |#1|) (-10 -8 (-15 -4392 (|#1| $)) (-15 -2631 ((-558) $)) (-15 -2041 ($ |#1| (-660 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))))) (-15 -2162 ((-660 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#1|) (|:| |xpnt| (-558)))) $)) (-15 -1987 ($ |#1| (-558))) (-15 -1986 ((-660 (-2 (|:| -4161 |#1|) (|:| -2631 (-558)))) $)) (-15 -1985 ($ |#1| (-558))) (-15 -1984 ((-558) $ (-558))) (-15 -2511 (|#1| $ (-558))) (-15 -1983 ((-3 #1# #2# #3# #4#) $ (-558))) (-15 -2044 ((-790) $)) (-15 -1982 ($ |#1| (-558))) (-15 -1981 ($ |#1| (-558))) (-15 -1980 ($ |#1| (-558) (-3 #1# #2# #3# #4#))) (-15 -1979 (|#1| $)) (-15 -1978 ($ $)) (-15 -4387 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-464)) (-6 (-464)) |%noBranch|) (IF (|has| |#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |#1| (-1242)) (-6 (-1242)) |%noBranch|) (IF (|has| |#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |#1| (-298 $ $)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |#1| (-321 $)) (-6 (-321 $)) |%noBranch|) (IF (|has| |#1| (-526 (-1197) $)) (-6 (-526 (-1197) $)) |%noBranch|))) (-569)) (T -417)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-417 *3)))) (-4392 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-2631 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-2041 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| *2) (|:| |xpnt| (-558))))) (-4 *2 (-569)) (-5 *1 (-417 *2)))) (-2162 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| *3) (|:| |xpnt| (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1987 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1986 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4161 *3) (|:| -2631 (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1985 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1984 (*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1983 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *4)) (-4 *4 (-569)))) (-2044 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) (-1982 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1981 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1980 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-3 #1# #2# #3# #4#)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1979 (*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-1978 (*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569))))) +((-4387 (((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)) 20 T ELT))) +(((-418 |#1| |#2|) (-10 -7 (-15 -4387 ((-417 |#2|) (-1 |#2| |#1|) (-417 |#1|)))) (-569) (-569)) (T -418)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-417 *6)) (-5 *1 (-418 *5 *6))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 13 T ELT)) (-3530 ((|#1| $) 21 (|has| |#1| (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| |#1| (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 17 T ELT) (((-3 (-1197) #1#) $) NIL (|has| |#1| (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) 54 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT)) (-3573 ((|#1| $) 15 T ELT) (((-1197) $) NIL (|has| |#1| (-1058 (-1197))) ELT) (((-419 (-558)) $) 51 (|has| |#1| (-1058 (-558))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) 32 T ELT)) (-3394 (($) NIL (|has| |#1| (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| |#1| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| |#1| (-900 (-391))) ELT)) (-2640 (((-114) $) 38 T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 ((|#1| $) 55 T ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-1172)) ELT)) (-3604 (((-114) $) 22 (|has| |#1| (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| |#1| (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 82 T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| |#1| (-319)) ELT)) (-3531 ((|#1| $) 26 (|has| |#1| (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 135 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 128 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 |#1| |#1|)) 45 T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 ((|#1| $) 57 T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| |#1| (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT) (((-391) $) NIL (|has| |#1| (-1040)) ELT) (((-229) $) NIL (|has| |#1| (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 112 (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 10 T ELT) (($ (-1197)) NIL (|has| |#1| (-1058 (-1197))) ELT)) (-3102 (((-710 $) $) 92 (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 93 T CONST)) (-3532 ((|#1| $) 24 (|has| |#1| (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| |#1| (-841)) ELT)) (-3058 (($) 28 T CONST)) (-3064 (($) 8 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 48 T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4378 (($ $ $) 123 T ELT) (($ |#1| |#1|) 34 T ELT)) (-4266 (($ $) 23 T ELT) (($ $ $) 37 T ELT)) (-4268 (($ $ $) 35 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 122 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 42 T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#1| $) 43 T ELT) (($ $ |#1|) 70 T ELT))) +(((-419 |#1|) (-13 (-1011 |#1|) (-10 -7 (IF (|has| |#1| (-6 -4411)) (IF (|has| |#1| (-464)) (IF (|has| |#1| (-6 -4422)) (-6 -4411) |%noBranch|) |%noBranch|) |%noBranch|))) (-569)) (T -419)) +NIL +((-4387 (((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)) 13 T ELT))) +(((-420 |#1| |#2|) (-10 -7 (-15 -4387 ((-419 |#2|) (-1 |#2| |#1|) (-419 |#1|)))) (-569) (-569)) (T -420)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-419 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6))))) +((-1989 (((-708 |#2|) (-1287 $)) NIL T ELT) (((-708 |#2|)) 18 T ELT)) (-1999 (($ (-1287 |#2|) (-1287 $)) NIL T ELT) (($ (-1287 |#2|)) 24 T ELT)) (-1988 (((-708 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) $) 40 T ELT)) (-2223 ((|#3| $) 69 T ELT)) (-4186 ((|#2| (-1287 $)) NIL T ELT) ((|#2|) 20 T ELT)) (-3641 (((-1287 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#2|) $) 22 T ELT) (((-708 |#2|) (-1287 $)) 38 T ELT)) (-4401 (((-1287 |#2|) $) 11 T ELT) (($ (-1287 |#2|)) 13 T ELT)) (-2837 ((|#3| $) 55 T ELT))) +(((-421 |#1| |#2| |#3|) (-10 -7 (-15 -1988 ((-708 |#2|) |#1|)) (-15 -4186 (|#2|)) (-15 -1989 ((-708 |#2|))) (-15 -4401 (|#1| (-1287 |#2|))) (-15 -4401 ((-1287 |#2|) |#1|)) (-15 -1999 (|#1| (-1287 |#2|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1|)) (-15 -2223 (|#3| |#1|)) (-15 -2837 (|#3| |#1|)) (-15 -1989 ((-708 |#2|) (-1287 |#1|))) (-15 -4186 (|#2| (-1287 |#1|))) (-15 -1999 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -1988 ((-708 |#2|) |#1| (-1287 |#1|)))) (-422 |#2| |#3|) (-175) (-1263 |#2|)) (T -421)) +((-1989 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) (-4186 (*1 *2) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1989 (((-708 |#1|) (-1287 $)) 58 T ELT) (((-708 |#1|)) 74 T ELT)) (-3749 ((|#1| $) 64 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-1999 (($ (-1287 |#1|) (-1287 $)) 60 T ELT) (($ (-1287 |#1|)) 77 T ELT)) (-1988 (((-708 |#1|) $ (-1287 $)) 65 T ELT) (((-708 |#1|) $) 72 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3510 (((-937)) 66 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3533 ((|#1| $) 63 T ELT)) (-2223 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4186 ((|#1| (-1287 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 62 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) 61 T ELT) (((-1287 |#1|) $) 79 T ELT) (((-708 |#1|) (-1287 $)) 78 T ELT)) (-4401 (((-1287 |#1|) $) 76 T ELT) (($ (-1287 |#1|)) 75 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT)) (-3102 (((-710 $) $) 55 (|has| |#1| (-147)) ELT)) (-2837 ((|#2| $) 57 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2221 (((-1287 $)) 80 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-422 |#1| |#2|) (-142) (-175) (-1263 |t#1|)) (T -422)) +((-2221 (*1 *2) (-12 (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) (-4 *1 (-422 *3 *4)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1263 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *3)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) (-4 *4 (-1263 *3)))) (-1989 (*1 *2) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-708 *3)))) (-4186 (*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-175)))) (-1988 (*1 *2 *1) (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-708 *3))))) +(-13 (-383 |t#1| |t#2|) (-10 -8 (-15 -2221 ((-1287 $))) (-15 -3641 ((-1287 |t#1|) $)) (-15 -3641 ((-708 |t#1|) (-1287 $))) (-15 -1999 ($ (-1287 |t#1|))) (-15 -4401 ((-1287 |t#1|) $)) (-15 -4401 ($ (-1287 |t#1|))) (-15 -1989 ((-708 |t#1|))) (-15 -4186 (|t#1|)) (-15 -1988 ((-708 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-383 |#1| |#2|) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-745) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3574 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) 27 T ELT) (((-3 (-558) #1#) $) 19 T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) 24 T ELT) (((-558) $) 14 T ELT)) (-4375 (($ |#2|) NIL T ELT) (($ (-419 (-558))) 22 T ELT) (($ (-558)) 11 T ELT))) +(((-423 |#1| |#2|) (-10 -7 (-15 -4375 (|#1| (-558))) (-15 -3574 ((-3 (-558) #1="failed") |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -4375 (|#1| |#2|))) (-424 |#2|) (-1237)) (T -423)) +NIL +((-3574 (((-3 |#1| #1="failed") $) 9 T ELT) (((-3 (-419 (-558)) #1#) $) 16 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) 13 (|has| |#1| (-1058 (-558))) ELT)) (-3573 ((|#1| $) 8 T ELT) (((-419 (-558)) $) 17 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) 14 (|has| |#1| (-1058 (-558))) ELT)) (-4375 (($ |#1|) 6 T ELT) (($ (-419 (-558))) 15 (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ (-558)) 12 (|has| |#1| (-1058 (-558))) ELT))) +(((-424 |#1|) (-142) (-1237)) (T -424)) +NIL +(-13 (-1058 |t#1|) (-10 -7 (IF (|has| |t#1| (-1058 (-558))) (-6 (-1058 (-558))) |%noBranch|) (IF (|has| |t#1| (-1058 (-419 (-558)))) (-6 (-1058 (-419 (-558)))) |%noBranch|))) +(((-632 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-632 (-558)) |has| |#1| (-1058 (-558))) ((-632 |#1|) . T) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT)) (-1990 ((|#4| (-790) (-1287 |#4|)) 55 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3398 (((-1287 |#4|) $) 15 T ELT)) (-3533 ((|#2| $) 53 T ELT)) (-1991 (($ $) 156 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 103 T ELT)) (-2179 (($ (-1287 |#4|)) 102 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3397 ((|#1| $) 16 T ELT)) (-3409 (($ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-4375 (((-876) $) 147 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 |#4|) $) 140 T ELT)) (-3064 (($) 11 T CONST)) (-3453 (((-114) $ $) 39 T ELT)) (-4378 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 133 T ELT)) (* (($ $ $) 130 T ELT))) +(((-425 |#1| |#2| |#3| |#4|) (-13 (-485) (-10 -8 (-15 -2179 ($ (-1287 |#4|))) (-15 -2221 ((-1287 |#4|) $)) (-15 -3533 (|#2| $)) (-15 -3398 ((-1287 |#4|) $)) (-15 -3397 (|#1| $)) (-15 -1991 ($ $)) (-15 -1990 (|#4| (-790) (-1287 |#4|))))) (-319) (-1011 |#1|) (-1263 |#2|) (-13 (-422 |#2| |#3|) (-1058 |#2|))) (T -425)) +((-2179 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-422 *4 *5) (-1058 *4))) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-319)) (-5 *1 (-425 *3 *4 *5 *6)))) (-2221 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1058 *4))))) (-3533 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1058 *2))))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1058 *4))))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-319)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1058 *3))))) (-1991 (*1 *1 *1) (-12 (-4 *2 (-319)) (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1058 *3))))) (-1990 (*1 *2 *3 *4) (-12 (-5 *3 (-790)) (-5 *4 (-1287 *2)) (-4 *5 (-319)) (-4 *6 (-1011 *5)) (-4 *2 (-13 (-422 *6 *7) (-1058 *6))) (-5 *1 (-425 *5 *6 *7 *2)) (-4 *7 (-1263 *6))))) +((-4387 (((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)) 35 T ELT))) +(((-426 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4387 ((-425 |#5| |#6| |#7| |#8|) (-1 |#5| |#1|) (-425 |#1| |#2| |#3| |#4|)))) (-319) (-1011 |#1|) (-1263 |#2|) (-13 (-422 |#2| |#3|) (-1058 |#2|)) (-319) (-1011 |#5|) (-1263 |#6|) (-13 (-422 |#6| |#7|) (-1058 |#6|))) (T -426)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) (-4 *6 (-1011 *5)) (-4 *7 (-1263 *6)) (-4 *8 (-13 (-422 *6 *7) (-1058 *6))) (-4 *9 (-319)) (-4 *10 (-1011 *9)) (-4 *11 (-1263 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-13 (-422 *10 *11) (-1058 *10)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3533 ((|#2| $) 71 T ELT)) (-1992 (($ (-1287 |#4|)) 27 T ELT) (($ (-425 |#1| |#2| |#3| |#4|)) 85 (|has| |#4| (-1058 |#2|)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 37 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 |#4|) $) 28 T ELT)) (-3064 (($) 25 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ $ $) 82 T ELT))) +(((-427 |#1| |#2| |#3| |#4| |#5|) (-13 (-745) (-10 -8 (-15 -2221 ((-1287 |#4|) $)) (-15 -3533 (|#2| $)) (-15 -1992 ($ (-1287 |#4|))) (IF (|has| |#4| (-1058 |#2|)) (-15 -1992 ($ (-425 |#1| |#2| |#3| |#4|))) |%noBranch|))) (-319) (-1011 |#1|) (-1263 |#2|) (-422 |#2| |#3|) (-1287 |#4|)) (T -427)) +((-2221 (*1 *2 *1) (-12 (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) (-3533 (*1 *2 *1) (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1287 *5)))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-1287 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2))) (-1992 (*1 *1 *2) (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1058 *4)) (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-422 *4 *5)) (-14 *7 (-1287 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7))))) +((-4387 ((|#3| (-1 |#4| |#2|) |#1|) 29 T ELT))) +(((-428 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#3| (-1 |#4| |#2|) |#1|))) (-430 |#2|) (-175) (-430 |#4|) (-175)) (T -428)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5))))) +((-1979 (((-3 $ #1="failed")) 99 T ELT)) (-3640 (((-1287 (-708 |#2|)) (-1287 $)) NIL T ELT) (((-1287 (-708 |#2|))) 104 T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) 97 T ELT)) (-1905 (((-3 $ #1#)) 96 T ELT)) (-1995 (((-708 |#2|) (-1287 $)) NIL T ELT) (((-708 |#2|)) 115 T ELT)) (-1993 (((-708 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) $) 123 T ELT)) (-2110 (((-1191 (-964 |#2|))) 64 T ELT)) (-1997 ((|#2| (-1287 $)) NIL T ELT) ((|#2|) 119 T ELT)) (-1999 (($ (-1287 |#2|) (-1287 $)) NIL T ELT) (($ (-1287 |#2|)) 125 T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) 95 T ELT)) (-1906 (((-3 $ #1#)) 87 T ELT)) (-1996 (((-708 |#2|) (-1287 $)) NIL T ELT) (((-708 |#2|)) 113 T ELT)) (-1994 (((-708 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) $) 121 T ELT)) (-2114 (((-1191 (-964 |#2|))) 63 T ELT)) (-1998 ((|#2| (-1287 $)) NIL T ELT) ((|#2|) 117 T ELT)) (-3641 (((-1287 |#2|) $ (-1287 $)) NIL T ELT) (((-708 |#2|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#2|) $) 124 T ELT) (((-708 |#2|) (-1287 $)) 133 T ELT)) (-4401 (((-1287 |#2|) $) 109 T ELT) (($ (-1287 |#2|)) 111 T ELT)) (-2102 (((-660 (-964 |#2|)) (-1287 $)) NIL T ELT) (((-660 (-964 |#2|))) 107 T ELT)) (-2943 (($ (-708 |#2|) $) 103 T ELT))) +(((-429 |#1| |#2|) (-10 -7 (-15 -2943 (|#1| (-708 |#2|) |#1|)) (-15 -2110 ((-1191 (-964 |#2|)))) (-15 -2114 ((-1191 (-964 |#2|)))) (-15 -1993 ((-708 |#2|) |#1|)) (-15 -1994 ((-708 |#2|) |#1|)) (-15 -1995 ((-708 |#2|))) (-15 -1996 ((-708 |#2|))) (-15 -1997 (|#2|)) (-15 -1998 (|#2|)) (-15 -4401 (|#1| (-1287 |#2|))) (-15 -4401 ((-1287 |#2|) |#1|)) (-15 -1999 (|#1| (-1287 |#2|))) (-15 -2102 ((-660 (-964 |#2|)))) (-15 -3640 ((-1287 (-708 |#2|)))) (-15 -3641 ((-708 |#2|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1|)) (-15 -1979 ((-3 |#1| #1="failed"))) (-15 -1905 ((-3 |#1| #1#))) (-15 -1906 ((-3 |#1| #1#))) (-15 -2116 ((-3 (-2 (|:| |particular| |#1|) (|:| -2221 (-660 |#1|))) #1#))) (-15 -2117 ((-3 (-2 (|:| |particular| |#1|) (|:| -2221 (-660 |#1|))) #1#))) (-15 -1995 ((-708 |#2|) (-1287 |#1|))) (-15 -1996 ((-708 |#2|) (-1287 |#1|))) (-15 -1997 (|#2| (-1287 |#1|))) (-15 -1998 (|#2| (-1287 |#1|))) (-15 -1999 (|#1| (-1287 |#2|) (-1287 |#1|))) (-15 -3641 ((-708 |#2|) (-1287 |#1|) (-1287 |#1|))) (-15 -3641 ((-1287 |#2|) |#1| (-1287 |#1|))) (-15 -1993 ((-708 |#2|) |#1| (-1287 |#1|))) (-15 -1994 ((-708 |#2|) |#1| (-1287 |#1|))) (-15 -3640 ((-1287 (-708 |#2|)) (-1287 |#1|))) (-15 -2102 ((-660 (-964 |#2|)) (-1287 |#1|)))) (-430 |#2|) (-175)) (T -429)) +((-3640 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1287 (-708 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2102 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-660 (-964 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1998 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-1997 (*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) (-1996 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-708 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-1995 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-708 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2114 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1191 (-964 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) (-2110 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-1191 (-964 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1979 (((-3 $ #1="failed")) 47 (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3640 (((-1287 (-708 |#1|)) (-1287 $)) 88 T ELT) (((-1287 (-708 |#1|))) 114 T ELT)) (-1931 (((-1287 $)) 91 T ELT)) (-4153 (($) 22 T CONST)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) 50 (|has| |#1| (-569)) ELT)) (-1905 (((-3 $ #1#)) 48 (|has| |#1| (-569)) ELT)) (-1995 (((-708 |#1|) (-1287 $)) 75 T ELT) (((-708 |#1|)) 106 T ELT)) (-1929 ((|#1| $) 84 T ELT)) (-1993 (((-708 |#1|) $ (-1287 $)) 86 T ELT) (((-708 |#1|) $) 104 T ELT)) (-2634 (((-3 $ #1#) $) 55 (|has| |#1| (-569)) ELT)) (-2110 (((-1191 (-964 |#1|))) 102 (|has| |#1| (-376)) ELT)) (-2637 (($ $ (-937)) 36 T ELT)) (-1927 ((|#1| $) 82 T ELT)) (-1907 (((-1191 |#1|) $) 52 (|has| |#1| (-569)) ELT)) (-1997 ((|#1| (-1287 $)) 77 T ELT) ((|#1|) 108 T ELT)) (-1925 (((-1191 |#1|) $) 73 T ELT)) (-1919 (((-114)) 67 T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) 79 T ELT) (($ (-1287 |#1|)) 112 T ELT)) (-3886 (((-3 $ #1#) $) 57 (|has| |#1| (-569)) ELT)) (-3510 (((-937)) 90 T ELT)) (-1916 (((-114)) 64 T ELT)) (-2661 (($ $ (-937)) 43 T ELT)) (-1912 (((-114)) 60 T ELT)) (-1910 (((-114)) 58 T ELT)) (-1914 (((-114)) 62 T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) 51 (|has| |#1| (-569)) ELT)) (-1906 (((-3 $ #1#)) 49 (|has| |#1| (-569)) ELT)) (-1996 (((-708 |#1|) (-1287 $)) 76 T ELT) (((-708 |#1|)) 107 T ELT)) (-1930 ((|#1| $) 85 T ELT)) (-1994 (((-708 |#1|) $ (-1287 $)) 87 T ELT) (((-708 |#1|) $) 105 T ELT)) (-2635 (((-3 $ #1#) $) 56 (|has| |#1| (-569)) ELT)) (-2114 (((-1191 (-964 |#1|))) 103 (|has| |#1| (-376)) ELT)) (-2636 (($ $ (-937)) 37 T ELT)) (-1928 ((|#1| $) 83 T ELT)) (-1908 (((-1191 |#1|) $) 53 (|has| |#1| (-569)) ELT)) (-1998 ((|#1| (-1287 $)) 78 T ELT) ((|#1|) 109 T ELT)) (-1926 (((-1191 |#1|) $) 74 T ELT)) (-1920 (((-114)) 68 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1911 (((-114)) 59 T ELT)) (-1913 (((-114)) 61 T ELT)) (-1915 (((-114)) 63 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1918 (((-114)) 66 T ELT)) (-4229 ((|#1| $ (-558)) 118 T ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 81 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) 80 T ELT) (((-1287 |#1|) $) 116 T ELT) (((-708 |#1|) (-1287 $)) 115 T ELT)) (-4401 (((-1287 |#1|) $) 111 T ELT) (($ (-1287 |#1|)) 110 T ELT)) (-2102 (((-660 (-964 |#1|)) (-1287 $)) 89 T ELT) (((-660 (-964 |#1|))) 113 T ELT)) (-2823 (($ $ $) 33 T ELT)) (-1924 (((-114)) 72 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2221 (((-1287 $)) 117 T ELT)) (-1909 (((-660 (-1287 |#1|))) 54 (|has| |#1| (-569)) ELT)) (-2824 (($ $ $ $) 34 T ELT)) (-1922 (((-114)) 70 T ELT)) (-2943 (($ (-708 |#1|) $) 101 T ELT)) (-2822 (($ $ $) 32 T ELT)) (-1923 (((-114)) 71 T ELT)) (-1921 (((-114)) 69 T ELT)) (-1917 (((-114)) 65 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 38 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) (((-430 |#1|) (-142) (-175)) (T -430)) -((-2222 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1288 *1)) (-4 *1 (-430 *3)))) (-3642 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1288 *3)))) (-3642 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) (-3641 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1288 (-709 *3))))) (-2103 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-661 (-965 *3))))) (-2000 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-4402 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1288 *3)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-1999 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-1998 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-1997 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-1996 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-1995 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3)))) (-2115 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1192 (-965 *3))))) (-2111 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1192 (-965 *3))))) (-2944 (*1 *1 *2 *1) (-12 (-5 *2 (-709 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175))))) -(-13 (-380 |t#1|) (-298 (-558) |t#1|) (-10 -8 (-15 -2222 ((-1288 $))) (-15 -3642 ((-1288 |t#1|) $)) (-15 -3642 ((-709 |t#1|) (-1288 $))) (-15 -3641 ((-1288 (-709 |t#1|)))) (-15 -2103 ((-661 (-965 |t#1|)))) (-15 -2000 ($ (-1288 |t#1|))) (-15 -4402 ((-1288 |t#1|) $)) (-15 -4402 ($ (-1288 |t#1|))) (-15 -1999 (|t#1|)) (-15 -1998 (|t#1|)) (-15 -1997 ((-709 |t#1|))) (-15 -1996 ((-709 |t#1|))) (-15 -1995 ((-709 |t#1|) $)) (-15 -1994 ((-709 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2115 ((-1192 (-965 |t#1|)))) (-15 -2111 ((-1192 (-965 |t#1|))))) |%noBranch|) (-15 -2944 ($ (-709 |t#1|) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-298 (-558) |#1|) . T) ((-380 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-740) . T) ((-764 |#1|) . T) ((-781) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-3536 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 28 T ELT)) (-2001 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 17 T ELT))) -(((-431 |#1|) (-10 -7 (-15 -3536 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -2001 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-569)) (T -431)) -((-2001 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-3536 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-569)) (-5 *2 (-417 *4)) (-5 *1 (-431 *4))))) -((-3484 (((-661 (-1198)) $) 81 T ELT)) (-3486 (((-419 (-1192 $)) $ (-628 $)) 313 T ELT)) (-1747 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) 277 T ELT)) (-3575 (((-3 (-628 $) #1="failed") $) NIL T ELT) (((-3 (-1198) #1#) $) 84 T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-419 (-965 |#2|)) #1#) $) 363 T ELT) (((-3 (-965 |#2|) #1#) $) 275 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3574 (((-628 $) $) NIL T ELT) (((-1198) $) 28 T ELT) (((-558) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-419 (-965 |#2|)) $) 345 T ELT) (((-965 |#2|) $) 272 T ELT) (((-419 (-558)) $) NIL T ELT)) (-4023 (((-115) (-115)) 47 T ELT)) (-3397 (($ $) 99 T ELT)) (-1745 (((-3 (-628 $) #1#) $) 268 T ELT)) (-1744 (((-661 (-628 $)) $) 269 T ELT)) (-3224 (((-3 (-661 $) #1#) $) 287 T ELT)) (-3226 (((-3 (-2 (|:| |val| $) (|:| -2632 (-558))) #1#) $) 294 T ELT)) (-3223 (((-3 (-661 $) #1#) $) 285 T ELT)) (-2002 (((-3 (-2 (|:| -4384 (-558)) (|:| |var| (-628 $))) #1#) $) 304 T ELT)) (-3225 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #1#) $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) #1#) $ (-1198)) 257 T ELT)) (-2005 (((-114) $) 17 T ELT)) (-2004 ((|#2| $) 19 T ELT)) (-4198 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) 276 T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) 109 T ELT) (($ $ (-1198) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1198) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1198)) 62 T ELT) (($ $ (-661 (-1198))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1198)) 65 T ELT) (($ $ (-661 (-115)) (-661 $) (-1198)) 72 T ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ $))) 120 T ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ (-661 $)))) 282 T ELT) (($ $ (-1198) (-791) (-1 $ (-661 $))) 105 T ELT) (($ $ (-1198) (-791) (-1 $ $)) 104 T ELT)) (-4230 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) 119 T ELT)) (-4188 (($ $ (-1198)) 278 T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-3396 (($ $) 324 T ELT)) (-4402 (((-905 (-558)) $) 297 T ELT) (((-905 (-391)) $) 301 T ELT) (($ (-417 $)) 359 T ELT) (((-547) $) NIL T ELT)) (-4376 (((-877) $) 279 T ELT) (($ (-628 $)) 93 T ELT) (($ (-1198)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1146 |#2| (-628 $))) NIL T ELT) (($ (-419 |#2|)) 329 T ELT) (($ (-965 (-419 |#2|))) 368 T ELT) (($ (-419 (-965 (-419 |#2|)))) 341 T ELT) (($ (-419 (-965 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-965 |#2|)) 216 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) 373 T ELT)) (-3528 (((-791)) 88 T ELT)) (-2468 (((-114) (-115)) 42 T ELT)) (-2003 (($ (-1198) $) 31 T ELT) (($ (-1198) $ $) 32 T ELT) (($ (-1198) $ $ $) 33 T ELT) (($ (-1198) $ $ $ $) 34 T ELT) (($ (-1198) (-661 $)) 39 T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-938) $) NIL T ELT))) -(((-432 |#1| |#2|) (-10 -7 (-15 * (|#1| (-938) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -3575 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4376 (|#1| (-558))) (-15 -3528 ((-791))) (-15 * (|#1| |#2| |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -4376 (|#1| (-965 |#2|))) (-15 -3575 ((-3 (-965 |#2|) #1#) |#1|)) (-15 -3574 ((-965 |#2|) |#1|)) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198))) (-15 * (|#1| |#1| |#2|)) (-15 -4376 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4376 (|#1| (-419 (-965 |#2|)))) (-15 -3575 ((-3 (-419 (-965 |#2|)) #1#) |#1|)) (-15 -3574 ((-419 (-965 |#2|)) |#1|)) (-15 -3486 ((-419 (-1192 |#1|)) |#1| (-628 |#1|))) (-15 -4376 (|#1| (-419 (-965 (-419 |#2|))))) (-15 -4376 (|#1| (-965 (-419 |#2|)))) (-15 -4376 (|#1| (-419 |#2|))) (-15 -3396 (|#1| |#1|)) (-15 -4402 (|#1| (-417 |#1|))) (-15 -4198 (|#1| |#1| (-1198) (-791) (-1 |#1| |#1|))) (-15 -4198 (|#1| |#1| (-1198) (-791) (-1 |#1| (-661 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 (-791)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 (-791)) (-661 (-1 |#1| |#1|)))) (-15 -3226 ((-3 (-2 (|:| |val| |#1|) (|:| -2632 (-558))) #1#) |#1|)) (-15 -3225 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2632 (-558))) #1#) |#1| (-1198))) (-15 -3225 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2632 (-558))) #1#) |#1| (-115))) (-15 -3397 (|#1| |#1|)) (-15 -4376 (|#1| (-1146 |#2| (-628 |#1|)))) (-15 -2002 ((-3 (-2 (|:| -4384 (-558)) (|:| |var| (-628 |#1|))) #1#) |#1|)) (-15 -3223 ((-3 (-661 |#1|) #1#) |#1|)) (-15 -3225 ((-3 (-2 (|:| |var| (-628 |#1|)) (|:| -2632 (-558))) #1#) |#1|)) (-15 -3224 ((-3 (-661 |#1|) #1#) |#1|)) (-15 -4198 (|#1| |#1| (-661 (-115)) (-661 |#1|) (-1198))) (-15 -4198 (|#1| |#1| (-115) |#1| (-1198))) (-15 -4198 (|#1| |#1|)) (-15 -4198 (|#1| |#1| (-661 (-1198)))) (-15 -4198 (|#1| |#1| (-1198))) (-15 -2003 (|#1| (-1198) (-661 |#1|))) (-15 -2003 (|#1| (-1198) |#1| |#1| |#1| |#1|)) (-15 -2003 (|#1| (-1198) |#1| |#1| |#1|)) (-15 -2003 (|#1| (-1198) |#1| |#1|)) (-15 -2003 (|#1| (-1198) |#1|)) (-15 -3484 ((-661 (-1198)) |#1|)) (-15 -2004 (|#2| |#1|)) (-15 -2005 ((-114) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -4402 ((-905 (-391)) |#1|)) (-15 -4402 ((-905 (-558)) |#1|)) (-15 -4376 (|#1| (-1198))) (-15 -3575 ((-3 (-1198) #1#) |#1|)) (-15 -3574 ((-1198) |#1|)) (-15 -4198 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4198 (|#1| |#1| (-115) (-1 |#1| (-661 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4198 (|#1| |#1| (-661 (-115)) (-661 (-1 |#1| |#1|)))) (-15 -4198 (|#1| |#1| (-1198) (-1 |#1| |#1|))) (-15 -4198 (|#1| |#1| (-1198) (-1 |#1| (-661 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 (-1 |#1| (-661 |#1|))))) (-15 -4198 (|#1| |#1| (-661 (-1198)) (-661 (-1 |#1| |#1|)))) (-15 -2468 ((-114) (-115))) (-15 -4023 ((-115) (-115))) (-15 -1744 ((-661 (-628 |#1|)) |#1|)) (-15 -1745 ((-3 (-628 |#1|) #1#) |#1|)) (-15 -1747 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -1747 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -1747 (|#1| |#1| (-305 |#1|))) (-15 -4230 (|#1| (-115) (-661 |#1|))) (-15 -4230 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4230 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4230 (|#1| (-115) |#1| |#1|)) (-15 -4230 (|#1| (-115) |#1|)) (-15 -4198 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#1| |#1|)) (-15 -4198 (|#1| |#1| (-305 |#1|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4198 (|#1| |#1| (-661 (-628 |#1|)) (-661 |#1|))) (-15 -4198 (|#1| |#1| (-628 |#1|) |#1|)) (-15 -4376 (|#1| (-628 |#1|))) (-15 -3575 ((-3 (-628 |#1|) #1#) |#1|)) (-15 -3574 ((-628 |#1|) |#1|)) (-15 -4376 ((-877) |#1|))) (-433 |#2|) (-1122)) (T -432)) -((-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1122)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-3528 (*1 *2) (-12 (-4 *4 (-1122)) (-5 *2 (-791)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 129 (|has| |#1| (-25)) ELT)) (-3484 (((-661 (-1198)) $) 220 T ELT)) (-3486 (((-419 (-1192 $)) $ (-628 $)) 188 (|has| |#1| (-569)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 160 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 161 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 163 (|has| |#1| (-569)) ELT)) (-1743 (((-661 (-628 $)) $) 42 T ELT)) (-1426 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1747 (($ $ (-305 $)) 54 T ELT) (($ $ (-661 (-305 $))) 53 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 52 T ELT)) (-4205 (($ $) 180 (|has| |#1| (-569)) ELT)) (-4401 (((-417 $) $) 181 (|has| |#1| (-569)) ELT)) (-1788 (((-114) $ $) 171 (|has| |#1| (-569)) ELT)) (-4154 (($) 117 (-3957 (|has| |#1| (-1133)) (|has| |#1| (-25))) CONST)) (-3575 (((-3 (-628 $) #1="failed") $) 67 T ELT) (((-3 (-1198) #1#) $) 233 T ELT) (((-3 (-558) #1#) $) 227 (|has| |#1| (-1059 (-558))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-419 (-965 |#1|)) #1#) $) 186 (|has| |#1| (-569)) ELT) (((-3 (-965 |#1|) #1#) $) 136 (|has| |#1| (-1070)) ELT) (((-3 (-419 (-558)) #1#) $) 111 (-3957 (-12 (|has| |#1| (-1059 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3574 (((-628 $) $) 68 T ELT) (((-1198) $) 234 T ELT) (((-558) $) 226 (|has| |#1| (-1059 (-558))) ELT) ((|#1| $) 225 T ELT) (((-419 (-965 |#1|)) $) 187 (|has| |#1| (-569)) ELT) (((-965 |#1|) $) 137 (|has| |#1| (-1070)) ELT) (((-419 (-558)) $) 112 (-3957 (-12 (|has| |#1| (-1059 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-2963 (($ $ $) 175 (|has| |#1| (-569)) ELT)) (-2493 (((-709 (-558)) (-709 $)) 153 (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 152 (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 151 (|has| |#1| (-1070)) ELT) (((-709 |#1|) (-709 $)) 150 (|has| |#1| (-1070)) ELT)) (-3887 (((-3 $ "failed") $) 119 (|has| |#1| (-1133)) ELT)) (-2962 (($ $ $) 174 (|has| |#1| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 169 (|has| |#1| (-569)) ELT)) (-4153 (((-114) $) 182 (|has| |#1| (-569)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 229 (|has| |#1| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 228 (|has| |#1| (-901 (-391))) ELT)) (-2972 (($ $) 49 T ELT) (($ (-661 $)) 48 T ELT)) (-1742 (((-661 (-115)) $) 41 T ELT)) (-4023 (((-115) (-115)) 40 T ELT)) (-2641 (((-114) $) 118 (|has| |#1| (-1133)) ELT)) (-3074 (((-114) $) 20 (|has| $ (-1059 (-558))) ELT)) (-3397 (($ $) 203 (|has| |#1| (-1070)) ELT)) (-3399 (((-1146 |#1| (-628 $)) $) 204 (|has| |#1| (-1070)) ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 178 (|has| |#1| (-569)) ELT)) (-1740 (((-1192 $) (-628 $)) 23 (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) 34 T ELT)) (-1745 (((-3 (-628 $) "failed") $) 44 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 155 (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 154 (-2961 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 149 (|has| |#1| (-1070)) ELT) (((-709 |#1|) (-1288 $)) 148 (|has| |#1| (-1070)) ELT)) (-2102 (($ (-661 $)) 167 (|has| |#1| (-569)) ELT) (($ $ $) 166 (|has| |#1| (-569)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-1744 (((-661 (-628 $)) $) 43 T ELT)) (-2449 (($ (-115) $) 36 T ELT) (($ (-115) (-661 $)) 35 T ELT)) (-3224 (((-3 (-661 $) "failed") $) 209 (|has| |#1| (-1133)) ELT)) (-3226 (((-3 (-2 (|:| |val| $) (|:| -2632 (-558))) "failed") $) 200 (|has| |#1| (-1070)) ELT)) (-3223 (((-3 (-661 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-2002 (((-3 (-2 (|:| -4384 (-558)) (|:| |var| (-628 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-3225 (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) "failed") $) 208 (|has| |#1| (-1133)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) "failed") $ (-115)) 202 (|has| |#1| (-1070)) ELT) (((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) "failed") $ (-1198)) 201 (|has| |#1| (-1070)) ELT)) (-3032 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1198)) 37 T ELT)) (-2874 (($ $) 121 (-3957 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-3002 (((-791) $) 45 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2005 (((-114) $) 222 T ELT)) (-2004 ((|#1| $) 221 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 168 (|has| |#1| (-569)) ELT)) (-3562 (($ (-661 $)) 165 (|has| |#1| (-569)) ELT) (($ $ $) 164 (|has| |#1| (-569)) ELT)) (-1741 (((-114) $ $) 33 T ELT) (((-114) $ (-1198)) 32 T ELT)) (-4162 (((-417 $) $) 179 (|has| |#1| (-569)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 176 (|has| |#1| (-569)) ELT)) (-3886 (((-3 $ "failed") $ $) 159 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 170 (|has| |#1| (-569)) ELT)) (-3075 (((-114) $) 21 (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-628 $) $) 65 T ELT) (($ $ (-661 (-628 $)) (-661 $)) 64 T ELT) (($ $ (-661 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-661 $) (-661 $)) 60 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) 31 T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) 30 T ELT) (($ $ (-1198) (-1 $ (-661 $))) 29 T ELT) (($ $ (-1198) (-1 $ $)) 28 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) 27 T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-661 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT) (($ $ (-1198)) 214 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1198))) 213 (|has| |#1| (-631 (-547))) ELT) (($ $) 212 (|has| |#1| (-631 (-547))) ELT) (($ $ (-115) $ (-1198)) 211 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-115)) (-661 $) (-1198)) 210 (|has| |#1| (-631 (-547))) ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ $))) 199 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ (-661 $)))) 198 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791) (-1 $ (-661 $))) 197 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791) (-1 $ $)) 196 (|has| |#1| (-1070)) ELT)) (-1787 (((-791) $) 172 (|has| |#1| (-569)) ELT)) (-4230 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-661 $)) 55 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 173 (|has| |#1| (-569)) ELT)) (-1746 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-4188 (($ $ (-1198)) 146 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198))) 144 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791)) 143 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 142 (|has| |#1| (-1070)) ELT)) (-3396 (($ $) 193 (|has| |#1| (-569)) ELT)) (-3398 (((-1146 |#1| (-628 $)) $) 194 (|has| |#1| (-569)) ELT)) (-3603 (($ $) 22 (|has| $ (-1070)) ELT)) (-4402 (((-905 (-558)) $) 231 (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) 230 (|has| |#1| (-631 (-905 (-391)))) ELT) (($ (-417 $)) 195 (|has| |#1| (-569)) ELT) (((-547) $) 113 (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $ $) 124 (|has| |#1| (-485)) ELT)) (-2824 (($ $ $) 125 (|has| |#1| (-485)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-628 $)) 66 T ELT) (($ (-1198)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1146 |#1| (-628 $))) 205 (|has| |#1| (-1070)) ELT) (($ (-419 |#1|)) 191 (|has| |#1| (-569)) ELT) (($ (-965 (-419 |#1|))) 190 (|has| |#1| (-569)) ELT) (($ (-419 (-965 (-419 |#1|)))) 189 (|has| |#1| (-569)) ELT) (($ (-419 (-965 |#1|))) 185 (|has| |#1| (-569)) ELT) (($ $) 158 (|has| |#1| (-569)) ELT) (($ (-965 |#1|)) 135 (|has| |#1| (-1070)) ELT) (($ (-419 (-558))) 110 (-3957 (|has| |#1| (-569)) (-12 (|has| |#1| (-1059 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ (-558)) 109 (-3957 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-558)))) ELT)) (-3103 (((-711 $) $) 156 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 138 (|has| |#1| (-1070)) CONST)) (-2989 (($ $) 51 T ELT) (($ (-661 $)) 50 T ELT)) (-2468 (((-114) (-115)) 39 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 162 (|has| |#1| (-569)) ELT)) (-2003 (($ (-1198) $) 219 T ELT) (($ (-1198) $ $) 218 T ELT) (($ (-1198) $ $ $) 217 T ELT) (($ (-1198) $ $ $ $) 216 T ELT) (($ (-1198) (-661 $)) 215 T ELT)) (-3059 (($) 128 (|has| |#1| (-25)) CONST)) (-3065 (($) 116 (|has| |#1| (-1133)) CONST)) (-3070 (($ $ (-1198)) 145 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198))) 141 (|has| |#1| (-1070)) ELT) (($ $ (-1198) (-791)) 140 (|has| |#1| (-1070)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 139 (|has| |#1| (-1070)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ (-1146 |#1| (-628 $)) (-1146 |#1| (-628 $))) 192 (|has| |#1| (-569)) ELT) (($ $ $) 122 (-3957 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-4267 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-558)) 123 (-3957 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT) (($ $ (-791)) 120 (|has| |#1| (-1133)) ELT) (($ $ (-938)) 115 (|has| |#1| (-1133)) ELT)) (* (($ (-419 (-558)) $) 184 (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) 183 (|has| |#1| (-569)) ELT) (($ $ |#1|) 157 (|has| |#1| (-175)) ELT) (($ |#1| $) 147 (|has| |#1| (-1070)) ELT) (($ (-558) $) 132 (|has| |#1| (-21)) ELT) (($ (-791) $) 130 (|has| |#1| (-25)) ELT) (($ (-938) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1133)) ELT))) -(((-433 |#1|) (-142) (-1122)) (T -433)) -((-2005 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-5 *2 (-114)))) (-2004 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-5 *2 (-661 (-1198))))) (-2003 (*1 *1 *2 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) (-2003 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) (-2003 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) (-2003 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) (-2003 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-661 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1122)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-4 *3 (-631 (-547))))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1198))) (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-4 *3 (-631 (-547))))) (-4198 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)) (-4 *2 (-631 (-547))))) (-4198 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1198)) (-4 *1 (-433 *4)) (-4 *4 (-1122)) (-4 *4 (-631 (-547))))) (-4198 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 *1)) (-5 *4 (-1198)) (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-631 (-547))))) (-3224 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1122)) (-5 *2 (-661 *1)) (-4 *1 (-433 *3)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2632 (-558)))) (-4 *1 (-433 *3)))) (-3223 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-661 *1)) (-4 *1 (-433 *3)))) (-2002 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| -4384 (-558)) (|:| |var| (-628 *1)))) (-4 *1 (-433 *3)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1146 *3 (-628 *1))) (-4 *3 (-1070)) (-4 *3 (-1122)) (-4 *1 (-433 *3)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *3 (-1122)) (-5 *2 (-1146 *3 (-628 *1))) (-4 *1 (-433 *3)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)) (-4 *2 (-1070)))) (-3225 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2632 (-558)))) (-4 *1 (-433 *4)))) (-3225 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-1070)) (-4 *4 (-1122)) (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2632 (-558)))) (-4 *1 (-433 *4)))) (-3226 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1122)) (-5 *2 (-2 (|:| |val| *1) (|:| -2632 (-558)))) (-4 *1 (-433 *3)))) (-4198 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-791))) (-5 *4 (-661 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-1070)))) (-4198 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-791))) (-5 *4 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-1070)))) (-4198 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-791)) (-5 *4 (-1 *1 (-661 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-1070)))) (-4198 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-791)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-1070)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-569)) (-4 *3 (-1122)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1122)) (-5 *2 (-1146 *3 (-628 *1))) (-4 *1 (-433 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)) (-4 *2 (-569)))) (-4379 (*1 *1 *2 *2) (-12 (-5 *2 (-1146 *3 (-628 *1))) (-4 *3 (-569)) (-4 *3 (-1122)) (-4 *1 (-433 *3)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-569)) (-4 *3 (-1122)) (-4 *1 (-433 *3)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-965 (-419 *3))) (-4 *3 (-569)) (-4 *3 (-1122)) (-4 *1 (-433 *3)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-419 *3)))) (-4 *3 (-569)) (-4 *3 (-1122)) (-4 *1 (-433 *3)))) (-3486 (*1 *2 *1 *3) (-12 (-5 *3 (-628 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1122)) (-4 *4 (-569)) (-5 *2 (-419 (-1192 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-4 *3 (-1133))))) -(-13 (-310) (-1059 (-1198)) (-899 |t#1|) (-412 |t#1|) (-424 |t#1|) (-10 -8 (-15 -2005 ((-114) $)) (-15 -2004 (|t#1| $)) (-15 -3484 ((-661 (-1198)) $)) (-15 -2003 ($ (-1198) $)) (-15 -2003 ($ (-1198) $ $)) (-15 -2003 ($ (-1198) $ $ $)) (-15 -2003 ($ (-1198) $ $ $ $)) (-15 -2003 ($ (-1198) (-661 $))) (IF (|has| |t#1| (-631 (-547))) (PROGN (-6 (-631 (-547))) (-15 -4198 ($ $ (-1198))) (-15 -4198 ($ $ (-661 (-1198)))) (-15 -4198 ($ $)) (-15 -4198 ($ $ (-115) $ (-1198))) (-15 -4198 ($ $ (-661 (-115)) (-661 $) (-1198)))) |%noBranch|) (IF (|has| |t#1| (-1133)) (PROGN (-6 (-746)) (-15 ** ($ $ (-791))) (-15 -3224 ((-3 (-661 $) "failed") $)) (-15 -3225 ((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3223 ((-3 (-661 $) "failed") $)) (-15 -2002 ((-3 (-2 (|:| -4384 (-558)) (|:| |var| (-628 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-6 (-1070)) (-6 (-1059 (-965 |t#1|))) (-6 (-917 (-1198))) (-6 (-390 |t#1|)) (-15 -4376 ($ (-1146 |t#1| (-628 $)))) (-15 -3399 ((-1146 |t#1| (-628 $)) $)) (-15 -3397 ($ $)) (-15 -3225 ((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) "failed") $ (-115))) (-15 -3225 ((-3 (-2 (|:| |var| (-628 $)) (|:| -2632 (-558))) "failed") $ (-1198))) (-15 -3226 ((-3 (-2 (|:| |val| $) (|:| -2632 (-558))) "failed") $)) (-15 -4198 ($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ $)))) (-15 -4198 ($ $ (-661 (-1198)) (-661 (-791)) (-661 (-1 $ (-661 $))))) (-15 -4198 ($ $ (-1198) (-791) (-1 $ (-661 $)))) (-15 -4198 ($ $ (-1198) (-791) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-376)) (-6 (-1059 (-419 (-965 |t#1|)))) (-15 -4402 ($ (-417 $))) (-15 -3398 ((-1146 |t#1| (-628 $)) $)) (-15 -3396 ($ $)) (-15 -4379 ($ (-1146 |t#1| (-628 $)) (-1146 |t#1| (-628 $)))) (-15 -4376 ($ (-419 |t#1|))) (-15 -4376 ($ (-965 (-419 |t#1|)))) (-15 -4376 ($ (-419 (-965 (-419 |t#1|))))) (-15 -3486 ((-419 (-1192 $)) $ (-628 $))) (IF (|has| |t#1| (-1059 (-558))) (-6 (-1059 (-419 (-558)))) |%noBranch|)) |%noBranch|))) -(((-21) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-419 (-558))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-569)) ((-133) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-569))) ((-633 (-419 (-965 |#1|))) |has| |#1| (-569)) ((-633 (-558)) -3957 (|has| |#1| (-1070)) (|has| |#1| (-1059 (-558))) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-633 (-628 $)) . T) ((-633 (-965 |#1|)) |has| |#1| (-1070)) ((-633 (-1198)) . T) ((-633 |#1|) . T) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) |has| |#1| (-569)) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-905 (-391))) |has| |#1| (-631 (-905 (-391)))) ((-631 (-905 (-558))) |has| |#1| (-631 (-905 (-558)))) ((-250) |has| |#1| (-569)) ((-302) |has| |#1| (-569)) ((-319) |has| |#1| (-569)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-569)) ((-390 |#1|) |has| |#1| (-1070)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) |has| |#1| (-569)) ((-485) |has| |#1| (-485)) ((-526 (-628 $) $) . T) ((-526 $ $) . T) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-569)) ((-666 (-558)) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-666 |#1|) -3957 (|has| |#1| (-1070)) (|has| |#1| (-175))) ((-666 $) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-668 (-419 (-558))) |has| |#1| (-569)) ((-668 (-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ((-668 |#1|) -3957 (|has| |#1| (-1070)) (|has| |#1| (-175))) ((-668 $) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-660 (-419 (-558))) |has| |#1| (-569)) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-658 (-558)) -12 (|has| |#1| (-658 (-558))) (|has| |#1| (-1070))) ((-658 |#1|) |has| |#1| (-1070)) ((-737 (-419 (-558))) |has| |#1| (-569)) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) -3957 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-911 $ (-1198)) |has| |#1| (-1070)) ((-917 (-1198)) |has| |#1| (-1070)) ((-919 (-1198)) |has| |#1| (-1070)) ((-901 (-391)) |has| |#1| (-901 (-391))) ((-901 (-558)) |has| |#1| (-901 (-558))) ((-899 |#1|) . T) ((-940) |has| |#1| (-569)) ((-1059 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1059 (-558))))) ((-1059 (-419 (-965 |#1|))) |has| |#1| (-569)) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 (-628 $)) . T) ((-1059 (-965 |#1|)) |has| |#1| (-1070)) ((-1059 (-1198)) . T) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) |has| |#1| (-569)) ((-1072 |#1|) |has| |#1| (-175)) ((-1072 $) |has| |#1| (-569)) ((-1077 (-419 (-558))) |has| |#1| (-569)) ((-1077 |#1|) |has| |#1| (-175)) ((-1077 $) |has| |#1| (-569)) ((-1070) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1078) -3957 (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1133) -3957 (|has| |#1| (-1133)) (|has| |#1| (-1070)) (|has| |#1| (-569)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1122) . T) ((-1238) . T) ((-1243) |has| |#1| (-569))) -((-4388 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) -(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-433 |#1|) (-1070) (-433 |#3|)) (T -434)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-433 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) -((-2009 ((|#2| |#2|) 182 T ELT)) (-2006 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-114)) 60 T ELT))) -(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2006 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-114))) (-15 -2009 (|#2| |#2|))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|)) (-1198) |#2|) (T -435)) -((-2009 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1224) (-433 *3))) (-14 *4 (-1198)) (-14 *5 *2))) (-2006 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) (-14 *6 (-1198)) (-14 *7 *3)))) -((-2009 ((|#2| |#2|) 105 T ELT)) (-2007 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-114) (-1180)) 52 T ELT)) (-2008 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-114) (-1180)) 169 T ELT))) -(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2007 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-114) (-1180))) (-15 -2008 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180))))) |#2| (-114) (-1180))) (-15 -2009 (|#2| |#2|))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|) (-10 -8 (-15 -4376 ($ |#3|)))) (-860) (-13 (-1267 |#2| |#3|) (-376) (-1224) (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $)))) (-1004 |#4|) (-1198)) (T -436)) -((-2009 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-4 *2 (-13 (-27) (-1224) (-433 *3) (-10 -8 (-15 -4376 ($ *4))))) (-4 *4 (-860)) (-4 *5 (-13 (-1267 *2 *4) (-376) (-1224) (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $))))) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) (-14 *7 (-1198)))) (-2008 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-4 *3 (-13 (-27) (-1224) (-433 *6) (-10 -8 (-15 -4376 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1267 *3 *7) (-376) (-1224) (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1004 *8)) (-14 *10 (-1198)))) (-2007 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-4 *3 (-13 (-27) (-1224) (-433 *6) (-10 -8 (-15 -4376 ($ *7))))) (-4 *7 (-860)) (-4 *8 (-13 (-1267 *3 *7) (-376) (-1224) (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1004 *8)) (-14 *10 (-1198))))) -((-2010 (($) 51 T ELT)) (-3652 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3654 (($ $ $) 46 T ELT)) (-3653 (((-114) $ $) 35 T ELT)) (-3538 (((-791)) 55 T ELT)) (-3657 (($ (-661 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3395 (($) 66 T ELT)) (-3659 (((-114) $ $) 15 T ELT)) (-2930 ((|#2| $) 77 T ELT)) (-3258 ((|#2| $) 75 T ELT)) (-2220 (((-938) $) 70 T ELT)) (-3656 (($ $ $) 42 T ELT)) (-2631 (($ (-938)) 60 T ELT)) (-3655 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) NIL T ELT) (((-791) |#2| $) 31 T ELT)) (-3950 (($ (-661 |#2|)) 27 T ELT)) (-2011 (($ $) 53 T ELT)) (-4376 (((-877) $) 40 T ELT)) (-2012 (((-791) $) 24 T ELT)) (-3658 (($ (-661 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3454 (((-114) $ $) 19 T ELT))) -(((-437 |#1| |#2|) (-10 -7 (-15 -3538 ((-791))) (-15 -2631 (|#1| (-938))) (-15 -2220 ((-938) |#1|)) (-15 -3395 (|#1|)) (-15 -2930 (|#2| |#1|)) (-15 -3258 (|#2| |#1|)) (-15 -2010 (|#1|)) (-15 -2011 (|#1| |#1|)) (-15 -2012 ((-791) |#1|)) (-15 -3454 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -3659 ((-114) |#1| |#1|)) (-15 -3658 (|#1|)) (-15 -3658 (|#1| (-661 |#2|))) (-15 -3657 (|#1|)) (-15 -3657 (|#1| (-661 |#2|))) (-15 -3656 (|#1| |#1| |#1|)) (-15 -3655 (|#1| |#1| |#1|)) (-15 -3655 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3653 ((-114) |#1| |#1|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3652 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#2| |#1|)) (-15 -3950 (|#1| (-661 |#2|))) (-15 -2157 ((-791) |#2| |#1|)) (-15 -2157 ((-791) (-1 (-114) |#2|) |#1|))) (-438 |#2|) (-1122)) (T -437)) -((-3538 (*1 *2) (-12 (-4 *4 (-1122)) (-5 *2 (-791)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) -((-2967 (((-114) $ $) 19 T ELT)) (-2010 (($) 71 (|has| |#1| (-381)) ELT)) (-3652 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3654 (($ $ $) 82 T ELT)) (-3653 (((-114) $ $) 83 T ELT)) (-3538 (((-791)) 65 (|has| |#1| (-381)) ELT)) (-3657 (($ (-661 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1713 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 62 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) 61 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-3395 (($) 68 (|has| |#1| (-381)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) 74 T ELT)) (-2930 ((|#1| $) 69 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3258 ((|#1| $) 70 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2220 (((-938) $) 67 (|has| |#1| (-381)) ELT)) (-3660 (((-1180) $) 22 T ELT)) (-3656 (($ $ $) 79 T ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-2631 (($ (-938)) 66 (|has| |#1| (-381)) ELT)) (-3661 (((-1141) $) 21 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-3655 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 54 T ELT)) (-2011 (($ $) 72 (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) 17 T ELT)) (-2012 (((-791) $) 73 T ELT)) (-3658 (($ (-661 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1378 (((-114) $ $) 20 T ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 T ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-438 |#1|) (-142) (-1122)) (T -438)) -((-2012 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1122)) (-5 *2 (-791)))) (-2011 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1122)) (-4 *2 (-381)))) (-2010 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1122)))) (-3258 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1122)) (-4 *2 (-861)))) (-2930 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1122)) (-4 *2 (-861))))) -(-13 (-233 |t#1|) (-1120 |t#1|) (-10 -8 (-6 -4425) (-15 -2012 ((-791) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2011 ($ $)) (-15 -2010 ($))) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -3258 (|t#1| $)) (-15 -2930 (|t#1| $))) |%noBranch|))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-630 (-877)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-381) |has| |#1| (-381)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1120 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-4271 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-4272 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4388 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) -(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4272 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4271 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1122) (-438 |#1|) (-1122) (-438 |#3|)) (T -439)) -((-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-438 *5)) (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-438 *6)) (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) -((-2013 (((-595 |#2|) |#2| (-1198)) 36 T ELT)) (-2315 (((-595 |#2|) |#2| (-1198)) 21 T ELT)) (-2364 ((|#2| |#2| (-1198)) 26 T ELT))) -(((-440 |#1| |#2|) (-10 -7 (-15 -2315 ((-595 |#2|) |#2| (-1198))) (-15 -2013 ((-595 |#2|) |#2| (-1198))) (-15 -2364 (|#2| |#2| (-1198)))) (-13 (-319) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-29 |#1|))) (T -440)) -((-2364 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1224) (-29 *4))))) (-2013 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5))))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2015 (($ |#2| |#1|) 37 T ELT)) (-2014 (($ |#2| |#1|) 35 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 10 T CONST)) (-3065 (($) 16 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 36 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-441 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4412)) (IF (|has| |#1| (-6 -4412)) (-6 -4412) |%noBranch|) |%noBranch|) (-15 -4376 ($ |#1|)) (-15 -4376 ($ (-343 |#2|))) (-15 -2015 ($ |#2| |#1|)) (-15 -2014 ($ |#2| |#1|)))) (-13 (-175) (-38 (-419 (-558)))) (-13 (-861) (-21))) (T -441)) -((-4376 (*1 *1 *2) (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-558))))) (-4 *3 (-13 (-861) (-21))))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))))) (-2015 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) (-4 *2 (-13 (-861) (-21))))) (-2014 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) (-4 *2 (-13 (-861) (-21)))))) -((-4242 (((-3 |#2| (-661 |#2|)) |#2| (-1198)) 115 T ELT))) -(((-442 |#1| |#2|) (-10 -7 (-15 -4242 ((-3 |#2| (-661 |#2|)) |#2| (-1198)))) (-13 (-319) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-979) (-29 |#1|))) (T -442)) -((-4242 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 *3 (-661 *3))) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1224) (-979) (-29 *5)))))) -((-3806 ((|#2| |#2| |#2|) 31 T ELT)) (-4023 (((-115) (-115)) 43 T ELT)) (-2017 ((|#2| |#2|) 63 T ELT)) (-2016 ((|#2| |#2|) 66 T ELT)) (-3805 ((|#2| |#2|) 30 T ELT)) (-3809 ((|#2| |#2| |#2|) 33 T ELT)) (-3811 ((|#2| |#2| |#2|) 35 T ELT)) (-3808 ((|#2| |#2| |#2|) 32 T ELT)) (-3810 ((|#2| |#2| |#2|) 34 T ELT)) (-2468 (((-114) (-115)) 41 T ELT)) (-3813 ((|#2| |#2|) 37 T ELT)) (-3812 ((|#2| |#2|) 36 T ELT)) (-3803 ((|#2| |#2|) 25 T ELT)) (-3807 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3804 ((|#2| |#2| |#2|) 29 T ELT))) -(((-443 |#1| |#2|) (-10 -7 (-15 -2468 ((-114) (-115))) (-15 -4023 ((-115) (-115))) (-15 -3803 (|#2| |#2|)) (-15 -3807 (|#2| |#2|)) (-15 -3807 (|#2| |#2| |#2|)) (-15 -3804 (|#2| |#2| |#2|)) (-15 -3805 (|#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3811 (|#2| |#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -3813 (|#2| |#2|)) (-15 -2016 (|#2| |#2|)) (-15 -2017 (|#2| |#2|))) (-569) (-433 |#1|)) (T -443)) -((-2017 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-2016 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3813 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3811 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3810 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3809 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3806 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3805 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3804 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3807 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3807 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3803 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) (-4 *5 (-433 *4))))) -((-3234 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-661 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-661 |#2|)) 65 T ELT))) -(((-444 |#1| |#2|) (-10 -7 (-15 -3234 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-661 (-1192 |#2|))) (|:| |prim| (-1192 |#2|))) (-661 |#2|))) (IF (|has| |#2| (-27)) (-15 -3234 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1192 |#2|)) (|:| |pol2| (-1192 |#2|)) (|:| |prim| (-1192 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-149)) (-433 |#1|)) (T -444)) -((-3234 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) (|:| |pol2| (-1192 *3)) (|:| |prim| (-1192 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3234 (*1 *2 *3) (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-661 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-444 *4 *5))))) -((-2019 (((-1294)) 18 T ELT)) (-2018 (((-1192 (-419 (-558))) |#2| (-628 |#2|)) 40 T ELT) (((-419 (-558)) |#2|) 24 T ELT))) -(((-445 |#1| |#2|) (-10 -7 (-15 -2018 ((-419 (-558)) |#2|)) (-15 -2018 ((-1192 (-419 (-558))) |#2| (-628 |#2|))) (-15 -2019 ((-1294)))) (-13 (-569) (-1059 (-558))) (-433 |#1|)) (T -445)) -((-2019 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *2 (-1294)) (-5 *1 (-445 *3 *4)) (-4 *4 (-433 *3)))) (-2018 (*1 *2 *3 *4) (-12 (-5 *4 (-628 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-445 *5 *3)))) (-2018 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4))))) -((-4075 (((-114) $) 33 T ELT)) (-2020 (((-114) $) 35 T ELT)) (-3677 (((-114) $) 36 T ELT)) (-2022 (((-114) $) 39 T ELT)) (-2024 (((-114) $) 34 T ELT)) (-2023 (((-114) $) 38 T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-1180)) 32 T ELT) (($ (-1198)) 30 T ELT) (((-1198) $) 24 T ELT) (((-1124) $) 23 T ELT)) (-2021 (((-114) $) 37 T ELT)) (-3454 (((-114) $ $) 17 T ELT))) -(((-446) (-13 (-630 (-877)) (-10 -8 (-15 -4376 ($ (-1180))) (-15 -4376 ($ (-1198))) (-15 -4376 ((-1198) $)) (-15 -4376 ((-1124) $)) (-15 -4075 ((-114) $)) (-15 -2024 ((-114) $)) (-15 -3677 ((-114) $)) (-15 -2023 ((-114) $)) (-15 -2022 ((-114) $)) (-15 -2021 ((-114) $)) (-15 -2020 ((-114) $)) (-15 -3454 ((-114) $ $))))) (T -446)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-446)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-446)))) (-4075 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2024 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3454 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) -((-2026 (((-3 (-417 (-1192 (-419 (-558)))) #1="failed") |#3|) 72 T ELT)) (-2025 (((-417 |#3|) |#3|) 34 T ELT)) (-2028 (((-3 (-417 (-1192 (-48))) #1#) |#3|) 46 (|has| |#2| (-1059 (-48))) ELT)) (-2027 (((-3 (|:| |overq| (-1192 (-419 (-558)))) (|:| |overan| (-1192 (-48))) (|:| -3038 (-114))) |#3|) 37 T ELT))) -(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2025 ((-417 |#3|) |#3|)) (-15 -2026 ((-3 (-417 (-1192 (-419 (-558)))) #1="failed") |#3|)) (-15 -2027 ((-3 (|:| |overq| (-1192 (-419 (-558)))) (|:| |overan| (-1192 (-48))) (|:| -3038 (-114))) |#3|)) (IF (|has| |#2| (-1059 (-48))) (-15 -2028 ((-3 (-417 (-1192 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-569) (-1059 (-558))) (-433 |#1|) (-1264 |#2|)) (T -447)) -((-2028 (*1 *2 *3) (|partial| -12 (-4 *5 (-1059 (-48))) (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2027 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1192 (-419 (-558)))) (|:| |overan| (-1192 (-48))) (|:| -3038 (-114)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2026 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1192 (-419 (-558))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-2025 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2037 (((-3 (|:| |fst| (-446)) (|:| -4340 #1="void")) $) 11 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2035 (($) 35 T ELT)) (-2032 (($) 41 T ELT)) (-2033 (($) 37 T ELT)) (-2030 (($) 39 T ELT)) (-2034 (($) 36 T ELT)) (-2031 (($) 38 T ELT)) (-2029 (($) 40 T ELT)) (-2036 (((-114) $) 8 T ELT)) (-2820 (((-661 (-965 (-558))) $) 19 T ELT)) (-3950 (($ (-3 (|:| |fst| (-446)) (|:| -4340 #1#)) (-661 (-1198)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-446)) (|:| -4340 #1#)) (-661 (-965 (-558))) (-114)) 30 T ELT)) (-4376 (((-877) $) 24 T ELT) (($ (-446)) 32 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-448) (-13 (-1122) (-10 -8 (-15 -4376 ($ (-446))) (-15 -2037 ((-3 (|:| |fst| (-446)) (|:| -4340 #1="void")) $)) (-15 -2820 ((-661 (-965 (-558))) $)) (-15 -2036 ((-114) $)) (-15 -3950 ($ (-3 (|:| |fst| (-446)) (|:| -4340 #1#)) (-661 (-1198)) (-114))) (-15 -3950 ($ (-3 (|:| |fst| (-446)) (|:| -4340 #1#)) (-661 (-965 (-558))) (-114))) (-15 -2035 ($)) (-15 -2034 ($)) (-15 -2033 ($)) (-15 -2032 ($)) (-15 -2031 ($)) (-15 -2030 ($)) (-15 -2029 ($))))) (T -448)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) (-2037 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 #1="void"))) (-5 *1 (-448)))) (-2820 (*1 *2 *1) (-12 (-5 *2 (-661 (-965 (-558)))) (-5 *1 (-448)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3950 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-5 *3 (-661 (-1198))) (-5 *4 (-114)) (-5 *1 (-448)))) (-3950 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-114)) (-5 *1 (-448)))) (-2035 (*1 *1) (-5 *1 (-448))) (-2034 (*1 *1) (-5 *1 (-448))) (-2033 (*1 *1) (-5 *1 (-448))) (-2032 (*1 *1) (-5 *1 (-448))) (-2031 (*1 *1) (-5 *1 (-448))) (-2030 (*1 *1) (-5 *1 (-448))) (-2029 (*1 *1) (-5 *1 (-448)))) -((-2967 (((-114) $ $) NIL T ELT)) (-1900 (((-1180) $ (-1180)) NIL T ELT)) (-1904 (($ $ (-1180)) NIL T ELT)) (-1901 (((-1180) $) NIL T ELT)) (-2041 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-1905 (($ (-402)) NIL T ELT) (($ (-402) (-1180)) NIL T ELT)) (-3970 (((-402) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1902 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2040 (((-1294) (-1180)) 9 T ELT)) (-2039 (((-1294) (-1180)) 10 T ELT)) (-2038 (((-1294)) 11 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1903 (($ $) 39 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-449) (-13 (-378 (-402) (-1180)) (-10 -7 (-15 -2041 ((-402) (-402) (-402))) (-15 -2041 ((-402) (-402))) (-15 -2040 ((-1294) (-1180))) (-15 -2039 ((-1294) (-1180))) (-15 -2038 ((-1294)))))) (T -449)) -((-2041 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2041 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2040 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-449)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-449)))) (-2038 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-449))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3970 (((-1198) $) 8 T ELT)) (-3660 (((-1180) $) 17 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 14 T ELT))) -(((-450 |#1|) (-13 (-1122) (-10 -8 (-15 -3970 ((-1198) $)))) (-1198)) (T -450)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-450 *3)) (-14 *3 *2)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3737 (((-1136) $) 7 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 9 T ELT))) -(((-451) (-13 (-1122) (-10 -8 (-15 -3737 ((-1136) $))))) (T -451)) -((-3737 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-451))))) -((-3800 (((-1294) $) 7 T ELT)) (-4376 (((-877) $) 8 T ELT) (($ (-1288 (-719))) 14 T ELT) (($ (-661 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 11 T ELT))) +((-2221 (*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1287 *1)) (-4 *1 (-430 *3)))) (-3641 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1287 *3)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) (-3640 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1287 (-708 *3))))) (-2102 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-660 (-964 *3))))) (-1999 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-4401 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1287 *3)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) (-1998 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-1997 (*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175)))) (-1996 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3)))) (-1995 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3)))) (-1994 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3)))) (-1993 (*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3)))) (-2114 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1191 (-964 *3))))) (-2110 (*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) (-5 *2 (-1191 (-964 *3))))) (-2943 (*1 *1 *2 *1) (-12 (-5 *2 (-708 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175))))) +(-13 (-380 |t#1|) (-298 (-558) |t#1|) (-10 -8 (-15 -2221 ((-1287 $))) (-15 -3641 ((-1287 |t#1|) $)) (-15 -3641 ((-708 |t#1|) (-1287 $))) (-15 -3640 ((-1287 (-708 |t#1|)))) (-15 -2102 ((-660 (-964 |t#1|)))) (-15 -1999 ($ (-1287 |t#1|))) (-15 -4401 ((-1287 |t#1|) $)) (-15 -4401 ($ (-1287 |t#1|))) (-15 -1998 (|t#1|)) (-15 -1997 (|t#1|)) (-15 -1996 ((-708 |t#1|))) (-15 -1995 ((-708 |t#1|))) (-15 -1994 ((-708 |t#1|) $)) (-15 -1993 ((-708 |t#1|) $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2114 ((-1191 (-964 |t#1|)))) (-15 -2110 ((-1191 (-964 |t#1|))))) |%noBranch|) (-15 -2943 ($ (-708 |t#1|) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-298 (-558) |#1|) . T) ((-380 |#1|) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-739) . T) ((-763 |#1|) . T) ((-780) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-3535 (((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|)) 28 T ELT)) (-2000 (((-417 |#1|) (-417 |#1|) (-417 |#1|)) 17 T ELT))) +(((-431 |#1|) (-10 -7 (-15 -3535 ((-417 |#1|) (-417 |#1|) (-1 (-417 |#1|) |#1|))) (-15 -2000 ((-417 |#1|) (-417 |#1|) (-417 |#1|)))) (-569)) (T -431)) +((-2000 (*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3)))) (-3535 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-569)) (-5 *2 (-417 *4)) (-5 *1 (-431 *4))))) +((-3483 (((-660 (-1197)) $) 81 T ELT)) (-3485 (((-419 (-1191 $)) $ (-627 $)) 313 T ELT)) (-1746 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) 277 T ELT)) (-3574 (((-3 (-627 $) #1="failed") $) NIL T ELT) (((-3 (-1197) #1#) $) 84 T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 273 T ELT) (((-3 (-419 (-964 |#2|)) #1#) $) 363 T ELT) (((-3 (-964 |#2|) #1#) $) 275 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3573 (((-627 $) $) NIL T ELT) (((-1197) $) 28 T ELT) (((-558) $) NIL T ELT) ((|#2| $) 271 T ELT) (((-419 (-964 |#2|)) $) 345 T ELT) (((-964 |#2|) $) 272 T ELT) (((-419 (-558)) $) NIL T ELT)) (-4022 (((-115) (-115)) 47 T ELT)) (-3396 (($ $) 99 T ELT)) (-1744 (((-3 (-627 $) #1#) $) 268 T ELT)) (-1743 (((-660 (-627 $)) $) 269 T ELT)) (-3223 (((-3 (-660 $) #1#) $) 287 T ELT)) (-3225 (((-3 (-2 (|:| |val| $) (|:| -2631 (-558))) #1#) $) 294 T ELT)) (-3222 (((-3 (-660 $) #1#) $) 285 T ELT)) (-2001 (((-3 (-2 (|:| -4383 (-558)) (|:| |var| (-627 $))) #1#) $) 304 T ELT)) (-3224 (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #1#) $) 291 T ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #1#) $ (-115)) 255 T ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) #1#) $ (-1197)) 257 T ELT)) (-2004 (((-114) $) 17 T ELT)) (-2003 ((|#2| $) 19 T ELT)) (-4197 (($ $ (-627 $) $) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) 276 T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) 109 T ELT) (($ $ (-1197) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1197) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT) (($ $ (-1197)) 62 T ELT) (($ $ (-660 (-1197))) 280 T ELT) (($ $) 281 T ELT) (($ $ (-115) $ (-1197)) 65 T ELT) (($ $ (-660 (-115)) (-660 $) (-1197)) 72 T ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ $))) 120 T ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ (-660 $)))) 282 T ELT) (($ $ (-1197) (-790) (-1 $ (-660 $))) 105 T ELT) (($ $ (-1197) (-790) (-1 $ $)) 104 T ELT)) (-4229 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) 119 T ELT)) (-4187 (($ $ (-1197)) 278 T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-3395 (($ $) 324 T ELT)) (-4401 (((-904 (-558)) $) 297 T ELT) (((-904 (-391)) $) 301 T ELT) (($ (-417 $)) 359 T ELT) (((-547) $) NIL T ELT)) (-4375 (((-876) $) 279 T ELT) (($ (-627 $)) 93 T ELT) (($ (-1197)) 24 T ELT) (($ |#2|) NIL T ELT) (($ (-1145 |#2| (-627 $))) NIL T ELT) (($ (-419 |#2|)) 329 T ELT) (($ (-964 (-419 |#2|))) 368 T ELT) (($ (-419 (-964 (-419 |#2|)))) 341 T ELT) (($ (-419 (-964 |#2|))) 335 T ELT) (($ $) NIL T ELT) (($ (-964 |#2|)) 216 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) 373 T ELT)) (-3527 (((-790)) 88 T ELT)) (-2467 (((-114) (-115)) 42 T ELT)) (-2002 (($ (-1197) $) 31 T ELT) (($ (-1197) $ $) 32 T ELT) (($ (-1197) $ $ $) 33 T ELT) (($ (-1197) $ $ $ $) 34 T ELT) (($ (-1197) (-660 $)) 39 T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 306 T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-937) $) NIL T ELT))) +(((-432 |#1| |#2|) (-10 -7 (-15 * (|#1| (-937) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -3574 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4375 (|#1| (-558))) (-15 -3527 ((-790))) (-15 * (|#1| |#2| |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -4375 (|#1| (-964 |#2|))) (-15 -3574 ((-3 (-964 |#2|) #1#) |#1|)) (-15 -3573 ((-964 |#2|) |#1|)) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197))) (-15 * (|#1| |#1| |#2|)) (-15 -4375 (|#1| |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4375 (|#1| (-419 (-964 |#2|)))) (-15 -3574 ((-3 (-419 (-964 |#2|)) #1#) |#1|)) (-15 -3573 ((-419 (-964 |#2|)) |#1|)) (-15 -3485 ((-419 (-1191 |#1|)) |#1| (-627 |#1|))) (-15 -4375 (|#1| (-419 (-964 (-419 |#2|))))) (-15 -4375 (|#1| (-964 (-419 |#2|)))) (-15 -4375 (|#1| (-419 |#2|))) (-15 -3395 (|#1| |#1|)) (-15 -4401 (|#1| (-417 |#1|))) (-15 -4197 (|#1| |#1| (-1197) (-790) (-1 |#1| |#1|))) (-15 -4197 (|#1| |#1| (-1197) (-790) (-1 |#1| (-660 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 (-790)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 (-790)) (-660 (-1 |#1| |#1|)))) (-15 -3225 ((-3 (-2 (|:| |val| |#1|) (|:| -2631 (-558))) #1#) |#1|)) (-15 -3224 ((-3 (-2 (|:| |var| (-627 |#1|)) (|:| -2631 (-558))) #1#) |#1| (-1197))) (-15 -3224 ((-3 (-2 (|:| |var| (-627 |#1|)) (|:| -2631 (-558))) #1#) |#1| (-115))) (-15 -3396 (|#1| |#1|)) (-15 -4375 (|#1| (-1145 |#2| (-627 |#1|)))) (-15 -2001 ((-3 (-2 (|:| -4383 (-558)) (|:| |var| (-627 |#1|))) #1#) |#1|)) (-15 -3222 ((-3 (-660 |#1|) #1#) |#1|)) (-15 -3224 ((-3 (-2 (|:| |var| (-627 |#1|)) (|:| -2631 (-558))) #1#) |#1|)) (-15 -3223 ((-3 (-660 |#1|) #1#) |#1|)) (-15 -4197 (|#1| |#1| (-660 (-115)) (-660 |#1|) (-1197))) (-15 -4197 (|#1| |#1| (-115) |#1| (-1197))) (-15 -4197 (|#1| |#1|)) (-15 -4197 (|#1| |#1| (-660 (-1197)))) (-15 -4197 (|#1| |#1| (-1197))) (-15 -2002 (|#1| (-1197) (-660 |#1|))) (-15 -2002 (|#1| (-1197) |#1| |#1| |#1| |#1|)) (-15 -2002 (|#1| (-1197) |#1| |#1| |#1|)) (-15 -2002 (|#1| (-1197) |#1| |#1|)) (-15 -2002 (|#1| (-1197) |#1|)) (-15 -3483 ((-660 (-1197)) |#1|)) (-15 -2003 (|#2| |#1|)) (-15 -2004 ((-114) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -4401 ((-904 (-391)) |#1|)) (-15 -4401 ((-904 (-558)) |#1|)) (-15 -4375 (|#1| (-1197))) (-15 -3574 ((-3 (-1197) #1#) |#1|)) (-15 -3573 ((-1197) |#1|)) (-15 -4197 (|#1| |#1| (-115) (-1 |#1| |#1|))) (-15 -4197 (|#1| |#1| (-115) (-1 |#1| (-660 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4197 (|#1| |#1| (-660 (-115)) (-660 (-1 |#1| |#1|)))) (-15 -4197 (|#1| |#1| (-1197) (-1 |#1| |#1|))) (-15 -4197 (|#1| |#1| (-1197) (-1 |#1| (-660 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 (-1 |#1| (-660 |#1|))))) (-15 -4197 (|#1| |#1| (-660 (-1197)) (-660 (-1 |#1| |#1|)))) (-15 -2467 ((-114) (-115))) (-15 -4022 ((-115) (-115))) (-15 -1743 ((-660 (-627 |#1|)) |#1|)) (-15 -1744 ((-3 (-627 |#1|) #1#) |#1|)) (-15 -1746 (|#1| |#1| (-660 (-627 |#1|)) (-660 |#1|))) (-15 -1746 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -1746 (|#1| |#1| (-305 |#1|))) (-15 -4229 (|#1| (-115) (-660 |#1|))) (-15 -4229 (|#1| (-115) |#1| |#1| |#1| |#1|)) (-15 -4229 (|#1| (-115) |#1| |#1| |#1|)) (-15 -4229 (|#1| (-115) |#1| |#1|)) (-15 -4229 (|#1| (-115) |#1|)) (-15 -4197 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| (-305 |#1|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4197 (|#1| |#1| (-660 (-627 |#1|)) (-660 |#1|))) (-15 -4197 (|#1| |#1| (-627 |#1|) |#1|)) (-15 -4375 (|#1| (-627 |#1|))) (-15 -3574 ((-3 (-627 |#1|) #1#) |#1|)) (-15 -3573 ((-627 |#1|) |#1|)) (-15 -4375 ((-876) |#1|))) (-433 |#2|) (-1121)) (T -432)) +((-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) (-3527 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-790)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 129 (|has| |#1| (-25)) ELT)) (-3483 (((-660 (-1197)) $) 220 T ELT)) (-3485 (((-419 (-1191 $)) $ (-627 $)) 188 (|has| |#1| (-569)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 160 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 161 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 163 (|has| |#1| (-569)) ELT)) (-1742 (((-660 (-627 $)) $) 42 T ELT)) (-1425 (((-3 $ "failed") $ $) 131 (|has| |#1| (-21)) ELT)) (-1746 (($ $ (-305 $)) 54 T ELT) (($ $ (-660 (-305 $))) 53 T ELT) (($ $ (-660 (-627 $)) (-660 $)) 52 T ELT)) (-4204 (($ $) 180 (|has| |#1| (-569)) ELT)) (-4400 (((-417 $) $) 181 (|has| |#1| (-569)) ELT)) (-1787 (((-114) $ $) 171 (|has| |#1| (-569)) ELT)) (-4153 (($) 117 (-3956 (|has| |#1| (-1132)) (|has| |#1| (-25))) CONST)) (-3574 (((-3 (-627 $) #1="failed") $) 67 T ELT) (((-3 (-1197) #1#) $) 233 T ELT) (((-3 (-558) #1#) $) 227 (|has| |#1| (-1058 (-558))) ELT) (((-3 |#1| #1#) $) 224 T ELT) (((-3 (-419 (-964 |#1|)) #1#) $) 186 (|has| |#1| (-569)) ELT) (((-3 (-964 |#1|) #1#) $) 136 (|has| |#1| (-1069)) ELT) (((-3 (-419 (-558)) #1#) $) 111 (-3956 (-12 (|has| |#1| (-1058 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3573 (((-627 $) $) 68 T ELT) (((-1197) $) 234 T ELT) (((-558) $) 226 (|has| |#1| (-1058 (-558))) ELT) ((|#1| $) 225 T ELT) (((-419 (-964 |#1|)) $) 187 (|has| |#1| (-569)) ELT) (((-964 |#1|) $) 137 (|has| |#1| (-1069)) ELT) (((-419 (-558)) $) 112 (-3956 (-12 (|has| |#1| (-1058 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-2962 (($ $ $) 175 (|has| |#1| (-569)) ELT)) (-2492 (((-708 (-558)) (-708 $)) 153 (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 152 (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 151 (|has| |#1| (-1069)) ELT) (((-708 |#1|) (-708 $)) 150 (|has| |#1| (-1069)) ELT)) (-3886 (((-3 $ "failed") $) 119 (|has| |#1| (-1132)) ELT)) (-2961 (($ $ $) 174 (|has| |#1| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 169 (|has| |#1| (-569)) ELT)) (-4152 (((-114) $) 182 (|has| |#1| (-569)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 229 (|has| |#1| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 228 (|has| |#1| (-900 (-391))) ELT)) (-2971 (($ $) 49 T ELT) (($ (-660 $)) 48 T ELT)) (-1741 (((-660 (-115)) $) 41 T ELT)) (-4022 (((-115) (-115)) 40 T ELT)) (-2640 (((-114) $) 118 (|has| |#1| (-1132)) ELT)) (-3073 (((-114) $) 20 (|has| $ (-1058 (-558))) ELT)) (-3396 (($ $) 203 (|has| |#1| (-1069)) ELT)) (-3398 (((-1145 |#1| (-627 $)) $) 204 (|has| |#1| (-1069)) ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 178 (|has| |#1| (-569)) ELT)) (-1739 (((-1191 $) (-627 $)) 23 (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) 34 T ELT)) (-1744 (((-3 (-627 $) "failed") $) 44 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 155 (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 154 (-2960 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 149 (|has| |#1| (-1069)) ELT) (((-708 |#1|) (-1287 $)) 148 (|has| |#1| (-1069)) ELT)) (-2101 (($ (-660 $)) 167 (|has| |#1| (-569)) ELT) (($ $ $) 166 (|has| |#1| (-569)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-1743 (((-660 (-627 $)) $) 43 T ELT)) (-2448 (($ (-115) $) 36 T ELT) (($ (-115) (-660 $)) 35 T ELT)) (-3223 (((-3 (-660 $) "failed") $) 209 (|has| |#1| (-1132)) ELT)) (-3225 (((-3 (-2 (|:| |val| $) (|:| -2631 (-558))) "failed") $) 200 (|has| |#1| (-1069)) ELT)) (-3222 (((-3 (-660 $) "failed") $) 207 (|has| |#1| (-25)) ELT)) (-2001 (((-3 (-2 (|:| -4383 (-558)) (|:| |var| (-627 $))) "failed") $) 206 (|has| |#1| (-25)) ELT)) (-3224 (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) "failed") $) 208 (|has| |#1| (-1132)) ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) "failed") $ (-115)) 202 (|has| |#1| (-1069)) ELT) (((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) "failed") $ (-1197)) 201 (|has| |#1| (-1069)) ELT)) (-3031 (((-114) $ (-115)) 38 T ELT) (((-114) $ (-1197)) 37 T ELT)) (-2873 (($ $) 121 (-3956 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-3001 (((-790) $) 45 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2004 (((-114) $) 222 T ELT)) (-2003 ((|#1| $) 221 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 168 (|has| |#1| (-569)) ELT)) (-3561 (($ (-660 $)) 165 (|has| |#1| (-569)) ELT) (($ $ $) 164 (|has| |#1| (-569)) ELT)) (-1740 (((-114) $ $) 33 T ELT) (((-114) $ (-1197)) 32 T ELT)) (-4161 (((-417 $) $) 179 (|has| |#1| (-569)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 177 (|has| |#1| (-569)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 176 (|has| |#1| (-569)) ELT)) (-3885 (((-3 $ "failed") $ $) 159 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 170 (|has| |#1| (-569)) ELT)) (-3074 (((-114) $) 21 (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-627 $) $) 65 T ELT) (($ $ (-660 (-627 $)) (-660 $)) 64 T ELT) (($ $ (-660 (-305 $))) 63 T ELT) (($ $ (-305 $)) 62 T ELT) (($ $ $ $) 61 T ELT) (($ $ (-660 $) (-660 $)) 60 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) 31 T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) 30 T ELT) (($ $ (-1197) (-1 $ (-660 $))) 29 T ELT) (($ $ (-1197) (-1 $ $)) 28 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) 27 T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) 26 T ELT) (($ $ (-115) (-1 $ (-660 $))) 25 T ELT) (($ $ (-115) (-1 $ $)) 24 T ELT) (($ $ (-1197)) 214 (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-1197))) 213 (|has| |#1| (-630 (-547))) ELT) (($ $) 212 (|has| |#1| (-630 (-547))) ELT) (($ $ (-115) $ (-1197)) 211 (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-115)) (-660 $) (-1197)) 210 (|has| |#1| (-630 (-547))) ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ $))) 199 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ (-660 $)))) 198 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790) (-1 $ (-660 $))) 197 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790) (-1 $ $)) 196 (|has| |#1| (-1069)) ELT)) (-1786 (((-790) $) 172 (|has| |#1| (-569)) ELT)) (-4229 (($ (-115) $) 59 T ELT) (($ (-115) $ $) 58 T ELT) (($ (-115) $ $ $) 57 T ELT) (($ (-115) $ $ $ $) 56 T ELT) (($ (-115) (-660 $)) 55 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 173 (|has| |#1| (-569)) ELT)) (-1745 (($ $) 47 T ELT) (($ $ $) 46 T ELT)) (-4187 (($ $ (-1197)) 146 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197))) 144 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790)) 143 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 142 (|has| |#1| (-1069)) ELT)) (-3395 (($ $) 193 (|has| |#1| (-569)) ELT)) (-3397 (((-1145 |#1| (-627 $)) $) 194 (|has| |#1| (-569)) ELT)) (-3602 (($ $) 22 (|has| $ (-1069)) ELT)) (-4401 (((-904 (-558)) $) 231 (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) 230 (|has| |#1| (-630 (-904 (-391)))) ELT) (($ (-417 $)) 195 (|has| |#1| (-569)) ELT) (((-547) $) 113 (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $ $) 124 (|has| |#1| (-485)) ELT)) (-2823 (($ $ $) 125 (|has| |#1| (-485)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-627 $)) 66 T ELT) (($ (-1197)) 232 T ELT) (($ |#1|) 223 T ELT) (($ (-1145 |#1| (-627 $))) 205 (|has| |#1| (-1069)) ELT) (($ (-419 |#1|)) 191 (|has| |#1| (-569)) ELT) (($ (-964 (-419 |#1|))) 190 (|has| |#1| (-569)) ELT) (($ (-419 (-964 (-419 |#1|)))) 189 (|has| |#1| (-569)) ELT) (($ (-419 (-964 |#1|))) 185 (|has| |#1| (-569)) ELT) (($ $) 158 (|has| |#1| (-569)) ELT) (($ (-964 |#1|)) 135 (|has| |#1| (-1069)) ELT) (($ (-419 (-558))) 110 (-3956 (|has| |#1| (-569)) (-12 (|has| |#1| (-1058 (-558))) (|has| |#1| (-569))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ (-558)) 109 (-3956 (|has| |#1| (-1069)) (|has| |#1| (-1058 (-558)))) ELT)) (-3102 (((-710 $) $) 156 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 138 (|has| |#1| (-1069)) CONST)) (-2988 (($ $) 51 T ELT) (($ (-660 $)) 50 T ELT)) (-2467 (((-114) (-115)) 39 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 162 (|has| |#1| (-569)) ELT)) (-2002 (($ (-1197) $) 219 T ELT) (($ (-1197) $ $) 218 T ELT) (($ (-1197) $ $ $) 217 T ELT) (($ (-1197) $ $ $ $) 216 T ELT) (($ (-1197) (-660 $)) 215 T ELT)) (-3058 (($) 128 (|has| |#1| (-25)) CONST)) (-3064 (($) 116 (|has| |#1| (-1132)) CONST)) (-3069 (($ $ (-1197)) 145 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197))) 141 (|has| |#1| (-1069)) ELT) (($ $ (-1197) (-790)) 140 (|has| |#1| (-1069)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 139 (|has| |#1| (-1069)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ (-1145 |#1| (-627 $)) (-1145 |#1| (-627 $))) 192 (|has| |#1| (-569)) ELT) (($ $ $) 122 (-3956 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT)) (-4266 (($ $ $) 134 (|has| |#1| (-21)) ELT) (($ $) 133 (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) 126 (|has| |#1| (-25)) ELT)) (** (($ $ (-558)) 123 (-3956 (|has| |#1| (-485)) (|has| |#1| (-569))) ELT) (($ $ (-790)) 120 (|has| |#1| (-1132)) ELT) (($ $ (-937)) 115 (|has| |#1| (-1132)) ELT)) (* (($ (-419 (-558)) $) 184 (|has| |#1| (-569)) ELT) (($ $ (-419 (-558))) 183 (|has| |#1| (-569)) ELT) (($ $ |#1|) 157 (|has| |#1| (-175)) ELT) (($ |#1| $) 147 (|has| |#1| (-1069)) ELT) (($ (-558) $) 132 (|has| |#1| (-21)) ELT) (($ (-790) $) 130 (|has| |#1| (-25)) ELT) (($ (-937) $) 127 (|has| |#1| (-25)) ELT) (($ $ $) 114 (|has| |#1| (-1132)) ELT))) +(((-433 |#1|) (-142) (-1121)) (T -433)) +((-2004 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-5 *2 (-114)))) (-2003 (*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-5 *2 (-660 (-1197))))) (-2002 (*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) (-2002 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) (-2002 (*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) (-2002 (*1 *1 *2 *1 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) (-2002 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-660 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1121)))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-4 *3 (-630 (-547))))) (-4197 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1197))) (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-4 *3 (-630 (-547))))) (-4197 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)) (-4 *2 (-630 (-547))))) (-4197 (*1 *1 *1 *2 *1 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-433 *4)) (-4 *4 (-1121)) (-4 *4 (-630 (-547))))) (-4197 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 *1)) (-5 *4 (-1197)) (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-630 (-547))))) (-3223 (*1 *2 *1) (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-433 *3)))) (-3224 (*1 *2 *1) (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |var| (-627 *1)) (|:| -2631 (-558)))) (-4 *1 (-433 *3)))) (-3222 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-433 *3)))) (-2001 (*1 *2 *1) (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| -4383 (-558)) (|:| |var| (-627 *1)))) (-4 *1 (-433 *3)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1145 *3 (-627 *1))) (-4 *3 (-1069)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *3 (-1121)) (-5 *2 (-1145 *3 (-627 *1))) (-4 *1 (-433 *3)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)) (-4 *2 (-1069)))) (-3224 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1069)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-627 *1)) (|:| -2631 (-558)))) (-4 *1 (-433 *4)))) (-3224 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1069)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |var| (-627 *1)) (|:| -2631 (-558)))) (-4 *1 (-433 *4)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *3 (-1069)) (-4 *3 (-1121)) (-5 *2 (-2 (|:| |val| *1) (|:| -2631 (-558)))) (-4 *1 (-433 *3)))) (-4197 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-790))) (-5 *4 (-660 (-1 *1 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-1069)))) (-4197 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-790))) (-5 *4 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-1069)))) (-4197 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-790)) (-5 *4 (-1 *1 (-660 *1))) (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-1069)))) (-4197 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-790)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-1069)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-569)) (-4 *3 (-1121)))) (-3397 (*1 *2 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1121)) (-5 *2 (-1145 *3 (-627 *1))) (-4 *1 (-433 *3)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)) (-4 *2 (-569)))) (-4378 (*1 *1 *2 *2) (-12 (-5 *2 (-1145 *3 (-627 *1))) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-964 (-419 *3))) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-419 *3)))) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) (-3485 (*1 *2 *1 *3) (-12 (-5 *3 (-627 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1121)) (-4 *4 (-569)) (-5 *2 (-419 (-1191 *1))))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-4 *3 (-1132))))) +(-13 (-310) (-1058 (-1197)) (-898 |t#1|) (-412 |t#1|) (-424 |t#1|) (-10 -8 (-15 -2004 ((-114) $)) (-15 -2003 (|t#1| $)) (-15 -3483 ((-660 (-1197)) $)) (-15 -2002 ($ (-1197) $)) (-15 -2002 ($ (-1197) $ $)) (-15 -2002 ($ (-1197) $ $ $)) (-15 -2002 ($ (-1197) $ $ $ $)) (-15 -2002 ($ (-1197) (-660 $))) (IF (|has| |t#1| (-630 (-547))) (PROGN (-6 (-630 (-547))) (-15 -4197 ($ $ (-1197))) (-15 -4197 ($ $ (-660 (-1197)))) (-15 -4197 ($ $)) (-15 -4197 ($ $ (-115) $ (-1197))) (-15 -4197 ($ $ (-660 (-115)) (-660 $) (-1197)))) |%noBranch|) (IF (|has| |t#1| (-1132)) (PROGN (-6 (-745)) (-15 ** ($ $ (-790))) (-15 -3223 ((-3 (-660 $) "failed") $)) (-15 -3224 ((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-485)) (-6 (-485)) |%noBranch|) (IF (|has| |t#1| (-25)) (PROGN (-6 (-23)) (-15 -3222 ((-3 (-660 $) "failed") $)) (-15 -2001 ((-3 (-2 (|:| -4383 (-558)) (|:| |var| (-627 $))) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |t#1| (-1069)) (PROGN (-6 (-1069)) (-6 (-1058 (-964 |t#1|))) (-6 (-916 (-1197))) (-6 (-390 |t#1|)) (-15 -4375 ($ (-1145 |t#1| (-627 $)))) (-15 -3398 ((-1145 |t#1| (-627 $)) $)) (-15 -3396 ($ $)) (-15 -3224 ((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) "failed") $ (-115))) (-15 -3224 ((-3 (-2 (|:| |var| (-627 $)) (|:| -2631 (-558))) "failed") $ (-1197))) (-15 -3225 ((-3 (-2 (|:| |val| $) (|:| -2631 (-558))) "failed") $)) (-15 -4197 ($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ $)))) (-15 -4197 ($ $ (-660 (-1197)) (-660 (-790)) (-660 (-1 $ (-660 $))))) (-15 -4197 ($ $ (-1197) (-790) (-1 $ (-660 $)))) (-15 -4197 ($ $ (-1197) (-790) (-1 $ $)))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-376)) (-6 (-1058 (-419 (-964 |t#1|)))) (-15 -4401 ($ (-417 $))) (-15 -3397 ((-1145 |t#1| (-627 $)) $)) (-15 -3395 ($ $)) (-15 -4378 ($ (-1145 |t#1| (-627 $)) (-1145 |t#1| (-627 $)))) (-15 -4375 ($ (-419 |t#1|))) (-15 -4375 ($ (-964 (-419 |t#1|)))) (-15 -4375 ($ (-419 (-964 (-419 |t#1|))))) (-15 -3485 ((-419 (-1191 $)) $ (-627 $))) (IF (|has| |t#1| (-1058 (-558))) (-6 (-1058 (-419 (-558)))) |%noBranch|)) |%noBranch|))) +(((-21) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-23) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-25) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-25)) (|has| |#1| (-21))) ((-38 (-419 (-558))) |has| |#1| (-569)) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-569)) ((-111 |#1| |#1|) |has| |#1| (-175)) ((-111 $ $) |has| |#1| (-569)) ((-133) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-569))) ((-632 (-419 (-964 |#1|))) |has| |#1| (-569)) ((-632 (-558)) -3956 (|has| |#1| (-1069)) (|has| |#1| (-1058 (-558))) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-632 (-627 $)) . T) ((-632 (-964 |#1|)) |has| |#1| (-1069)) ((-632 (-1197)) . T) ((-632 |#1|) . T) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) |has| |#1| (-569)) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-630 (-904 (-391))) |has| |#1| (-630 (-904 (-391)))) ((-630 (-904 (-558))) |has| |#1| (-630 (-904 (-558)))) ((-250) |has| |#1| (-569)) ((-302) |has| |#1| (-569)) ((-319) |has| |#1| (-569)) ((-321 $) . T) ((-310) . T) ((-376) |has| |#1| (-569)) ((-390 |#1|) |has| |#1| (-1069)) ((-412 |#1|) . T) ((-424 |#1|) . T) ((-464) |has| |#1| (-569)) ((-485) |has| |#1| (-485)) ((-526 (-627 $) $) . T) ((-526 $ $) . T) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-569)) ((-665 (-558)) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147)) (|has| |#1| (-21))) ((-665 |#1|) -3956 (|has| |#1| (-1069)) (|has| |#1| (-175))) ((-665 $) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-667 (-419 (-558))) |has| |#1| (-569)) ((-667 (-558)) -12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ((-667 |#1|) -3956 (|has| |#1| (-1069)) (|has| |#1| (-175))) ((-667 $) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-659 (-419 (-558))) |has| |#1| (-569)) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-657 (-558)) -12 (|has| |#1| (-657 (-558))) (|has| |#1| (-1069))) ((-657 |#1|) |has| |#1| (-1069)) ((-736 (-419 (-558))) |has| |#1| (-569)) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) -3956 (|has| |#1| (-1132)) (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-910 $ (-1197)) |has| |#1| (-1069)) ((-916 (-1197)) |has| |#1| (-1069)) ((-918 (-1197)) |has| |#1| (-1069)) ((-900 (-391)) |has| |#1| (-900 (-391))) ((-900 (-558)) |has| |#1| (-900 (-558))) ((-898 |#1|) . T) ((-939) |has| |#1| (-569)) ((-1058 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (-12 (|has| |#1| (-569)) (|has| |#1| (-1058 (-558))))) ((-1058 (-419 (-964 |#1|))) |has| |#1| (-569)) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 (-627 $)) . T) ((-1058 (-964 |#1|)) |has| |#1| (-1069)) ((-1058 (-1197)) . T) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) |has| |#1| (-569)) ((-1071 |#1|) |has| |#1| (-175)) ((-1071 $) |has| |#1| (-569)) ((-1076 (-419 (-558))) |has| |#1| (-569)) ((-1076 |#1|) |has| |#1| (-175)) ((-1076 $) |has| |#1| (-569)) ((-1069) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1077) -3956 (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1132) -3956 (|has| |#1| (-1132)) (|has| |#1| (-1069)) (|has| |#1| (-569)) (|has| |#1| (-485)) (|has| |#1| (-175)) (|has| |#1| (-149)) (|has| |#1| (-147))) ((-1121) . T) ((-1237) . T) ((-1242) |has| |#1| (-569))) +((-4387 ((|#4| (-1 |#3| |#1|) |#2|) 11 T ELT))) +(((-434 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#4| (-1 |#3| |#1|) |#2|))) (-1069) (-433 |#1|) (-1069) (-433 |#3|)) (T -434)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-433 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5))))) +((-2008 ((|#2| |#2|) 182 T ELT)) (-2005 (((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-114)) 60 T ELT))) +(((-435 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2005 ((-3 (|:| |%expansion| (-325 |#1| |#2| |#3| |#4|)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-114))) (-15 -2008 (|#2| |#2|))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|)) (-1197) |#2|) (T -435)) +((-2008 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-433 *3))) (-14 *4 (-1197)) (-14 *5 *2))) (-2005 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) (-14 *6 (-1197)) (-14 *7 *3)))) +((-2008 ((|#2| |#2|) 105 T ELT)) (-2006 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-114) (-1179)) 52 T ELT)) (-2007 (((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-114) (-1179)) 169 T ELT))) +(((-436 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2006 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-114) (-1179))) (-15 -2007 ((-3 (|:| |%series| |#4|) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179))))) |#2| (-114) (-1179))) (-15 -2008 (|#2| |#2|))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|) (-10 -8 (-15 -4375 ($ |#3|)))) (-859) (-13 (-1266 |#2| |#3|) (-376) (-1223) (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $)))) (-1003 |#4|) (-1197)) (T -436)) +((-2008 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-4 *2 (-13 (-27) (-1223) (-433 *3) (-10 -8 (-15 -4375 ($ *4))))) (-4 *4 (-859)) (-4 *5 (-13 (-1266 *2 *4) (-376) (-1223) (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $))))) (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1003 *5)) (-14 *7 (-1197)))) (-2007 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-4 *3 (-13 (-27) (-1223) (-433 *6) (-10 -8 (-15 -4375 ($ *7))))) (-4 *7 (-859)) (-4 *8 (-13 (-1266 *3 *7) (-376) (-1223) (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1003 *8)) (-14 *10 (-1197)))) (-2006 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-4 *3 (-13 (-27) (-1223) (-433 *6) (-10 -8 (-15 -4375 ($ *7))))) (-4 *7 (-859)) (-4 *8 (-13 (-1266 *3 *7) (-376) (-1223) (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1003 *8)) (-14 *10 (-1197))))) +((-2009 (($) 51 T ELT)) (-3651 (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ $ $) 47 T ELT)) (-3653 (($ $ $) 46 T ELT)) (-3652 (((-114) $ $) 35 T ELT)) (-3537 (((-790)) 55 T ELT)) (-3656 (($ (-660 |#2|)) 23 T ELT) (($) NIL T ELT)) (-3394 (($) 66 T ELT)) (-3658 (((-114) $ $) 15 T ELT)) (-2929 ((|#2| $) 77 T ELT)) (-3257 ((|#2| $) 75 T ELT)) (-2219 (((-937) $) 70 T ELT)) (-3655 (($ $ $) 42 T ELT)) (-2630 (($ (-937)) 60 T ELT)) (-3654 (($ $ |#2|) NIL T ELT) (($ $ $) 45 T ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) NIL T ELT) (((-790) |#2| $) 31 T ELT)) (-3949 (($ (-660 |#2|)) 27 T ELT)) (-2010 (($ $) 53 T ELT)) (-4375 (((-876) $) 40 T ELT)) (-2011 (((-790) $) 24 T ELT)) (-3657 (($ (-660 |#2|)) 22 T ELT) (($) NIL T ELT)) (-3453 (((-114) $ $) 19 T ELT))) +(((-437 |#1| |#2|) (-10 -7 (-15 -3537 ((-790))) (-15 -2630 (|#1| (-937))) (-15 -2219 ((-937) |#1|)) (-15 -3394 (|#1|)) (-15 -2929 (|#2| |#1|)) (-15 -3257 (|#2| |#1|)) (-15 -2009 (|#1|)) (-15 -2010 (|#1| |#1|)) (-15 -2011 ((-790) |#1|)) (-15 -3453 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -3658 ((-114) |#1| |#1|)) (-15 -3657 (|#1|)) (-15 -3657 (|#1| (-660 |#2|))) (-15 -3656 (|#1|)) (-15 -3656 (|#1| (-660 |#2|))) (-15 -3655 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -3652 ((-114) |#1| |#1|)) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -3651 (|#1| |#2| |#1|)) (-15 -3949 (|#1| (-660 |#2|))) (-15 -2156 ((-790) |#2| |#1|)) (-15 -2156 ((-790) (-1 (-114) |#2|) |#1|))) (-438 |#2|) (-1121)) (T -437)) +((-3537 (*1 *2) (-12 (-4 *4 (-1121)) (-5 *2 (-790)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4))))) +((-2966 (((-114) $ $) 19 T ELT)) (-2009 (($) 71 (|has| |#1| (-381)) ELT)) (-3651 (($ |#1| $) 86 T ELT) (($ $ |#1|) 85 T ELT) (($ $ $) 84 T ELT)) (-3653 (($ $ $) 82 T ELT)) (-3652 (((-114) $ $) 83 T ELT)) (-3537 (((-790)) 65 (|has| |#1| (-381)) ELT)) (-3656 (($ (-660 |#1|)) 78 T ELT) (($) 77 T ELT)) (-1712 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 62 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) 61 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-3394 (($) 68 (|has| |#1| (-381)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) 74 T ELT)) (-2929 ((|#1| $) 69 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3257 ((|#1| $) 70 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-2219 (((-937) $) 67 (|has| |#1| (-381)) ELT)) (-3659 (((-1179) $) 22 T ELT)) (-3655 (($ $ $) 79 T ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-2630 (($ (-937)) 66 (|has| |#1| (-381)) ELT)) (-3660 (((-1140) $) 21 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-3654 (($ $ |#1|) 81 T ELT) (($ $ $) 80 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 |#1|)) 52 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 54 T ELT)) (-2010 (($ $) 72 (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) 17 T ELT)) (-2011 (((-790) $) 73 T ELT)) (-3657 (($ (-660 |#1|)) 76 T ELT) (($) 75 T ELT)) (-1377 (((-114) $ $) 20 T ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 T ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-438 |#1|) (-142) (-1121)) (T -438)) +((-2011 (*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1121)) (-5 *2 (-790)))) (-2010 (*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1121)) (-4 *2 (-381)))) (-2009 (*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1121)))) (-3257 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1121)) (-4 *2 (-860)))) (-2929 (*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1121)) (-4 *2 (-860))))) +(-13 (-233 |t#1|) (-1119 |t#1|) (-10 -8 (-6 -4424) (-15 -2011 ((-790) $)) (IF (|has| |t#1| (-381)) (PROGN (-6 (-381)) (-15 -2010 ($ $)) (-15 -2009 ($))) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -3257 (|t#1| $)) (-15 -2929 (|t#1| $))) |%noBranch|))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-629 (-876)) . T) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-233 |#1|) . T) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-381) |has| |#1| (-381)) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1119 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-4270 ((|#4| (-1 |#3| |#1| |#3|) |#2| |#3|) 22 T ELT)) (-4271 ((|#3| (-1 |#3| |#1| |#3|) |#2| |#3|) 20 T ELT)) (-4387 ((|#4| (-1 |#3| |#1|) |#2|) 17 T ELT))) +(((-439 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#4| (-1 |#3| |#1|) |#2|)) (-15 -4271 (|#3| (-1 |#3| |#1| |#3|) |#2| |#3|)) (-15 -4270 (|#4| (-1 |#3| |#1| |#3|) |#2| |#3|))) (-1121) (-438 |#1|) (-1121) (-438 |#3|)) (T -439)) +((-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) (-4 *2 (-438 *5)) (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-438 *6)) (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5))))) +((-2012 (((-595 |#2|) |#2| (-1197)) 36 T ELT)) (-2314 (((-595 |#2|) |#2| (-1197)) 21 T ELT)) (-2363 ((|#2| |#2| (-1197)) 26 T ELT))) +(((-440 |#1| |#2|) (-10 -7 (-15 -2314 ((-595 |#2|) |#2| (-1197))) (-15 -2012 ((-595 |#2|) |#2| (-1197))) (-15 -2363 (|#2| |#2| (-1197)))) (-13 (-319) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-29 |#1|))) (T -440)) +((-2363 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) (-2012 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5))))) (-2314 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2014 (($ |#2| |#1|) 37 T ELT)) (-2013 (($ |#2| |#1|) 35 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-343 |#2|)) 25 T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 10 T CONST)) (-3064 (($) 16 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 36 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-441 |#1| |#2|) (-13 (-38 |#1|) (-10 -8 (IF (|has| |#2| (-6 -4411)) (IF (|has| |#1| (-6 -4411)) (-6 -4411) |%noBranch|) |%noBranch|) (-15 -4375 ($ |#1|)) (-15 -4375 ($ (-343 |#2|))) (-15 -2014 ($ |#2| |#1|)) (-15 -2013 ($ |#2| |#1|)))) (-13 (-175) (-38 (-419 (-558)))) (-13 (-860) (-21))) (T -441)) +((-4375 (*1 *1 *2) (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-558))))) (-4 *3 (-13 (-860) (-21))))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))))) (-2014 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) (-4 *2 (-13 (-860) (-21))))) (-2013 (*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) (-4 *2 (-13 (-860) (-21)))))) +((-4241 (((-3 |#2| (-660 |#2|)) |#2| (-1197)) 115 T ELT))) +(((-442 |#1| |#2|) (-10 -7 (-15 -4241 ((-3 |#2| (-660 |#2|)) |#2| (-1197)))) (-13 (-319) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-978) (-29 |#1|))) (T -442)) +((-4241 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 *3 (-660 *3))) (-5 *1 (-442 *5 *3)) (-4 *3 (-13 (-1223) (-978) (-29 *5)))))) +((-3805 ((|#2| |#2| |#2|) 31 T ELT)) (-4022 (((-115) (-115)) 43 T ELT)) (-2016 ((|#2| |#2|) 63 T ELT)) (-2015 ((|#2| |#2|) 66 T ELT)) (-3804 ((|#2| |#2|) 30 T ELT)) (-3808 ((|#2| |#2| |#2|) 33 T ELT)) (-3810 ((|#2| |#2| |#2|) 35 T ELT)) (-3807 ((|#2| |#2| |#2|) 32 T ELT)) (-3809 ((|#2| |#2| |#2|) 34 T ELT)) (-2467 (((-114) (-115)) 41 T ELT)) (-3812 ((|#2| |#2|) 37 T ELT)) (-3811 ((|#2| |#2|) 36 T ELT)) (-3802 ((|#2| |#2|) 25 T ELT)) (-3806 ((|#2| |#2| |#2|) 28 T ELT) ((|#2| |#2|) 26 T ELT)) (-3803 ((|#2| |#2| |#2|) 29 T ELT))) +(((-443 |#1| |#2|) (-10 -7 (-15 -2467 ((-114) (-115))) (-15 -4022 ((-115) (-115))) (-15 -3802 (|#2| |#2|)) (-15 -3806 (|#2| |#2|)) (-15 -3806 (|#2| |#2| |#2|)) (-15 -3803 (|#2| |#2| |#2|)) (-15 -3804 (|#2| |#2|)) (-15 -3805 (|#2| |#2| |#2|)) (-15 -3807 (|#2| |#2| |#2|)) (-15 -3808 (|#2| |#2| |#2|)) (-15 -3809 (|#2| |#2| |#2|)) (-15 -3810 (|#2| |#2| |#2|)) (-15 -3811 (|#2| |#2|)) (-15 -3812 (|#2| |#2|)) (-15 -2015 (|#2| |#2|)) (-15 -2016 (|#2| |#2|))) (-569) (-433 |#1|)) (T -443)) +((-2016 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-2015 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3812 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3811 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3810 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3809 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3808 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3807 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3805 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3804 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3803 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3806 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3806 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-3802 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) (-4 *5 (-433 *4))))) +((-3233 (((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|) 103 (|has| |#2| (-27)) ELT) (((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-660 |#2|)) 65 T ELT))) +(((-444 |#1| |#2|) (-10 -7 (-15 -3233 ((-2 (|:| |primelt| |#2|) (|:| |poly| (-660 (-1191 |#2|))) (|:| |prim| (-1191 |#2|))) (-660 |#2|))) (IF (|has| |#2| (-27)) (-15 -3233 ((-2 (|:| |primelt| |#2|) (|:| |pol1| (-1191 |#2|)) (|:| |pol2| (-1191 |#2|)) (|:| |prim| (-1191 |#2|))) |#2| |#2|)) |%noBranch|)) (-13 (-569) (-149)) (-433 |#1|)) (T -444)) +((-3233 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) (|:| |pol2| (-1191 *3)) (|:| |prim| (-1191 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) (-3233 (*1 *2 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| |primelt| *5) (|:| |poly| (-660 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-444 *4 *5))))) +((-2018 (((-1293)) 18 T ELT)) (-2017 (((-1191 (-419 (-558))) |#2| (-627 |#2|)) 40 T ELT) (((-419 (-558)) |#2|) 24 T ELT))) +(((-445 |#1| |#2|) (-10 -7 (-15 -2017 ((-419 (-558)) |#2|)) (-15 -2017 ((-1191 (-419 (-558))) |#2| (-627 |#2|))) (-15 -2018 ((-1293)))) (-13 (-569) (-1058 (-558))) (-433 |#1|)) (T -445)) +((-2018 (*1 *2) (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *2 (-1293)) (-5 *1 (-445 *3 *4)) (-4 *4 (-433 *3)))) (-2017 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-445 *5 *3)))) (-2017 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4))))) +((-4074 (((-114) $) 33 T ELT)) (-2019 (((-114) $) 35 T ELT)) (-3676 (((-114) $) 36 T ELT)) (-2021 (((-114) $) 39 T ELT)) (-2023 (((-114) $) 34 T ELT)) (-2022 (((-114) $) 38 T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-1179)) 32 T ELT) (($ (-1197)) 30 T ELT) (((-1197) $) 24 T ELT) (((-1123) $) 23 T ELT)) (-2020 (((-114) $) 37 T ELT)) (-3453 (((-114) $ $) 17 T ELT))) +(((-446) (-13 (-629 (-876)) (-10 -8 (-15 -4375 ($ (-1179))) (-15 -4375 ($ (-1197))) (-15 -4375 ((-1197) $)) (-15 -4375 ((-1123) $)) (-15 -4074 ((-114) $)) (-15 -2023 ((-114) $)) (-15 -3676 ((-114) $)) (-15 -2022 ((-114) $)) (-15 -2021 ((-114) $)) (-15 -2020 ((-114) $)) (-15 -2019 ((-114) $)) (-15 -3453 ((-114) $ $))))) (T -446)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446)))) (-4074 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2023 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3676 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2022 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2021 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2020 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-2019 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) (-3453 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) +((-2025 (((-3 (-417 (-1191 (-419 (-558)))) #1="failed") |#3|) 72 T ELT)) (-2024 (((-417 |#3|) |#3|) 34 T ELT)) (-2027 (((-3 (-417 (-1191 (-48))) #1#) |#3|) 46 (|has| |#2| (-1058 (-48))) ELT)) (-2026 (((-3 (|:| |overq| (-1191 (-419 (-558)))) (|:| |overan| (-1191 (-48))) (|:| -3037 (-114))) |#3|) 37 T ELT))) +(((-447 |#1| |#2| |#3|) (-10 -7 (-15 -2024 ((-417 |#3|) |#3|)) (-15 -2025 ((-3 (-417 (-1191 (-419 (-558)))) #1="failed") |#3|)) (-15 -2026 ((-3 (|:| |overq| (-1191 (-419 (-558)))) (|:| |overan| (-1191 (-48))) (|:| -3037 (-114))) |#3|)) (IF (|has| |#2| (-1058 (-48))) (-15 -2027 ((-3 (-417 (-1191 (-48))) #1#) |#3|)) |%noBranch|)) (-13 (-569) (-1058 (-558))) (-433 |#1|) (-1263 |#2|)) (T -447)) +((-2027 (*1 *2 *3) (|partial| -12 (-4 *5 (-1058 (-48))) (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2026 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-3 (|:| |overq| (-1191 (-419 (-558)))) (|:| |overan| (-1191 (-48))) (|:| -3037 (-114)))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2025 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 (-1191 (-419 (-558))))) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-2024 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2036 (((-3 (|:| |fst| (-446)) (|:| -4339 #1="void")) $) 11 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2034 (($) 35 T ELT)) (-2031 (($) 41 T ELT)) (-2032 (($) 37 T ELT)) (-2029 (($) 39 T ELT)) (-2033 (($) 36 T ELT)) (-2030 (($) 38 T ELT)) (-2028 (($) 40 T ELT)) (-2035 (((-114) $) 8 T ELT)) (-2819 (((-660 (-964 (-558))) $) 19 T ELT)) (-3949 (($ (-3 (|:| |fst| (-446)) (|:| -4339 #1#)) (-660 (-1197)) (-114)) 29 T ELT) (($ (-3 (|:| |fst| (-446)) (|:| -4339 #1#)) (-660 (-964 (-558))) (-114)) 30 T ELT)) (-4375 (((-876) $) 24 T ELT) (($ (-446)) 32 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-448) (-13 (-1121) (-10 -8 (-15 -4375 ($ (-446))) (-15 -2036 ((-3 (|:| |fst| (-446)) (|:| -4339 #1="void")) $)) (-15 -2819 ((-660 (-964 (-558))) $)) (-15 -2035 ((-114) $)) (-15 -3949 ($ (-3 (|:| |fst| (-446)) (|:| -4339 #1#)) (-660 (-1197)) (-114))) (-15 -3949 ($ (-3 (|:| |fst| (-446)) (|:| -4339 #1#)) (-660 (-964 (-558))) (-114))) (-15 -2034 ($)) (-15 -2033 ($)) (-15 -2032 ($)) (-15 -2031 ($)) (-15 -2030 ($)) (-15 -2029 ($)) (-15 -2028 ($))))) (T -448)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) (-2036 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 #1="void"))) (-5 *1 (-448)))) (-2819 (*1 *2 *1) (-12 (-5 *2 (-660 (-964 (-558)))) (-5 *1 (-448)))) (-2035 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448)))) (-3949 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-5 *3 (-660 (-1197))) (-5 *4 (-114)) (-5 *1 (-448)))) (-3949 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-114)) (-5 *1 (-448)))) (-2034 (*1 *1) (-5 *1 (-448))) (-2033 (*1 *1) (-5 *1 (-448))) (-2032 (*1 *1) (-5 *1 (-448))) (-2031 (*1 *1) (-5 *1 (-448))) (-2030 (*1 *1) (-5 *1 (-448))) (-2029 (*1 *1) (-5 *1 (-448))) (-2028 (*1 *1) (-5 *1 (-448)))) +((-2966 (((-114) $ $) NIL T ELT)) (-1899 (((-1179) $ (-1179)) NIL T ELT)) (-1903 (($ $ (-1179)) NIL T ELT)) (-1900 (((-1179) $) NIL T ELT)) (-2040 (((-402) (-402) (-402)) 17 T ELT) (((-402) (-402)) 15 T ELT)) (-1904 (($ (-402)) NIL T ELT) (($ (-402) (-1179)) NIL T ELT)) (-3969 (((-402) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1901 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2039 (((-1293) (-1179)) 9 T ELT)) (-2038 (((-1293) (-1179)) 10 T ELT)) (-2037 (((-1293)) 11 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1902 (($ $) 39 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-449) (-13 (-378 (-402) (-1179)) (-10 -7 (-15 -2040 ((-402) (-402) (-402))) (-15 -2040 ((-402) (-402))) (-15 -2039 ((-1293) (-1179))) (-15 -2038 ((-1293) (-1179))) (-15 -2037 ((-1293)))))) (T -449)) +((-2040 (*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2040 (*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) (-2039 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-449)))) (-2038 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-449)))) (-2037 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-449))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3969 (((-1197) $) 8 T ELT)) (-3659 (((-1179) $) 17 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 14 T ELT))) +(((-450 |#1|) (-13 (-1121) (-10 -8 (-15 -3969 ((-1197) $)))) (-1197)) (T -450)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3736 (((-1135) $) 7 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 9 T ELT))) +(((-451) (-13 (-1121) (-10 -8 (-15 -3736 ((-1135) $))))) (T -451)) +((-3736 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-451))))) +((-3799 (((-1293) $) 7 T ELT)) (-4375 (((-876) $) 8 T ELT) (($ (-1287 (-718))) 14 T ELT) (($ (-660 (-342))) 13 T ELT) (($ (-342)) 12 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 11 T ELT))) (((-452) (-142)) (T -452)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-719))) (-4 *1 (-452)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-452)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) (-4 *1 (-452))))) -(-13 (-408) (-10 -8 (-15 -4376 ($ (-1288 (-719)))) (-15 -4376 ($ (-661 (-342)))) (-15 -4376 ($ (-342))) (-15 -4376 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342)))))))) -(((-630 (-877)) . T) ((-408) . T) ((-1238) . T)) -((-3575 (((-3 $ "failed") (-1288 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1288 (-326 (-558)))) 19 T ELT) (((-3 $ "failed") (-1288 (-965 (-391)))) 17 T ELT) (((-3 $ "failed") (-1288 (-965 (-558)))) 15 T ELT) (((-3 $ "failed") (-1288 (-419 (-965 (-391))))) 13 T ELT) (((-3 $ "failed") (-1288 (-419 (-965 (-558))))) 11 T ELT)) (-3574 (($ (-1288 (-326 (-391)))) 22 T ELT) (($ (-1288 (-326 (-558)))) 20 T ELT) (($ (-1288 (-965 (-391)))) 18 T ELT) (($ (-1288 (-965 (-558)))) 16 T ELT) (($ (-1288 (-419 (-965 (-391))))) 14 T ELT) (($ (-1288 (-419 (-965 (-558))))) 12 T ELT)) (-3800 (((-1294) $) 7 T ELT)) (-4376 (((-877) $) 8 T ELT) (($ (-661 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) 23 T ELT))) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-718))) (-4 *1 (-452)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-452)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-452))))) +(-13 (-408) (-10 -8 (-15 -4375 ($ (-1287 (-718)))) (-15 -4375 ($ (-660 (-342)))) (-15 -4375 ($ (-342))) (-15 -4375 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342)))))))) +(((-629 (-876)) . T) ((-408) . T) ((-1237) . T)) +((-3574 (((-3 $ "failed") (-1287 (-326 (-391)))) 21 T ELT) (((-3 $ "failed") (-1287 (-326 (-558)))) 19 T ELT) (((-3 $ "failed") (-1287 (-964 (-391)))) 17 T ELT) (((-3 $ "failed") (-1287 (-964 (-558)))) 15 T ELT) (((-3 $ "failed") (-1287 (-419 (-964 (-391))))) 13 T ELT) (((-3 $ "failed") (-1287 (-419 (-964 (-558))))) 11 T ELT)) (-3573 (($ (-1287 (-326 (-391)))) 22 T ELT) (($ (-1287 (-326 (-558)))) 20 T ELT) (($ (-1287 (-964 (-391)))) 18 T ELT) (($ (-1287 (-964 (-558)))) 16 T ELT) (($ (-1287 (-419 (-964 (-391))))) 14 T ELT) (($ (-1287 (-419 (-964 (-558))))) 12 T ELT)) (-3799 (((-1293) $) 7 T ELT)) (-4375 (((-876) $) 8 T ELT) (($ (-660 (-342))) 25 T ELT) (($ (-342)) 24 T ELT) (($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) 23 T ELT))) (((-453) (-142)) (T -453)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-453)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-391)))) (-4 *1 (-453)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-391)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-558)))) (-4 *1 (-453)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-558)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1288 (-965 (-391)))) (-4 *1 (-453)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-965 (-391)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1288 (-965 (-558)))) (-4 *1 (-453)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-965 (-558)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-965 (-391))))) (-4 *1 (-453)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-965 (-391))))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-965 (-558))))) (-4 *1 (-453)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-419 (-965 (-558))))) (-4 *1 (-453))))) -(-13 (-408) (-10 -8 (-15 -4376 ($ (-661 (-342)))) (-15 -4376 ($ (-342))) (-15 -4376 ($ (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342)))))) (-15 -3574 ($ (-1288 (-326 (-391))))) (-15 -3575 ((-3 $ "failed") (-1288 (-326 (-391))))) (-15 -3574 ($ (-1288 (-326 (-558))))) (-15 -3575 ((-3 $ "failed") (-1288 (-326 (-558))))) (-15 -3574 ($ (-1288 (-965 (-391))))) (-15 -3575 ((-3 $ "failed") (-1288 (-965 (-391))))) (-15 -3574 ($ (-1288 (-965 (-558))))) (-15 -3575 ((-3 $ "failed") (-1288 (-965 (-558))))) (-15 -3574 ($ (-1288 (-419 (-965 (-391)))))) (-15 -3575 ((-3 $ "failed") (-1288 (-419 (-965 (-391)))))) (-15 -3574 ($ (-1288 (-419 (-965 (-558)))))) (-15 -3575 ((-3 $ "failed") (-1288 (-419 (-965 (-558)))))))) -(((-630 (-877)) . T) ((-408) . T) ((-1238) . T)) -((-2047 (((-114)) 18 T ELT)) (-2048 (((-114) (-114)) 19 T ELT)) (-2049 (((-114)) 14 T ELT)) (-2050 (((-114) (-114)) 15 T ELT)) (-2052 (((-114)) 16 T ELT)) (-2053 (((-114) (-114)) 17 T ELT)) (-2044 (((-938) (-938)) 22 T ELT) (((-938)) 21 T ELT)) (-2045 (((-791) (-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558))))) 52 T ELT)) (-2043 (((-938) (-938)) 24 T ELT) (((-938)) 23 T ELT)) (-2046 (((-2 (|:| -2977 (-558)) (|:| -1987 (-661 |#1|))) |#1|) 94 T ELT)) (-2042 (((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558))))))) 176 T ELT)) (-4164 (((-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))) |#1| (-114)) 209 T ELT)) (-4163 (((-417 |#1|) |#1| (-791) (-791)) 224 T ELT) (((-417 |#1|) |#1| (-661 (-791)) (-791)) 221 T ELT) (((-417 |#1|) |#1| (-661 (-791))) 223 T ELT) (((-417 |#1|) |#1| (-791)) 222 T ELT) (((-417 |#1|) |#1|) 220 T ELT)) (-2064 (((-3 |#1| #1="failed") (-938) |#1| (-661 (-791)) (-791) (-114)) 226 T ELT) (((-3 |#1| #1#) (-938) |#1| (-661 (-791)) (-791)) 227 T ELT) (((-3 |#1| #1#) (-938) |#1| (-661 (-791))) 229 T ELT) (((-3 |#1| #1#) (-938) |#1| (-791)) 228 T ELT) (((-3 |#1| #1#) (-938) |#1|) 230 T ELT)) (-4162 (((-417 |#1|) |#1| (-791) (-791)) 219 T ELT) (((-417 |#1|) |#1| (-661 (-791)) (-791)) 215 T ELT) (((-417 |#1|) |#1| (-661 (-791))) 217 T ELT) (((-417 |#1|) |#1| (-791)) 216 T ELT) (((-417 |#1|) |#1|) 214 T ELT)) (-2051 (((-114) |#1|) 43 T ELT)) (-2063 (((-756 (-791)) (-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558))))) 99 T ELT)) (-2054 (((-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))) |#1| (-114) (-1118 (-791)) (-791)) 213 T ELT))) -(((-454 |#1|) (-10 -7 (-15 -2042 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))))) (-15 -2063 ((-756 (-791)) (-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558)))))) (-15 -2043 ((-938))) (-15 -2043 ((-938) (-938))) (-15 -2044 ((-938))) (-15 -2044 ((-938) (-938))) (-15 -2045 ((-791) (-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558)))))) (-15 -2046 ((-2 (|:| -2977 (-558)) (|:| -1987 (-661 |#1|))) |#1|)) (-15 -2047 ((-114))) (-15 -2048 ((-114) (-114))) (-15 -2049 ((-114))) (-15 -2050 ((-114) (-114))) (-15 -2051 ((-114) |#1|)) (-15 -2052 ((-114))) (-15 -2053 ((-114) (-114))) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4162 ((-417 |#1|) |#1| (-791))) (-15 -4162 ((-417 |#1|) |#1| (-661 (-791)))) (-15 -4162 ((-417 |#1|) |#1| (-661 (-791)) (-791))) (-15 -4162 ((-417 |#1|) |#1| (-791) (-791))) (-15 -4163 ((-417 |#1|) |#1|)) (-15 -4163 ((-417 |#1|) |#1| (-791))) (-15 -4163 ((-417 |#1|) |#1| (-661 (-791)))) (-15 -4163 ((-417 |#1|) |#1| (-661 (-791)) (-791))) (-15 -4163 ((-417 |#1|) |#1| (-791) (-791))) (-15 -2064 ((-3 |#1| #1="failed") (-938) |#1|)) (-15 -2064 ((-3 |#1| #1#) (-938) |#1| (-791))) (-15 -2064 ((-3 |#1| #1#) (-938) |#1| (-661 (-791)))) (-15 -2064 ((-3 |#1| #1#) (-938) |#1| (-661 (-791)) (-791))) (-15 -2064 ((-3 |#1| #1#) (-938) |#1| (-661 (-791)) (-791) (-114))) (-15 -4164 ((-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))) |#1| (-114))) (-15 -2054 ((-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))) |#1| (-114) (-1118 (-791)) (-791)))) (-1264 (-558))) (T -454)) -((-2054 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1118 (-791))) (-5 *6 (-791)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2064 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) (-2064 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) (-2064 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-661 (-791))) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) (-2064 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-938)) (-5 *4 (-791)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) (-2064 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) (-4163 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4163 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4163 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4162 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2053 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2052 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2051 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2050 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2049 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2048 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2047 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2046 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2977 (-558)) (|:| -1987 (-661 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2045 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -4162 *4) (|:| -4378 (-558))))) (-4 *4 (-1264 (-558))) (-5 *2 (-791)) (-5 *1 (-454 *4)))) (-2044 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2044 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2043 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -4162 *4) (|:| -4378 (-558))))) (-4 *4 (-1264 (-558))) (-5 *2 (-756 (-791))) (-5 *1 (-454 *4)))) (-2042 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| *4) (|:| -2626 (-558))))))) (-4 *4 (-1264 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) -((-2058 (((-558) |#2|) 52 T ELT) (((-558) |#2| (-791)) 51 T ELT)) (-2057 (((-558) |#2|) 64 T ELT)) (-2059 ((|#3| |#2|) 26 T ELT)) (-3534 ((|#3| |#2| (-938)) 15 T ELT)) (-4263 ((|#3| |#2|) 16 T ELT)) (-2060 ((|#3| |#2|) 9 T ELT)) (-3002 ((|#3| |#2|) 10 T ELT)) (-2056 ((|#3| |#2| (-938)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2055 (((-558) |#2|) 66 T ELT))) -(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2055 ((-558) |#2|)) (-15 -2056 (|#3| |#2|)) (-15 -2056 (|#3| |#2| (-938))) (-15 -2057 ((-558) |#2|)) (-15 -2058 ((-558) |#2| (-791))) (-15 -2058 ((-558) |#2|)) (-15 -3534 (|#3| |#2| (-938))) (-15 -2059 (|#3| |#2|)) (-15 -2060 (|#3| |#2|)) (-15 -3002 (|#3| |#2|)) (-15 -4263 (|#3| |#2|))) (-1070) (-1264 |#1|) (-13 (-416) (-1059 |#1|) (-376) (-1224) (-296))) (T -455)) -((-4263 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3002 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2060 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2059 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-3534 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-376) (-1224) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))))) (-2058 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1264 *5)) (-4 *6 (-13 (-416) (-1059 *5) (-376) (-1224) (-296))))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))))) (-2056 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *2 (-13 (-416) (-1059 *5) (-376) (-1224) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-376) (-1224) (-296)))))) -((-3774 ((|#2| (-1288 |#1|)) 42 T ELT)) (-2062 ((|#2| |#2| |#1|) 58 T ELT)) (-2061 ((|#2| |#2| |#1|) 49 T ELT)) (-2511 ((|#2| |#2|) 44 T ELT)) (-3591 (((-114) |#2|) 32 T ELT)) (-2065 (((-661 |#2|) (-938) (-417 |#2|)) 21 T ELT)) (-2064 ((|#2| (-938) (-417 |#2|)) 25 T ELT)) (-2063 (((-756 (-791)) (-417 |#2|)) 29 T ELT))) -(((-456 |#1| |#2|) (-10 -7 (-15 -3591 ((-114) |#2|)) (-15 -3774 (|#2| (-1288 |#1|))) (-15 -2511 (|#2| |#2|)) (-15 -2061 (|#2| |#2| |#1|)) (-15 -2062 (|#2| |#2| |#1|)) (-15 -2063 ((-756 (-791)) (-417 |#2|))) (-15 -2064 (|#2| (-938) (-417 |#2|))) (-15 -2065 ((-661 |#2|) (-938) (-417 |#2|)))) (-1070) (-1264 |#1|)) (T -456)) -((-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-417 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-1070)) (-5 *2 (-661 *6)) (-5 *1 (-456 *5 *6)))) (-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-417 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1070)))) (-2063 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-756 (-791))) (-5 *1 (-456 *4 *5)))) (-2062 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-2061 (*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-2511 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) (-3774 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) (-5 *1 (-456 *4 *2)))) (-3591 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1264 *4))))) -((-2068 (((-791)) 59 T ELT)) (-2072 (((-791)) 29 (|has| |#1| (-416)) ELT) (((-791) (-791)) 28 (|has| |#1| (-416)) ELT)) (-2071 (((-558) |#1|) 25 (|has| |#1| (-416)) ELT)) (-2070 (((-558) |#1|) 27 (|has| |#1| (-416)) ELT)) (-2067 (((-791)) 58 T ELT) (((-791) (-791)) 57 T ELT)) (-2066 ((|#1| (-791) (-558)) 37 T ELT)) (-2069 (((-1294)) 61 T ELT))) -(((-457 |#1|) (-10 -7 (-15 -2066 (|#1| (-791) (-558))) (-15 -2067 ((-791) (-791))) (-15 -2067 ((-791))) (-15 -2068 ((-791))) (-15 -2069 ((-1294))) (IF (|has| |#1| (-416)) (PROGN (-15 -2070 ((-558) |#1|)) (-15 -2071 ((-558) |#1|)) (-15 -2072 ((-791) (-791))) (-15 -2072 ((-791)))) |%noBranch|)) (-1070)) (T -457)) -((-2072 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2072 (*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2071 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) (-2069 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2068 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2067 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2067 (*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) (-2066 (*1 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-558)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) -((-2073 (((-661 (-558)) (-558)) 76 T ELT)) (-4153 (((-114) (-171 (-558))) 84 T ELT)) (-4162 (((-417 (-171 (-558))) (-171 (-558))) 75 T ELT))) -(((-458) (-10 -7 (-15 -4162 ((-417 (-171 (-558))) (-171 (-558)))) (-15 -2073 ((-661 (-558)) (-558))) (-15 -4153 ((-114) (-171 (-558)))))) (T -458)) -((-4153 (*1 *2 *3) (-12 (-5 *3 (-171 (-558))) (-5 *2 (-114)) (-5 *1 (-458)))) (-2073 (*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-458)) (-5 *3 (-558)))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 (-171 (-558)))) (-5 *1 (-458)) (-5 *3 (-171 (-558)))))) -((-3347 ((|#4| |#4| (-661 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-2465 (((-661 |#4|) (-661 |#4|) (-1180) (-1180)) 46 T ELT) (((-661 |#4|) (-661 |#4|) (-1180)) 45 T ELT) (((-661 |#4|) (-661 |#4|)) 34 T ELT))) -(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2465 ((-661 |#4|) (-661 |#4|))) (-15 -2465 ((-661 |#4|) (-661 |#4|) (-1180))) (-15 -2465 ((-661 |#4|) (-661 |#4|) (-1180) (-1180))) (IF (|has| |#1| (-376)) (-15 -3347 (|#4| |#4| (-661 |#4|))) |%noBranch|)) (-464) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -459)) -((-3347 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2)))) (-2465 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2465 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6))))) -((-2074 ((|#4| |#4| (-661 |#4|)) 82 T ELT)) (-2075 (((-661 |#4|) (-661 |#4|) (-1180) (-1180)) 22 T ELT) (((-661 |#4|) (-661 |#4|) (-1180)) 21 T ELT) (((-661 |#4|) (-661 |#4|)) 13 T ELT))) -(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2074 (|#4| |#4| (-661 |#4|))) (-15 -2075 ((-661 |#4|) (-661 |#4|))) (-15 -2075 ((-661 |#4|) (-661 |#4|) (-1180))) (-15 -2075 ((-661 |#4|) (-661 |#4|) (-1180) (-1180)))) (-319) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -460)) -((-2075 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2075 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2075 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2074 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2))))) -((-2077 (((-661 (-661 |#4|)) (-661 |#4|) (-114)) 90 T ELT) (((-661 (-661 |#4|)) (-661 |#4|)) 89 T ELT) (((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|) (-114)) 83 T ELT) (((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|)) 84 T ELT)) (-2076 (((-661 (-661 |#4|)) (-661 |#4|) (-114)) 56 T ELT) (((-661 (-661 |#4|)) (-661 |#4|)) 78 T ELT))) -(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2076 ((-661 (-661 |#4|)) (-661 |#4|))) (-15 -2076 ((-661 (-661 |#4|)) (-661 |#4|) (-114))) (-15 -2077 ((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|))) (-15 -2077 ((-661 (-661 |#4|)) (-661 |#4|) (-661 |#4|) (-114))) (-15 -2077 ((-661 (-661 |#4|)) (-661 |#4|))) (-15 -2077 ((-661 (-661 |#4|)) (-661 |#4|) (-114)))) (-13 (-319) (-149)) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -461)) -((-2077 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) (-2077 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-2077 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) (-2077 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-2076 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) (-2076 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) -((-2101 (((-791) |#4|) 12 T ELT)) (-2089 (((-661 (-2 (|:| |totdeg| (-791)) (|:| -2214 |#4|))) |#4| (-791) (-661 (-2 (|:| |totdeg| (-791)) (|:| -2214 |#4|)))) 39 T ELT)) (-2091 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-2090 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2079 ((|#4| |#4| (-661 |#4|)) 54 T ELT)) (-2087 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-661 |#4|)) 96 T ELT)) (-2094 (((-1294) |#4|) 59 T ELT)) (-2097 (((-1294) (-661 |#4|)) 69 T ELT)) (-2095 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558)) 66 T ELT)) (-2098 (((-1294) (-558)) 110 T ELT)) (-2092 (((-661 |#4|) (-661 |#4|)) 104 T ELT)) (-2100 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-791)) (|:| -2214 |#4|)) |#4| (-791)) 31 T ELT)) (-2093 (((-558) |#4|) 109 T ELT)) (-2088 ((|#4| |#4|) 37 T ELT)) (-2080 (((-661 |#4|) (-661 |#4|) (-558) (-558)) 74 T ELT)) (-2096 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558)) 123 T ELT)) (-2099 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2081 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2086 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2085 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2082 (((-114) |#2| |#2|) 75 T ELT)) (-2084 (((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2083 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2078 ((|#4| |#4| (-661 |#4|)) 97 T ELT))) -(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2078 (|#4| |#4| (-661 |#4|))) (-15 -2079 (|#4| |#4| (-661 |#4|))) (-15 -2080 ((-661 |#4|) (-661 |#4|) (-558) (-558))) (-15 -2081 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2082 ((-114) |#2| |#2|)) (-15 -2083 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2084 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2085 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2086 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2087 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-661 |#4|))) (-15 -2088 (|#4| |#4|)) (-15 -2089 ((-661 (-2 (|:| |totdeg| (-791)) (|:| -2214 |#4|))) |#4| (-791) (-661 (-2 (|:| |totdeg| (-791)) (|:| -2214 |#4|))))) (-15 -2090 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2091 ((-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-661 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2092 ((-661 |#4|) (-661 |#4|))) (-15 -2093 ((-558) |#4|)) (-15 -2094 ((-1294) |#4|)) (-15 -2095 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -2096 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -2097 ((-1294) (-661 |#4|))) (-15 -2098 ((-1294) (-558))) (-15 -2099 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2100 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-791)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-791)) (|:| -2214 |#4|)) |#4| (-791))) (-15 -2101 ((-791) |#4|))) (-464) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -462)) -((-2101 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-791)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2100 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-791)) (|:| -2214 *4))) (-5 *5 (-791)) (-4 *4 (-969 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2099 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2098 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1294)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1294)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2096 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2095 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-815)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2094 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1294)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2093 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-558)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2092 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2091 (*1 *2 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2090 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-815)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-861)))) (-2089 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-661 (-2 (|:| |totdeg| (-791)) (|:| -2214 *3)))) (-5 *4 (-791)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-462 *5 *6 *7 *3)))) (-2088 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-2087 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-2086 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-815)) (-4 *6 (-969 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-5 *1 (-462 *4 *3 *5 *6)))) (-2085 (*1 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-815)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2084 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-815)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *3)))) (-2083 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5)))) (-2082 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5)))) (-2081 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-815)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2080 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-558)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2079 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2078 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2))))) -((-2102 (($ $ $) 14 T ELT) (($ (-661 $)) 21 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 45 T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) 22 T ELT))) -(((-463 |#1|) (-10 -7 (-15 -3109 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -2102 (|#1| (-661 |#1|))) (-15 -2102 (|#1| |#1| |#1|)) (-15 -3562 (|#1| (-661 |#1|))) (-15 -3562 (|#1| |#1| |#1|))) (-464)) (T -463)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-453)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-391)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-391)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-558)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-558)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1287 (-964 (-391)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-964 (-391)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1287 (-964 (-558)))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-964 (-558)))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-964 (-391))))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-964 (-391))))) (-4 *1 (-453)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-964 (-558))))) (-4 *1 (-453)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-419 (-964 (-558))))) (-4 *1 (-453))))) +(-13 (-408) (-10 -8 (-15 -4375 ($ (-660 (-342)))) (-15 -4375 ($ (-342))) (-15 -4375 ($ (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342)))))) (-15 -3573 ($ (-1287 (-326 (-391))))) (-15 -3574 ((-3 $ "failed") (-1287 (-326 (-391))))) (-15 -3573 ($ (-1287 (-326 (-558))))) (-15 -3574 ((-3 $ "failed") (-1287 (-326 (-558))))) (-15 -3573 ($ (-1287 (-964 (-391))))) (-15 -3574 ((-3 $ "failed") (-1287 (-964 (-391))))) (-15 -3573 ($ (-1287 (-964 (-558))))) (-15 -3574 ((-3 $ "failed") (-1287 (-964 (-558))))) (-15 -3573 ($ (-1287 (-419 (-964 (-391)))))) (-15 -3574 ((-3 $ "failed") (-1287 (-419 (-964 (-391)))))) (-15 -3573 ($ (-1287 (-419 (-964 (-558)))))) (-15 -3574 ((-3 $ "failed") (-1287 (-419 (-964 (-558)))))))) +(((-629 (-876)) . T) ((-408) . T) ((-1237) . T)) +((-2046 (((-114)) 18 T ELT)) (-2047 (((-114) (-114)) 19 T ELT)) (-2048 (((-114)) 14 T ELT)) (-2049 (((-114) (-114)) 15 T ELT)) (-2051 (((-114)) 16 T ELT)) (-2052 (((-114) (-114)) 17 T ELT)) (-2043 (((-937) (-937)) 22 T ELT) (((-937)) 21 T ELT)) (-2044 (((-790) (-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558))))) 52 T ELT)) (-2042 (((-937) (-937)) 24 T ELT) (((-937)) 23 T ELT)) (-2045 (((-2 (|:| -2976 (-558)) (|:| -1986 (-660 |#1|))) |#1|) 94 T ELT)) (-2041 (((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558))))))) 176 T ELT)) (-4163 (((-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))) |#1| (-114)) 209 T ELT)) (-4162 (((-417 |#1|) |#1| (-790) (-790)) 224 T ELT) (((-417 |#1|) |#1| (-660 (-790)) (-790)) 221 T ELT) (((-417 |#1|) |#1| (-660 (-790))) 223 T ELT) (((-417 |#1|) |#1| (-790)) 222 T ELT) (((-417 |#1|) |#1|) 220 T ELT)) (-2063 (((-3 |#1| #1="failed") (-937) |#1| (-660 (-790)) (-790) (-114)) 226 T ELT) (((-3 |#1| #1#) (-937) |#1| (-660 (-790)) (-790)) 227 T ELT) (((-3 |#1| #1#) (-937) |#1| (-660 (-790))) 229 T ELT) (((-3 |#1| #1#) (-937) |#1| (-790)) 228 T ELT) (((-3 |#1| #1#) (-937) |#1|) 230 T ELT)) (-4161 (((-417 |#1|) |#1| (-790) (-790)) 219 T ELT) (((-417 |#1|) |#1| (-660 (-790)) (-790)) 215 T ELT) (((-417 |#1|) |#1| (-660 (-790))) 217 T ELT) (((-417 |#1|) |#1| (-790)) 216 T ELT) (((-417 |#1|) |#1|) 214 T ELT)) (-2050 (((-114) |#1|) 43 T ELT)) (-2062 (((-755 (-790)) (-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558))))) 99 T ELT)) (-2053 (((-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))) |#1| (-114) (-1117 (-790)) (-790)) 213 T ELT))) +(((-454 |#1|) (-10 -7 (-15 -2041 ((-417 |#1|) (-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))))) (-15 -2062 ((-755 (-790)) (-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558)))))) (-15 -2042 ((-937))) (-15 -2042 ((-937) (-937))) (-15 -2043 ((-937))) (-15 -2043 ((-937) (-937))) (-15 -2044 ((-790) (-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558)))))) (-15 -2045 ((-2 (|:| -2976 (-558)) (|:| -1986 (-660 |#1|))) |#1|)) (-15 -2046 ((-114))) (-15 -2047 ((-114) (-114))) (-15 -2048 ((-114))) (-15 -2049 ((-114) (-114))) (-15 -2050 ((-114) |#1|)) (-15 -2051 ((-114))) (-15 -2052 ((-114) (-114))) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4161 ((-417 |#1|) |#1| (-790))) (-15 -4161 ((-417 |#1|) |#1| (-660 (-790)))) (-15 -4161 ((-417 |#1|) |#1| (-660 (-790)) (-790))) (-15 -4161 ((-417 |#1|) |#1| (-790) (-790))) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4162 ((-417 |#1|) |#1| (-790))) (-15 -4162 ((-417 |#1|) |#1| (-660 (-790)))) (-15 -4162 ((-417 |#1|) |#1| (-660 (-790)) (-790))) (-15 -4162 ((-417 |#1|) |#1| (-790) (-790))) (-15 -2063 ((-3 |#1| #1="failed") (-937) |#1|)) (-15 -2063 ((-3 |#1| #1#) (-937) |#1| (-790))) (-15 -2063 ((-3 |#1| #1#) (-937) |#1| (-660 (-790)))) (-15 -2063 ((-3 |#1| #1#) (-937) |#1| (-660 (-790)) (-790))) (-15 -2063 ((-3 |#1| #1#) (-937) |#1| (-660 (-790)) (-790) (-114))) (-15 -4163 ((-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))) |#1| (-114))) (-15 -2053 ((-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))) |#1| (-114) (-1117 (-790)) (-790)))) (-1263 (-558))) (T -454)) +((-2053 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-114)) (-5 *5 (-1117 (-790))) (-5 *6 (-790)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2063 (*1 *2 *3 *2 *4 *5 *6) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-660 (-790))) (-5 *5 (-790)) (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) (-2063 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-660 (-790))) (-5 *5 (-790)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) (-2063 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-660 (-790))) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) (-2063 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *3 (-937)) (-5 *4 (-790)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) (-2063 (*1 *2 *3 *2) (|partial| -12 (-5 *3 (-937)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) (-4162 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4162 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 (-790))) (-5 *5 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-790))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4161 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4161 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 (-790))) (-5 *5 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-790))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2052 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2051 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2050 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2049 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2048 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2047 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2046 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2045 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -2976 (-558)) (|:| -1986 (-660 *3)))) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2044 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -4161 *4) (|:| -4377 (-558))))) (-4 *4 (-1263 (-558))) (-5 *2 (-790)) (-5 *1 (-454 *4)))) (-2043 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2043 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2042 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2042 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -4161 *4) (|:| -4377 (-558))))) (-4 *4 (-1263 (-558))) (-5 *2 (-755 (-790))) (-5 *1 (-454 *4)))) (-2041 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| *4) (|:| -2625 (-558))))))) (-4 *4 (-1263 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) +((-2057 (((-558) |#2|) 52 T ELT) (((-558) |#2| (-790)) 51 T ELT)) (-2056 (((-558) |#2|) 64 T ELT)) (-2058 ((|#3| |#2|) 26 T ELT)) (-3533 ((|#3| |#2| (-937)) 15 T ELT)) (-4262 ((|#3| |#2|) 16 T ELT)) (-2059 ((|#3| |#2|) 9 T ELT)) (-3001 ((|#3| |#2|) 10 T ELT)) (-2055 ((|#3| |#2| (-937)) 71 T ELT) ((|#3| |#2|) 34 T ELT)) (-2054 (((-558) |#2|) 66 T ELT))) +(((-455 |#1| |#2| |#3|) (-10 -7 (-15 -2054 ((-558) |#2|)) (-15 -2055 (|#3| |#2|)) (-15 -2055 (|#3| |#2| (-937))) (-15 -2056 ((-558) |#2|)) (-15 -2057 ((-558) |#2| (-790))) (-15 -2057 ((-558) |#2|)) (-15 -3533 (|#3| |#2| (-937))) (-15 -2058 (|#3| |#2|)) (-15 -2059 (|#3| |#2|)) (-15 -3001 (|#3| |#2|)) (-15 -4262 (|#3| |#2|))) (-1069) (-1263 |#1|) (-13 (-416) (-1058 |#1|) (-376) (-1223) (-296))) (T -455)) +((-4262 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3001 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2059 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2058 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-3533 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *2 (-13 (-416) (-1058 *5) (-376) (-1223) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-2057 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))))) (-2057 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *5 *3 *6)) (-4 *3 (-1263 *5)) (-4 *6 (-13 (-416) (-1058 *5) (-376) (-1223) (-296))))) (-2056 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))))) (-2055 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *2 (-13 (-416) (-1058 *5) (-376) (-1223) (-296))) (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) (-2055 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) (-2054 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-376) (-1223) (-296)))))) +((-3773 ((|#2| (-1287 |#1|)) 42 T ELT)) (-2061 ((|#2| |#2| |#1|) 58 T ELT)) (-2060 ((|#2| |#2| |#1|) 49 T ELT)) (-2510 ((|#2| |#2|) 44 T ELT)) (-3590 (((-114) |#2|) 32 T ELT)) (-2064 (((-660 |#2|) (-937) (-417 |#2|)) 21 T ELT)) (-2063 ((|#2| (-937) (-417 |#2|)) 25 T ELT)) (-2062 (((-755 (-790)) (-417 |#2|)) 29 T ELT))) +(((-456 |#1| |#2|) (-10 -7 (-15 -3590 ((-114) |#2|)) (-15 -3773 (|#2| (-1287 |#1|))) (-15 -2510 (|#2| |#2|)) (-15 -2060 (|#2| |#2| |#1|)) (-15 -2061 (|#2| |#2| |#1|)) (-15 -2062 ((-755 (-790)) (-417 |#2|))) (-15 -2063 (|#2| (-937) (-417 |#2|))) (-15 -2064 ((-660 |#2|) (-937) (-417 |#2|)))) (-1069) (-1263 |#1|)) (T -456)) +((-2064 (*1 *2 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-417 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-1069)) (-5 *2 (-660 *6)) (-5 *1 (-456 *5 *6)))) (-2063 (*1 *2 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-417 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-456 *5 *2)) (-4 *5 (-1069)))) (-2062 (*1 *2 *3) (-12 (-5 *3 (-417 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1069)) (-5 *2 (-755 (-790))) (-5 *1 (-456 *4 *5)))) (-2061 (*1 *2 *2 *3) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-2060 (*1 *2 *2 *3) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-2510 (*1 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) (-3773 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1069)) (-4 *2 (-1263 *4)) (-5 *1 (-456 *4 *2)))) (-3590 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1263 *4))))) +((-2067 (((-790)) 59 T ELT)) (-2071 (((-790)) 29 (|has| |#1| (-416)) ELT) (((-790) (-790)) 28 (|has| |#1| (-416)) ELT)) (-2070 (((-558) |#1|) 25 (|has| |#1| (-416)) ELT)) (-2069 (((-558) |#1|) 27 (|has| |#1| (-416)) ELT)) (-2066 (((-790)) 58 T ELT) (((-790) (-790)) 57 T ELT)) (-2065 ((|#1| (-790) (-558)) 37 T ELT)) (-2068 (((-1293)) 61 T ELT))) +(((-457 |#1|) (-10 -7 (-15 -2065 (|#1| (-790) (-558))) (-15 -2066 ((-790) (-790))) (-15 -2066 ((-790))) (-15 -2067 ((-790))) (-15 -2068 ((-1293))) (IF (|has| |#1| (-416)) (PROGN (-15 -2069 ((-558) |#1|)) (-15 -2070 ((-558) |#1|)) (-15 -2071 ((-790) (-790))) (-15 -2071 ((-790)))) |%noBranch|)) (-1069)) (T -457)) +((-2071 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-2071 (*1 *2 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-2070 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-2069 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) (-2068 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-2067 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-2066 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-2066 (*1 *2 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) (-2065 (*1 *2 *3 *4) (-12 (-5 *3 (-790)) (-5 *4 (-558)) (-5 *1 (-457 *2)) (-4 *2 (-1069))))) +((-2072 (((-660 (-558)) (-558)) 76 T ELT)) (-4152 (((-114) (-171 (-558))) 84 T ELT)) (-4161 (((-417 (-171 (-558))) (-171 (-558))) 75 T ELT))) +(((-458) (-10 -7 (-15 -4161 ((-417 (-171 (-558))) (-171 (-558)))) (-15 -2072 ((-660 (-558)) (-558))) (-15 -4152 ((-114) (-171 (-558)))))) (T -458)) +((-4152 (*1 *2 *3) (-12 (-5 *3 (-171 (-558))) (-5 *2 (-114)) (-5 *1 (-458)))) (-2072 (*1 *2 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-458)) (-5 *3 (-558)))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 (-171 (-558)))) (-5 *1 (-458)) (-5 *3 (-171 (-558)))))) +((-3346 ((|#4| |#4| (-660 |#4|)) 20 (|has| |#1| (-376)) ELT)) (-2464 (((-660 |#4|) (-660 |#4|) (-1179) (-1179)) 46 T ELT) (((-660 |#4|) (-660 |#4|) (-1179)) 45 T ELT) (((-660 |#4|) (-660 |#4|)) 34 T ELT))) +(((-459 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2464 ((-660 |#4|) (-660 |#4|))) (-15 -2464 ((-660 |#4|) (-660 |#4|) (-1179))) (-15 -2464 ((-660 |#4|) (-660 |#4|) (-1179) (-1179))) (IF (|has| |#1| (-376)) (-15 -3346 (|#4| |#4| (-660 |#4|))) |%noBranch|)) (-464) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -459)) +((-3346 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) (-2464 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2464 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6))))) +((-2073 ((|#4| |#4| (-660 |#4|)) 82 T ELT)) (-2074 (((-660 |#4|) (-660 |#4|) (-1179) (-1179)) 22 T ELT) (((-660 |#4|) (-660 |#4|) (-1179)) 21 T ELT) (((-660 |#4|) (-660 |#4|)) 13 T ELT))) +(((-460 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2073 (|#4| |#4| (-660 |#4|))) (-15 -2074 ((-660 |#4|) (-660 |#4|))) (-15 -2074 ((-660 |#4|) (-660 |#4|) (-1179))) (-15 -2074 ((-660 |#4|) (-660 |#4|) (-1179) (-1179)))) (-319) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -460)) +((-2074 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2074 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) (-2074 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))) (-2073 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2))))) +((-2076 (((-660 (-660 |#4|)) (-660 |#4|) (-114)) 90 T ELT) (((-660 (-660 |#4|)) (-660 |#4|)) 89 T ELT) (((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-114)) 83 T ELT) (((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|)) 84 T ELT)) (-2075 (((-660 (-660 |#4|)) (-660 |#4|) (-114)) 56 T ELT) (((-660 (-660 |#4|)) (-660 |#4|)) 78 T ELT))) +(((-461 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2075 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -2075 ((-660 (-660 |#4|)) (-660 |#4|) (-114))) (-15 -2076 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|))) (-15 -2076 ((-660 (-660 |#4|)) (-660 |#4|) (-660 |#4|) (-114))) (-15 -2076 ((-660 (-660 |#4|)) (-660 |#4|))) (-15 -2076 ((-660 (-660 |#4|)) (-660 |#4|) (-114)))) (-13 (-319) (-149)) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -461)) +((-2076 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-2076 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2076 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-2076 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-2075 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) (-2075 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +((-2100 (((-790) |#4|) 12 T ELT)) (-2088 (((-660 (-2 (|:| |totdeg| (-790)) (|:| -2213 |#4|))) |#4| (-790) (-660 (-2 (|:| |totdeg| (-790)) (|:| -2213 |#4|)))) 39 T ELT)) (-2090 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 49 T ELT)) (-2089 ((|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 52 T ELT)) (-2078 ((|#4| |#4| (-660 |#4|)) 54 T ELT)) (-2086 (((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|)) 96 T ELT)) (-2093 (((-1293) |#4|) 59 T ELT)) (-2096 (((-1293) (-660 |#4|)) 69 T ELT)) (-2094 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558)) 66 T ELT)) (-2097 (((-1293) (-558)) 110 T ELT)) (-2091 (((-660 |#4|) (-660 |#4|)) 104 T ELT)) (-2099 (((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-790)) (|:| -2213 |#4|)) |#4| (-790)) 31 T ELT)) (-2092 (((-558) |#4|) 109 T ELT)) (-2087 ((|#4| |#4|) 37 T ELT)) (-2079 (((-660 |#4|) (-660 |#4|) (-558) (-558)) 74 T ELT)) (-2095 (((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558)) 123 T ELT)) (-2098 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 20 T ELT)) (-2080 (((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) 78 T ELT)) (-2085 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 76 T ELT)) (-2084 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 47 T ELT)) (-2081 (((-114) |#2| |#2|) 75 T ELT)) (-2083 (((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) 48 T ELT)) (-2082 (((-114) |#2| |#2| |#2| |#2|) 80 T ELT)) (-2077 ((|#4| |#4| (-660 |#4|)) 97 T ELT))) +(((-462 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2077 (|#4| |#4| (-660 |#4|))) (-15 -2078 (|#4| |#4| (-660 |#4|))) (-15 -2079 ((-660 |#4|) (-660 |#4|) (-558) (-558))) (-15 -2080 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2081 ((-114) |#2| |#2|)) (-15 -2082 ((-114) |#2| |#2| |#2| |#2|)) (-15 -2083 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#4| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2084 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2085 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) |#2| (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2086 ((-2 (|:| |poly| |#4|) (|:| |mult| |#1|)) |#4| (-660 |#4|))) (-15 -2087 (|#4| |#4|)) (-15 -2088 ((-660 (-2 (|:| |totdeg| (-790)) (|:| -2213 |#4|))) |#4| (-790) (-660 (-2 (|:| |totdeg| (-790)) (|:| -2213 |#4|))))) (-15 -2089 (|#4| (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2090 ((-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))) (-660 (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|))))) (-15 -2091 ((-660 |#4|) (-660 |#4|))) (-15 -2092 ((-558) |#4|)) (-15 -2093 ((-1293) |#4|)) (-15 -2094 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558))) (-15 -2095 ((-558) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) |#4| |#4| (-558) (-558) (-558) (-558))) (-15 -2096 ((-1293) (-660 |#4|))) (-15 -2097 ((-1293) (-558))) (-15 -2098 ((-114) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)))) (-15 -2099 ((-2 (|:| |lcmfij| |#2|) (|:| |totdeg| (-790)) (|:| |poli| |#4|) (|:| |polj| |#4|)) (-2 (|:| |totdeg| (-790)) (|:| -2213 |#4|)) |#4| (-790))) (-15 -2100 ((-790) |#4|))) (-464) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -462)) +((-2100 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-790)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2099 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-2 (|:| |totdeg| (-790)) (|:| -2213 *4))) (-5 *5 (-790)) (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4)))) (-2098 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-814)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2097 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1293)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2096 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1293)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2095 (*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-790)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-814)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-860)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2094 (*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-790)) (|:| |poli| *4) (|:| |polj| *4))) (-4 *6 (-814)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-860)) (-5 *1 (-462 *5 *6 *7 *4)))) (-2093 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1293)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2092 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-558)) (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2091 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2090 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-790)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-814)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2089 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *2) (|:| |polj| *2))) (-4 *5 (-814)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) (-4 *4 (-464)) (-4 *6 (-860)))) (-2088 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-660 (-2 (|:| |totdeg| (-790)) (|:| -2213 *3)))) (-5 *4 (-790)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-462 *5 *6 *7 *3)))) (-2087 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-2086 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3)))) (-2085 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-790)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *3 (-814)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-860)) (-5 *1 (-462 *4 *3 *5 *6)))) (-2084 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-790)) (|:| |poli| *6) (|:| |polj| *6)))) (-4 *4 (-814)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *6)))) (-2083 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *3) (|:| |polj| *3)))) (-4 *5 (-814)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *3)))) (-2082 (*1 *2 *3 *3 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-2081 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *3 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5)))) (-2080 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *7) (|:| |polj| *7))) (-4 *5 (-814)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2079 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-558)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *7)))) (-2078 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *2)))) (-2077 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *2))))) +((-2101 (($ $ $) 14 T ELT) (($ (-660 $)) 21 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 45 T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) 22 T ELT))) +(((-463 |#1|) (-10 -7 (-15 -3108 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -2101 (|#1| (-660 |#1|))) (-15 -2101 (|#1| |#1| |#1|)) (-15 -3561 (|#1| (-660 |#1|))) (-15 -3561 (|#1| |#1| |#1|))) (-464)) (T -463)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-464) (-142)) (T -464)) -((-3562 (*1 *1 *1 *1) (-4 *1 (-464))) (-3562 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) (-2102 (*1 *1 *1 *1) (-4 *1 (-464))) (-2102 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) (-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464))))) -(-13 (-569) (-10 -8 (-15 -3562 ($ $ $)) (-15 -3562 ($ (-661 $))) (-15 -2102 ($ $ $)) (-15 -2102 ($ (-661 $))) (-15 -3109 ((-1192 $) (-1192 $) (-1192 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1980 (((-3 $ #1="failed")) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3641 (((-1288 (-709 (-419 (-965 |#1|)))) (-1288 $)) NIL T ELT) (((-1288 (-709 (-419 (-965 |#1|))))) NIL T ELT)) (-1932 (((-1288 $)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL T ELT)) (-1906 (((-3 $ #1#)) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-1996 (((-709 (-419 (-965 |#1|))) (-1288 $)) NIL T ELT) (((-709 (-419 (-965 |#1|)))) NIL T ELT)) (-1930 (((-419 (-965 |#1|)) $) NIL T ELT)) (-1994 (((-709 (-419 (-965 |#1|))) $ (-1288 $)) NIL T ELT) (((-709 (-419 (-965 |#1|))) $) NIL T ELT)) (-2635 (((-3 $ #1#) $) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-2111 (((-1192 (-965 (-419 (-965 |#1|))))) NIL (|has| (-419 (-965 |#1|)) (-376)) ELT) (((-1192 (-419 (-965 |#1|)))) 91 (|has| |#1| (-569)) ELT)) (-2638 (($ $ (-938)) NIL T ELT)) (-1928 (((-419 (-965 |#1|)) $) NIL T ELT)) (-1908 (((-1192 (-419 (-965 |#1|))) $) 89 (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-1998 (((-419 (-965 |#1|)) (-1288 $)) NIL T ELT) (((-419 (-965 |#1|))) NIL T ELT)) (-1926 (((-1192 (-419 (-965 |#1|))) $) NIL T ELT)) (-1920 (((-114)) NIL T ELT)) (-2000 (($ (-1288 (-419 (-965 |#1|))) (-1288 $)) 115 T ELT) (($ (-1288 (-419 (-965 |#1|)))) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-3511 (((-938)) NIL T ELT)) (-1917 (((-114)) NIL T ELT)) (-2662 (($ $ (-938)) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1915 (((-114)) NIL T ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL T ELT)) (-1907 (((-3 $ #1#)) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-1997 (((-709 (-419 (-965 |#1|))) (-1288 $)) NIL T ELT) (((-709 (-419 (-965 |#1|)))) NIL T ELT)) (-1931 (((-419 (-965 |#1|)) $) NIL T ELT)) (-1995 (((-709 (-419 (-965 |#1|))) $ (-1288 $)) NIL T ELT) (((-709 (-419 (-965 |#1|))) $) NIL T ELT)) (-2636 (((-3 $ #1#) $) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-2115 (((-1192 (-965 (-419 (-965 |#1|))))) NIL (|has| (-419 (-965 |#1|)) (-376)) ELT) (((-1192 (-419 (-965 |#1|)))) 90 (|has| |#1| (-569)) ELT)) (-2637 (($ $ (-938)) NIL T ELT)) (-1929 (((-419 (-965 |#1|)) $) NIL T ELT)) (-1909 (((-1192 (-419 (-965 |#1|))) $) 86 (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-1999 (((-419 (-965 |#1|)) (-1288 $)) NIL T ELT) (((-419 (-965 |#1|))) NIL T ELT)) (-1927 (((-1192 (-419 (-965 |#1|))) $) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-1914 (((-114)) NIL T ELT)) (-1916 (((-114)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2105 (((-419 (-965 |#1|)) $ $) 77 (|has| |#1| (-569)) ELT)) (-2109 (((-419 (-965 |#1|)) $) 101 (|has| |#1| (-569)) ELT)) (-2108 (((-419 (-965 |#1|)) $) 105 (|has| |#1| (-569)) ELT)) (-2110 (((-1192 (-419 (-965 |#1|))) $) 95 (|has| |#1| (-569)) ELT)) (-2104 (((-419 (-965 |#1|))) 78 (|has| |#1| (-569)) ELT)) (-2107 (((-419 (-965 |#1|)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2113 (((-419 (-965 |#1|)) $) 100 (|has| |#1| (-569)) ELT)) (-2112 (((-419 (-965 |#1|)) $) 104 (|has| |#1| (-569)) ELT)) (-2114 (((-1192 (-419 (-965 |#1|))) $) 94 (|has| |#1| (-569)) ELT)) (-2106 (((-419 (-965 |#1|))) 74 (|has| |#1| (-569)) ELT)) (-2116 (($) 111 T ELT) (($ (-1198)) 119 T ELT) (($ (-1288 (-1198))) 118 T ELT) (($ (-1288 $)) 106 T ELT) (($ (-1198) (-1288 $)) 117 T ELT) (($ (-1288 (-1198)) (-1288 $)) 116 T ELT)) (-1919 (((-114)) NIL T ELT)) (-4230 (((-419 (-965 |#1|)) $ (-558)) NIL T ELT)) (-3642 (((-1288 (-419 (-965 |#1|))) $ (-1288 $)) 108 T ELT) (((-709 (-419 (-965 |#1|))) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 (-419 (-965 |#1|))) $) 44 T ELT) (((-709 (-419 (-965 |#1|))) (-1288 $)) NIL T ELT)) (-4402 (((-1288 (-419 (-965 |#1|))) $) NIL T ELT) (($ (-1288 (-419 (-965 |#1|)))) 41 T ELT)) (-2103 (((-661 (-965 (-419 (-965 |#1|)))) (-1288 $)) NIL T ELT) (((-661 (-965 (-419 (-965 |#1|))))) NIL T ELT) (((-661 (-965 |#1|)) (-1288 $)) 109 (|has| |#1| (-569)) ELT) (((-661 (-965 |#1|))) 110 (|has| |#1| (-569)) ELT)) (-2824 (($ $ $) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-1288 (-419 (-965 |#1|)))) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) 66 T ELT)) (-1910 (((-661 (-1288 (-419 (-965 |#1|))))) NIL (|has| (-419 (-965 |#1|)) (-569)) ELT)) (-2825 (($ $ $ $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-2944 (($ (-709 (-419 (-965 |#1|))) $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-1918 (((-114)) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-965 |#1|))) NIL T ELT) (($ (-419 (-965 |#1|)) $) NIL T ELT) (($ (-1163 |#2| (-419 (-965 |#1|))) $) NIL T ELT))) -(((-465 |#1| |#2| |#3| |#4|) (-13 (-430 (-419 (-965 |#1|))) (-668 (-1163 |#2| (-419 (-965 |#1|)))) (-10 -8 (-15 -4376 ($ (-1288 (-419 (-965 |#1|))))) (-15 -2118 ((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1="failed"))) (-15 -2117 ((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#))) (-15 -2116 ($)) (-15 -2116 ($ (-1198))) (-15 -2116 ($ (-1288 (-1198)))) (-15 -2116 ($ (-1288 $))) (-15 -2116 ($ (-1198) (-1288 $))) (-15 -2116 ($ (-1288 (-1198)) (-1288 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2115 ((-1192 (-419 (-965 |#1|))))) (-15 -2114 ((-1192 (-419 (-965 |#1|))) $)) (-15 -2113 ((-419 (-965 |#1|)) $)) (-15 -2112 ((-419 (-965 |#1|)) $)) (-15 -2111 ((-1192 (-419 (-965 |#1|))))) (-15 -2110 ((-1192 (-419 (-965 |#1|))) $)) (-15 -2109 ((-419 (-965 |#1|)) $)) (-15 -2108 ((-419 (-965 |#1|)) $)) (-15 -2107 ((-419 (-965 |#1|)) $ $)) (-15 -2106 ((-419 (-965 |#1|)))) (-15 -2105 ((-419 (-965 |#1|)) $ $)) (-15 -2104 ((-419 (-965 |#1|)))) (-15 -2103 ((-661 (-965 |#1|)) (-1288 $))) (-15 -2103 ((-661 (-965 |#1|))))) |%noBranch|))) (-175) (-938) (-661 (-1198)) (-1288 (-709 |#1|))) (T -465)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-965 *3)))) (-4 *3 (-175)) (-14 *6 (-1288 (-709 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))))) (-2118 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2222 (-661 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2117 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2222 (-661 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2116 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-938)) (-14 *4 (-661 (-1198))) (-14 *5 (-1288 (-709 *2))))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 *2)) (-14 *6 (-1288 (-709 *3))))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-1288 (-1198))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2116 (*1 *1 *2) (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2116 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-938)) (-14 *6 (-661 *2)) (-14 *7 (-1288 (-709 *4))))) (-2116 (*1 *1 *2 *3) (-12 (-5 *2 (-1288 (-1198))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-938)) (-14 *6 (-661 (-1198))) (-14 *7 (-1288 (-709 *4))))) (-2115 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2114 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2111 (*1 *2) (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2110 (*1 *2 *1) (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2107 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2106 (*1 *2) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2105 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2104 (*1 *2) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) (-2103 (*1 *2 *3) (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-661 (-965 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-175)) (-14 *5 (-938)) (-14 *6 (-661 (-1198))) (-14 *7 (-1288 (-709 *4))))) (-2103 (*1 *2) (-12 (-5 *2 (-661 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 18 T ELT)) (-3484 (((-661 (-878 |#1|)) $) 87 T ELT)) (-3486 (((-1192 $) $ (-878 |#1|)) 52 T ELT) (((-1192 |#2|) $) 139 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3220 (((-791) $) 27 T ELT) (((-791) $ (-661 (-878 |#1|))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) 50 T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-3574 ((|#2| $) 48 T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-878 |#1|) $) NIL T ELT)) (-4186 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2148 (($ $ (-661 (-558))) 94 T ELT)) (-4389 (($ $) 80 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#2| (-929)) ELT)) (-1804 (($ $ |#2| |#3| $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) 65 T ELT)) (-3487 (($ (-1192 |#2|) (-878 |#1|)) 144 T ELT) (($ (-1192 $) (-878 |#1|)) 58 T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) 68 T ELT)) (-3294 (($ |#2| |#3|) 35 T ELT) (($ $ (-878 |#1|) (-791)) 37 T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-878 |#1|)) NIL T ELT)) (-3221 ((|#3| $) NIL T ELT) (((-791) $ (-878 |#1|)) 56 T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) 63 T ELT)) (-1805 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3485 (((-3 (-878 |#1|) #1#) $) 45 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#2| $) 47 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) 46 T ELT)) (-2004 ((|#2| $) 137 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) 150 (|has| |#2| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#2| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-878 |#1|) |#2|) 101 T ELT) (($ $ (-661 (-878 |#1|)) (-661 |#2|)) 107 T ELT) (($ $ (-878 |#1|) $) 99 T ELT) (($ $ (-661 (-878 |#1|)) (-661 $)) 125 T ELT)) (-4187 (($ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4188 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) 59 T ELT)) (-4378 ((|#3| $) 79 T ELT) (((-791) $ (-878 |#1|)) 42 T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) 62 T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-878 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3218 ((|#2| $) 146 (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-929))) ELT)) (-4376 (((-877) $) 174 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-878 |#1|)) 39 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ |#3|) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#2| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3059 (($) 22 T CONST)) (-3065 (($) 31 T CONST)) (-3070 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 132 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 130 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) -(((-466 |#1| |#2| |#3|) (-13 (-969 |#2| |#3| (-878 |#1|)) (-10 -8 (-15 -2148 ($ $ (-661 (-558)))))) (-661 (-1198)) (-1070) (-245 (-4387 |#1|) (-791))) (T -466)) -((-2148 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-14 *3 (-661 (-1198))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-245 (-4387 *3) (-791)))))) -((-2122 (((-114) |#1| (-661 |#2|)) 90 T ELT)) (-2120 (((-3 (-1288 (-661 |#2|)) #1="failed") (-791) |#1| (-661 |#2|)) 99 T ELT)) (-2121 (((-3 (-661 |#2|) #1#) |#2| |#1| (-1288 (-661 |#2|))) 101 T ELT)) (-2247 ((|#2| |#2| |#1|) 35 T ELT)) (-2119 (((-791) |#2| (-661 |#2|)) 26 T ELT))) -(((-467 |#1| |#2|) (-10 -7 (-15 -2247 (|#2| |#2| |#1|)) (-15 -2119 ((-791) |#2| (-661 |#2|))) (-15 -2120 ((-3 (-1288 (-661 |#2|)) #1="failed") (-791) |#1| (-661 |#2|))) (-15 -2121 ((-3 (-661 |#2|) #1#) |#2| |#1| (-1288 (-661 |#2|)))) (-15 -2122 ((-114) |#1| (-661 |#2|)))) (-319) (-1264 |#1|)) (T -467)) -((-2122 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-467 *3 *5)))) (-2121 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1288 (-661 *3))) (-4 *4 (-319)) (-5 *2 (-661 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4)))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-791)) (-4 *4 (-319)) (-4 *6 (-1264 *4)) (-5 *2 (-1288 (-661 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-661 *6)))) (-2119 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-319)) (-5 *2 (-791)) (-5 *1 (-467 *5 *3)))) (-2247 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3))))) -((-4162 (((-417 |#5|) |#5|) 24 T ELT))) -(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4162 ((-417 |#5|) |#5|))) (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198))))) (-815) (-569) (-569) (-969 |#4| |#2| |#1|)) (T -468)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198)))))) (-4 *5 (-815)) (-4 *7 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-969 *7 *5 *4))))) -((-3101 ((|#3|) 43 T ELT)) (-3109 (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 34 T ELT))) -(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3109 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3101 (|#3|))) (-815) (-861) (-929) (-969 |#3| |#1| |#2|)) (T -469)) -((-3101 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-929)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-929)) (-5 *1 (-469 *3 *4 *5 *6))))) -((-4162 (((-417 (-1192 |#1|)) (-1192 |#1|)) 43 T ELT))) -(((-470 |#1|) (-10 -7 (-15 -4162 ((-417 (-1192 |#1|)) (-1192 |#1|)))) (-319)) (T -470)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1192 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1192 *4))))) -((-4159 (((-51) |#2| (-1198) (-305 |#2|) (-1255 (-791))) 44 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1255 (-791))) 43 T ELT) (((-51) |#2| (-1198) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|)) 29 T ELT)) (-4248 (((-51) |#2| (-1198) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558))) 88 T ELT) (((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558))) 87 T ELT) (((-51) |#2| (-1198) (-305 |#2|) (-1255 (-558))) 86 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1255 (-558))) 85 T ELT) (((-51) |#2| (-1198) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|)) 79 T ELT)) (-4212 (((-51) |#2| (-1198) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558))) 74 T ELT) (((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558))) 72 T ELT)) (-4209 (((-51) |#2| (-1198) (-305 |#2|) (-1255 (-558))) 51 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1255 (-558))) 50 T ELT))) -(((-471 |#1| |#2|) (-10 -7 (-15 -4159 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4159 ((-51) |#2| (-1198) (-305 |#2|))) (-15 -4159 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1255 (-791)))) (-15 -4159 ((-51) |#2| (-1198) (-305 |#2|) (-1255 (-791)))) (-15 -4209 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1255 (-558)))) (-15 -4209 ((-51) |#2| (-1198) (-305 |#2|) (-1255 (-558)))) (-15 -4212 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558)))) (-15 -4212 ((-51) |#2| (-1198) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558)))) (-15 -4248 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4248 ((-51) |#2| (-1198) (-305 |#2|))) (-15 -4248 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1255 (-558)))) (-15 -4248 ((-51) |#2| (-1198) (-305 |#2|) (-1255 (-558)))) (-15 -4248 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558)))) (-15 -4248 ((-51) |#2| (-1198) (-305 |#2|) (-1255 (-419 (-558))) (-419 (-558))))) (-13 (-569) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -471)) -((-4248 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-419 (-558)))) (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *8))) (-4 *8 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4248 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) (-5 *5 (-1255 (-419 (-558)))) (-5 *6 (-419 (-558))) (-4 *8 (-13 (-27) (-1224) (-433 *7))) (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4248 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *7))) (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1255 (-558))) (-4 *7 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4248 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4248 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6)))) (-4212 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-419 (-558)))) (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *8))) (-4 *8 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4212 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) (-5 *5 (-1255 (-419 (-558)))) (-5 *6 (-419 (-558))) (-4 *8 (-13 (-27) (-1224) (-433 *7))) (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4209 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *7))) (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4209 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1255 (-558))) (-4 *7 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4159 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-791))) (-4 *3 (-13 (-27) (-1224) (-433 *7))) (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1255 (-791))) (-4 *7 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4159 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4159 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6))))) -((-2247 ((|#2| |#2| |#1|) 15 T ELT)) (-2124 (((-661 |#2|) |#2| (-661 |#2|) |#1| (-938)) 82 T ELT)) (-2123 (((-2 (|:| |plist| (-661 |#2|)) (|:| |modulo| |#1|)) |#2| (-661 |#2|) |#1| (-938)) 71 T ELT))) -(((-472 |#1| |#2|) (-10 -7 (-15 -2123 ((-2 (|:| |plist| (-661 |#2|)) (|:| |modulo| |#1|)) |#2| (-661 |#2|) |#1| (-938))) (-15 -2124 ((-661 |#2|) |#2| (-661 |#2|) |#1| (-938))) (-15 -2247 (|#2| |#2| |#1|))) (-319) (-1264 |#1|)) (T -472)) -((-2247 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) (-2124 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-661 *3)) (-5 *5 (-938)) (-4 *3 (-1264 *4)) (-4 *4 (-319)) (-5 *1 (-472 *4 *3)))) (-2123 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-938)) (-4 *5 (-319)) (-4 *3 (-1264 *5)) (-5 *2 (-2 (|:| |plist| (-661 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-661 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 28 T ELT)) (-4137 (($ |#3|) 25 T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) 32 T ELT)) (-2125 (($ |#2| |#4| $) 33 T ELT)) (-3294 (($ |#2| (-733 |#3| |#4| |#5|)) 24 T ELT)) (-3295 (((-733 |#3| |#4| |#5|) $) 15 T ELT)) (-2127 ((|#3| $) 19 T ELT)) (-2128 ((|#4| $) 17 T ELT)) (-3592 ((|#2| $) 29 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-2126 (($ |#2| |#3| |#4|) 26 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 36 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 34 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-737 |#6|) (-737 |#2|) (-10 -8 (-15 -3592 (|#2| $)) (-15 -3295 ((-733 |#3| |#4| |#5|) $)) (-15 -2128 (|#4| $)) (-15 -2127 (|#3| $)) (-15 -4389 ($ $)) (-15 -3294 ($ |#2| (-733 |#3| |#4| |#5|))) (-15 -4137 ($ |#3|)) (-15 -2126 ($ |#2| |#3| |#4|)) (-15 -2125 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-661 (-1198)) (-175) (-861) (-245 (-4387 |#1|) (-791)) (-1 (-114) (-2 (|:| -2631 |#3|) (|:| -2632 |#4|)) (-2 (|:| -2631 |#3|) (|:| -2632 |#4|))) (-969 |#2| |#4| (-878 |#1|))) (T -473)) -((* (*1 *1 *2 *1) (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *6 (-245 (-4387 *3) (-791))) (-14 *7 (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *6)) (-2 (|:| -2631 *5) (|:| -2632 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) (-4 *2 (-969 *4 *6 (-878 *3))))) (-3592 (*1 *2 *1) (-12 (-14 *3 (-661 (-1198))) (-4 *5 (-245 (-4387 *3) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2631 *4) (|:| -2632 *5)) (-2 (|:| -2631 *4) (|:| -2632 *5)))) (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-969 *2 *5 (-878 *3))))) (-3295 (*1 *2 *1) (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *6 (-245 (-4387 *3) (-791))) (-14 *7 (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *6)) (-2 (|:| -2631 *5) (|:| -2632 *6)))) (-5 *2 (-733 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) (-4 *8 (-969 *4 *6 (-878 *3))))) (-2128 (*1 *2 *1) (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *2)) (-2 (|:| -2631 *5) (|:| -2632 *2)))) (-4 *2 (-245 (-4387 *3) (-791))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-861)) (-4 *7 (-969 *4 *2 (-878 *3))))) (-2127 (*1 *2 *1) (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *5 (-245 (-4387 *3) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *5)) (-2 (|:| -2631 *2) (|:| -2632 *5)))) (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-969 *4 *5 (-878 *3))))) (-4389 (*1 *1 *1) (-12 (-14 *2 (-661 (-1198))) (-4 *3 (-175)) (-4 *5 (-245 (-4387 *2) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2631 *4) (|:| -2632 *5)) (-2 (|:| -2631 *4) (|:| -2632 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) (-4 *7 (-969 *3 *5 (-878 *2))))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-733 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-245 (-4387 *4) (-791))) (-14 *7 (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *6)) (-2 (|:| -2631 *5) (|:| -2632 *6)))) (-14 *4 (-661 (-1198))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-969 *2 *6 (-878 *4))))) (-4137 (*1 *1 *2) (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *5 (-245 (-4387 *3) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *5)) (-2 (|:| -2631 *2) (|:| -2632 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) (-4 *7 (-969 *4 *5 (-878 *3))))) (-2126 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-661 (-1198))) (-4 *2 (-175)) (-4 *4 (-245 (-4387 *5) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2631 *3) (|:| -2632 *4)) (-2 (|:| -2631 *3) (|:| -2632 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) (-4 *7 (-969 *2 *4 (-878 *5))))) (-2125 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-661 (-1198))) (-4 *2 (-175)) (-4 *3 (-245 (-4387 *4) (-791))) (-14 *6 (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *3)) (-2 (|:| -2631 *5) (|:| -2632 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) (-4 *7 (-969 *2 *3 (-878 *4)))))) -((-2129 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) -(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2129 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-815) (-861) (-569) (-969 |#3| |#1| |#2|) (-13 (-1059 (-419 (-558))) (-376) (-10 -8 (-15 -4376 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -474)) -((-2129 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-815)) (-4 *6 (-569)) (-4 *7 (-969 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1059 (-419 (-558))) (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3484 (((-661 |#3|) $) 41 T ELT)) (-3309 (((-114) $) NIL T ELT)) (-3300 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4140 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-3305 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ #1="failed") (-661 |#4|)) 49 T ELT)) (-3574 (($ (-661 |#4|)) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-3826 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#4|) $) 18 (|has| $ (-6 -4425)) ELT)) (-3598 ((|#3| $) 47 T ELT)) (-3007 (((-661 |#4|) $) 14 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3315 (((-661 |#3|) $) NIL T ELT)) (-3314 (((-114) |#3| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1468 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 39 T ELT)) (-3993 (($) 17 T ELT)) (-2157 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 16 T ELT)) (-4402 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT) (($ (-661 |#4|)) 51 T ELT)) (-3950 (($ (-661 |#4|)) 13 T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-3313 (($ $ |#3|) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-4376 (((-877) $) 38 T ELT) (((-661 |#4|) $) 50 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 30 T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-475 |#1| |#2| |#3| |#4|) (-13 (-997 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4402 ($ (-661 |#4|))) (-6 -4425) (-6 -4426))) (-1070) (-815) (-861) (-1086 |#1| |#2| |#3|)) (T -475)) -((-4402 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6))))) -((-3059 (($) 11 T ELT)) (-3065 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) -(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3065 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3059 (|#1|))) (-477 |#2| |#3|) (-175) (-23)) (T -476)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3575 (((-3 |#1| "failed") $) 30 T ELT)) (-3574 ((|#1| $) 31 T ELT)) (-4374 (($ $ $) 27 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4378 ((|#2| $) 23 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 22 T CONST)) (-3065 (($) 28 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +((-3561 (*1 *1 *1 *1) (-4 *1 (-464))) (-3561 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-464)))) (-2101 (*1 *1 *1 *1) (-4 *1 (-464))) (-2101 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-464)))) (-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464))))) +(-13 (-569) (-10 -8 (-15 -3561 ($ $ $)) (-15 -3561 ($ (-660 $))) (-15 -2101 ($ $ $)) (-15 -2101 ($ (-660 $))) (-15 -3108 ((-1191 $) (-1191 $) (-1191 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1979 (((-3 $ #1="failed")) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3640 (((-1287 (-708 (-419 (-964 |#1|)))) (-1287 $)) NIL T ELT) (((-1287 (-708 (-419 (-964 |#1|))))) NIL T ELT)) (-1931 (((-1287 $)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL T ELT)) (-1905 (((-3 $ #1#)) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-1995 (((-708 (-419 (-964 |#1|))) (-1287 $)) NIL T ELT) (((-708 (-419 (-964 |#1|)))) NIL T ELT)) (-1929 (((-419 (-964 |#1|)) $) NIL T ELT)) (-1993 (((-708 (-419 (-964 |#1|))) $ (-1287 $)) NIL T ELT) (((-708 (-419 (-964 |#1|))) $) NIL T ELT)) (-2634 (((-3 $ #1#) $) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-2110 (((-1191 (-964 (-419 (-964 |#1|))))) NIL (|has| (-419 (-964 |#1|)) (-376)) ELT) (((-1191 (-419 (-964 |#1|)))) 91 (|has| |#1| (-569)) ELT)) (-2637 (($ $ (-937)) NIL T ELT)) (-1927 (((-419 (-964 |#1|)) $) NIL T ELT)) (-1907 (((-1191 (-419 (-964 |#1|))) $) 89 (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-1997 (((-419 (-964 |#1|)) (-1287 $)) NIL T ELT) (((-419 (-964 |#1|))) NIL T ELT)) (-1925 (((-1191 (-419 (-964 |#1|))) $) NIL T ELT)) (-1919 (((-114)) NIL T ELT)) (-1999 (($ (-1287 (-419 (-964 |#1|))) (-1287 $)) 115 T ELT) (($ (-1287 (-419 (-964 |#1|)))) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-3510 (((-937)) NIL T ELT)) (-1916 (((-114)) NIL T ELT)) (-2661 (($ $ (-937)) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-1910 (((-114)) NIL T ELT)) (-1914 (((-114)) NIL T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL T ELT)) (-1906 (((-3 $ #1#)) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-1996 (((-708 (-419 (-964 |#1|))) (-1287 $)) NIL T ELT) (((-708 (-419 (-964 |#1|)))) NIL T ELT)) (-1930 (((-419 (-964 |#1|)) $) NIL T ELT)) (-1994 (((-708 (-419 (-964 |#1|))) $ (-1287 $)) NIL T ELT) (((-708 (-419 (-964 |#1|))) $) NIL T ELT)) (-2635 (((-3 $ #1#) $) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-2114 (((-1191 (-964 (-419 (-964 |#1|))))) NIL (|has| (-419 (-964 |#1|)) (-376)) ELT) (((-1191 (-419 (-964 |#1|)))) 90 (|has| |#1| (-569)) ELT)) (-2636 (($ $ (-937)) NIL T ELT)) (-1928 (((-419 (-964 |#1|)) $) NIL T ELT)) (-1908 (((-1191 (-419 (-964 |#1|))) $) 86 (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-1998 (((-419 (-964 |#1|)) (-1287 $)) NIL T ELT) (((-419 (-964 |#1|))) NIL T ELT)) (-1926 (((-1191 (-419 (-964 |#1|))) $) NIL T ELT)) (-1920 (((-114)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-1915 (((-114)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2104 (((-419 (-964 |#1|)) $ $) 77 (|has| |#1| (-569)) ELT)) (-2108 (((-419 (-964 |#1|)) $) 101 (|has| |#1| (-569)) ELT)) (-2107 (((-419 (-964 |#1|)) $) 105 (|has| |#1| (-569)) ELT)) (-2109 (((-1191 (-419 (-964 |#1|))) $) 95 (|has| |#1| (-569)) ELT)) (-2103 (((-419 (-964 |#1|))) 78 (|has| |#1| (-569)) ELT)) (-2106 (((-419 (-964 |#1|)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2112 (((-419 (-964 |#1|)) $) 100 (|has| |#1| (-569)) ELT)) (-2111 (((-419 (-964 |#1|)) $) 104 (|has| |#1| (-569)) ELT)) (-2113 (((-1191 (-419 (-964 |#1|))) $) 94 (|has| |#1| (-569)) ELT)) (-2105 (((-419 (-964 |#1|))) 74 (|has| |#1| (-569)) ELT)) (-2115 (($) 111 T ELT) (($ (-1197)) 119 T ELT) (($ (-1287 (-1197))) 118 T ELT) (($ (-1287 $)) 106 T ELT) (($ (-1197) (-1287 $)) 117 T ELT) (($ (-1287 (-1197)) (-1287 $)) 116 T ELT)) (-1918 (((-114)) NIL T ELT)) (-4229 (((-419 (-964 |#1|)) $ (-558)) NIL T ELT)) (-3641 (((-1287 (-419 (-964 |#1|))) $ (-1287 $)) 108 T ELT) (((-708 (-419 (-964 |#1|))) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 (-419 (-964 |#1|))) $) 44 T ELT) (((-708 (-419 (-964 |#1|))) (-1287 $)) NIL T ELT)) (-4401 (((-1287 (-419 (-964 |#1|))) $) NIL T ELT) (($ (-1287 (-419 (-964 |#1|)))) 41 T ELT)) (-2102 (((-660 (-964 (-419 (-964 |#1|)))) (-1287 $)) NIL T ELT) (((-660 (-964 (-419 (-964 |#1|))))) NIL T ELT) (((-660 (-964 |#1|)) (-1287 $)) 109 (|has| |#1| (-569)) ELT) (((-660 (-964 |#1|))) 110 (|has| |#1| (-569)) ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-1287 (-419 (-964 |#1|)))) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) 66 T ELT)) (-1909 (((-660 (-1287 (-419 (-964 |#1|))))) NIL (|has| (-419 (-964 |#1|)) (-569)) ELT)) (-2824 (($ $ $ $) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-2943 (($ (-708 (-419 (-964 |#1|))) $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-1917 (((-114)) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) 107 T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-964 |#1|))) NIL T ELT) (($ (-419 (-964 |#1|)) $) NIL T ELT) (($ (-1162 |#2| (-419 (-964 |#1|))) $) NIL T ELT))) +(((-465 |#1| |#2| |#3| |#4|) (-13 (-430 (-419 (-964 |#1|))) (-667 (-1162 |#2| (-419 (-964 |#1|)))) (-10 -8 (-15 -4375 ($ (-1287 (-419 (-964 |#1|))))) (-15 -2117 ((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1="failed"))) (-15 -2116 ((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#))) (-15 -2115 ($)) (-15 -2115 ($ (-1197))) (-15 -2115 ($ (-1287 (-1197)))) (-15 -2115 ($ (-1287 $))) (-15 -2115 ($ (-1197) (-1287 $))) (-15 -2115 ($ (-1287 (-1197)) (-1287 $))) (IF (|has| |#1| (-569)) (PROGN (-15 -2114 ((-1191 (-419 (-964 |#1|))))) (-15 -2113 ((-1191 (-419 (-964 |#1|))) $)) (-15 -2112 ((-419 (-964 |#1|)) $)) (-15 -2111 ((-419 (-964 |#1|)) $)) (-15 -2110 ((-1191 (-419 (-964 |#1|))))) (-15 -2109 ((-1191 (-419 (-964 |#1|))) $)) (-15 -2108 ((-419 (-964 |#1|)) $)) (-15 -2107 ((-419 (-964 |#1|)) $)) (-15 -2106 ((-419 (-964 |#1|)) $ $)) (-15 -2105 ((-419 (-964 |#1|)))) (-15 -2104 ((-419 (-964 |#1|)) $ $)) (-15 -2103 ((-419 (-964 |#1|)))) (-15 -2102 ((-660 (-964 |#1|)) (-1287 $))) (-15 -2102 ((-660 (-964 |#1|))))) |%noBranch|))) (-175) (-937) (-660 (-1197)) (-1287 (-708 |#1|))) (T -465)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-964 *3)))) (-4 *3 (-175)) (-14 *6 (-1287 (-708 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))))) (-2117 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2221 (-660 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2116 (*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) (|:| -2221 (-660 (-465 *3 *4 *5 *6))))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2115 (*1 *1) (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-937)) (-14 *4 (-660 (-1197))) (-14 *5 (-1287 (-708 *2))))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 *2)) (-14 *6 (-1287 (-708 *3))))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-1287 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2115 (*1 *1 *2) (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2115 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-937)) (-14 *6 (-660 *2)) (-14 *7 (-1287 (-708 *4))))) (-2115 (*1 *1 *2 *3) (-12 (-5 *2 (-1287 (-1197))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-937)) (-14 *6 (-660 (-1197))) (-14 *7 (-1287 (-708 *4))))) (-2114 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2113 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2112 (*1 *2 *1) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2111 (*1 *2 *1) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2110 (*1 *2) (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2109 (*1 *2 *1) (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2108 (*1 *2 *1) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2107 (*1 *2 *1) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2106 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2105 (*1 *2) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2104 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2103 (*1 *2) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) (-2102 (*1 *2 *3) (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-660 (-964 *4))) (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-175)) (-14 *5 (-937)) (-14 *6 (-660 (-1197))) (-14 *7 (-1287 (-708 *4))))) (-2102 (*1 *2) (-12 (-5 *2 (-660 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 18 T ELT)) (-3483 (((-660 (-877 |#1|)) $) 87 T ELT)) (-3485 (((-1191 $) $ (-877 |#1|)) 52 T ELT) (((-1191 |#2|) $) 139 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3219 (((-790) $) 27 T ELT) (((-790) $ (-660 (-877 |#1|))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) 50 T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-3573 ((|#2| $) 48 T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-877 |#1|) $) NIL T ELT)) (-4185 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2147 (($ $ (-660 (-558))) 94 T ELT)) (-4388 (($ $) 80 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#2| (-928)) ELT)) (-1803 (($ $ |#2| |#3| $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) 65 T ELT)) (-3486 (($ (-1191 |#2|) (-877 |#1|)) 144 T ELT) (($ (-1191 $) (-877 |#1|)) 58 T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) 68 T ELT)) (-3293 (($ |#2| |#3|) 35 T ELT) (($ $ (-877 |#1|) (-790)) 37 T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-877 |#1|)) NIL T ELT)) (-3220 ((|#3| $) NIL T ELT) (((-790) $ (-877 |#1|)) 56 T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) 63 T ELT)) (-1804 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3484 (((-3 (-877 |#1|) #1#) $) 45 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#2| $) 47 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) 46 T ELT)) (-2003 ((|#2| $) 137 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) 150 (|has| |#2| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#2| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-877 |#1|) |#2|) 101 T ELT) (($ $ (-660 (-877 |#1|)) (-660 |#2|)) 107 T ELT) (($ $ (-877 |#1|) $) 99 T ELT) (($ $ (-660 (-877 |#1|)) (-660 $)) 125 T ELT)) (-4186 (($ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4187 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) 59 T ELT)) (-4377 ((|#3| $) 79 T ELT) (((-790) $ (-877 |#1|)) 42 T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) 62 T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-877 |#1|) (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT)) (-3217 ((|#2| $) 146 (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-928))) ELT)) (-4375 (((-876) $) 174 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 100 T ELT) (($ (-877 |#1|)) 39 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ |#3|) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#2| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#2| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3058 (($) 22 T CONST)) (-3064 (($) 31 T CONST)) (-3069 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) 76 (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 132 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 130 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 36 T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) 75 T ELT) (($ $ |#2|) NIL T ELT))) +(((-466 |#1| |#2| |#3|) (-13 (-968 |#2| |#3| (-877 |#1|)) (-10 -8 (-15 -2147 ($ $ (-660 (-558)))))) (-660 (-1197)) (-1069) (-245 (-4386 |#1|) (-790))) (T -466)) +((-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-14 *3 (-660 (-1197))) (-5 *1 (-466 *3 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-245 (-4386 *3) (-790)))))) +((-2121 (((-114) |#1| (-660 |#2|)) 90 T ELT)) (-2119 (((-3 (-1287 (-660 |#2|)) #1="failed") (-790) |#1| (-660 |#2|)) 99 T ELT)) (-2120 (((-3 (-660 |#2|) #1#) |#2| |#1| (-1287 (-660 |#2|))) 101 T ELT)) (-2246 ((|#2| |#2| |#1|) 35 T ELT)) (-2118 (((-790) |#2| (-660 |#2|)) 26 T ELT))) +(((-467 |#1| |#2|) (-10 -7 (-15 -2246 (|#2| |#2| |#1|)) (-15 -2118 ((-790) |#2| (-660 |#2|))) (-15 -2119 ((-3 (-1287 (-660 |#2|)) #1="failed") (-790) |#1| (-660 |#2|))) (-15 -2120 ((-3 (-660 |#2|) #1#) |#2| |#1| (-1287 (-660 |#2|)))) (-15 -2121 ((-114) |#1| (-660 |#2|)))) (-319) (-1263 |#1|)) (T -467)) +((-2121 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-467 *3 *5)))) (-2120 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1287 (-660 *3))) (-4 *4 (-319)) (-5 *2 (-660 *3)) (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4)))) (-2119 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-790)) (-4 *4 (-319)) (-4 *6 (-1263 *4)) (-5 *2 (-1287 (-660 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-660 *6)))) (-2118 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-319)) (-5 *2 (-790)) (-5 *1 (-467 *5 *3)))) (-2246 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3))))) +((-4161 (((-417 |#5|) |#5|) 24 T ELT))) +(((-468 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4161 ((-417 |#5|) |#5|))) (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197))))) (-814) (-569) (-569) (-968 |#4| |#2| |#1|)) (T -468)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197)))))) (-4 *5 (-814)) (-4 *7 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-968 *7 *5 *4))))) +((-3100 ((|#3|) 43 T ELT)) (-3108 (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 34 T ELT))) +(((-469 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3108 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3100 (|#3|))) (-814) (-860) (-928) (-968 |#3| |#1| |#2|)) (T -469)) +((-3100 (*1 *2) (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-928)) (-5 *1 (-469 *3 *4 *2 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6))))) +((-4161 (((-417 (-1191 |#1|)) (-1191 |#1|)) 43 T ELT))) +(((-470 |#1|) (-10 -7 (-15 -4161 ((-417 (-1191 |#1|)) (-1191 |#1|)))) (-319)) (T -470)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1191 *4))) (-5 *1 (-470 *4)) (-5 *3 (-1191 *4))))) +((-4158 (((-51) |#2| (-1197) (-305 |#2|) (-1254 (-790))) 44 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1254 (-790))) 43 T ELT) (((-51) |#2| (-1197) (-305 |#2|)) 36 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|)) 29 T ELT)) (-4247 (((-51) |#2| (-1197) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558))) 88 T ELT) (((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558))) 87 T ELT) (((-51) |#2| (-1197) (-305 |#2|) (-1254 (-558))) 86 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1254 (-558))) 85 T ELT) (((-51) |#2| (-1197) (-305 |#2|)) 80 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|)) 79 T ELT)) (-4211 (((-51) |#2| (-1197) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558))) 74 T ELT) (((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558))) 72 T ELT)) (-4208 (((-51) |#2| (-1197) (-305 |#2|) (-1254 (-558))) 51 T ELT) (((-51) (-1 |#2| (-558)) (-305 |#2|) (-1254 (-558))) 50 T ELT))) +(((-471 |#1| |#2|) (-10 -7 (-15 -4158 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4158 ((-51) |#2| (-1197) (-305 |#2|))) (-15 -4158 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1254 (-790)))) (-15 -4158 ((-51) |#2| (-1197) (-305 |#2|) (-1254 (-790)))) (-15 -4208 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1254 (-558)))) (-15 -4208 ((-51) |#2| (-1197) (-305 |#2|) (-1254 (-558)))) (-15 -4211 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558)))) (-15 -4211 ((-51) |#2| (-1197) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558)))) (-15 -4247 ((-51) (-1 |#2| (-558)) (-305 |#2|))) (-15 -4247 ((-51) |#2| (-1197) (-305 |#2|))) (-15 -4247 ((-51) (-1 |#2| (-558)) (-305 |#2|) (-1254 (-558)))) (-15 -4247 ((-51) |#2| (-1197) (-305 |#2|) (-1254 (-558)))) (-15 -4247 ((-51) (-1 |#2| (-419 (-558))) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558)))) (-15 -4247 ((-51) |#2| (-1197) (-305 |#2|) (-1254 (-419 (-558))) (-419 (-558))))) (-13 (-569) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -471)) +((-4247 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-419 (-558)))) (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *8))) (-4 *8 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4247 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) (-5 *5 (-1254 (-419 (-558)))) (-5 *6 (-419 (-558))) (-4 *8 (-13 (-27) (-1223) (-433 *7))) (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4247 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *7))) (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4247 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1254 (-558))) (-4 *7 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4247 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4247 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6)))) (-4211 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-419 (-558)))) (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *8))) (-4 *8 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) (-4211 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) (-5 *5 (-1254 (-419 (-558)))) (-5 *6 (-419 (-558))) (-4 *8 (-13 (-27) (-1223) (-433 *7))) (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) (-4208 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *7))) (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4208 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1254 (-558))) (-4 *7 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4158 (*1 *2 *3 *4 *5 *6) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-790))) (-4 *3 (-13 (-27) (-1223) (-433 *7))) (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) (-4158 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1254 (-790))) (-4 *7 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) (-4158 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) (-4158 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) (-4 *6 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6))))) +((-2246 ((|#2| |#2| |#1|) 15 T ELT)) (-2123 (((-660 |#2|) |#2| (-660 |#2|) |#1| (-937)) 82 T ELT)) (-2122 (((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-937)) 71 T ELT))) +(((-472 |#1| |#2|) (-10 -7 (-15 -2122 ((-2 (|:| |plist| (-660 |#2|)) (|:| |modulo| |#1|)) |#2| (-660 |#2|) |#1| (-937))) (-15 -2123 ((-660 |#2|) |#2| (-660 |#2|) |#1| (-937))) (-15 -2246 (|#2| |#2| |#1|))) (-319) (-1263 |#1|)) (T -472)) +((-2246 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) (-2123 (*1 *2 *3 *2 *4 *5) (-12 (-5 *2 (-660 *3)) (-5 *5 (-937)) (-4 *3 (-1263 *4)) (-4 *4 (-319)) (-5 *1 (-472 *4 *3)))) (-2122 (*1 *2 *3 *4 *5 *6) (-12 (-5 *6 (-937)) (-4 *5 (-319)) (-4 *3 (-1263 *5)) (-5 *2 (-2 (|:| |plist| (-660 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) (-5 *4 (-660 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 28 T ELT)) (-4136 (($ |#3|) 25 T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) 32 T ELT)) (-2124 (($ |#2| |#4| $) 33 T ELT)) (-3293 (($ |#2| (-732 |#3| |#4| |#5|)) 24 T ELT)) (-3294 (((-732 |#3| |#4| |#5|) $) 15 T ELT)) (-2126 ((|#3| $) 19 T ELT)) (-2127 ((|#4| $) 17 T ELT)) (-3591 ((|#2| $) 29 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-2125 (($ |#2| |#3| |#4|) 26 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 36 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 34 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#6| $) 40 T ELT) (($ $ |#6|) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-473 |#1| |#2| |#3| |#4| |#5| |#6|) (-13 (-736 |#6|) (-736 |#2|) (-10 -8 (-15 -3591 (|#2| $)) (-15 -3294 ((-732 |#3| |#4| |#5|) $)) (-15 -2127 (|#4| $)) (-15 -2126 (|#3| $)) (-15 -4388 ($ $)) (-15 -3293 ($ |#2| (-732 |#3| |#4| |#5|))) (-15 -4136 ($ |#3|)) (-15 -2125 ($ |#2| |#3| |#4|)) (-15 -2124 ($ |#2| |#4| $)) (-15 * ($ |#6| $)))) (-660 (-1197)) (-175) (-860) (-245 (-4386 |#1|) (-790)) (-1 (-114) (-2 (|:| -2630 |#3|) (|:| -2631 |#4|)) (-2 (|:| -2630 |#3|) (|:| -2631 |#4|))) (-968 |#2| |#4| (-877 |#1|))) (T -473)) +((* (*1 *1 *2 *1) (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *6 (-245 (-4386 *3) (-790))) (-14 *7 (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *6)) (-2 (|:| -2630 *5) (|:| -2631 *6)))) (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) (-4 *2 (-968 *4 *6 (-877 *3))))) (-3591 (*1 *2 *1) (-12 (-14 *3 (-660 (-1197))) (-4 *5 (-245 (-4386 *3) (-790))) (-14 *6 (-1 (-114) (-2 (|:| -2630 *4) (|:| -2631 *5)) (-2 (|:| -2630 *4) (|:| -2631 *5)))) (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-968 *2 *5 (-877 *3))))) (-3294 (*1 *2 *1) (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *6 (-245 (-4386 *3) (-790))) (-14 *7 (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *6)) (-2 (|:| -2630 *5) (|:| -2631 *6)))) (-5 *2 (-732 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) (-4 *8 (-968 *4 *6 (-877 *3))))) (-2127 (*1 *2 *1) (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-14 *6 (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *2)) (-2 (|:| -2630 *5) (|:| -2631 *2)))) (-4 *2 (-245 (-4386 *3) (-790))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) (-4 *5 (-860)) (-4 *7 (-968 *4 *2 (-877 *3))))) (-2126 (*1 *2 *1) (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *5 (-245 (-4386 *3) (-790))) (-14 *6 (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *5)) (-2 (|:| -2630 *2) (|:| -2631 *5)))) (-4 *2 (-860)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *7 (-968 *4 *5 (-877 *3))))) (-4388 (*1 *1 *1) (-12 (-14 *2 (-660 (-1197))) (-4 *3 (-175)) (-4 *5 (-245 (-4386 *2) (-790))) (-14 *6 (-1 (-114) (-2 (|:| -2630 *4) (|:| -2631 *5)) (-2 (|:| -2630 *4) (|:| -2631 *5)))) (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) (-4 *7 (-968 *3 *5 (-877 *2))))) (-3293 (*1 *1 *2 *3) (-12 (-5 *3 (-732 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-245 (-4386 *4) (-790))) (-14 *7 (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *6)) (-2 (|:| -2630 *5) (|:| -2631 *6)))) (-14 *4 (-660 (-1197))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) (-4 *8 (-968 *2 *6 (-877 *4))))) (-4136 (*1 *1 *2) (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *5 (-245 (-4386 *3) (-790))) (-14 *6 (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *5)) (-2 (|:| -2630 *2) (|:| -2631 *5)))) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) (-4 *7 (-968 *4 *5 (-877 *3))))) (-2125 (*1 *1 *2 *3 *4) (-12 (-14 *5 (-660 (-1197))) (-4 *2 (-175)) (-4 *4 (-245 (-4386 *5) (-790))) (-14 *6 (-1 (-114) (-2 (|:| -2630 *3) (|:| -2631 *4)) (-2 (|:| -2630 *3) (|:| -2631 *4)))) (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) (-4 *7 (-968 *2 *4 (-877 *5))))) (-2124 (*1 *1 *2 *3 *1) (-12 (-14 *4 (-660 (-1197))) (-4 *2 (-175)) (-4 *3 (-245 (-4386 *4) (-790))) (-14 *6 (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *3)) (-2 (|:| -2630 *5) (|:| -2631 *3)))) (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) (-4 *7 (-968 *2 *3 (-877 *4)))))) +((-2128 (((-3 |#5| "failed") |#5| |#2| (-1 |#2|)) 39 T ELT))) +(((-474 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2128 ((-3 |#5| "failed") |#5| |#2| (-1 |#2|)))) (-814) (-860) (-569) (-968 |#3| |#1| |#2|) (-13 (-1058 (-419 (-558))) (-376) (-10 -8 (-15 -4375 ($ |#4|)) (-15 -3398 (|#4| $)) (-15 -3397 (|#4| $))))) (T -474)) +((-2128 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-814)) (-4 *6 (-569)) (-4 *7 (-968 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 (-13 (-1058 (-419 (-558))) (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3483 (((-660 |#3|) $) 41 T ELT)) (-3308 (((-114) $) NIL T ELT)) (-3299 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4139 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-3304 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ #1="failed") (-660 |#4|)) 49 T ELT)) (-3573 (($ (-660 |#4|)) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-3825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#4|) $) 18 (|has| $ (-6 -4424)) ELT)) (-3597 ((|#3| $) 47 T ELT)) (-3006 (((-660 |#4|) $) 14 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 26 (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 23 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 21 T ELT)) (-3314 (((-660 |#3|) $) NIL T ELT)) (-3313 (((-114) |#3| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1467 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 39 T ELT)) (-3992 (($) 17 T ELT)) (-2156 (((-790) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (((-790) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 16 T ELT)) (-4401 (((-547) $) NIL (|has| |#4| (-630 (-547))) ELT) (($ (-660 |#4|)) 51 T ELT)) (-3949 (($ (-660 |#4|)) 13 T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-4375 (((-876) $) 38 T ELT) (((-660 |#4|) $) 50 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 30 T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-475 |#1| |#2| |#3| |#4|) (-13 (-996 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4401 ($ (-660 |#4|))) (-6 -4424) (-6 -4425))) (-1069) (-814) (-860) (-1085 |#1| |#2| |#3|)) (T -475)) +((-4401 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-475 *3 *4 *5 *6))))) +((-3058 (($) 11 T ELT)) (-3064 (($) 13 T ELT)) (* (($ |#2| $) 15 T ELT) (($ $ |#2|) 16 T ELT))) +(((-476 |#1| |#2| |#3|) (-10 -7 (-15 -3064 (|#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 -3058 (|#1|))) (-477 |#2| |#3|) (-175) (-23)) (T -476)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3574 (((-3 |#1| "failed") $) 30 T ELT)) (-3573 ((|#1| $) 31 T ELT)) (-4373 (($ $ $) 27 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4377 ((|#2| $) 23 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ |#1|) 29 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 22 T CONST)) (-3064 (($) 28 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) (((-477 |#1| |#2|) (-142) (-175) (-23)) (T -477)) -((-3065 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4374 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) -(-13 (-482 |t#1| |t#2|) (-1059 |t#1|) (-10 -8 (-15 (-3065) ($) -4382) (-15 -4374 ($ $ $)))) -(((-102) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-482 |#1| |#2|) . T) ((-1059 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2130 (((-1288 (-1288 (-558))) (-1288 (-1288 (-558))) (-938)) 26 T ELT)) (-2131 (((-1288 (-1288 (-558))) (-938)) 21 T ELT))) -(((-478) (-10 -7 (-15 -2130 ((-1288 (-1288 (-558))) (-1288 (-1288 (-558))) (-938))) (-15 -2131 ((-1288 (-1288 (-558))) (-938))))) (T -478)) -((-2131 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1288 (-1288 (-558)))) (-5 *1 (-478)))) (-2130 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 (-1288 (-558)))) (-5 *3 (-938)) (-5 *1 (-478))))) -((-3171 (((-558) (-558)) 32 T ELT) (((-558)) 24 T ELT)) (-3175 (((-558) (-558)) 28 T ELT) (((-558)) 20 T ELT)) (-3173 (((-558) (-558)) 30 T ELT) (((-558)) 22 T ELT)) (-2133 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-2132 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-2134 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT))) -(((-479) (-10 -7 (-15 -2132 ((-114))) (-15 -2133 ((-114))) (-15 -2132 ((-114) (-114))) (-15 -2133 ((-114) (-114))) (-15 -2134 ((-114))) (-15 -3173 ((-558))) (-15 -3175 ((-558))) (-15 -3171 ((-558))) (-15 -2134 ((-114) (-114))) (-15 -3173 ((-558) (-558))) (-15 -3175 ((-558) (-558))) (-15 -3171 ((-558) (-558))))) (T -479)) -((-3171 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3175 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-2134 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-3171 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3175 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3173 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-2134 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2133 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2133 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2132 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4281 (((-661 (-391)) $) 34 T ELT) (((-661 (-391)) $ (-661 (-391))) 145 T ELT)) (-2139 (((-661 (-1110 (-391))) $) 16 T ELT) (((-661 (-1110 (-391))) $ (-661 (-1110 (-391)))) 142 T ELT)) (-2136 (((-661 (-661 (-962 (-229)))) (-661 (-661 (-962 (-229)))) (-661 (-888))) 58 T ELT)) (-2140 (((-661 (-661 (-962 (-229)))) $) 137 T ELT)) (-4136 (((-1294) $ (-962 (-229)) (-888)) 162 T ELT)) (-2141 (($ $) 136 T ELT) (($ (-661 (-661 (-962 (-229))))) 148 T ELT) (($ (-661 (-661 (-962 (-229)))) (-661 (-888)) (-661 (-888)) (-661 (-938))) 147 T ELT) (($ (-661 (-661 (-962 (-229)))) (-661 (-888)) (-661 (-888)) (-661 (-938)) (-661 (-270))) 149 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4290 (((-558) $) 110 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2142 (($) 146 T ELT)) (-2135 (((-661 (-229)) (-661 (-661 (-962 (-229))))) 89 T ELT)) (-2138 (((-1294) $ (-661 (-962 (-229))) (-888) (-888) (-938)) 154 T ELT) (((-1294) $ (-962 (-229))) 156 T ELT) (((-1294) $ (-962 (-229)) (-888) (-888) (-938)) 155 T ELT)) (-4376 (((-877) $) 168 T ELT) (($ (-661 (-661 (-962 (-229))))) 163 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2137 (((-1294) $ (-962 (-229))) 161 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-480) (-13 (-1122) (-10 -8 (-15 -2142 ($)) (-15 -2141 ($ $)) (-15 -2141 ($ (-661 (-661 (-962 (-229)))))) (-15 -2141 ($ (-661 (-661 (-962 (-229)))) (-661 (-888)) (-661 (-888)) (-661 (-938)))) (-15 -2141 ($ (-661 (-661 (-962 (-229)))) (-661 (-888)) (-661 (-888)) (-661 (-938)) (-661 (-270)))) (-15 -2140 ((-661 (-661 (-962 (-229)))) $)) (-15 -4290 ((-558) $)) (-15 -2139 ((-661 (-1110 (-391))) $)) (-15 -2139 ((-661 (-1110 (-391))) $ (-661 (-1110 (-391))))) (-15 -4281 ((-661 (-391)) $)) (-15 -4281 ((-661 (-391)) $ (-661 (-391)))) (-15 -2138 ((-1294) $ (-661 (-962 (-229))) (-888) (-888) (-938))) (-15 -2138 ((-1294) $ (-962 (-229)))) (-15 -2138 ((-1294) $ (-962 (-229)) (-888) (-888) (-938))) (-15 -2137 ((-1294) $ (-962 (-229)))) (-15 -4136 ((-1294) $ (-962 (-229)) (-888))) (-15 -4376 ($ (-661 (-661 (-962 (-229)))))) (-15 -4376 ((-877) $)) (-15 -2136 ((-661 (-661 (-962 (-229)))) (-661 (-661 (-962 (-229)))) (-661 (-888)))) (-15 -2135 ((-661 (-229)) (-661 (-661 (-962 (-229))))))))) (T -480)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-480)))) (-2142 (*1 *1) (-5 *1 (-480))) (-2141 (*1 *1 *1) (-5 *1 (-480))) (-2141 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-480)))) (-2141 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *3 (-661 (-888))) (-5 *4 (-661 (-938))) (-5 *1 (-480)))) (-2141 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *3 (-661 (-888))) (-5 *4 (-661 (-938))) (-5 *5 (-661 (-270))) (-5 *1 (-480)))) (-2140 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-480)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-480)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-480)))) (-2139 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-480)))) (-4281 (*1 *2 *1) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) (-4281 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) (-2138 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-661 (-962 (-229)))) (-5 *4 (-888)) (-5 *5 (-938)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-2138 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-229))) (-5 *2 (-1294)) (-5 *1 (-480)))) (-2138 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-962 (-229))) (-5 *4 (-888)) (-5 *5 (-938)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-2137 (*1 *2 *1 *3) (-12 (-5 *3 (-962 (-229))) (-5 *2 (-1294)) (-5 *1 (-480)))) (-4136 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-962 (-229))) (-5 *4 (-888)) (-5 *2 (-1294)) (-5 *1 (-480)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-480)))) (-2136 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *3 (-661 (-888))) (-5 *1 (-480)))) (-2135 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *2 (-661 (-229))) (-5 *1 (-480))))) -((-4267 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) -(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|))) (-482 |#2| |#3|) (-175) (-23)) (T -481)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4378 ((|#2| $) 23 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 22 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) +((-3064 (*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4373 (*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) +(-13 (-482 |t#1| |t#2|) (-1058 |t#1|) (-10 -8 (-15 (-3064) ($) -4381) (-15 -4373 ($ $ $)))) +(((-102) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-482 |#1| |#2|) . T) ((-1058 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2129 (((-1287 (-1287 (-558))) (-1287 (-1287 (-558))) (-937)) 26 T ELT)) (-2130 (((-1287 (-1287 (-558))) (-937)) 21 T ELT))) +(((-478) (-10 -7 (-15 -2129 ((-1287 (-1287 (-558))) (-1287 (-1287 (-558))) (-937))) (-15 -2130 ((-1287 (-1287 (-558))) (-937))))) (T -478)) +((-2130 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1287 (-1287 (-558)))) (-5 *1 (-478)))) (-2129 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 (-1287 (-558)))) (-5 *3 (-937)) (-5 *1 (-478))))) +((-3170 (((-558) (-558)) 32 T ELT) (((-558)) 24 T ELT)) (-3174 (((-558) (-558)) 28 T ELT) (((-558)) 20 T ELT)) (-3172 (((-558) (-558)) 30 T ELT) (((-558)) 22 T ELT)) (-2132 (((-114) (-114)) 14 T ELT) (((-114)) 12 T ELT)) (-2131 (((-114) (-114)) 13 T ELT) (((-114)) 11 T ELT)) (-2133 (((-114) (-114)) 26 T ELT) (((-114)) 17 T ELT))) +(((-479) (-10 -7 (-15 -2131 ((-114))) (-15 -2132 ((-114))) (-15 -2131 ((-114) (-114))) (-15 -2132 ((-114) (-114))) (-15 -2133 ((-114))) (-15 -3172 ((-558))) (-15 -3174 ((-558))) (-15 -3170 ((-558))) (-15 -2133 ((-114) (-114))) (-15 -3172 ((-558) (-558))) (-15 -3174 ((-558) (-558))) (-15 -3170 ((-558) (-558))))) (T -479)) +((-3170 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-2133 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-3170 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3174 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-3172 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) (-2133 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2132 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2131 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2132 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) (-2131 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4280 (((-660 (-391)) $) 34 T ELT) (((-660 (-391)) $ (-660 (-391))) 145 T ELT)) (-2138 (((-660 (-1109 (-391))) $) 16 T ELT) (((-660 (-1109 (-391))) $ (-660 (-1109 (-391)))) 142 T ELT)) (-2135 (((-660 (-660 (-961 (-229)))) (-660 (-660 (-961 (-229)))) (-660 (-887))) 58 T ELT)) (-2139 (((-660 (-660 (-961 (-229)))) $) 137 T ELT)) (-4135 (((-1293) $ (-961 (-229)) (-887)) 162 T ELT)) (-2140 (($ $) 136 T ELT) (($ (-660 (-660 (-961 (-229))))) 148 T ELT) (($ (-660 (-660 (-961 (-229)))) (-660 (-887)) (-660 (-887)) (-660 (-937))) 147 T ELT) (($ (-660 (-660 (-961 (-229)))) (-660 (-887)) (-660 (-887)) (-660 (-937)) (-660 (-270))) 149 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4289 (((-558) $) 110 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2141 (($) 146 T ELT)) (-2134 (((-660 (-229)) (-660 (-660 (-961 (-229))))) 89 T ELT)) (-2137 (((-1293) $ (-660 (-961 (-229))) (-887) (-887) (-937)) 154 T ELT) (((-1293) $ (-961 (-229))) 156 T ELT) (((-1293) $ (-961 (-229)) (-887) (-887) (-937)) 155 T ELT)) (-4375 (((-876) $) 168 T ELT) (($ (-660 (-660 (-961 (-229))))) 163 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2136 (((-1293) $ (-961 (-229))) 161 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-480) (-13 (-1121) (-10 -8 (-15 -2141 ($)) (-15 -2140 ($ $)) (-15 -2140 ($ (-660 (-660 (-961 (-229)))))) (-15 -2140 ($ (-660 (-660 (-961 (-229)))) (-660 (-887)) (-660 (-887)) (-660 (-937)))) (-15 -2140 ($ (-660 (-660 (-961 (-229)))) (-660 (-887)) (-660 (-887)) (-660 (-937)) (-660 (-270)))) (-15 -2139 ((-660 (-660 (-961 (-229)))) $)) (-15 -4289 ((-558) $)) (-15 -2138 ((-660 (-1109 (-391))) $)) (-15 -2138 ((-660 (-1109 (-391))) $ (-660 (-1109 (-391))))) (-15 -4280 ((-660 (-391)) $)) (-15 -4280 ((-660 (-391)) $ (-660 (-391)))) (-15 -2137 ((-1293) $ (-660 (-961 (-229))) (-887) (-887) (-937))) (-15 -2137 ((-1293) $ (-961 (-229)))) (-15 -2137 ((-1293) $ (-961 (-229)) (-887) (-887) (-937))) (-15 -2136 ((-1293) $ (-961 (-229)))) (-15 -4135 ((-1293) $ (-961 (-229)) (-887))) (-15 -4375 ($ (-660 (-660 (-961 (-229)))))) (-15 -4375 ((-876) $)) (-15 -2135 ((-660 (-660 (-961 (-229)))) (-660 (-660 (-961 (-229)))) (-660 (-887)))) (-15 -2134 ((-660 (-229)) (-660 (-660 (-961 (-229))))))))) (T -480)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) (-2141 (*1 *1) (-5 *1 (-480))) (-2140 (*1 *1 *1) (-5 *1 (-480))) (-2140 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-480)))) (-2140 (*1 *1 *2 *3 *3 *4) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *3 (-660 (-887))) (-5 *4 (-660 (-937))) (-5 *1 (-480)))) (-2140 (*1 *1 *2 *3 *3 *4 *5) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *3 (-660 (-887))) (-5 *4 (-660 (-937))) (-5 *5 (-660 (-270))) (-5 *1 (-480)))) (-2139 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-480)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-480)))) (-2138 (*1 *2 *1) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-480)))) (-2138 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-480)))) (-4280 (*1 *2 *1) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-480)))) (-4280 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-480)))) (-2137 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-660 (-961 (-229)))) (-5 *4 (-887)) (-5 *5 (-937)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2137 (*1 *2 *1 *3) (-12 (-5 *3 (-961 (-229))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2137 (*1 *2 *1 *3 *4 *4 *5) (-12 (-5 *3 (-961 (-229))) (-5 *4 (-887)) (-5 *5 (-937)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-2136 (*1 *2 *1 *3) (-12 (-5 *3 (-961 (-229))) (-5 *2 (-1293)) (-5 *1 (-480)))) (-4135 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-961 (-229))) (-5 *4 (-887)) (-5 *2 (-1293)) (-5 *1 (-480)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-480)))) (-2135 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *3 (-660 (-887))) (-5 *1 (-480)))) (-2134 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *2 (-660 (-229))) (-5 *1 (-480))))) +((-4266 (($ $) NIL T ELT) (($ $ $) 11 T ELT))) +(((-481 |#1| |#2| |#3|) (-10 -7 (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|))) (-482 |#2| |#3|) (-175) (-23)) (T -481)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4377 ((|#2| $) 23 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 22 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 19 T ELT) (($ $ $) 17 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ |#1| $) 21 T ELT) (($ $ |#1|) 20 T ELT))) (((-482 |#1| |#2|) (-142) (-175) (-23)) (T -482)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-3059 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4267 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) -(-13 (-1122) (-10 -8 (-15 -4378 (|t#2| $)) (-15 (-3059) ($) -4382) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4267 ($ $)) (-15 -4269 ($ $ $)) (-15 -4267 ($ $ $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2144 (((-3 (-661 (-493 |#1| |#2|)) "failed") (-661 (-493 |#1| |#2|)) (-661 (-878 |#1|))) 135 T ELT)) (-2143 (((-661 (-661 (-255 |#1| |#2|))) (-661 (-255 |#1| |#2|)) (-661 (-878 |#1|))) 132 T ELT)) (-2145 (((-2 (|:| |dpolys| (-661 (-255 |#1| |#2|))) (|:| |coords| (-661 (-558)))) (-661 (-255 |#1| |#2|)) (-661 (-878 |#1|))) 87 T ELT))) -(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2143 ((-661 (-661 (-255 |#1| |#2|))) (-661 (-255 |#1| |#2|)) (-661 (-878 |#1|)))) (-15 -2144 ((-3 (-661 (-493 |#1| |#2|)) "failed") (-661 (-493 |#1| |#2|)) (-661 (-878 |#1|)))) (-15 -2145 ((-2 (|:| |dpolys| (-661 (-255 |#1| |#2|))) (|:| |coords| (-661 (-558)))) (-661 (-255 |#1| |#2|)) (-661 (-878 |#1|))))) (-661 (-1198)) (-464) (-464)) (T -483)) -((-2145 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-878 *5))) (-14 *5 (-661 (-1198))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-661 (-255 *5 *6))) (|:| |coords| (-661 (-558))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464)))) (-2144 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-661 (-878 *4))) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2143 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-878 *5))) (-14 *5 (-661 (-1198))) (-4 *6 (-464)) (-5 *2 (-661 (-661 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464))))) -((-3887 (((-3 $ "failed") $) 11 T ELT)) (-3410 (($ $ $) 22 T ELT)) (-2824 (($ $ $) 23 T ELT)) (-4379 (($ $ $) 9 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 21 T ELT))) -(((-484 |#1|) (-10 -7 (-15 -2824 (|#1| |#1| |#1|)) (-15 -3410 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4379 (|#1| |#1| |#1|)) (-15 -3887 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-938)))) (-485)) (T -484)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-4154 (($) 23 T CONST)) (-3887 (((-3 $ "failed") $) 20 T ELT)) (-2641 (((-114) $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 30 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3410 (($ $ $) 27 T ELT)) (-2824 (($ $ $) 26 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3065 (($) 24 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 29 T ELT)) (** (($ $ (-938)) 17 T ELT) (($ $ (-791)) 21 T ELT) (($ $ (-558)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +((-4377 (*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) (-3058 (*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4266 (*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23))))) +(-13 (-1121) (-10 -8 (-15 -4377 (|t#2| $)) (-15 (-3058) ($) -4381) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 -4266 ($ $)) (-15 -4268 ($ $ $)) (-15 -4266 ($ $ $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2143 (((-3 (-660 (-493 |#1| |#2|)) "failed") (-660 (-493 |#1| |#2|)) (-660 (-877 |#1|))) 135 T ELT)) (-2142 (((-660 (-660 (-255 |#1| |#2|))) (-660 (-255 |#1| |#2|)) (-660 (-877 |#1|))) 132 T ELT)) (-2144 (((-2 (|:| |dpolys| (-660 (-255 |#1| |#2|))) (|:| |coords| (-660 (-558)))) (-660 (-255 |#1| |#2|)) (-660 (-877 |#1|))) 87 T ELT))) +(((-483 |#1| |#2| |#3|) (-10 -7 (-15 -2142 ((-660 (-660 (-255 |#1| |#2|))) (-660 (-255 |#1| |#2|)) (-660 (-877 |#1|)))) (-15 -2143 ((-3 (-660 (-493 |#1| |#2|)) "failed") (-660 (-493 |#1| |#2|)) (-660 (-877 |#1|)))) (-15 -2144 ((-2 (|:| |dpolys| (-660 (-255 |#1| |#2|))) (|:| |coords| (-660 (-558)))) (-660 (-255 |#1| |#2|)) (-660 (-877 |#1|))))) (-660 (-1197)) (-464) (-464)) (T -483)) +((-2144 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-877 *5))) (-14 *5 (-660 (-1197))) (-4 *6 (-464)) (-5 *2 (-2 (|:| |dpolys| (-660 (-255 *5 *6))) (|:| |coords| (-660 (-558))))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-660 (-255 *5 *6))) (-4 *7 (-464)))) (-2143 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-493 *4 *5))) (-5 *3 (-660 (-877 *4))) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464)))) (-2142 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-877 *5))) (-14 *5 (-660 (-1197))) (-4 *6 (-464)) (-5 *2 (-660 (-660 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-660 (-255 *5 *6))) (-4 *7 (-464))))) +((-3886 (((-3 $ "failed") $) 11 T ELT)) (-3409 (($ $ $) 22 T ELT)) (-2823 (($ $ $) 23 T ELT)) (-4378 (($ $ $) 9 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 21 T ELT))) +(((-484 |#1|) (-10 -7 (-15 -2823 (|#1| |#1| |#1|)) (-15 -3409 (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4378 (|#1| |#1| |#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-790))) (-15 ** (|#1| |#1| (-937)))) (-485)) (T -484)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-4153 (($) 23 T CONST)) (-3886 (((-3 $ "failed") $) 20 T ELT)) (-2640 (((-114) $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 30 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3409 (($ $ $) 27 T ELT)) (-2823 (($ $ $) 26 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3064 (($) 24 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 29 T ELT)) (** (($ $ (-937)) 17 T ELT) (($ $ (-790)) 21 T ELT) (($ $ (-558)) 28 T ELT)) (* (($ $ $) 18 T ELT))) (((-485) (-142)) (T -485)) -((-2874 (*1 *1 *1) (-4 *1 (-485))) (-4379 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-558)))) (-3410 (*1 *1 *1 *1) (-4 *1 (-485))) (-2824 (*1 *1 *1 *1) (-4 *1 (-485)))) -(-13 (-746) (-10 -8 (-15 -2874 ($ $)) (-15 -4379 ($ $ $)) (-15 ** ($ $ (-558))) (-6 -4422) (-15 -3410 ($ $ $)) (-15 -2824 ($ $ $)))) -(((-102) . T) ((-630 (-877)) . T) ((-746) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 18 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-419 (-558))) NIL T ELT) (($ $ (-1103) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4242 (($ $) 29 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 35 (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 30 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) 28 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1285 |#2|)) 16 T ELT)) (-4378 (((-419 (-558)) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1285 |#2|)) NIL T ELT) (($ (-1269 |#1| |#2| |#3|)) 9 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 21 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1285 |#2|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-486 |#1| |#2| |#3|) (-13 (-1271 |#1|) (-911 $ (-1285 |#2|)) (-10 -8 (-15 -4376 ($ (-1285 |#2|))) (-15 -4376 ($ (-1269 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -486)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-2884 (((-661 |#1|) $) NIL T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #1#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-487 |#1| |#2| |#3| |#4|) (-1215 |#1| |#2|) (-1122) (-1122) (-1215 |#1| |#2|) |#2|) (T -487)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4112 (((-661 $) (-661 |#4|)) NIL T ELT)) (-3484 (((-661 |#3|) $) NIL T ELT)) (-3309 (((-114) $) NIL T ELT)) (-3300 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4118 ((|#4| |#4| $) NIL T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4140 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3305 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ #1#) (-661 |#4|)) NIL T ELT)) (-3574 (($ (-661 |#4|)) NIL T ELT)) (-4229 (((-3 $ #1#) $) 45 T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-3826 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4113 ((|#4| |#4| $) NIL T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) NIL T ELT)) (-3290 (((-661 |#4|) $) 18 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 19 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3315 (((-661 |#3|) $) NIL T ELT)) (-3314 (((-114) |#3| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4228 (((-3 |#4| #1#) $) 42 T ELT)) (-4127 (((-661 |#4|) $) NIL T ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-4129 (((-114) $ $) NIL T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-3 |#4| #1#) $) 40 T ELT)) (-1468 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-4199 (($ $ |#4|) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 17 T ELT)) (-3993 (($) 14 T ELT)) (-4378 (((-791) $) NIL T ELT)) (-2157 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 13 T ELT)) (-4402 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 22 T ELT)) (-3311 (($ $ |#3|) 52 T ELT)) (-3313 (($ $ |#3|) 54 T ELT)) (-4114 (($ $) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-4376 (((-877) $) 35 T ELT) (((-661 |#4|) $) 46 T ELT)) (-4108 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) NIL T ELT)) (-4363 (((-114) |#3| $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-488 |#1| |#2| |#3| |#4|) (-1233 |#1| |#2| |#3| |#4|) (-569) (-815) (-861) (-1086 |#1| |#2| |#3|)) (T -488)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-4057 (($) 17 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4402 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-419 (-1192 (-558))) $) 18 T ELT) (((-547) $) 53 T ELT)) (-4376 (((-877) $) 51 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 37 T CONST)) (-3065 (($) 8 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-489) (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))) (-1041) (-630 (-229)) (-630 (-391)) (-631 (-419 (-1192 (-558)))) (-631 (-547)) (-10 -8 (-15 -4057 ($))))) (T -489)) -((-4057 (*1 *1) (-5 *1 (-489)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3948 (((-1156) $) 11 T ELT)) (-3949 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-490) (-13 (-1104) (-10 -8 (-15 -3949 ((-1156) $)) (-15 -3948 ((-1156) $))))) (T -490)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-2884 (((-661 |#1|) $) 13 T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #1#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 19 T ELT)) (-4230 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 11 (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4387 (((-791) $) 15 (|has| $ (-6 -4425)) ELT))) -(((-491 |#1| |#2| |#3|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4425))) (-1122) (-1122) (-1180)) (T -491)) -NIL -((-2146 (((-558) (-558) (-558)) 19 T ELT)) (-2147 (((-114) (-558) (-558) (-558) (-558)) 28 T ELT)) (-3877 (((-1288 (-661 (-558))) (-791) (-791)) 42 T ELT))) -(((-492) (-10 -7 (-15 -2146 ((-558) (-558) (-558))) (-15 -2147 ((-114) (-558) (-558) (-558) (-558))) (-15 -3877 ((-1288 (-661 (-558))) (-791) (-791))))) (T -492)) -((-3877 (*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1288 (-661 (-558)))) (-5 *1 (-492)))) (-2147 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-492)))) (-2146 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-492))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-878 |#1|)) $) NIL T ELT)) (-3486 (((-1192 $) $ (-878 |#1|)) NIL T ELT) (((-1192 |#2|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-878 |#1|))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-878 |#1|) $) NIL T ELT)) (-4186 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2148 (($ $ (-661 (-558))) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#2| (-929)) ELT)) (-1804 (($ $ |#2| (-494 (-4387 |#1|) (-791)) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#2|) (-878 |#1|)) NIL T ELT) (($ (-1192 $) (-878 |#1|)) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-494 (-4387 |#1|) (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-878 |#1|)) NIL T ELT)) (-3221 (((-494 (-4387 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-878 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) NIL T ELT)) (-1805 (($ (-1 (-494 (-4387 |#1|) (-791)) (-494 (-4387 |#1|) (-791))) $) NIL T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3485 (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#2| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#2| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-878 |#1|) |#2|) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 |#2|)) NIL T ELT) (($ $ (-878 |#1|) $) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 $)) NIL T ELT)) (-4187 (($ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4188 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-4378 (((-494 (-4387 |#1|) (-791)) $) NIL T ELT) (((-791) $ (-878 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-878 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3218 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-878 |#1|)) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-494 (-4387 |#1|) (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#2| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-493 |#1| |#2|) (-13 (-969 |#2| (-494 (-4387 |#1|) (-791)) (-878 |#1|)) (-10 -8 (-15 -2148 ($ $ (-661 (-558)))))) (-661 (-1198)) (-1070)) (T -493)) -((-2148 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-493 *3 *4)) (-14 *3 (-661 (-1198))) (-4 *4 (-1070))))) -((-2967 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3606 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4137 (($ (-938)) NIL (|has| |#2| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3538 (((-791)) NIL (|has| |#2| (-381)) ELT)) (-4218 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1122)) ELT)) (-3574 (((-558) $) NIL (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) ((|#2| $) NIL (|has| |#2| (-1122)) ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-709 $)) NIL (|has| |#2| (-1070)) ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| |#2| (-1070)) ELT)) (-3395 (($) NIL (|has| |#2| (-381)) ELT)) (-1719 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ (-558)) 11 T ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-815)) ELT)) (-3290 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL (|has| |#2| (-1070)) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-3007 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-2160 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#2| (-381)) ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)) ELT)) (-3660 (((-1180) $) NIL (|has| |#2| (-1122)) ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-2631 (($ (-938)) NIL (|has| |#2| (-381)) ELT)) (-3661 (((-1141) $) NIL (|has| |#2| (-1122)) ELT)) (-4231 ((|#2| $) NIL (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4266 ((|#2| $ $) NIL (|has| |#2| (-1070)) ELT)) (-1600 (($ (-1288 |#2|)) NIL T ELT)) (-4341 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4188 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1288 |#2|) $) NIL T ELT) (($ (-558)) NIL (-3957 (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (($ |#2|) NIL (|has| |#2| (-1122)) ELT) (((-877) $) NIL (|has| |#2| (-630 (-877))) ELT)) (-3528 (((-791)) NIL (|has| |#2| (-1070)) CONST)) (-1378 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3059 (($) NIL (|has| |#2| (-23)) CONST)) (-3065 (($) NIL (|has| |#2| (-1070)) CONST)) (-3070 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1070)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3086 (((-114) $ $) 17 (|has| |#2| (-861)) ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4269 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-938)) NIL (|has| |#2| (-1070)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1070)) ELT) (($ $ |#2|) NIL (|has| |#2| (-746)) ELT) (($ |#2| $) NIL (|has| |#2| (-746)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-791) $) NIL (|has| |#2| (-23)) ELT) (($ (-938) $) NIL (|has| |#2| (-25)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-494 |#1| |#2|) (-245 |#1| |#2|) (-791) (-815)) (T -494)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2149 (((-661 (-890)) $) 15 T ELT)) (-3970 (((-518) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2150 (($ (-518) (-661 (-890))) 11 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 22 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-495) (-13 (-1104) (-10 -8 (-15 -2150 ($ (-518) (-661 (-890)))) (-15 -3970 ((-518) $)) (-15 -2149 ((-661 (-890)) $))))) (T -495)) -((-2150 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-890))) (-5 *1 (-495)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2149 (*1 *2 *1) (-12 (-5 *2 (-661 (-890))) (-5 *1 (-495))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4154 (($) NIL T CONST)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3257 (($ $ $) 48 T ELT)) (-3938 (($ $ $) 47 T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3258 ((|#1| $) 40 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 41 T ELT)) (-4037 (($ |#1| $) 18 T ELT)) (-2151 (($ (-661 |#1|)) 19 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-1390 ((|#1| $) 34 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 11 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 45 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 29 (|has| $ (-6 -4425)) ELT))) -(((-496 |#1|) (-13 (-989 |#1|) (-10 -8 (-15 -2151 ($ (-661 |#1|))))) (-861)) (T -496)) -((-2151 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4272 (($ $) 71 T ELT)) (-1839 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2180 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (((-3 |#4| #1#) $) 117 T ELT)) (-1840 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-558)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3855 (((-2 (|:| -2555 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4376 (((-877) $) 110 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 32 T CONST)) (-3454 (((-114) $ $) 121 T ELT)) (-4267 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 72 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 77 T ELT))) -(((-497 |#1| |#2| |#3| |#4|) (-349 |#1| |#2| |#3| |#4|) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -497)) -NIL -((-2155 (((-558) (-661 (-558))) 53 T ELT)) (-2152 ((|#1| (-661 |#1|)) 94 T ELT)) (-2154 (((-661 |#1|) (-661 |#1|)) 95 T ELT)) (-2153 (((-661 |#1|) (-661 |#1|)) 97 T ELT)) (-3562 ((|#1| (-661 |#1|)) 96 T ELT)) (-3218 (((-661 (-558)) (-661 |#1|)) 56 T ELT))) -(((-498 |#1|) (-10 -7 (-15 -3562 (|#1| (-661 |#1|))) (-15 -2152 (|#1| (-661 |#1|))) (-15 -2153 ((-661 |#1|) (-661 |#1|))) (-15 -2154 ((-661 |#1|) (-661 |#1|))) (-15 -3218 ((-661 (-558)) (-661 |#1|))) (-15 -2155 ((-558) (-661 (-558))))) (-1264 (-558))) (T -498)) -((-2155 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-558)) (-5 *1 (-498 *4)) (-4 *4 (-1264 *2)))) (-3218 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1264 (-558))) (-5 *2 (-661 (-558))) (-5 *1 (-498 *4)))) (-2154 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1264 (-558))) (-5 *1 (-498 *3)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1264 (-558))) (-5 *1 (-498 *3)))) (-2152 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-558))))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-558)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-3574 (((-558) $) NIL T ELT) (((-1198) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-558) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-558) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-558) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-558) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| (-558) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-4388 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-558) (-1173)) CONST)) (-2156 (($ (-419 (-558))) 9 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3532 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1198)) (-661 (-558))) NIL (|has| (-558) (-526 (-1198) (-558))) ELT) (($ $ (-1198) (-558)) NIL (|has| (-558) (-526 (-1198) (-558))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) NIL T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-558) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-558) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1041)) ELT) (((-229) $) NIL (|has| (-558) (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1198)) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1025 16) $) 10 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-558) (-929))) (|has| (-558) (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-4379 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) -(((-499) (-13 (-1012 (-558)) (-630 (-419 (-558))) (-630 (-1025 16)) (-10 -8 (-15 -3530 ((-419 (-558)) $)) (-15 -2156 ($ (-419 (-558))))))) (T -499)) -((-3530 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499)))) (-2156 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499))))) -((-3007 (((-661 |#2|) $) 31 T ELT)) (-3663 (((-114) |#2| $) 39 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-4198 (($ $ (-661 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 30 T ELT) (((-791) |#2| $) 37 T ELT)) (-4376 (((-877) $) 45 T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-3454 (((-114) $ $) 35 T ELT)) (-4387 (((-791) $) 18 T ELT))) -(((-500 |#1| |#2|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -4198 (|#1| |#1| (-661 |#2|) (-661 |#2|))) (-15 -4198 (|#1| |#1| |#2| |#2|)) (-15 -4198 (|#1| |#1| (-305 |#2|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#2|)))) (-15 -3663 ((-114) |#2| |#1|)) (-15 -2157 ((-791) |#2| |#1|)) (-15 -3007 ((-661 |#2|) |#1|)) (-15 -2157 ((-791) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2159 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4387 ((-791) |#1|))) (-501 |#2|) (-1238)) (T -500)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4154 (($) 7 T CONST)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-501 |#1|) (-142) (-1238)) (T -501)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-2160 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) (-2159 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) (-2158 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) (-2157 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *4)) (-4 *4 (-1238)) (-5 *2 (-791)))) (-3290 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-661 *3)))) (-3007 (*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-5 *2 (-661 *3)))) (-2157 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-791)))) (-3663 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114))))) -(-13 (-34) (-10 -8 (IF (|has| |t#1| (-630 (-877))) (-6 (-630 (-877))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |t#1| (-1122)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4388 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4426)) (-15 -2160 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4425)) (PROGN (-15 -2159 ((-114) (-1 (-114) |t#1|) $)) (-15 -2158 ((-114) (-1 (-114) |t#1|) $)) (-15 -2157 ((-791) (-1 (-114) |t#1|) $)) (-15 -3290 ((-661 |t#1|) $)) (-15 -3007 ((-661 |t#1|) $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -2157 ((-791) |t#1| $)) (-15 -3663 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-4376 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) -(((-502 |#1|) (-142) (-1238)) (T -502)) -NIL -(-13 (-630 |t#1|) (-633 |t#1|)) -(((-633 |#1|) . T) ((-630 |#1|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2161 (($ (-1180)) 8 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 15 T ELT) (((-1180) $) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 11 T ELT))) -(((-503) (-13 (-1122) (-630 (-1180)) (-10 -8 (-15 -2161 ($ (-1180)))))) (T -503)) -((-2161 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-503))))) -((-3912 (($ $) 15 T ELT)) (-3910 (($ $) 24 T ELT)) (-3914 (($ $) 12 T ELT)) (-3915 (($ $) 10 T ELT)) (-3913 (($ $) 17 T ELT)) (-3911 (($ $) 22 T ELT))) -(((-504 |#1|) (-10 -7 (-15 -3911 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|))) (-505)) (T -504)) -NIL -((-3912 (($ $) 11 T ELT)) (-3910 (($ $) 10 T ELT)) (-3914 (($ $) 9 T ELT)) (-3915 (($ $) 8 T ELT)) (-3913 (($ $) 7 T ELT)) (-3911 (($ $) 6 T ELT))) +((-2873 (*1 *1 *1) (-4 *1 (-485))) (-4378 (*1 *1 *1 *1) (-4 *1 (-485))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-558)))) (-3409 (*1 *1 *1 *1) (-4 *1 (-485))) (-2823 (*1 *1 *1 *1) (-4 *1 (-485)))) +(-13 (-745) (-10 -8 (-15 -2873 ($ $)) (-15 -4378 ($ $ $)) (-15 ** ($ $ (-558))) (-6 -4421) (-15 -3409 ($ $ $)) (-15 -2823 ($ $ $)))) +(((-102) . T) ((-629 (-876)) . T) ((-745) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 18 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-419 (-558))) NIL T ELT) (($ $ (-1102) (-419 (-558))) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 25 T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4241 (($ $) 29 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 35 (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 30 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) 28 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 14 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1284 |#2|)) 16 T ELT)) (-4377 (((-419 (-558)) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1284 |#2|)) NIL T ELT) (($ (-1268 |#1| |#2| |#3|)) 9 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 21 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1284 |#2|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 26 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-486 |#1| |#2| |#3|) (-13 (-1270 |#1|) (-910 $ (-1284 |#2|)) (-10 -8 (-15 -4375 ($ (-1284 |#2|))) (-15 -4375 ($ (-1268 |#1| |#2| |#3|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -486)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) 18 T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) 19 T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) 16 T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-2883 (((-660 |#1|) $) NIL T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #1#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ |#1|) 13 T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-487 |#1| |#2| |#3| |#4|) (-1214 |#1| |#2|) (-1121) (-1121) (-1214 |#1| |#2|) |#2|) (T -487)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-4111 (((-660 $) (-660 |#4|)) NIL T ELT)) (-3483 (((-660 |#3|) $) NIL T ELT)) (-3308 (((-114) $) NIL T ELT)) (-3299 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4139 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3304 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ #1#) (-660 |#4|)) NIL T ELT)) (-3573 (($ (-660 |#4|)) NIL T ELT)) (-4228 (((-3 $ #1#) $) 45 T ELT)) (-4114 ((|#4| |#4| $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-3825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4112 ((|#4| |#4| $) NIL T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) NIL T ELT)) (-3289 (((-660 |#4|) $) 18 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 19 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3314 (((-660 |#3|) $) NIL T ELT)) (-3313 (((-114) |#3| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4227 (((-3 |#4| #1#) $) 42 T ELT)) (-4126 (((-660 |#4|) $) NIL T ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-4128 (((-114) $ $) NIL T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-3 |#4| #1#) $) 40 T ELT)) (-1467 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 58 T ELT)) (-4198 (($ $ |#4|) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 17 T ELT)) (-3992 (($) 14 T ELT)) (-4377 (((-790) $) NIL T ELT)) (-2156 (((-790) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (((-790) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 13 T ELT)) (-4401 (((-547) $) NIL (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 22 T ELT)) (-3310 (($ $ |#3|) 52 T ELT)) (-3312 (($ $ |#3|) 54 T ELT)) (-4113 (($ $) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-4375 (((-876) $) 35 T ELT) (((-660 |#4|) $) 46 T ELT)) (-4107 (((-790) $) NIL (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) NIL T ELT)) (-4362 (((-114) |#3| $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-488 |#1| |#2| |#3| |#4|) (-1232 |#1| |#2| |#3| |#4|) (-569) (-814) (-860) (-1085 |#1| |#2| |#3|)) (T -488)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-4056 (($) 17 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4401 (((-391) $) 21 T ELT) (((-229) $) 24 T ELT) (((-419 (-1191 (-558))) $) 18 T ELT) (((-547) $) 53 T ELT)) (-4375 (((-876) $) 51 T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (((-229) $) 23 T ELT) (((-391) $) 20 T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 37 T CONST)) (-3064 (($) 8 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-489) (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))) (-1040) (-629 (-229)) (-629 (-391)) (-630 (-419 (-1191 (-558)))) (-630 (-547)) (-10 -8 (-15 -4056 ($))))) (T -489)) +((-4056 (*1 *1) (-5 *1 (-489)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3947 (((-1155) $) 11 T ELT)) (-3948 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-490) (-13 (-1103) (-10 -8 (-15 -3948 ((-1155) $)) (-15 -3947 ((-1155) $))))) (T -490)) +((-3948 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) 16 T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) 20 T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) 18 T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-2883 (((-660 |#1|) $) 13 T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #1#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 19 T ELT)) (-4229 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 11 (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4386 (((-790) $) 15 (|has| $ (-6 -4424)) ELT))) +(((-491 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4424))) (-1121) (-1121) (-1179)) (T -491)) +NIL +((-2145 (((-558) (-558) (-558)) 19 T ELT)) (-2146 (((-114) (-558) (-558) (-558) (-558)) 28 T ELT)) (-3876 (((-1287 (-660 (-558))) (-790) (-790)) 42 T ELT))) +(((-492) (-10 -7 (-15 -2145 ((-558) (-558) (-558))) (-15 -2146 ((-114) (-558) (-558) (-558) (-558))) (-15 -3876 ((-1287 (-660 (-558))) (-790) (-790))))) (T -492)) +((-3876 (*1 *2 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1287 (-660 (-558)))) (-5 *1 (-492)))) (-2146 (*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-492)))) (-2145 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-492))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-877 |#1|)) $) NIL T ELT)) (-3485 (((-1191 $) $ (-877 |#1|)) NIL T ELT) (((-1191 |#2|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-877 |#1|))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-877 |#1|) $) NIL T ELT)) (-4185 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-2147 (($ $ (-660 (-558))) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#2| (-928)) ELT)) (-1803 (($ $ |#2| (-494 (-4386 |#1|) (-790)) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#2|) (-877 |#1|)) NIL T ELT) (($ (-1191 $) (-877 |#1|)) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-494 (-4386 |#1|) (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-877 |#1|)) NIL T ELT)) (-3220 (((-494 (-4386 |#1|) (-790)) $) NIL T ELT) (((-790) $ (-877 |#1|)) NIL T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) NIL T ELT)) (-1804 (($ (-1 (-494 (-4386 |#1|) (-790)) (-494 (-4386 |#1|) (-790))) $) NIL T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3484 (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#2| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#2| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-877 |#1|) |#2|) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 |#2|)) NIL T ELT) (($ $ (-877 |#1|) $) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 $)) NIL T ELT)) (-4186 (($ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4187 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-4377 (((-494 (-4386 |#1|) (-790)) $) NIL T ELT) (((-790) $ (-877 |#1|)) NIL T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-877 |#1|) (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT)) (-3217 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-877 |#1|)) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-494 (-4386 |#1|) (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#2| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#2| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-493 |#1| |#2|) (-13 (-968 |#2| (-494 (-4386 |#1|) (-790)) (-877 |#1|)) (-10 -8 (-15 -2147 ($ $ (-660 (-558)))))) (-660 (-1197)) (-1069)) (T -493)) +((-2147 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-493 *3 *4)) (-14 *3 (-660 (-1197))) (-4 *4 (-1069))))) +((-2966 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3605 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4136 (($ (-937)) NIL (|has| |#2| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) NIL (|has| |#2| (-814)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3537 (((-790)) NIL (|has| |#2| (-381)) ELT)) (-4217 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1121)) ELT)) (-3573 (((-558) $) NIL (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) ((|#2| $) NIL (|has| |#2| (-1121)) ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-708 $)) NIL (|has| |#2| (-1069)) ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| |#2| (-1069)) ELT)) (-3394 (($) NIL (|has| |#2| (-381)) ELT)) (-1718 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ (-558)) 11 T ELT)) (-3603 (((-114) $) NIL (|has| |#2| (-814)) ELT)) (-3289 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL (|has| |#2| (-1069)) ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-3006 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-2159 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#2| (-381)) ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-1287 $)) NIL (|has| |#2| (-1069)) ELT)) (-3659 (((-1179) $) NIL (|has| |#2| (-1121)) ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-2630 (($ (-937)) NIL (|has| |#2| (-381)) ELT)) (-3660 (((-1140) $) NIL (|has| |#2| (-1121)) ELT)) (-4230 ((|#2| $) NIL (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4265 ((|#2| $ $) NIL (|has| |#2| (-1069)) ELT)) (-1599 (($ (-1287 |#2|)) NIL T ELT)) (-4340 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $ (-790)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#2| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1287 |#2|) $) NIL T ELT) (($ (-558)) NIL (-3956 (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (($ |#2|) NIL (|has| |#2| (-1121)) ELT) (((-876) $) NIL (|has| |#2| (-629 (-876))) ELT)) (-3527 (((-790)) NIL (|has| |#2| (-1069)) CONST)) (-1377 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3058 (($) NIL (|has| |#2| (-23)) CONST)) (-3064 (($) NIL (|has| |#2| (-1069)) CONST)) (-3069 (($ $ (-790)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#2| (-1069)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3085 (((-114) $ $) 17 (|has| |#2| (-860)) ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4268 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-790)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-937)) NIL (|has| |#2| (-1069)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1069)) ELT) (($ $ |#2|) NIL (|has| |#2| (-745)) ELT) (($ |#2| $) NIL (|has| |#2| (-745)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-790) $) NIL (|has| |#2| (-23)) ELT) (($ (-937) $) NIL (|has| |#2| (-25)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-494 |#1| |#2|) (-245 |#1| |#2|) (-790) (-814)) (T -494)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2148 (((-660 (-889)) $) 15 T ELT)) (-3969 (((-518) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2149 (($ (-518) (-660 (-889))) 11 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 22 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-495) (-13 (-1103) (-10 -8 (-15 -2149 ($ (-518) (-660 (-889)))) (-15 -3969 ((-518) $)) (-15 -2148 ((-660 (-889)) $))))) (T -495)) +((-2149 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-889))) (-5 *1 (-495)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) (-2148 (*1 *2 *1) (-12 (-5 *2 (-660 (-889))) (-5 *1 (-495))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4153 (($) NIL T CONST)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3256 (($ $ $) 48 T ELT)) (-3937 (($ $ $) 47 T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3257 ((|#1| $) 40 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 41 T ELT)) (-4036 (($ |#1| $) 18 T ELT)) (-2150 (($ (-660 |#1|)) 19 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-1389 ((|#1| $) 34 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 11 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 29 (|has| $ (-6 -4424)) ELT))) +(((-496 |#1|) (-13 (-988 |#1|) (-10 -8 (-15 -2150 ($ (-660 |#1|))))) (-860)) (T -496)) +((-2150 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-496 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4271 (($ $) 71 T ELT)) (-1838 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2179 (((-425 |#2| (-419 |#2|) |#3| |#4|) $) 45 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (((-3 |#4| #1#) $) 117 T ELT)) (-1839 (($ (-425 |#2| (-419 |#2|) |#3| |#4|)) 80 T ELT) (($ |#4|) 31 T ELT) (($ |#1| |#1|) 127 T ELT) (($ |#1| |#1| (-558)) NIL T ELT) (($ |#4| |#2| |#2| |#2| |#1|) 140 T ELT)) (-3854 (((-2 (|:| -2554 (-425 |#2| (-419 |#2|) |#3| |#4|)) (|:| |principalPart| |#4|)) $) 47 T ELT)) (-4375 (((-876) $) 110 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 32 T CONST)) (-3453 (((-114) $ $) 121 T ELT)) (-4266 (($ $) 76 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 72 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 77 T ELT))) +(((-497 |#1| |#2| |#3| |#4|) (-349 |#1| |#2| |#3| |#4|) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -497)) +NIL +((-2154 (((-558) (-660 (-558))) 53 T ELT)) (-2151 ((|#1| (-660 |#1|)) 94 T ELT)) (-2153 (((-660 |#1|) (-660 |#1|)) 95 T ELT)) (-2152 (((-660 |#1|) (-660 |#1|)) 97 T ELT)) (-3561 ((|#1| (-660 |#1|)) 96 T ELT)) (-3217 (((-660 (-558)) (-660 |#1|)) 56 T ELT))) +(((-498 |#1|) (-10 -7 (-15 -3561 (|#1| (-660 |#1|))) (-15 -2151 (|#1| (-660 |#1|))) (-15 -2152 ((-660 |#1|) (-660 |#1|))) (-15 -2153 ((-660 |#1|) (-660 |#1|))) (-15 -3217 ((-660 (-558)) (-660 |#1|))) (-15 -2154 ((-558) (-660 (-558))))) (-1263 (-558))) (T -498)) +((-2154 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-558)) (-5 *1 (-498 *4)) (-4 *4 (-1263 *2)))) (-3217 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1263 (-558))) (-5 *2 (-660 (-558))) (-5 *1 (-498 *4)))) (-2153 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1263 (-558))) (-5 *1 (-498 *3)))) (-2152 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1263 (-558))) (-5 *1 (-498 *3)))) (-2151 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-558))))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-558)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-558) $) NIL (|has| (-558) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-558) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-3573 (((-558) $) NIL T ELT) (((-1197) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-558) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-558) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-558) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| (-558) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-4387 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-558) (-1172)) CONST)) (-2155 (($ (-419 (-558))) 9 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) NIL T ELT)) (-3531 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-558)) (-660 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-1197)) (-660 (-558))) NIL (|has| (-558) (-526 (-1197) (-558))) ELT) (($ $ (-1197) (-558)) NIL (|has| (-558) (-526 (-1197) (-558))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-558) $) NIL T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-558) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-558) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1040)) ELT) (((-229) $) NIL (|has| (-558) (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 8 T ELT) (($ (-558)) NIL T ELT) (($ (-1197)) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL T ELT) (((-1024 16) $) 10 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-558) (-928))) (|has| (-558) (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (((-558) $) NIL (|has| (-558) (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| (-558) (-841)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-4378 (($ $ $) NIL T ELT) (($ (-558) (-558)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ (-558)) NIL T ELT))) +(((-499) (-13 (-1011 (-558)) (-629 (-419 (-558))) (-629 (-1024 16)) (-10 -8 (-15 -3529 ((-419 (-558)) $)) (-15 -2155 ($ (-419 (-558))))))) (T -499)) +((-3529 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499)))) (-2155 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499))))) +((-3006 (((-660 |#2|) $) 31 T ELT)) (-3662 (((-114) |#2| $) 39 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 26 T ELT)) (-4197 (($ $ (-660 (-305 |#2|))) 13 T ELT) (($ $ (-305 |#2|)) NIL T ELT) (($ $ |#2| |#2|) NIL T ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 30 T ELT) (((-790) |#2| $) 37 T ELT)) (-4375 (((-876) $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 23 T ELT)) (-3453 (((-114) $ $) 35 T ELT)) (-4386 (((-790) $) 18 T ELT))) +(((-500 |#1| |#2|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -4197 (|#1| |#1| (-660 |#2|) (-660 |#2|))) (-15 -4197 (|#1| |#1| |#2| |#2|)) (-15 -4197 (|#1| |#1| (-305 |#2|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#2|)))) (-15 -3662 ((-114) |#2| |#1|)) (-15 -2156 ((-790) |#2| |#1|)) (-15 -3006 ((-660 |#2|) |#1|)) (-15 -2156 ((-790) (-1 (-114) |#2|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4386 ((-790) |#1|))) (-501 |#2|) (-1237)) (T -500)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4153 (($) 7 T CONST)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-501 |#1|) (-142) (-1237)) (T -501)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-2159 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) (-2158 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) (-2157 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) (-2156 (*1 *2 *3 *1) (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *4)) (-4 *4 (-1237)) (-5 *2 (-790)))) (-3289 (*1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-660 *3)))) (-3006 (*1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-5 *2 (-660 *3)))) (-2156 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-790)))) (-3662 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114))))) +(-13 (-34) (-10 -8 (IF (|has| |t#1| (-629 (-876))) (-6 (-629 (-876))) |%noBranch|) (IF (|has| |t#1| (-102)) (-6 (-102)) |%noBranch|) (IF (|has| |t#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |t#1| (-1121)) (IF (|has| |t#1| (-321 |t#1|)) (-6 (-321 |t#1|)) |%noBranch|) |%noBranch|) (-15 -4387 ($ (-1 |t#1| |t#1|) $)) (IF (|has| $ (-6 -4425)) (-15 -2159 ($ (-1 |t#1| |t#1|) $)) |%noBranch|) (IF (|has| $ (-6 -4424)) (PROGN (-15 -2158 ((-114) (-1 (-114) |t#1|) $)) (-15 -2157 ((-114) (-1 (-114) |t#1|) $)) (-15 -2156 ((-790) (-1 (-114) |t#1|) $)) (-15 -3289 ((-660 |t#1|) $)) (-15 -3006 ((-660 |t#1|) $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -2156 ((-790) |t#1| $)) (-15 -3662 ((-114) |t#1| $))) |%noBranch|)) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-4375 ((|#1| $) 6 T ELT) (($ |#1|) 9 T ELT))) +(((-502 |#1|) (-142) (-1237)) (T -502)) +NIL +(-13 (-629 |t#1|) (-632 |t#1|)) +(((-632 |#1|) . T) ((-629 |#1|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2160 (($ (-1179)) 8 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 15 T ELT) (((-1179) $) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 11 T ELT))) +(((-503) (-13 (-1121) (-629 (-1179)) (-10 -8 (-15 -2160 ($ (-1179)))))) (T -503)) +((-2160 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) +((-3911 (($ $) 15 T ELT)) (-3909 (($ $) 24 T ELT)) (-3913 (($ $) 12 T ELT)) (-3914 (($ $) 10 T ELT)) (-3912 (($ $) 17 T ELT)) (-3910 (($ $) 22 T ELT))) +(((-504 |#1|) (-10 -7 (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|))) (-505)) (T -504)) +NIL +((-3911 (($ $) 11 T ELT)) (-3909 (($ $) 10 T ELT)) (-3913 (($ $) 9 T ELT)) (-3914 (($ $) 8 T ELT)) (-3912 (($ $) 7 T ELT)) (-3910 (($ $) 6 T ELT))) (((-505) (-142)) (T -505)) -((-3912 (*1 *1 *1) (-4 *1 (-505))) (-3910 (*1 *1 *1) (-4 *1 (-505))) (-3914 (*1 *1 *1) (-4 *1 (-505))) (-3915 (*1 *1 *1) (-4 *1 (-505))) (-3913 (*1 *1 *1) (-4 *1 (-505))) (-3911 (*1 *1 *1) (-4 *1 (-505)))) -(-13 (-10 -8 (-15 -3911 ($ $)) (-15 -3913 ($ $)) (-15 -3915 ($ $)) (-15 -3914 ($ $)) (-15 -3910 ($ $)) (-15 -3912 ($ $)))) -((-4162 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 54 T ELT))) -(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-376) (-1264 |#1|) (-13 (-376) (-149) (-744 |#1| |#2|)) (-1264 |#3|)) (T -506)) -((-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-744 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7))))) -((-2967 (((-114) $ $) NIL T ELT)) (-1750 (((-661 $) (-1192 $) (-1198)) NIL T ELT) (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-965 $)) NIL T ELT)) (-1323 (($ (-1192 $) (-1198)) NIL T ELT) (($ (-1192 $)) NIL T ELT) (($ (-965 $)) NIL T ELT)) (-3606 (((-114) $) 39 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-2162 (((-114) $ $) 72 T ELT)) (-1743 (((-661 (-628 $)) $) 49 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1747 (($ $ (-305 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3438 (($ $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1324 (((-661 $) (-1192 $) (-1198)) NIL T ELT) (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-965 $)) NIL T ELT)) (-3601 (($ (-1192 $) (-1198)) NIL T ELT) (($ (-1192 $)) NIL T ELT) (($ (-965 $)) NIL T ELT)) (-3575 (((-3 (-628 $) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3574 (((-628 $) $) NIL T ELT) (((-558) $) NIL T ELT) (((-419 (-558)) $) 54 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-419 (-558)))) (|:| |vec| (-1288 (-419 (-558))))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-419 (-558))) (-709 $)) NIL T ELT)) (-4272 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2972 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1742 (((-661 (-115)) $) NIL T ELT)) (-4023 (((-115) (-115)) NIL T ELT)) (-2641 (((-114) $) 42 T ELT)) (-3074 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-3399 (((-1146 (-558) (-628 $)) $) 37 T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-3534 (((-1192 $) (-1192 $) (-628 $)) 86 T ELT) (((-1192 $) (-1192 $) (-661 (-628 $))) 61 T ELT) (($ $ (-628 $)) 75 T ELT) (($ $ (-661 (-628 $))) 76 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-1740 (((-1192 $) (-628 $)) 73 (|has| $ (-1070)) ELT)) (-4388 (($ (-1 $ $) (-628 $)) NIL T ELT)) (-1745 (((-3 (-628 $) #1#) $) NIL T ELT)) (-2494 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-419 (-558)))) (|:| |vec| (-1288 (-419 (-558))))) (-1288 $) $) NIL T ELT) (((-709 (-419 (-558))) (-1288 $)) NIL T ELT)) (-2102 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1744 (((-661 (-628 $)) $) NIL T ELT)) (-2449 (($ (-115) $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3032 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3002 (((-791) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1741 (((-114) $ $) NIL T ELT) (((-114) $ (-1198)) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3075 (((-114) $) NIL (|has| $ (-1059 (-558))) ELT)) (-4198 (($ $ (-628 $) $) NIL T ELT) (($ $ (-661 (-628 $)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-1198) (-1 $ (-661 $))) NIL T ELT) (($ $ (-1198) (-1 $ $)) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ $))) NIL T ELT) (($ $ (-661 (-115)) (-661 (-1 $ (-661 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-661 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-661 $)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1746 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4188 (($ $) 36 T ELT) (($ $ (-791)) NIL T ELT)) (-3398 (((-1146 (-558) (-628 $)) $) 20 T ELT)) (-3603 (($ $) NIL (|has| $ (-1070)) ELT)) (-4402 (((-391) $) 100 T ELT) (((-229) $) 108 T ELT) (((-171 (-391)) $) 116 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-628 $)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1146 (-558) (-628 $))) 21 T ELT)) (-3528 (((-791)) NIL T CONST)) (-2989 (($ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-2468 (((-114) (-115)) 92 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 10 T CONST)) (-3065 (($) 22 T CONST)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3454 (((-114) $ $) 24 T ELT)) (-4379 (($ $ $) 44 T ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-558))) NIL T ELT) (($ $ (-558)) 47 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-558) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-938) $) NIL T ELT))) -(((-507) (-13 (-310) (-27) (-1059 (-558)) (-1059 (-419 (-558))) (-658 (-558)) (-1041) (-658 (-419 (-558))) (-149) (-631 (-171 (-391))) (-240) (-10 -8 (-15 -4376 ($ (-1146 (-558) (-628 $)))) (-15 -3399 ((-1146 (-558) (-628 $)) $)) (-15 -3398 ((-1146 (-558) (-628 $)) $)) (-15 -4272 ($ $)) (-15 -2162 ((-114) $ $)) (-15 -3534 ((-1192 $) (-1192 $) (-628 $))) (-15 -3534 ((-1192 $) (-1192 $) (-661 (-628 $)))) (-15 -3534 ($ $ (-628 $))) (-15 -3534 ($ $ (-661 (-628 $))))))) (T -507)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1146 (-558) (-628 (-507)))) (-5 *1 (-507)))) (-3399 (*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-507)))) (-5 *1 (-507)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-507)))) (-5 *1 (-507)))) (-4272 (*1 *1 *1) (-5 *1 (-507))) (-2162 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-628 (-507))) (-5 *1 (-507)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-661 (-628 (-507)))) (-5 *1 (-507)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-628 (-507))) (-5 *1 (-507)))) (-3534 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-507)))) (-5 *1 (-507))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 42 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 38 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 37 T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 21 T ELT)) (-2415 (((-558) $) 17 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) 39 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) 15 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 19 T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 41 T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 13 T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 24 T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 11 (|has| $ (-6 -4425)) ELT))) -(((-508 |#1| |#2|) (-19 |#1|) (-1238) (-558)) (T -508)) -NIL -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-1364 (($ $ (-558) (-508 |#1| |#3|)) NIL T ELT)) (-1363 (($ $ (-558) (-508 |#1| |#2|)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3514 (((-508 |#1| |#3|) $ (-558)) NIL T ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3515 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL T ELT)) (-3517 (((-791) $) NIL T ELT)) (-4044 (($ (-791) (-791) |#1|) NIL T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3521 (((-558) $) NIL T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3513 (((-508 |#1| |#2|) $ (-558)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1238) (-558) (-558)) (T -509)) -NIL -((-2164 (((-661 (-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-791) (-791)) 32 T ELT)) (-2163 (((-661 (-1192 |#1|)) |#1| (-791) (-791) (-791)) 43 T ELT)) (-2292 (((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-661 |#3|) (-661 (-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-791)) 107 T ELT))) -(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -2163 ((-661 (-1192 |#1|)) |#1| (-791) (-791) (-791))) (-15 -2164 ((-661 (-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-791) (-791))) (-15 -2292 ((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) (-661 |#3|) (-661 (-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) (-791)))) (-363) (-1264 |#1|) (-1264 |#2|)) (T -510)) -((-2292 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-2 (|:| -2222 (-709 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-709 *7))))) (-5 *5 (-791)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2222 (-709 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-709 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-2164 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-791)) (-4 *5 (-363)) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-2 (|:| -2222 (-709 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-709 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2222 (-709 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-709 *6)))) (-4 *7 (-1264 *6)))) (-2163 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-791)) (-4 *3 (-363)) (-4 *5 (-1264 *3)) (-5 *2 (-661 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) -((-2170 (((-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))) 70 T ELT)) (-2165 ((|#1| (-709 |#1|) |#1| (-791)) 24 T ELT)) (-2167 (((-791) (-791) (-791)) 34 T ELT)) (-2169 (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 50 T ELT)) (-2168 (((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|) 58 T ELT) (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 55 T ELT)) (-2166 ((|#1| (-709 |#1|) (-709 |#1|) |#1| (-558)) 28 T ELT)) (-3749 ((|#1| (-709 |#1|)) 18 T ELT))) -(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3749 (|#1| (-709 |#1|))) (-15 -2165 (|#1| (-709 |#1|) |#1| (-791))) (-15 -2166 (|#1| (-709 |#1|) (-709 |#1|) |#1| (-558))) (-15 -2167 ((-791) (-791) (-791))) (-15 -2168 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2168 ((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|)) (-15 -2169 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2170 ((-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|))) (-2 (|:| -2222 (-709 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-709 |#1|)))))) (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $)))) (-1264 |#1|) (-422 |#1| |#2|)) (T -511)) -((-2170 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2169 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2168 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2168 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2167 (*1 *2 *2 *2) (-12 (-5 *2 (-791)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2166 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-709 *2)) (-5 *4 (-558)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-2165 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-709 *2)) (-5 *4 (-791)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *5 (-1264 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-3749 (*1 *2 *3) (-12 (-5 *3 (-709 *2)) (-4 *4 (-1264 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3742 (($ $ $) 41 T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) NIL (|has| (-114) (-861)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1933 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-114) (-861))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) NIL (|has| (-114) (-861)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4218 (((-114) $ (-1255 (-558)) (-114)) NIL (|has| $ (-6 -4426)) ELT) (((-114) $ (-558) (-114)) 43 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-3826 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-4272 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-1719 (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-114) $ (-558)) NIL T ELT)) (-3839 (((-558) (-114) $ (-558)) NIL (|has| (-114) (-1122)) ELT) (((-558) (-114) $) NIL (|has| (-114) (-1122)) ELT) (((-558) (-1 (-114) (-114)) $) NIL T ELT)) (-3290 (((-661 (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2960 (($ $ $) 39 T ELT)) (-2959 (($ $) NIL T ELT)) (-1414 (($ $ $) NIL T ELT)) (-4044 (($ (-791) (-114)) 27 T ELT)) (-1415 (($ $ $) NIL T ELT)) (-2415 (((-558) $) 8 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL T ELT)) (-3938 (($ $ $) NIL (|has| (-114) (-861)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3007 (((-661 (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL T ELT)) (-2160 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-114) (-114) (-114)) $ $) 36 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2517 (($ $ $ (-558)) NIL T ELT) (($ (-114) $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-114) $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2414 (($ $ (-114)) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-114)) (-661 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT) (($ $ (-661 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT)) (-2420 (((-661 (-114)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 29 T ELT)) (-4230 (($ $ (-1255 (-558))) NIL T ELT) (((-114) $ (-558)) 22 T ELT) (((-114) $ (-558) (-114)) NIL T ELT)) (-2518 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2157 (((-791) (-114) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-1122))) ELT) (((-791) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 30 T ELT)) (-4402 (((-547) $) NIL (|has| (-114) (-631 (-547))) ELT)) (-3950 (($ (-661 (-114))) NIL T ELT)) (-4232 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4376 (((-877) $) 26 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2961 (($ $ $) 37 T ELT)) (-2524 (($ $ $) NIL T ELT)) (-3739 (($ $ $) 46 T ELT)) (-3741 (($ $) 44 T ELT)) (-3740 (($ $ $) 45 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 31 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 32 T ELT)) (-2525 (($ $ $) NIL T ELT)) (-4387 (((-791) $) 13 (|has| $ (-6 -4425)) ELT))) -(((-512 |#1|) (-13 (-125) (-10 -8 (-15 -3741 ($ $)) (-15 -3739 ($ $ $)) (-15 -3740 ($ $ $)))) (-558)) (T -512)) -((-3741 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) (-3740 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558))))) -((-2172 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1192 |#4|)) 35 T ELT)) (-2171 (((-1192 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1192 |#4|)) 22 T ELT)) (-2173 (((-3 (-709 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-709 (-1192 |#4|))) 46 T ELT)) (-2174 (((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) -(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2171 (|#2| (-1 |#1| |#4|) (-1192 |#4|))) (-15 -2171 ((-1192 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2172 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1192 |#4|))) (-15 -2173 ((-3 (-709 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-709 (-1192 |#4|)))) (-15 -2174 ((-1192 (-1192 |#4|)) (-1 |#4| |#1|) |#3|))) (-1070) (-1264 |#1|) (-1264 |#2|) (-1070)) (T -513)) -((-2174 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-1192 (-1192 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6)))) (-2173 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-709 (-1192 *8))) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-709 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1264 *6)))) (-2172 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *4 (-1264 *5)) (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1264 *4)))) (-2171 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2175 (((-1294) $) 25 T ELT)) (-4230 (((-1180) $ (-1198)) 30 T ELT)) (-4047 (((-1294) $) 19 T ELT)) (-4376 (((-877) $) 27 T ELT) (($ (-1180)) 26 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 11 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 9 T ELT))) -(((-514) (-13 (-861) (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) (-15 -2175 ((-1294) $)) (-15 -4376 ($ (-1180)))))) (T -514)) -((-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1180)) (-5 *1 (-514)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) (-2175 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-514))))) -((-4171 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-4169 ((|#1| |#4|) 10 T ELT)) (-4170 ((|#3| |#4|) 17 T ELT))) -(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4169 (|#1| |#4|)) (-15 -4170 (|#3| |#4|)) (-15 -4171 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1012 |#1|) (-385 |#1|) (-385 |#2|)) (T -515)) -((-4171 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-4170 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) (-4 *2 (-385 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2185 (((-114) $ (-661 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-3606 (((-114) $) 177 T ELT)) (-2177 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-661 |#3|)) 121 T ELT)) (-2176 (((-1187 (-661 (-965 |#1|)) (-661 (-305 (-965 |#1|)))) (-661 |#4|)) 170 (|has| |#3| (-631 (-1198))) ELT)) (-2184 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2641 (((-114) $) 176 T ELT)) (-2181 (($ $) 131 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3656 (($ $ $) 99 T ELT) (($ (-661 $)) 101 T ELT)) (-2186 (((-114) |#4| $) 129 T ELT)) (-2187 (((-114) $ $) 82 T ELT)) (-2180 (($ (-661 |#4|)) 106 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2179 (($ (-661 |#4|)) 174 T ELT)) (-2178 (((-114) $) 175 T ELT)) (-2465 (($ $) 85 T ELT)) (-3096 (((-661 |#4|) $) 73 T ELT)) (-2183 (((-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)) $ (-661 |#3|)) NIL T ELT)) (-2188 (((-114) |#4| $) 89 T ELT)) (-4341 (((-558) $ (-661 |#3|)) 133 T ELT) (((-558) $) 134 T ELT)) (-4376 (((-877) $) 173 T ELT) (($ (-661 |#4|)) 102 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2182 (($ (-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3454 (((-114) $ $) 84 T ELT)) (-4269 (($ $ $) 109 T ELT)) (** (($ $ (-791)) 115 T ELT)) (* (($ $ $) 113 T ELT))) -(((-516 |#1| |#2| |#3| |#4|) (-13 (-1122) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-791))) (-15 -4269 ($ $ $)) (-15 -2641 ((-114) $)) (-15 -3606 ((-114) $)) (-15 -2188 ((-114) |#4| $)) (-15 -2187 ((-114) $ $)) (-15 -2186 ((-114) |#4| $)) (-15 -2185 ((-114) $ (-661 |#3|))) (-15 -2185 ((-114) $)) (-15 -3656 ($ $ $)) (-15 -3656 ($ (-661 $))) (-15 -2184 ($ $ $)) (-15 -2184 ($ $ |#4|)) (-15 -2465 ($ $)) (-15 -2183 ((-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)) $ (-661 |#3|))) (-15 -2182 ($ (-2 (|:| |mval| (-709 |#1|)) (|:| |invmval| (-709 |#1|)) (|:| |genIdeal| $)))) (-15 -4341 ((-558) $ (-661 |#3|))) (-15 -4341 ((-558) $)) (-15 -2181 ($ $)) (-15 -2180 ($ (-661 |#4|))) (-15 -2179 ($ (-661 |#4|))) (-15 -2178 ((-114) $)) (-15 -3096 ((-661 |#4|) $)) (-15 -4376 ($ (-661 |#4|))) (-15 -2177 ($ $ |#4|)) (-15 -2177 ($ $ |#4| (-661 |#3|))) (IF (|has| |#3| (-631 (-1198))) (-15 -2176 ((-1187 (-661 (-965 |#1|)) (-661 (-305 (-965 |#1|)))) (-661 |#4|))) |%noBranch|))) (-376) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -516)) -((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2641 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3606 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2188 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2187 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2186 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6)))) (-2185 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-2185 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3656 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-661 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2184 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2184 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-2465 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2183 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-2 (|:| |mval| (-709 *4)) (|:| |invmval| (-709 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-2182 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-709 *3)) (|:| |invmval| (-709 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-4341 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *2 (-558)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) (-4341 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-558)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-2181 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-2180 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2178 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-3096 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2177 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-969 *3 *4 *5)))) (-2177 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-969 *4 *5 *6)))) (-2176 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *6 (-631 (-1198))) (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1187 (-661 (-965 *4)) (-661 (-305 (-965 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) -((-2189 (((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) 177 T ELT)) (-2190 (((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) 178 T ELT)) (-2191 (((-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) 128 T ELT)) (-4153 (((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) NIL T ELT)) (-2192 (((-661 (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) 180 T ELT)) (-2193 (((-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))) (-661 (-878 |#1|))) 196 T ELT))) -(((-517 |#1| |#2|) (-10 -7 (-15 -2189 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2190 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -4153 ((-114) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2191 ((-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2192 ((-661 (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2193 ((-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-791)) (-878 |#1|) (-255 |#1| (-419 (-558)))) (-661 (-878 |#1|))))) (-661 (-1198)) (-791)) (T -517)) -((-2193 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) (-5 *3 (-661 (-878 *4))) (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *1 (-517 *4 *5)))) (-2192 (*1 *2 *3) (-12 (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-661 (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))))) (-2191 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-558)) (-246 *4 (-791)) (-878 *3) (-255 *3 (-419 (-558))))) (-14 *3 (-661 (-1198))) (-14 *4 (-791)) (-5 *1 (-517 *3 *4)))) (-4153 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2190 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2194 (($) 6 T ELT)) (-4376 (((-877) $) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-518) (-13 (-1122) (-10 -8 (-15 -2194 ($))))) (T -518)) -((-2194 (*1 *1) (-5 *1 (-518)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) 12 T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3294 (($ |#1| |#2|) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2195 ((|#2| $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 16 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 26 T ELT))) -(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-864)) (T -519)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 17 T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) 14 T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) 44 T ELT)) (-3294 (($ |#1| |#2|) 41 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2195 ((|#2| $) NIL T ELT)) (-3592 ((|#1| $) 45 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 13 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4269 (($ $ $) 31 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) 40 T ELT))) -(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-864)) (T -520)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) 15 T ELT)) (-4389 (($ $) 16 T ELT)) (-3294 (($ |#1| |#2|) 19 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2195 ((|#2| $) 17 T ELT)) (-3592 ((|#1| $) 18 T ELT)) (-3660 (((-1180) $) 14 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))) ELT)) (-3661 (((-1141) $) 13 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))) ELT)) (-4376 (((-877) $) 12 (-12 (|has| |#2| (-1122)) (|has| |#1| (-1122))) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-521 |#1| |#2|) (-142) (-102) (-864)) (T -521)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)))) (-3294 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-864)) (-4 *2 (-102)))) (-2195 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-864)))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) (-4204 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)) (-5 *2 (-661 (-887 *4 *3)))))) -(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1122)) (IF (|has| |t#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -4388 ($ (-1 |t#1| |t#1|) $)) (-15 -3294 ($ |t#1| |t#2|)) (-15 -3592 (|t#1| $)) (-15 -2195 (|t#2| $)) (-15 -4389 ($ $)) (-15 -4204 ((-661 (-887 |t#2| |t#1|)) $)))) -(((-102) . T) ((-630 (-877)) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((-1122) -12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) 39 T ELT)) (-4389 (($ $) 34 T ELT)) (-3294 (($ |#1| |#2|) 30 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2195 ((|#2| $) 38 T ELT)) (-3592 ((|#1| $) 37 T ELT)) (-3660 (((-1180) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-3661 (((-1141) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-4376 (((-877) $) 28 (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 21 T ELT))) -(((-522 |#1| |#2|) (-521 |#1| |#2|) (-102) (-864)) (T -522)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3294 (($ |#1| |#2|) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2195 ((|#2| $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 22 T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT))) -(((-523 |#1| |#2|) (-13 (-814) (-521 |#1| |#2|)) (-814) (-864)) (T -523)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-887 |#2| |#1|)) $) NIL T ELT)) (-2873 (($ $ $) 23 T ELT)) (-1426 (((-3 $ "failed") $ $) 19 T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3294 (($ |#1| |#2|) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2195 ((|#2| $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT))) -(((-524 |#1| |#2|) (-13 (-815) (-521 |#1| |#2|)) (-815) (-861)) (T -524)) -NIL -((-4198 (($ $ (-661 |#2|) (-661 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) -(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -4198 (|#1| |#1| |#2| |#3|)) (-15 -4198 (|#1| |#1| (-661 |#2|) (-661 |#3|)))) (-526 |#2| |#3|) (-1122) (-1238)) (T -525)) -NIL -((-4198 (($ $ (-661 |#1|) (-661 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) -(((-526 |#1| |#2|) (-142) (-1122) (-1238)) (T -526)) -((-4198 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1238)))) (-4198 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1238))))) -(-13 (-10 -8 (-15 -4198 ($ $ |t#1| |t#2|)) (-15 -4198 ($ $ (-661 |t#1|) (-661 |t#2|))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 17 T ELT)) (-4204 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 |#2|))) $) 19 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2512 ((|#1| $ (-558)) 24 T ELT)) (-1802 ((|#2| $ (-558)) 22 T ELT)) (-2504 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1801 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1800 (($ $ $) 55 (|has| |#2| (-814)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-4107 ((|#2| |#1| $) 51 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 11 T CONST)) (-3454 (((-114) $ $) 30 T ELT)) (-4269 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) -(((-527 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1122) (-133) |#2|) (T -527)) -NIL -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-2196 (((-114) (-114)) 32 T ELT)) (-4218 ((|#1| $ (-558) |#1|) 42 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) 79 T ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-2594 (($ $) 83 (|has| |#1| (-1122)) ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) NIL (|has| |#1| (-1122)) ELT) (($ (-1 (-114) |#1|) $) 66 T ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-2197 (($ $ (-558)) 19 T ELT)) (-2198 (((-791) $) 13 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 31 T ELT)) (-2415 (((-558) $) 29 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 57 T ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) 28 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4037 (($ $ $ (-558)) 75 T ELT) (($ |#1| $ (-558)) 59 T ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2199 (($ (-661 |#1|)) 43 T ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) 24 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 62 T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 21 T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 55 T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-1714 (($ $ (-1255 (-558))) 73 T ELT) (($ $ (-558)) 67 T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) 63 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 53 T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-4221 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 22 (|has| $ (-6 -4425)) ELT))) -(((-528 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2199 ($ (-661 |#1|))) (-15 -2198 ((-791) $)) (-15 -2197 ($ $ (-558))) (-15 -2196 ((-114) (-114))))) (-1238) (-558)) (T -528)) -((-2199 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) (-14 *4 (-558)))) (-2198 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-558)))) (-2197 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2))) (-2196 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-558))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2201 (((-1156) $) 11 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2200 (((-1156) $) 13 T ELT)) (-4352 (((-1156) $) 9 T ELT)) (-4376 (((-877) $) 19 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-529) (-13 (-1104) (-10 -8 (-15 -4352 ((-1156) $)) (-15 -2201 ((-1156) $)) (-15 -2200 ((-1156) $))))) (T -529)) -((-4352 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-2201 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 (((-593 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-593 |#1|) #1#) $) NIL T ELT)) (-3574 (((-593 |#1|) $) NIL T ELT)) (-2000 (($ (-1288 (-593 |#1|))) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1883 (((-114) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1974 (($ $ (-791)) NIL (-3957 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT) (($ $) NIL (-3957 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-938) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-845 (-938)) $) NIL (-3957 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2221 (((-114) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3534 (((-593 |#1|) $) NIL T ELT) (($ $ (-938)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3865 (((-711 $) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 (-593 |#1|)) $) NIL T ELT) (((-1192 $) $ (-938)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2220 (((-938) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1807 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1806 (((-1192 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-3 (-1192 (-593 |#1|)) #1#) $ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1808 (($ $ (-1192 (-593 |#1|))) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-593 |#1|) (-381)) CONST)) (-2631 (($ (-938)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-845 (-938))) NIL T ELT) (((-938)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-791) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-3 (-791) #1#) $ $) NIL (-3957 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $ (-791)) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4378 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-3603 (((-1192 (-593 |#1|))) NIL T ELT)) (-1877 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1809 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3642 (((-1288 (-593 |#1|)) $) NIL T ELT) (((-709 (-593 |#1|)) (-1288 $)) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-593 |#1|)) NIL T ELT)) (-3103 (($ $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-711 $) $) NIL (-3957 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT) (((-1288 $) (-938)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $ (-791)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3070 (($ $ (-791)) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT) (($ $ (-593 |#1|)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-593 |#1|)) NIL T ELT) (($ (-593 |#1|) $) NIL T ELT))) -(((-530 |#1| |#2|) (-341 (-593 |#1|)) (-938) (-938)) (T -530)) -NIL -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) 51 T ELT)) (-1364 (($ $ (-558) |#4|) NIL T ELT)) (-1363 (($ $ (-558) |#5|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3514 ((|#4| $ (-558)) NIL T ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) 50 T ELT)) (-3515 ((|#1| $ (-558) (-558)) 45 T ELT)) (-3290 (((-661 |#1|) $) NIL T ELT)) (-3517 (((-791) $) 33 T ELT)) (-4044 (($ (-791) (-791) |#1|) 30 T ELT)) (-3516 (((-791) $) 38 T ELT)) (-3521 (((-558) $) 31 T ELT)) (-3519 (((-558) $) 32 T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3520 (((-558) $) 37 T ELT)) (-3518 (((-558) $) 39 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3660 (((-1180) $) 55 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 14 T ELT)) (-3993 (($) 16 T ELT)) (-4230 ((|#1| $ (-558) (-558)) 48 T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3513 ((|#5| $ (-558)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1238) (-558) (-558) (-385 |#1|) (-385 |#1|)) (T -531)) -NIL -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) NIL T ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4227 (($ $) NIL T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) 70 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) NIL (|has| |#1| (-861)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1933 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT) (($ (-1 (-114) |#1| |#1|) $) 64 (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3862 (((-114) $ (-791)) NIL T ELT)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 23 (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) 21 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) 24 (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4226 ((|#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) 28 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 29 T ELT)) (-4229 (($ $) 18 T ELT) (($ $ (-791)) 32 T ELT)) (-2594 (($ $) 62 (|has| |#1| (-1122)) ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) NIL (|has| |#1| (-1122)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3826 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3863 (((-114) $) NIL T ELT)) (-3839 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3290 (((-661 |#1|) $) 27 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-4149 (((-114) $ (-791)) NIL T ELT)) (-2415 (((-558) $) 31 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 65 T ELT)) (-3938 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 60 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3962 (($ |#1|) NIL T ELT)) (-4146 (((-114) $ (-791)) NIL T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) 58 (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4037 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2517 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 13 T ELT) (($ $ (-791)) NIL T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3864 (((-114) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 12 T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) 17 T ELT)) (-3993 (($) 16 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 15 T ELT) (($ $ #3#) 20 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-1714 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2518 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-4063 (((-114) $) 35 T ELT)) (-4222 (($ $) NIL T ELT)) (-4220 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) NIL T ELT)) (-4224 (($ $) 40 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 36 T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 26 T ELT)) (-4221 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-4232 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-661 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4376 (((-877) $) 50 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 54 (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 9 (|has| $ (-6 -4425)) ELT))) -(((-532 |#1| |#2|) (-686 |#1|) (-1238) (-558)) (T -532)) -NIL -((-3512 ((|#4| |#4|) 38 T ELT)) (-3511 (((-791) |#4|) 45 T ELT)) (-3510 (((-791) |#4|) 46 T ELT)) (-3509 (((-661 |#3|) |#4|) 57 (|has| |#3| (-6 -4426)) ELT)) (-4018 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2202 ((|#4| |#4|) 61 T ELT)) (-3748 ((|#1| |#4|) 60 T ELT))) -(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3512 (|#4| |#4|)) (-15 -3511 ((-791) |#4|)) (-15 -3510 ((-791) |#4|)) (IF (|has| |#3| (-6 -4426)) (-15 -3509 ((-661 |#3|) |#4|)) |%noBranch|) (-15 -3748 (|#1| |#4|)) (-15 -2202 (|#4| |#4|)) (-15 -4018 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -533)) -((-4018 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2202 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) (-3509 (*1 *2 *3) (-12 (|has| *6 (-6 -4426)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-661 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) -((-3512 ((|#8| |#4|) 20 T ELT)) (-3509 (((-661 |#3|) |#4|) 29 (|has| |#7| (-6 -4426)) ELT)) (-4018 (((-3 |#8| "failed") |#4|) 23 T ELT))) -(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3512 (|#8| |#4|)) (-15 -4018 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4426)) (-15 -3509 ((-661 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|) (-1012 |#1|) (-385 |#5|) (-385 |#5|) (-706 |#5| |#6| |#7|)) (T -534)) -((-3509 (*1 *2 *3) (-12 (|has| *9 (-6 -4426)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1012 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-661 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-706 *4 *5 *6)) (-4 *10 (-706 *7 *8 *9)))) (-4018 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1012 *4)) (-4 *2 (-706 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3512 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1012 *4)) (-4 *2 (-706 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4268 (($ (-791) (-791)) NIL T ELT)) (-2569 (($ $ $) NIL T ELT)) (-3834 (($ (-614 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-2568 (($ $ (-558) (-558)) 21 T ELT)) (-2567 (($ $ (-558) (-558)) NIL T ELT)) (-2566 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2571 (($ $) NIL T ELT)) (-3525 (((-114) $) NIL T ELT)) (-2565 (($ $ (-558) (-558) $) NIL T ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) NIL T ELT)) (-1364 (($ $ (-558) (-614 |#1| |#3|)) NIL T ELT)) (-1363 (($ $ (-558) (-614 |#1| |#2|)) NIL T ELT)) (-3753 (($ (-791) |#1|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3512 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3514 (((-614 |#1| |#3|) $ (-558)) NIL T ELT)) (-3511 (((-791) $) 33 (|has| |#1| (-569)) ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3515 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL T ELT)) (-3510 (((-791) $) 35 (|has| |#1| (-569)) ELT)) (-3509 (((-661 (-614 |#1| |#2|)) $) 38 (|has| |#1| (-569)) ELT)) (-3517 (((-791) $) NIL T ELT)) (-4044 (($ (-791) (-791) |#1|) NIL T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3747 ((|#1| $) 28 (|has| |#1| (-6 (-4427 #1="*"))) ELT)) (-3521 (((-558) $) 10 T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3520 (((-558) $) 13 T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3526 (($ (-661 (-661 |#1|))) NIL T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4022 (((-661 (-661 |#1|)) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4018 (((-3 $ #2="failed") $) 42 (|has| |#1| (-376)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) NIL T ELT)) (-3886 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) NIL T ELT)) (-3752 (($ (-661 |#1|)) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-3748 ((|#1| $) 26 (|has| |#1| (-6 (-4427 #1#))) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3513 (((-614 |#1| |#2|) $ (-558)) NIL T ELT)) (-4376 (($ (-614 |#1| |#2|)) NIL T ELT) (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-614 |#1| |#2|) $ (-614 |#1| |#2|)) NIL T ELT) (((-614 |#1| |#3|) (-614 |#1| |#3|) $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-535 |#1| |#2| |#3|) (-706 |#1| (-614 |#1| |#3|) (-614 |#1| |#2|)) (-1070) (-558) (-558)) (T -535)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2203 (((-661 (-1239)) $) 13 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 19 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT) (($ (-661 (-1239))) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-536) (-13 (-1104) (-10 -8 (-15 -4376 ($ (-661 (-1239)))) (-15 -2203 ((-661 (-1239)) $))))) (T -536)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-536)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-536))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2204 (((-1156) $) 14 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3870 (((-518) $) 11 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 21 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-537) (-13 (-1104) (-10 -8 (-15 -3870 ((-518) $)) (-15 -2204 ((-1156) $))))) (T -537)) -((-3870 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-2204 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) -((-2210 (((-711 (-1247)) $) 15 T ELT)) (-2206 (((-711 (-1245)) $) 38 T ELT)) (-2208 (((-711 (-1244)) $) 29 T ELT)) (-2211 (((-711 (-562)) $) 12 T ELT)) (-2207 (((-711 (-560)) $) 42 T ELT)) (-2209 (((-711 (-559)) $) 33 T ELT)) (-2205 (((-791) $ (-131)) 54 T ELT))) -(((-538 |#1|) (-10 -7 (-15 -2205 ((-791) |#1| (-131))) (-15 -2206 ((-711 (-1245)) |#1|)) (-15 -2207 ((-711 (-560)) |#1|)) (-15 -2208 ((-711 (-1244)) |#1|)) (-15 -2209 ((-711 (-559)) |#1|)) (-15 -2210 ((-711 (-1247)) |#1|)) (-15 -2211 ((-711 (-562)) |#1|))) (-539)) (T -538)) -NIL -((-2210 (((-711 (-1247)) $) 12 T ELT)) (-2206 (((-711 (-1245)) $) 8 T ELT)) (-2208 (((-711 (-1244)) $) 10 T ELT)) (-2211 (((-711 (-562)) $) 13 T ELT)) (-2207 (((-711 (-560)) $) 9 T ELT)) (-2209 (((-711 (-559)) $) 11 T ELT)) (-2205 (((-791) $ (-131)) 7 T ELT)) (-2212 (((-711 (-130)) $) 14 T ELT)) (-1903 (($ $) 6 T ELT))) +((-3911 (*1 *1 *1) (-4 *1 (-505))) (-3909 (*1 *1 *1) (-4 *1 (-505))) (-3913 (*1 *1 *1) (-4 *1 (-505))) (-3914 (*1 *1 *1) (-4 *1 (-505))) (-3912 (*1 *1 *1) (-4 *1 (-505))) (-3910 (*1 *1 *1) (-4 *1 (-505)))) +(-13 (-10 -8 (-15 -3910 ($ $)) (-15 -3912 ($ $)) (-15 -3914 ($ $)) (-15 -3913 ($ $)) (-15 -3909 ($ $)) (-15 -3911 ($ $)))) +((-4161 (((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)) 54 T ELT))) +(((-506 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 |#4|) |#4| (-1 (-417 |#2|) |#2|)))) (-376) (-1263 |#1|) (-13 (-376) (-149) (-743 |#1| |#2|)) (-1263 |#3|)) (T -506)) +((-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-4 *7 (-13 (-376) (-149) (-743 *5 *6))) (-5 *2 (-417 *3)) (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7))))) +((-2966 (((-114) $ $) NIL T ELT)) (-1749 (((-660 $) (-1191 $) (-1197)) NIL T ELT) (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-964 $)) NIL T ELT)) (-1322 (($ (-1191 $) (-1197)) NIL T ELT) (($ (-1191 $)) NIL T ELT) (($ (-964 $)) NIL T ELT)) (-3605 (((-114) $) 39 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-2161 (((-114) $ $) 72 T ELT)) (-1742 (((-660 (-627 $)) $) 49 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1746 (($ $ (-305 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3437 (($ $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1323 (((-660 $) (-1191 $) (-1197)) NIL T ELT) (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-964 $)) NIL T ELT)) (-3600 (($ (-1191 $) (-1197)) NIL T ELT) (($ (-1191 $)) NIL T ELT) (($ (-964 $)) NIL T ELT)) (-3574 (((-3 (-627 $) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3573 (((-627 $) $) NIL T ELT) (((-558) $) NIL T ELT) (((-419 (-558)) $) 54 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-419 (-558)))) (|:| |vec| (-1287 (-419 (-558))))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-419 (-558))) (-708 $)) NIL T ELT)) (-4271 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2971 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1741 (((-660 (-115)) $) NIL T ELT)) (-4022 (((-115) (-115)) NIL T ELT)) (-2640 (((-114) $) 42 T ELT)) (-3073 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-3398 (((-1145 (-558) (-627 $)) $) 37 T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-3533 (((-1191 $) (-1191 $) (-627 $)) 86 T ELT) (((-1191 $) (-1191 $) (-660 (-627 $))) 61 T ELT) (($ $ (-627 $)) 75 T ELT) (($ $ (-660 (-627 $))) 76 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-1739 (((-1191 $) (-627 $)) 73 (|has| $ (-1069)) ELT)) (-4387 (($ (-1 $ $) (-627 $)) NIL T ELT)) (-1744 (((-3 (-627 $) #1#) $) NIL T ELT)) (-2493 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-419 (-558)))) (|:| |vec| (-1287 (-419 (-558))))) (-1287 $) $) NIL T ELT) (((-708 (-419 (-558))) (-1287 $)) NIL T ELT)) (-2101 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1743 (((-660 (-627 $)) $) NIL T ELT)) (-2448 (($ (-115) $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3031 (((-114) $ (-115)) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3001 (((-790) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1740 (((-114) $ $) NIL T ELT) (((-114) $ (-1197)) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-3074 (((-114) $) NIL (|has| $ (-1058 (-558))) ELT)) (-4197 (($ $ (-627 $) $) NIL T ELT) (($ $ (-660 (-627 $)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-1197) (-1 $ (-660 $))) NIL T ELT) (($ $ (-1197) (-1 $ $)) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ $))) NIL T ELT) (($ $ (-660 (-115)) (-660 (-1 $ (-660 $)))) NIL T ELT) (($ $ (-115) (-1 $ (-660 $))) NIL T ELT) (($ $ (-115) (-1 $ $)) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ (-115) $) NIL T ELT) (($ (-115) $ $) NIL T ELT) (($ (-115) $ $ $) NIL T ELT) (($ (-115) $ $ $ $) NIL T ELT) (($ (-115) (-660 $)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1745 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4187 (($ $) 36 T ELT) (($ $ (-790)) NIL T ELT)) (-3397 (((-1145 (-558) (-627 $)) $) 20 T ELT)) (-3602 (($ $) NIL (|has| $ (-1069)) ELT)) (-4401 (((-391) $) 100 T ELT) (((-229) $) 108 T ELT) (((-171 (-391)) $) 116 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-627 $)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1145 (-558) (-627 $))) 21 T ELT)) (-3527 (((-790)) NIL T CONST)) (-2988 (($ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-2467 (((-114) (-115)) 92 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 10 T CONST)) (-3064 (($) 22 T CONST)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3453 (((-114) $ $) 24 T ELT)) (-4378 (($ $ $) 44 T ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-419 (-558))) NIL T ELT) (($ $ (-558)) 47 T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT)) (* (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ $ $) 27 T ELT) (($ (-558) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-937) $) NIL T ELT))) +(((-507) (-13 (-310) (-27) (-1058 (-558)) (-1058 (-419 (-558))) (-657 (-558)) (-1040) (-657 (-419 (-558))) (-149) (-630 (-171 (-391))) (-240) (-10 -8 (-15 -4375 ($ (-1145 (-558) (-627 $)))) (-15 -3398 ((-1145 (-558) (-627 $)) $)) (-15 -3397 ((-1145 (-558) (-627 $)) $)) (-15 -4271 ($ $)) (-15 -2161 ((-114) $ $)) (-15 -3533 ((-1191 $) (-1191 $) (-627 $))) (-15 -3533 ((-1191 $) (-1191 $) (-660 (-627 $)))) (-15 -3533 ($ $ (-627 $))) (-15 -3533 ($ $ (-660 (-627 $))))))) (T -507)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1145 (-558) (-627 (-507)))) (-5 *1 (-507)))) (-3398 (*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-507)))) (-5 *1 (-507)))) (-3397 (*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-507)))) (-5 *1 (-507)))) (-4271 (*1 *1 *1) (-5 *1 (-507))) (-2161 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-627 (-507))) (-5 *1 (-507)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-660 (-627 (-507)))) (-5 *1 (-507)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-627 (-507))) (-5 *1 (-507)))) (-3533 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-627 (-507)))) (-5 *1 (-507))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 42 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 38 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 37 T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 21 T ELT)) (-2414 (((-558) $) 17 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) 39 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 28 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 31 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 34 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) 15 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 19 T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 41 T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 13 T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 24 T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 11 (|has| $ (-6 -4424)) ELT))) +(((-508 |#1| |#2|) (-19 |#1|) (-1237) (-558)) (T -508)) +NIL +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-1363 (($ $ (-558) (-508 |#1| |#3|)) NIL T ELT)) (-1362 (($ $ (-558) (-508 |#1| |#2|)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3513 (((-508 |#1| |#3|) $ (-558)) NIL T ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3514 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL T ELT)) (-3516 (((-790) $) NIL T ELT)) (-4043 (($ (-790) (-790) |#1|) NIL T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3519 (((-558) $) NIL T ELT)) (-3517 (((-558) $) NIL T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3512 (((-508 |#1| |#2|) $ (-558)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-509 |#1| |#2| |#3|) (-57 |#1| (-508 |#1| |#3|) (-508 |#1| |#2|)) (-1237) (-558) (-558)) (T -509)) +NIL +((-2163 (((-660 (-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|)))) (-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) (-790) (-790)) 32 T ELT)) (-2162 (((-660 (-1191 |#1|)) |#1| (-790) (-790) (-790)) 43 T ELT)) (-2291 (((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) (-660 |#3|) (-660 (-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|)))) (-790)) 107 T ELT))) +(((-510 |#1| |#2| |#3|) (-10 -7 (-15 -2162 ((-660 (-1191 |#1|)) |#1| (-790) (-790) (-790))) (-15 -2163 ((-660 (-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|)))) (-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) (-790) (-790))) (-15 -2291 ((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) (-660 |#3|) (-660 (-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|)))) (-790)))) (-363) (-1263 |#1|) (-1263 |#2|)) (T -510)) +((-2291 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-2 (|:| -2221 (-708 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-708 *7))))) (-5 *5 (-790)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-363)) (-5 *2 (-2 (|:| -2221 (-708 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-708 *7)))) (-5 *1 (-510 *6 *7 *8)))) (-2163 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-790)) (-4 *5 (-363)) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-2 (|:| -2221 (-708 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-708 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 (-2 (|:| -2221 (-708 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-708 *6)))) (-4 *7 (-1263 *6)))) (-2162 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-790)) (-4 *3 (-363)) (-4 *5 (-1263 *3)) (-5 *2 (-660 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1263 *5))))) +((-2169 (((-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))) (-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))) (-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|)))) 70 T ELT)) (-2164 ((|#1| (-708 |#1|) |#1| (-790)) 24 T ELT)) (-2166 (((-790) (-790) (-790)) 34 T ELT)) (-2168 (((-708 |#1|) (-708 |#1|) (-708 |#1|)) 50 T ELT)) (-2167 (((-708 |#1|) (-708 |#1|) (-708 |#1|) |#1|) 58 T ELT) (((-708 |#1|) (-708 |#1|) (-708 |#1|)) 55 T ELT)) (-2165 ((|#1| (-708 |#1|) (-708 |#1|) |#1| (-558)) 28 T ELT)) (-3748 ((|#1| (-708 |#1|)) 18 T ELT))) +(((-511 |#1| |#2| |#3|) (-10 -7 (-15 -3748 (|#1| (-708 |#1|))) (-15 -2164 (|#1| (-708 |#1|) |#1| (-790))) (-15 -2165 (|#1| (-708 |#1|) (-708 |#1|) |#1| (-558))) (-15 -2166 ((-790) (-790) (-790))) (-15 -2167 ((-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2167 ((-708 |#1|) (-708 |#1|) (-708 |#1|) |#1|)) (-15 -2168 ((-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2169 ((-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))) (-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|))) (-2 (|:| -2221 (-708 |#1|)) (|:| |basisDen| |#1|) (|:| |basisInv| (-708 |#1|)))))) (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $)))) (-1263 |#1|) (-422 |#1| |#2|)) (T -511)) +((-2169 (*1 *2 *2 *2) (-12 (-5 *2 (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2168 (*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2167 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2167 (*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2166 (*1 *2 *2 *2) (-12 (-5 *2 (-790)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) (-2165 (*1 *2 *3 *3 *2 *4) (-12 (-5 *3 (-708 *2)) (-5 *4 (-558)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-2164 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-708 *2)) (-5 *4 (-790)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5)))) (-3748 (*1 *2 *3) (-12 (-5 *3 (-708 *2)) (-4 *4 (-1263 *2)) (-4 *2 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3741 (($ $ $) 41 T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) NIL (|has| (-114) (-860)) ELT) (((-114) (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-1932 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-114) (-860))) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) NIL (|has| (-114) (-860)) ELT) (($ (-1 (-114) (-114) (-114)) $) NIL T ELT)) (-4217 (((-114) $ (-1254 (-558)) (-114)) NIL (|has| $ (-6 -4425)) ELT) (((-114) $ (-558) (-114)) 43 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-3825 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-4271 (((-114) (-1 (-114) (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114)) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-114) (-114)) $ (-114) (-114)) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-1718 (((-114) $ (-558) (-114)) NIL (|has| $ (-6 -4425)) ELT)) (-3514 (((-114) $ (-558)) NIL T ELT)) (-3838 (((-558) (-114) $ (-558)) NIL (|has| (-114) (-1121)) ELT) (((-558) (-114) $) NIL (|has| (-114) (-1121)) ELT) (((-558) (-1 (-114) (-114)) $) NIL T ELT)) (-3289 (((-660 (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2959 (($ $ $) 39 T ELT)) (-2958 (($ $) NIL T ELT)) (-1413 (($ $ $) NIL T ELT)) (-4043 (($ (-790) (-114)) 27 T ELT)) (-1414 (($ $ $) NIL T ELT)) (-2414 (((-558) $) 8 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| (-114) (-860)) ELT) (($ (-1 (-114) (-114) (-114)) $ $) NIL T ELT)) (-3006 (((-660 (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL T ELT)) (-2159 (($ (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-114) (-114) (-114)) $ $) 36 T ELT) (($ (-1 (-114) (-114)) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2516 (($ $ $ (-558)) NIL T ELT) (($ (-114) $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-114) $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 (-114) "failed") (-1 (-114) (-114)) $) NIL T ELT)) (-2413 (($ $ (-114)) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-114)) (-660 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-114) (-114)) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-305 (-114))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT) (($ $ (-660 (-305 (-114)))) NIL (-12 (|has| (-114) (-321 (-114))) (|has| (-114) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT)) (-2419 (((-660 (-114)) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 29 T ELT)) (-4229 (($ $ (-1254 (-558))) NIL T ELT) (((-114) $ (-558)) 22 T ELT) (((-114) $ (-558) (-114)) NIL T ELT)) (-2517 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2156 (((-790) (-114) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-114) (-1121))) ELT) (((-790) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 30 T ELT)) (-4401 (((-547) $) NIL (|has| (-114) (-630 (-547))) ELT)) (-3949 (($ (-660 (-114))) NIL T ELT)) (-4231 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT) (($ (-114) $) NIL T ELT) (($ $ (-114)) NIL T ELT)) (-4375 (((-876) $) 26 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-114)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2960 (($ $ $) 37 T ELT)) (-2523 (($ $ $) NIL T ELT)) (-3738 (($ $ $) 46 T ELT)) (-3740 (($ $) 44 T ELT)) (-3739 (($ $ $) 45 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 31 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 32 T ELT)) (-2524 (($ $ $) NIL T ELT)) (-4386 (((-790) $) 13 (|has| $ (-6 -4424)) ELT))) +(((-512 |#1|) (-13 (-125) (-10 -8 (-15 -3740 ($ $)) (-15 -3738 ($ $ $)) (-15 -3739 ($ $ $)))) (-558)) (T -512)) +((-3740 (*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) (-3738 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) (-3739 (*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558))))) +((-2171 (((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1191 |#4|)) 35 T ELT)) (-2170 (((-1191 |#4|) (-1 |#4| |#1|) |#2|) 31 T ELT) ((|#2| (-1 |#1| |#4|) (-1191 |#4|)) 22 T ELT)) (-2172 (((-3 (-708 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-708 (-1191 |#4|))) 46 T ELT)) (-2173 (((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|) 55 T ELT))) +(((-513 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2170 (|#2| (-1 |#1| |#4|) (-1191 |#4|))) (-15 -2170 ((-1191 |#4|) (-1 |#4| |#1|) |#2|)) (-15 -2171 ((-3 |#2| #1="failed") (-1 (-3 |#1| #1#) |#4|) (-1191 |#4|))) (-15 -2172 ((-3 (-708 |#2|) #1#) (-1 (-3 |#1| #1#) |#4|) (-708 (-1191 |#4|)))) (-15 -2173 ((-1191 (-1191 |#4|)) (-1 |#4| |#1|) |#3|))) (-1069) (-1263 |#1|) (-1263 |#2|) (-1069)) (T -513)) +((-2173 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *6 (-1263 *5)) (-5 *2 (-1191 (-1191 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6)))) (-2172 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-708 (-1191 *8))) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-1263 *5)) (-5 *2 (-708 *6)) (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1263 *6)))) (-2171 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))) (-2170 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *4 (-1263 *5)) (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1263 *4)))) (-2170 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2174 (((-1293) $) 25 T ELT)) (-4229 (((-1179) $ (-1197)) 30 T ELT)) (-4046 (((-1293) $) 19 T ELT)) (-4375 (((-876) $) 27 T ELT) (($ (-1179)) 26 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 11 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 9 T ELT))) +(((-514) (-13 (-860) (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) (-15 -2174 ((-1293) $)) (-15 -4375 ($ (-1179)))))) (T -514)) +((-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-2174 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514))))) +((-4170 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|) 19 T ELT)) (-4168 ((|#1| |#4|) 10 T ELT)) (-4169 ((|#3| |#4|) 17 T ELT))) +(((-515 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4168 (|#1| |#4|)) (-15 -4169 (|#3| |#4|)) (-15 -4170 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#4|))) (-569) (-1011 |#1|) (-385 |#1|) (-385 |#2|)) (T -515)) +((-4170 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-4 *2 (-385 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2184 (((-114) $ (-660 |#3|)) 126 T ELT) (((-114) $) 127 T ELT)) (-3605 (((-114) $) 177 T ELT)) (-2176 (($ $ |#4|) 117 T ELT) (($ $ |#4| (-660 |#3|)) 121 T ELT)) (-2175 (((-1186 (-660 (-964 |#1|)) (-660 (-305 (-964 |#1|)))) (-660 |#4|)) 170 (|has| |#3| (-630 (-1197))) ELT)) (-2183 (($ $ $) 107 T ELT) (($ $ |#4|) 105 T ELT)) (-2640 (((-114) $) 176 T ELT)) (-2180 (($ $) 131 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3655 (($ $ $) 99 T ELT) (($ (-660 $)) 101 T ELT)) (-2185 (((-114) |#4| $) 129 T ELT)) (-2186 (((-114) $ $) 82 T ELT)) (-2179 (($ (-660 |#4|)) 106 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2178 (($ (-660 |#4|)) 174 T ELT)) (-2177 (((-114) $) 175 T ELT)) (-2464 (($ $) 85 T ELT)) (-3095 (((-660 |#4|) $) 73 T ELT)) (-2182 (((-2 (|:| |mval| (-708 |#1|)) (|:| |invmval| (-708 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|)) NIL T ELT)) (-2187 (((-114) |#4| $) 89 T ELT)) (-4340 (((-558) $ (-660 |#3|)) 133 T ELT) (((-558) $) 134 T ELT)) (-4375 (((-876) $) 173 T ELT) (($ (-660 |#4|)) 102 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2181 (($ (-2 (|:| |mval| (-708 |#1|)) (|:| |invmval| (-708 |#1|)) (|:| |genIdeal| $))) NIL T ELT)) (-3453 (((-114) $ $) 84 T ELT)) (-4268 (($ $ $) 109 T ELT)) (** (($ $ (-790)) 115 T ELT)) (* (($ $ $) 113 T ELT))) +(((-516 |#1| |#2| |#3| |#4|) (-13 (-1121) (-10 -7 (-15 * ($ $ $)) (-15 ** ($ $ (-790))) (-15 -4268 ($ $ $)) (-15 -2640 ((-114) $)) (-15 -3605 ((-114) $)) (-15 -2187 ((-114) |#4| $)) (-15 -2186 ((-114) $ $)) (-15 -2185 ((-114) |#4| $)) (-15 -2184 ((-114) $ (-660 |#3|))) (-15 -2184 ((-114) $)) (-15 -3655 ($ $ $)) (-15 -3655 ($ (-660 $))) (-15 -2183 ($ $ $)) (-15 -2183 ($ $ |#4|)) (-15 -2464 ($ $)) (-15 -2182 ((-2 (|:| |mval| (-708 |#1|)) (|:| |invmval| (-708 |#1|)) (|:| |genIdeal| $)) $ (-660 |#3|))) (-15 -2181 ($ (-2 (|:| |mval| (-708 |#1|)) (|:| |invmval| (-708 |#1|)) (|:| |genIdeal| $)))) (-15 -4340 ((-558) $ (-660 |#3|))) (-15 -4340 ((-558) $)) (-15 -2180 ($ $)) (-15 -2179 ($ (-660 |#4|))) (-15 -2178 ($ (-660 |#4|))) (-15 -2177 ((-114) $)) (-15 -3095 ((-660 |#4|) $)) (-15 -4375 ($ (-660 |#4|))) (-15 -2176 ($ $ |#4|)) (-15 -2176 ($ $ |#4| (-660 |#3|))) (IF (|has| |#3| (-630 (-1197))) (-15 -2175 ((-1186 (-660 (-964 |#1|)) (-660 (-305 (-964 |#1|)))) (-660 |#4|))) |%noBranch|))) (-376) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -516)) +((* (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2640 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3605 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2187 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2186 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2185 (*1 *2 *3 *1) (-12 (-4 *4 (-376)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6)))) (-2184 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2184 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3655 (*1 *1 *2) (-12 (-5 *2 (-660 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2183 (*1 *1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2183 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-2464 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2182 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) (-5 *2 (-2 (|:| |mval| (-708 *4)) (|:| |invmval| (-708 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-2181 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |mval| (-708 *3)) (|:| |invmval| (-708 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4340 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) (-5 *2 (-558)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) (-4340 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-558)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-2180 (*1 *1 *1) (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-2179 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2178 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2177 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-3095 (*1 *2 *1) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *6)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)))) (-2176 (*1 *1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *2)) (-4 *2 (-968 *3 *4 *5)))) (-2176 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) (-2175 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-630 (-1197))) (-4 *4 (-376)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1186 (-660 (-964 *4)) (-660 (-305 (-964 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) +((-2188 (((-114) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) 177 T ELT)) (-2189 (((-114) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) 178 T ELT)) (-2190 (((-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) 128 T ELT)) (-4152 (((-114) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) NIL T ELT)) (-2191 (((-660 (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) 180 T ELT)) (-2192 (((-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))) (-660 (-877 |#1|))) 196 T ELT))) +(((-517 |#1| |#2|) (-10 -7 (-15 -2188 ((-114) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2189 ((-114) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -4152 ((-114) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2190 ((-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2191 ((-660 (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558))))) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))))) (-15 -2192 ((-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))) (-516 (-419 (-558)) (-246 |#2| (-790)) (-877 |#1|) (-255 |#1| (-419 (-558)))) (-660 (-877 |#1|))))) (-660 (-1197)) (-790)) (T -517)) +((-2192 (*1 *2 *2 *3) (-12 (-5 *2 (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) (-5 *3 (-660 (-877 *4))) (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *1 (-517 *4 *5)))) (-2191 (*1 *2 *3) (-12 (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-660 (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558)))))) (-5 *1 (-517 *4 *5)) (-5 *3 (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))))) (-2190 (*1 *2 *2) (-12 (-5 *2 (-516 (-419 (-558)) (-246 *4 (-790)) (-877 *3) (-255 *3 (-419 (-558))))) (-14 *3 (-660 (-1197))) (-14 *4 (-790)) (-5 *1 (-517 *3 *4)))) (-4152 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2189 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) (-2188 (*1 *2 *3) (-12 (-5 *3 (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2193 (($) 6 T ELT)) (-4375 (((-876) $) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-518) (-13 (-1121) (-10 -8 (-15 -2193 ($))))) (T -518)) +((-2193 (*1 *1) (-5 *1 (-518)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) 12 T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3293 (($ |#1| |#2|) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2194 ((|#2| $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 16 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) 15 T ELT) (($ $ $) 39 T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 26 T ELT))) +(((-519 |#1| |#2|) (-13 (-21) (-521 |#1| |#2|)) (-21) (-863)) (T -519)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 17 T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) 14 T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) 44 T ELT)) (-3293 (($ |#1| |#2|) 41 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 43 T ELT)) (-2194 ((|#2| $) NIL T ELT)) (-3591 ((|#1| $) 45 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 13 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4268 (($ $ $) 31 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) 40 T ELT))) +(((-520 |#1| |#2|) (-13 (-23) (-521 |#1| |#2|)) (-23) (-863)) (T -520)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) 15 T ELT)) (-4388 (($ $) 16 T ELT)) (-3293 (($ |#1| |#2|) 19 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 20 T ELT)) (-2194 ((|#2| $) 17 T ELT)) (-3591 ((|#1| $) 18 T ELT)) (-3659 (((-1179) $) 14 (-12 (|has| |#2| (-1121)) (|has| |#1| (-1121))) ELT)) (-3660 (((-1140) $) 13 (-12 (|has| |#2| (-1121)) (|has| |#1| (-1121))) ELT)) (-4375 (((-876) $) 12 (-12 (|has| |#2| (-1121)) (|has| |#1| (-1121))) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-521 |#1| |#2|) (-142) (-102) (-863)) (T -521)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-863)))) (-3293 (*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-863)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-863)) (-4 *2 (-102)))) (-2194 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-863)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-863)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-863)) (-5 *2 (-660 (-886 *4 *3)))))) +(-13 (-102) (-10 -8 (IF (|has| |t#1| (-1121)) (IF (|has| |t#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -4387 ($ (-1 |t#1| |t#1|) $)) (-15 -3293 ($ |t#1| |t#2|)) (-15 -3591 (|t#1| $)) (-15 -2194 (|t#2| $)) (-15 -4388 ($ $)) (-15 -4203 ((-660 (-886 |t#2| |t#1|)) $)))) +(((-102) . T) ((-629 (-876)) -12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ((-1121) -12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) 39 T ELT)) (-4388 (($ $) 34 T ELT)) (-3293 (($ |#1| |#2|) 30 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 32 T ELT)) (-2194 ((|#2| $) 38 T ELT)) (-3591 ((|#1| $) 37 T ELT)) (-3659 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-3660 (((-1140) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-4375 (((-876) $) 28 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 21 T ELT))) +(((-522 |#1| |#2|) (-521 |#1| |#2|) (-102) (-863)) (T -522)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-3293 (($ |#1| |#2|) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2194 ((|#2| $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 22 T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT))) +(((-523 |#1| |#2|) (-13 (-813) (-521 |#1| |#2|)) (-813) (-863)) (T -523)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-886 |#2| |#1|)) $) NIL T ELT)) (-2872 (($ $ $) 23 T ELT)) (-1425 (((-3 $ "failed") $ $) 19 T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-3293 (($ |#1| |#2|) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2194 ((|#2| $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT))) +(((-524 |#1| |#2|) (-13 (-814) (-521 |#1| |#2|)) (-814) (-860)) (T -524)) +NIL +((-4197 (($ $ (-660 |#2|) (-660 |#3|)) NIL T ELT) (($ $ |#2| |#3|) 12 T ELT))) +(((-525 |#1| |#2| |#3|) (-10 -7 (-15 -4197 (|#1| |#1| |#2| |#3|)) (-15 -4197 (|#1| |#1| (-660 |#2|) (-660 |#3|)))) (-526 |#2| |#3|) (-1121) (-1237)) (T -525)) +NIL +((-4197 (($ $ (-660 |#1|) (-660 |#2|)) 7 T ELT) (($ $ |#1| |#2|) 6 T ELT))) +(((-526 |#1| |#2|) (-142) (-1121) (-1237)) (T -526)) +((-4197 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1237)))) (-4197 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1237))))) +(-13 (-10 -8 (-15 -4197 ($ $ |t#1| |t#2|)) (-15 -4197 ($ $ (-660 |t#1|) (-660 |t#2|))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 17 T ELT)) (-4203 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 |#2|))) $) 19 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2511 ((|#1| $ (-558)) 24 T ELT)) (-1801 ((|#2| $ (-558)) 22 T ELT)) (-2503 (($ (-1 |#1| |#1|) $) 48 T ELT)) (-1800 (($ (-1 |#2| |#2|) $) 45 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1799 (($ $ $) 55 (|has| |#2| (-813)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 44 T ELT) (($ |#1|) NIL T ELT)) (-4106 ((|#2| |#1| $) 51 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 11 T CONST)) (-3453 (((-114) $ $) 30 T ELT)) (-4268 (($ $ $) 28 T ELT) (($ |#1| $) 26 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) 37 T ELT) (($ |#2| |#1|) 32 T ELT))) +(((-527 |#1| |#2| |#3|) (-335 |#1| |#2|) (-1121) (-133) |#2|) (T -527)) +NIL +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-2195 (((-114) (-114)) 32 T ELT)) (-4217 ((|#1| $ (-558) |#1|) 42 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) 79 T ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-2593 (($ $) 83 (|has| |#1| (-1121)) ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) NIL (|has| |#1| (-1121)) ELT) (($ (-1 (-114) |#1|) $) 66 T ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-2196 (($ $ (-558)) 19 T ELT)) (-2197 (((-790) $) 13 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 31 T ELT)) (-2414 (((-558) $) 29 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 57 T ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) 58 T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) 28 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4036 (($ $ $ (-558)) 75 T ELT) (($ |#1| $ (-558)) 59 T ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2198 (($ (-660 |#1|)) 43 T ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) 24 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 62 T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 21 T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 55 T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-1713 (($ $ (-1254 (-558))) 73 T ELT) (($ $ (-558)) 67 T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) 63 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 53 T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-4220 (($ $ $) 64 T ELT) (($ $ |#1|) 61 T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) 60 T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 22 (|has| $ (-6 -4424)) ELT))) +(((-528 |#1| |#2|) (-13 (-19 |#1|) (-294 |#1|) (-10 -8 (-15 -2198 ($ (-660 |#1|))) (-15 -2197 ((-790) $)) (-15 -2196 ($ $ (-558))) (-15 -2195 ((-114) (-114))))) (-1237) (-558)) (T -528)) +((-2198 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) (-14 *4 (-558)))) (-2197 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-558)))) (-2196 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2))) (-2195 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-558))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2200 (((-1155) $) 11 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2199 (((-1155) $) 13 T ELT)) (-4351 (((-1155) $) 9 T ELT)) (-4375 (((-876) $) 19 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-529) (-13 (-1103) (-10 -8 (-15 -4351 ((-1155) $)) (-15 -2200 ((-1155) $)) (-15 -2199 ((-1155) $))))) (T -529)) +((-4351 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) (-2200 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) (-2199 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 (((-593 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-593 |#1|) #1#) $) NIL T ELT)) (-3573 (((-593 |#1|) $) NIL T ELT)) (-1999 (($ (-1287 (-593 |#1|))) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1882 (((-114) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1973 (($ $ (-790)) NIL (-3956 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT) (($ $) NIL (-3956 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-937) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-844 (-937)) $) NIL (-3956 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2220 (((-114) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3533 (((-593 |#1|) $) NIL T ELT) (($ $ (-937)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3864 (((-710 $) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 (-593 |#1|)) $) NIL T ELT) (((-1191 $) $ (-937)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2219 (((-937) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1806 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1805 (((-1191 (-593 |#1|)) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-3 (-1191 (-593 |#1|)) #1#) $ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1807 (($ $ (-1191 (-593 |#1|))) NIL (|has| (-593 |#1|) (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-593 |#1|) (-381)) CONST)) (-2630 (($ (-937)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-844 (-937))) NIL T ELT) (((-937)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-790) $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-3 (-790) #1#) $ $) NIL (-3956 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $ (-790)) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4377 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-3602 (((-1191 (-593 |#1|))) NIL T ELT)) (-1876 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-1808 (($) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3641 (((-1287 (-593 |#1|)) $) NIL T ELT) (((-708 (-593 |#1|)) (-1287 $)) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-593 |#1|)) NIL T ELT)) (-3102 (($ $) NIL (|has| (-593 |#1|) (-381)) ELT) (((-710 $) $) NIL (-3956 (|has| (-593 |#1|) (-147)) (|has| (-593 |#1|) (-381))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT) (((-1287 $) (-937)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $ (-790)) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3069 (($ $ (-790)) NIL (|has| (-593 |#1|) (-381)) ELT) (($ $) NIL (|has| (-593 |#1|) (-381)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT) (($ $ (-593 |#1|)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-593 |#1|)) NIL T ELT) (($ (-593 |#1|) $) NIL T ELT))) +(((-530 |#1| |#2|) (-341 (-593 |#1|)) (-937) (-937)) (T -530)) +NIL +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) 51 T ELT)) (-1363 (($ $ (-558) |#4|) NIL T ELT)) (-1362 (($ $ (-558) |#5|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3513 ((|#4| $ (-558)) NIL T ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) 50 T ELT)) (-3514 ((|#1| $ (-558) (-558)) 45 T ELT)) (-3289 (((-660 |#1|) $) NIL T ELT)) (-3516 (((-790) $) 33 T ELT)) (-4043 (($ (-790) (-790) |#1|) 30 T ELT)) (-3515 (((-790) $) 38 T ELT)) (-3520 (((-558) $) 31 T ELT)) (-3518 (((-558) $) 32 T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3519 (((-558) $) 37 T ELT)) (-3517 (((-558) $) 39 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-3659 (((-1179) $) 55 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 14 T ELT)) (-3992 (($) 16 T ELT)) (-4229 ((|#1| $ (-558) (-558)) 48 T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3512 ((|#5| $ (-558)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-531 |#1| |#2| |#3| |#4| |#5|) (-57 |#1| |#4| |#5|) (-1237) (-558) (-558) (-385 |#1|) (-385 |#1|)) (T -531)) +NIL +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) NIL T ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4226 (($ $) NIL T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) 70 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) NIL (|has| |#1| (-860)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1932 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT) (($ (-1 (-114) |#1| |#1|) $) 64 (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3861 (((-114) $ (-790)) NIL T ELT)) (-3425 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 23 (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) 21 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) 22 (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) 24 (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) 28 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 29 T ELT)) (-4228 (($ $) 18 T ELT) (($ $ (-790)) 32 T ELT)) (-2593 (($ $) 62 (|has| |#1| (-1121)) ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) NIL (|has| |#1| (-1121)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3825 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3862 (((-114) $) NIL T ELT)) (-3838 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3289 (((-660 |#1|) $) 27 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-4148 (((-114) $ (-790)) NIL T ELT)) (-2414 (((-558) $) 31 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 65 T ELT)) (-3937 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 60 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3961 (($ |#1|) NIL T ELT)) (-4145 (((-114) $ (-790)) NIL T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) 58 (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4036 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2516 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 13 T ELT) (($ $ (-790)) NIL T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3863 (((-114) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 12 T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) 17 T ELT)) (-3992 (($) 16 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) 15 T ELT) (($ $ #3#) 20 T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-1713 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2517 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-4062 (((-114) $) 35 T ELT)) (-4221 (($ $) NIL T ELT)) (-4219 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) NIL T ELT)) (-4223 (($ $) 40 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 36 T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 26 T ELT)) (-4220 (($ $ $) 61 T ELT) (($ $ |#1|) NIL T ELT)) (-4231 (($ $ $) NIL T ELT) (($ |#1| $) 10 T ELT) (($ (-660 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4375 (((-876) $) 50 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 54 (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 9 (|has| $ (-6 -4424)) ELT))) +(((-532 |#1| |#2|) (-685 |#1|) (-1237) (-558)) (T -532)) +NIL +((-3511 ((|#4| |#4|) 38 T ELT)) (-3510 (((-790) |#4|) 45 T ELT)) (-3509 (((-790) |#4|) 46 T ELT)) (-3508 (((-660 |#3|) |#4|) 57 (|has| |#3| (-6 -4425)) ELT)) (-4017 (((-3 |#4| "failed") |#4|) 69 T ELT)) (-2201 ((|#4| |#4|) 61 T ELT)) (-3747 ((|#1| |#4|) 60 T ELT))) +(((-533 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3511 (|#4| |#4|)) (-15 -3510 ((-790) |#4|)) (-15 -3509 ((-790) |#4|)) (IF (|has| |#3| (-6 -4425)) (-15 -3508 ((-660 |#3|) |#4|)) |%noBranch|) (-15 -3747 (|#1| |#4|)) (-15 -2201 (|#4| |#4|)) (-15 -4017 ((-3 |#4| "failed") |#4|))) (-376) (-385 |#1|) (-385 |#1|) (-705 |#1| |#2| |#3|)) (T -533)) +((-4017 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-2201 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-705 *2 *4 *5)))) (-3508 (*1 *2 *3) (-12 (|has| *6 (-6 -4425)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-790)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-790)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) +((-3511 ((|#8| |#4|) 20 T ELT)) (-3508 (((-660 |#3|) |#4|) 29 (|has| |#7| (-6 -4425)) ELT)) (-4017 (((-3 |#8| "failed") |#4|) 23 T ELT))) +(((-534 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -3511 (|#8| |#4|)) (-15 -4017 ((-3 |#8| "failed") |#4|)) (IF (|has| |#7| (-6 -4425)) (-15 -3508 ((-660 |#3|) |#4|)) |%noBranch|)) (-569) (-385 |#1|) (-385 |#1|) (-705 |#1| |#2| |#3|) (-1011 |#1|) (-385 |#5|) (-385 |#5|) (-705 |#5| |#6| |#7|)) (T -534)) +((-3508 (*1 *2 *3) (-12 (|has| *9 (-6 -4425)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1011 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-660 *6)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-705 *4 *5 *6)) (-4 *10 (-705 *7 *8 *9)))) (-4017 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-705 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-705 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1011 *4)) (-4 *2 (-705 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-705 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4267 (($ (-790) (-790)) NIL T ELT)) (-2568 (($ $ $) NIL T ELT)) (-3833 (($ (-613 |#1| |#3|)) NIL T ELT) (($ $) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-2567 (($ $ (-558) (-558)) 21 T ELT)) (-2566 (($ $ (-558) (-558)) NIL T ELT)) (-2565 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2570 (($ $) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-2564 (($ $ (-558) (-558) $) NIL T ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558)) $) NIL T ELT)) (-1363 (($ $ (-558) (-613 |#1| |#3|)) NIL T ELT)) (-1362 (($ $ (-558) (-613 |#1| |#2|)) NIL T ELT)) (-3752 (($ (-790) |#1|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3511 (($ $) 30 (|has| |#1| (-319)) ELT)) (-3513 (((-613 |#1| |#3|) $ (-558)) NIL T ELT)) (-3510 (((-790) $) 33 (|has| |#1| (-569)) ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) NIL T ELT)) (-3514 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL T ELT)) (-3509 (((-790) $) 35 (|has| |#1| (-569)) ELT)) (-3508 (((-660 (-613 |#1| |#2|)) $) 38 (|has| |#1| (-569)) ELT)) (-3516 (((-790) $) NIL T ELT)) (-4043 (($ (-790) (-790) |#1|) NIL T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3746 ((|#1| $) 28 (|has| |#1| (-6 (-4426 #1="*"))) ELT)) (-3520 (((-558) $) 10 T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3519 (((-558) $) 13 T ELT)) (-3517 (((-558) $) NIL T ELT)) (-3525 (($ (-660 (-660 |#1|))) NIL T ELT) (($ (-790) (-790) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4021 (((-660 (-660 |#1|)) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4017 (((-3 $ #2="failed") $) 42 (|has| |#1| (-376)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) NIL T ELT)) (-3885 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558))) NIL T ELT)) (-3751 (($ (-660 |#1|)) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-3747 ((|#1| $) 26 (|has| |#1| (-6 (-4426 #1#))) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3512 (((-613 |#1| |#2|) $ (-558)) NIL T ELT)) (-4375 (($ (-613 |#1| |#2|)) NIL T ELT) (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) NIL T ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-613 |#1| |#2|) $ (-613 |#1| |#2|)) NIL T ELT) (((-613 |#1| |#3|) (-613 |#1| |#3|) $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-535 |#1| |#2| |#3|) (-705 |#1| (-613 |#1| |#3|) (-613 |#1| |#2|)) (-1069) (-558) (-558)) (T -535)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2202 (((-660 (-1238)) $) 13 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 19 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT) (($ (-660 (-1238))) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-536) (-13 (-1103) (-10 -8 (-15 -4375 ($ (-660 (-1238)))) (-15 -2202 ((-660 (-1238)) $))))) (T -536)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-536)))) (-2202 (*1 *2 *1) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-536))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2203 (((-1155) $) 14 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3869 (((-518) $) 11 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 21 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-537) (-13 (-1103) (-10 -8 (-15 -3869 ((-518) $)) (-15 -2203 ((-1155) $))))) (T -537)) +((-3869 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) (-2203 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-537))))) +((-2209 (((-710 (-1246)) $) 15 T ELT)) (-2205 (((-710 (-1244)) $) 38 T ELT)) (-2207 (((-710 (-1243)) $) 29 T ELT)) (-2210 (((-710 (-562)) $) 12 T ELT)) (-2206 (((-710 (-560)) $) 42 T ELT)) (-2208 (((-710 (-559)) $) 33 T ELT)) (-2204 (((-790) $ (-131)) 54 T ELT))) +(((-538 |#1|) (-10 -7 (-15 -2204 ((-790) |#1| (-131))) (-15 -2205 ((-710 (-1244)) |#1|)) (-15 -2206 ((-710 (-560)) |#1|)) (-15 -2207 ((-710 (-1243)) |#1|)) (-15 -2208 ((-710 (-559)) |#1|)) (-15 -2209 ((-710 (-1246)) |#1|)) (-15 -2210 ((-710 (-562)) |#1|))) (-539)) (T -538)) +NIL +((-2209 (((-710 (-1246)) $) 12 T ELT)) (-2205 (((-710 (-1244)) $) 8 T ELT)) (-2207 (((-710 (-1243)) $) 10 T ELT)) (-2210 (((-710 (-562)) $) 13 T ELT)) (-2206 (((-710 (-560)) $) 9 T ELT)) (-2208 (((-710 (-559)) $) 11 T ELT)) (-2204 (((-790) $ (-131)) 7 T ELT)) (-2211 (((-710 (-130)) $) 14 T ELT)) (-1902 (($ $) 6 T ELT))) (((-539) (-142)) (T -539)) -((-2212 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-130))))) (-2211 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-562))))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1247))))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-559))))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1244))))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-560))))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1245))))) (-2205 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-131)) (-5 *2 (-791))))) -(-13 (-176) (-10 -8 (-15 -2212 ((-711 (-130)) $)) (-15 -2211 ((-711 (-562)) $)) (-15 -2210 ((-711 (-1247)) $)) (-15 -2209 ((-711 (-559)) $)) (-15 -2208 ((-711 (-1244)) $)) (-15 -2207 ((-711 (-560)) $)) (-15 -2206 ((-711 (-1245)) $)) (-15 -2205 ((-791) $ (-131))))) +((-2211 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-130))))) (-2210 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-562))))) (-2209 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-1246))))) (-2208 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-559))))) (-2207 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-1243))))) (-2206 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-560))))) (-2205 (*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-1244))))) (-2204 (*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-131)) (-5 *2 (-790))))) +(-13 (-176) (-10 -8 (-15 -2211 ((-710 (-130)) $)) (-15 -2210 ((-710 (-562)) $)) (-15 -2209 ((-710 (-1246)) $)) (-15 -2208 ((-710 (-559)) $)) (-15 -2207 ((-710 (-1243)) $)) (-15 -2206 ((-710 (-560)) $)) (-15 -2205 ((-710 (-1244)) $)) (-15 -2204 ((-790) $ (-131))))) (((-176) . T)) -((-2215 (((-1192 |#1|) (-791)) 114 T ELT)) (-3750 (((-1288 |#1|) (-1288 |#1|) (-938)) 107 T ELT)) (-2213 (((-1294) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))) |#1|) 122 T ELT)) (-2217 (((-1288 |#1|) (-1288 |#1|) (-791)) 53 T ELT)) (-3395 (((-1288 |#1|) (-938)) 109 T ELT)) (-2219 (((-1288 |#1|) (-1288 |#1|) (-558)) 30 T ELT)) (-2214 (((-1192 |#1|) (-1288 |#1|)) 115 T ELT)) (-2223 (((-1288 |#1|) (-938)) 136 T ELT)) (-2221 (((-114) (-1288 |#1|)) 119 T ELT)) (-3534 (((-1288 |#1|) (-1288 |#1|) (-938)) 99 T ELT)) (-2224 (((-1192 |#1|) (-1288 |#1|)) 130 T ELT)) (-2220 (((-938) (-1288 |#1|)) 95 T ELT)) (-2874 (((-1288 |#1|) (-1288 |#1|)) 38 T ELT)) (-2631 (((-1288 |#1|) (-938) (-938)) 139 T ELT)) (-2218 (((-1288 |#1|) (-1288 |#1|) (-1141) (-1141)) 29 T ELT)) (-2216 (((-1288 |#1|) (-1288 |#1|) (-791) (-1141)) 54 T ELT)) (-2222 (((-1288 (-1288 |#1|)) (-938)) 135 T ELT)) (-4379 (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 120 T ELT)) (** (((-1288 |#1|) (-1288 |#1|) (-558)) 67 T ELT)) (* (((-1288 |#1|) (-1288 |#1|) (-1288 |#1|)) 31 T ELT))) -(((-540 |#1|) (-10 -7 (-15 -2213 ((-1294) (-1288 (-661 (-2 (|:| -3822 |#1|) (|:| -2631 (-1141))))) |#1|)) (-15 -3395 ((-1288 |#1|) (-938))) (-15 -2631 ((-1288 |#1|) (-938) (-938))) (-15 -2214 ((-1192 |#1|) (-1288 |#1|))) (-15 -2215 ((-1192 |#1|) (-791))) (-15 -2216 ((-1288 |#1|) (-1288 |#1|) (-791) (-1141))) (-15 -2217 ((-1288 |#1|) (-1288 |#1|) (-791))) (-15 -2218 ((-1288 |#1|) (-1288 |#1|) (-1141) (-1141))) (-15 -2219 ((-1288 |#1|) (-1288 |#1|) (-558))) (-15 ** ((-1288 |#1|) (-1288 |#1|) (-558))) (-15 * ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -4379 ((-1288 |#1|) (-1288 |#1|) (-1288 |#1|))) (-15 -3534 ((-1288 |#1|) (-1288 |#1|) (-938))) (-15 -3750 ((-1288 |#1|) (-1288 |#1|) (-938))) (-15 -2874 ((-1288 |#1|) (-1288 |#1|))) (-15 -2220 ((-938) (-1288 |#1|))) (-15 -2221 ((-114) (-1288 |#1|))) (-15 -2222 ((-1288 (-1288 |#1|)) (-938))) (-15 -2223 ((-1288 |#1|) (-938))) (-15 -2224 ((-1192 |#1|) (-1288 |#1|)))) (-363)) (T -540)) -((-2224 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-2223 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-540 *4)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-938)) (-5 *1 (-540 *4)))) (-2874 (*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (-3750 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-938)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-3534 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-938)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-4379 (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2219 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2218 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2217 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2216 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1288 *5)) (-5 *3 (-791)) (-5 *4 (-1141)) (-4 *5 (-363)) (-5 *1 (-540 *5)))) (-2215 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)))) (-2631 (*1 *2 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-3395 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2213 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) (-4 *4 (-363)) (-5 *2 (-1294)) (-5 *1 (-540 *4))))) -((-2210 (((-711 (-1247)) $) NIL T ELT)) (-2206 (((-711 (-1245)) $) NIL T ELT)) (-2208 (((-711 (-1244)) $) NIL T ELT)) (-2211 (((-711 (-562)) $) NIL T ELT)) (-2207 (((-711 (-560)) $) NIL T ELT)) (-2209 (((-711 (-559)) $) NIL T ELT)) (-2205 (((-791) $ (-131)) NIL T ELT)) (-2212 (((-711 (-130)) $) 26 T ELT)) (-2225 (((-1141) $ (-1141)) 31 T ELT)) (-3839 (((-1141) $) 30 T ELT)) (-2957 (((-114) $) 20 T ELT)) (-2227 (($ (-402)) 14 T ELT) (($ (-1180)) 16 T ELT)) (-2226 (((-114) $) 27 T ELT)) (-4376 (((-877) $) 34 T ELT)) (-1903 (($ $) 28 T ELT))) -(((-541) (-13 (-539) (-630 (-877)) (-10 -8 (-15 -2227 ($ (-402))) (-15 -2227 ($ (-1180))) (-15 -2226 ((-114) $)) (-15 -2957 ((-114) $)) (-15 -3839 ((-1141) $)) (-15 -2225 ((-1141) $ (-1141)))))) (T -541)) -((-2227 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-541)))) (-2227 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-541)))) (-2226 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) (-3839 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) (-2225 (*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) -((-2229 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2228 (((-1 |#1| |#1|)) 10 T ELT))) -(((-542 |#1|) (-10 -7 (-15 -2228 ((-1 |#1| |#1|))) (-15 -2229 ((-1 |#1| |#1|) |#1|))) (-13 (-746) (-25))) (T -542)) -((-2229 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25))))) (-2228 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-887 |#1| (-791))) $) NIL T ELT)) (-2873 (($ $ $) NIL T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3294 (($ (-791) |#1|) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4388 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-2195 ((|#1| $) NIL T ELT)) (-3592 (((-791) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 27 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT))) -(((-543 |#1|) (-13 (-815) (-521 (-791) |#1|)) (-861)) (T -543)) -NIL -((-2231 (((-661 |#2|) (-1192 |#1|) |#3|) 98 T ELT)) (-2232 (((-661 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#2|))))) (-709 |#1|) |#3| (-1 (-417 (-1192 |#1|)) (-1192 |#1|))) 114 T ELT)) (-2230 (((-1192 |#1|) (-709 |#1|)) 110 T ELT))) -(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2230 ((-1192 |#1|) (-709 |#1|))) (-15 -2231 ((-661 |#2|) (-1192 |#1|) |#3|)) (-15 -2232 ((-661 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#2|))))) (-709 |#1|) |#3| (-1 (-417 (-1192 |#1|)) (-1192 |#1|))))) (-376) (-376) (-13 (-376) (-860))) (T -544)) -((-2232 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *6)) (-5 *5 (-1 (-417 (-1192 *6)) (-1192 *6))) (-4 *6 (-376)) (-5 *2 (-661 (-2 (|:| |outval| *7) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-860))))) (-2231 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-376)) (-5 *2 (-661 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-860))))) (-2230 (*1 *2 *3) (-12 (-5 *3 (-709 *4)) (-4 *4 (-376)) (-5 *2 (-1192 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-860)))))) -((-2954 (((-711 (-1247)) $ (-1247)) NIL T ELT)) (-2955 (((-711 (-562)) $ (-562)) NIL T ELT)) (-2953 (((-791) $ (-131)) 39 T ELT)) (-2956 (((-711 (-130)) $ (-130)) 40 T ELT)) (-2210 (((-711 (-1247)) $) NIL T ELT)) (-2206 (((-711 (-1245)) $) NIL T ELT)) (-2208 (((-711 (-1244)) $) NIL T ELT)) (-2211 (((-711 (-562)) $) NIL T ELT)) (-2207 (((-711 (-560)) $) NIL T ELT)) (-2209 (((-711 (-559)) $) NIL T ELT)) (-2205 (((-791) $ (-131)) 35 T ELT)) (-2212 (((-711 (-130)) $) 37 T ELT)) (-2828 (((-114) $) 27 T ELT)) (-2829 (((-711 $) (-591) (-973)) 18 T ELT) (((-711 $) (-503) (-973)) 24 T ELT)) (-4376 (((-877) $) 48 T ELT)) (-1903 (($ $) 42 T ELT))) -(((-545) (-13 (-787 (-591)) (-630 (-877)) (-10 -8 (-15 -2829 ((-711 $) (-503) (-973)))))) (T -545)) -((-2829 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-711 (-545))) (-5 *1 (-545))))) -((-2926 (((-855 (-558))) 12 T ELT)) (-2925 (((-855 (-558))) 14 T ELT)) (-2910 (((-845 (-558))) 9 T ELT))) -(((-546) (-10 -7 (-15 -2910 ((-845 (-558)))) (-15 -2926 ((-855 (-558)))) (-15 -2925 ((-855 (-558)))))) (T -546)) -((-2925 (*1 *2) (-12 (-5 *2 (-855 (-558))) (-5 *1 (-546)))) (-2926 (*1 *2) (-12 (-5 *2 (-855 (-558))) (-5 *1 (-546)))) (-2910 (*1 *2) (-12 (-5 *2 (-845 (-558))) (-5 *1 (-546))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2236 (((-1180) $) 55 T ELT)) (-3678 (((-114) $) 51 T ELT)) (-3674 (((-1198) $) 52 T ELT)) (-3679 (((-114) $) 49 T ELT)) (-3963 (((-1180) $) 50 T ELT)) (-2235 (($ (-1180)) 56 T ELT)) (-3681 (((-114) $) NIL T ELT)) (-3683 (((-114) $) NIL T ELT)) (-3680 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2238 (($ $ (-661 (-1198))) 21 T ELT)) (-2241 (((-51) $) 23 T ELT)) (-3677 (((-114) $) NIL T ELT)) (-3673 (((-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2614 (($ $ (-661 (-1198)) (-1198)) 73 T ELT)) (-3676 (((-114) $) NIL T ELT)) (-3672 (((-229) $) NIL T ELT)) (-2237 (($ $) 44 T ELT)) (-3671 (((-877) $) NIL T ELT)) (-3684 (((-114) $ $) NIL T ELT)) (-4230 (($ $ (-558)) NIL T ELT) (($ $ (-661 (-558))) NIL T ELT)) (-3675 (((-661 $) $) 30 T ELT)) (-2234 (((-1198) (-661 $)) 57 T ELT)) (-4402 (($ (-1180)) NIL T ELT) (($ (-1198)) 19 T ELT) (($ (-558)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-877)) NIL T ELT) (($ (-661 $)) 65 T ELT) (((-1124) $) 12 T ELT) (($ (-1124)) 13 T ELT)) (-2233 (((-1198) (-1198) (-661 $)) 60 T ELT)) (-4376 (((-877) $) 54 T ELT)) (-3669 (($ $) 59 T ELT)) (-3670 (($ $) 58 T ELT)) (-2239 (($ $ (-661 $)) 66 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3682 (((-114) $) 29 T ELT)) (-3059 (($) 9 T CONST)) (-3065 (($) 11 T CONST)) (-3454 (((-114) $ $) 74 T ELT)) (-4379 (($ $ $) 82 T ELT)) (-4269 (($ $ $) 75 T ELT)) (** (($ $ (-791)) 81 T ELT) (($ $ (-558)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4387 (((-558) $) NIL T ELT))) -(((-547) (-13 (-1125 (-1180) (-1198) (-558) (-229) (-877)) (-631 (-1124)) (-10 -8 (-15 -2241 ((-51) $)) (-15 -4402 ($ (-1124))) (-15 -2239 ($ $ (-661 $))) (-15 -2614 ($ $ (-661 (-1198)) (-1198))) (-15 -2238 ($ $ (-661 (-1198)))) (-15 -4269 ($ $ $)) (-15 * ($ $ $)) (-15 -4379 ($ $ $)) (-15 ** ($ $ (-791))) (-15 ** ($ $ (-558))) (-15 0 ($) -4382) (-15 1 ($) -4382) (-15 -2237 ($ $)) (-15 -2236 ((-1180) $)) (-15 -2235 ($ (-1180))) (-15 -2234 ((-1198) (-661 $))) (-15 -2233 ((-1198) (-1198) (-661 $)))))) (T -547)) -((-2241 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-547)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-547)))) (-2239 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-547))) (-5 *1 (-547)))) (-2614 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-1198)) (-5 *1 (-547)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-547)))) (-4269 (*1 *1 *1 *1) (-5 *1 (-547))) (* (*1 *1 *1 *1) (-5 *1 (-547))) (-4379 (*1 *1 *1 *1) (-5 *1 (-547))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-547)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) (-3059 (*1 *1) (-5 *1 (-547))) (-3065 (*1 *1) (-5 *1 (-547))) (-2237 (*1 *1 *1) (-5 *1 (-547))) (-2236 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-547)))) (-2235 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-547)))) (-2234 (*1 *2 *3) (-12 (-5 *3 (-661 (-547))) (-5 *2 (-1198)) (-5 *1 (-547)))) (-2233 (*1 *2 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-547))) (-5 *1 (-547))))) -((-2240 (((-547) (-1198)) 15 T ELT)) (-2241 ((|#1| (-547)) 20 T ELT))) -(((-548 |#1|) (-10 -7 (-15 -2240 ((-547) (-1198))) (-15 -2241 (|#1| (-547)))) (-1238)) (T -548)) -((-2241 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-548 *2)) (-4 *2 (-1238)))) (-2240 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-547)) (-5 *1 (-548 *4)) (-4 *4 (-1238))))) -((-3873 ((|#2| |#2|) 17 T ELT)) (-3871 ((|#2| |#2|) 13 T ELT)) (-3874 ((|#2| |#2| (-558) (-558)) 20 T ELT)) (-3872 ((|#2| |#2|) 15 T ELT))) -(((-549 |#1| |#2|) (-10 -7 (-15 -3871 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3874 (|#2| |#2| (-558) (-558)))) (-13 (-569) (-149)) (-1281 |#1|)) (T -549)) -((-3874 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1281 *4)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1281 *3)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1281 *3)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1281 *3))))) -((-2244 (((-661 (-305 (-965 |#2|))) (-661 |#2|) (-661 (-1198))) 32 T ELT)) (-2242 (((-661 |#2|) (-965 |#1|) |#3|) 54 T ELT) (((-661 |#2|) (-1192 |#1|) |#3|) 53 T ELT)) (-2243 (((-661 (-661 |#2|)) (-661 (-965 |#1|)) (-661 (-965 |#1|)) (-661 (-1198)) |#3|) 106 T ELT))) -(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2242 ((-661 |#2|) (-1192 |#1|) |#3|)) (-15 -2242 ((-661 |#2|) (-965 |#1|) |#3|)) (-15 -2243 ((-661 (-661 |#2|)) (-661 (-965 |#1|)) (-661 (-965 |#1|)) (-661 (-1198)) |#3|)) (-15 -2244 ((-661 (-305 (-965 |#2|))) (-661 |#2|) (-661 (-1198))))) (-464) (-376) (-13 (-376) (-860))) (T -550)) -((-2244 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1198))) (-4 *6 (-376)) (-5 *2 (-661 (-305 (-965 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-376) (-860))))) (-2243 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-661 (-965 *6))) (-5 *4 (-661 (-1198))) (-4 *6 (-464)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-860))))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-860))))) (-2242 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-860)))))) -((-2247 ((|#2| |#2| |#1|) 17 T ELT)) (-2245 ((|#2| (-661 |#2|)) 30 T ELT)) (-2246 ((|#2| (-661 |#2|)) 51 T ELT))) -(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2245 (|#2| (-661 |#2|))) (-15 -2246 (|#2| (-661 |#2|))) (-15 -2247 (|#2| |#2| |#1|))) (-319) (-1264 |#1|) |#1| (-1 |#1| |#1| (-791))) (T -551)) -((-2247 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-791))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3)))) (-2246 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791))))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791)))))) -((-4162 (((-417 (-1192 |#4|)) (-1192 |#4|) (-1 (-417 (-1192 |#3|)) (-1192 |#3|))) 89 T ELT) (((-417 |#4|) |#4| (-1 (-417 (-1192 |#3|)) (-1192 |#3|))) 212 T ELT))) -(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 |#4|) |#4| (-1 (-417 (-1192 |#3|)) (-1192 |#3|)))) (-15 -4162 ((-417 (-1192 |#4|)) (-1192 |#4|) (-1 (-417 (-1192 |#3|)) (-1192 |#3|))))) (-861) (-815) (-13 (-319) (-149)) (-969 |#3| |#2| |#1|)) (T -552)) -((-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-861)) (-4 *6 (-815)) (-4 *8 (-969 *7 *6 *5)) (-5 *2 (-417 (-1192 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-861)) (-4 *6 (-815)) (-5 *2 (-417 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-969 *7 *6 *5))))) -((-3873 ((|#4| |#4|) 74 T ELT)) (-3871 ((|#4| |#4|) 70 T ELT)) (-3874 ((|#4| |#4| (-558) (-558)) 76 T ELT)) (-3872 ((|#4| |#4|) 72 T ELT))) -(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3871 (|#4| |#4|)) (-15 -3872 (|#4| |#4|)) (-15 -3873 (|#4| |#4|)) (-15 -3874 (|#4| |#4| (-558) (-558)))) (-13 (-376) (-381) (-631 (-558))) (-1264 |#1|) (-744 |#1| |#2|) (-1281 |#3|)) (T -553)) -((-3874 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) (-4 *5 (-1264 *4)) (-4 *6 (-744 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1281 *6)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1264 *3)) (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1281 *5)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1264 *3)) (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1281 *5)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1264 *3)) (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1281 *5))))) -((-3873 ((|#2| |#2|) 27 T ELT)) (-3871 ((|#2| |#2|) 23 T ELT)) (-3874 ((|#2| |#2| (-558) (-558)) 29 T ELT)) (-3872 ((|#2| |#2|) 25 T ELT))) -(((-554 |#1| |#2|) (-10 -7 (-15 -3871 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -3873 (|#2| |#2|)) (-15 -3874 (|#2| |#2| (-558) (-558)))) (-13 (-376) (-381) (-631 (-558))) (-1281 |#1|)) (T -554)) -((-3874 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1281 *4)))) (-3873 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1281 *3)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1281 *3)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1281 *3))))) -((-2248 (((-3 (-558) #1="failed") |#2| |#1| (-1 (-3 (-558) #1#) |#1|)) 18 T ELT) (((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|)) 14 T ELT) (((-3 (-558) #1#) |#2| (-558) (-1 (-3 (-558) #1#) |#1|)) 30 T ELT))) -(((-555 |#1| |#2|) (-10 -7 (-15 -2248 ((-3 (-558) #1="failed") |#2| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2248 ((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2248 ((-3 (-558) #1#) |#2| |#1| (-1 (-3 (-558) #1#) |#1|)))) (-1070) (-1264 |#1|)) (T -555)) -((-2248 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) #1="failed") *4)) (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-2248 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) (-2248 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-558) #1#) *5)) (-4 *5 (-1070)) (-5 *2 (-558)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5))))) -((-2257 (($ $ $) 87 T ELT)) (-4401 (((-417 $) $) 50 T ELT)) (-3575 (((-3 (-558) #1="failed") $) 62 T ELT)) (-3574 (((-558) $) 40 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 80 T ELT)) (-3424 (((-114) $) 24 T ELT)) (-3423 (((-419 (-558)) $) 78 T ELT)) (-4153 (((-114) $) 53 T ELT)) (-2250 (($ $ $ $) 94 T ELT)) (-1483 (($ $ $) 60 T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 75 T ELT)) (-3865 (((-711 $) $) 70 T ELT)) (-2254 (($ $) 22 T ELT)) (-2249 (($ $ $) 92 T ELT)) (-3866 (($) 63 T ELT)) (-1481 (($ $) 56 T ELT)) (-4162 (((-417 $) $) 48 T ELT)) (-3075 (((-114) $) 15 T ELT)) (-1787 (((-791) $) 30 T ELT)) (-4188 (($ $) 11 T ELT) (($ $ (-791)) NIL T ELT)) (-3820 (($ $) 16 T ELT)) (-4402 (((-558) $) NIL T ELT) (((-547) $) 39 T ELT) (((-905 (-558)) $) 43 T ELT) (((-391) $) 33 T ELT) (((-229) $) 36 T ELT)) (-3528 (((-791)) 9 T ELT)) (-2259 (((-114) $ $) 19 T ELT)) (-3504 (($ $ $) 58 T ELT))) -(((-556 |#1|) (-10 -7 (-15 -2249 (|#1| |#1| |#1|)) (-15 -2250 (|#1| |#1| |#1| |#1|)) (-15 -2254 (|#1| |#1|)) (-15 -3820 (|#1| |#1|)) (-15 -3425 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3423 ((-419 (-558)) |#1|)) (-15 -3424 ((-114) |#1|)) (-15 -2257 (|#1| |#1| |#1|)) (-15 -2259 ((-114) |#1| |#1|)) (-15 -3075 ((-114) |#1|)) (-15 -3866 (|#1|)) (-15 -3865 ((-711 |#1|) |#1|)) (-15 -4402 ((-229) |#1|)) (-15 -4402 ((-391) |#1|)) (-15 -1483 (|#1| |#1| |#1|)) (-15 -1481 (|#1| |#1|)) (-15 -3504 (|#1| |#1| |#1|)) (-15 -3197 ((-903 (-558) |#1|) |#1| (-905 (-558)) (-903 (-558) |#1|))) (-15 -4402 ((-905 (-558)) |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -4402 ((-558) |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 -1787 ((-791) |#1|)) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4401 ((-417 |#1|) |#1|)) (-15 -4153 ((-114) |#1|)) (-15 -3528 ((-791)))) (-557)) (T -556)) -((-3528 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-2257 (($ $ $) 99 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-2252 (($ $ $ $) 88 T ELT)) (-4205 (($ $) 63 T ELT)) (-4401 (((-417 $) $) 64 T ELT)) (-1788 (((-114) $ $) 142 T ELT)) (-4053 (((-558) $) 131 T ELT)) (-2830 (($ $ $) 102 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) "failed") $) 123 T ELT)) (-3574 (((-558) $) 124 T ELT)) (-2963 (($ $ $) 146 T ELT)) (-2493 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 121 T ELT) (((-709 (-558)) (-709 $)) 120 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3425 (((-3 (-419 (-558)) "failed") $) 96 T ELT)) (-3424 (((-114) $) 98 T ELT)) (-3423 (((-419 (-558)) $) 97 T ELT)) (-3395 (($) 95 T ELT) (($ $) 94 T ELT)) (-2962 (($ $ $) 145 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 140 T ELT)) (-4153 (((-114) $) 65 T ELT)) (-2250 (($ $ $ $) 86 T ELT)) (-2258 (($ $ $) 100 T ELT)) (-3604 (((-114) $) 133 T ELT)) (-1483 (($ $ $) 111 T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 114 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3074 (((-114) $) 106 T ELT)) (-3865 (((-711 $) $) 108 T ELT)) (-3605 (((-114) $) 132 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 149 T ELT)) (-2251 (($ $ $ $) 87 T ELT)) (-2930 (($ $ $) 139 T ELT)) (-3258 (($ $ $) 138 T ELT)) (-2254 (($ $) 90 T ELT)) (-4263 (($ $) 103 T ELT)) (-2494 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 119 T ELT) (((-709 (-558)) (-1288 $)) 118 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2249 (($ $ $) 85 T ELT)) (-3866 (($) 107 T CONST)) (-2256 (($ $) 92 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1481 (($ $) 112 T ELT)) (-4162 (((-417 $) $) 62 T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 147 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 141 T ELT)) (-3075 (((-114) $) 105 T ELT)) (-1787 (((-791) $) 143 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 144 T ELT)) (-4188 (($ $) 129 T ELT) (($ $ (-791)) 127 T ELT)) (-2255 (($ $) 91 T ELT)) (-3820 (($ $) 93 T ELT)) (-4402 (((-558) $) 125 T ELT) (((-547) $) 116 T ELT) (((-905 (-558)) $) 115 T ELT) (((-391) $) 110 T ELT) (((-229) $) 109 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 122 T ELT)) (-3528 (((-791)) 37 T CONST)) (-2259 (((-114) $ $) 101 T ELT)) (-3504 (($ $ $) 113 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3095 (($) 104 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-2253 (($ $ $ $) 89 T ELT)) (-3803 (($ $) 130 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $) 128 T ELT) (($ $ (-791)) 126 T ELT)) (-2965 (((-114) $ $) 137 T ELT)) (-2966 (((-114) $ $) 135 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 136 T ELT)) (-3086 (((-114) $ $) 134 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-558) $) 117 T ELT))) +((-2214 (((-1191 |#1|) (-790)) 114 T ELT)) (-3749 (((-1287 |#1|) (-1287 |#1|) (-937)) 107 T ELT)) (-2212 (((-1293) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))) |#1|) 122 T ELT)) (-2216 (((-1287 |#1|) (-1287 |#1|) (-790)) 53 T ELT)) (-3394 (((-1287 |#1|) (-937)) 109 T ELT)) (-2218 (((-1287 |#1|) (-1287 |#1|) (-558)) 30 T ELT)) (-2213 (((-1191 |#1|) (-1287 |#1|)) 115 T ELT)) (-2222 (((-1287 |#1|) (-937)) 136 T ELT)) (-2220 (((-114) (-1287 |#1|)) 119 T ELT)) (-3533 (((-1287 |#1|) (-1287 |#1|) (-937)) 99 T ELT)) (-2223 (((-1191 |#1|) (-1287 |#1|)) 130 T ELT)) (-2219 (((-937) (-1287 |#1|)) 95 T ELT)) (-2873 (((-1287 |#1|) (-1287 |#1|)) 38 T ELT)) (-2630 (((-1287 |#1|) (-937) (-937)) 139 T ELT)) (-2217 (((-1287 |#1|) (-1287 |#1|) (-1140) (-1140)) 29 T ELT)) (-2215 (((-1287 |#1|) (-1287 |#1|) (-790) (-1140)) 54 T ELT)) (-2221 (((-1287 (-1287 |#1|)) (-937)) 135 T ELT)) (-4378 (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 120 T ELT)) (** (((-1287 |#1|) (-1287 |#1|) (-558)) 67 T ELT)) (* (((-1287 |#1|) (-1287 |#1|) (-1287 |#1|)) 31 T ELT))) +(((-540 |#1|) (-10 -7 (-15 -2212 ((-1293) (-1287 (-660 (-2 (|:| -3821 |#1|) (|:| -2630 (-1140))))) |#1|)) (-15 -3394 ((-1287 |#1|) (-937))) (-15 -2630 ((-1287 |#1|) (-937) (-937))) (-15 -2213 ((-1191 |#1|) (-1287 |#1|))) (-15 -2214 ((-1191 |#1|) (-790))) (-15 -2215 ((-1287 |#1|) (-1287 |#1|) (-790) (-1140))) (-15 -2216 ((-1287 |#1|) (-1287 |#1|) (-790))) (-15 -2217 ((-1287 |#1|) (-1287 |#1|) (-1140) (-1140))) (-15 -2218 ((-1287 |#1|) (-1287 |#1|) (-558))) (-15 ** ((-1287 |#1|) (-1287 |#1|) (-558))) (-15 * ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -4378 ((-1287 |#1|) (-1287 |#1|) (-1287 |#1|))) (-15 -3533 ((-1287 |#1|) (-1287 |#1|) (-937))) (-15 -3749 ((-1287 |#1|) (-1287 |#1|) (-937))) (-15 -2873 ((-1287 |#1|) (-1287 |#1|))) (-15 -2219 ((-937) (-1287 |#1|))) (-15 -2220 ((-114) (-1287 |#1|))) (-15 -2221 ((-1287 (-1287 |#1|)) (-937))) (-15 -2222 ((-1287 |#1|) (-937))) (-15 -2223 ((-1191 |#1|) (-1287 |#1|)))) (-363)) (T -540)) +((-2223 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-2222 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2221 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2220 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-540 *4)))) (-2219 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-937)) (-5 *1 (-540 *4)))) (-2873 (*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (-3749 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-937)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-3533 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-937)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-4378 (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2218 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2217 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1140)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2216 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) (-2215 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-1287 *5)) (-5 *3 (-790)) (-5 *4 (-1140)) (-4 *5 (-363)) (-5 *1 (-540 *5)))) (-2214 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2213 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)))) (-2630 (*1 *2 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-3394 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) (-2212 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-4 *4 (-363)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) +((-2209 (((-710 (-1246)) $) NIL T ELT)) (-2205 (((-710 (-1244)) $) NIL T ELT)) (-2207 (((-710 (-1243)) $) NIL T ELT)) (-2210 (((-710 (-562)) $) NIL T ELT)) (-2206 (((-710 (-560)) $) NIL T ELT)) (-2208 (((-710 (-559)) $) NIL T ELT)) (-2204 (((-790) $ (-131)) NIL T ELT)) (-2211 (((-710 (-130)) $) 26 T ELT)) (-2224 (((-1140) $ (-1140)) 31 T ELT)) (-3838 (((-1140) $) 30 T ELT)) (-2956 (((-114) $) 20 T ELT)) (-2226 (($ (-402)) 14 T ELT) (($ (-1179)) 16 T ELT)) (-2225 (((-114) $) 27 T ELT)) (-4375 (((-876) $) 34 T ELT)) (-1902 (($ $) 28 T ELT))) +(((-541) (-13 (-539) (-629 (-876)) (-10 -8 (-15 -2226 ($ (-402))) (-15 -2226 ($ (-1179))) (-15 -2225 ((-114) $)) (-15 -2956 ((-114) $)) (-15 -3838 ((-1140) $)) (-15 -2224 ((-1140) $ (-1140)))))) (T -541)) +((-2226 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-541)))) (-2226 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) (-2225 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) (-3838 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-541)))) (-2224 (*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-541))))) +((-2228 (((-1 |#1| |#1|) |#1|) 11 T ELT)) (-2227 (((-1 |#1| |#1|)) 10 T ELT))) +(((-542 |#1|) (-10 -7 (-15 -2227 ((-1 |#1| |#1|))) (-15 -2228 ((-1 |#1| |#1|) |#1|))) (-13 (-745) (-25))) (T -542)) +((-2228 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-745) (-25))))) (-2227 (*1 *2) (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-745) (-25)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-886 |#1| (-790))) $) NIL T ELT)) (-2872 (($ $ $) NIL T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-3293 (($ (-790) |#1|) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4387 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-2194 ((|#1| $) NIL T ELT)) (-3591 (((-790) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 27 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT))) +(((-543 |#1|) (-13 (-814) (-521 (-790) |#1|)) (-860)) (T -543)) +NIL +((-2230 (((-660 |#2|) (-1191 |#1|) |#3|) 98 T ELT)) (-2231 (((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 |#2|))))) (-708 |#1|) |#3| (-1 (-417 (-1191 |#1|)) (-1191 |#1|))) 114 T ELT)) (-2229 (((-1191 |#1|) (-708 |#1|)) 110 T ELT))) +(((-544 |#1| |#2| |#3|) (-10 -7 (-15 -2229 ((-1191 |#1|) (-708 |#1|))) (-15 -2230 ((-660 |#2|) (-1191 |#1|) |#3|)) (-15 -2231 ((-660 (-2 (|:| |outval| |#2|) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 |#2|))))) (-708 |#1|) |#3| (-1 (-417 (-1191 |#1|)) (-1191 |#1|))))) (-376) (-376) (-13 (-376) (-859))) (T -544)) +((-2231 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *6)) (-5 *5 (-1 (-417 (-1191 *6)) (-1191 *6))) (-4 *6 (-376)) (-5 *2 (-660 (-2 (|:| |outval| *7) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 *7)))))) (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-859))))) (-2230 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-376)) (-5 *2 (-660 *6)) (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-859))))) (-2229 (*1 *2 *3) (-12 (-5 *3 (-708 *4)) (-4 *4 (-376)) (-5 *2 (-1191 *4)) (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-859)))))) +((-2953 (((-710 (-1246)) $ (-1246)) NIL T ELT)) (-2954 (((-710 (-562)) $ (-562)) NIL T ELT)) (-2952 (((-790) $ (-131)) 39 T ELT)) (-2955 (((-710 (-130)) $ (-130)) 40 T ELT)) (-2209 (((-710 (-1246)) $) NIL T ELT)) (-2205 (((-710 (-1244)) $) NIL T ELT)) (-2207 (((-710 (-1243)) $) NIL T ELT)) (-2210 (((-710 (-562)) $) NIL T ELT)) (-2206 (((-710 (-560)) $) NIL T ELT)) (-2208 (((-710 (-559)) $) NIL T ELT)) (-2204 (((-790) $ (-131)) 35 T ELT)) (-2211 (((-710 (-130)) $) 37 T ELT)) (-2827 (((-114) $) 27 T ELT)) (-2828 (((-710 $) (-591) (-972)) 18 T ELT) (((-710 $) (-503) (-972)) 24 T ELT)) (-4375 (((-876) $) 48 T ELT)) (-1902 (($ $) 42 T ELT))) +(((-545) (-13 (-786 (-591)) (-629 (-876)) (-10 -8 (-15 -2828 ((-710 $) (-503) (-972)))))) (T -545)) +((-2828 (*1 *2 *3 *4) (-12 (-5 *3 (-503)) (-5 *4 (-972)) (-5 *2 (-710 (-545))) (-5 *1 (-545))))) +((-2925 (((-854 (-558))) 12 T ELT)) (-2924 (((-854 (-558))) 14 T ELT)) (-2909 (((-844 (-558))) 9 T ELT))) +(((-546) (-10 -7 (-15 -2909 ((-844 (-558)))) (-15 -2925 ((-854 (-558)))) (-15 -2924 ((-854 (-558)))))) (T -546)) +((-2924 (*1 *2) (-12 (-5 *2 (-854 (-558))) (-5 *1 (-546)))) (-2925 (*1 *2) (-12 (-5 *2 (-854 (-558))) (-5 *1 (-546)))) (-2909 (*1 *2) (-12 (-5 *2 (-844 (-558))) (-5 *1 (-546))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2235 (((-1179) $) 55 T ELT)) (-3677 (((-114) $) 51 T ELT)) (-3673 (((-1197) $) 52 T ELT)) (-3678 (((-114) $) 49 T ELT)) (-3962 (((-1179) $) 50 T ELT)) (-2234 (($ (-1179)) 56 T ELT)) (-3680 (((-114) $) NIL T ELT)) (-3682 (((-114) $) NIL T ELT)) (-3679 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2237 (($ $ (-660 (-1197))) 21 T ELT)) (-2240 (((-51) $) 23 T ELT)) (-3676 (((-114) $) NIL T ELT)) (-3672 (((-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2613 (($ $ (-660 (-1197)) (-1197)) 73 T ELT)) (-3675 (((-114) $) NIL T ELT)) (-3671 (((-229) $) NIL T ELT)) (-2236 (($ $) 44 T ELT)) (-3670 (((-876) $) NIL T ELT)) (-3683 (((-114) $ $) NIL T ELT)) (-4229 (($ $ (-558)) NIL T ELT) (($ $ (-660 (-558))) NIL T ELT)) (-3674 (((-660 $) $) 30 T ELT)) (-2233 (((-1197) (-660 $)) 57 T ELT)) (-4401 (($ (-1179)) NIL T ELT) (($ (-1197)) 19 T ELT) (($ (-558)) 8 T ELT) (($ (-229)) 28 T ELT) (($ (-876)) NIL T ELT) (($ (-660 $)) 65 T ELT) (((-1123) $) 12 T ELT) (($ (-1123)) 13 T ELT)) (-2232 (((-1197) (-1197) (-660 $)) 60 T ELT)) (-4375 (((-876) $) 54 T ELT)) (-3668 (($ $) 59 T ELT)) (-3669 (($ $) 58 T ELT)) (-2238 (($ $ (-660 $)) 66 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3681 (((-114) $) 29 T ELT)) (-3058 (($) 9 T CONST)) (-3064 (($) 11 T CONST)) (-3453 (((-114) $ $) 74 T ELT)) (-4378 (($ $ $) 82 T ELT)) (-4268 (($ $ $) 75 T ELT)) (** (($ $ (-790)) 81 T ELT) (($ $ (-558)) 80 T ELT)) (* (($ $ $) 76 T ELT)) (-4386 (((-558) $) NIL T ELT))) +(((-547) (-13 (-1124 (-1179) (-1197) (-558) (-229) (-876)) (-630 (-1123)) (-10 -8 (-15 -2240 ((-51) $)) (-15 -4401 ($ (-1123))) (-15 -2238 ($ $ (-660 $))) (-15 -2613 ($ $ (-660 (-1197)) (-1197))) (-15 -2237 ($ $ (-660 (-1197)))) (-15 -4268 ($ $ $)) (-15 * ($ $ $)) (-15 -4378 ($ $ $)) (-15 ** ($ $ (-790))) (-15 ** ($ $ (-558))) (-15 0 ($) -4381) (-15 1 ($) -4381) (-15 -2236 ($ $)) (-15 -2235 ((-1179) $)) (-15 -2234 ($ (-1179))) (-15 -2233 ((-1197) (-660 $))) (-15 -2232 ((-1197) (-1197) (-660 $)))))) (T -547)) +((-2240 (*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-547)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-547)))) (-2238 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-547))) (-5 *1 (-547)))) (-2613 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-1197)) (-5 *1 (-547)))) (-2237 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-547)))) (-4268 (*1 *1 *1 *1) (-5 *1 (-547))) (* (*1 *1 *1 *1) (-5 *1 (-547))) (-4378 (*1 *1 *1 *1) (-5 *1 (-547))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-547)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) (-3058 (*1 *1) (-5 *1 (-547))) (-3064 (*1 *1) (-5 *1 (-547))) (-2236 (*1 *1 *1) (-5 *1 (-547))) (-2235 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-547)))) (-2234 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-547)))) (-2233 (*1 *2 *3) (-12 (-5 *3 (-660 (-547))) (-5 *2 (-1197)) (-5 *1 (-547)))) (-2232 (*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-547))) (-5 *1 (-547))))) +((-2239 (((-547) (-1197)) 15 T ELT)) (-2240 ((|#1| (-547)) 20 T ELT))) +(((-548 |#1|) (-10 -7 (-15 -2239 ((-547) (-1197))) (-15 -2240 (|#1| (-547)))) (-1237)) (T -548)) +((-2240 (*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-548 *2)) (-4 *2 (-1237)))) (-2239 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-547)) (-5 *1 (-548 *4)) (-4 *4 (-1237))))) +((-3872 ((|#2| |#2|) 17 T ELT)) (-3870 ((|#2| |#2|) 13 T ELT)) (-3873 ((|#2| |#2| (-558) (-558)) 20 T ELT)) (-3871 ((|#2| |#2|) 15 T ELT))) +(((-549 |#1| |#2|) (-10 -7 (-15 -3870 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -3873 (|#2| |#2| (-558) (-558)))) (-13 (-569) (-149)) (-1280 |#1|)) (T -549)) +((-3873 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-549 *4 *2)) (-4 *2 (-1280 *4)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3))))) +((-2243 (((-660 (-305 (-964 |#2|))) (-660 |#2|) (-660 (-1197))) 32 T ELT)) (-2241 (((-660 |#2|) (-964 |#1|) |#3|) 54 T ELT) (((-660 |#2|) (-1191 |#1|) |#3|) 53 T ELT)) (-2242 (((-660 (-660 |#2|)) (-660 (-964 |#1|)) (-660 (-964 |#1|)) (-660 (-1197)) |#3|) 106 T ELT))) +(((-550 |#1| |#2| |#3|) (-10 -7 (-15 -2241 ((-660 |#2|) (-1191 |#1|) |#3|)) (-15 -2241 ((-660 |#2|) (-964 |#1|) |#3|)) (-15 -2242 ((-660 (-660 |#2|)) (-660 (-964 |#1|)) (-660 (-964 |#1|)) (-660 (-1197)) |#3|)) (-15 -2243 ((-660 (-305 (-964 |#2|))) (-660 |#2|) (-660 (-1197))))) (-464) (-376) (-13 (-376) (-859))) (T -550)) +((-2243 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1197))) (-4 *6 (-376)) (-5 *2 (-660 (-305 (-964 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-13 (-376) (-859))))) (-2242 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-660 (-964 *6))) (-5 *4 (-660 (-1197))) (-4 *6 (-464)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-376)) (-4 *5 (-13 (-376) (-859))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-964 *5)) (-4 *5 (-464)) (-5 *2 (-660 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-859))))) (-2241 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-660 *6)) (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-859)))))) +((-2246 ((|#2| |#2| |#1|) 17 T ELT)) (-2244 ((|#2| (-660 |#2|)) 30 T ELT)) (-2245 ((|#2| (-660 |#2|)) 51 T ELT))) +(((-551 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2244 (|#2| (-660 |#2|))) (-15 -2245 (|#2| (-660 |#2|))) (-15 -2246 (|#2| |#2| |#1|))) (-319) (-1263 |#1|) |#1| (-1 |#1| |#1| (-790))) (T -551)) +((-2246 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-790))) (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3)))) (-2245 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-790))))) (-2244 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-790)))))) +((-4161 (((-417 (-1191 |#4|)) (-1191 |#4|) (-1 (-417 (-1191 |#3|)) (-1191 |#3|))) 89 T ELT) (((-417 |#4|) |#4| (-1 (-417 (-1191 |#3|)) (-1191 |#3|))) 212 T ELT))) +(((-552 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 |#4|) |#4| (-1 (-417 (-1191 |#3|)) (-1191 |#3|)))) (-15 -4161 ((-417 (-1191 |#4|)) (-1191 |#4|) (-1 (-417 (-1191 |#3|)) (-1191 |#3|))))) (-860) (-814) (-13 (-319) (-149)) (-968 |#3| |#2| |#1|)) (T -552)) +((-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-860)) (-4 *6 (-814)) (-4 *8 (-968 *7 *6 *5)) (-5 *2 (-417 (-1191 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-319) (-149))) (-4 *5 (-860)) (-4 *6 (-814)) (-5 *2 (-417 *3)) (-5 *1 (-552 *5 *6 *7 *3)) (-4 *3 (-968 *7 *6 *5))))) +((-3872 ((|#4| |#4|) 74 T ELT)) (-3870 ((|#4| |#4|) 70 T ELT)) (-3873 ((|#4| |#4| (-558) (-558)) 76 T ELT)) (-3871 ((|#4| |#4|) 72 T ELT))) +(((-553 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3870 (|#4| |#4|)) (-15 -3871 (|#4| |#4|)) (-15 -3872 (|#4| |#4|)) (-15 -3873 (|#4| |#4| (-558) (-558)))) (-13 (-376) (-381) (-630 (-558))) (-1263 |#1|) (-743 |#1| |#2|) (-1280 |#3|)) (T -553)) +((-3873 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-630 *3))) (-4 *5 (-1263 *4)) (-4 *6 (-743 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1280 *6)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-4 *4 (-1263 *3)) (-4 *5 (-743 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-4 *4 (-1263 *3)) (-4 *5 (-743 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-4 *4 (-1263 *3)) (-4 *5 (-743 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5))))) +((-3872 ((|#2| |#2|) 27 T ELT)) (-3870 ((|#2| |#2|) 23 T ELT)) (-3873 ((|#2| |#2| (-558) (-558)) 29 T ELT)) (-3871 ((|#2| |#2|) 25 T ELT))) +(((-554 |#1| |#2|) (-10 -7 (-15 -3870 (|#2| |#2|)) (-15 -3871 (|#2| |#2|)) (-15 -3872 (|#2| |#2|)) (-15 -3873 (|#2| |#2| (-558) (-558)))) (-13 (-376) (-381) (-630 (-558))) (-1280 |#1|)) (T -554)) +((-3873 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-630 *3))) (-5 *1 (-554 *4 *2)) (-4 *2 (-1280 *4)))) (-3872 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3)))) (-3871 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3)))) (-3870 (*1 *2 *2) (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-5 *1 (-554 *3 *2)) (-4 *2 (-1280 *3))))) +((-2247 (((-3 (-558) #1="failed") |#2| |#1| (-1 (-3 (-558) #1#) |#1|)) 18 T ELT) (((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|)) 14 T ELT) (((-3 (-558) #1#) |#2| (-558) (-1 (-3 (-558) #1#) |#1|)) 30 T ELT))) +(((-555 |#1| |#2|) (-10 -7 (-15 -2247 ((-3 (-558) #1="failed") |#2| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2247 ((-3 (-558) #1#) |#2| |#1| (-558) (-1 (-3 (-558) #1#) |#1|))) (-15 -2247 ((-3 (-558) #1#) |#2| |#1| (-1 (-3 (-558) #1#) |#1|)))) (-1069) (-1263 |#1|)) (T -555)) +((-2247 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) #1="failed") *4)) (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-2247 (*1 *2 *3 *4 *2 *5) (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) (-2247 (*1 *2 *3 *2 *4) (|partial| -12 (-5 *4 (-1 (-3 (-558) #1#) *5)) (-4 *5 (-1069)) (-5 *2 (-558)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5))))) +((-2256 (($ $ $) 87 T ELT)) (-4400 (((-417 $) $) 50 T ELT)) (-3574 (((-3 (-558) #1="failed") $) 62 T ELT)) (-3573 (((-558) $) 40 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 80 T ELT)) (-3423 (((-114) $) 24 T ELT)) (-3422 (((-419 (-558)) $) 78 T ELT)) (-4152 (((-114) $) 53 T ELT)) (-2249 (($ $ $ $) 94 T ELT)) (-1482 (($ $ $) 60 T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 75 T ELT)) (-3864 (((-710 $) $) 70 T ELT)) (-2253 (($ $) 22 T ELT)) (-2248 (($ $ $) 92 T ELT)) (-3865 (($) 63 T ELT)) (-1480 (($ $) 56 T ELT)) (-4161 (((-417 $) $) 48 T ELT)) (-3074 (((-114) $) 15 T ELT)) (-1786 (((-790) $) 30 T ELT)) (-4187 (($ $) 11 T ELT) (($ $ (-790)) NIL T ELT)) (-3819 (($ $) 16 T ELT)) (-4401 (((-558) $) NIL T ELT) (((-547) $) 39 T ELT) (((-904 (-558)) $) 43 T ELT) (((-391) $) 33 T ELT) (((-229) $) 36 T ELT)) (-3527 (((-790)) 9 T ELT)) (-2258 (((-114) $ $) 19 T ELT)) (-3503 (($ $ $) 58 T ELT))) +(((-556 |#1|) (-10 -7 (-15 -2248 (|#1| |#1| |#1|)) (-15 -2249 (|#1| |#1| |#1| |#1|)) (-15 -2253 (|#1| |#1|)) (-15 -3819 (|#1| |#1|)) (-15 -3424 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3422 ((-419 (-558)) |#1|)) (-15 -3423 ((-114) |#1|)) (-15 -2256 (|#1| |#1| |#1|)) (-15 -2258 ((-114) |#1| |#1|)) (-15 -3074 ((-114) |#1|)) (-15 -3865 (|#1|)) (-15 -3864 ((-710 |#1|) |#1|)) (-15 -4401 ((-229) |#1|)) (-15 -4401 ((-391) |#1|)) (-15 -1482 (|#1| |#1| |#1|)) (-15 -1480 (|#1| |#1|)) (-15 -3503 (|#1| |#1| |#1|)) (-15 -3196 ((-902 (-558) |#1|) |#1| (-904 (-558)) (-902 (-558) |#1|))) (-15 -4401 ((-904 (-558)) |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -4401 ((-558) |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 -1786 ((-790) |#1|)) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4400 ((-417 |#1|) |#1|)) (-15 -4152 ((-114) |#1|)) (-15 -3527 ((-790)))) (-557)) (T -556)) +((-3527 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-556 *3)) (-4 *3 (-557))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-2256 (($ $ $) 99 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-2251 (($ $ $ $) 88 T ELT)) (-4204 (($ $) 63 T ELT)) (-4400 (((-417 $) $) 64 T ELT)) (-1787 (((-114) $ $) 142 T ELT)) (-4052 (((-558) $) 131 T ELT)) (-2829 (($ $ $) 102 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) "failed") $) 123 T ELT)) (-3573 (((-558) $) 124 T ELT)) (-2962 (($ $ $) 146 T ELT)) (-2492 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 121 T ELT) (((-708 (-558)) (-708 $)) 120 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3424 (((-3 (-419 (-558)) "failed") $) 96 T ELT)) (-3423 (((-114) $) 98 T ELT)) (-3422 (((-419 (-558)) $) 97 T ELT)) (-3394 (($) 95 T ELT) (($ $) 94 T ELT)) (-2961 (($ $ $) 145 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 140 T ELT)) (-4152 (((-114) $) 65 T ELT)) (-2249 (($ $ $ $) 86 T ELT)) (-2257 (($ $ $) 100 T ELT)) (-3603 (((-114) $) 133 T ELT)) (-1482 (($ $ $) 111 T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 114 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3073 (((-114) $) 106 T ELT)) (-3864 (((-710 $) $) 108 T ELT)) (-3604 (((-114) $) 132 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 149 T ELT)) (-2250 (($ $ $ $) 87 T ELT)) (-2929 (($ $ $) 139 T ELT)) (-3257 (($ $ $) 138 T ELT)) (-2253 (($ $) 90 T ELT)) (-4262 (($ $) 103 T ELT)) (-2493 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 119 T ELT) (((-708 (-558)) (-1287 $)) 118 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2248 (($ $ $) 85 T ELT)) (-3865 (($) 107 T CONST)) (-2255 (($ $) 92 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-1480 (($ $) 112 T ELT)) (-4161 (((-417 $) $) 62 T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 148 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 147 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 141 T ELT)) (-3074 (((-114) $) 105 T ELT)) (-1786 (((-790) $) 143 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 144 T ELT)) (-4187 (($ $) 129 T ELT) (($ $ (-790)) 127 T ELT)) (-2254 (($ $) 91 T ELT)) (-3819 (($ $) 93 T ELT)) (-4401 (((-558) $) 125 T ELT) (((-547) $) 116 T ELT) (((-904 (-558)) $) 115 T ELT) (((-391) $) 110 T ELT) (((-229) $) 109 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 122 T ELT)) (-3527 (((-790)) 37 T CONST)) (-2258 (((-114) $ $) 101 T ELT)) (-3503 (($ $ $) 113 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3094 (($) 104 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-2252 (($ $ $ $) 89 T ELT)) (-3802 (($ $) 130 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $) 128 T ELT) (($ $ (-790)) 126 T ELT)) (-2964 (((-114) $ $) 137 T ELT)) (-2965 (((-114) $ $) 135 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 136 T ELT)) (-3085 (((-114) $ $) 134 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-558) $) 117 T ELT))) (((-557) (-142)) (T -557)) -((-3074 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3075 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3095 (*1 *1) (-4 *1 (-557))) (-4263 (*1 *1 *1) (-4 *1 (-557))) (-2830 (*1 *1 *1 *1) (-4 *1 (-557))) (-2259 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-2258 (*1 *1 *1 *1) (-4 *1 (-557))) (-2257 (*1 *1 *1 *1) (-4 *1 (-557))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) (-3395 (*1 *1) (-4 *1 (-557))) (-3395 (*1 *1 *1) (-4 *1 (-557))) (-3820 (*1 *1 *1) (-4 *1 (-557))) (-2256 (*1 *1 *1) (-4 *1 (-557))) (-2255 (*1 *1 *1) (-4 *1 (-557))) (-2254 (*1 *1 *1) (-4 *1 (-557))) (-2253 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2252 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2251 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2250 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2249 (*1 *1 *1 *1) (-4 *1 (-557)))) -(-13 (-1243) (-319) (-842) (-240) (-631 (-558)) (-1059 (-558)) (-658 (-558)) (-631 (-547)) (-631 (-905 (-558))) (-901 (-558)) (-145) (-1041) (-149) (-1173) (-10 -8 (-15 -3074 ((-114) $)) (-15 -3075 ((-114) $)) (-6 -4424) (-15 -3095 ($)) (-15 -4263 ($ $)) (-15 -2830 ($ $ $)) (-15 -2259 ((-114) $ $)) (-15 -2258 ($ $ $)) (-15 -2257 ($ $ $)) (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $)) (-15 -3395 ($)) (-15 -3395 ($ $)) (-15 -3820 ($ $)) (-15 -2256 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $ $ $)) (-15 -2252 ($ $ $ $)) (-15 -2251 ($ $ $ $)) (-15 -2250 ($ $ $ $)) (-15 -2249 ($ $ $)) (-6 -4423))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-145) . T) ((-175) . T) ((-631 (-229)) . T) ((-631 (-391)) . T) ((-631 (-547)) . T) ((-631 (-558)) . T) ((-631 (-905 (-558))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-558)) . T) ((-668 $) . T) ((-660 $) . T) ((-658 (-558)) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-842) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-558)) . T) ((-940) . T) ((-1041) . T) ((-1059 (-558)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) . T) ((-1238) . T) ((-1243) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 8 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 84 T ELT)) (-2273 (($ $) 85 T ELT)) (-2271 (((-114) $) NIL T ELT)) (-2257 (($ $ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2252 (($ $ $ $) 32 T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL T ELT)) (-2830 (($ $ $) 76 T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL T ELT)) (-2963 (($ $ $) 48 T ELT)) (-2493 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 59 T ELT) (((-709 (-558)) (-709 $)) 55 T ELT)) (-3887 (((-3 $ #1#) $) 81 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3424 (((-114) $) NIL T ELT)) (-3423 (((-419 (-558)) $) NIL T ELT)) (-3395 (($) 61 T ELT) (($ $) 62 T ELT)) (-2962 (($ $ $) 75 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-2258 (($ $ $) 52 T ELT)) (-3604 (((-114) $) 22 T ELT)) (-1483 (($ $ $) NIL T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL T ELT)) (-2641 (((-114) $) 9 T ELT)) (-3074 (((-114) $) 69 T ELT)) (-3865 (((-711 $) $) NIL T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2251 (($ $ $ $) 34 T ELT)) (-2930 (($ $ $) 72 T ELT)) (-3258 (($ $ $) 71 T ELT)) (-2254 (($ $) NIL T ELT)) (-4263 (($ $) 29 T ELT)) (-2494 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) 47 T ELT)) (-2249 (($ $ $) NIL T ELT)) (-3866 (($) NIL T CONST)) (-2256 (($ $) 15 T ELT)) (-3661 (((-1141) $) 19 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 117 T ELT)) (-3562 (($ $ $) 82 T ELT) (($ (-661 $)) NIL T ELT)) (-1481 (($ $) NIL T ELT)) (-4162 (((-417 $) $) 103 T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3075 (((-114) $) 70 T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 74 T ELT)) (-4188 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2255 (($ $) 17 T ELT)) (-3820 (($ $) 13 T ELT)) (-4402 (((-558) $) 28 T ELT) (((-547) $) 43 T ELT) (((-905 (-558)) $) NIL T ELT) (((-391) $) 37 T ELT) (((-229) $) 40 T ELT)) (-4376 (((-877) $) 26 T ELT) (($ (-558)) 27 T ELT) (($ $) NIL T ELT) (($ (-558)) 27 T ELT)) (-3528 (((-791)) NIL T CONST)) (-2259 (((-114) $ $) NIL T ELT)) (-3504 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (($) 12 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-2253 (($ $ $ $) 31 T ELT)) (-3803 (($ $) 60 T ELT)) (-3059 (($) 10 T CONST)) (-3065 (($) 11 T CONST)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2965 (((-114) $ $) 30 T ELT)) (-2966 (((-114) $ $) 63 T ELT)) (-3454 (((-114) $ $) 7 T ELT)) (-3085 (((-114) $ $) 64 T ELT)) (-3086 (((-114) $ $) 20 T ELT)) (-4267 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-4269 (($ $ $) 14 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 68 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 65 T ELT) (($ (-558) $) 66 T ELT))) -(((-558) (-13 (-557) (-10 -7 (-6 -4412) (-6 -4417) (-6 -4413)))) (T -558)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-559) (-13 (-857) (-10 -8 (-15 -4154 ($) -4382)))) (T -559)) -((-4154 (*1 *1) (-5 *1 (-559)))) +((-3073 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3074 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3094 (*1 *1) (-4 *1 (-557))) (-4262 (*1 *1 *1) (-4 *1 (-557))) (-2829 (*1 *1 *1 *1) (-4 *1 (-557))) (-2258 (*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-2257 (*1 *1 *1 *1) (-4 *1 (-557))) (-2256 (*1 *1 *1 *1) (-4 *1 (-557))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) (-3394 (*1 *1) (-4 *1 (-557))) (-3394 (*1 *1 *1) (-4 *1 (-557))) (-3819 (*1 *1 *1) (-4 *1 (-557))) (-2255 (*1 *1 *1) (-4 *1 (-557))) (-2254 (*1 *1 *1) (-4 *1 (-557))) (-2253 (*1 *1 *1) (-4 *1 (-557))) (-2252 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2251 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2250 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2249 (*1 *1 *1 *1 *1) (-4 *1 (-557))) (-2248 (*1 *1 *1 *1) (-4 *1 (-557)))) +(-13 (-1242) (-319) (-841) (-240) (-630 (-558)) (-1058 (-558)) (-657 (-558)) (-630 (-547)) (-630 (-904 (-558))) (-900 (-558)) (-145) (-1040) (-149) (-1172) (-10 -8 (-15 -3073 ((-114) $)) (-15 -3074 ((-114) $)) (-6 -4423) (-15 -3094 ($)) (-15 -4262 ($ $)) (-15 -2829 ($ $ $)) (-15 -2258 ((-114) $ $)) (-15 -2257 ($ $ $)) (-15 -2256 ($ $ $)) (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $)) (-15 -3394 ($)) (-15 -3394 ($ $)) (-15 -3819 ($ $)) (-15 -2255 ($ $)) (-15 -2254 ($ $)) (-15 -2253 ($ $)) (-15 -2252 ($ $ $ $)) (-15 -2251 ($ $ $ $)) (-15 -2250 ($ $ $ $)) (-15 -2249 ($ $ $ $)) (-15 -2248 ($ $ $)) (-6 -4422))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-145) . T) ((-175) . T) ((-630 (-229)) . T) ((-630 (-391)) . T) ((-630 (-547)) . T) ((-630 (-558)) . T) ((-630 (-904 (-558))) . T) ((-236 $) . T) ((-240) . T) ((-239) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-558)) . T) ((-667 $) . T) ((-659 $) . T) ((-657 (-558)) . T) ((-736 $) . T) ((-745) . T) ((-811) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-841) . T) ((-859) . T) ((-860) . T) ((-863) . T) ((-900 (-558)) . T) ((-939) . T) ((-1040) . T) ((-1058 (-558)) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) . T) ((-1237) . T) ((-1242) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 8 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 84 T ELT)) (-2272 (($ $) 85 T ELT)) (-2270 (((-114) $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2251 (($ $ $ $) 32 T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL T ELT)) (-2829 (($ $ $) 76 T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL T ELT)) (-2962 (($ $ $) 48 T ELT)) (-2492 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 59 T ELT) (((-708 (-558)) (-708 $)) 55 T ELT)) (-3886 (((-3 $ #1#) $) 81 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3423 (((-114) $) NIL T ELT)) (-3422 (((-419 (-558)) $) NIL T ELT)) (-3394 (($) 61 T ELT) (($ $) 62 T ELT)) (-2961 (($ $ $) 75 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2249 (($ $ $ $) NIL T ELT)) (-2257 (($ $ $) 52 T ELT)) (-3603 (((-114) $) 22 T ELT)) (-1482 (($ $ $) NIL T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL T ELT)) (-2640 (((-114) $) 9 T ELT)) (-3073 (((-114) $) 69 T ELT)) (-3864 (((-710 $) $) NIL T ELT)) (-3604 (((-114) $) 21 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2250 (($ $ $ $) 34 T ELT)) (-2929 (($ $ $) 72 T ELT)) (-3257 (($ $ $) 71 T ELT)) (-2253 (($ $) NIL T ELT)) (-4262 (($ $) 29 T ELT)) (-2493 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) 47 T ELT)) (-2248 (($ $ $) NIL T ELT)) (-3865 (($) NIL T CONST)) (-2255 (($ $) 15 T ELT)) (-3660 (((-1140) $) 19 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 117 T ELT)) (-3561 (($ $ $) 82 T ELT) (($ (-660 $)) NIL T ELT)) (-1480 (($ $) NIL T ELT)) (-4161 (((-417 $) $) 103 T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-3074 (((-114) $) 70 T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 74 T ELT)) (-4187 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2254 (($ $) 17 T ELT)) (-3819 (($ $) 13 T ELT)) (-4401 (((-558) $) 28 T ELT) (((-547) $) 43 T ELT) (((-904 (-558)) $) NIL T ELT) (((-391) $) 37 T ELT) (((-229) $) 40 T ELT)) (-4375 (((-876) $) 26 T ELT) (($ (-558)) 27 T ELT) (($ $) NIL T ELT) (($ (-558)) 27 T ELT)) (-3527 (((-790)) NIL T CONST)) (-2258 (((-114) $ $) NIL T ELT)) (-3503 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (($) 12 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-2252 (($ $ $ $) 31 T ELT)) (-3802 (($ $) 60 T ELT)) (-3058 (($) 10 T CONST)) (-3064 (($) 11 T CONST)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2964 (((-114) $ $) 30 T ELT)) (-2965 (((-114) $ $) 63 T ELT)) (-3453 (((-114) $ $) 7 T ELT)) (-3084 (((-114) $ $) 64 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-4266 (($ $) 44 T ELT) (($ $ $) 16 T ELT)) (-4268 (($ $ $) 14 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 68 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 65 T ELT) (($ (-558) $) 66 T ELT))) +(((-558) (-13 (-557) (-10 -7 (-6 -4411) (-6 -4416) (-6 -4412)))) (T -558)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-559) (-13 (-856) (-10 -8 (-15 -4153 ($) -4381)))) (T -559)) +((-4153 (*1 *1) (-5 *1 (-559)))) ((-558) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-560) (-13 (-857) (-10 -8 (-15 -4154 ($) -4382)))) (T -560)) -((-4154 (*1 *1) (-5 *1 (-560)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-560) (-13 (-856) (-10 -8 (-15 -4153 ($) -4381)))) (T -560)) +((-4153 (*1 *1) (-5 *1 (-560)))) ((-558) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-561) (-13 (-857) (-10 -8 (-15 -4154 ($) -4382)))) (T -561)) -((-4154 (*1 *1) (-5 *1 (-561)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-561) (-13 (-856) (-10 -8 (-15 -4153 ($) -4381)))) (T -561)) +((-4153 (*1 *1) (-5 *1 (-561)))) ((-558) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-562) (-13 (-857) (-10 -8 (-15 -4154 ($) -4382)))) (T -562)) -((-4154 (*1 *1) (-5 *1 (-562)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-562) (-13 (-856) (-10 -8 (-15 -4153 ($) -4381)))) (T -562)) +((-4153 (*1 *1) (-5 *1 (-562)))) ((-558) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-2884 (((-661 |#1|) $) NIL T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #1#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-563 |#1| |#2| |#3|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4425))) (-1122) (-1122) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4425)))) (T -563)) -NIL -((-2260 (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))) 50 T ELT))) -(((-564 |#1| |#2|) (-10 -7 (-15 -2260 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-1 (-1192 |#2|) (-1192 |#2|))))) (-569) (-13 (-27) (-433 |#1|))) (T -564)) -((-2260 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-628 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-569)) (-5 *2 (-595 *3)) (-5 *1 (-564 *6 *3))))) -((-2262 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2263 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2261 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) -(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2261 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2262 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2263 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1059 (-558))) (-13 (-27) (-433 |#1|)) (-1264 |#2|) (-1264 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -565)) -((-2263 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *7 (-1264 (-419 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-2262 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-569) (-1059 (-558)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-569) (-1059 (-558)))) (-4 *8 (-1264 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) -((-2266 (((-114) (-558) (-558)) 12 T ELT)) (-2264 (((-558) (-558)) 7 T ELT)) (-2265 (((-558) (-558) (-558)) 10 T ELT))) -(((-566) (-10 -7 (-15 -2264 ((-558) (-558))) (-15 -2265 ((-558) (-558) (-558))) (-15 -2266 ((-114) (-558) (-558))))) (T -566)) -((-2266 (*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-566)))) (-2265 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566)))) (-2264 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3003 ((|#1| $) 74 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-3912 (($ $) 104 T ELT)) (-4069 (($ $) 87 T ELT)) (-2873 ((|#1| $) 75 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3438 (($ $) 86 T ELT)) (-3910 (($ $) 103 T ELT)) (-4068 (($ $) 88 T ELT)) (-3914 (($ $) 102 T ELT)) (-4067 (($ $) 89 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) "failed") $) 82 T ELT)) (-3574 (((-558) $) 83 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2269 (($ |#1| |#1|) 79 T ELT)) (-3604 (((-114) $) 73 T ELT)) (-4057 (($) 114 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 85 T ELT)) (-3605 (((-114) $) 72 T ELT)) (-2930 (($ $ $) 115 T ELT)) (-3258 (($ $ $) 116 T ELT)) (-4372 (($ $) 111 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2270 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-419 (-558))) 77 T ELT)) (-2268 ((|#1| $) 76 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-4373 (($ $) 112 T ELT)) (-3915 (($ $) 101 T ELT)) (-4066 (($ $) 90 T ELT)) (-3913 (($ $) 100 T ELT)) (-4065 (($ $) 91 T ELT)) (-3911 (($ $) 99 T ELT)) (-4064 (($ $) 92 T ELT)) (-2267 (((-114) $ |#1|) 71 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 81 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 110 T ELT)) (-3906 (($ $) 98 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3916 (($ $) 109 T ELT)) (-3904 (($ $) 97 T ELT)) (-3920 (($ $) 108 T ELT)) (-3908 (($ $) 96 T ELT)) (-3921 (($ $) 107 T ELT)) (-3909 (($ $) 95 T ELT)) (-3919 (($ $) 106 T ELT)) (-3907 (($ $) 94 T ELT)) (-3917 (($ $) 105 T ELT)) (-3905 (($ $) 93 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 117 T ELT)) (-2966 (((-114) $ $) 119 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 118 T ELT)) (-3086 (((-114) $ $) 120 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-419 (-558))) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-567 |#1|) (-142) (-13 (-416) (-1224))) (T -567)) -((-2270 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) (-2269 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) (-2270 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) (-2270 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))))) (-2268 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) (-2873 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3003 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-114)))) (-3605 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-114)))) (-2267 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-114))))) -(-13 (-464) (-861) (-1224) (-1023) (-1059 (-558)) (-10 -8 (-6 -4200) (-15 -2270 ($ |t#1| |t#1|)) (-15 -2269 ($ |t#1| |t#1|)) (-15 -2270 ($ |t#1|)) (-15 -2270 ($ (-419 (-558)))) (-15 -2268 (|t#1| $)) (-15 -2873 (|t#1| $)) (-15 -3003 (|t#1| $)) (-15 -3604 ((-114) $)) (-15 -3605 ((-114) $)) (-15 -2267 ((-114) $ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-464) . T) ((-505) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-861) . T) ((-864) . T) ((-1023) . T) ((-1059 (-558)) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1224) . T) ((-1227) . T) ((-1238) . T)) -((-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 9 T ELT)) (-2273 (($ $) 11 T ELT)) (-2271 (((-114) $) 20 T ELT)) (-3887 (((-3 $ "failed") $) 16 T ELT)) (-2272 (((-114) $ $) 22 T ELT))) -(((-568 |#1|) (-10 -7 (-15 -2271 ((-114) |#1|)) (-15 -2272 ((-114) |#1| |#1|)) (-15 -2273 (|#1| |#1|)) (-15 -2274 ((-2 (|:| -1980 |#1|) (|:| -4412 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3887 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-2883 (((-660 |#1|) $) NIL T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #1#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-563 |#1| |#2| |#3|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4424))) (-1121) (-1121) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4424)))) (T -563)) +NIL +((-2259 (((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))) 50 T ELT))) +(((-564 |#1| |#2|) (-10 -7 (-15 -2259 ((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|) (-1 (-1191 |#2|) (-1191 |#2|))))) (-569) (-13 (-27) (-433 |#1|))) (T -564)) +((-2259 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-627 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-569)) (-5 *2 (-595 *3)) (-5 *1 (-564 *6 *3))))) +((-2261 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 217 T ELT)) (-2262 (((-3 |#5| "failed") |#5| (-1 |#3| |#3|)) 213 T ELT)) (-2260 (((-595 |#5|) |#5| (-1 |#3| |#3|)) 221 T ELT))) +(((-565 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2260 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2261 ((-595 |#5|) |#5| (-1 |#3| |#3|))) (-15 -2262 ((-3 |#5| "failed") |#5| (-1 |#3| |#3|)))) (-13 (-569) (-1058 (-558))) (-13 (-27) (-433 |#1|)) (-1263 |#2|) (-1263 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -565)) +((-2262 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *7 (-1263 (-419 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7)))) (-2261 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-569) (-1058 (-558)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8)))) (-2260 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-433 *5))) (-4 *5 (-13 (-569) (-1058 (-558)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) +((-2265 (((-114) (-558) (-558)) 12 T ELT)) (-2263 (((-558) (-558)) 7 T ELT)) (-2264 (((-558) (-558) (-558)) 10 T ELT))) +(((-566) (-10 -7 (-15 -2263 ((-558) (-558))) (-15 -2264 ((-558) (-558) (-558))) (-15 -2265 ((-114) (-558) (-558))))) (T -566)) +((-2265 (*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-566)))) (-2264 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566)))) (-2263 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3002 ((|#1| $) 74 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-3911 (($ $) 104 T ELT)) (-4068 (($ $) 87 T ELT)) (-2872 ((|#1| $) 75 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3437 (($ $) 86 T ELT)) (-3909 (($ $) 103 T ELT)) (-4067 (($ $) 88 T ELT)) (-3913 (($ $) 102 T ELT)) (-4066 (($ $) 89 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) "failed") $) 82 T ELT)) (-3573 (((-558) $) 83 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2268 (($ |#1| |#1|) 79 T ELT)) (-3603 (((-114) $) 73 T ELT)) (-4056 (($) 114 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 85 T ELT)) (-3604 (((-114) $) 72 T ELT)) (-2929 (($ $ $) 115 T ELT)) (-3257 (($ $ $) 116 T ELT)) (-4371 (($ $) 111 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2269 (($ |#1| |#1|) 80 T ELT) (($ |#1|) 78 T ELT) (($ (-419 (-558))) 77 T ELT)) (-2267 ((|#1| $) 76 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-4372 (($ $) 112 T ELT)) (-3914 (($ $) 101 T ELT)) (-4065 (($ $) 90 T ELT)) (-3912 (($ $) 100 T ELT)) (-4064 (($ $) 91 T ELT)) (-3910 (($ $) 99 T ELT)) (-4063 (($ $) 92 T ELT)) (-2266 (((-114) $ |#1|) 71 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-558)) 81 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 110 T ELT)) (-3905 (($ $) 98 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3915 (($ $) 109 T ELT)) (-3903 (($ $) 97 T ELT)) (-3919 (($ $) 108 T ELT)) (-3907 (($ $) 96 T ELT)) (-3920 (($ $) 107 T ELT)) (-3908 (($ $) 95 T ELT)) (-3918 (($ $) 106 T ELT)) (-3906 (($ $) 94 T ELT)) (-3916 (($ $) 105 T ELT)) (-3904 (($ $) 93 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 117 T ELT)) (-2965 (((-114) $ $) 119 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 118 T ELT)) (-3085 (((-114) $ $) 120 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ $) 113 T ELT) (($ $ (-419 (-558))) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-567 |#1|) (-142) (-13 (-416) (-1223))) (T -567)) +((-2269 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2268 (*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2269 (*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2269 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))))) (-2267 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) (-2872 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) (-3002 (*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-114)))) (-3604 (*1 *2 *1) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-114)))) (-2266 (*1 *2 *1 *3) (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-114))))) +(-13 (-464) (-860) (-1223) (-1022) (-1058 (-558)) (-10 -8 (-6 -4199) (-15 -2269 ($ |t#1| |t#1|)) (-15 -2268 ($ |t#1| |t#1|)) (-15 -2269 ($ |t#1|)) (-15 -2269 ($ (-419 (-558)))) (-15 -2267 (|t#1| $)) (-15 -2872 (|t#1| $)) (-15 -3002 (|t#1| $)) (-15 -3603 ((-114) $)) (-15 -3604 ((-114) $)) (-15 -2266 ((-114) $ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-35) . T) ((-95) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-296) . T) ((-302) . T) ((-464) . T) ((-505) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-860) . T) ((-863) . T) ((-1022) . T) ((-1058 (-558)) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1223) . T) ((-1226) . T) ((-1237) . T)) +((-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 9 T ELT)) (-2272 (($ $) 11 T ELT)) (-2270 (((-114) $) 20 T ELT)) (-3886 (((-3 $ "failed") $) 16 T ELT)) (-2271 (((-114) $ $) 22 T ELT))) +(((-568 |#1|) (-10 -7 (-15 -2270 ((-114) |#1|)) (-15 -2271 ((-114) |#1| |#1|)) (-15 -2272 (|#1| |#1|)) (-15 -2273 ((-2 (|:| -1979 |#1|) (|:| -4411 |#1|) (|:| |associate| |#1|)) |#1|)) (-15 -3886 ((-3 |#1| "failed") |#1|))) (-569)) (T -568)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) (((-569) (-142)) (T -569)) -((-3886 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-2274 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1980 *1) (|:| -4412 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-2273 (*1 *1 *1) (-4 *1 (-569))) (-2272 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114)))) (-2271 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) -(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -3886 ((-3 $ "failed") $ $)) (-15 -2274 ((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $)) (-15 -2273 ($ $)) (-15 -2272 ((-114) $ $)) (-15 -2271 ((-114) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2276 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1198) (-661 |#2|)) 38 T ELT)) (-2278 (((-595 |#2|) |#2| (-1198)) 63 T ELT)) (-2277 (((-3 |#2| #1#) |#2| (-1198)) 156 T ELT)) (-2279 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1198) (-628 |#2|) (-661 (-628 |#2|))) 159 T ELT)) (-2275 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1198) |#2|) 41 T ELT))) -(((-570 |#1| |#2|) (-10 -7 (-15 -2275 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1198) |#2|)) (-15 -2276 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1198) (-661 |#2|))) (-15 -2277 ((-3 |#2| #1#) |#2| (-1198))) (-15 -2278 ((-595 |#2|) |#2| (-1198))) (-15 -2279 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1198) (-628 |#2|) (-661 (-628 |#2|))))) (-13 (-464) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -570)) -((-2279 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1198)) (-5 *6 (-661 (-628 *3))) (-5 *5 (-628 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *7))) (-4 *7 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-2278 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-2277 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) (-2276 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-661 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-2275 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) -((-4401 (((-417 |#1|) |#1|) 17 T ELT)) (-4162 (((-417 |#1|) |#1|) 32 T ELT)) (-2281 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2280 (((-417 |#1|) |#1|) 59 T ELT))) -(((-571 |#1|) (-10 -7 (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4401 ((-417 |#1|) |#1|)) (-15 -2280 ((-417 |#1|) |#1|)) (-15 -2281 ((-3 |#1| "failed") |#1|))) (-557)) (T -571)) -((-2281 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-557)))) (-2280 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) (-4401 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557))))) -((-2282 (($) 9 T ELT)) (-2285 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1638 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-2884 (((-661 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-4037 (($ (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28 T ELT)) (-2284 (($ (-661 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26 T ELT)) (-2286 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-2420 (((-661 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36 T ELT)) (-2283 (((-1294)) 11 T ELT))) -(((-572) (-10 -8 (-15 -2282 ($)) (-15 -2283 ((-1294))) (-15 -2884 ((-661 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2284 ($ (-661 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1638 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4037 ($ (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2285 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2420 ((-661 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2286 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -572)) -((-2286 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1638 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-572)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-572)))) (-2285 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-572)))) (-4037 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-572)))) (-2284 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4290 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1176 (-229))) (|:| |notEvaluated| #6#))) (|:| -1638 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-572)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-572)))) (-2283 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-572)))) (-2282 (*1 *1) (-5 *1 (-572)))) -((-3486 (((-1192 (-419 (-1192 |#2|))) |#2| (-628 |#2|) (-628 |#2|) (-1192 |#2|)) 35 T ELT)) (-2289 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) (-628 |#2|) |#2| (-419 (-1192 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) |#2| (-1192 |#2|)) 115 T ELT)) (-2287 (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1192 |#2|))) 85 T ELT) (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) |#2| (-1192 |#2|)) 55 T ELT)) (-2288 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-628 |#2|) (-628 |#2|) |#2| (-628 |#2|) |#2| (-419 (-1192 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-628 |#2|) (-628 |#2|) |#2| |#2| (-1192 |#2|)) 114 T ELT)) (-2290 (((-3 |#2| #1#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1198)) (-628 |#2|) |#2| (-419 (-1192 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1198)) |#2| (-1192 |#2|)) 116 T ELT)) (-2291 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2222 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1192 |#2|))) 133 (|has| |#3| (-678 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2222 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) |#2| (-1192 |#2|)) 132 (|has| |#3| (-678 |#2|)) ELT)) (-3487 ((|#2| (-1192 (-419 (-1192 |#2|))) (-628 |#2|) |#2|) 53 T ELT)) (-3480 (((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-628 |#2|)) 34 T ELT))) -(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -2287 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) |#2| (-1192 |#2|))) (-15 -2287 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2288 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-628 |#2|) (-628 |#2|) |#2| |#2| (-1192 |#2|))) (-15 -2288 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-628 |#2|) (-628 |#2|) |#2| (-628 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) |#2| (-1192 |#2|))) (-15 -2289 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|) (-628 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -2290 ((-3 |#2| #1#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1198)) |#2| (-1192 |#2|))) (-15 -2290 ((-3 |#2| #1#) |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1198)) (-628 |#2|) |#2| (-419 (-1192 |#2|)))) (-15 -3486 ((-1192 (-419 (-1192 |#2|))) |#2| (-628 |#2|) (-628 |#2|) (-1192 |#2|))) (-15 -3487 (|#2| (-1192 (-419 (-1192 |#2|))) (-628 |#2|) |#2|)) (-15 -3480 ((-1192 (-419 (-1192 |#2|))) (-1192 |#2|) (-628 |#2|))) (IF (|has| |#3| (-678 |#2|)) (PROGN (-15 -2291 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2222 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) |#2| (-1192 |#2|))) (-15 -2291 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2222 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-628 |#2|) |#2| (-419 (-1192 |#2|))))) |%noBranch|)) (-13 (-464) (-1059 (-558)) (-149) (-658 (-558))) (-13 (-433 |#1|) (-27) (-1224)) (-1122)) (T -573)) -((-2291 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-628 *4)) (-5 *6 (-419 (-1192 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2222 (-661 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1122)))) (-2291 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-628 *4)) (-5 *6 (-1192 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2222 (-661 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1122)))) (-3480 (*1 *2 *3 *4) (-12 (-5 *4 (-628 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1192 *6)) (-4 *7 (-1122)))) (-3487 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-628 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1122)))) (-3486 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1192 *3)) (-4 *7 (-1122)))) (-2290 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1198))) (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1122)))) (-2290 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1198))) (-5 *5 (-1192 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1122)))) (-2289 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-419 (-1192 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1122)))) (-2289 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-1192 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1122)))) (-2288 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1122)))) (-2288 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1122)))) (-2287 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1192 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1122)))) (-2287 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-628 *3)) (-5 *5 (-1192 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1122))))) -((-2301 (((-558) (-558) (-791)) 87 T ELT)) (-2300 (((-558) (-558)) 85 T ELT)) (-2299 (((-558) (-558)) 82 T ELT)) (-2298 (((-558) (-558)) 89 T ELT)) (-3206 (((-558) (-558) (-558)) 67 T ELT)) (-2297 (((-558) (-558) (-558)) 64 T ELT)) (-2296 (((-419 (-558)) (-558)) 29 T ELT)) (-2295 (((-558) (-558)) 34 T ELT)) (-2294 (((-558) (-558)) 76 T ELT)) (-3203 (((-558) (-558)) 47 T ELT)) (-2293 (((-661 (-558)) (-558)) 81 T ELT)) (-2292 (((-558) (-558) (-558) (-558) (-558)) 60 T ELT)) (-3199 (((-419 (-558)) (-558)) 56 T ELT))) -(((-574) (-10 -7 (-15 -3199 ((-419 (-558)) (-558))) (-15 -2292 ((-558) (-558) (-558) (-558) (-558))) (-15 -2293 ((-661 (-558)) (-558))) (-15 -3203 ((-558) (-558))) (-15 -2294 ((-558) (-558))) (-15 -2295 ((-558) (-558))) (-15 -2296 ((-419 (-558)) (-558))) (-15 -2297 ((-558) (-558) (-558))) (-15 -3206 ((-558) (-558) (-558))) (-15 -2298 ((-558) (-558))) (-15 -2299 ((-558) (-558))) (-15 -2300 ((-558) (-558))) (-15 -2301 ((-558) (-558) (-791))))) (T -574)) -((-2301 (*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-791)) (-5 *1 (-574)))) (-2300 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3206 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2297 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2296 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) (-2295 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2294 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3203 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2293 (*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) (-2292 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3199 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) -((-2302 (((-2 (|:| |answer| |#4|) (|:| -2350 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) -(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2302 ((-2 (|:| |answer| |#4|) (|:| -2350 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -575)) -((-2302 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2350 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))) -((-2302 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2350 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18 T ELT))) -(((-576 |#1| |#2|) (-10 -7 (-15 -2302 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2350 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1264 |#1|)) (T -576)) -((-2302 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2350 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-419 *6))))) -((-3069 (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056))) (-789) (-1084)) 116 T ELT) (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056))) (-789)) 118 T ELT)) (-4242 (((-3 (-1056) #1="failed") (-326 (-391)) (-1113 (-855 (-391))) (-1198)) 195 T ELT) (((-3 (-1056) #1#) (-326 (-391)) (-1113 (-855 (-391))) (-1180)) 194 T ELT) (((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))) (-391) (-391) (-1084)) 199 T ELT) (((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))) (-391) (-391)) 200 T ELT) (((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))) (-391)) 201 T ELT) (((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391))))) 202 T ELT) (((-1056) (-326 (-391)) (-1110 (-855 (-391)))) 190 T ELT) (((-1056) (-326 (-391)) (-1110 (-855 (-391))) (-391)) 189 T ELT) (((-1056) (-326 (-391)) (-1110 (-855 (-391))) (-391) (-391)) 185 T ELT) (((-1056) (-789)) 177 T ELT) (((-1056) (-326 (-391)) (-1110 (-855 (-391))) (-391) (-391) (-1084)) 184 T ELT))) -(((-577) (-10 -7 (-15 -4242 ((-1056) (-326 (-391)) (-1110 (-855 (-391))) (-391) (-391) (-1084))) (-15 -4242 ((-1056) (-789))) (-15 -4242 ((-1056) (-326 (-391)) (-1110 (-855 (-391))) (-391) (-391))) (-15 -4242 ((-1056) (-326 (-391)) (-1110 (-855 (-391))) (-391))) (-15 -4242 ((-1056) (-326 (-391)) (-1110 (-855 (-391))))) (-15 -4242 ((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))))) (-15 -4242 ((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))) (-391))) (-15 -4242 ((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))) (-391) (-391))) (-15 -4242 ((-1056) (-326 (-391)) (-661 (-1110 (-855 (-391)))) (-391) (-391) (-1084))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056))) (-789))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056))) (-789) (-1084))) (-15 -4242 ((-3 (-1056) #1="failed") (-326 (-391)) (-1113 (-855 (-391))) (-1180))) (-15 -4242 ((-3 (-1056) #1#) (-326 (-391)) (-1113 (-855 (-391))) (-1198))))) (T -577)) -((-4242 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1113 (-855 (-391)))) (-5 *5 (-1198)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1113 (-855 (-391)))) (-5 *5 (-1180)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-789)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) (-5 *5 (-391)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) (-5 *5 (-391)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) (-5 *5 (-391)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *5 (-391)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *5 (-391)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1056)) (-5 *1 (-577)))) (-4242 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *5 (-391)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577))))) -((-2305 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|)) 195 T ELT)) (-2303 (((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|)) 97 T ELT)) (-2304 (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-628 |#2|) (-628 |#2|) |#2|) 191 T ELT)) (-2306 (((-3 |#2| #1#) |#2| |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1198))) 200 T ELT)) (-2307 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2222 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-1198)) 209 (|has| |#3| (-678 |#2|)) ELT))) -(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2303 ((-595 |#2|) |#2| (-628 |#2|) (-628 |#2|))) (-15 -2304 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-628 |#2|) (-628 |#2|) |#2|)) (-15 -2305 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-628 |#2|) (-628 |#2|) (-661 |#2|))) (-15 -2306 ((-3 |#2| #1#) |#2| |#2| |#2| (-628 |#2|) (-628 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1198)))) (IF (|has| |#3| (-678 |#2|)) (-15 -2307 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2222 (-661 |#2|))) |#3| |#2| (-628 |#2|) (-628 |#2|) (-1198))) |%noBranch|)) (-13 (-464) (-1059 (-558)) (-149) (-658 (-558))) (-13 (-433 |#1|) (-27) (-1224)) (-1122)) (T -578)) -((-2307 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-628 *4)) (-5 *6 (-1198)) (-4 *4 (-13 (-433 *7) (-27) (-1224))) (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2222 (-661 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1122)))) (-2306 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1198))) (-4 *2 (-13 (-433 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1122)))) (-2305 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1224))) (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1122)))) (-2304 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122)))) (-2303 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1224))) (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) -((-2308 (((-2 (|:| -2557 |#2|) (|:| |nconst| |#2|)) |#2| (-1198)) 64 T ELT)) (-2310 (((-3 |#2| #1="failed") |#2| (-1198) (-855 |#2|) (-855 |#2|)) 175 (-12 (|has| |#2| (-1160)) (|has| |#1| (-631 (-905 (-558)))) (|has| |#1| (-901 (-558)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1198)) 155 (-12 (|has| |#2| (-647)) (|has| |#1| (-631 (-905 (-558)))) (|has| |#1| (-901 (-558)))) ELT)) (-2309 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1198)) 157 (-12 (|has| |#2| (-647)) (|has| |#1| (-631 (-905 (-558)))) (|has| |#1| (-901 (-558)))) ELT))) -(((-579 |#1| |#2|) (-10 -7 (-15 -2308 ((-2 (|:| -2557 |#2|) (|:| |nconst| |#2|)) |#2| (-1198))) (IF (|has| |#1| (-631 (-905 (-558)))) (IF (|has| |#1| (-901 (-558))) (PROGN (IF (|has| |#2| (-647)) (PROGN (-15 -2309 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1198))) (-15 -2310 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1198)))) |%noBranch|) (IF (|has| |#2| (-1160)) (-15 -2310 ((-3 |#2| #1#) |#2| (-1198) (-855 |#2|) (-855 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1059 (-558)) (-464) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -579)) -((-2310 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1198)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) (-4 *2 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-631 (-905 (-558)))) (-4 *5 (-901 (-558))) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) (-5 *1 (-579 *5 *2)))) (-2310 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-631 (-905 (-558)))) (-4 *5 (-901 (-558))) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-2309 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-631 (-905 (-558)))) (-4 *5 (-901 (-558))) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-2308 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) (-5 *2 (-2 (|:| -2557 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) -((-2313 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1="failed") (-419 |#2|) (-661 (-419 |#2|))) 41 T ELT)) (-4242 (((-595 (-419 |#2|)) (-419 |#2|)) 28 T ELT)) (-2311 (((-3 (-419 |#2|) #1#) (-419 |#2|)) 17 T ELT)) (-2312 (((-3 (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-419 |#2|)) 48 T ELT))) -(((-580 |#1| |#2|) (-10 -7 (-15 -4242 ((-595 (-419 |#2|)) (-419 |#2|))) (-15 -2311 ((-3 (-419 |#2|) #1="failed") (-419 |#2|))) (-15 -2312 ((-3 (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-419 |#2|))) (-15 -2313 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-661 (-419 |#2|))))) (-13 (-376) (-149) (-1059 (-558))) (-1264 |#1|)) (T -580)) -((-2313 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-661 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-2312 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2351 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2311 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-376) (-149) (-1059 (-558)))) (-5 *1 (-580 *3 *4)))) (-4242 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) (-5 *2 (-595 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) -((-2314 (((-3 (-558) "failed") |#1|) 14 T ELT)) (-3677 (((-114) |#1|) 13 T ELT)) (-3673 (((-558) |#1|) 9 T ELT))) -(((-581 |#1|) (-10 -7 (-15 -3673 ((-558) |#1|)) (-15 -3677 ((-114) |#1|)) (-15 -2314 ((-3 (-558) "failed") |#1|))) (-1059 (-558))) (T -581)) -((-2314 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) (-3677 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-558))))) (-3673 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) -((-2317 (((-3 (-2 (|:| |mainpart| (-419 (-965 |#1|))) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 (-965 |#1|))) (|:| |logand| (-419 (-965 |#1|))))))) #1="failed") (-419 (-965 |#1|)) (-1198) (-661 (-419 (-965 |#1|)))) 48 T ELT)) (-2315 (((-595 (-419 (-965 |#1|))) (-419 (-965 |#1|)) (-1198)) 28 T ELT)) (-2316 (((-3 (-419 (-965 |#1|)) #1#) (-419 (-965 |#1|)) (-1198)) 23 T ELT)) (-2318 (((-3 (-2 (|:| -2351 (-419 (-965 |#1|))) (|:| |coeff| (-419 (-965 |#1|)))) #1#) (-419 (-965 |#1|)) (-1198) (-419 (-965 |#1|))) 35 T ELT))) -(((-582 |#1|) (-10 -7 (-15 -2315 ((-595 (-419 (-965 |#1|))) (-419 (-965 |#1|)) (-1198))) (-15 -2316 ((-3 (-419 (-965 |#1|)) #1="failed") (-419 (-965 |#1|)) (-1198))) (-15 -2317 ((-3 (-2 (|:| |mainpart| (-419 (-965 |#1|))) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 (-965 |#1|))) (|:| |logand| (-419 (-965 |#1|))))))) #1#) (-419 (-965 |#1|)) (-1198) (-661 (-419 (-965 |#1|))))) (-15 -2318 ((-3 (-2 (|:| -2351 (-419 (-965 |#1|))) (|:| |coeff| (-419 (-965 |#1|)))) #1#) (-419 (-965 |#1|)) (-1198) (-419 (-965 |#1|))))) (-13 (-569) (-1059 (-558)) (-149))) (T -582)) -((-2318 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)) (-149))) (-5 *2 (-2 (|:| -2351 (-419 (-965 *5))) (|:| |coeff| (-419 (-965 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-965 *5))))) (-2317 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-661 (-419 (-965 *6)))) (-5 *3 (-419 (-965 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-2316 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-965 *4))) (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-149))) (-5 *1 (-582 *4)))) (-2315 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)) (-149))) (-5 *2 (-595 (-419 (-965 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-965 *5)))))) -((-2967 (((-114) $ $) 77 T ELT)) (-3606 (((-114) $) 49 T ELT)) (-3003 ((|#1| $) 39 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) 81 T ELT)) (-3912 (($ $) 142 T ELT)) (-4069 (($ $) 120 T ELT)) (-2873 ((|#1| $) 37 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $) NIL T ELT)) (-3910 (($ $) 144 T ELT)) (-4068 (($ $) 116 T ELT)) (-3914 (($ $) 146 T ELT)) (-4067 (($ $) 124 T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) 95 T ELT)) (-3574 (((-558) $) 97 T ELT)) (-3887 (((-3 $ #1#) $) 80 T ELT)) (-2269 (($ |#1| |#1|) 35 T ELT)) (-3604 (((-114) $) 44 T ELT)) (-4057 (($) 106 T ELT)) (-2641 (((-114) $) 56 T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-3605 (((-114) $) 46 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4372 (($ $) 108 T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2270 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-419 (-558))) 94 T ELT)) (-2268 ((|#1| $) 36 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) 83 T ELT) (($ (-661 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) 82 T ELT)) (-4373 (($ $) 110 T ELT)) (-3915 (($ $) 150 T ELT)) (-4066 (($ $) 122 T ELT)) (-3913 (($ $) 152 T ELT)) (-4065 (($ $) 126 T ELT)) (-3911 (($ $) 148 T ELT)) (-4064 (($ $) 118 T ELT)) (-2267 (((-114) $ |#1|) 42 T ELT)) (-4376 (((-877) $) 102 T ELT) (($ (-558)) 85 T ELT) (($ $) NIL T ELT) (($ (-558)) 85 T ELT)) (-3528 (((-791)) 104 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) 164 T ELT)) (-3906 (($ $) 132 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3916 (($ $) 162 T ELT)) (-3904 (($ $) 128 T ELT)) (-3920 (($ $) 160 T ELT)) (-3908 (($ $) 140 T ELT)) (-3921 (($ $) 158 T ELT)) (-3909 (($ $) 138 T ELT)) (-3919 (($ $) 156 T ELT)) (-3907 (($ $) 134 T ELT)) (-3917 (($ $) 154 T ELT)) (-3905 (($ $) 130 T ELT)) (-3059 (($) 30 T CONST)) (-3065 (($) 10 T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 50 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 48 T ELT)) (-4267 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-4269 (($ $ $) 53 T ELT)) (** (($ $ (-938)) 73 T ELT) (($ $ (-791)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-419 (-558))) 166 T ELT)) (* (($ (-938) $) 67 T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 62 T ELT))) -(((-583 |#1|) (-567 |#1|) (-13 (-416) (-1224))) (T -583)) -NIL -((-3105 (((-3 (-661 (-1192 (-558))) "failed") (-661 (-1192 (-558))) (-1192 (-558))) 27 T ELT))) -(((-584) (-10 -7 (-15 -3105 ((-3 (-661 (-1192 (-558))) "failed") (-661 (-1192 (-558))) (-1192 (-558)))))) (T -584)) -((-3105 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1192 (-558)))) (-5 *3 (-1192 (-558))) (-5 *1 (-584))))) -((-2319 (((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-1198)) 19 T ELT)) (-2322 (((-661 (-628 |#2|)) (-661 |#2|) (-1198)) 23 T ELT)) (-3652 (((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-661 (-628 |#2|))) 11 T ELT)) (-2323 ((|#2| |#2| (-1198)) 59 (|has| |#1| (-569)) ELT)) (-2324 ((|#2| |#2| (-1198)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-464))) ELT)) (-2321 (((-628 |#2|) (-628 |#2|) (-661 (-628 |#2|)) (-1198)) 25 T ELT)) (-2320 (((-628 |#2|) (-661 (-628 |#2|))) 24 T ELT)) (-2325 (((-595 |#2|) |#2| (-1198) (-1 (-595 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-647)) (|has| |#2| (-1059 (-1198))) (|has| |#1| (-631 (-905 (-558)))) (|has| |#1| (-464)) (|has| |#1| (-901 (-558)))) ELT))) -(((-585 |#1| |#2|) (-10 -7 (-15 -2319 ((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-1198))) (-15 -2320 ((-628 |#2|) (-661 (-628 |#2|)))) (-15 -2321 ((-628 |#2|) (-628 |#2|) (-661 (-628 |#2|)) (-1198))) (-15 -3652 ((-661 (-628 |#2|)) (-661 (-628 |#2|)) (-661 (-628 |#2|)))) (-15 -2322 ((-661 (-628 |#2|)) (-661 |#2|) (-1198))) (IF (|has| |#1| (-569)) (-15 -2323 (|#2| |#2| (-1198))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-296)) (PROGN (-15 -2324 (|#2| |#2| (-1198))) (IF (|has| |#1| (-631 (-905 (-558)))) (IF (|has| |#1| (-901 (-558))) (IF (|has| |#2| (-647)) (IF (|has| |#2| (-1059 (-1198))) (-15 -2325 ((-595 |#2|) |#2| (-1198) (-1 (-595 |#2|) |#2| (-1198)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1198)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1122) (-433 |#1|)) (T -585)) -((-2325 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-595 *3) *3 (-1198))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1198))) (-4 *3 (-296)) (-4 *3 (-647)) (-4 *3 (-1059 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1198)) (-4 *7 (-631 (-905 (-558)))) (-4 *7 (-464)) (-4 *7 (-901 (-558))) (-4 *7 (-1122)) (-5 *2 (-595 *3)) (-5 *1 (-585 *7 *3)))) (-2324 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-464)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) (-4 *2 (-296)) (-4 *2 (-433 *4)))) (-2323 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) (-4 *2 (-433 *4)))) (-2322 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-1198)) (-4 *6 (-433 *5)) (-4 *5 (-1122)) (-5 *2 (-661 (-628 *6))) (-5 *1 (-585 *5 *6)))) (-3652 (*1 *2 *2 *2) (-12 (-5 *2 (-661 (-628 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1122)) (-5 *1 (-585 *3 *4)))) (-2321 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-661 (-628 *6))) (-5 *4 (-1198)) (-5 *2 (-628 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1122)) (-5 *1 (-585 *5 *6)))) (-2320 (*1 *2 *3) (-12 (-5 *3 (-661 (-628 *5))) (-4 *4 (-1122)) (-5 *2 (-628 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-433 *4)))) (-2319 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-628 *5))) (-5 *3 (-1198)) (-4 *5 (-433 *4)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *5))))) -((-2328 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-661 |#1|) #1="failed") (-558) |#1| |#1|)) 199 T ELT)) (-2331 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-661 (-419 |#2|))) 174 T ELT)) (-2334 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-661 (-419 |#2|))) 171 T ELT)) (-2335 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2326 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2333 (((-3 (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202 T ELT)) (-2329 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|)) 205 T ELT)) (-2337 (((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2338 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2332 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-661 (-419 |#2|))) 178 T ELT)) (-2336 (((-3 (-640 |#1| |#2|) #1#) (-640 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|)) 166 T ELT)) (-2327 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|)) 189 T ELT)) (-2330 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|)) 210 T ELT))) -(((-586 |#1| |#2|) (-10 -7 (-15 -2326 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2327 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2328 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-661 |#1|) #1#) (-558) |#1| |#1|))) (-15 -2329 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|))) (-15 -2330 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|))) (-15 -2331 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-661 (-419 |#2|)))) (-15 -2332 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-661 (-419 |#2|)))) (-15 -2333 ((-3 (-2 (|:| -2351 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2334 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-661 (-419 |#2|)))) (-15 -2335 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2336 ((-3 (-640 |#1| |#2|) #1#) (-640 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3539 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2337 ((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2338 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1264 |#1|)) (T -586)) -((-2338 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-2337 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-595 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2336 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-640 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3539 *4) (|:| |sol?| (-114))) (-558) *4)) (-4 *4 (-376)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5)))) (-2335 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-376)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4)))) (-2334 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-661 (-419 *7))) (-4 *7 (-1264 *6)) (-5 *3 (-419 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-2333 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2351 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2332 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3539 *7) (|:| |sol?| (-114))) (-558) *7)) (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2331 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2330 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3539 *6) (|:| |sol?| (-114))) (-558) *6)) (-4 *6 (-376)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2351 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2329 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1264 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2351 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2328 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-661 *6) "failed") (-558) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2327 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3539 *6) (|:| |sol?| (-114))) (-558) *6)) (-4 *6 (-376)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1264 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) -((-2339 (((-3 |#2| "failed") |#2| (-1198) (-1198)) 10 T ELT))) -(((-587 |#1| |#2|) (-10 -7 (-15 -2339 ((-3 |#2| "failed") |#2| (-1198) (-1198)))) (-13 (-319) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-979) (-1160) (-29 |#1|))) (T -587)) -((-2339 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-1160) (-29 *4)))))) -((-2954 (((-711 (-1247)) $ (-1247)) 27 T ELT)) (-2955 (((-711 (-562)) $ (-562)) 26 T ELT)) (-2953 (((-791) $ (-131)) 28 T ELT)) (-2956 (((-711 (-130)) $ (-130)) 25 T ELT)) (-2210 (((-711 (-1247)) $) 12 T ELT)) (-2206 (((-711 (-1245)) $) 8 T ELT)) (-2208 (((-711 (-1244)) $) 10 T ELT)) (-2211 (((-711 (-562)) $) 13 T ELT)) (-2207 (((-711 (-560)) $) 9 T ELT)) (-2209 (((-711 (-559)) $) 11 T ELT)) (-2205 (((-791) $ (-131)) 7 T ELT)) (-2212 (((-711 (-130)) $) 14 T ELT)) (-1903 (($ $) 6 T ELT))) +((-3885 (*1 *1 *1 *1) (|partial| -4 *1 (-569))) (-2273 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -1979 *1) (|:| -4411 *1) (|:| |associate| *1))) (-4 *1 (-569)))) (-2272 (*1 *1 *1) (-4 *1 (-569))) (-2271 (*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114)))) (-2270 (*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) +(-13 (-175) (-38 $) (-302) (-10 -8 (-15 -3885 ((-3 $ "failed") $ $)) (-15 -2273 ((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $)) (-15 -2272 ($ $)) (-15 -2271 ((-114) $ $)) (-15 -2270 ((-114) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2275 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-1197) (-660 |#2|)) 38 T ELT)) (-2277 (((-595 |#2|) |#2| (-1197)) 63 T ELT)) (-2276 (((-3 |#2| #1#) |#2| (-1197)) 156 T ELT)) (-2278 (((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1197) (-627 |#2|) (-660 (-627 |#2|))) 159 T ELT)) (-2274 (((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1197) |#2|) 41 T ELT))) +(((-570 |#1| |#2|) (-10 -7 (-15 -2274 ((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-1197) |#2|)) (-15 -2275 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-1197) (-660 |#2|))) (-15 -2276 ((-3 |#2| #1#) |#2| (-1197))) (-15 -2277 ((-595 |#2|) |#2| (-1197))) (-15 -2278 ((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-1197) (-627 |#2|) (-660 (-627 |#2|))))) (-13 (-464) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -570)) +((-2278 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-660 (-627 *3))) (-5 *5 (-627 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *7))) (-4 *7 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3)))) (-2277 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-2276 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) (-2275 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-660 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3)))) (-2274 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) +((-4400 (((-417 |#1|) |#1|) 17 T ELT)) (-4161 (((-417 |#1|) |#1|) 32 T ELT)) (-2280 (((-3 |#1| "failed") |#1|) 48 T ELT)) (-2279 (((-417 |#1|) |#1|) 59 T ELT))) +(((-571 |#1|) (-10 -7 (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4400 ((-417 |#1|) |#1|)) (-15 -2279 ((-417 |#1|) |#1|)) (-15 -2280 ((-3 |#1| "failed") |#1|))) (-557)) (T -571)) +((-2280 (*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-557)))) (-2279 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) (-4400 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557))))) +((-2281 (($) 9 T ELT)) (-2284 (((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1637 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated")))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 34 T ELT)) (-2883 (((-660 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 31 T ELT)) (-4036 (($ (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) 28 T ELT)) (-2283 (($ (-660 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) 26 T ELT)) (-2285 (((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 38 T ELT)) (-2419 (((-660 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $) 36 T ELT)) (-2282 (((-1293)) 11 T ELT))) +(((-572) (-10 -8 (-15 -2281 ($)) (-15 -2282 ((-1293))) (-15 -2883 ((-660 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2283 ($ (-660 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1637 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))))))) (-15 -4036 ($ (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-15 -2284 ((-3 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) "failed") (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2419 ((-660 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) $)) (-15 -2285 ((-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -572)) +((-2285 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1="Continuous at the end points") (|:| |lowerSingular| #2="There is a singularity at the lower end point") (|:| |upperSingular| #3="There is a singularity at the upper end point") (|:| |bothSingular| #4="There are singularities at both end points") (|:| |notEvaluated| #5="End point continuity not yet evaluated"))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6="Internal singularities not yet evaluated"))) (|:| -1637 (-3 (|:| |finite| #7="The range is finite") (|:| |lowerInfinite| #8="The bottom of range is infinite") (|:| |upperInfinite| #9="The top of range is infinite") (|:| |bothInfinite| #10="Both top and bottom points are infinite") (|:| |notEvaluated| #11="Range not yet evaluated"))))) (-5 *1 (-572)))) (-2419 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-572)))) (-2284 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))) (-5 *1 (-572)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#))))))) (-5 *1 (-572)))) (-2283 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4289 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| #1#) (|:| |lowerSingular| #2#) (|:| |upperSingular| #3#) (|:| |bothSingular| #4#) (|:| |notEvaluated| #5#))) (|:| |singularitiesStream| (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| #6#))) (|:| -1637 (-3 (|:| |finite| #7#) (|:| |lowerInfinite| #8#) (|:| |upperInfinite| #9#) (|:| |bothInfinite| #10#) (|:| |notEvaluated| #11#)))))))) (-5 *1 (-572)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-572)))) (-2282 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-572)))) (-2281 (*1 *1) (-5 *1 (-572)))) +((-3485 (((-1191 (-419 (-1191 |#2|))) |#2| (-627 |#2|) (-627 |#2|) (-1191 |#2|)) 35 T ELT)) (-2288 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-627 |#2|) (-627 |#2|) (-660 |#2|) (-627 |#2|) |#2| (-419 (-1191 |#2|))) 105 T ELT) (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-627 |#2|) (-627 |#2|) (-660 |#2|) |#2| (-1191 |#2|)) 115 T ELT)) (-2286 (((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|) (-627 |#2|) |#2| (-419 (-1191 |#2|))) 85 T ELT) (((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|) |#2| (-1191 |#2|)) 55 T ELT)) (-2287 (((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-627 |#2|) (-627 |#2|) |#2| (-627 |#2|) |#2| (-419 (-1191 |#2|))) 92 T ELT) (((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-627 |#2|) (-627 |#2|) |#2| |#2| (-1191 |#2|)) 114 T ELT)) (-2289 (((-3 |#2| #1#) |#2| |#2| (-627 |#2|) (-627 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1197)) (-627 |#2|) |#2| (-419 (-1191 |#2|))) 110 T ELT) (((-3 |#2| #1#) |#2| |#2| (-627 |#2|) (-627 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1197)) |#2| (-1191 |#2|)) 116 T ELT)) (-2290 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2221 (-660 |#2|))) |#3| |#2| (-627 |#2|) (-627 |#2|) (-627 |#2|) |#2| (-419 (-1191 |#2|))) 133 (|has| |#3| (-677 |#2|)) ELT) (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2221 (-660 |#2|))) |#3| |#2| (-627 |#2|) (-627 |#2|) |#2| (-1191 |#2|)) 132 (|has| |#3| (-677 |#2|)) ELT)) (-3486 ((|#2| (-1191 (-419 (-1191 |#2|))) (-627 |#2|) |#2|) 53 T ELT)) (-3479 (((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-627 |#2|)) 34 T ELT))) +(((-573 |#1| |#2| |#3|) (-10 -7 (-15 -2286 ((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|) |#2| (-1191 |#2|))) (-15 -2286 ((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|) (-627 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2287 ((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-627 |#2|) (-627 |#2|) |#2| |#2| (-1191 |#2|))) (-15 -2287 ((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-627 |#2|) (-627 |#2|) |#2| (-627 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-627 |#2|) (-627 |#2|) (-660 |#2|) |#2| (-1191 |#2|))) (-15 -2288 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-627 |#2|) (-627 |#2|) (-660 |#2|) (-627 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -2289 ((-3 |#2| #1#) |#2| |#2| (-627 |#2|) (-627 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1197)) |#2| (-1191 |#2|))) (-15 -2289 ((-3 |#2| #1#) |#2| |#2| (-627 |#2|) (-627 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1197)) (-627 |#2|) |#2| (-419 (-1191 |#2|)))) (-15 -3485 ((-1191 (-419 (-1191 |#2|))) |#2| (-627 |#2|) (-627 |#2|) (-1191 |#2|))) (-15 -3486 (|#2| (-1191 (-419 (-1191 |#2|))) (-627 |#2|) |#2|)) (-15 -3479 ((-1191 (-419 (-1191 |#2|))) (-1191 |#2|) (-627 |#2|))) (IF (|has| |#3| (-677 |#2|)) (PROGN (-15 -2290 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2221 (-660 |#2|))) |#3| |#2| (-627 |#2|) (-627 |#2|) |#2| (-1191 |#2|))) (-15 -2290 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2221 (-660 |#2|))) |#3| |#2| (-627 |#2|) (-627 |#2|) (-627 |#2|) |#2| (-419 (-1191 |#2|))))) |%noBranch|)) (-13 (-464) (-1058 (-558)) (-149) (-657 (-558))) (-13 (-433 |#1|) (-27) (-1223)) (-1121)) (T -573)) +((-2290 (*1 *2 *3 *4 *5 *5 *5 *4 *6) (-12 (-5 *5 (-627 *4)) (-5 *6 (-419 (-1191 *4))) (-4 *4 (-13 (-433 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2221 (-660 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1121)))) (-2290 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *5 (-627 *4)) (-5 *6 (-1191 *4)) (-4 *4 (-13 (-433 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2221 (-660 *4)))) (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1121)))) (-3479 (*1 *2 *3 *4) (-12 (-5 *4 (-627 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1191 *6)) (-4 *7 (-1121)))) (-3486 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-627 *2)) (-4 *2 (-13 (-433 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1121)))) (-3485 (*1 *2 *3 *4 *4 *5) (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1191 *3)) (-4 *7 (-1121)))) (-2289 (*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) (|partial| -12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-3 *2 #2="failed") *2 *2 (-1197))) (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1121)))) (-2289 (*1 *2 *2 *2 *3 *3 *4 *2 *5) (|partial| -12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-3 *2 #2#) *2 *2 (-1197))) (-5 *5 (-1191 *2)) (-4 *2 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1121)))) (-2288 (*1 *2 *3 *4 *4 *5 *4 *3 *6) (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-660 *3)) (-5 *6 (-419 (-1191 *3))) (-4 *3 (-13 (-433 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1121)))) (-2288 (*1 *2 *3 *4 *4 *5 *3 *6) (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-660 *3)) (-5 *6 (-1191 *3)) (-4 *3 (-13 (-433 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1121)))) (-2287 (*1 *2 *3 *4 *4 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1121)))) (-2287 (*1 *2 *3 *4 *4 *3 *3 *5) (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1121)))) (-2286 (*1 *2 *3 *4 *4 *4 *3 *5) (-12 (-5 *4 (-627 *3)) (-5 *5 (-419 (-1191 *3))) (-4 *3 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1121)))) (-2286 (*1 *2 *3 *4 *4 *3 *5) (-12 (-5 *4 (-627 *3)) (-5 *5 (-1191 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1121))))) +((-2300 (((-558) (-558) (-790)) 87 T ELT)) (-2299 (((-558) (-558)) 85 T ELT)) (-2298 (((-558) (-558)) 82 T ELT)) (-2297 (((-558) (-558)) 89 T ELT)) (-3205 (((-558) (-558) (-558)) 67 T ELT)) (-2296 (((-558) (-558) (-558)) 64 T ELT)) (-2295 (((-419 (-558)) (-558)) 29 T ELT)) (-2294 (((-558) (-558)) 34 T ELT)) (-2293 (((-558) (-558)) 76 T ELT)) (-3202 (((-558) (-558)) 47 T ELT)) (-2292 (((-660 (-558)) (-558)) 81 T ELT)) (-2291 (((-558) (-558) (-558) (-558) (-558)) 60 T ELT)) (-3198 (((-419 (-558)) (-558)) 56 T ELT))) +(((-574) (-10 -7 (-15 -3198 ((-419 (-558)) (-558))) (-15 -2291 ((-558) (-558) (-558) (-558) (-558))) (-15 -2292 ((-660 (-558)) (-558))) (-15 -3202 ((-558) (-558))) (-15 -2293 ((-558) (-558))) (-15 -2294 ((-558) (-558))) (-15 -2295 ((-419 (-558)) (-558))) (-15 -2296 ((-558) (-558) (-558))) (-15 -3205 ((-558) (-558) (-558))) (-15 -2297 ((-558) (-558))) (-15 -2298 ((-558) (-558))) (-15 -2299 ((-558) (-558))) (-15 -2300 ((-558) (-558) (-790))))) (T -574)) +((-2300 (*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-790)) (-5 *1 (-574)))) (-2299 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2298 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2297 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3205 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2296 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2295 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) (-2294 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2293 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3202 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-2292 (*1 *2 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) (-2291 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) (-3198 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) +((-2301 (((-2 (|:| |answer| |#4|) (|:| -2349 |#4|)) |#4| (-1 |#2| |#2|)) 56 T ELT))) +(((-575 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2301 ((-2 (|:| |answer| |#4|) (|:| -2349 |#4|)) |#4| (-1 |#2| |#2|)))) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -575)) +((-2301 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2349 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7))))) +((-2301 (((-2 (|:| |answer| (-419 |#2|)) (|:| -2349 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 18 T ELT))) +(((-576 |#1| |#2|) (-10 -7 (-15 -2301 ((-2 (|:| |answer| (-419 |#2|)) (|:| -2349 (-419 |#2|)) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1263 |#1|)) (T -576)) +((-2301 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| (-419 *6)) (|:| -2349 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-419 *6))))) +((-3068 (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055))) (-788) (-1083)) 116 T ELT) (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055))) (-788)) 118 T ELT)) (-4241 (((-3 (-1055) #1="failed") (-326 (-391)) (-1112 (-854 (-391))) (-1197)) 195 T ELT) (((-3 (-1055) #1#) (-326 (-391)) (-1112 (-854 (-391))) (-1179)) 194 T ELT) (((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))) (-391) (-391) (-1083)) 199 T ELT) (((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))) (-391) (-391)) 200 T ELT) (((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))) (-391)) 201 T ELT) (((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391))))) 202 T ELT) (((-1055) (-326 (-391)) (-1109 (-854 (-391)))) 190 T ELT) (((-1055) (-326 (-391)) (-1109 (-854 (-391))) (-391)) 189 T ELT) (((-1055) (-326 (-391)) (-1109 (-854 (-391))) (-391) (-391)) 185 T ELT) (((-1055) (-788)) 177 T ELT) (((-1055) (-326 (-391)) (-1109 (-854 (-391))) (-391) (-391) (-1083)) 184 T ELT))) +(((-577) (-10 -7 (-15 -4241 ((-1055) (-326 (-391)) (-1109 (-854 (-391))) (-391) (-391) (-1083))) (-15 -4241 ((-1055) (-788))) (-15 -4241 ((-1055) (-326 (-391)) (-1109 (-854 (-391))) (-391) (-391))) (-15 -4241 ((-1055) (-326 (-391)) (-1109 (-854 (-391))) (-391))) (-15 -4241 ((-1055) (-326 (-391)) (-1109 (-854 (-391))))) (-15 -4241 ((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))))) (-15 -4241 ((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))) (-391))) (-15 -4241 ((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))) (-391) (-391))) (-15 -4241 ((-1055) (-326 (-391)) (-660 (-1109 (-854 (-391)))) (-391) (-391) (-1083))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055))) (-788))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055))) (-788) (-1083))) (-15 -4241 ((-3 (-1055) #1="failed") (-326 (-391)) (-1112 (-854 (-391))) (-1179))) (-15 -4241 ((-3 (-1055) #1#) (-326 (-391)) (-1112 (-854 (-391))) (-1197))))) (T -577)) +((-4241 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1112 (-854 (-391)))) (-5 *5 (-1197)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1112 (-854 (-391)))) (-5 *5 (-1179)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-788)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) (-5 *1 (-577)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) (-5 *5 (-391)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) (-5 *5 (-391)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) (-5 *5 (-391)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *5 (-391)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *5 (-391)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1055)) (-5 *1 (-577)))) (-4241 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *5 (-391)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577))))) +((-2304 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-627 |#2|) (-627 |#2|) (-660 |#2|)) 195 T ELT)) (-2302 (((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|)) 97 T ELT)) (-2303 (((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| (-627 |#2|) (-627 |#2|) |#2|) 191 T ELT)) (-2305 (((-3 |#2| #1#) |#2| |#2| |#2| (-627 |#2|) (-627 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1197))) 200 T ELT)) (-2306 (((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2221 (-660 |#2|))) |#3| |#2| (-627 |#2|) (-627 |#2|) (-1197)) 209 (|has| |#3| (-677 |#2|)) ELT))) +(((-578 |#1| |#2| |#3|) (-10 -7 (-15 -2302 ((-595 |#2|) |#2| (-627 |#2|) (-627 |#2|))) (-15 -2303 ((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1="failed") |#2| (-627 |#2|) (-627 |#2|) |#2|)) (-15 -2304 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-627 |#2|) (-627 |#2|) (-660 |#2|))) (-15 -2305 ((-3 |#2| #1#) |#2| |#2| |#2| (-627 |#2|) (-627 |#2|) (-1 (-3 |#2| #1#) |#2| |#2| (-1197)))) (IF (|has| |#3| (-677 |#2|)) (-15 -2306 ((-2 (|:| |particular| (-3 |#2| #1#)) (|:| -2221 (-660 |#2|))) |#3| |#2| (-627 |#2|) (-627 |#2|) (-1197))) |%noBranch|)) (-13 (-464) (-1058 (-558)) (-149) (-657 (-558))) (-13 (-433 |#1|) (-27) (-1223)) (-1121)) (T -578)) +((-2306 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *5 (-627 *4)) (-5 *6 (-1197)) (-4 *4 (-13 (-433 *7) (-27) (-1223))) (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2221 (-660 *4)))) (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1121)))) (-2305 (*1 *2 *2 *2 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1197))) (-4 *2 (-13 (-433 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121)))) (-2304 (*1 *2 *3 *4 *4 *5) (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-660 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1223))) (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121)))) (-2303 (*1 *2 *3 *4 *4 *3) (|partial| -12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121)))) (-2302 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1223))) (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) +((-2307 (((-2 (|:| -2556 |#2|) (|:| |nconst| |#2|)) |#2| (-1197)) 64 T ELT)) (-2309 (((-3 |#2| #1="failed") |#2| (-1197) (-854 |#2|) (-854 |#2|)) 175 (-12 (|has| |#2| (-1159)) (|has| |#1| (-630 (-904 (-558)))) (|has| |#1| (-900 (-558)))) ELT) (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1197)) 155 (-12 (|has| |#2| (-646)) (|has| |#1| (-630 (-904 (-558)))) (|has| |#1| (-900 (-558)))) ELT)) (-2308 (((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1197)) 157 (-12 (|has| |#2| (-646)) (|has| |#1| (-630 (-904 (-558)))) (|has| |#1| (-900 (-558)))) ELT))) +(((-579 |#1| |#2|) (-10 -7 (-15 -2307 ((-2 (|:| -2556 |#2|) (|:| |nconst| |#2|)) |#2| (-1197))) (IF (|has| |#1| (-630 (-904 (-558)))) (IF (|has| |#1| (-900 (-558))) (PROGN (IF (|has| |#2| (-646)) (PROGN (-15 -2308 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1="failed") |#2| (-1197))) (-15 -2309 ((-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) #1#) |#2| (-1197)))) |%noBranch|) (IF (|has| |#2| (-1159)) (-15 -2309 ((-3 |#2| #1#) |#2| (-1197) (-854 |#2|) (-854 |#2|))) |%noBranch|)) |%noBranch|) |%noBranch|)) (-13 (-1058 (-558)) (-464) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -579)) +((-2309 (*1 *2 *2 *3 *4 *4) (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-854 *2)) (-4 *2 (-1159)) (-4 *2 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-630 (-904 (-558)))) (-4 *5 (-900 (-558))) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *1 (-579 *5 *2)))) (-2309 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-630 (-904 (-558)))) (-4 *5 (-900 (-558))) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-646)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-2308 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-630 (-904 (-558)))) (-4 *5 (-900 (-558))) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-646)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-2307 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *2 (-2 (|:| -2556 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) +((-2312 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1="failed") (-419 |#2|) (-660 (-419 |#2|))) 41 T ELT)) (-4241 (((-595 (-419 |#2|)) (-419 |#2|)) 28 T ELT)) (-2310 (((-3 (-419 |#2|) #1#) (-419 |#2|)) 17 T ELT)) (-2311 (((-3 (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-419 |#2|)) 48 T ELT))) +(((-580 |#1| |#2|) (-10 -7 (-15 -4241 ((-595 (-419 |#2|)) (-419 |#2|))) (-15 -2310 ((-3 (-419 |#2|) #1="failed") (-419 |#2|))) (-15 -2311 ((-3 (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-419 |#2|))) (-15 -2312 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-660 (-419 |#2|))))) (-13 (-376) (-149) (-1058 (-558))) (-1263 |#1|)) (T -580)) +((-2312 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-660 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6)))) (-2311 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -2350 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) (-2310 (*1 *2 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-376) (-149) (-1058 (-558)))) (-5 *1 (-580 *3 *4)))) (-4241 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) (-5 *2 (-595 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) +((-2313 (((-3 (-558) "failed") |#1|) 14 T ELT)) (-3676 (((-114) |#1|) 13 T ELT)) (-3672 (((-558) |#1|) 9 T ELT))) +(((-581 |#1|) (-10 -7 (-15 -3672 ((-558) |#1|)) (-15 -3676 ((-114) |#1|)) (-15 -2313 ((-3 (-558) "failed") |#1|))) (-1058 (-558))) (T -581)) +((-2313 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2)))) (-3676 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-581 *3)) (-4 *3 (-1058 (-558))))) (-3672 (*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2))))) +((-2316 (((-3 (-2 (|:| |mainpart| (-419 (-964 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 (-964 |#1|))) (|:| |logand| (-419 (-964 |#1|))))))) #1="failed") (-419 (-964 |#1|)) (-1197) (-660 (-419 (-964 |#1|)))) 48 T ELT)) (-2314 (((-595 (-419 (-964 |#1|))) (-419 (-964 |#1|)) (-1197)) 28 T ELT)) (-2315 (((-3 (-419 (-964 |#1|)) #1#) (-419 (-964 |#1|)) (-1197)) 23 T ELT)) (-2317 (((-3 (-2 (|:| -2350 (-419 (-964 |#1|))) (|:| |coeff| (-419 (-964 |#1|)))) #1#) (-419 (-964 |#1|)) (-1197) (-419 (-964 |#1|))) 35 T ELT))) +(((-582 |#1|) (-10 -7 (-15 -2314 ((-595 (-419 (-964 |#1|))) (-419 (-964 |#1|)) (-1197))) (-15 -2315 ((-3 (-419 (-964 |#1|)) #1="failed") (-419 (-964 |#1|)) (-1197))) (-15 -2316 ((-3 (-2 (|:| |mainpart| (-419 (-964 |#1|))) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 (-964 |#1|))) (|:| |logand| (-419 (-964 |#1|))))))) #1#) (-419 (-964 |#1|)) (-1197) (-660 (-419 (-964 |#1|))))) (-15 -2317 ((-3 (-2 (|:| -2350 (-419 (-964 |#1|))) (|:| |coeff| (-419 (-964 |#1|)))) #1#) (-419 (-964 |#1|)) (-1197) (-419 (-964 |#1|))))) (-13 (-569) (-1058 (-558)) (-149))) (T -582)) +((-2317 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)) (-149))) (-5 *2 (-2 (|:| -2350 (-419 (-964 *5))) (|:| |coeff| (-419 (-964 *5))))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-964 *5))))) (-2316 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-660 (-419 (-964 *6)))) (-5 *3 (-419 (-964 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6)))) (-2315 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-419 (-964 *4))) (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-149))) (-5 *1 (-582 *4)))) (-2314 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)) (-149))) (-5 *2 (-595 (-419 (-964 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-964 *5)))))) +((-2966 (((-114) $ $) 77 T ELT)) (-3605 (((-114) $) 49 T ELT)) (-3002 ((|#1| $) 39 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) 81 T ELT)) (-3911 (($ $) 142 T ELT)) (-4068 (($ $) 120 T ELT)) (-2872 ((|#1| $) 37 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $) NIL T ELT)) (-3909 (($ $) 144 T ELT)) (-4067 (($ $) 116 T ELT)) (-3913 (($ $) 146 T ELT)) (-4066 (($ $) 124 T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) 95 T ELT)) (-3573 (((-558) $) 97 T ELT)) (-3886 (((-3 $ #1#) $) 80 T ELT)) (-2268 (($ |#1| |#1|) 35 T ELT)) (-3603 (((-114) $) 44 T ELT)) (-4056 (($) 106 T ELT)) (-2640 (((-114) $) 56 T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-3604 (((-114) $) 46 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4371 (($ $) 108 T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2269 (($ |#1| |#1|) 29 T ELT) (($ |#1|) 34 T ELT) (($ (-419 (-558))) 94 T ELT)) (-2267 ((|#1| $) 36 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) 83 T ELT) (($ (-660 $)) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) 82 T ELT)) (-4372 (($ $) 110 T ELT)) (-3914 (($ $) 150 T ELT)) (-4065 (($ $) 122 T ELT)) (-3912 (($ $) 152 T ELT)) (-4064 (($ $) 126 T ELT)) (-3910 (($ $) 148 T ELT)) (-4063 (($ $) 118 T ELT)) (-2266 (((-114) $ |#1|) 42 T ELT)) (-4375 (((-876) $) 102 T ELT) (($ (-558)) 85 T ELT) (($ $) NIL T ELT) (($ (-558)) 85 T ELT)) (-3527 (((-790)) 104 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) 164 T ELT)) (-3905 (($ $) 132 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3915 (($ $) 162 T ELT)) (-3903 (($ $) 128 T ELT)) (-3919 (($ $) 160 T ELT)) (-3907 (($ $) 140 T ELT)) (-3920 (($ $) 158 T ELT)) (-3908 (($ $) 138 T ELT)) (-3918 (($ $) 156 T ELT)) (-3906 (($ $) 134 T ELT)) (-3916 (($ $) 154 T ELT)) (-3904 (($ $) 130 T ELT)) (-3058 (($) 30 T CONST)) (-3064 (($) 10 T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 50 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 48 T ELT)) (-4266 (($ $) 54 T ELT) (($ $ $) 55 T ELT)) (-4268 (($ $ $) 53 T ELT)) (** (($ $ (-937)) 73 T ELT) (($ $ (-790)) NIL T ELT) (($ $ $) 112 T ELT) (($ $ (-419 (-558))) 166 T ELT)) (* (($ (-937) $) 67 T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 62 T ELT))) +(((-583 |#1|) (-567 |#1|) (-13 (-416) (-1223))) (T -583)) +NIL +((-3104 (((-3 (-660 (-1191 (-558))) "failed") (-660 (-1191 (-558))) (-1191 (-558))) 27 T ELT))) +(((-584) (-10 -7 (-15 -3104 ((-3 (-660 (-1191 (-558))) "failed") (-660 (-1191 (-558))) (-1191 (-558)))))) (T -584)) +((-3104 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1191 (-558)))) (-5 *3 (-1191 (-558))) (-5 *1 (-584))))) +((-2318 (((-660 (-627 |#2|)) (-660 (-627 |#2|)) (-1197)) 19 T ELT)) (-2321 (((-660 (-627 |#2|)) (-660 |#2|) (-1197)) 23 T ELT)) (-3651 (((-660 (-627 |#2|)) (-660 (-627 |#2|)) (-660 (-627 |#2|))) 11 T ELT)) (-2322 ((|#2| |#2| (-1197)) 59 (|has| |#1| (-569)) ELT)) (-2323 ((|#2| |#2| (-1197)) 87 (-12 (|has| |#2| (-296)) (|has| |#1| (-464))) ELT)) (-2320 (((-627 |#2|) (-627 |#2|) (-660 (-627 |#2|)) (-1197)) 25 T ELT)) (-2319 (((-627 |#2|) (-660 (-627 |#2|))) 24 T ELT)) (-2324 (((-595 |#2|) |#2| (-1197) (-1 (-595 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197))) 115 (-12 (|has| |#2| (-296)) (|has| |#2| (-646)) (|has| |#2| (-1058 (-1197))) (|has| |#1| (-630 (-904 (-558)))) (|has| |#1| (-464)) (|has| |#1| (-900 (-558)))) ELT))) +(((-585 |#1| |#2|) (-10 -7 (-15 -2318 ((-660 (-627 |#2|)) (-660 (-627 |#2|)) (-1197))) (-15 -2319 ((-627 |#2|) (-660 (-627 |#2|)))) (-15 -2320 ((-627 |#2|) (-627 |#2|) (-660 (-627 |#2|)) (-1197))) (-15 -3651 ((-660 (-627 |#2|)) (-660 (-627 |#2|)) (-660 (-627 |#2|)))) (-15 -2321 ((-660 (-627 |#2|)) (-660 |#2|) (-1197))) (IF (|has| |#1| (-569)) (-15 -2322 (|#2| |#2| (-1197))) |%noBranch|) (IF (|has| |#1| (-464)) (IF (|has| |#2| (-296)) (PROGN (-15 -2323 (|#2| |#2| (-1197))) (IF (|has| |#1| (-630 (-904 (-558)))) (IF (|has| |#1| (-900 (-558))) (IF (|has| |#2| (-646)) (IF (|has| |#2| (-1058 (-1197))) (-15 -2324 ((-595 |#2|) |#2| (-1197) (-1 (-595 |#2|) |#2| (-1197)) (-1 (-3 (-2 (|:| |special| |#2|) (|:| |integrand| |#2|)) "failed") |#2| (-1197)))) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) |%noBranch|) |%noBranch|)) (-1121) (-433 |#1|)) (T -585)) +((-2324 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-1 (-595 *3) *3 (-1197))) (-5 *6 (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1197))) (-4 *3 (-296)) (-4 *3 (-646)) (-4 *3 (-1058 *4)) (-4 *3 (-433 *7)) (-5 *4 (-1197)) (-4 *7 (-630 (-904 (-558)))) (-4 *7 (-464)) (-4 *7 (-900 (-558))) (-4 *7 (-1121)) (-5 *2 (-595 *3)) (-5 *1 (-585 *7 *3)))) (-2323 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-296)) (-4 *2 (-433 *4)))) (-2322 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-433 *4)))) (-2321 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-1197)) (-4 *6 (-433 *5)) (-4 *5 (-1121)) (-5 *2 (-660 (-627 *6))) (-5 *1 (-585 *5 *6)))) (-3651 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-627 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) (-2320 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-627 *6))) (-5 *4 (-1197)) (-5 *2 (-627 *6)) (-4 *6 (-433 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6)))) (-2319 (*1 *2 *3) (-12 (-5 *3 (-660 (-627 *5))) (-4 *4 (-1121)) (-5 *2 (-627 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-433 *4)))) (-2318 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-627 *5))) (-5 *3 (-1197)) (-4 *5 (-433 *4)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) +((-2327 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) #1="failed") (-558) |#1| |#1|)) 199 T ELT)) (-2330 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-660 (-419 |#2|))) 174 T ELT)) (-2333 (((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-660 (-419 |#2|))) 171 T ELT)) (-2334 (((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|) 162 T ELT)) (-2325 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|)) 185 T ELT)) (-2332 (((-3 (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|)) 202 T ELT)) (-2328 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|)) 205 T ELT)) (-2336 (((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|)) 88 T ELT)) (-2337 (((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)) 100 T ELT)) (-2331 (((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-660 (-419 |#2|))) 178 T ELT)) (-2335 (((-3 (-639 |#1| |#2|) #1#) (-639 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|)) 166 T ELT)) (-2326 (((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|)) 189 T ELT)) (-2329 (((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|)) 210 T ELT))) +(((-586 |#1| |#2|) (-10 -7 (-15 -2325 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1="failed") |#1|))) (-15 -2326 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2327 ((-2 (|:| |answer| (-595 (-419 |#2|))) (|:| |a0| |#1|)) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-660 |#1|) #1#) (-558) |#1| |#1|))) (-15 -2328 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-419 |#2|))) (-15 -2329 ((-3 (-2 (|:| |answer| (-419 |#2|)) (|:| |a0| |#1|)) (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-419 |#2|))) (-15 -2330 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) (-660 (-419 |#2|)))) (-15 -2331 ((-3 (-2 (|:| |answer| (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|))))))) (|:| |a0| |#1|)) #1#) (-419 |#2|) (-1 |#2| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|) (-660 (-419 |#2|)))) (-15 -2332 ((-3 (-2 (|:| -2350 (-419 |#2|)) (|:| |coeff| (-419 |#2|))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-419 |#2|))) (-15 -2333 ((-3 (-2 (|:| |mainpart| (-419 |#2|)) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| (-419 |#2|)) (|:| |logand| (-419 |#2|)))))) #1#) (-419 |#2|) (-1 |#2| |#2|) (-660 (-419 |#2|)))) (-15 -2334 ((-3 |#2| #1#) |#2| (-1 (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#) |#1|) |#1|)) (-15 -2335 ((-3 (-639 |#1| |#2|) #1#) (-639 |#1| |#2|) (-1 (-2 (|:| |ans| |#1|) (|:| -3538 |#1|) (|:| |sol?| (-114))) (-558) |#1|))) (-15 -2336 ((-2 (|:| |ir| (-595 (-419 |#2|))) (|:| |specpart| (-419 |#2|)) (|:| |polypart| |#2|)) (-419 |#2|) (-1 |#2| |#2|))) (-15 -2337 ((-2 (|:| |answer| |#2|) (|:| |polypart| |#2|)) |#2| (-1 |#2| |#2|)))) (-376) (-1263 |#1|)) (T -586)) +((-2337 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3)))) (-2336 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-595 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2335 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-639 *4 *5)) (-5 *3 (-1 (-2 (|:| |ans| *4) (|:| -3538 *4) (|:| |sol?| (-114))) (-558) *4)) (-4 *4 (-376)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5)))) (-2334 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 (-2 (|:| -2350 *4) (|:| |coeff| *4)) #1="failed") *4)) (-4 *4 (-376)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4)))) (-2333 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-660 (-419 *7))) (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7)))) (-2332 (*1 *2 *3 *4 *3) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -2350 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6)))) (-2331 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-2 (|:| |ans| *7) (|:| -3538 *7) (|:| |sol?| (-114))) (-558) *7)) (-5 *6 (-660 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2330 (*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 (-1 (-3 (-2 (|:| -2350 *7) (|:| |coeff| *7)) #1#) *7)) (-5 *6 (-660 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8)))) (-2329 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3538 *6) (|:| |sol?| (-114))) (-558) *6)) (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2350 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2328 (*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2350 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) (-2 (|:| -2350 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2327 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-660 *6) "failed") (-558) *6 *6)) (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2326 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-2 (|:| |ans| *6) (|:| -3538 *6) (|:| |sol?| (-114))) (-558) *6)) (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7)))) (-2325 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-2 (|:| -2350 *6) (|:| |coeff| *6)) #1#) *6)) (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) +((-2338 (((-3 |#2| "failed") |#2| (-1197) (-1197)) 10 T ELT))) +(((-587 |#1| |#2|) (-10 -7 (-15 -2338 ((-3 |#2| "failed") |#2| (-1197) (-1197)))) (-13 (-319) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-978) (-1159) (-29 |#1|))) (T -587)) +((-2338 (*1 *2 *2 *3 *3) (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-1159) (-29 *4)))))) +((-2953 (((-710 (-1246)) $ (-1246)) 27 T ELT)) (-2954 (((-710 (-562)) $ (-562)) 26 T ELT)) (-2952 (((-790) $ (-131)) 28 T ELT)) (-2955 (((-710 (-130)) $ (-130)) 25 T ELT)) (-2209 (((-710 (-1246)) $) 12 T ELT)) (-2205 (((-710 (-1244)) $) 8 T ELT)) (-2207 (((-710 (-1243)) $) 10 T ELT)) (-2210 (((-710 (-562)) $) 13 T ELT)) (-2206 (((-710 (-560)) $) 9 T ELT)) (-2208 (((-710 (-559)) $) 11 T ELT)) (-2204 (((-790) $ (-131)) 7 T ELT)) (-2211 (((-710 (-130)) $) 14 T ELT)) (-1902 (($ $) 6 T ELT))) (((-588) (-142)) (T -588)) NIL -(-13 (-539) (-875)) -(((-176) . T) ((-539) . T) ((-875) . T)) -((-2954 (((-711 (-1247)) $ (-1247)) NIL T ELT)) (-2955 (((-711 (-562)) $ (-562)) NIL T ELT)) (-2953 (((-791) $ (-131)) NIL T ELT)) (-2956 (((-711 (-130)) $ (-130)) NIL T ELT)) (-2210 (((-711 (-1247)) $) NIL T ELT)) (-2206 (((-711 (-1245)) $) NIL T ELT)) (-2208 (((-711 (-1244)) $) NIL T ELT)) (-2211 (((-711 (-562)) $) NIL T ELT)) (-2207 (((-711 (-560)) $) NIL T ELT)) (-2209 (((-711 (-559)) $) NIL T ELT)) (-2205 (((-791) $ (-131)) NIL T ELT)) (-2212 (((-711 (-130)) $) NIL T ELT)) (-2957 (((-114) $) NIL T ELT)) (-2340 (($ (-402)) 14 T ELT) (($ (-1180)) 16 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1903 (($ $) NIL T ELT))) -(((-589) (-13 (-588) (-630 (-877)) (-10 -8 (-15 -2340 ($ (-402))) (-15 -2340 ($ (-1180))) (-15 -2957 ((-114) $))))) (T -589)) -((-2340 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-589)))) (-2340 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-589)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-589))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3880 (($) 7 T CONST)) (-3660 (((-1180) $) NIL T ELT)) (-2343 (($) 6 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 15 T ELT)) (-2341 (($) 9 T CONST)) (-2342 (($) 8 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 11 T ELT))) -(((-590) (-13 (-1122) (-10 -8 (-15 -2343 ($) -4382) (-15 -3880 ($) -4382) (-15 -2342 ($) -4382) (-15 -2341 ($) -4382)))) (T -590)) -((-2343 (*1 *1) (-5 *1 (-590))) (-3880 (*1 *1) (-5 *1 (-590))) (-2342 (*1 *1) (-5 *1 (-590))) (-2341 (*1 *1) (-5 *1 (-590)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2344 (((-711 $) (-503)) 21 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2346 (($ (-1180)) 14 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 33 T ELT)) (-2345 (((-216 4 (-130)) $) 24 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 26 T ELT))) -(((-591) (-13 (-1122) (-10 -8 (-15 -2346 ($ (-1180))) (-15 -2345 ((-216 4 (-130)) $)) (-15 -2344 ((-711 $) (-503)))))) (T -591)) -((-2346 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-591)))) (-2345 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-591)))) (-2344 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-711 (-591))) (-5 *1 (-591))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $ (-558)) 76 T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3010 (($ (-1192 (-558)) (-558)) 82 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 66 T ELT)) (-3011 (($ $) 43 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4202 (((-791) $) 16 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-3013 (((-558)) 37 T ELT)) (-3012 (((-558) $) 41 T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4199 (($ $ (-558)) 24 T ELT)) (-3886 (((-3 $ #1#) $ $) 72 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) 17 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 73 T ELT)) (-3014 (((-1176 (-558)) $) 19 T ELT)) (-3292 (($ $) 26 T ELT)) (-4376 (((-877) $) 103 T ELT) (($ (-558)) 61 T ELT) (($ $) NIL T ELT)) (-3528 (((-791)) 15 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-558) $ (-558)) 46 T ELT)) (-3059 (($) 44 T CONST)) (-3065 (($) 21 T CONST)) (-3454 (((-114) $ $) 52 T ELT)) (-4267 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-4269 (($ $ $) 59 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 62 T ELT) (($ $ $) 63 T ELT))) -(((-592 |#1| |#2|) (-884 |#1|) (-558) (-114)) (T -592)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 30 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 (($ $ (-938)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 59 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 $ #1#) $) 95 T ELT)) (-3574 (($ $) 94 T ELT)) (-2000 (($ (-1288 $)) 93 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 47 T ELT)) (-3395 (($) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) 61 T ELT)) (-1883 (((-114) $) NIL T ELT)) (-1974 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) 49 (|has| $ (-381)) ELT)) (-2221 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3534 (($ $ (-938)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3865 (((-711 $) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 $) $ (-938)) NIL (|has| $ (-381)) ELT) (((-1192 $) $) 104 T ELT)) (-2220 (((-938) $) 67 T ELT)) (-1807 (((-1192 $) $) NIL (|has| $ (-381)) ELT)) (-1806 (((-3 (-1192 $) #1#) $ $) NIL (|has| $ (-381)) ELT) (((-1192 $) $) NIL (|has| $ (-381)) ELT)) (-1808 (($ $ (-1192 $)) NIL (|has| $ (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL T CONST)) (-2631 (($ (-938)) 60 T ELT)) (-4361 (((-114) $) 87 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) 28 (|has| $ (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 54 T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-938)) 86 T ELT) (((-845 (-938))) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-3 (-791) #1#) $ $) NIL T ELT) (((-791) $) NIL T ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4378 (((-938) $) 85 T ELT) (((-845 (-938)) $) NIL T ELT)) (-3603 (((-1192 $)) 102 T ELT)) (-1877 (($) 66 T ELT)) (-1809 (($) 50 (|has| $ (-381)) ELT)) (-3642 (((-709 $) (-1288 $)) NIL T ELT) (((-1288 $) $) 91 T ELT)) (-4402 (((-558) $) 42 T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) 45 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT)) (-3103 (((-711 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3528 (((-791)) 51 T CONST)) (-1378 (((-114) $ $) 107 T ELT)) (-2222 (((-1288 $) (-938)) 97 T ELT) (((-1288 $)) 96 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) 31 T CONST)) (-3065 (($) 27 T CONST)) (-4358 (($ $ (-791)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 34 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-593 |#1|) (-13 (-363) (-341 $) (-631 (-558))) (-938)) (T -593)) -NIL -((-2347 (((-1294) (-1180)) 10 T ELT))) -(((-594) (-10 -7 (-15 -2347 ((-1294) (-1180))))) (T -594)) -((-2347 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-594))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 77 T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2351 ((|#1| $) 30 T ELT)) (-2349 (((-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2352 (($ |#1| (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2350 (((-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $) 31 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3233 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1198)) 49 (|has| |#1| (-1059 (-1198))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2348 (((-114) $) 35 T ELT)) (-4188 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1198)) 90 (|has| |#1| (-917 (-1198))) ELT)) (-4376 (((-877) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 18 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 86 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 16 T ELT) (($ (-419 (-558)) $) 41 T ELT) (($ $ (-419 (-558))) NIL T ELT))) -(((-595 |#1|) (-13 (-737 (-419 (-558))) (-1059 |#1|) (-10 -8 (-15 -2352 ($ |#1| (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) (-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2351 (|#1| $)) (-15 -2350 ((-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 |#1|)) (|:| |logand| (-1192 |#1|)))) $)) (-15 -2349 ((-661 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2348 ((-114) $)) (-15 -3233 ($ |#1| |#1|)) (-15 -4188 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-917 (-1198))) (-15 -4188 (|#1| $ (-1198))) |%noBranch|) (IF (|has| |#1| (-1059 (-1198))) (-15 -3233 ($ |#1| (-1198))) |%noBranch|))) (-376)) (T -595)) -((-2352 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 *2)) (|:| |logand| (-1192 *2))))) (-5 *4 (-661 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-595 *2)))) (-2351 (*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-2350 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 *3)) (|:| |logand| (-1192 *3))))) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-3233 (*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-4188 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-4188 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-917 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1198)))) (-3233 (*1 *1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *1 (-595 *2)) (-4 *2 (-1059 *3)) (-4 *2 (-376))))) -((-4388 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)) 30 T ELT))) -(((-596 |#1| |#2|) (-10 -7 (-15 -4388 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -4388 ((-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2351 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -4388 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -4388 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-376) (-376)) (T -596)) -((-4388 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4388 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-596 *5 *2)))) (-4388 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2351 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -2351 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-595 *6)) (-5 *1 (-596 *5 *6))))) -((-3838 (((-595 |#2|) (-595 |#2|)) 42 T ELT)) (-4393 (((-661 |#2|) (-595 |#2|)) 44 T ELT)) (-2363 ((|#2| (-595 |#2|)) 50 T ELT))) -(((-597 |#1| |#2|) (-10 -7 (-15 -3838 ((-595 |#2|) (-595 |#2|))) (-15 -4393 ((-661 |#2|) (-595 |#2|))) (-15 -2363 (|#2| (-595 |#2|)))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-29 |#1|) (-1224))) (T -597)) -((-2363 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1224))) (-5 *1 (-597 *4 *2)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))))) (-4393 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1224))) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-661 *5)) (-5 *1 (-597 *4 *5)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1224))) (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-597 *3 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2355 (($ (-518) (-609)) 14 T ELT)) (-2353 (($ (-518) (-609) $) 16 T ELT)) (-2354 (($ (-518) (-609)) 15 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-1203)) 7 T ELT) (((-1203) $) 6 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-598) (-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -2355 ($ (-518) (-609))) (-15 -2354 ($ (-518) (-609))) (-15 -2353 ($ (-518) (-609) $))))) (T -598)) -((-2355 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598)))) (-2354 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598)))) (-2353 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) -((-2359 (((-114) |#1|) 16 T ELT)) (-2360 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2357 (((-2 (|:| -3095 |#1|) (|:| -2632 (-791))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-791)) 18 T ELT)) (-2356 (((-114) |#1| (-791)) 19 T ELT)) (-2361 ((|#1| |#1|) 41 T ELT)) (-2358 ((|#1| |#1| (-791)) 44 T ELT))) -(((-599 |#1|) (-10 -7 (-15 -2356 ((-114) |#1| (-791))) (-15 -2357 ((-3 |#1| #1="failed") |#1| (-791))) (-15 -2357 ((-2 (|:| -3095 |#1|) (|:| -2632 (-791))) |#1|)) (-15 -2358 (|#1| |#1| (-791))) (-15 -2359 ((-114) |#1|)) (-15 -2360 ((-3 |#1| #1#) |#1|)) (-15 -2361 (|#1| |#1|))) (-557)) (T -599)) -((-2361 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2360 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2359 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2358 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2357 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3095 *3) (|:| -2632 (-791)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2357 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2356 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -((-2362 (((-1192 |#1|) (-938)) 44 T ELT))) -(((-600 |#1|) (-10 -7 (-15 -2362 ((-1192 |#1|) (-938)))) (-363)) (T -600)) -((-2362 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) (-4 *4 (-363))))) -((-3838 (((-595 (-419 (-965 |#1|))) (-595 (-419 (-965 |#1|)))) 27 T ELT)) (-4242 (((-3 (-326 |#1|) (-661 (-326 |#1|))) (-419 (-965 |#1|)) (-1198)) 34 (|has| |#1| (-149)) ELT)) (-4393 (((-661 (-326 |#1|)) (-595 (-419 (-965 |#1|)))) 19 T ELT)) (-2364 (((-326 |#1|) (-419 (-965 |#1|)) (-1198)) 32 (|has| |#1| (-149)) ELT)) (-2363 (((-326 |#1|) (-595 (-419 (-965 |#1|)))) 21 T ELT))) -(((-601 |#1|) (-10 -7 (-15 -3838 ((-595 (-419 (-965 |#1|))) (-595 (-419 (-965 |#1|))))) (-15 -4393 ((-661 (-326 |#1|)) (-595 (-419 (-965 |#1|))))) (-15 -2363 ((-326 |#1|) (-595 (-419 (-965 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4242 ((-3 (-326 |#1|) (-661 (-326 |#1|))) (-419 (-965 |#1|)) (-1198))) (-15 -2364 ((-326 |#1|) (-419 (-965 |#1|)) (-1198)))) |%noBranch|)) (-13 (-464) (-1059 (-558)) (-658 (-558)))) (T -601)) -((-2364 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-4242 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (-326 *5) (-661 (-326 *5)))) (-5 *1 (-601 *5)))) (-2363 (*1 *2 *3) (-12 (-5 *3 (-595 (-419 (-965 *4)))) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-4393 (*1 *2 *3) (-12 (-5 *3 (-595 (-419 (-965 *4)))) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-661 (-326 *4))) (-5 *1 (-601 *4)))) (-3838 (*1 *2 *2) (-12 (-5 *2 (-595 (-419 (-965 *3)))) (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-601 *3))))) -((-2366 (((-661 (-709 (-558))) (-661 (-938)) (-661 (-921 (-558)))) 80 T ELT) (((-661 (-709 (-558))) (-661 (-938))) 81 T ELT) (((-709 (-558)) (-661 (-938)) (-921 (-558))) 74 T ELT)) (-2365 (((-791) (-661 (-938))) 71 T ELT))) -(((-602) (-10 -7 (-15 -2365 ((-791) (-661 (-938)))) (-15 -2366 ((-709 (-558)) (-661 (-938)) (-921 (-558)))) (-15 -2366 ((-661 (-709 (-558))) (-661 (-938)))) (-15 -2366 ((-661 (-709 (-558))) (-661 (-938)) (-661 (-921 (-558))))))) (T -602)) -((-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-938))) (-5 *4 (-661 (-921 (-558)))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602)))) (-2366 (*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602)))) (-2366 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-938))) (-5 *4 (-921 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-602)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-791)) (-5 *1 (-602))))) -((-3631 (((-661 |#5|) |#5| (-114)) 97 T ELT)) (-2367 (((-114) |#5| (-661 |#5|)) 34 T ELT))) -(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3631 ((-661 |#5|) |#5| (-114))) (-15 -2367 ((-114) |#5| (-661 |#5|)))) (-13 (-319) (-149)) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -603)) -((-2367 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-661 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1130 *5 *6 *7 *8))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3948 (((-1156) $) 11 T ELT)) (-3949 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-604) (-13 (-1104) (-10 -8 (-15 -3949 ((-1156) $)) (-15 -3948 ((-1156) $))))) (T -604)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604))))) -((-2967 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3846 (($ $) 38 T ELT)) (-3847 (($ $) NIL T ELT)) (-3837 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3844 (((-114) $ $) 68 T ELT)) (-3843 (((-114) $ $ (-558)) 63 T ELT)) (-3838 (((-661 $) $ (-146)) 77 T ELT) (((-661 $) $ (-143)) 78 T ELT)) (-1935 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-861)) ELT)) (-1933 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-146) (-861))) ELT)) (-3310 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-861)) ELT)) (-4218 (((-146) $ (-558) (-146)) 60 (|has| $ (-6 -4426)) ELT) (((-146) $ (-1255 (-558)) (-146)) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-3835 (($ $ (-146)) 81 T ELT) (($ $ (-143)) 82 T ELT)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-3840 (($ $ (-1255 (-558)) $) 58 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-3826 (($ (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4425)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-146) $ (-558)) NIL T ELT)) (-3845 (((-114) $ $) 90 T ELT)) (-3839 (((-558) (-1 (-114) (-146)) $) NIL T ELT) (((-558) (-146) $) NIL (|has| (-146) (-1122)) ELT) (((-558) (-146) $ (-558)) 65 (|has| (-146) (-1122)) ELT) (((-558) $ $ (-558)) 64 T ELT) (((-558) (-143) $ (-558)) 67 T ELT)) (-3290 (((-661 (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) (-146)) 9 T ELT)) (-2415 (((-558) $) 32 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| (-146) (-861)) ELT)) (-3938 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-861)) ELT)) (-3007 (((-661 (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-2416 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-146) (-861)) ELT)) (-3841 (((-114) $ $ (-146)) 91 T ELT)) (-3842 (((-791) $ $ (-146)) 88 T ELT)) (-2160 (($ (-1 (-146) (-146)) $) 37 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3848 (($ $) 41 T ELT)) (-3849 (($ $) NIL T ELT)) (-3836 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-3660 (((-1180) $) 43 (|has| (-146) (-1122)) ELT)) (-2517 (($ (-146) $ (-558)) NIL T ELT) (($ $ $ (-558)) 27 T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) 87 (|has| (-146) (-1122)) ELT)) (-4231 (((-146) $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2414 (($ $ (-146)) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-661 (-146)) (-661 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-2420 (((-661 (-146)) $) NIL T ELT)) (-3823 (((-114) $) 15 T ELT)) (-3993 (($) 12 T ELT)) (-4230 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) 70 T ELT) (($ $ (-1255 (-558))) 25 T ELT) (($ $ $) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-1934 (($ $ $ (-558)) 83 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 20 T ELT)) (-4402 (((-547) $) NIL (|has| (-146) (-631 (-547))) ELT)) (-3950 (($ (-661 (-146))) NIL T ELT)) (-4232 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 19 T ELT) (($ (-661 $)) 84 T ELT)) (-4376 (($ (-146)) NIL T ELT) (((-877) $) 31 (|has| (-146) (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2159 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-3454 (((-114) $ $) 17 (|has| (-146) (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-3086 (((-114) $ $) 18 (|has| (-146) (-861)) ELT)) (-4387 (((-791) $) 16 (|has| $ (-6 -4425)) ELT))) -(((-605 |#1|) (-1165) (-558)) (T -605)) -NIL -((-3952 (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1110 |#4|)) 32 T ELT))) -(((-606 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3952 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1110 |#4|))) (-15 -3952 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|))) (-815) (-861) (-569) (-969 |#3| |#1| |#2|)) (T -606)) -((-3952 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-606 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) (-3952 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1110 *3)) (-4 *3 (-969 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-861)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-606 *6 *4 *7 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 71 T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-558)) 58 T ELT) (($ $ (-558) (-558)) 59 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 65 T ELT)) (-2398 (($ $) 109 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2396 (((-877) (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1047 (-855 (-558))) (-1198) |#1| (-419 (-558))) 241 T ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 36 T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3293 (((-114) $) NIL T ELT)) (-4202 (((-558) $) 63 T ELT) (((-558) $ (-558)) 64 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4207 (($ $ (-938)) 83 T ELT)) (-4245 (($ (-1 |#1| (-558)) $) 80 T ELT)) (-4367 (((-114) $) 26 T ELT)) (-3294 (($ |#1| (-558)) 22 T ELT) (($ $ (-1103) (-558)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-558))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2402 (($ (-1047 (-855 (-558))) (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 13 T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4242 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2399 (((-3 $ #1#) $ $ (-114)) 108 T ELT)) (-2397 (($ $ $) 116 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2400 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 15 T ELT)) (-2401 (((-1047 (-855 (-558))) $) 14 T ELT)) (-4199 (($ $ (-558)) 47 T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT)) (-4230 ((|#1| $ (-558)) 62 T ELT) (($ $ $) NIL (|has| (-558) (-1133)) ELT)) (-4188 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-4378 (((-558) $) NIL T ELT)) (-3292 (($ $) 48 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) 29 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-4107 ((|#1| $ (-558)) 61 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 39 T CONST)) (-4203 ((|#1| $) NIL T ELT)) (-2377 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2389 (($ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2379 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2391 (($ $) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2375 (($ $) 201 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2387 (($ $) 173 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2394 (($ $ (-419 (-558))) 177 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2395 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2392 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2393 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2374 (($ $) 203 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2386 (($ $) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2376 (($ $) 199 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2388 (($ $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2378 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2390 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2371 (($ $) 209 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2383 (($ $) 185 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2373 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2385 (($ $) 181 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2369 (($ $) 213 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2381 (($ $) 189 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2368 (($ $) 215 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2380 (($ $) 191 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2370 (($ $) 211 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2382 (($ $) 187 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2372 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2384 (($ $) 183 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-4200 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3059 (($) 30 T CONST)) (-3065 (($) 40 T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-3454 (((-114) $ $) 73 T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-4269 (($ $ $) 88 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 111 T ELT)) (* (($ (-938) $) 98 T ELT) (($ (-791) $) 96 T ELT) (($ (-558) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-607 |#1|) (-13 (-1267 |#1| (-558)) (-10 -8 (-15 -2402 ($ (-1047 (-855 (-558))) (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -2401 ((-1047 (-855 (-558))) $)) (-15 -2400 ((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -4248 ($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -4367 ((-114) $)) (-15 -4245 ($ (-1 |#1| (-558)) $)) (-15 -2399 ((-3 $ "failed") $ $ (-114))) (-15 -2398 ($ $)) (-15 -2397 ($ $ $)) (-15 -2396 ((-877) (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1047 (-855 (-558))) (-1198) |#1| (-419 (-558)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $)) (-15 -2395 ($ $ |#1|)) (-15 -2394 ($ $ (-419 (-558)))) (-15 -2393 ($ $)) (-15 -2392 ($ $)) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -2376 ($ $)) (-15 -2375 ($ $)) (-15 -2374 ($ $)) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -2371 ($ $)) (-15 -2370 ($ $)) (-15 -2369 ($ $)) (-15 -2368 ($ $))) |%noBranch|))) (-1070)) (T -607)) -((-4367 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2402 (*1 *1 *2 *3) (-12 (-5 *2 (-1047 (-855 (-558)))) (-5 *3 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1070)) (-5 *1 (-607 *4)))) (-2401 (*1 *2 *1) (-12 (-5 *2 (-1047 (-855 (-558)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-4245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) (-2399 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) (-2398 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2397 (*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070)))) (-2396 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *6)))) (-5 *4 (-1047 (-855 (-558)))) (-5 *5 (-1198)) (-5 *7 (-419 (-558))) (-4 *6 (-1070)) (-5 *2 (-877)) (-5 *1 (-607 *6)))) (-4242 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2395 (*1 *1 *1 *2) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2394 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1070)))) (-2393 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2389 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2383 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2375 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2374 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2370 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2369 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 63 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4248 (($ (-1176 |#1|)) 9 T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) 44 T ELT)) (-3293 (((-114) $) 56 T ELT)) (-4202 (((-791) $) 61 T ELT) (((-791) $ (-791)) 60 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) 46 (|has| |#1| (-569)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-1176 |#1|) $) 25 T ELT)) (-3528 (((-791)) 55 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) 10 T CONST)) (-3065 (($) 14 T CONST)) (-3454 (((-114) $ $) 24 T ELT)) (-4267 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-4269 (($ $ $) 27 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 53 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-558)) 38 T ELT))) -(((-608 |#1|) (-13 (-1070) (-111 |#1| |#1|) (-10 -8 (-15 -4247 ((-1176 |#1|) $)) (-15 -4248 ($ (-1176 |#1|))) (-15 -3293 ((-114) $)) (-15 -4202 ((-791) $)) (-15 -4202 ((-791) $ (-791))) (-15 * ($ $ (-558))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1070)) (T -608)) -((-4247 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) (-3293 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (-4202 (*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-608 *3)) (-4 *3 (-1070))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2405 (($) 8 T CONST)) (-2406 (($) 7 T CONST)) (-2403 (($ $ (-661 $)) 16 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2407 (($) 6 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-1203)) 15 T ELT) (((-1203) $) 10 T ELT)) (-2404 (($) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-609) (-13 (-1122) (-502 (-1203)) (-10 -8 (-15 -2407 ($) -4382) (-15 -2406 ($) -4382) (-15 -2405 ($) -4382) (-15 -2404 ($) -4382) (-15 -2403 ($ $ (-661 $)))))) (T -609)) -((-2407 (*1 *1) (-5 *1 (-609))) (-2406 (*1 *1) (-5 *1 (-609))) (-2405 (*1 *1) (-5 *1 (-609))) (-2404 (*1 *1) (-5 *1 (-609))) (-2403 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-609))) (-5 *1 (-609))))) -((-4388 (((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|)) 15 T ELT))) -(((-610 |#1| |#2|) (-13 (-1238) (-10 -7 (-15 -4388 ((-613 |#2|) (-1 |#2| |#1|) (-613 |#1|))))) (-1238) (-1238)) (T -610)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6))))) -((-4388 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)) 20 T ELT) (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|)) 19 T ELT) (((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|)) 18 T ELT))) -(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -4388 ((-613 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-613 |#2|))) (-15 -4388 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-613 |#2|))) (-15 -4388 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-613 |#1|) (-1176 |#2|)))) (-1238) (-1238) (-1238)) (T -611)) -((-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1176 *8)) (-5 *1 (-611 *6 *7 *8)))) (-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) (-5 *1 (-611 *6 *7 *8))))) -((-2412 ((|#3| |#3| (-661 (-628 |#3|)) (-661 (-1198))) 57 T ELT)) (-2411 (((-171 |#2|) |#3|) 122 T ELT)) (-2408 ((|#3| (-171 |#2|)) 46 T ELT)) (-2409 ((|#2| |#3|) 21 T ELT)) (-2410 ((|#3| |#2|) 35 T ELT))) -(((-612 |#1| |#2| |#3|) (-10 -7 (-15 -2408 (|#3| (-171 |#2|))) (-15 -2409 (|#2| |#3|)) (-15 -2410 (|#3| |#2|)) (-15 -2411 ((-171 |#2|) |#3|)) (-15 -2412 (|#3| |#3| (-661 (-628 |#3|)) (-661 (-1198))))) (-569) (-13 (-433 |#1|) (-1023) (-1224)) (-13 (-433 (-171 |#1|)) (-1023) (-1224))) (T -612)) -((-2412 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-661 (-1198))) (-4 *2 (-13 (-433 (-171 *5)) (-1023) (-1224))) (-4 *5 (-569)) (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1023) (-1224))))) (-2411 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1023) (-1224))) (-4 *3 (-13 (-433 (-171 *4)) (-1023) (-1224))))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1023) (-1224))) (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1023) (-1224))))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 *4) (-1023) (-1224))) (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1023) (-1224))))) (-2408 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1023) (-1224))) (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1023) (-1224))) (-5 *1 (-612 *4 *5 *2))))) -((-4140 (($ (-1 (-114) |#1|) $) 19 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3877 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3876 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-3875 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-3950 (((-1176 |#1|) $) 20 T ELT)) (-4376 (((-877) $) 25 T ELT))) -(((-613 |#1|) (-13 (-630 (-877)) (-10 -8 (-15 -4388 ($ (-1 |#1| |#1|) $)) (-15 -3876 ($ (-1 (-114) |#1|) $)) (-15 -3875 ($ (-1 (-114) |#1|) $)) (-15 -4140 ($ (-1 (-114) |#1|) $)) (-15 -3877 ($ (-1 |#1| |#1|) |#1|)) (-15 -3950 ((-1176 |#1|) $)))) (-1238)) (T -613)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3875 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-4140 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3877 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) (-3950 (*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4268 (($ (-791)) NIL (|has| |#1| (-23)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4265 (((-709 |#1|) $ $) NIL (|has| |#1| (-1070)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4262 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))) ELT)) (-4263 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))) ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4266 ((|#1| $ $) NIL (|has| |#1| (-1070)) ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4264 (($ $ $) NIL (|has| |#1| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4267 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-746)) ELT) (($ $ |#1|) NIL (|has| |#1| (-746)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-614 |#1| |#2|) (-1287 |#1|) (-1238) (-558)) (T -614)) -NIL -((-2413 (((-1294) $ |#2| |#2|) 35 T ELT)) (-2415 ((|#2| $) 23 T ELT)) (-2416 ((|#2| $) 21 T ELT)) (-2160 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4388 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4231 ((|#3| $) 26 T ELT)) (-2414 (($ $ |#3|) 33 T ELT)) (-2417 (((-114) |#3| $) 17 T ELT)) (-2420 (((-661 |#3|) $) 15 T ELT)) (-4230 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) -(((-615 |#1| |#2| |#3|) (-10 -7 (-15 -2413 ((-1294) |#1| |#2| |#2|)) (-15 -2414 (|#1| |#1| |#3|)) (-15 -4231 (|#3| |#1|)) (-15 -2415 (|#2| |#1|)) (-15 -2416 (|#2| |#1|)) (-15 -2417 ((-114) |#3| |#1|)) (-15 -2420 ((-661 |#3|) |#1|)) (-15 -4230 (|#3| |#1| |#2|)) (-15 -4230 (|#3| |#1| |#2| |#3|)) (-15 -2160 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4388 (|#1| (-1 |#3| |#3|) |#1|))) (-616 |#2| |#3|) (-1122) (-1238)) (T -615)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2413 (((-1294) $ |#1| |#1|) 44 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4426)) ELT)) (-4154 (($) 7 T CONST)) (-1719 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) 55 T ELT)) (-3290 (((-661 |#2|) $) 30 (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) 47 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#2|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 ((|#1| $) 48 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#2| (-1122)) ELT)) (-2418 (((-661 |#1|) $) 50 T ELT)) (-2419 (((-114) |#1| $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#2| (-1122)) ELT)) (-4231 ((|#2| $) 46 (|has| |#1| (-861)) ELT)) (-2414 (($ $ |#2|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) 28 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#2| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-616 |#1| |#2|) (-142) (-1122) (-1238)) (T -616)) -((-2420 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-661 *4)))) (-2419 (*1 *2 *3 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-114)))) (-2418 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-661 *3)))) (-2417 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1122)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114)))) (-2416 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1122)) (-4 *2 (-861)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1122)) (-4 *2 (-861)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *3 (-861)) (-4 *2 (-1238)))) (-2414 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238)))) (-2413 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-1294))))) -(-13 (-501 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -2420 ((-661 |t#2|) $)) (-15 -2419 ((-114) |t#1| $)) (-15 -2418 ((-661 |t#1|) $)) (IF (|has| |t#2| (-1122)) (IF (|has| $ (-6 -4425)) (-15 -2417 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-861)) (PROGN (-15 -2416 (|t#1| $)) (-15 -2415 (|t#1| $)) (-15 -4231 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -2414 ($ $ |t#2|)) (-15 -2413 ((-1294) $ |t#1| |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#2| (-1122)) (|has| |#2| (-102))) ((-630 (-877)) -3957 (|has| |#2| (-1122)) (|has| |#2| (-630 (-877)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-1122) |has| |#2| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT) (((-1239) $) 14 T ELT) (($ (-661 (-1239))) 13 T ELT)) (-2421 (((-661 (-1239)) $) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-617) (-13 (-1104) (-630 (-1239)) (-10 -8 (-15 -4376 ($ (-661 (-1239)))) (-15 -2421 ((-661 (-1239)) $))))) (T -617)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-617)))) (-2421 (*1 *2 *1) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-617))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1980 (((-3 $ #1="failed")) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3641 (((-1288 (-709 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1288 (-709 |#1|)) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1932 (((-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4154 (($) NIL T CONST)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1906 (((-3 $ #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1996 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1994 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2635 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2111 (((-1192 (-965 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2638 (($ $ (-938)) NIL T ELT)) (-1928 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1908 (((-1192 |#1|) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1998 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-1192 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2000 (($ (-1288 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3887 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3511 (((-938)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1917 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2662 (($ $ (-938)) NIL T ELT)) (-1913 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1911 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1915 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1907 (((-3 $ #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1997 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1931 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1995 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2636 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2115 (((-1192 (-965 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2637 (($ $ (-938)) NIL T ELT)) (-1929 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1909 (((-1192 |#1|) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1999 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1927 (((-1192 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1912 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1914 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1916 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1919 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4230 ((|#1| $ (-558)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3642 (((-709 |#1|) (-1288 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1288 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4402 (($ (-1288 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1288 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2103 (((-661 (-965 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-661 (-965 |#1|)) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2824 (($ $ $) NIL T ELT)) (-1925 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4376 (((-877) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1910 (((-661 (-1288 |#1|))) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2825 (($ $ $ $) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2944 (($ (-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1918 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3059 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) 24 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-618 |#1| |#2|) (-13 (-764 |#1|) (-630 |#2|) (-10 -8 (-15 -4376 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-764 |#1|)) (T -618)) -((-4376 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-618 *3 *2)) (-4 *2 (-764 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-619) (-13 (-1122) (-502 (-130)))) (T -619)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2423 (($) 12 T CONST)) (-2445 (($) 10 T CONST)) (-2422 (($) 13 T CONST)) (-2441 (($) 11 T CONST)) (-2438 (($) 14 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-620) (-13 (-1122) (-682) (-10 -8 (-15 -2445 ($) -4382) (-15 -2441 ($) -4382) (-15 -2423 ($) -4382) (-15 -2422 ($) -4382) (-15 -2438 ($) -4382)))) (T -620)) -((-2445 (*1 *1) (-5 *1 (-620))) (-2441 (*1 *1) (-5 *1 (-620))) (-2423 (*1 *1) (-5 *1 (-620))) (-2422 (*1 *1) (-5 *1 (-620))) (-2438 (*1 *1) (-5 *1 (-620)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2434 (($) 11 T CONST)) (-2428 (($) 17 T CONST)) (-2424 (($) 21 T CONST)) (-2426 (($) 19 T CONST)) (-2431 (($) 14 T CONST)) (-2425 (($) 20 T CONST)) (-2433 (($) 12 T CONST)) (-2432 (($) 13 T CONST)) (-2427 (($) 18 T CONST)) (-2430 (($) 15 T CONST)) (-2429 (($) 16 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (((-130) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-621) (-13 (-1122) (-630 (-130)) (-10 -8 (-15 -2434 ($) -4382) (-15 -2433 ($) -4382) (-15 -2432 ($) -4382) (-15 -2431 ($) -4382) (-15 -2430 ($) -4382) (-15 -2429 ($) -4382) (-15 -2428 ($) -4382) (-15 -2427 ($) -4382) (-15 -2426 ($) -4382) (-15 -2425 ($) -4382) (-15 -2424 ($) -4382)))) (T -621)) -((-2434 (*1 *1) (-5 *1 (-621))) (-2433 (*1 *1) (-5 *1 (-621))) (-2432 (*1 *1) (-5 *1 (-621))) (-2431 (*1 *1) (-5 *1 (-621))) (-2430 (*1 *1) (-5 *1 (-621))) (-2429 (*1 *1) (-5 *1 (-621))) (-2428 (*1 *1) (-5 *1 (-621))) (-2427 (*1 *1) (-5 *1 (-621))) (-2426 (*1 *1) (-5 *1 (-621))) (-2425 (*1 *1) (-5 *1 (-621))) (-2424 (*1 *1) (-5 *1 (-621)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2436 (($) 15 T CONST)) (-2435 (($) 16 T CONST)) (-2442 (($) 13 T CONST)) (-2445 (($) 10 T CONST)) (-2443 (($) 12 T CONST)) (-2444 (($) 11 T CONST)) (-2441 (($) 14 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-622) (-13 (-1122) (-682) (-10 -8 (-15 -2445 ($) -4382) (-15 -2444 ($) -4382) (-15 -2443 ($) -4382) (-15 -2442 ($) -4382) (-15 -2441 ($) -4382) (-15 -2436 ($) -4382) (-15 -2435 ($) -4382)))) (T -622)) -((-2445 (*1 *1) (-5 *1 (-622))) (-2444 (*1 *1) (-5 *1 (-622))) (-2443 (*1 *1) (-5 *1 (-622))) (-2442 (*1 *1) (-5 *1 (-622))) (-2441 (*1 *1) (-5 *1 (-622))) (-2436 (*1 *1) (-5 *1 (-622))) (-2435 (*1 *1) (-5 *1 (-622)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2440 (($) 15 T CONST)) (-2437 (($) 18 T CONST)) (-2442 (($) 13 T CONST)) (-2445 (($) 10 T CONST)) (-2443 (($) 12 T CONST)) (-2444 (($) 11 T CONST)) (-2439 (($) 16 T CONST)) (-2441 (($) 14 T CONST)) (-2438 (($) 17 T CONST)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-623) (-13 (-1122) (-682) (-10 -8 (-15 -2445 ($) -4382) (-15 -2444 ($) -4382) (-15 -2443 ($) -4382) (-15 -2442 ($) -4382) (-15 -2441 ($) -4382) (-15 -2440 ($) -4382) (-15 -2439 ($) -4382) (-15 -2438 ($) -4382) (-15 -2437 ($) -4382)))) (T -623)) -((-2445 (*1 *1) (-5 *1 (-623))) (-2444 (*1 *1) (-5 *1 (-623))) (-2443 (*1 *1) (-5 *1 (-623))) (-2442 (*1 *1) (-5 *1 (-623))) (-2441 (*1 *1) (-5 *1 (-623))) (-2440 (*1 *1) (-5 *1 (-623))) (-2439 (*1 *1) (-5 *1 (-623))) (-2438 (*1 *1) (-5 *1 (-623))) (-2437 (*1 *1) (-5 *1 (-623)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 19 T ELT) (($ (-619)) 12 T ELT) (((-619) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-624) (-13 (-1122) (-502 (-619)) (-502 (-130)))) (T -624)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-1900 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) 40 T ELT)) (-4027 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2413 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ (-1180) |#1|) 50 T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#1| #1="failed") (-1180) $) 53 T ELT)) (-4154 (($) NIL T CONST)) (-1904 (($ $ (-1180)) 25 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT)) (-3825 (((-3 |#1| #1#) (-1180) $) 54 T ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3826 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT)) (-4272 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT)) (-1901 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) 39 T ELT)) (-1719 ((|#1| $ (-1180) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-1180)) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2485 (($ $) 55 T ELT)) (-1905 (($ (-402)) 23 T ELT) (($ (-402) (-1180)) 22 T ELT)) (-3970 (((-402) $) 41 T ELT)) (-2415 (((-1180) $) NIL (|has| (-1180) (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (((-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT)) (-2416 (((-1180) $) NIL (|has| (-1180) (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2884 (((-661 (-1180)) $) 46 T ELT)) (-2447 (((-114) (-1180) $) NIL T ELT)) (-1902 (((-1180) $) 42 T ELT)) (-1389 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL T ELT)) (-2418 (((-661 (-1180)) $) NIL T ELT)) (-2419 (((-114) (-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 ((|#1| $) NIL (|has| (-1180) (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) #1#) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-661 (-305 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 44 T ELT)) (-4230 ((|#1| $ (-1180) |#1|) NIL T ELT) ((|#1| $ (-1180)) 49 T ELT)) (-1598 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (((-791) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (((-791) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT)) (-4376 (((-877) $) 21 T ELT)) (-1903 (($ $) 26 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1391 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 20 T ELT)) (-4387 (((-791) $) 48 (|has| $ (-6 -4425)) ELT))) -(((-625 |#1|) (-13 (-378 (-402) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) (-1215 (-1180) |#1|) (-10 -8 (-6 -4425) (-15 -2485 ($ $)))) (-1122)) (T -625)) -((-2485 (*1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1122))))) -((-3663 (((-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) $) 16 T ELT)) (-2884 (((-661 |#2|) $) 20 T ELT)) (-2447 (((-114) |#2| $) 12 T ELT))) -(((-626 |#1| |#2| |#3|) (-10 -7 (-15 -2884 ((-661 |#2|) |#1|)) (-15 -2447 ((-114) |#2| |#1|)) (-15 -3663 ((-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) |#1|))) (-627 |#2| |#3|) (-1122) (-1122)) (T -626)) -NIL -((-2967 (((-114) $ $) 19 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 59 (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 62 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 50 (|has| $ (-6 -4425)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 60 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 57 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 56 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-2884 (((-661 |#1|) $) 67 T ELT)) (-2447 (((-114) |#1| $) 68 T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 43 T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) "failed") (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 55 T ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 45 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) 26 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 25 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 24 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 23 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 52 T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 54 T ELT)) (-4376 (((-877) $) 17 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 46 T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-627 |#1| |#2|) (-142) (-1122) (-1122)) (T -627)) -((-2447 (*1 *2 *3 *1) (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-114)))) (-2884 (*1 *2 *1) (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-661 *3)))) (-3825 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2446 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(-13 (-233 (-2 (|:| -4290 |t#1|) (|:| -2286 |t#2|))) (-10 -8 (-15 -2447 ((-114) |t#1| $)) (-15 -2884 ((-661 |t#1|) $)) (-15 -3825 ((-3 |t#2| "failed") |t#1| $)) (-15 -2446 ((-3 |t#2| "failed") |t#1| $)))) -(((-34) . T) ((-107 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-102) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ((-630 (-877)) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877)))) ((-153 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-631 (-547)) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ((-233 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-242 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) -12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ((-501 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-526 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) -12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ((-1122) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-2448 (((-3 (-1198) "failed") $) 46 T ELT)) (-1427 (((-1294) $ (-791)) 22 T ELT)) (-3839 (((-791) $) 20 T ELT)) (-4023 (((-115) $) 9 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2449 (($ (-115) (-661 |#1|) (-791)) 32 T ELT) (($ (-1198)) 33 T ELT)) (-3032 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1198)) 13 T ELT)) (-3002 (((-791) $) 17 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4402 (((-905 (-558)) $) 99 (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) 106 (|has| |#1| (-631 (-905 (-391)))) ELT) (((-547) $) 92 (|has| |#1| (-631 (-547))) ELT)) (-4376 (((-877) $) 74 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2450 (((-661 |#1|) $) 19 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 51 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 53 T ELT))) -(((-628 |#1|) (-13 (-134) (-861) (-899 |#1|) (-10 -8 (-15 -4023 ((-115) $)) (-15 -2450 ((-661 |#1|) $)) (-15 -3002 ((-791) $)) (-15 -2449 ($ (-115) (-661 |#1|) (-791))) (-15 -2449 ($ (-1198))) (-15 -2448 ((-3 (-1198) "failed") $)) (-15 -3032 ((-114) $ (-115))) (-15 -3032 ((-114) $ (-1198))) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) (-1122)) (T -628)) -((-4023 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) (-2450 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) (-2449 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-1122)) (-5 *1 (-628 *5)))) (-2449 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) (-2448 (*1 *2 *1) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) (-3032 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1122)))) (-3032 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1122))))) -((-2451 (((-628 |#2|) |#1|) 17 T ELT)) (-2452 (((-3 |#1| "failed") (-628 |#2|)) 21 T ELT))) -(((-629 |#1| |#2|) (-10 -7 (-15 -2451 ((-628 |#2|) |#1|)) (-15 -2452 ((-3 |#1| "failed") (-628 |#2|)))) (-1122) (-1122)) (T -629)) -((-2452 (*1 *2 *3) (|partial| -12 (-5 *3 (-628 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) (-5 *1 (-629 *2 *4)))) (-2451 (*1 *2 *3) (-12 (-5 *2 (-628 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -((-4376 ((|#1| $) 6 T ELT))) -(((-630 |#1|) (-142) (-1238)) (T -630)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4376 (|t#1| $)))) -((-4402 ((|#1| $) 6 T ELT))) -(((-631 |#1|) (-142) (-1238)) (T -631)) -((-4402 (*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4402 (|t#1| $)))) -((-2453 (((-3 (-1192 (-419 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)) 15 T ELT) (((-3 (-1192 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16 T ELT))) -(((-632 |#1| |#2|) (-10 -7 (-15 -2453 ((-3 (-1192 (-419 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2453 ((-3 (-1192 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-149) (-27) (-1059 (-558)) (-1059 (-419 (-558)))) (-1264 |#1|)) (T -632)) -((-2453 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-149) (-27) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-1192 (-419 *6))) (-5 *1 (-632 *5 *6)) (-5 *3 (-419 *6)))) (-2453 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-632 *4 *5)) (-5 *3 (-419 *5))))) -((-4376 (($ |#1|) 6 T ELT))) -(((-633 |#1|) (-142) (-1238)) (T -633)) -((-4376 (*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4376 ($ |t#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-2454 (($) 14 T CONST)) (-3256 (($) 15 T CONST)) (-2960 (($ $ $) 29 T ELT)) (-2959 (($ $) 27 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3254 (($ $ $) 30 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3255 (($) 11 T CONST)) (-3253 (($ $ $) 31 T ELT)) (-4376 (((-877) $) 35 T ELT)) (-3994 (((-114) $ (|[\|\|]| -3255)) 24 T ELT) (((-114) $ (|[\|\|]| -2454)) 26 T ELT) (((-114) $ (|[\|\|]| -3256)) 21 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2961 (($ $ $) 28 T ELT)) (-2524 (($ $ $) NIL T ELT)) (-3454 (((-114) $ $) 18 T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-634) (-13 (-988) (-10 -8 (-15 -2454 ($) -4382) (-15 -3994 ((-114) $ (|[\|\|]| -3255))) (-15 -3994 ((-114) $ (|[\|\|]| -2454))) (-15 -3994 ((-114) $ (|[\|\|]| -3256)))))) (T -634)) -((-2454 (*1 *1) (-5 *1 (-634))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3255)) (-5 *2 (-114)) (-5 *1 (-634)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2454)) (-5 *2 (-114)) (-5 *1 (-634)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3256)) (-5 *2 (-114)) (-5 *1 (-634))))) -((-4402 (($ |#1|) 6 T ELT))) -(((-635 |#1|) (-142) (-1238)) (T -635)) -((-4402 (*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1238))))) -(-13 (-10 -8 (-15 -4402 ($ |t#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| |#1| (-860)) ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3399 ((|#1| $) 13 T ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3398 ((|#3| $) 15 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3528 (((-791)) 20 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| |#1| (-860)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) 12 T CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4379 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-636 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (-15 -4379 ($ $ |#3|)) (-15 -4379 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-746) |#2|)) (T -636)) -((-4379 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-746) *4)))) (-4379 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-746) *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-636 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-746) *3)))) (-3398 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4))))) -((-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT))) -(((-637 |#1| |#2|) (-10 -7 (-15 -4376 (|#1| |#2|)) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-638 |#2|) (-1070)) (T -637)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) -(((-638 |#1|) (-142) (-1070)) (T -638)) -((-4376 (*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-668 |t#1|) (-10 -8 (-15 -4376 ($ |t#1|)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-746) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2455 ((|#2| |#2| (-1198) (-1198)) 16 T ELT))) -(((-639 |#1| |#2|) (-10 -7 (-15 -2455 (|#2| |#2| (-1198) (-1198)))) (-13 (-319) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-979) (-29 |#1|))) (T -639)) -((-2455 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-639 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-29 *4)))))) -((-2967 (((-114) $ $) 64 T ELT)) (-3606 (((-114) $) 58 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-2456 ((|#1| $) 55 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4181 (((-2 (|:| -1972 $) (|:| -1971 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) 27 T ELT)) (-3887 (((-3 $ #1#) $) 88 T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4202 (((-558) $) 22 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) 40 T ELT)) (-3294 (($ |#1| (-558)) 24 T ELT)) (-3592 ((|#1| $) 57 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $ $) 93 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-1787 (((-791) $) 115 (|has| |#1| (-376)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-4378 (((-558) $) 38 T ELT)) (-4402 (((-419 |#2|) $) 47 T ELT)) (-4376 (((-877) $) 69 T ELT) (($ (-558)) 35 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-4107 ((|#1| $ (-558)) 72 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 32 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 9 T CONST)) (-3065 (($) 14 T CONST)) (-3070 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) 21 T ELT)) (-4267 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 90 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 49 T ELT))) -(((-640 |#1| |#2|) (-13 (-234 |#2|) (-569) (-631 (-419 |#2|)) (-424 |#1|) (-1059 |#2|) (-10 -8 (-15 -4367 ((-114) $)) (-15 -4378 ((-558) $)) (-15 -4202 ((-558) $)) (-15 -4389 ($ $)) (-15 -3592 (|#1| $)) (-15 -2456 (|#1| $)) (-15 -4107 (|#1| $ (-558))) (-15 -3294 ($ |#1| (-558))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4181 ((-2 (|:| -1972 $) (|:| -1971 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-569) (-1264 |#1|)) (T -640)) -((-4367 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-114)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1264 *3)))) (-4378 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1264 *3)))) (-4202 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1264 *3)))) (-4389 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1264 *2)))) (-3592 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1264 *2)))) (-2456 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1264 *2)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1264 *2)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1264 *2)))) (-4181 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-569)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -1972 (-640 *4 *5)) (|:| -1971 (-419 *5)))) (-5 *1 (-640 *4 *5)) (-5 *3 (-419 *5))))) -((-4112 (((-661 |#6|) (-661 |#4|) (-114)) 54 T ELT)) (-2457 ((|#6| |#6|) 48 T ELT))) -(((-641 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2457 (|#6| |#6|)) (-15 -4112 ((-661 |#6|) (-661 |#4|) (-114)))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|) (-1130 |#1| |#2| |#3| |#4|)) (T -641)) -((-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 *10)) (-5 *1 (-641 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *10 (-1130 *5 *6 *7 *8)))) (-2457 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-641 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *2 (-1130 *3 *4 *5 *6))))) -((-2458 (((-114) |#3| (-791) (-661 |#3|)) 30 T ELT)) (-2459 (((-3 (-2 (|:| |polfac| (-661 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-661 (-1192 |#3|)))) "failed") |#3| (-661 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1987 (-661 (-2 (|:| |irr| |#4|) (|:| -2626 (-558)))))) (-661 |#3|) (-661 |#1|) (-661 |#3|)) 68 T ELT))) -(((-642 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2458 ((-114) |#3| (-791) (-661 |#3|))) (-15 -2459 ((-3 (-2 (|:| |polfac| (-661 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-661 (-1192 |#3|)))) "failed") |#3| (-661 (-1192 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1987 (-661 (-2 (|:| |irr| |#4|) (|:| -2626 (-558)))))) (-661 |#3|) (-661 |#1|) (-661 |#3|)))) (-861) (-815) (-319) (-969 |#3| |#2| |#1|)) (T -642)) -((-2459 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1987 (-661 (-2 (|:| |irr| *10) (|:| -2626 (-558))))))) (-5 *6 (-661 *3)) (-5 *7 (-661 *8)) (-4 *8 (-861)) (-4 *3 (-319)) (-4 *10 (-969 *3 *9 *8)) (-4 *9 (-815)) (-5 *2 (-2 (|:| |polfac| (-661 *10)) (|:| |correct| *3) (|:| |corrfact| (-661 (-1192 *3))))) (-5 *1 (-642 *8 *9 *3 *10)) (-5 *4 (-661 (-1192 *3))))) (-2458 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-791)) (-5 *5 (-661 *3)) (-4 *3 (-319)) (-4 *6 (-861)) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-642 *6 *7 *3 *8)) (-4 *8 (-969 *3 *7 *6))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3948 (((-1156) $) 11 T ELT)) (-3949 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-643) (-13 (-1104) (-10 -8 (-15 -3949 ((-1156) $)) (-15 -3948 ((-1156) $))))) (T -643)) -((-3949 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-643)))) (-3948 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-643))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4364 (((-661 |#1|) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4366 (($ $) 77 T ELT)) (-4372 (((-684 |#1| |#2|) $) 60 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 81 T ELT)) (-2460 (((-661 (-305 |#2|)) $ $) 42 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4373 (($ (-684 |#1| |#2|)) 56 T ELT)) (-3410 (($ $ $) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-4376 (((-877) $) 66 T ELT) (((-1304 |#1| |#2|) $) NIL T ELT) (((-1309 |#1| |#2|) $) 74 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 61 T CONST)) (-2461 (((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2462 (((-661 (-684 |#1| |#2|)) (-661 |#1|)) 73 T ELT)) (-3064 (((-661 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3454 (((-114) $ $) 62 T ELT)) (-4379 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 52 T ELT))) -(((-644 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4373 ($ (-684 |#1| |#2|))) (-15 -4372 ((-684 |#1| |#2|) $)) (-15 -3064 ((-661 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $)) (-15 -4376 ((-1304 |#1| |#2|) $)) (-15 -4376 ((-1309 |#1| |#2|) $)) (-15 -4366 ($ $)) (-15 -4364 ((-661 |#1|) $)) (-15 -2462 ((-661 (-684 |#1| |#2|)) (-661 |#1|))) (-15 -2461 ((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $)) (-15 -2460 ((-661 (-305 |#2|)) $ $)))) (-861) (-13 (-175) (-737 (-419 (-558)))) (-938)) (T -644)) -((-4373 (*1 *1 *2) (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-5 *1 (-644 *3 *4 *5)) (-14 *5 (-938)))) (-4372 (*1 *2 *1) (-12 (-5 *2 (-684 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-13 (-175) (-737 (-419 (-558))))) (-14 *4 (-938)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-861)) (-5 *2 (-661 (-684 *4 *5))) (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-13 (-175) (-737 (-419 (-558))))) (-14 *6 (-938)))) (-2461 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| (-692 *3)) (|:| |c| *4)))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) (-2460 (*1 *2 *1 *1) (-12 (-5 *2 (-661 (-305 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938))))) -((-4112 (((-661 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|)))) (-661 (-800 |#1| (-878 |#2|))) (-114)) 103 T ELT) (((-661 (-1067 |#1| |#2|)) (-661 (-800 |#1| (-878 |#2|))) (-114)) 77 T ELT)) (-2463 (((-114) (-661 (-800 |#1| (-878 |#2|)))) 26 T ELT)) (-2467 (((-661 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|)))) (-661 (-800 |#1| (-878 |#2|))) (-114)) 102 T ELT)) (-2466 (((-661 (-1067 |#1| |#2|)) (-661 (-800 |#1| (-878 |#2|))) (-114)) 76 T ELT)) (-2465 (((-661 (-800 |#1| (-878 |#2|))) (-661 (-800 |#1| (-878 |#2|)))) 30 T ELT)) (-2464 (((-3 (-661 (-800 |#1| (-878 |#2|))) "failed") (-661 (-800 |#1| (-878 |#2|)))) 29 T ELT))) -(((-645 |#1| |#2|) (-10 -7 (-15 -2463 ((-114) (-661 (-800 |#1| (-878 |#2|))))) (-15 -2464 ((-3 (-661 (-800 |#1| (-878 |#2|))) "failed") (-661 (-800 |#1| (-878 |#2|))))) (-15 -2465 ((-661 (-800 |#1| (-878 |#2|))) (-661 (-800 |#1| (-878 |#2|))))) (-15 -2466 ((-661 (-1067 |#1| |#2|)) (-661 (-800 |#1| (-878 |#2|))) (-114))) (-15 -2467 ((-661 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|)))) (-661 (-800 |#1| (-878 |#2|))) (-114))) (-15 -4112 ((-661 (-1067 |#1| |#2|)) (-661 (-800 |#1| (-878 |#2|))) (-114))) (-15 -4112 ((-661 (-1167 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|)))) (-661 (-800 |#1| (-878 |#2|))) (-114)))) (-464) (-661 (-1198))) (T -645)) -((-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-800 *5 (-878 *6))))) (-5 *1 (-645 *5 *6)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-645 *5 *6)))) (-2467 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-800 *5 (-878 *6))))) (-5 *1 (-645 *5 *6)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-645 *5 *6)))) (-2465 (*1 *2 *2) (-12 (-5 *2 (-661 (-800 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-661 (-1198))) (-5 *1 (-645 *3 *4)))) (-2464 (*1 *2 *2) (|partial| -12 (-5 *2 (-661 (-800 *3 (-878 *4)))) (-4 *3 (-464)) (-14 *4 (-661 (-1198))) (-5 *1 (-645 *3 *4)))) (-2463 (*1 *2 *3) (-12 (-5 *3 (-661 (-800 *4 (-878 *5)))) (-4 *4 (-464)) (-14 *5 (-661 (-1198))) (-5 *2 (-114)) (-5 *1 (-645 *4 *5))))) -((-4023 (((-115) (-115)) 88 T ELT)) (-2471 ((|#2| |#2|) 28 T ELT)) (-3233 ((|#2| |#2| (-1113 |#2|)) 84 T ELT) ((|#2| |#2| (-1198)) 50 T ELT)) (-2469 ((|#2| |#2|) 27 T ELT)) (-2470 ((|#2| |#2|) 29 T ELT)) (-2468 (((-114) (-115)) 33 T ELT)) (-2473 ((|#2| |#2|) 24 T ELT)) (-2474 ((|#2| |#2|) 26 T ELT)) (-2472 ((|#2| |#2|) 25 T ELT))) -(((-646 |#1| |#2|) (-10 -7 (-15 -2468 ((-114) (-115))) (-15 -4023 ((-115) (-115))) (-15 -2474 (|#2| |#2|)) (-15 -2473 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -3233 (|#2| |#2| (-1198))) (-15 -3233 (|#2| |#2| (-1113 |#2|)))) (-569) (-13 (-433 |#1|) (-1023) (-1224))) (T -646)) -((-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-433 *4) (-1023) (-1224))) (-4 *4 (-569)) (-5 *1 (-646 *4 *2)))) (-3233 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-646 *4 *2)) (-4 *2 (-13 (-433 *4) (-1023) (-1224))))) (-2470 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) (-2474 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) (-4023 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-646 *3 *4)) (-4 *4 (-13 (-433 *3) (-1023) (-1224))))) (-2468 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-646 *4 *5)) (-4 *5 (-13 (-433 *4) (-1023) (-1224)))))) -((-3912 (($ $) 38 T ELT)) (-4069 (($ $) 21 T ELT)) (-3910 (($ $) 37 T ELT)) (-4068 (($ $) 22 T ELT)) (-3914 (($ $) 36 T ELT)) (-4067 (($ $) 23 T ELT)) (-4057 (($) 48 T ELT)) (-4372 (($ $) 45 T ELT)) (-2471 (($ $) 17 T ELT)) (-3233 (($ $ (-1113 $)) 7 T ELT) (($ $ (-1198)) 6 T ELT)) (-4373 (($ $) 46 T ELT)) (-2469 (($ $) 15 T ELT)) (-2470 (($ $) 16 T ELT)) (-3915 (($ $) 35 T ELT)) (-4066 (($ $) 24 T ELT)) (-3913 (($ $) 34 T ELT)) (-4065 (($ $) 25 T ELT)) (-3911 (($ $) 33 T ELT)) (-4064 (($ $) 26 T ELT)) (-3918 (($ $) 44 T ELT)) (-3906 (($ $) 32 T ELT)) (-3916 (($ $) 43 T ELT)) (-3904 (($ $) 31 T ELT)) (-3920 (($ $) 42 T ELT)) (-3908 (($ $) 30 T ELT)) (-3921 (($ $) 41 T ELT)) (-3909 (($ $) 29 T ELT)) (-3919 (($ $) 40 T ELT)) (-3907 (($ $) 28 T ELT)) (-3917 (($ $) 39 T ELT)) (-3905 (($ $) 27 T ELT)) (-2473 (($ $) 19 T ELT)) (-2474 (($ $) 20 T ELT)) (-2472 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) -(((-647) (-142)) (T -647)) -((-2474 (*1 *1 *1) (-4 *1 (-647))) (-2473 (*1 *1 *1) (-4 *1 (-647))) (-2472 (*1 *1 *1) (-4 *1 (-647))) (-2471 (*1 *1 *1) (-4 *1 (-647))) (-2470 (*1 *1 *1) (-4 *1 (-647))) (-2469 (*1 *1 *1) (-4 *1 (-647)))) -(-13 (-979) (-1224) (-10 -8 (-15 -2474 ($ $)) (-15 -2473 ($ $)) (-15 -2472 ($ $)) (-15 -2471 ($ $)) (-15 -2470 ($ $)) (-15 -2469 ($ $)))) -(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-979) . T) ((-1224) . T) ((-1227) . T)) -((-2484 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 65 T ELT)) (-2477 (((-661 (-255 |#1| |#2|)) (-661 (-493 |#1| |#2|))) 90 T ELT)) (-2478 (((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-878 |#1|)) 92 T ELT) (((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)) (-878 |#1|)) 91 T ELT)) (-2475 (((-2 (|:| |gblist| (-661 (-255 |#1| |#2|))) (|:| |gvlist| (-661 (-558)))) (-661 (-493 |#1| |#2|))) 136 T ELT)) (-2482 (((-661 (-493 |#1| |#2|)) (-878 |#1|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|))) 105 T ELT)) (-2476 (((-2 (|:| |glbase| (-661 (-255 |#1| |#2|))) (|:| |glval| (-661 (-558)))) (-661 (-255 |#1| |#2|))) 147 T ELT)) (-2480 (((-1288 |#2|) (-493 |#1| |#2|) (-661 (-493 |#1| |#2|))) 70 T ELT)) (-2479 (((-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|))) 47 T ELT)) (-2483 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|))) 61 T ELT)) (-2481 (((-255 |#1| |#2|) (-661 |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|))) 113 T ELT))) -(((-648 |#1| |#2|) (-10 -7 (-15 -2475 ((-2 (|:| |gblist| (-661 (-255 |#1| |#2|))) (|:| |gvlist| (-661 (-558)))) (-661 (-493 |#1| |#2|)))) (-15 -2476 ((-2 (|:| |glbase| (-661 (-255 |#1| |#2|))) (|:| |glval| (-661 (-558)))) (-661 (-255 |#1| |#2|)))) (-15 -2477 ((-661 (-255 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2478 ((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -2478 ((-493 |#1| |#2|) (-661 (-493 |#1| |#2|)) (-878 |#1|))) (-15 -2479 ((-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2480 ((-1288 |#2|) (-493 |#1| |#2|) (-661 (-493 |#1| |#2|)))) (-15 -2481 ((-255 |#1| |#2|) (-661 |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|)))) (-15 -2482 ((-661 (-493 |#1| |#2|)) (-878 |#1|) (-661 (-493 |#1| |#2|)) (-661 (-493 |#1| |#2|)))) (-15 -2483 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-661 (-255 |#1| |#2|)))) (-15 -2484 ((-493 |#1| |#2|) (-255 |#1| |#2|)))) (-661 (-1198)) (-464)) (T -648)) -((-2484 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-648 *4 *5)))) (-2483 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *1 (-648 *4 *5)))) (-2482 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-878 *4)) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *1 (-648 *4 *5)))) (-2481 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-255 *5 *6))) (-4 *6 (-464)) (-5 *2 (-255 *5 *6)) (-14 *5 (-661 (-1198))) (-5 *1 (-648 *5 *6)))) (-2480 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-661 (-1198))) (-4 *6 (-464)) (-5 *2 (-1288 *6)) (-5 *1 (-648 *5 *6)))) (-2479 (*1 *2 *2) (-12 (-5 *2 (-661 (-493 *3 *4))) (-14 *3 (-661 (-1198))) (-4 *4 (-464)) (-5 *1 (-648 *3 *4)))) (-2478 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-661 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464)))) (-2478 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-661 (-1198))) (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464)))) (-2477 (*1 *2 *3) (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *2 (-661 (-255 *4 *5))) (-5 *1 (-648 *4 *5)))) (-2476 (*1 *2 *3) (-12 (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-661 (-255 *4 *5))) (|:| |glval| (-661 (-558))))) (-5 *1 (-648 *4 *5)) (-5 *3 (-661 (-255 *4 *5))))) (-2475 (*1 *2 *3) (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-661 (-255 *4 *5))) (|:| |gvlist| (-661 (-558))))) (-5 *1 (-648 *4 *5))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) NIL T ELT)) (-2413 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)) ELT)) (-4218 (((-51) $ (-1180) (-51)) NIL T ELT) (((-51) $ (-1198) (-51)) 16 T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 (-51) #1="failed") (-1180) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 (-51) #1#) (-1180) $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $ (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (((-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $ (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 (((-51) $ (-1180) (-51)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-51) $ (-1180)) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2485 (($ $) NIL T ELT)) (-2415 (((-1180) $) NIL (|has| (-1180) (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT)) (-2416 (((-1180) $) NIL (|has| (-1180) (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2486 (($ (-402)) 8 T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-51) (-1122)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT)) (-2884 (((-661 (-1180)) $) NIL T ELT)) (-2447 (((-114) (-1180) $) NIL T ELT)) (-1389 (((-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL T ELT)) (-2418 (((-661 (-1180)) $) NIL T ELT)) (-2419 (((-114) (-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-51) (-1122)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT)) (-4231 (((-51) $) NIL (|has| (-1180) (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) #1#) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL T ELT)) (-2414 (($ $ (-51)) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-661 (-51)) (-661 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-661 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT)) (-2420 (((-661 (-51)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 (((-51) $ (-1180)) NIL T ELT) (((-51) $ (-1180) (-51)) NIL T ELT) (((-51) $ (-1198)) 14 T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-1122))) ELT) (((-791) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT) (((-791) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-630 (-877))) (|has| (-51) (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 (-51))) (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-649) (-13 (-1215 (-1180) (-51)) (-298 (-1198) (-51)) (-10 -8 (-15 -2486 ($ (-402))) (-15 -2485 ($ $)) (-15 -4218 ((-51) $ (-1198) (-51)))))) (T -649)) -((-2486 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-649)))) (-2485 (*1 *1 *1) (-5 *1 (-649))) (-4218 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1198)) (-5 *1 (-649))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1980 (((-3 $ #1="failed")) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3641 (((-1288 (-709 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1288 (-709 |#1|)) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1932 (((-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4154 (($) NIL T CONST)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1906 (((-3 $ #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1996 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1994 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2635 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2111 (((-1192 (-965 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2638 (($ $ (-938)) NIL T ELT)) (-1928 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1908 (((-1192 |#1|) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1998 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-1192 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2000 (($ (-1288 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1288 |#1|) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3887 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3511 (((-938)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1917 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2662 (($ $ (-938)) NIL T ELT)) (-1913 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1911 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1915 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1907 (((-3 $ #1#)) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1997 (((-709 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1931 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1995 (((-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) $ (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2636 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2115 (((-1192 (-965 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2637 (($ $ (-938)) NIL T ELT)) (-1929 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1909 (((-1192 |#1|) $) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1999 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1927 (((-1192 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1912 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1914 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1916 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1919 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4230 ((|#1| $ (-558)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3642 (((-709 |#1|) (-1288 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1288 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-709 |#1|) (-1288 $) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1288 |#1|) $ (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4402 (($ (-1288 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1288 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2103 (((-661 (-965 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-661 (-965 |#1|)) (-1288 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2824 (($ $ $) NIL T ELT)) (-1925 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4376 (((-877) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1910 (((-661 (-1288 |#1|))) NIL (-3957 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2825 (($ $ $ $) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2944 (($ (-709 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1918 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3059 (($) 18 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) 19 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-650 |#1| |#2|) (-13 (-764 |#1|) (-630 |#2|) (-10 -8 (-15 -4376 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-764 |#1|)) (T -650)) -((-4376 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-650 *3 *2)) (-4 *2 (-764 *3))))) -((-4379 (($ $ |#2|) 10 T ELT))) -(((-651 |#1| |#2|) (-10 -7 (-15 -4379 (|#1| |#1| |#2|))) (-652 |#2|) (-175)) (T -651)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3950 (($ $ $) 39 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 38 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-652 |#1|) (-142) (-175)) (T -652)) -((-3950 (*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(-13 (-737 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3950 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -4379 ($ $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2488 (((-3 (-855 |#2|) #1="failed") |#2| (-305 |#2|) (-1180)) 105 T ELT) (((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-855 |#2|) #1#))) #1#) |#2| (-305 (-855 |#2|))) 130 T ELT)) (-2487 (((-3 (-845 |#2|) #1#) |#2| (-305 (-845 |#2|))) 135 T ELT))) -(((-653 |#1| |#2|) (-10 -7 (-15 -2488 ((-3 (-855 |#2|) (-2 (|:| |leftHandLimit| (-3 (-855 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-855 |#2|) #1#))) #1#) |#2| (-305 (-855 |#2|)))) (-15 -2487 ((-3 (-845 |#2|) #1#) |#2| (-305 (-845 |#2|)))) (-15 -2488 ((-3 (-855 |#2|) #1#) |#2| (-305 |#2|) (-1180)))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -653)) -((-2488 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1180)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-855 *3)) (-5 *1 (-653 *6 *3)))) (-2487 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-845 *3))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-845 *3)) (-5 *1 (-653 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-855 *3))) (-4 *3 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-855 *3) #1#))) "failed")) (-5 *1 (-653 *5 *3))))) -((-2488 (((-3 (-855 (-419 (-965 |#1|))) #1="failed") (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|))) (-1180)) 86 T ELT) (((-3 (-855 (-419 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#))) #1#) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|)))) 20 T ELT) (((-3 (-855 (-419 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#))) #1#) (-419 (-965 |#1|)) (-305 (-855 (-965 |#1|)))) 35 T ELT)) (-2487 (((-845 (-419 (-965 |#1|))) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|)))) 23 T ELT) (((-845 (-419 (-965 |#1|))) (-419 (-965 |#1|)) (-305 (-845 (-965 |#1|)))) 43 T ELT))) -(((-654 |#1|) (-10 -7 (-15 -2488 ((-3 (-855 (-419 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#))) #1#) (-419 (-965 |#1|)) (-305 (-855 (-965 |#1|))))) (-15 -2488 ((-3 (-855 (-419 (-965 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-855 (-419 (-965 |#1|))) #1#))) #1#) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|))))) (-15 -2487 ((-845 (-419 (-965 |#1|))) (-419 (-965 |#1|)) (-305 (-845 (-965 |#1|))))) (-15 -2487 ((-845 (-419 (-965 |#1|))) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|))))) (-15 -2488 ((-3 (-855 (-419 (-965 |#1|))) #1#) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|))) (-1180)))) (-464)) (T -654)) -((-2488 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-419 (-965 *6)))) (-5 *5 (-1180)) (-5 *3 (-419 (-965 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) (-5 *1 (-654 *6)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-965 *5)))) (-5 *3 (-419 (-965 *5))) (-4 *5 (-464)) (-5 *2 (-845 *3)) (-5 *1 (-654 *5)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-845 (-965 *5)))) (-4 *5 (-464)) (-5 *2 (-845 (-419 (-965 *5)))) (-5 *1 (-654 *5)) (-5 *3 (-419 (-965 *5))))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-965 *5)))) (-5 *3 (-419 (-965 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-855 *3) (-2 (|:| |leftHandLimit| (-3 (-855 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-855 *3) #1#))) #2="failed")) (-5 *1 (-654 *5)))) (-2488 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-855 (-965 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-855 (-419 (-965 *5))) (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-965 *5))) #1#)) (|:| |rightHandLimit| (-3 (-855 (-419 (-965 *5))) #1#))) #2#)) (-5 *1 (-654 *5)) (-5 *3 (-419 (-965 *5)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 11 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3252 (($ (-218 |#1|)) 12 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-878 |#1|)) 7 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-655 |#1|) (-13 (-857) (-633 (-878 |#1|)) (-10 -8 (-15 -3252 ($ (-218 |#1|))))) (-661 (-1198))) (T -655)) -((-3252 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-661 (-1198))) (-5 *1 (-655 *3))))) -((-2491 (((-3 (-1288 (-419 |#1|)) #1="failed") (-1288 |#2|) |#2|) 64 (-2959 (|has| |#1| (-376))) ELT) (((-3 (-1288 |#1|) #1#) (-1288 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-2489 (((-114) (-1288 |#2|)) 33 T ELT)) (-2490 (((-3 (-1288 |#1|) #1#) (-1288 |#2|)) 40 T ELT))) -(((-656 |#1| |#2|) (-10 -7 (-15 -2489 ((-114) (-1288 |#2|))) (-15 -2490 ((-3 (-1288 |#1|) #1="failed") (-1288 |#2|))) (IF (|has| |#1| (-376)) (-15 -2491 ((-3 (-1288 |#1|) #1#) (-1288 |#2|) |#2|)) (-15 -2491 ((-3 (-1288 (-419 |#1|)) #1#) (-1288 |#2|) |#2|)))) (-569) (-13 (-1070) (-658 |#1|))) (T -656)) -((-2491 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 *5))) (-2959 (-4 *5 (-376))) (-4 *5 (-569)) (-5 *2 (-1288 (-419 *5))) (-5 *1 (-656 *5 *4)))) (-2491 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 *5))) (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-1288 *5)) (-5 *1 (-656 *5 *4)))) (-2490 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-658 *4))) (-4 *4 (-569)) (-5 *2 (-1288 *4)) (-5 *1 (-656 *4 *5)))) (-2489 (*1 *2 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-658 *4))) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-656 *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4204 (((-661 (-887 (-655 |#2|) |#1|)) $) NIL T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3294 (($ |#1| (-655 |#2|)) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2492 (($ (-661 |#1|)) 25 T ELT)) (-2195 (((-655 |#2|) $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4341 (((-136)) 16 T ELT)) (-3642 (((-1288 |#1|) $) 44 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-655 |#2|)) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 20 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 17 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-657 |#1| |#2|) (-13 (-1296 |#1|) (-633 (-655 |#2|)) (-521 |#1| (-655 |#2|)) (-10 -8 (-15 -2492 ($ (-661 |#1|))) (-15 -3642 ((-1288 |#1|) $)))) (-376) (-661 (-1198))) (T -657)) -((-2492 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-657 *3 *4)) (-14 *4 (-661 (-1198))))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-1288 *3)) (-5 *1 (-657 *3 *4)) (-4 *3 (-376)) (-14 *4 (-661 (-1198)))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2493 (((-709 |#1|) (-709 $)) 35 T ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 34 T ELT)) (-2494 (((-709 |#1|) (-1288 $)) 37 T ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 36 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-658 |#1|) (-142) (-1070)) (T -658)) -((-2494 (*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1070)) (-5 *2 (-709 *4)))) (-2494 (*1 *2 *3 *1) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -1783 (-709 *4)) (|:| |vec| (-1288 *4)))))) (-2493 (*1 *2 *3) (-12 (-5 *3 (-709 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1070)) (-5 *2 (-709 *4)))) (-2493 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-658 *5)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -1783 (-709 *5)) (|:| |vec| (-1288 *5))))))) -(-13 (-668 |t#1|) (-10 -8 (-15 -2494 ((-709 |t#1|) (-1288 $))) (-15 -2494 ((-2 (|:| -1783 (-709 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-1288 $) $)) (-15 -2493 ((-709 |t#1|) (-709 $))) (-15 -2493 ((-2 (|:| -1783 (-709 |t#1|)) (|:| |vec| (-1288 |t#1|))) (-709 $) (-1288 $))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2495 (($ (-661 |#1|)) 23 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 ((|#1| $ (-657 |#1| |#2|)) 46 T ELT)) (-4341 (((-136)) 13 T ELT)) (-3642 (((-1288 |#1|) $) 42 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 18 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 14 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-659 |#1| |#2|) (-13 (-1296 |#1|) (-298 (-657 |#1| |#2|) |#1|) (-10 -8 (-15 -2495 ($ (-661 |#1|))) (-15 -3642 ((-1288 |#1|) $)))) (-376) (-661 (-1198))) (T -659)) -((-2495 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) (-14 *4 (-661 (-1198))))) (-3642 (*1 *2 *1) (-12 (-5 *2 (-1288 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) (-14 *4 (-661 (-1198)))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) -(((-660 |#1|) (-142) (-1133)) (T -660)) -NIL -(-13 (-666 |t#1|) (-1072 |t#1|)) -(((-102) . T) ((-630 (-877)) . T) ((-666 |#1|) . T) ((-1072 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) NIL T ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4227 (($ $) NIL T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) NIL (|has| |#1| (-861)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1933 (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3862 (((-114) $ (-791)) NIL T ELT)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) NIL (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-2498 (($ $ $) 16 (|has| |#1| (-1122)) ELT)) (-2497 (($ $ $) 23 (|has| |#1| (-1122)) ELT)) (-2496 (($ $ $) 26 (|has| |#1| (-1122)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4226 ((|#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-4229 (($ $) 22 T ELT) (($ $ (-791)) NIL T ELT)) (-2594 (($ $) NIL (|has| |#1| (-1122)) ELT)) (-1467 (($ $) 15 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) NIL (|has| |#1| (-1122)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3826 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3863 (((-114) $) NIL T ELT)) (-3839 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2500 (((-114) $) 11 T ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-2501 (($) 9 T CONST)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-4149 (((-114) $ (-791)) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3938 (($ $ $) NIL (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 21 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3962 (($ |#1|) NIL T ELT)) (-4146 (((-114) $ (-791)) NIL T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4037 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2517 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 20 T ELT) (($ $ (-791)) NIL T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3864 (((-114) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) 18 T ELT)) (-3993 (($) 17 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) ((|#1| $ (-558)) 24 T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-1714 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2518 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-4222 (($ $) NIL T ELT)) (-4220 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) NIL T ELT)) (-4224 (($ $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) 35 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-3881 (($ |#1| $) 12 T ELT)) (-4221 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4232 (($ $ $) 14 T ELT) (($ |#1| $) 25 T ELT) (($ (-661 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2499 (($ $ $) 13 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-661 |#1|) (-13 (-686 |#1|) (-10 -8 (-15 -2501 ($) -4382) (-15 -2500 ((-114) $)) (-15 -3881 ($ |#1| $)) (-15 -2499 ($ $ $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -2498 ($ $ $)) (-15 -2497 ($ $ $)) (-15 -2496 ($ $ $))) |%noBranch|))) (-1238)) (T -661)) -((-2501 (*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1238)))) (-2500 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-661 *3)) (-4 *3 (-1238)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1238)))) (-2499 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1238)))) (-2498 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-1238)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-1238)))) (-2496 (*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-1238))))) -((-4271 (((-661 |#2|) (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|) 16 T ELT)) (-4272 ((|#2| (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|) 18 T ELT)) (-4388 (((-661 |#2|) (-1 |#2| |#1|) (-661 |#1|)) 13 T ELT))) -(((-662 |#1| |#2|) (-10 -7 (-15 -4271 ((-661 |#2|) (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|)) (-15 -4272 (|#2| (-1 |#2| |#1| |#2|) (-661 |#1|) |#2|)) (-15 -4388 ((-661 |#2|) (-1 |#2| |#1|) (-661 |#1|)))) (-1238) (-1238)) (T -662)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-661 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-661 *6)) (-5 *1 (-662 *5 *6)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-661 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-662 *5 *2)))) (-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-661 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-661 *5)) (-5 *1 (-662 *6 *5))))) -((-3842 ((|#2| (-661 |#1|) (-661 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-661 |#1|) (-661 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) |#2|) 17 T ELT) ((|#2| (-661 |#1|) (-661 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|)) 12 T ELT))) -(((-663 |#1| |#2|) (-10 -7 (-15 -3842 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|))) (-15 -3842 (|#2| (-661 |#1|) (-661 |#2|) |#1|)) (-15 -3842 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) |#2|)) (-15 -3842 (|#2| (-661 |#1|) (-661 |#2|) |#1| |#2|)) (-15 -3842 ((-1 |#2| |#1|) (-661 |#1|) (-661 |#2|) (-1 |#2| |#1|))) (-15 -3842 (|#2| (-661 |#1|) (-661 |#2|) |#1| (-1 |#2| |#1|)))) (-1122) (-1238)) (T -663)) -((-3842 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1122)) (-4 *2 (-1238)) (-5 *1 (-663 *5 *2)))) (-3842 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1122)) (-4 *6 (-1238)) (-5 *1 (-663 *5 *6)))) (-3842 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1122)) (-4 *2 (-1238)) (-5 *1 (-663 *5 *2)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 *5)) (-4 *6 (-1122)) (-4 *5 (-1238)) (-5 *2 (-1 *5 *6)) (-5 *1 (-663 *6 *5)))) (-3842 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1122)) (-4 *2 (-1238)) (-5 *1 (-663 *5 *2)))) (-3842 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1122)) (-4 *6 (-1238)) (-5 *2 (-1 *6 *5)) (-5 *1 (-663 *5 *6))))) -((-4388 (((-661 |#3|) (-1 |#3| |#1| |#2|) (-661 |#1|) (-661 |#2|)) 21 T ELT))) -(((-664 |#1| |#2| |#3|) (-10 -7 (-15 -4388 ((-661 |#3|) (-1 |#3| |#1| |#2|) (-661 |#1|) (-661 |#2|)))) (-1238) (-1238) (-1238)) (T -664)) -((-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-661 *6)) (-5 *5 (-661 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-661 *8)) (-5 *1 (-664 *6 *7 *8))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 11 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-665 |#1|) (-13 (-1104) (-630 |#1|)) (-1122)) (T -665)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) -(((-666 |#1|) (-142) (-1133)) (T -666)) -((* (*1 *1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1133))))) -(-13 (-1122) (-10 -8 (-15 * ($ |t#1| $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2502 (($ |#1| |#1| $) 44 T ELT)) (-1713 (($ (-1 (-114) |#1|) $) 60 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2594 (($ $) 46 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) 57 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 9 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 48 T ELT)) (-4037 (($ |#1| $) 29 T ELT) (($ |#1| $ (-791)) 43 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1390 ((|#1| $) 51 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 23 T ELT)) (-3993 (($) 28 T ELT)) (-2503 (((-114) $) 55 T ELT)) (-2593 (((-661 (-2 (|:| -2286 |#1|) (|:| -2157 (-791)))) $) 68 T ELT)) (-1598 (($) 26 T ELT) (($ (-661 |#1|)) 19 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 64 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 20 T ELT)) (-4402 (((-547) $) 35 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-4376 (((-877) $) 14 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 24 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 70 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 17 (|has| $ (-6 -4425)) ELT))) -(((-667 |#1|) (-13 (-715 |#1|) (-10 -8 (-6 -4425) (-15 -2503 ((-114) $)) (-15 -2502 ($ |#1| |#1| $)))) (-1122)) (T -667)) -((-2503 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-667 *3)) (-4 *3 (-1122)))) (-2502 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1122))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) -(((-668 |#1|) (-142) (-1078)) (T -668)) -NIL -(-13 (-21) (-666 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791) $) 17 T ELT)) (-2508 (($ $ |#1|) 69 T ELT)) (-2510 (($ $) 39 T ELT)) (-2511 (($ $) 37 T ELT)) (-3575 (((-3 |#1| "failed") $) 61 T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2545 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3953 (((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-558)) 56 T ELT)) (-2512 ((|#1| $ (-558)) 35 T ELT)) (-2513 ((|#2| $ (-558)) 34 T ELT)) (-2504 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2505 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2509 (($) 11 T ELT)) (-2515 (($ |#1| |#2|) 24 T ELT)) (-2514 (($ (-661 (-2 (|:| |gen| |#1|) (|:| -4373 |#2|)))) 25 T ELT)) (-2516 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 |#2|))) $) 14 T ELT)) (-2507 (($ |#1| $) 71 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2506 (((-114) $ $) 76 T ELT)) (-4376 (((-877) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 27 T ELT))) -(((-669 |#1| |#2| |#3|) (-13 (-1122) (-1059 |#1|) (-10 -8 (-15 -3953 ((-877) $ (-1 (-877) (-877) (-877)) (-1 (-877) (-877) (-877)) (-558))) (-15 -2516 ((-661 (-2 (|:| |gen| |#1|) (|:| -4373 |#2|))) $)) (-15 -2515 ($ |#1| |#2|)) (-15 -2514 ($ (-661 (-2 (|:| |gen| |#1|) (|:| -4373 |#2|))))) (-15 -2513 (|#2| $ (-558))) (-15 -2512 (|#1| $ (-558))) (-15 -2511 ($ $)) (-15 -2510 ($ $)) (-15 -3538 ((-791) $)) (-15 -2509 ($)) (-15 -2508 ($ $ |#1|)) (-15 -2507 ($ |#1| $)) (-15 -2545 ($ |#1| |#2| $)) (-15 -2545 ($ $ $)) (-15 -2506 ((-114) $ $)) (-15 -2505 ($ (-1 |#2| |#2|) $)) (-15 -2504 ($ (-1 |#1| |#1|) $)))) (-1122) (-23) |#2|) (T -669)) -((-3953 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-877) (-877) (-877))) (-5 *4 (-558)) (-5 *2 (-877)) (-5 *1 (-669 *5 *6 *7)) (-4 *5 (-1122)) (-4 *6 (-23)) (-14 *7 *6))) (-2516 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 *4)))) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-2515 (*1 *1 *2 *3) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2514 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 *4)))) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5)))) (-2513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-669 *4 *2 *5)) (-4 *4 (-1122)) (-14 *5 *2))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-1122)) (-5 *1 (-669 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2511 (*1 *1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2510 (*1 *1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-3538 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-2509 (*1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2508 (*1 *1 *1 *2) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2507 (*1 *1 *2 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2545 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2545 (*1 *1 *1 *1) (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) (-2506 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4))) (-2505 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-669 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -((-2416 (((-558) $) 30 T ELT)) (-2517 (($ |#2| $ (-558)) 26 T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) 12 T ELT)) (-2419 (((-114) (-558) $) 17 T ELT)) (-4232 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT))) -(((-670 |#1| |#2|) (-10 -7 (-15 -2517 (|#1| |#1| |#1| (-558))) (-15 -2517 (|#1| |#2| |#1| (-558))) (-15 -4232 (|#1| (-661 |#1|))) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4232 (|#1| |#2| |#1|)) (-15 -4232 (|#1| |#1| |#2|)) (-15 -2416 ((-558) |#1|)) (-15 -2418 ((-661 (-558)) |#1|)) (-15 -2419 ((-114) (-558) |#1|))) (-671 |#2|) (-1238)) (T -670)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 84 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 83 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 55 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2414 (($ $ |#1|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 76 T ELT)) (-4232 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-671 |#1|) (-142) (-1238)) (T -671)) -((-4044 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) (-4232 (*1 *1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1238)))) (-4232 (*1 *1 *2 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1238)))) (-4232 (*1 *1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1238)))) (-4232 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) (-4388 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) (-2518 (*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-558))) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) (-2517 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-671 *2)) (-4 *2 (-1238)))) (-2517 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) (-4218 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1255 (-558))) (|has| *1 (-6 -4426)) (-4 *1 (-671 *2)) (-4 *2 (-1238))))) -(-13 (-616 (-558) |t#1|) (-153 |t#1|) (-298 (-1255 (-558)) $) (-10 -8 (-15 -4044 ($ (-791) |t#1|)) (-15 -4232 ($ $ |t#1|)) (-15 -4232 ($ |t#1| $)) (-15 -4232 ($ $ $)) (-15 -4232 ($ (-661 $))) (-15 -4388 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2518 ($ $ (-558))) (-15 -2518 ($ $ (-1255 (-558)))) (-15 -2517 ($ |t#1| $ (-558))) (-15 -2517 ($ $ $ (-558))) (IF (|has| $ (-6 -4426)) (-15 -4218 (|t#1| $ (-1255 (-558)) |t#1|)) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 15 T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| |#1| (-812)) ELT)) (-4154 (($) NIL T CONST)) (-3604 (((-114) $) NIL (|has| |#1| (-812)) ELT)) (-3399 ((|#1| $) 23 T ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-812)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-812)) ELT)) (-3660 (((-1180) $) 48 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3398 ((|#3| $) 24 T ELT)) (-4376 (((-877) $) 43 T ELT)) (-1378 (((-114) $ $) 22 T ELT)) (-3803 (($ $) NIL (|has| |#1| (-812)) ELT)) (-3059 (($) 10 T CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-812)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-812)) ELT)) (-3454 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-812)) ELT)) (-3086 (((-114) $ $) 26 (|has| |#1| (-812)) ELT)) (-4379 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-4267 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 29 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) -(((-672 |#1| |#2| |#3|) (-13 (-737 |#2|) (-10 -8 (IF (|has| |#1| (-812)) (-6 (-812)) |%noBranch|) (-15 -4379 ($ $ |#3|)) (-15 -4379 ($ |#1| |#3|)) (-15 -3399 (|#1| $)) (-15 -3398 (|#3| $)))) (-737 |#2|) (-175) (|SubsetCategory| (-746) |#2|)) (T -672)) -((-4379 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4)) (-4 *2 (|SubsetCategory| (-746) *4)))) (-4379 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-737 *4)) (-4 *3 (|SubsetCategory| (-746) *4)))) (-3399 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-737 *3)) (-5 *1 (-672 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-746) *3)))) (-3398 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4))))) -((-4001 (((-3 |#2| #1="failed") |#3| |#2| (-1198) |#2| (-661 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) #1#) |#3| |#2| (-1198)) 44 T ELT))) -(((-673 |#1| |#2| |#3|) (-10 -7 (-15 -4001 ((-3 (-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) #1="failed") |#3| |#2| (-1198))) (-15 -4001 ((-3 |#2| #1#) |#3| |#2| (-1198) |#2| (-661 |#2|)))) (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1224) (-979)) (-678 |#2|)) (T -673)) -((-4001 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-661 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-678 *2)))) (-4001 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1198)) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-4 *4 (-13 (-29 *6) (-1224) (-979))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2222 (-661 *4)))) (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-678 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2519 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2521 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-2522 (($ $ (-791)) 31 (|has| |#1| (-376)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) NIL T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3221 (((-791) $) NIL T ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2942 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4230 ((|#1| $ |#1|) 24 T ELT)) (-2523 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-4378 (((-791) $) NIL T ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2944 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2916 (($ $) NIL T ELT)) (-3059 (($) 21 T CONST)) (-3065 (($) 8 T CONST)) (-3070 (($) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-674 |#1| |#2|) (-678 |#1|) (-1070) (-1 |#1| |#1|)) (T -674)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2519 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2522 (($ $ (-791)) NIL (|has| |#1| (-376)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) NIL T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3221 (((-791) $) NIL T ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2942 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4230 ((|#1| $ |#1|) NIL T ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4378 (((-791) $) NIL T ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2944 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2916 (($ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-675 |#1|) (-678 |#1|) (-240)) (T -675)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2519 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2521 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2522 (($ $ (-791)) NIL (|has| |#1| (-376)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) NIL T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3221 (((-791) $) NIL T ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2942 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4230 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2523 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4378 (((-791) $) NIL T ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2944 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2916 (($ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-676 |#1| |#2|) (-13 (-678 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-668 |#1|) (-10 -8 (-15 -4188 ($ $))))) (T -676)) -NIL -((-2519 (($ $) 29 T ELT)) (-2916 (($ $) 27 T ELT)) (-3070 (($) 13 T ELT))) -(((-677 |#1| |#2|) (-10 -7 (-15 -2519 (|#1| |#1|)) (-15 -2916 (|#1| |#1|)) (-15 -3070 (|#1|))) (-678 |#2|) (-1070)) (T -677)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2519 (($ $) 93 (|has| |#1| (-376)) ELT)) (-2521 (($ $ $) 95 (|has| |#1| (-376)) ELT)) (-2522 (($ $ (-791)) 94 (|has| |#1| (-376)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2935 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2933 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2934 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3575 (((-3 (-558) #2="failed") $) 85 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) 82 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3574 (((-558) $) 84 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 81 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 80 T ELT)) (-4389 (($ $) 74 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3923 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3294 (($ |#1| (-791)) 72 T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 67 (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 68 (|has| |#1| (-569)) ELT)) (-3221 (((-791) $) 76 T ELT)) (-2941 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-2942 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2939 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-2940 (((-3 $ #1#) $ $) 61 (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3592 ((|#1| $) 75 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-569)) ELT)) (-4230 ((|#1| $ |#1|) 98 T ELT)) (-2523 (($ $ $) 92 (|has| |#1| (-376)) ELT)) (-4378 (((-791) $) 77 T ELT)) (-3218 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 83 (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) 78 T ELT)) (-4247 (((-661 |#1|) $) 71 T ELT)) (-4107 ((|#1| $ (-791)) 73 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2944 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2916 (($ $) 96 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($) 97 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-678 |#1|) (-142) (-1070)) (T -678)) -((-3070 (*1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)))) (-2916 (*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)))) (-2521 (*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2522 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-678 *3)) (-4 *3 (-1070)) (-4 *3 (-376)))) (-2519 (*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2523 (*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(-13 (-866 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -3070 ($)) (-15 -2916 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2521 ($ $ $)) (-15 -2522 ($ $ (-791))) (-15 -2519 ($ $)) (-15 -2523 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-298 |#1| |#1|) . T) ((-424 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-866 |#1|) . T)) -((-2520 (((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-4162 (((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 19 T ELT))) -(((-679 |#1| |#2|) (-10 -7 (-15 -4162 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4162 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|)))) (-15 -2520 ((-661 (-675 (-419 |#2|))) (-675 (-419 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558)))) (-1264 |#1|)) (T -679)) -((-2520 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-419 *5))))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) (-5 *3 (-675 (-419 *5))))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-675 (-419 *6)))) (-5 *1 (-679 *5 *6)) (-5 *3 (-675 (-419 *6)))))) -((-2521 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2522 ((|#2| |#2| (-791) (-1 |#1| |#1|)) 45 T ELT)) (-2523 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) -(((-680 |#1| |#2|) (-10 -7 (-15 -2521 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2522 (|#2| |#2| (-791) (-1 |#1| |#1|))) (-15 -2523 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-678 |#1|)) (T -680)) -((-2523 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) (-4 *2 (-678 *4)))) (-2522 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-680 *5 *2)) (-4 *2 (-678 *5)))) (-2521 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) (-4 *2 (-678 *4))))) -((-2524 (($ $ $) 9 T ELT))) -(((-681 |#1|) (-10 -7 (-15 -2524 (|#1| |#1| |#1|))) (-682)) (T -681)) -NIL -((-2526 (($ $) 8 T ELT)) (-2524 (($ $ $) 6 T ELT)) (-2525 (($ $ $) 7 T ELT))) -(((-682) (-142)) (T -682)) -((-2526 (*1 *1 *1) (-4 *1 (-682))) (-2525 (*1 *1 *1 *1) (-4 *1 (-682))) (-2524 (*1 *1 *1 *1) (-4 *1 (-682)))) -(-13 (-1238) (-10 -8 (-15 -2526 ($ $)) (-15 -2525 ($ $ $)) (-15 -2524 ($ $ $)))) -(((-1238) . T)) -((-2527 (((-3 (-661 (-1192 |#1|)) "failed") (-661 (-1192 |#1|)) (-1192 |#1|)) 33 T ELT))) -(((-683 |#1|) (-10 -7 (-15 -2527 ((-3 (-661 (-1192 |#1|)) "failed") (-661 (-1192 |#1|)) (-1192 |#1|)))) (-929)) (T -683)) -((-2527 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1192 *4))) (-5 *3 (-1192 *4)) (-4 *4 (-929)) (-5 *1 (-683 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4364 (((-661 |#1|) $) 84 T ELT)) (-4377 (($ $ (-791)) 94 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4369 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 50 T ELT)) (-3575 (((-3 (-692 |#1|) #1#) $) NIL T ELT)) (-3574 (((-692 |#1|) $) NIL T ELT)) (-4389 (($ $) 93 T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ (-692 |#1|) |#2|) 70 T ELT)) (-4366 (($ $) 89 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4370 (((-1313 |#1| |#2|) (-1313 |#1| |#2|) $) 49 T ELT)) (-1952 (((-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3295 (((-692 |#1|) $) NIL T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4198 (($ $ |#1| $) 32 T ELT) (($ $ (-661 |#1|) (-661 $)) 34 T ELT)) (-4378 (((-791) $) 91 T ELT)) (-3950 (($ $ $) 20 T ELT) (($ (-692 |#1|) (-692 |#1|)) 79 T ELT) (($ (-692 |#1|) $) 77 T ELT) (($ $ (-692 |#1|)) 78 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1304 |#1| |#2|) $) 60 T ELT) (((-1313 |#1| |#2|) $) 43 T ELT) (($ (-692 |#1|)) 27 T ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-692 |#1|)) NIL T ELT)) (-4384 ((|#2| (-1313 |#1| |#2|) $) 45 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 23 T CONST)) (-3064 (((-661 (-2 (|:| |k| (-692 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4375 (((-3 $ #1#) (-1304 |#1| |#2|)) 62 T ELT)) (-1936 (($ (-692 |#1|)) 14 T ELT)) (-3454 (((-114) $ $) 46 T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 31 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-692 |#1|)) NIL T ELT))) -(((-684 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-692 |#1|)) (-10 -8 (-15 -4375 ((-3 $ "failed") (-1304 |#1| |#2|))) (-15 -3950 ($ (-692 |#1|) (-692 |#1|))) (-15 -3950 ($ (-692 |#1|) $)) (-15 -3950 ($ $ (-692 |#1|))))) (-861) (-175)) (T -684)) -((-4375 (*1 *1 *2) (|partial| -12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *1 (-684 *3 *4)))) (-3950 (*1 *1 *2 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) (-3950 (*1 *1 *2 *1) (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) (-3950 (*1 *1 *1 *2) (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175))))) -((-1935 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-1933 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-1713 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-2510 (($ $) 65 T ELT)) (-2594 (($ $) 74 T ELT)) (-3825 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-4272 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3839 (((-558) |#2| $ (-558)) 71 T ELT) (((-558) |#2| $) NIL T ELT) (((-558) (-1 (-114) |#2|) $) 54 T ELT)) (-4044 (($ (-791) |#2|) 63 T ELT)) (-3257 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-3938 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3962 (($ |#2|) 15 T ELT)) (-4037 (($ $ $ (-558)) 42 T ELT) (($ |#2| $ (-558)) 40 T ELT)) (-1468 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-1714 (($ $ (-1255 (-558))) 51 T ELT) (($ $ (-558)) 44 T ELT)) (-1934 (($ $ $ (-558)) 70 T ELT)) (-3820 (($ $) 68 T ELT)) (-3086 (((-114) $ $) 76 T ELT))) -(((-685 |#1| |#2|) (-10 -7 (-15 -3962 (|#1| |#2|)) (-15 -1714 (|#1| |#1| (-558))) (-15 -1714 (|#1| |#1| (-1255 (-558)))) (-15 -3825 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4037 (|#1| |#2| |#1| (-558))) (-15 -4037 (|#1| |#1| |#1| (-558))) (-15 -3257 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1713 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3825 (|#1| |#2| |#1|)) (-15 -2594 (|#1| |#1|)) (-15 -3257 (|#1| |#1| |#1|)) (-15 -3938 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1935 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3839 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -3839 ((-558) |#2| |#1|)) (-15 -3839 ((-558) |#2| |#1| (-558))) (-15 -3938 (|#1| |#1| |#1|)) (-15 -1935 ((-114) |#1|)) (-15 -1934 (|#1| |#1| |#1| (-558))) (-15 -2510 (|#1| |#1|)) (-15 -1933 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1933 (|#1| |#1|)) (-15 -3086 ((-114) |#1| |#1|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4272 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1468 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4044 (|#1| (-791) |#2|)) (-15 -4388 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3820 (|#1| |#1|))) (-686 |#2|) (-1238)) (T -685)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-4225 ((|#1| $) 71 T ELT)) (-4227 (($ $) 73 T ELT)) (-2413 (((-1294) $ (-558) (-558)) 107 (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) 58 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) $) 153 (|has| |#1| (-861)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 147 T ELT)) (-1933 (($ $) 157 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4426))) ELT) (($ (-1 (-114) |#1| |#1|) $) 156 (|has| $ (-6 -4426)) ELT)) (-3310 (($ $) 152 (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $) 146 T ELT)) (-3862 (((-114) $ (-791)) 90 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 62 (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) 60 (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 127 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) 140 T ELT)) (-4140 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4425)) ELT)) (-4226 ((|#1| $) 72 T ELT)) (-4154 (($) 7 T CONST)) (-2510 (($ $) 155 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 145 T ELT)) (-4229 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-2594 (($ $) 142 (|has| |#1| (-1122)) ELT)) (-1467 (($ $) 109 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 141 (|has| |#1| (-1122)) ELT) (($ (-1 (-114) |#1|) $) 136 T ELT)) (-3826 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4425)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1719 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 97 T ELT)) (-3863 (((-114) $) 93 T ELT)) (-3839 (((-558) |#1| $ (-558)) 150 (|has| |#1| (-1122)) ELT) (((-558) |#1| $) 149 (|has| |#1| (-1122)) ELT) (((-558) (-1 (-114) |#1|) $) 148 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-4044 (($ (-791) |#1|) 119 T ELT)) (-4149 (((-114) $ (-791)) 91 T ELT)) (-2415 (((-558) $) 105 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 163 (|has| |#1| (-861)) ELT)) (-3257 (($ $ $) 143 (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 139 T ELT)) (-3938 (($ $ $) 151 (|has| |#1| (-861)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 144 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 104 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 162 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3962 (($ |#1|) 133 T ELT)) (-4146 (((-114) $ (-791)) 92 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-4037 (($ $ $ (-558)) 138 T ELT) (($ |#1| $ (-558)) 137 T ELT)) (-2517 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2418 (((-661 (-558)) $) 102 T ELT)) (-2419 (((-114) (-558) $) 101 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2414 (($ $ |#1|) 106 (|has| $ (-6 -4426)) ELT)) (-3864 (((-114) $) 94 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 100 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1255 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-1714 (($ $ (-1255 (-558))) 135 T ELT) (($ $ (-558)) 134 T ELT)) (-2518 (($ $ (-1255 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-4222 (($ $) 68 T ELT)) (-4220 (($ $) 65 (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) 69 T ELT)) (-4224 (($ $) 70 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1934 (($ $ $ (-558)) 154 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 108 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 117 T ELT)) (-4221 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-4232 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-661 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 161 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 159 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) 160 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 158 (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-686 |#1|) (-142) (-1238)) (T -686)) -((-3962 (*1 *1 *2) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238))))) -(-13 (-1171 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -3962 ($ |t#1|)))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1031 |#1|) . T) ((-1122) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861))) ((-1171 |#1|) . T) ((-1238) . T) ((-1277 |#1|) . T)) -((-4001 (((-661 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2222 (-661 |#3|)))) |#4| (-661 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2222 (-661 |#3|))) |#4| |#3|) 60 T ELT)) (-3511 (((-791) |#4| |#3|) 18 T ELT)) (-3760 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2528 (((-114) |#4| |#3|) 14 T ELT))) -(((-687 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4001 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2222 (-661 |#3|))) |#4| |#3|)) (-15 -4001 ((-661 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2222 (-661 |#3|)))) |#4| (-661 |#3|))) (-15 -3760 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2528 ((-114) |#4| |#3|)) (-15 -3511 ((-791) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4426))) (-13 (-385 |#1|) (-10 -7 (-6 -4426))) (-706 |#1| |#2| |#3|)) (T -687)) -((-3511 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-791)) (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) (-2528 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-114)) (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) (-3760 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4426)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426)))) (-5 *1 (-687 *4 *5 *2 *3)) (-4 *3 (-706 *4 *5 *2)))) (-4001 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-661 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2222 (-661 *7))))) (-5 *1 (-687 *5 *6 *7 *3)) (-5 *4 (-661 *7)) (-4 *3 (-706 *5 *6 *7)))) (-4001 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2222 (-661 *4)))) (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4))))) -((-4001 (((-661 (-2 (|:| |particular| (-3 (-1288 |#1|) #1="failed")) (|:| -2222 (-661 (-1288 |#1|))))) (-661 (-661 |#1|)) (-661 (-1288 |#1|))) 22 T ELT) (((-661 (-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|))))) (-709 |#1|) (-661 (-1288 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|)))) (-661 (-661 |#1|)) (-1288 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|)))) (-709 |#1|) (-1288 |#1|)) 14 T ELT)) (-3511 (((-791) (-709 |#1|) (-1288 |#1|)) 30 T ELT)) (-3760 (((-3 (-1288 |#1|) #1#) (-709 |#1|) (-1288 |#1|)) 24 T ELT)) (-2528 (((-114) (-709 |#1|) (-1288 |#1|)) 27 T ELT))) -(((-688 |#1|) (-10 -7 (-15 -4001 ((-2 (|:| |particular| (-3 (-1288 |#1|) #1="failed")) (|:| -2222 (-661 (-1288 |#1|)))) (-709 |#1|) (-1288 |#1|))) (-15 -4001 ((-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|)))) (-661 (-661 |#1|)) (-1288 |#1|))) (-15 -4001 ((-661 (-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|))))) (-709 |#1|) (-661 (-1288 |#1|)))) (-15 -4001 ((-661 (-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|))))) (-661 (-661 |#1|)) (-661 (-1288 |#1|)))) (-15 -3760 ((-3 (-1288 |#1|) #1#) (-709 |#1|) (-1288 |#1|))) (-15 -2528 ((-114) (-709 |#1|) (-1288 |#1|))) (-15 -3511 ((-791) (-709 |#1|) (-1288 |#1|)))) (-376)) (T -688)) -((-3511 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-376)) (-5 *2 (-791)) (-5 *1 (-688 *5)))) (-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-688 *5)))) (-3760 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-709 *4)) (-4 *4 (-376)) (-5 *1 (-688 *4)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) (-5 *2 (-661 (-2 (|:| |particular| (-3 (-1288 *5) #1="failed")) (|:| -2222 (-661 (-1288 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-661 (-1288 *5))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 (-661 (-2 (|:| |particular| (-3 (-1288 *5) #1#)) (|:| -2222 (-661 (-1288 *5)))))) (-5 *1 (-688 *5)) (-5 *4 (-661 (-1288 *5))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) #1#)) (|:| -2222 (-661 (-1288 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1288 *5)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *5) #1#)) (|:| -2222 (-661 (-1288 *5))))) (-5 *1 (-688 *5)) (-5 *4 (-1288 *5))))) -((-2529 (((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2222 (-661 (-1288 (-419 |#4|))))) (-661 |#4|) (-661 |#3|)) 51 T ELT))) -(((-689 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2529 ((-2 (|:| |particular| (-3 (-1288 (-419 |#4|)) "failed")) (|:| -2222 (-661 (-1288 (-419 |#4|))))) (-661 |#4|) (-661 |#3|)))) (-569) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -689)) -((-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *7)) (-4 *7 (-861)) (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) (|:| -2222 (-661 (-1288 (-419 *8)))))) (-5 *1 (-689 *5 *6 *7 *8))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1980 (((-3 $ #1="failed")) NIL (|has| |#2| (-569)) ELT)) (-3750 ((|#2| $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3641 (((-1288 (-709 |#2|))) NIL T ELT) (((-1288 (-709 |#2|)) (-1288 $)) NIL T ELT)) (-3525 (((-114) $) NIL T ELT)) (-1932 (((-1288 $)) 41 T ELT)) (-3753 (($ |#2|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3512 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3514 (((-246 |#1| |#2|) $ (-558)) NIL T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (|has| |#2| (-569)) ELT)) (-1906 (((-3 $ #1#)) NIL (|has| |#2| (-569)) ELT)) (-1996 (((-709 |#2|)) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-1930 ((|#2| $) NIL T ELT)) (-1994 (((-709 |#2|) $) NIL T ELT) (((-709 |#2|) $ (-1288 $)) NIL T ELT)) (-2635 (((-3 $ #1#) $) NIL (|has| |#2| (-569)) ELT)) (-2111 (((-1192 (-965 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2638 (($ $ (-938)) NIL T ELT)) (-1928 ((|#2| $) NIL T ELT)) (-1908 (((-1192 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-1998 ((|#2|) NIL T ELT) ((|#2| (-1288 $)) NIL T ELT)) (-1926 (((-1192 |#2|) $) NIL T ELT)) (-1920 (((-114)) NIL T ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-2000 (($ (-1288 |#2|)) NIL T ELT) (($ (-1288 |#2|) (-1288 $)) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3511 (((-791) $) NIL (|has| |#2| (-569)) ELT) (((-938)) 42 T ELT)) (-3515 ((|#2| $ (-558) (-558)) NIL T ELT)) (-1917 (((-114)) NIL T ELT)) (-2662 (($ $ (-938)) NIL T ELT)) (-3290 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3510 (((-791) $) NIL (|has| |#2| (-569)) ELT)) (-3509 (((-661 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)) ELT)) (-3517 (((-791) $) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3747 ((|#2| $) NIL (|has| |#2| (-6 (-4427 #2="*"))) ELT)) (-3521 (((-558) $) NIL T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3526 (($ (-661 (-661 |#2|))) NIL T ELT)) (-2160 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4022 (((-661 (-661 |#2|)) $) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1915 (((-114)) NIL T ELT)) (-2118 (((-3 (-2 (|:| |particular| $) (|:| -2222 (-661 $))) #1#)) NIL (|has| |#2| (-569)) ELT)) (-1907 (((-3 $ #1#)) NIL (|has| |#2| (-569)) ELT)) (-1997 (((-709 |#2|)) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-1931 ((|#2| $) NIL T ELT)) (-1995 (((-709 |#2|) $) NIL T ELT) (((-709 |#2|) $ (-1288 $)) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-2636 (((-3 $ #1#) $) NIL (|has| |#2| (-569)) ELT)) (-2115 (((-1192 (-965 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2637 (($ $ (-938)) NIL T ELT)) (-1929 ((|#2| $) NIL T ELT)) (-1909 (((-1192 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-1999 ((|#2|) NIL T ELT) ((|#2| (-1288 $)) NIL T ELT)) (-1927 (((-1192 |#2|) $) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-1914 (((-114)) NIL T ELT)) (-1916 (((-114)) NIL T ELT)) (-4018 (((-3 $ #1#) $) NIL (|has| |#2| (-376)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1919 (((-114)) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) ((|#2| $ (-558) (-558)) 27 T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4188 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-3749 ((|#2| $) NIL T ELT)) (-3752 (($ (-661 |#2|)) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-3751 (((-246 |#1| |#2|) $) NIL T ELT)) (-3748 ((|#2| $) NIL (|has| |#2| (-6 (-4427 #2#))) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3642 (((-709 |#2|) (-1288 $)) NIL T ELT) (((-1288 |#2|) $) NIL T ELT) (((-709 |#2|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#2|) $ (-1288 $)) 30 T ELT)) (-4402 (($ (-1288 |#2|)) NIL T ELT) (((-1288 |#2|) $) NIL T ELT)) (-2103 (((-661 (-965 |#2|))) NIL T ELT) (((-661 (-965 |#2|)) (-1288 $)) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-1925 (((-114)) NIL T ELT)) (-3513 (((-246 |#1| |#2|) $ (-558)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (((-709 |#2|) $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) 40 T ELT)) (-1910 (((-661 (-1288 |#2|))) NIL (|has| |#2| (-569)) ELT)) (-2825 (($ $ $ $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-2944 (($ (-709 |#2|) $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-1918 (((-114)) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-690 |#1| |#2|) (-13 (-1144 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-630 (-709 |#2|)) (-430 |#2|)) (-938) (-175)) (T -690)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3666 (((-661 (-1156)) $) 10 T ELT)) (-4376 (((-877) $) 16 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-691) (-13 (-1104) (-10 -8 (-15 -3666 ((-661 (-1156)) $))))) (T -691)) -((-3666 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-691))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4364 (((-661 |#1|) $) NIL T ELT)) (-3539 (($ $) 62 T ELT)) (-3063 (((-114) $) NIL T ELT)) (-3575 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-2532 (((-3 $ #1#) (-841 |#1|)) 28 T ELT)) (-2534 (((-114) (-841 |#1|)) 18 T ELT)) (-2533 (($ (-841 |#1|)) 29 T ELT)) (-2907 (((-114) $ $) 36 T ELT)) (-4263 (((-938) $) 43 T ELT)) (-3540 (($ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4162 (((-661 $) (-841 |#1|)) 20 T ELT)) (-4376 (((-877) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-841 |#1|) $) 47 T ELT) (((-697 |#1|) $) 52 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2531 (((-58 (-661 $)) (-661 |#1|) (-938)) 67 T ELT)) (-2530 (((-661 $) (-661 |#1|) (-938)) 70 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 63 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 46 T ELT))) -(((-692 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 -3063 ((-114) $)) (-15 -3540 ($ $)) (-15 -3539 ($ $)) (-15 -4263 ((-938) $)) (-15 -2907 ((-114) $ $)) (-15 -4376 ((-841 |#1|) $)) (-15 -4376 ((-697 |#1|) $)) (-15 -4162 ((-661 $) (-841 |#1|))) (-15 -2534 ((-114) (-841 |#1|))) (-15 -2533 ($ (-841 |#1|))) (-15 -2532 ((-3 $ "failed") (-841 |#1|))) (-15 -4364 ((-661 |#1|) $)) (-15 -2531 ((-58 (-661 $)) (-661 |#1|) (-938))) (-15 -2530 ((-661 $) (-661 |#1|) (-938))))) (-861)) (T -692)) -((-3063 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-861)))) (-3539 (*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-861)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) (-2907 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) (-4162 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-861)) (-5 *2 (-661 (-692 *4))) (-5 *1 (-692 *4)))) (-2534 (*1 *2 *3) (-12 (-5 *3 (-841 *4)) (-4 *4 (-861)) (-5 *2 (-114)) (-5 *1 (-692 *4)))) (-2533 (*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-861)) (-5 *1 (-692 *3)))) (-2532 (*1 *1 *2) (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-861)) (-5 *1 (-692 *3)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) (-2531 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-938)) (-4 *5 (-861)) (-5 *2 (-58 (-661 (-692 *5)))) (-5 *1 (-692 *5)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-938)) (-4 *5 (-861)) (-5 *2 (-661 (-692 *5))) (-5 *1 (-692 *5))))) -((-3822 ((|#2| $) 100 T ELT)) (-4227 (($ $) 121 T ELT)) (-3862 (((-114) $ (-791)) 35 T ELT)) (-4229 (($ $) 109 T ELT) (($ $ (-791)) 112 T ELT)) (-3863 (((-114) $) 122 T ELT)) (-3432 (((-661 $) $) 96 T ELT)) (-3428 (((-114) $ $) 92 T ELT)) (-4149 (((-114) $ (-791)) 33 T ELT)) (-2415 (((-558) $) 66 T ELT)) (-2416 (((-558) $) 65 T ELT)) (-4146 (((-114) $ (-791)) 31 T ELT)) (-3947 (((-114) $) 98 T ELT)) (-4228 ((|#2| $) 113 T ELT) (($ $ (-791)) 117 T ELT)) (-2517 (($ $ $ (-558)) 83 T ELT) (($ |#2| $ (-558)) 82 T ELT)) (-2418 (((-661 (-558)) $) 64 T ELT)) (-2419 (((-114) (-558) $) 59 T ELT)) (-4231 ((|#2| $) NIL T ELT) (($ $ (-791)) 108 T ELT)) (-4199 (($ $ (-558)) 125 T ELT)) (-3864 (((-114) $) 124 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-2420 (((-661 |#2|) $) 46 T ELT)) (-4230 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1255 (-558))) 79 T ELT) ((|#2| $ (-558)) 57 T ELT) ((|#2| $ (-558) |#2|) 58 T ELT)) (-3430 (((-558) $ $) 91 T ELT)) (-2518 (($ $ (-1255 (-558))) 78 T ELT) (($ $ (-558)) 72 T ELT)) (-4063 (((-114) $) 87 T ELT)) (-4222 (($ $) 105 T ELT)) (-4223 (((-791) $) 104 T ELT)) (-4224 (($ $) 103 T ELT)) (-3950 (($ (-661 |#2|)) 53 T ELT)) (-3292 (($ $) 126 T ELT)) (-3942 (((-661 $) $) 90 T ELT)) (-3429 (((-114) $ $) 89 T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-3454 (((-114) $ $) 20 T ELT)) (-4387 (((-791) $) 39 T ELT))) -(((-693 |#1| |#2|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -3292 (|#1| |#1|)) (-15 -4199 (|#1| |#1| (-558))) (-15 -3862 ((-114) |#1| (-791))) (-15 -4149 ((-114) |#1| (-791))) (-15 -4146 ((-114) |#1| (-791))) (-15 -3863 ((-114) |#1|)) (-15 -3864 ((-114) |#1|)) (-15 -4230 (|#2| |#1| (-558) |#2|)) (-15 -4230 (|#2| |#1| (-558))) (-15 -2420 ((-661 |#2|) |#1|)) (-15 -2419 ((-114) (-558) |#1|)) (-15 -2418 ((-661 (-558)) |#1|)) (-15 -2416 ((-558) |#1|)) (-15 -2415 ((-558) |#1|)) (-15 -3950 (|#1| (-661 |#2|))) (-15 -4230 (|#1| |#1| (-1255 (-558)))) (-15 -2518 (|#1| |#1| (-558))) (-15 -2518 (|#1| |#1| (-1255 (-558)))) (-15 -2517 (|#1| |#2| |#1| (-558))) (-15 -2517 (|#1| |#1| |#1| (-558))) (-15 -4222 (|#1| |#1|)) (-15 -4223 ((-791) |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4228 (|#1| |#1| (-791))) (-15 -4230 (|#2| |#1| "last")) (-15 -4228 (|#2| |#1|)) (-15 -4229 (|#1| |#1| (-791))) (-15 -4230 (|#1| |#1| "rest")) (-15 -4229 (|#1| |#1|)) (-15 -4231 (|#1| |#1| (-791))) (-15 -4230 (|#2| |#1| "first")) (-15 -4231 (|#2| |#1|)) (-15 -3428 ((-114) |#1| |#1|)) (-15 -3429 ((-114) |#1| |#1|)) (-15 -3430 ((-558) |#1| |#1|)) (-15 -4063 ((-114) |#1|)) (-15 -4230 (|#2| |#1| "value")) (-15 -3822 (|#2| |#1|)) (-15 -3947 ((-114) |#1|)) (-15 -3432 ((-661 |#1|) |#1|)) (-15 -3942 ((-661 |#1|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2159 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4387 ((-791) |#1|))) (-694 |#2|) (-1238)) (T -693)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-4225 ((|#1| $) 71 T ELT)) (-4227 (($ $) 73 T ELT)) (-2413 (((-1294) $ (-558) (-558)) 107 (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) 58 (|has| $ (-6 -4426)) ELT)) (-3862 (((-114) $ (-791)) 90 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 62 (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) 60 (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 127 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 112 T ELT)) (-4226 ((|#1| $) 72 T ELT)) (-4154 (($) 7 T CONST)) (-2536 (($ $) 135 T ELT)) (-4229 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-1467 (($ $) 109 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 110 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 113 T ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1719 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 97 T ELT)) (-3863 (((-114) $) 93 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-2535 (((-791) $) 134 T ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-4044 (($ (-791) |#1|) 119 T ELT)) (-4149 (((-114) $ (-791)) 91 T ELT)) (-2415 (((-558) $) 105 (|has| (-558) (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 104 (|has| (-558) (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4146 (((-114) $ (-791)) 92 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-2538 (($ $) 137 T ELT)) (-2539 (((-114) $) 138 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-2517 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2418 (((-661 (-558)) $) 102 T ELT)) (-2419 (((-114) (-558) $) 101 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2537 ((|#1| $) 136 T ELT)) (-4231 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2414 (($ $ |#1|) 106 (|has| $ (-6 -4426)) ELT)) (-4199 (($ $ (-558)) 133 T ELT)) (-3864 (((-114) $) 94 T ELT)) (-2540 (((-114) $) 139 T ELT)) (-2541 (((-114) $) 140 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 100 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1255 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-2518 (($ $ (-1255 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-4222 (($ $) 68 T ELT)) (-4220 (($ $) 65 (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) 69 T ELT)) (-4224 (($ $) 70 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 108 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 117 T ELT)) (-4221 (($ $ $) 67 (|has| $ (-6 -4426)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4426)) ELT)) (-4232 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-661 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3292 (($ $) 132 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-694 |#1|) (-142) (-1238)) (T -694)) -((-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1238)))) (-4140 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1238)))) (-2541 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-2540 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-2538 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238)))) (-2537 (*1 *2 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238)))) (-2536 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238)))) (-2535 (*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-791)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-694 *3)) (-4 *3 (-1238)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238))))) -(-13 (-1171 |t#1|) (-10 -8 (-15 -3826 ($ (-1 (-114) |t#1|) $)) (-15 -4140 ($ (-1 (-114) |t#1|) $)) (-15 -2541 ((-114) $)) (-15 -2540 ((-114) $)) (-15 -2539 ((-114) $)) (-15 -2538 ($ $)) (-15 -2537 (|t#1| $)) (-15 -2536 ($ $)) (-15 -2535 ((-791) $)) (-15 -4199 ($ $ (-558))) (-15 -3292 ($ $)))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-1031 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1171 |#1|) . T) ((-1238) . T) ((-1277 |#1|) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2547 (($ (-791) (-791) (-791)) 53 (|has| |#1| (-1070)) ELT)) (-2544 ((|#1| $ (-791) (-791) (-791) |#1|) 47 T ELT)) (-4154 (($) NIL T CONST)) (-2545 (($ $ $) 57 (|has| |#1| (-1070)) ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2542 (((-1288 (-791)) $) 12 T ELT)) (-2543 (($ (-1198) $ $) 34 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2546 (($ (-791)) 55 (|has| |#1| (-1070)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-791) (-791) (-791)) 44 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-3950 (($ (-661 (-661 (-661 |#1|)))) 67 T ELT)) (-4376 (($ (-977 (-977 (-977 |#1|)))) 23 T ELT) (((-977 (-977 (-977 |#1|))) $) 19 T ELT) (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-695 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1070)) (PROGN (-15 -2547 ($ (-791) (-791) (-791))) (-15 -2546 ($ (-791))) (-15 -2545 ($ $ $))) |%noBranch|) (-15 -3950 ($ (-661 (-661 (-661 |#1|))))) (-15 -4230 (|#1| $ (-791) (-791) (-791))) (-15 -2544 (|#1| $ (-791) (-791) (-791) |#1|)) (-15 -4376 ($ (-977 (-977 (-977 |#1|))))) (-15 -4376 ((-977 (-977 (-977 |#1|))) $)) (-15 -2543 ($ (-1198) $ $)) (-15 -2542 ((-1288 (-791)) $)))) (-1122)) (T -695)) -((-2547 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1070)) (-4 *3 (-1122)))) (-2546 (*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1070)) (-4 *3 (-1122)))) (-2545 (*1 *1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1070)) (-4 *2 (-1122)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-661 *3)))) (-4 *3 (-1122)) (-5 *1 (-695 *3)))) (-4230 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) (-2544 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1122)) (-5 *1 (-695 *3)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) (-2543 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) (-2542 (*1 *2 *1) (-12 (-5 *2 (-1288 (-791))) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3596 (((-495) $) 10 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 19 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-1156) $) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-696) (-13 (-1104) (-10 -8 (-15 -3596 ((-495) $)) (-15 -3651 ((-1156) $))))) (T -696)) -((-3596 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-696)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-696))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4364 (((-661 |#1|) $) 15 T ELT)) (-3539 (($ $) 19 T ELT)) (-3063 (((-114) $) 20 T ELT)) (-3575 (((-3 |#1| "failed") $) 23 T ELT)) (-3574 ((|#1| $) 21 T ELT)) (-4229 (($ $) 37 T ELT)) (-4366 (($ $) 25 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-2907 (((-114) $ $) 46 T ELT)) (-4263 (((-938) $) 40 T ELT)) (-3540 (($ $) 18 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 ((|#1| $) 36 T ELT)) (-4376 (((-877) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-841 |#1|) $) 28 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 13 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) -(((-697 |#1|) (-13 (-861) (-1059 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4376 ((-841 |#1|) $)) (-15 -4231 (|#1| $)) (-15 -3540 ($ $)) (-15 -4263 ((-938) $)) (-15 -2907 ((-114) $ $)) (-15 -4366 ($ $)) (-15 -4229 ($ $)) (-15 -3063 ((-114) $)) (-15 -3539 ($ $)) (-15 -4364 ((-661 |#1|) $)))) (-861)) (T -697)) -((* (*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) (-4231 (*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) (-3540 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) (-2907 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) (-4229 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) (-3539 (*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-697 *3)) (-4 *3 (-861))))) -((-2556 ((|#1| (-1 |#1| (-791) |#1|) (-791) |#1|) 11 T ELT)) (-2548 ((|#1| (-1 |#1| |#1|) (-791) |#1|) 9 T ELT))) -(((-698 |#1|) (-10 -7 (-15 -2548 (|#1| (-1 |#1| |#1|) (-791) |#1|)) (-15 -2556 (|#1| (-1 |#1| (-791) |#1|) (-791) |#1|))) (-1122)) (T -698)) -((-2556 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-791) *2)) (-5 *4 (-791)) (-4 *2 (-1122)) (-5 *1 (-698 *2)))) (-2548 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-791)) (-4 *2 (-1122)) (-5 *1 (-698 *2))))) -((-2550 ((|#2| |#1| |#2|) 9 T ELT)) (-2549 ((|#1| |#1| |#2|) 8 T ELT))) -(((-699 |#1| |#2|) (-10 -7 (-15 -2549 (|#1| |#1| |#2|)) (-15 -2550 (|#2| |#1| |#2|))) (-1122) (-1122)) (T -699)) -((-2550 (*1 *2 *3 *2) (-12 (-5 *1 (-699 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-2549 (*1 *2 *2 *3) (-12 (-5 *1 (-699 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -((-2551 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) -(((-700 |#1| |#2| |#3|) (-10 -7 (-15 -2551 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1122) (-1122) (-1122)) (T -700)) -((-2551 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)) (-5 *1 (-700 *5 *6 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3736 (((-1239) $) 21 T ELT)) (-3735 (((-661 (-1239)) $) 19 T ELT)) (-2552 (($ (-661 (-1239)) (-1239)) 14 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 29 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT) (((-1239) $) 22 T ELT) (($ (-1136)) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-701) (-13 (-1104) (-630 (-1239)) (-10 -8 (-15 -4376 ($ (-1136))) (-15 -2552 ($ (-661 (-1239)) (-1239))) (-15 -3735 ((-661 (-1239)) $)) (-15 -3736 ((-1239) $))))) (T -701)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-701)))) (-2552 (*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1239))) (-5 *3 (-1239)) (-5 *1 (-701)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-701)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-701))))) -((-2556 (((-1 |#1| (-791) |#1|) (-1 |#1| (-791) |#1|)) 26 T ELT)) (-2553 (((-1 |#1|) |#1|) 8 T ELT)) (-2555 ((|#1| |#1|) 19 T ELT)) (-2554 (((-661 |#1|) (-1 (-661 |#1|) (-661 |#1|)) (-558)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4376 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-791)) 23 T ELT))) -(((-702 |#1|) (-10 -7 (-15 -2553 ((-1 |#1|) |#1|)) (-15 -4376 ((-1 |#1|) |#1|)) (-15 -2554 (|#1| (-1 |#1| |#1|))) (-15 -2554 ((-661 |#1|) (-1 (-661 |#1|) (-661 |#1|)) (-558))) (-15 -2555 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-791))) (-15 -2556 ((-1 |#1| (-791) |#1|) (-1 |#1| (-791) |#1|)))) (-1122)) (T -702)) -((-2556 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-791) *3)) (-4 *3 (-1122)) (-5 *1 (-702 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *4 (-1122)) (-5 *1 (-702 *4)))) (-2555 (*1 *2 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-1122)))) (-2554 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-661 *5) (-661 *5))) (-5 *4 (-558)) (-5 *2 (-661 *5)) (-5 *1 (-702 *5)) (-4 *5 (-1122)))) (-2554 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-702 *2)) (-4 *2 (-1122)))) (-4376 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1122)))) (-2553 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1122))))) -((-2559 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2558 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4382 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2557 (((-1 |#2| |#1|) |#2|) 11 T ELT))) -(((-703 |#1| |#2|) (-10 -7 (-15 -2557 ((-1 |#2| |#1|) |#2|)) (-15 -2558 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4382 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2559 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1122) (-1122)) (T -703)) -((-2559 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-703 *4 *5)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-703 *4 *5)) (-4 *4 (-1122)))) (-2558 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5)) (-5 *1 (-703 *4 *5)))) (-2557 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-703 *4 *3)) (-4 *4 (-1122)) (-4 *3 (-1122))))) -((-2564 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2560 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2561 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2562 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2563 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) -(((-704 |#1| |#2| |#3|) (-10 -7 (-15 -2560 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2561 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2562 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2563 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2564 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1122) (-1122) (-1122)) (T -704)) -((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-1 *7 *5)) (-5 *1 (-704 *5 *6 *7)))) (-2564 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-704 *4 *5 *6)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-704 *4 *5 *6)) (-4 *4 (-1122)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-704 *4 *5 *6)) (-4 *5 (-1122)))) (-2561 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1122)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *5 *4 *6))))) -((-4268 (($ (-791) (-791)) 42 T ELT)) (-2569 (($ $ $) 73 T ELT)) (-3834 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3523 (((-114) $) 36 T ELT)) (-2568 (($ $ (-558) (-558)) 84 T ELT)) (-2567 (($ $ (-558) (-558)) 85 T ELT)) (-2566 (($ $ (-558) (-558) (-558) (-558)) 90 T ELT)) (-2571 (($ $) 71 T ELT)) (-3525 (((-114) $) 15 T ELT)) (-2565 (($ $ (-558) (-558) $) 91 T ELT)) (-4218 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) 89 T ELT)) (-3753 (($ (-791) |#2|) 55 T ELT)) (-3526 (($ (-661 (-661 |#2|))) 51 T ELT) (($ (-791) (-791) (-1 |#2| (-558) (-558))) 53 T ELT)) (-4022 (((-661 (-661 |#2|)) $) 80 T ELT)) (-2570 (($ $ $) 72 T ELT)) (-3886 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-4230 ((|#2| $ (-558) (-558)) NIL T ELT) ((|#2| $ (-558) (-558) |#2|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) 88 T ELT)) (-3752 (($ (-661 |#2|)) 56 T ELT) (($ (-661 $)) 58 T ELT)) (-3524 (((-114) $) 28 T ELT)) (-4376 (($ |#4|) 63 T ELT) (((-877) $) NIL T ELT)) (-3522 (((-114) $) 38 T ELT)) (-4379 (($ $ |#2|) 124 T ELT)) (-4267 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-4269 (($ $ $) 93 T ELT)) (** (($ $ (-791)) 111 T ELT) (($ $ (-558)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-558) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) -(((-705 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 ((-877) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4379 (|#1| |#1| |#2|)) (-15 -3886 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-791))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -2565 (|#1| |#1| (-558) (-558) |#1|)) (-15 -2566 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -2567 (|#1| |#1| (-558) (-558))) (-15 -2568 (|#1| |#1| (-558) (-558))) (-15 -4218 (|#1| |#1| (-661 (-558)) (-661 (-558)) |#1|)) (-15 -4230 (|#1| |#1| (-661 (-558)) (-661 (-558)))) (-15 -4022 ((-661 (-661 |#2|)) |#1|)) (-15 -2569 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1| |#1|)) (-15 -2571 (|#1| |#1|)) (-15 -3834 (|#1| |#1|)) (-15 -3834 (|#1| |#3|)) (-15 -4376 (|#1| |#4|)) (-15 -3752 (|#1| (-661 |#1|))) (-15 -3752 (|#1| (-661 |#2|))) (-15 -3753 (|#1| (-791) |#2|)) (-15 -3526 (|#1| (-791) (-791) (-1 |#2| (-558) (-558)))) (-15 -3526 (|#1| (-661 (-661 |#2|)))) (-15 -4268 (|#1| (-791) (-791))) (-15 -3522 ((-114) |#1|)) (-15 -3523 ((-114) |#1|)) (-15 -3524 ((-114) |#1|)) (-15 -3525 ((-114) |#1|)) (-15 -4218 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4230 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4230 (|#2| |#1| (-558) (-558)))) (-706 |#2| |#3| |#4|) (-1070) (-385 |#2|) (-385 |#2|)) (T -705)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4268 (($ (-791) (-791)) 103 T ELT)) (-2569 (($ $ $) 92 T ELT)) (-3834 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3523 (((-114) $) 105 T ELT)) (-2568 (($ $ (-558) (-558)) 88 T ELT)) (-2567 (($ $ (-558) (-558)) 87 T ELT)) (-2566 (($ $ (-558) (-558) (-558) (-558)) 86 T ELT)) (-2571 (($ $) 94 T ELT)) (-3525 (((-114) $) 107 T ELT)) (-2565 (($ $ (-558) (-558) $) 85 T ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) 48 T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) 89 T ELT)) (-1364 (($ $ (-558) |#2|) 46 T ELT)) (-1363 (($ $ (-558) |#3|) 45 T ELT)) (-3753 (($ (-791) |#1|) 100 T ELT)) (-4154 (($) 7 T CONST)) (-3512 (($ $) 72 (|has| |#1| (-319)) ELT)) (-3514 ((|#2| $ (-558)) 50 T ELT)) (-3511 (((-791) $) 71 (|has| |#1| (-569)) ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) 47 T ELT)) (-3515 ((|#1| $ (-558) (-558)) 52 T ELT)) (-3290 (((-661 |#1|) $) 30 T ELT)) (-3510 (((-791) $) 70 (|has| |#1| (-569)) ELT)) (-3509 (((-661 |#3|) $) 69 (|has| |#1| (-569)) ELT)) (-3517 (((-791) $) 55 T ELT)) (-4044 (($ (-791) (-791) |#1|) 61 T ELT)) (-3516 (((-791) $) 54 T ELT)) (-3747 ((|#1| $) 67 (|has| |#1| (-6 (-4427 #1="*"))) ELT)) (-3521 (((-558) $) 59 T ELT)) (-3519 (((-558) $) 57 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3520 (((-558) $) 58 T ELT)) (-3518 (((-558) $) 56 T ELT)) (-3526 (($ (-661 (-661 |#1|))) 102 T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) 101 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-4022 (((-661 (-661 |#1|)) $) 91 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4018 (((-3 $ "failed") $) 66 (|has| |#1| (-376)) ELT)) (-2570 (($ $ $) 93 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) 60 T ELT)) (-3886 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) (-558)) 53 T ELT) ((|#1| $ (-558) (-558) |#1|) 51 T ELT) (($ $ (-661 (-558)) (-661 (-558))) 90 T ELT)) (-3752 (($ (-661 |#1|)) 99 T ELT) (($ (-661 $)) 98 T ELT)) (-3524 (((-114) $) 106 T ELT)) (-3748 ((|#1| $) 68 (|has| |#1| (-6 (-4427 #1#))) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-3513 ((|#3| $ (-558)) 49 T ELT)) (-4376 (($ |#3|) 97 T ELT) (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) 104 T ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4379 (($ $ |#1|) 73 (|has| |#1| (-376)) ELT)) (-4267 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-4269 (($ $ $) 84 T ELT)) (** (($ $ (-791)) 75 T ELT) (($ $ (-558)) 65 (|has| |#1| (-376)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-558) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-706 |#1| |#2| |#3|) (-142) (-1070) (-385 |t#1|) (-385 |t#1|)) (T -706)) -((-3525 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-4268 (*1 *1 *2 *2) (-12 (-5 *2 (-791)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3526 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-1 *4 (-558) (-558))) (-4 *4 (-1070)) (-4 *1 (-706 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3753 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4376 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3834 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *1 (-706 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3834 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2571 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2570 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2569 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-661 (-661 *3))))) (-4230 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4218 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2568 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2567 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2566 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2565 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4267 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-706 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-706 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3886 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-3512 (*1 *1 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-661 *5)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4427 #1="*"))) (-4 *2 (-1070)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4427 #1#))) (-4 *2 (-1070)))) (-4018 (*1 *1 *1) (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376))))) -(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3525 ((-114) $)) (-15 -3524 ((-114) $)) (-15 -3523 ((-114) $)) (-15 -3522 ((-114) $)) (-15 -4268 ($ (-791) (-791))) (-15 -3526 ($ (-661 (-661 |t#1|)))) (-15 -3526 ($ (-791) (-791) (-1 |t#1| (-558) (-558)))) (-15 -3753 ($ (-791) |t#1|)) (-15 -3752 ($ (-661 |t#1|))) (-15 -3752 ($ (-661 $))) (-15 -4376 ($ |t#3|)) (-15 -3834 ($ |t#2|)) (-15 -3834 ($ $)) (-15 -2571 ($ $)) (-15 -2570 ($ $ $)) (-15 -2569 ($ $ $)) (-15 -4022 ((-661 (-661 |t#1|)) $)) (-15 -4230 ($ $ (-661 (-558)) (-661 (-558)))) (-15 -4218 ($ $ (-661 (-558)) (-661 (-558)) $)) (-15 -2568 ($ $ (-558) (-558))) (-15 -2567 ($ $ (-558) (-558))) (-15 -2566 ($ $ (-558) (-558) (-558) (-558))) (-15 -2565 ($ $ (-558) (-558) $)) (-15 -4269 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4267 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-558) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-791))) (IF (|has| |t#1| (-569)) (-15 -3886 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -4379 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -3512 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3511 ((-791) $)) (-15 -3510 ((-791) $)) (-15 -3509 ((-661 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4427 "*"))) (PROGN (-15 -3748 (|t#1| $)) (-15 -3747 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -4018 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-57 |#1| |#2| |#3|) . T) ((-1238) . T)) -((-4272 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4388 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) -(((-707 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4388 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4388 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -4272 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1070) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|) (-1070) (-385 |#5|) (-385 |#5|) (-706 |#5| |#6| |#7|)) (T -707)) -((-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-707 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-706 *5 *6 *7)) (-4 *10 (-706 *2 *8 *9)))) (-4388 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) -((-3512 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-3511 (((-791) |#4|) 121 (|has| |#1| (-569)) ELT)) (-3510 (((-791) |#4|) 96 (|has| |#1| (-569)) ELT)) (-3509 (((-661 |#3|) |#4|) 103 (|has| |#1| (-569)) ELT)) (-2610 (((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 137 (|has| |#1| (-319)) ELT)) (-3747 ((|#1| |#4|) 52 T ELT)) (-2576 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-569)) ELT)) (-4018 (((-3 |#4| #1#) |#4|) 100 (|has| |#1| (-376)) ELT)) (-2575 ((|#4| |#4|) 88 (|has| |#1| (-569)) ELT)) (-2573 ((|#4| |#4| |#1| (-558) (-558)) 60 T ELT)) (-2572 ((|#4| |#4| (-558) (-558)) 55 T ELT)) (-2574 ((|#4| |#4| |#1| (-558) (-558)) 65 T ELT)) (-3748 ((|#1| |#4|) 98 T ELT)) (-2916 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569)) ELT))) -(((-708 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3748 (|#1| |#4|)) (-15 -3747 (|#1| |#4|)) (-15 -2572 (|#4| |#4| (-558) (-558))) (-15 -2573 (|#4| |#4| |#1| (-558) (-558))) (-15 -2574 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-569)) (PROGN (-15 -3511 ((-791) |#4|)) (-15 -3510 ((-791) |#4|)) (-15 -3509 ((-661 |#3|) |#4|)) (-15 -2575 (|#4| |#4|)) (-15 -2576 ((-3 |#4| #1="failed") |#4|)) (-15 -2916 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3512 (|#4| |#4|)) (-15 -2610 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4018 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -708)) -((-4018 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2610 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-708 *3 *4 *5 *6)) (-4 *6 (-706 *3 *4 *5)))) (-3512 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2916 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-2576 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-2575 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-661 *6)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3511 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-2574 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6)))) (-2573 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6)))) (-2572 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-708 *4 *5 *6 *2)) (-4 *2 (-706 *4 *5 *6)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) (-3748 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4268 (($ (-791) (-791)) 64 T ELT)) (-2569 (($ $ $) NIL T ELT)) (-3834 (($ (-1288 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-2568 (($ $ (-558) (-558)) 22 T ELT)) (-2567 (($ $ (-558) (-558)) NIL T ELT)) (-2566 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2571 (($ $) NIL T ELT)) (-3525 (((-114) $) NIL T ELT)) (-2565 (($ $ (-558) (-558) $) NIL T ELT)) (-4218 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558)) $) NIL T ELT)) (-1364 (($ $ (-558) (-1288 |#1|)) NIL T ELT)) (-1363 (($ $ (-558) (-1288 |#1|)) NIL T ELT)) (-3753 (($ (-791) |#1|) 37 T ELT)) (-4154 (($) NIL T CONST)) (-3512 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3514 (((-1288 |#1|) $ (-558)) NIL T ELT)) (-3511 (((-791) $) 48 (|has| |#1| (-569)) ELT)) (-1719 ((|#1| $ (-558) (-558) |#1|) 69 T ELT)) (-3515 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL T ELT)) (-3510 (((-791) $) 50 (|has| |#1| (-569)) ELT)) (-3509 (((-661 (-1288 |#1|)) $) 53 (|has| |#1| (-569)) ELT)) (-3517 (((-791) $) 32 T ELT)) (-4044 (($ (-791) (-791) |#1|) NIL T ELT)) (-3516 (((-791) $) 33 T ELT)) (-3747 ((|#1| $) 44 (|has| |#1| (-6 (-4427 #1="*"))) ELT)) (-3521 (((-558) $) 10 T ELT)) (-3519 (((-558) $) 11 T ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3520 (((-558) $) 14 T ELT)) (-3518 (((-558) $) 65 T ELT)) (-3526 (($ (-661 (-661 |#1|))) NIL T ELT) (($ (-791) (-791) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4022 (((-661 (-661 |#1|)) $) 76 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4018 (((-3 $ #2="failed") $) 60 (|has| |#1| (-376)) ELT)) (-2570 (($ $ $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2414 (($ $ |#1|) NIL T ELT)) (-3886 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-661 (-558)) (-661 (-558))) NIL T ELT)) (-3752 (($ (-661 |#1|)) NIL T ELT) (($ (-661 $)) NIL T ELT) (($ (-1288 |#1|)) 70 T ELT)) (-3524 (((-114) $) NIL T ELT)) (-3748 ((|#1| $) 42 (|has| |#1| (-6 (-4427 #1#))) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) 80 (|has| |#1| (-631 (-547))) ELT)) (-3513 (((-1288 |#1|) $ (-558)) NIL T ELT)) (-4376 (($ (-1288 |#1|)) NIL T ELT) (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) 38 T ELT) (($ $ (-558)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-1288 |#1|) $ (-1288 |#1|)) NIL T ELT) (((-1288 |#1|) (-1288 |#1|) $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-709 |#1|) (-13 (-706 |#1| (-1288 |#1|) (-1288 |#1|)) (-10 -8 (-15 -3752 ($ (-1288 |#1|))) (IF (|has| |#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4018 ((-3 $ "failed") $)) |%noBranch|))) (-1070)) (T -709)) -((-4018 (*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2)) (-4 *2 (-376)) (-4 *2 (-1070)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-709 *3))))) -((-2582 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|)) 37 T ELT)) (-2581 (((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|) 32 T ELT)) (-2583 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-791)) 43 T ELT)) (-2578 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|)) 25 T ELT)) (-2579 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|)) 29 T ELT) (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 27 T ELT)) (-2580 (((-709 |#1|) (-709 |#1|) |#1| (-709 |#1|)) 31 T ELT)) (-2577 (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 23 T ELT)) (** (((-709 |#1|) (-709 |#1|) (-791)) 46 T ELT))) -(((-710 |#1|) (-10 -7 (-15 -2577 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2578 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2579 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2579 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2580 ((-709 |#1|) (-709 |#1|) |#1| (-709 |#1|))) (-15 -2581 ((-709 |#1|) (-709 |#1|) (-709 |#1|) |#1|)) (-15 -2582 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -2583 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-709 |#1|) (-791))) (-15 ** ((-709 |#1|) (-709 |#1|) (-791)))) (-1070)) (T -710)) -((** (*1 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *1 (-710 *4)))) (-2583 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *1 (-710 *4)))) (-2582 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) (-2581 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) (-2580 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) (-2579 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) (-2579 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) (-2578 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) (-2577 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) -((-3575 (((-3 |#1| "failed") $) 18 T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-2584 (($) 7 T CONST)) (-2585 (($ |#1|) 8 T ELT)) (-4376 (($ |#1|) 16 T ELT) (((-877) $) 23 T ELT)) (-3994 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -2584)) 11 T ELT)) (-4000 ((|#1| $) 15 T ELT))) -(((-711 |#1|) (-13 (-1284) (-1059 |#1|) (-630 (-877)) (-10 -8 (-15 -2585 ($ |#1|)) (-15 -3994 ((-114) $ (|[\|\|]| |#1|))) (-15 -3994 ((-114) $ (|[\|\|]| -2584))) (-15 -4000 (|#1| $)) (-15 -2584 ($) -4382))) (-630 (-877))) (T -711)) -((-2585 (*1 *1 *2) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-877))))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-630 (-877))) (-5 *2 (-114)) (-5 *1 (-711 *4)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2584)) (-5 *2 (-114)) (-5 *1 (-711 *4)) (-4 *4 (-630 (-877))))) (-4000 (*1 *2 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-877))))) (-2584 (*1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-877)))))) -((-2588 ((|#2| |#2| |#4|) 29 T ELT)) (-2591 (((-709 |#2|) |#3| |#4|) 35 T ELT)) (-2589 (((-709 |#2|) |#2| |#4|) 34 T ELT)) (-2586 (((-1288 |#2|) |#2| |#4|) 16 T ELT)) (-2587 ((|#2| |#3| |#4|) 28 T ELT)) (-2592 (((-709 |#2|) |#3| |#4| (-791) (-791)) 48 T ELT)) (-2590 (((-709 |#2|) |#2| |#4| (-791)) 47 T ELT))) -(((-712 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2586 ((-1288 |#2|) |#2| |#4|)) (-15 -2587 (|#2| |#3| |#4|)) (-15 -2588 (|#2| |#2| |#4|)) (-15 -2589 ((-709 |#2|) |#2| |#4|)) (-15 -2590 ((-709 |#2|) |#2| |#4| (-791))) (-15 -2591 ((-709 |#2|) |#3| |#4|)) (-15 -2592 ((-709 |#2|) |#3| |#4| (-791) (-791)))) (-1122) (-917 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4425)))) (T -712)) -((-2592 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-791)) (-4 *6 (-1122)) (-4 *7 (-917 *6)) (-5 *2 (-709 *7)) (-5 *1 (-712 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4425)))))) (-2591 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *6 (-917 *5)) (-5 *2 (-709 *6)) (-5 *1 (-712 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))))) (-2590 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-1122)) (-4 *3 (-917 *6)) (-5 *2 (-709 *3)) (-5 *1 (-712 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4425)))))) (-2589 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *3 (-917 *5)) (-5 *2 (-709 *3)) (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))))) (-2588 (*1 *2 *2 *3) (-12 (-4 *4 (-1122)) (-4 *2 (-917 *4)) (-5 *1 (-712 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4425)))))) (-2587 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *2 (-917 *5)) (-5 *1 (-712 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))))) (-2586 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425))))))) -((-4171 (((-2 (|:| |num| (-709 |#1|)) (|:| |den| |#1|)) (-709 |#2|)) 20 T ELT)) (-4169 ((|#1| (-709 |#2|)) 9 T ELT)) (-4170 (((-709 |#1|) (-709 |#2|)) 18 T ELT))) -(((-713 |#1| |#2|) (-10 -7 (-15 -4169 (|#1| (-709 |#2|))) (-15 -4170 ((-709 |#1|) (-709 |#2|))) (-15 -4171 ((-2 (|:| |num| (-709 |#1|)) (|:| |den| |#1|)) (-709 |#2|)))) (-569) (-1012 |#1|)) (T -713)) -((-4171 (*1 *2 *3) (-12 (-5 *3 (-709 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-709 *4)) (|:| |den| *4))) (-5 *1 (-713 *4 *5)))) (-4170 (*1 *2 *3) (-12 (-5 *3 (-709 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-569)) (-5 *2 (-709 *4)) (-5 *1 (-713 *4 *5)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-709 *4)) (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-713 *2 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1990 (((-709 (-719))) NIL T ELT) (((-709 (-719)) (-1288 $)) NIL T ELT)) (-3750 (((-719) $) NIL T ELT)) (-3912 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4069 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-719) (-363)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) ELT)) (-4205 (($ $) NIL (-3957 (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) (|has| (-719) (-376))) ELT)) (-4401 (((-417 $) $) NIL (-3957 (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) (|has| (-719) (-376))) ELT)) (-3438 (($ $) NIL (-12 (|has| (-719) (-1023)) (|has| (-719) (-1224))) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) ELT)) (-1788 (((-114) $ $) NIL (|has| (-719) (-319)) ELT)) (-3538 (((-791)) NIL (|has| (-719) (-381)) ELT)) (-3910 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4068 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3914 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4067 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-719) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-719) (-1059 (-419 (-558)))) ELT)) (-3574 (((-558) $) NIL T ELT) (((-719) $) NIL T ELT) (((-419 (-558)) $) NIL (|has| (-719) (-1059 (-419 (-558)))) ELT)) (-2000 (($ (-1288 (-719))) NIL T ELT) (($ (-1288 (-719)) (-1288 $)) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-719) (-363)) ELT)) (-2963 (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-1989 (((-709 (-719)) $) NIL T ELT) (((-709 (-719)) $ (-1288 $)) NIL T ELT)) (-2493 (((-709 (-719)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-719))) (|:| |vec| (-1288 (-719)))) (-709 $) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-719) (-658 (-558))) ELT) (((-709 (-558)) (-709 $)) NIL (|has| (-719) (-658 (-558))) ELT)) (-4272 (((-3 $ #1#) (-419 (-1192 (-719)))) NIL (|has| (-719) (-376)) ELT) (($ (-1192 (-719))) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4073 (((-719) $) 29 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL (|has| (-719) (-557)) ELT)) (-3424 (((-114) $) NIL (|has| (-719) (-557)) ELT)) (-3423 (((-419 (-558)) $) NIL (|has| (-719) (-557)) ELT)) (-3511 (((-938)) NIL T ELT)) (-3395 (($) NIL (|has| (-719) (-381)) ELT)) (-2962 (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| (-719) (-319)) ELT)) (-3234 (($) NIL (|has| (-719) (-363)) ELT)) (-1883 (((-114) $) NIL (|has| (-719) (-363)) ELT)) (-1974 (($ $) NIL (|has| (-719) (-363)) ELT) (($ $ (-791)) NIL (|has| (-719) (-363)) ELT)) (-4153 (((-114) $) NIL (-3957 (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) (|has| (-719) (-376))) ELT)) (-1489 (((-2 (|:| |r| (-719)) (|:| |phi| (-719))) $) NIL (-12 (|has| (-719) (-1081)) (|has| (-719) (-1224))) ELT)) (-4057 (($) NIL (|has| (-719) (-1224)) ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-719) (-901 (-391))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-719) (-901 (-558))) ELT)) (-4202 (((-845 (-938)) $) NIL (|has| (-719) (-363)) ELT) (((-938) $) NIL (|has| (-719) (-363)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (-12 (|has| (-719) (-1023)) (|has| (-719) (-1224))) ELT)) (-3534 (((-719) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| (-719) (-363)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| (-719) (-319)) ELT)) (-2224 (((-1192 (-719)) $) NIL (|has| (-719) (-376)) ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4388 (($ (-1 (-719) (-719)) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| (-719) (-381)) ELT)) (-4372 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3480 (((-1192 (-719)) $) NIL T ELT)) (-2494 (((-709 (-719)) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-719))) (|:| |vec| (-1288 (-719)))) (-1288 $) $) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-719) (-658 (-558))) ELT) (((-709 (-558)) (-1288 $)) NIL (|has| (-719) (-658 (-558))) ELT)) (-2102 (($ (-661 $)) NIL (|has| (-719) (-319)) ELT) (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| (-719) (-376)) ELT)) (-3866 (($) NIL (|has| (-719) (-363)) CONST)) (-2631 (($ (-938)) NIL (|has| (-719) (-381)) ELT)) (-1491 (($) NIL T ELT)) (-4074 (((-719) $) 31 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-719) (-319)) ELT)) (-3562 (($ (-661 $)) NIL (|has| (-719) (-319)) ELT) (($ $ $) NIL (|has| (-719) (-319)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-719) (-363)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) ELT)) (-4162 (((-417 $) $) NIL (-3957 (-12 (|has| (-719) (-319)) (|has| (-719) (-929))) (|has| (-719) (-376))) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-719) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| (-719) (-319)) ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ (-719)) NIL (|has| (-719) (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| (-719) (-319)) ELT)) (-4373 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4198 (($ $ (-1198) (-719)) NIL (|has| (-719) (-526 (-1198) (-719))) ELT) (($ $ (-661 (-1198)) (-661 (-719))) NIL (|has| (-719) (-526 (-1198) (-719))) ELT) (($ $ (-661 (-305 (-719)))) NIL (|has| (-719) (-321 (-719))) ELT) (($ $ (-305 (-719))) NIL (|has| (-719) (-321 (-719))) ELT) (($ $ (-719) (-719)) NIL (|has| (-719) (-321 (-719))) ELT) (($ $ (-661 (-719)) (-661 (-719))) NIL (|has| (-719) (-321 (-719))) ELT)) (-1787 (((-791) $) NIL (|has| (-719) (-319)) ELT)) (-4230 (($ $ (-719)) NIL (|has| (-719) (-298 (-719) (-719))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| (-719) (-319)) ELT)) (-4187 (((-719)) NIL T ELT) (((-719) (-1288 $)) NIL T ELT)) (-1975 (((-3 (-791) #1#) $ $) NIL (|has| (-719) (-363)) ELT) (((-791) $) NIL (|has| (-719) (-363)) ELT)) (-4188 (($ $ (-1 (-719) (-719)) (-791)) NIL T ELT) (($ $ (-1 (-719) (-719))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT) (($ $) NIL (-3957 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT)) (-2639 (((-709 (-719)) (-1288 $) (-1 (-719) (-719))) NIL (|has| (-719) (-376)) ELT)) (-3603 (((-1192 (-719))) NIL T ELT)) (-3915 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4066 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-1877 (($) NIL (|has| (-719) (-363)) ELT)) (-3913 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4065 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3911 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-4064 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3642 (((-709 (-719)) (-1288 $)) NIL T ELT) (((-1288 (-719)) $) NIL T ELT) (((-709 (-719)) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 (-719)) $ (-1288 $)) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-719) (-631 (-547))) ELT) (((-171 (-229)) $) NIL (|has| (-719) (-1041)) ELT) (((-171 (-391)) $) NIL (|has| (-719) (-1041)) ELT) (((-905 (-391)) $) NIL (|has| (-719) (-631 (-905 (-391)))) ELT) (((-905 (-558)) $) NIL (|has| (-719) (-631 (-905 (-558)))) ELT) (($ (-1192 (-719))) NIL T ELT) (((-1192 (-719)) $) NIL T ELT) (($ (-1288 (-719))) NIL T ELT) (((-1288 (-719)) $) NIL T ELT)) (-3410 (($ $) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-3957 (-12 (|has| (-719) (-319)) (|has| $ (-147)) (|has| (-719) (-929))) (|has| (-719) (-363))) ELT)) (-1490 (($ (-719) (-719)) 12 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-719)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-558))) 19 T ELT) (($ (-171 (-719))) 28 T ELT) (($ (-171 (-721))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| (-719) (-376)) (|has| (-719) (-1059 (-419 (-558))))) ELT)) (-3103 (($ $) NIL (|has| (-719) (-363)) ELT) (((-711 $) $) NIL (-3957 (-12 (|has| (-719) (-319)) (|has| $ (-147)) (|has| (-719) (-929))) (|has| (-719) (-147))) ELT)) (-2838 (((-1192 (-719)) $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT)) (-3918 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3906 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3916 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3904 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3920 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3908 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-2450 (((-719) $) NIL (|has| (-719) (-1224)) ELT)) (-3921 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3909 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3919 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3907 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3917 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3905 (($ $) NIL (|has| (-719) (-1224)) ELT)) (-3803 (($ $) NIL (|has| (-719) (-1081)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-719) (-719)) (-791)) NIL T ELT) (($ $ (-1 (-719) (-719))) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-719) (-376)) (|has| (-719) (-917 (-1198)))) (|has| (-719) (-919 (-1198)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT) (($ $) NIL (-3957 (-12 (|has| (-719) (-240)) (|has| (-719) (-376))) (|has| (-719) (-239))) ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL (|has| (-719) (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ $) NIL (|has| (-719) (-1224)) ELT) (($ $ (-419 (-558))) NIL (-12 (|has| (-719) (-1023)) (|has| (-719) (-1224))) ELT) (($ $ (-558)) NIL (|has| (-719) (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-719) $) NIL T ELT) (($ $ (-719)) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-719) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-719) (-376)) ELT))) -(((-714) (-13 (-401) (-168 (-719)) (-10 -8 (-15 -4376 ($ (-171 (-391)))) (-15 -4376 ($ (-171 (-558)))) (-15 -4376 ($ (-171 (-719)))) (-15 -4376 ($ (-171 (-721)))) (-15 -4376 ((-171 (-391)) $))))) (T -714)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-171 (-558))) (-5 *1 (-714)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-171 (-719))) (-5 *1 (-714)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-714)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714))))) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1713 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2594 (($ $) 66 T ELT)) (-1467 (($ $) 62 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) 61 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT) (($ |#1| $ (-791)) 67 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2593 (((-661 (-2 (|:| -2286 |#1|) (|:| -2157 (-791)))) $) 65 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 54 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-715 |#1|) (-142) (-1122)) (T -715)) -((-4037 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-715 *2)) (-4 *2 (-1122)))) (-2594 (*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-1122)))) (-2593 (*1 *2 *1) (-12 (-4 *1 (-715 *3)) (-4 *3 (-1122)) (-5 *2 (-661 (-2 (|:| -2286 *3) (|:| -2157 (-791)))))))) -(-13 (-242 |t#1|) (-10 -8 (-15 -4037 ($ |t#1| $ (-791))) (-15 -2594 ($ $)) (-15 -2593 ((-661 (-2 (|:| -2286 |t#1|) (|:| -2157 (-791)))) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2597 (((-661 |#1|) (-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558)))) (-558)) 66 T ELT)) (-2595 ((|#1| |#1| (-558)) 63 T ELT)) (-3562 ((|#1| |#1| |#1| (-558)) 46 T ELT)) (-4162 (((-661 |#1|) |#1| (-558)) 49 T ELT)) (-2598 ((|#1| |#1| (-558) |#1| (-558)) 40 T ELT)) (-2596 (((-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558)))) |#1| (-558)) 62 T ELT))) -(((-716 |#1|) (-10 -7 (-15 -3562 (|#1| |#1| |#1| (-558))) (-15 -2595 (|#1| |#1| (-558))) (-15 -4162 ((-661 |#1|) |#1| (-558))) (-15 -2596 ((-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558)))) |#1| (-558))) (-15 -2597 ((-661 |#1|) (-661 (-2 (|:| -4162 |#1|) (|:| -4378 (-558)))) (-558))) (-15 -2598 (|#1| |#1| (-558) |#1| (-558)))) (-1264 (-558))) (T -716)) -((-2598 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1264 *3)))) (-2597 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| -4162 *5) (|:| -4378 (-558))))) (-5 *4 (-558)) (-4 *5 (-1264 *4)) (-5 *2 (-661 *5)) (-5 *1 (-716 *5)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-661 (-2 (|:| -4162 *3) (|:| -4378 *4)))) (-5 *1 (-716 *3)) (-4 *3 (-1264 *4)))) (-4162 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-661 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1264 *4)))) (-2595 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1264 *3)))) (-3562 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1264 *3))))) -((-2602 (((-1 (-962 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2599 (((-1154 (-229)) (-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-661 (-270))) 53 T ELT) (((-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-661 (-270))) 55 T ELT) (((-1154 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1110 (-229)) (-1110 (-229)) (-661 (-270))) 57 T ELT)) (-2601 (((-1154 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-661 (-270))) NIL T ELT)) (-2600 (((-1154 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1110 (-229)) (-1110 (-229)) (-661 (-270))) 58 T ELT))) -(((-717) (-10 -7 (-15 -2599 ((-1154 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1110 (-229)) (-1110 (-229)) (-661 (-270)))) (-15 -2599 ((-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-661 (-270)))) (-15 -2599 ((-1154 (-229)) (-1154 (-229)) (-1 (-962 (-229)) (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-661 (-270)))) (-15 -2600 ((-1154 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1110 (-229)) (-1110 (-229)) (-661 (-270)))) (-15 -2601 ((-1154 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1110 (-229)) (-661 (-270)))) (-15 -2602 ((-1 (-962 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -717)) -((-2602 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-962 (-229)) (-229) (-229))) (-5 *1 (-717)))) (-2601 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-717)))) (-2600 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined")) (-5 *5 (-1110 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-717)))) (-2599 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1154 (-229))) (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-229))) (-5 *5 (-661 (-270))) (-5 *1 (-717)))) (-2599 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-229))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-717)))) (-2599 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1#)) (-5 *5 (-1110 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-717))))) -((-4162 (((-417 (-1192 |#4|)) (-1192 |#4|)) 86 T ELT) (((-417 |#4|) |#4|) 269 T ELT))) -(((-718 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 |#4|) |#4|)) (-15 -4162 ((-417 (-1192 |#4|)) (-1192 |#4|)))) (-861) (-815) (-363) (-969 |#3| |#2| |#1|)) (T -718)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-363)) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 97 T ELT)) (-3531 (((-558) $) 34 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4201 (($ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3438 (($ $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3529 (($ $) NIL T ELT)) (-3575 (((-3 (-558) #1#) $) 85 T ELT) (((-3 (-419 (-558)) #1#) $) 28 T ELT) (((-3 (-391) #1#) $) 82 T ELT)) (-3574 (((-558) $) 87 T ELT) (((-419 (-558)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-2963 (($ $ $) 109 T ELT)) (-3887 (((-3 $ #1#) $) 100 T ELT)) (-2962 (($ $ $) 108 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2605 (((-938)) 89 T ELT) (((-938) (-938)) 88 T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL T ELT)) (-4202 (((-558) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-3534 (($ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2603 (((-558) (-558)) 94 T ELT) (((-558)) 95 T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL (-12 (-2959 (|has| $ (-6 -4408))) (-2959 (|has| $ (-6 -4416)))) ELT)) (-2604 (((-558) (-558)) 92 T ELT) (((-558)) 93 T ELT)) (-3258 (($ $ $) NIL T ELT) (($) NIL (-12 (-2959 (|has| $ (-6 -4408))) (-2959 (|has| $ (-6 -4416)))) ELT)) (-2606 (((-558) $) 17 T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 104 T ELT)) (-1977 (((-938) (-558)) NIL (|has| $ (-6 -4416)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL T ELT)) (-3532 (($ $) NIL T ELT)) (-3672 (($ (-558) (-558)) NIL T ELT) (($ (-558) (-558) (-938)) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) 105 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2632 (((-558) $) 24 T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 107 T ELT)) (-3014 (((-938)) NIL T ELT) (((-938) (-938)) NIL (|has| $ (-6 -4416)) ELT)) (-1976 (((-938) (-558)) NIL (|has| $ (-6 -4416)) ELT)) (-4402 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-905 (-391)) $) NIL T ELT)) (-4376 (((-877) $) 63 T ELT) (($ (-558)) 75 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 78 T ELT) (($ (-558)) 75 T ELT) (($ (-419 (-558))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-721)) 66 T ELT)) (-3528 (((-791)) 119 T CONST)) (-3348 (($ (-558) (-558) (-938)) 54 T ELT)) (-3533 (($ $) NIL T ELT)) (-1978 (((-938)) NIL T ELT) (((-938) (-938)) NIL (|has| $ (-6 -4416)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (((-938)) 91 T ELT) (((-938) (-938)) 90 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-3059 (($) 37 T CONST)) (-3065 (($) 18 T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 96 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 118 T ELT)) (-4379 (($ $ $) 77 T ELT)) (-4267 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-4269 (($ $ $) 114 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) 103 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-719) (-13 (-416) (-401) (-376) (-1059 (-391)) (-1059 (-419 (-558))) (-149) (-10 -8 (-15 -2605 ((-938) (-938))) (-15 -2605 ((-938))) (-15 -3095 ((-938) (-938))) (-15 -2604 ((-558) (-558))) (-15 -2604 ((-558))) (-15 -2603 ((-558) (-558))) (-15 -2603 ((-558))) (-15 -4376 ((-391) $)) (-15 -4376 ($ (-721))) (-15 -2606 ((-558) $)) (-15 -2632 ((-558) $)) (-15 -3348 ($ (-558) (-558) (-938)))))) (T -719)) -((-2632 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2606 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2605 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-719)))) (-2605 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-719)))) (-3095 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-719)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2604 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-2603 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-719)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-719)))) (-3348 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-938)) (-5 *1 (-719))))) -((-2609 (((-709 |#1|) (-709 |#1|) |#1| |#1|) 85 T ELT)) (-3512 (((-709 |#1|) (-709 |#1|) |#1|) 66 T ELT)) (-2608 (((-709 |#1|) (-709 |#1|) |#1|) 86 T ELT)) (-2607 (((-709 |#1|) (-709 |#1|)) 67 T ELT)) (-2610 (((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 84 T ELT))) -(((-720 |#1|) (-10 -7 (-15 -2607 ((-709 |#1|) (-709 |#1|))) (-15 -3512 ((-709 |#1|) (-709 |#1|) |#1|)) (-15 -2608 ((-709 |#1|) (-709 |#1|) |#1|)) (-15 -2609 ((-709 |#1|) (-709 |#1|) |#1| |#1|)) (-15 -2610 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|))) (-319)) (T -720)) -((-2610 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-720 *3)) (-4 *3 (-319)))) (-2609 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) (-2608 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) (-3512 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) (-2607 (*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-2257 (($ $ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2252 (($ $ $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL T ELT)) (-2830 (($ $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) 31 T ELT)) (-3574 (((-558) $) 29 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3424 (((-114) $) NIL T ELT)) (-3423 (((-419 (-558)) $) NIL T ELT)) (-3395 (($ $) NIL T ELT) (($) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-2258 (($ $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1483 (($ $ $) NIL T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3074 (((-114) $) NIL T ELT)) (-3865 (((-711 $) $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2251 (($ $ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-2611 (((-938) (-938)) 10 T ELT) (((-938)) 9 T ELT)) (-3258 (($ $ $) NIL T ELT)) (-2254 (($ $) NIL T ELT)) (-4263 (($ $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT)) (-2102 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2249 (($ $ $) NIL T ELT)) (-3866 (($) NIL T CONST)) (-2256 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1481 (($ $) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3075 (((-114) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2255 (($ $) NIL T ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-905 (-558)) $) NIL T ELT) (((-547) $) NIL T ELT) (((-558) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) 28 T ELT) (($ $) NIL T ELT) (($ (-558)) 28 T ELT) (((-326 $) (-326 (-558))) 18 T ELT)) (-3528 (((-791)) NIL T CONST)) (-2259 (((-114) $ $) NIL T ELT)) (-3504 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (($) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-2253 (($ $ $ $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-721) (-13 (-401) (-557) (-10 -8 (-15 -2611 ((-938) (-938))) (-15 -2611 ((-938))) (-15 -4376 ((-326 $) (-326 (-558))))))) (T -721)) -((-2611 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-721)))) (-2611 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-721)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-326 (-558))) (-5 *2 (-326 (-721))) (-5 *1 (-721))))) -((-2617 (((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)) 19 T ELT)) (-2612 (((-1 |#4| |#2| |#3|) (-1198)) 12 T ELT))) -(((-722 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2612 ((-1 |#4| |#2| |#3|) (-1198))) (-15 -2617 ((-1 |#4| |#2| |#3|) |#1| (-1198) (-1198)))) (-631 (-547)) (-1238) (-1238) (-1238)) (T -722)) -((-2617 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *3 *5 *6 *7)) (-4 *3 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238)))) (-2612 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *4 *5 *6 *7)) (-4 *4 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238))))) -((-2613 (((-1 (-229) (-229) (-229)) |#1| (-1198) (-1198)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1198)) 48 T ELT))) -(((-723 |#1|) (-10 -7 (-15 -2613 ((-1 (-229) (-229)) |#1| (-1198))) (-15 -2613 ((-1 (-229) (-229) (-229)) |#1| (-1198) (-1198)))) (-631 (-547))) (T -723)) -((-2613 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-723 *3)) (-4 *3 (-631 (-547))))) (-2613 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-723 *3)) (-4 *3 (-631 (-547)))))) -((-2614 (((-1198) |#1| (-1198) (-661 (-1198))) 10 T ELT) (((-1198) |#1| (-1198) (-1198) (-1198)) 13 T ELT) (((-1198) |#1| (-1198) (-1198)) 12 T ELT) (((-1198) |#1| (-1198)) 11 T ELT))) -(((-724 |#1|) (-10 -7 (-15 -2614 ((-1198) |#1| (-1198))) (-15 -2614 ((-1198) |#1| (-1198) (-1198))) (-15 -2614 ((-1198) |#1| (-1198) (-1198) (-1198))) (-15 -2614 ((-1198) |#1| (-1198) (-661 (-1198))))) (-631 (-547))) (T -724)) -((-2614 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-661 (-1198))) (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) (-2614 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) (-2614 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) (-2614 (*1 *2 *3 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547)))))) -((-2615 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) -(((-725 |#1| |#2|) (-10 -7 (-15 -2615 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1238) (-1238)) (T -725)) -((-2615 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-725 *3 *4)) (-4 *3 (-1238)) (-4 *4 (-1238))))) -((-2616 (((-1 |#3| |#2|) (-1198)) 11 T ELT)) (-2617 (((-1 |#3| |#2|) |#1| (-1198)) 21 T ELT))) -(((-726 |#1| |#2| |#3|) (-10 -7 (-15 -2616 ((-1 |#3| |#2|) (-1198))) (-15 -2617 ((-1 |#3| |#2|) |#1| (-1198)))) (-631 (-547)) (-1238) (-1238)) (T -726)) -((-2617 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *3 *5 *6)) (-4 *3 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238)))) (-2616 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *4 *5 *6)) (-4 *4 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238))))) -((-2620 (((-3 (-661 (-1192 |#4|)) #1="failed") (-1192 |#4|) (-661 |#2|) (-661 (-1192 |#4|)) (-661 |#3|) (-661 |#4|) (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| |#4|)))) (-661 (-791)) (-1288 (-661 (-1192 |#3|))) |#3|) 92 T ELT)) (-2619 (((-3 (-661 (-1192 |#4|)) #1#) (-1192 |#4|) (-661 |#2|) (-661 (-1192 |#3|)) (-661 |#3|) (-661 |#4|) (-661 (-791)) |#3|) 110 T ELT)) (-2618 (((-3 (-661 (-1192 |#4|)) #1#) (-1192 |#4|) (-661 |#2|) (-661 |#3|) (-661 (-791)) (-661 (-1192 |#4|)) (-1288 (-661 (-1192 |#3|))) |#3|) 48 T ELT))) -(((-727 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2618 ((-3 (-661 (-1192 |#4|)) #1="failed") (-1192 |#4|) (-661 |#2|) (-661 |#3|) (-661 (-791)) (-661 (-1192 |#4|)) (-1288 (-661 (-1192 |#3|))) |#3|)) (-15 -2619 ((-3 (-661 (-1192 |#4|)) #1#) (-1192 |#4|) (-661 |#2|) (-661 (-1192 |#3|)) (-661 |#3|) (-661 |#4|) (-661 (-791)) |#3|)) (-15 -2620 ((-3 (-661 (-1192 |#4|)) #1#) (-1192 |#4|) (-661 |#2|) (-661 (-1192 |#4|)) (-661 |#3|) (-661 |#4|) (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| |#4|)))) (-661 (-791)) (-1288 (-661 (-1192 |#3|))) |#3|))) (-815) (-861) (-319) (-969 |#3| |#1| |#2|)) (T -727)) -((-2620 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-661 (-1192 *13))) (-5 *3 (-1192 *13)) (-5 *4 (-661 *12)) (-5 *5 (-661 *10)) (-5 *6 (-661 *13)) (-5 *7 (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| *13))))) (-5 *8 (-661 (-791))) (-5 *9 (-1288 (-661 (-1192 *10)))) (-4 *12 (-861)) (-4 *10 (-319)) (-4 *13 (-969 *10 *11 *12)) (-4 *11 (-815)) (-5 *1 (-727 *11 *12 *10 *13)))) (-2619 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-661 *11)) (-5 *5 (-661 (-1192 *9))) (-5 *6 (-661 *9)) (-5 *7 (-661 *12)) (-5 *8 (-661 (-791))) (-4 *11 (-861)) (-4 *9 (-319)) (-4 *12 (-969 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-661 (-1192 *12))) (-5 *1 (-727 *10 *11 *9 *12)) (-5 *3 (-1192 *12)))) (-2618 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-661 (-1192 *11))) (-5 *3 (-1192 *11)) (-5 *4 (-661 *10)) (-5 *5 (-661 *8)) (-5 *6 (-661 (-791))) (-5 *7 (-1288 (-661 (-1192 *8)))) (-4 *10 (-861)) (-4 *8 (-319)) (-4 *11 (-969 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-727 *9 *10 *8 *11))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-4389 (($ $) 53 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3294 (($ |#1| (-791)) 51 T ELT)) (-3221 (((-791) $) 55 T ELT)) (-3592 ((|#1| $) 54 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4378 (((-791) $) 56 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-175)) ELT)) (-4107 ((|#1| $ (-791)) 52 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) -(((-728 |#1|) (-142) (-1070)) (T -728)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1070)))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1070)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1070)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1070))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4378 ((-791) $)) (-15 -3221 ((-791) $)) (-15 -3592 (|t#1| $)) (-15 -4389 ($ $)) (-15 -4107 (|t#1| $ (-791))) (-15 -3294 ($ |t#1| (-791))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-4388 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) -(((-729 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4388 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1264 |#1|) (-1264 (-419 |#2|)) (-569) (-1264 |#4|) (-1264 (-419 |#5|))) (T -729)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1264 *5)) (-4 *2 (-1264 (-419 *8))) (-5 *1 (-729 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1264 (-419 *6))) (-4 *8 (-1264 *7))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2621 (((-1180) (-877)) 38 T ELT)) (-4047 (((-1294) (-1180)) 31 T ELT)) (-2623 (((-1180) (-877)) 28 T ELT)) (-2622 (((-1180) (-877)) 29 T ELT)) (-4376 (((-877) $) NIL T ELT) (((-1180) (-877)) 27 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-730) (-13 (-1122) (-10 -7 (-15 -4376 ((-1180) (-877))) (-15 -2623 ((-1180) (-877))) (-15 -2622 ((-1180) (-877))) (-15 -2621 ((-1180) (-877))) (-15 -4047 ((-1294) (-1180)))))) (T -730)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730)))) (-2623 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730)))) (-4047 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-730))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL T ELT)) (-4272 (($ |#1| |#2|) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-3013 ((|#2| $) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-2633 (((-3 $ #1#) $ $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-731 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -3013 (|#2| $)) (-15 -4376 (|#1| $)) (-15 -4272 ($ |#1| |#2|)) (-15 -2633 ((-3 $ #1="failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -731)) -((-3013 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4376 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4272 (*1 *1 *2 *3) (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2633 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 36 T ELT)) (-4197 (((-1288 |#1|) $ (-791)) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4195 (($ (-1192 |#1|)) NIL T ELT)) (-3486 (((-1192 $) $ (-1103)) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1103))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4185 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3538 (((-791)) 54 (|has| |#1| (-381)) ELT)) (-4191 (($ $ (-791)) NIL T ELT)) (-4190 (($ $ (-791)) NIL T ELT)) (-2630 ((|#2| |#2|) 50 T ELT)) (-4181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1103) #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-1103) $) NIL T ELT)) (-4186 (($ $ $ (-1103)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) 40 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-4272 (($ |#2|) 48 T ELT)) (-3887 (((-3 $ #1#) $) 97 T ELT)) (-3395 (($) 58 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4189 (($ $ $) NIL T ELT)) (-4183 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4182 (((-2 (|:| -4384 |#1|) (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-2626 (((-977 $)) 88 T ELT)) (-1804 (($ $ |#1| (-791) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1103) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1103) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-4202 (((-791) $ $) NIL (|has| |#1| (-569)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-1173)) ELT)) (-3487 (($ (-1192 |#1|) (-1103)) NIL T ELT) (($ (-1192 $) (-1103)) NIL T ELT)) (-4207 (($ $ (-791)) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) 85 T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1103)) NIL T ELT) (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3013 ((|#2|) 51 T ELT)) (-3221 (((-791) $) NIL T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-1805 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4196 (((-1192 |#1|) $) NIL T ELT)) (-3485 (((-3 (-1103) #1#) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-3480 ((|#2| $) 47 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) 34 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4192 (((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791)) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1103)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-4242 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3866 (($) NIL (|has| |#1| (-1173)) CONST)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-2624 (($ $) 87 (|has| |#1| (-363)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 96 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1103) |#1|) NIL T ELT) (($ $ (-661 (-1103)) (-661 |#1|)) NIL T ELT) (($ $ (-1103) $) NIL T ELT) (($ $ (-661 (-1103)) (-661 $)) NIL T ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4194 (((-3 $ #1#) $ (-791)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1103)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-4378 (((-791) $) 38 T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1103) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-2625 (((-977 $)) 42 T ELT)) (-4184 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4376 (((-877) $) 68 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1103)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) 70 T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) 25 T CONST)) (-2629 (((-1288 |#1|) $) 83 T ELT)) (-2628 (($ (-1288 |#1|)) 57 T ELT)) (-3065 (($) 8 T CONST)) (-3070 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-2627 (((-1288 |#1|) $) NIL T ELT)) (-3454 (((-114) $ $) 76 T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 39 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 92 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) -(((-732 |#1| |#2|) (-13 (-1264 |#1|) (-633 |#2|) (-10 -8 (-15 -2630 (|#2| |#2|)) (-15 -3013 (|#2|)) (-15 -4272 ($ |#2|)) (-15 -3480 (|#2| $)) (-15 -2629 ((-1288 |#1|) $)) (-15 -2628 ($ (-1288 |#1|))) (-15 -2627 ((-1288 |#1|) $)) (-15 -2626 ((-977 $))) (-15 -2625 ((-977 $))) (IF (|has| |#1| (-363)) (-15 -2624 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1070) (-1264 |#1|)) (T -732)) -((-2630 (*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1264 *3)))) (-3013 (*1 *2) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1070)))) (-4272 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1264 *3)))) (-3480 (*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1070)))) (-2629 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-732 *3 *4)) (-4 *4 (-1264 *3)))) (-2628 (*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-732 *3 *4)) (-4 *4 (-1264 *3)))) (-2627 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-732 *3 *4)) (-4 *4 (-1264 *3)))) (-2626 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *4 (-1264 *3)))) (-2625 (*1 *2) (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) (-4 *4 (-1264 *3)))) (-2624 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1070)) (-5 *1 (-732 *2 *3)) (-4 *3 (-1264 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 ((|#1| $) 13 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2632 ((|#2| $) 12 T ELT)) (-3950 (($ |#1| |#2|) 16 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-2 (|:| -2631 |#1|) (|:| -2632 |#2|))) 15 T ELT) (((-2 (|:| -2631 |#1|) (|:| -2632 |#2|)) $) 14 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 11 T ELT))) -(((-733 |#1| |#2| |#3|) (-13 (-861) (-502 (-2 (|:| -2631 |#1|) (|:| -2632 |#2|))) (-10 -8 (-15 -2632 (|#2| $)) (-15 -2631 (|#1| $)) (-15 -3950 ($ |#1| |#2|)))) (-861) (-1122) (-1 (-114) (-2 (|:| -2631 |#1|) (|:| -2632 |#2|)) (-2 (|:| -2631 |#1|) (|:| -2632 |#2|)))) (T -733)) -((-2632 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-733 *3 *2 *4)) (-4 *3 (-861)) (-14 *4 (-1 (-114) (-2 (|:| -2631 *3) (|:| -2632 *2)) (-2 (|:| -2631 *3) (|:| -2632 *2)))))) (-2631 (*1 *2 *1) (-12 (-4 *2 (-861)) (-5 *1 (-733 *2 *3 *4)) (-4 *3 (-1122)) (-14 *4 (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *3)) (-2 (|:| -2631 *2) (|:| -2632 *3)))))) (-3950 (*1 *1 *2 *3) (-12 (-5 *1 (-733 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1122)) (-14 *4 (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *3)) (-2 (|:| -2631 *2) (|:| -2632 *3))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 66 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-115) #1#) $) 107 T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-3887 (((-3 $ #1#) $) 102 T ELT)) (-2912 ((|#2| (-115) |#2|) 93 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2911 (($ |#1| (-374 (-115))) 14 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2913 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2914 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-4230 ((|#2| $ |#2|) 33 T ELT)) (-2915 ((|#1| |#1|) 117 (|has| |#1| (-175)) ELT)) (-4376 (((-877) $) 73 T ELT) (($ (-558)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2916 (($ $) 111 (|has| |#1| (-175)) ELT) (($ $ $) 115 (|has| |#1| (-175)) ELT)) (-3059 (($) 21 T CONST)) (-3065 (($) 9 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 83 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ (-115) (-558)) NIL T ELT) (($ $ (-558)) 64 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-175)) ELT) (($ $ |#1|) 109 (|has| |#1| (-175)) ELT))) -(((-734 |#1| |#2|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2916 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 (|#1| |#1|))) |%noBranch|) (-15 -2914 ($ $ (-1 |#2| |#2|))) (-15 -2913 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2912 (|#2| (-115) |#2|)) (-15 -2911 ($ |#1| (-374 (-115)))))) (-1070) (-668 |#1|)) (T -734)) -((-2916 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1070)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) (-2916 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1070)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) (-2915 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1070)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1070)) (-5 *1 (-734 *3 *4)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1070)) (-5 *1 (-734 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-734 *4 *5)) (-4 *5 (-668 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *3 (-1070)) (-5 *1 (-734 *3 *4)) (-4 *4 (-668 *3)))) (-2912 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-734 *4 *2)) (-4 *2 (-668 *4)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1070)) (-5 *1 (-734 *2 *4)) (-4 *4 (-668 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 33 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4272 (($ |#1| |#2|) 25 T ELT)) (-3887 (((-3 $ #1#) $) 51 T ELT)) (-2641 (((-114) $) 35 T ELT)) (-3013 ((|#2| $) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 52 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2633 (((-3 $ #1#) $ $) 50 T ELT)) (-4376 (((-877) $) 24 T ELT) (($ (-558)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3528 (((-791)) 28 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 16 T CONST)) (-3065 (($) 30 T CONST)) (-3454 (((-114) $ $) 41 T ELT)) (-4267 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-4269 (($ $ $) 43 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 21 T ELT) (($ $ $) 20 T ELT))) -(((-735 |#1| |#2| |#3| |#4| |#5|) (-13 (-1070) (-10 -8 (-15 -3013 (|#2| $)) (-15 -4376 (|#1| $)) (-15 -4272 ($ |#1| |#2|)) (-15 -2633 ((-3 $ #1="failed") $ $)) (-15 -3887 ((-3 $ #1#) $)) (-15 -2874 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -735)) -((-3887 (*1 *1 *1) (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3013 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-735 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4376 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4272 (*1 *1 *2 *3) (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2633 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2874 (*1 *1 *1) (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) -((* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) -(((-736 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|))) (-737 |#2|) (-175)) (T -736)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-737 |#1|) (-142) (-175)) (T -737)) -NIL -(-13 (-111 |t#1| |t#1|) (-660 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-2830 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4277 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2634 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 16 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4198 ((|#1| $ |#1|) 24 T ELT) (((-845 |#1|) $ (-845 |#1|)) 32 T ELT)) (-3410 (($ $ $) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-4376 (((-877) $) 39 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 9 T CONST)) (-3454 (((-114) $ $) 48 T ELT)) (-4379 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 14 T ELT))) -(((-738 |#1|) (-13 (-485) (-10 -8 (-15 -2634 ($ |#1| |#1| |#1| |#1|)) (-15 -2830 ($ |#1|)) (-15 -4277 ($ |#1|)) (-15 -3887 ($)) (-15 -2830 ($ $ |#1|)) (-15 -4277 ($ $ |#1|)) (-15 -3887 ($ $)) (-15 -4198 (|#1| $ |#1|)) (-15 -4198 ((-845 |#1|) $ (-845 |#1|))))) (-376)) (T -738)) -((-2634 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-2830 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4277 (*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-3887 (*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-2830 (*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4277 (*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-3887 (*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4198 (*1 *2 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) (-4198 (*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-376)) (-5 *1 (-738 *3))))) -((-2638 (($ $ (-938)) 19 T ELT)) (-2637 (($ $ (-938)) 20 T ELT)) (** (($ $ (-938)) 10 T ELT))) -(((-739 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-938))) (-15 -2637 (|#1| |#1| (-938))) (-15 -2638 (|#1| |#1| (-938)))) (-740)) (T -739)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-2638 (($ $ (-938)) 19 T ELT)) (-2637 (($ $ (-938)) 18 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (** (($ $ (-938)) 17 T ELT)) (* (($ $ $) 20 T ELT))) -(((-740) (-142)) (T -740)) -((* (*1 *1 *1 *1) (-4 *1 (-740))) (-2638 (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-938)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-938)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-938))))) -(-13 (-1122) (-10 -8 (-15 * ($ $ $)) (-15 -2638 ($ $ (-938))) (-15 -2637 ($ $ (-938))) (-15 ** ($ $ (-938))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2638 (($ $ (-938)) NIL T ELT) (($ $ (-791)) 18 T ELT)) (-2641 (((-114) $) 10 T ELT)) (-2637 (($ $ (-938)) NIL T ELT) (($ $ (-791)) 19 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 16 T ELT))) -(((-741 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-791))) (-15 -2637 (|#1| |#1| (-791))) (-15 -2638 (|#1| |#1| (-791))) (-15 -2641 ((-114) |#1|)) (-15 ** (|#1| |#1| (-938))) (-15 -2637 (|#1| |#1| (-938))) (-15 -2638 (|#1| |#1| (-938)))) (-742)) (T -741)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-2635 (((-3 $ "failed") $) 22 T ELT)) (-2638 (($ $ (-938)) 19 T ELT) (($ $ (-791)) 27 T ELT)) (-3887 (((-3 $ "failed") $) 24 T ELT)) (-2641 (((-114) $) 28 T ELT)) (-2636 (((-3 $ "failed") $) 23 T ELT)) (-2637 (($ $ (-938)) 18 T ELT) (($ $ (-791)) 26 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3065 (($) 29 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (** (($ $ (-938)) 17 T ELT) (($ $ (-791)) 25 T ELT)) (* (($ $ $) 20 T ELT))) -(((-742) (-142)) (T -742)) -((-3065 (*1 *1) (-4 *1 (-742))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-114)))) (-2638 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) (-3887 (*1 *1 *1) (|partial| -4 *1 (-742))) (-2636 (*1 *1 *1) (|partial| -4 *1 (-742))) (-2635 (*1 *1 *1) (|partial| -4 *1 (-742)))) -(-13 (-740) (-10 -8 (-15 (-3065) ($) -4382) (-15 -2641 ((-114) $)) (-15 -2638 ($ $ (-791))) (-15 -2637 ($ $ (-791))) (-15 ** ($ $ (-791))) (-15 -3887 ((-3 $ "failed") $)) (-15 -2636 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $)))) -(((-102) . T) ((-630 (-877)) . T) ((-740) . T) ((-1122) . T) ((-1238) . T)) -((-3538 (((-791)) 39 T ELT)) (-3575 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3574 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-4272 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-419 |#3|)) 49 T ELT)) (-3887 (((-3 $ #1#) $) 69 T ELT)) (-3395 (($) 43 T ELT)) (-3534 ((|#2| $) 21 T ELT)) (-2640 (($) 18 T ELT)) (-4188 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2639 (((-709 |#2|) (-1288 $) (-1 |#2| |#2|)) 64 T ELT)) (-4402 (((-1288 |#2|) $) NIL T ELT) (($ (-1288 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2838 ((|#3| $) 36 T ELT)) (-2222 (((-1288 $)) 33 T ELT))) -(((-743 |#1| |#2| |#3|) (-10 -7 (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -3395 (|#1|)) (-15 -3538 ((-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2639 ((-709 |#2|) (-1288 |#1|) (-1 |#2| |#2|))) (-15 -4272 ((-3 |#1| #1="failed") (-419 |#3|))) (-15 -4402 (|#1| |#3|)) (-15 -4272 (|#1| |#3|)) (-15 -2640 (|#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -4402 (|#3| |#1|)) (-15 -4402 (|#1| (-1288 |#2|))) (-15 -4402 ((-1288 |#2|) |#1|)) (-15 -2222 ((-1288 |#1|))) (-15 -2838 (|#3| |#1|)) (-15 -3534 (|#2| |#1|)) (-15 -3887 ((-3 |#1| #1#) |#1|))) (-744 |#2| |#3|) (-175) (-1264 |#2|)) (T -743)) -((-3538 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-791)) (-5 *1 (-743 *3 *4 *5)) (-4 *3 (-744 *4 *5))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 111 (|has| |#1| (-376)) ELT)) (-2273 (($ $) 112 (|has| |#1| (-376)) ELT)) (-2271 (((-114) $) 114 (|has| |#1| (-376)) ELT)) (-1990 (((-709 |#1|) (-1288 $)) 58 T ELT) (((-709 |#1|)) 74 T ELT)) (-3750 ((|#1| $) 64 T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) 164 (|has| |#1| (-363)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 131 (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) 132 (|has| |#1| (-376)) ELT)) (-1788 (((-114) $ $) 122 (|has| |#1| (-376)) ELT)) (-3538 (((-791)) 105 (|has| |#1| (-381)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 191 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3574 (((-558) $) 190 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 188 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 187 T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) 60 T ELT) (($ (-1288 |#1|)) 77 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-2963 (($ $ $) 126 (|has| |#1| (-376)) ELT)) (-1989 (((-709 |#1|) $ (-1288 $)) 65 T ELT) (((-709 |#1|) $) 72 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 183 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 182 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 181 T ELT) (((-709 |#1|) (-709 $)) 180 T ELT)) (-4272 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-419 |#2|)) 172 (|has| |#1| (-376)) ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3511 (((-938)) 66 T ELT)) (-3395 (($) 108 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) 125 (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 120 (|has| |#1| (-376)) ELT)) (-3234 (($) 166 (|has| |#1| (-363)) ELT)) (-1883 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1974 (($ $ (-791)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4153 (((-114) $) 133 (|has| |#1| (-376)) ELT)) (-4202 (((-938) $) 169 (|has| |#1| (-363)) ELT) (((-845 (-938)) $) 155 (|has| |#1| (-363)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3534 ((|#1| $) 63 T ELT)) (-3865 (((-711 $) $) 159 (|has| |#1| (-363)) ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 129 (|has| |#1| (-376)) ELT)) (-2224 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-2220 (((-938) $) 107 (|has| |#1| (-381)) ELT)) (-3480 ((|#2| $) 173 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 185 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 184 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 179 T ELT) (((-709 |#1|) (-1288 $)) 178 T ELT)) (-2102 (($ (-661 $)) 118 (|has| |#1| (-376)) ELT) (($ $ $) 117 (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3866 (($) 160 (|has| |#1| (-363)) CONST)) (-2631 (($ (-938)) 106 (|has| |#1| (-381)) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2640 (($) 177 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 119 (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) 116 (|has| |#1| (-376)) ELT) (($ $ $) 115 (|has| |#1| (-376)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) 163 (|has| |#1| (-363)) ELT)) (-4162 (((-417 $) $) 130 (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 127 (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ "failed") $ $) 110 (|has| |#1| (-376)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 121 (|has| |#1| (-376)) ELT)) (-1787 (((-791) $) 123 (|has| |#1| (-376)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 124 (|has| |#1| (-376)) ELT)) (-4187 ((|#1| (-1288 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1975 (((-791) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-791) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4188 (($ $ (-791)) 153 (-3957 (-2961 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 151 (-3957 (-2961 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 147 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-1198) (-791)) 146 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1198))) 145 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-1198)) 143 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) 141 (|has| |#1| (-376)) ELT)) (-2639 (((-709 |#1|) (-1288 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3603 ((|#2|) 176 T ELT)) (-1877 (($) 165 (|has| |#1| (-363)) ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 62 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) 61 T ELT) (((-1288 |#1|) $) 79 T ELT) (((-709 |#1|) (-1288 $)) 78 T ELT)) (-4402 (((-1288 |#1|) $) 76 T ELT) (($ (-1288 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-3104 (((-3 (-1288 $) "failed") (-709 $)) 162 (|has| |#1| (-363)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-376)) ELT) (($ (-419 (-558))) 104 (-3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3103 (($ $) 161 (|has| |#1| (-363)) ELT) (((-711 $) $) 55 (|has| |#1| (-147)) ELT)) (-2838 ((|#2| $) 57 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2222 (((-1288 $)) 80 T ELT)) (-2272 (((-114) $ $) 113 (|has| |#1| (-376)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-791)) 154 (-3957 (-2961 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 152 (-3957 (-2961 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 150 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-1198) (-791)) 149 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1198))) 148 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-1198)) 144 (-2961 (|has| |#1| (-919 (-1198))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) 139 (|has| |#1| (-376)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| |#1| (-376)) ELT))) -(((-744 |#1| |#2|) (-142) (-175) (-1264 |t#1|)) (T -744)) -((-2640 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-744 *2 *3)) (-4 *3 (-1264 *2)))) (-3603 (*1 *2) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1264 *3)))) (-4272 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1264 *3)))) (-4402 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1264 *3)))) (-3480 (*1 *2 *1) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1264 *3)))) (-4272 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-744 *3 *4)))) (-2639 (*1 *2 *3 *4) (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-744 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1264 *5)) (-5 *2 (-709 *5))))) -(-13 (-422 |t#1| |t#2|) (-175) (-631 |t#2|) (-424 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2640 ($)) (-15 -3603 (|t#2|)) (-15 -4272 ($ |t#2|)) (-15 -4402 ($ |t#2|)) (-15 -3480 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -4272 ((-3 $ "failed") (-419 |t#2|))) (-15 -2639 ((-709 |t#1|) (-1288 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3957 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-630 (-877)) . T) ((-175) . T) ((-631 |#2|) . T) ((-236 $) -3957 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -3957 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -3957 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -3957 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-569) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-660 |#1|) . T) ((-660 $) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-737 |#1|) . T) ((-737 $) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-746) . T) ((-911 $ (-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))))) ((-917 (-1198)) -12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198)))) ((-919 (-1198)) -3957 (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-917 (-1198))))) ((-940) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) -3957 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) |has| |#1| (-363)) ((-1238) . T) ((-1243) -3957 (|has| |#1| (-363)) (|has| |#1| (-376)))) -((-4154 (($) 11 T ELT)) (-3887 (((-3 $ "failed") $) 14 T ELT)) (-2641 (((-114) $) 10 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 20 T ELT))) -(((-745 |#1|) (-10 -7 (-15 -3887 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-791))) (-15 -2641 ((-114) |#1|)) (-15 -4154 (|#1|)) (-15 ** (|#1| |#1| (-938)))) (-746)) (T -745)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-4154 (($) 23 T CONST)) (-3887 (((-3 $ "failed") $) 20 T ELT)) (-2641 (((-114) $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3065 (($) 24 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (** (($ $ (-938)) 17 T ELT) (($ $ (-791)) 21 T ELT)) (* (($ $ $) 18 T ELT))) -(((-746) (-142)) (T -746)) -((-3065 (*1 *1) (-4 *1 (-746))) (-4154 (*1 *1) (-4 *1 (-746))) (-2641 (*1 *2 *1) (-12 (-4 *1 (-746)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-791)))) (-3887 (*1 *1 *1) (|partial| -4 *1 (-746)))) -(-13 (-1133) (-10 -8 (-15 (-3065) ($) -4382) (-15 -4154 ($) -4382) (-15 -2641 ((-114) $)) (-15 ** ($ $ (-791))) (-15 -3887 ((-3 $ "failed") $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2642 (((-2 (|:| -3492 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3838 (((-2 (|:| -3492 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2643 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3855 (((-2 (|:| |poly| |#2|) (|:| -3492 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48 T ELT))) -(((-747 |#1| |#2|) (-10 -7 (-15 -3838 ((-2 (|:| -3492 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2642 ((-2 (|:| -3492 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2643 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3855 ((-2 (|:| |poly| |#2|) (|:| -3492 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1264 |#1|)) (T -747)) -((-3855 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3492 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-747 *5 *6)) (-5 *3 (-419 *6)))) (-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-747 *5 *2)) (-4 *5 (-376)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3492 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-747 *5 *3)))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3492 *3) (|:| |special| *3))) (-5 *1 (-747 *5 *3))))) -((-2644 ((|#7| (-661 |#5|) |#6|) NIL T ELT)) (-4388 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) -(((-748 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4388 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2644 (|#7| (-661 |#5|) |#6|))) (-861) (-815) (-815) (-1070) (-1070) (-969 |#4| |#2| |#1|) (-969 |#5| |#3| |#1|)) (T -748)) -((-2644 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-815)) (-4 *8 (-1070)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-969 *8 *6 *5)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-815)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-815)) (-4 *4 (-969 *8 *6 *5))))) -((-4388 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) -(((-749 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4388 (|#7| (-1 |#2| |#1|) |#6|))) (-861) (-861) (-815) (-815) (-1070) (-969 |#5| |#3| |#1|) (-969 |#5| |#4| |#2|)) (T -749)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-815)) (-4 *9 (-1070)) (-4 *2 (-969 *9 *8 *6)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-815)) (-4 *4 (-969 *9 *7 *5))))) -((-4162 (((-417 |#4|) |#4|) 42 T ELT))) -(((-750 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 |#4|) |#4|))) (-815) (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198))))) (-319) (-969 (-965 |#3|) |#1| |#2|)) (T -750)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198)))))) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-750 *4 *5 *6 *3)) (-4 *3 (-969 (-965 *6) *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-878 |#1|)) $) NIL T ELT)) (-3486 (((-1192 $) $ (-878 |#1|)) NIL T ELT) (((-1192 |#2|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-878 |#1|))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-878 |#1|) $) NIL T ELT)) (-4186 (($ $ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#2| (-929)) ELT)) (-1804 (($ $ |#2| (-543 (-878 |#1|)) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-878 |#1|) (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#2|) (-878 |#1|)) NIL T ELT) (($ (-1192 $) (-878 |#1|)) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-543 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-878 |#1|)) NIL T ELT)) (-3221 (((-543 (-878 |#1|)) $) NIL T ELT) (((-791) $ (-878 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) NIL T ELT)) (-1805 (($ (-1 (-543 (-878 |#1|)) (-543 (-878 |#1|))) $) NIL T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3485 (((-3 (-878 |#1|) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-878 |#1|)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#2| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#2| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-878 |#1|) |#2|) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 |#2|)) NIL T ELT) (($ $ (-878 |#1|) $) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 $)) NIL T ELT)) (-4187 (($ $ (-878 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4188 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-4378 (((-543 (-878 |#1|)) $) NIL T ELT) (((-791) $ (-878 |#1|)) NIL T ELT) (((-661 (-791)) $ (-661 (-878 |#1|))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-878 |#1|) (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-878 |#1|) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3218 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-878 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-878 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-569)) ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-543 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#2| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-878 |#1|)) (-661 (-791))) NIL T ELT) (($ $ (-878 |#1|) (-791)) NIL T ELT) (($ $ (-661 (-878 |#1|))) NIL T ELT) (($ $ (-878 |#1|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-751 |#1| |#2|) (-969 |#2| (-543 (-878 |#1|)) (-878 |#1|)) (-661 (-1198)) (-1070)) (T -751)) -NIL -((-2645 (((-2 (|:| -2873 (-965 |#3|)) (|:| -2268 (-965 |#3|))) |#4|) 14 T ELT)) (-3387 ((|#4| |#4| |#2|) 33 T ELT)) (-2648 ((|#4| (-419 (-965 |#3|)) |#2|) 62 T ELT)) (-2647 ((|#4| (-1192 (-965 |#3|)) |#2|) 74 T ELT)) (-2646 ((|#4| (-1192 |#4|) |#2|) 49 T ELT)) (-3386 ((|#4| |#4| |#2|) 52 T ELT)) (-4162 (((-417 |#4|) |#4|) 40 T ELT))) -(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2645 ((-2 (|:| -2873 (-965 |#3|)) (|:| -2268 (-965 |#3|))) |#4|)) (-15 -3386 (|#4| |#4| |#2|)) (-15 -2646 (|#4| (-1192 |#4|) |#2|)) (-15 -3387 (|#4| |#4| |#2|)) (-15 -2647 (|#4| (-1192 (-965 |#3|)) |#2|)) (-15 -2648 (|#4| (-419 (-965 |#3|)) |#2|)) (-15 -4162 ((-417 |#4|) |#4|))) (-815) (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)))) (-569) (-969 (-419 (-965 |#3|)) |#1| |#2|)) (T -752)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) (-4 *6 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-965 *6)) *4 *5)))) (-2648 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) (-5 *3 (-419 (-965 *6))) (-4 *5 (-815)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))))) (-2647 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 (-965 *6))) (-4 *6 (-569)) (-4 *2 (-969 (-419 (-965 *6)) *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))))) (-3387 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-965 *5)) *4 *3)))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-1192 *2)) (-4 *2 (-969 (-419 (-965 *6)) *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) (-4 *5 (-815)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) (-4 *6 (-569)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-815)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) (-4 *2 (-969 (-419 (-965 *5)) *4 *3)))) (-2645 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -2873 (-965 *6)) (|:| -2268 (-965 *6)))) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-965 *6)) *4 *5))))) -((-4162 (((-417 |#4|) |#4|) 54 T ELT))) -(((-753 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 |#4|) |#4|))) (-815) (-861) (-13 (-319) (-149)) (-969 (-419 |#3|) |#1| |#2|)) (T -753)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-753 *4 *5 *6 *3)) (-4 *3 (-969 (-419 *6) *4 *5))))) -((-4388 (((-755 |#2| |#3|) (-1 |#2| |#1|) (-755 |#1| |#3|)) 18 T ELT))) -(((-754 |#1| |#2| |#3|) (-10 -7 (-15 -4388 ((-755 |#2| |#3|) (-1 |#2| |#1|) (-755 |#1| |#3|)))) (-1070) (-1070) (-746)) (T -754)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-755 *5 *7)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *7 (-746)) (-5 *2 (-755 *6 *7)) (-5 *1 (-754 *5 *6 *7))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 36 T ELT)) (-4204 (((-661 (-2 (|:| -4384 |#1|) (|:| -4368 |#2|))) $) 37 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3574 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) 99 (|has| |#2| (-861)) ELT)) (-3887 (((-3 $ #1#) $) 83 T ELT)) (-3395 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) 70 T ELT)) (-3222 (((-661 $) $) 52 T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| |#2|) 17 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2220 (((-938) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3295 ((|#2| $) 98 (|has| |#2| (-861)) ELT)) (-3592 ((|#1| $) 97 (|has| |#2| (-861)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 96 T ELT) (($ (-558)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-661 (-2 (|:| -4384 |#1|) (|:| -4368 |#2|)))) 11 T ELT)) (-4247 (((-661 |#1|) $) 54 T ELT)) (-4107 ((|#1| $ |#2|) 114 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 12 T CONST)) (-3065 (($) 44 T CONST)) (-3454 (((-114) $ $) 104 T ELT)) (-4267 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 33 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-755 |#1| |#2|) (-13 (-1070) (-1059 |#2|) (-1059 |#1|) (-10 -8 (-15 -3294 ($ |#1| |#2|)) (-15 -4107 (|#1| $ |#2|)) (-15 -4376 ($ (-661 (-2 (|:| -4384 |#1|) (|:| -4368 |#2|))))) (-15 -4204 ((-661 (-2 (|:| -4384 |#1|) (|:| -4368 |#2|))) $)) (-15 -4388 ($ (-1 |#1| |#1|) $)) (-15 -4367 ((-114) $)) (-15 -4247 ((-661 |#1|) $)) (-15 -3222 ((-661 $) $)) (-15 -2649 ((-791) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-861)) (PROGN (-15 -3295 (|#2| $)) (-15 -3592 (|#1| $)) (-15 -4389 ($ $))) |%noBranch|))) (-1070) (-746)) (T -755)) -((-3294 (*1 *1 *2 *3) (-12 (-5 *1 (-755 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-746)))) (-4107 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-755 *2 *3)) (-4 *3 (-746)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4384 *3) (|:| -4368 *4)))) (-4 *3 (-1070)) (-4 *4 (-746)) (-5 *1 (-755 *3 *4)))) (-4204 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4384 *3) (|:| -4368 *4)))) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-755 *3 *4)) (-4 *4 (-746)))) (-4367 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) (-4247 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) (-3222 (*1 *2 *1) (-12 (-5 *2 (-661 (-755 *3 *4))) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) (-2649 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) (-3295 (*1 *2 *1) (-12 (-4 *2 (-746)) (-4 *2 (-861)) (-5 *1 (-755 *3 *2)) (-4 *3 (-1070)))) (-3592 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-755 *2 *3)) (-4 *3 (-861)) (-4 *3 (-746)))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-755 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) (-4 *3 (-746))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3652 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3654 (($ $ $) 99 T ELT)) (-3653 (((-114) $ $) 107 T ELT)) (-3657 (($ (-661 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1713 (($ (-1 (-114) |#1|) $) 86 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2594 (($ $) 88 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) 71 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT) (($ |#1| $ (-558)) 78 T ELT) (($ (-1 (-114) |#1|) $ (-558)) 81 T ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ |#1| $ (-558)) 83 T ELT) (($ (-1 (-114) |#1|) $ (-558)) 84 T ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) 106 T ELT)) (-2650 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-661 |#1|)) 23 T ELT)) (-3007 (((-661 |#1|) $) 38 T ELT)) (-3663 (((-114) |#1| $) 66 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3656 (($ $ $) 97 T ELT)) (-1389 ((|#1| $) 63 T ELT)) (-4037 (($ |#1| $) 64 T ELT) (($ |#1| $ (-791)) 89 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1390 ((|#1| $) 62 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 57 T ELT)) (-3993 (($) 14 T ELT)) (-2593 (((-661 (-2 (|:| -2286 |#1|) (|:| -2157 (-791)))) $) 56 T ELT)) (-3655 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1598 (($) 16 T ELT) (($ (-661 |#1|)) 25 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 69 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 82 T ELT)) (-4402 (((-547) $) 36 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 22 T ELT)) (-4376 (((-877) $) 50 T ELT)) (-3658 (($ (-661 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1391 (($ (-661 |#1|)) 24 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 103 T ELT)) (-4387 (((-791) $) 68 (|has| $ (-6 -4425)) ELT))) -(((-756 |#1|) (-13 (-757 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -2650 ($)) (-15 -2650 ($ |#1|)) (-15 -2650 ($ (-661 |#1|))) (-15 -3007 ((-661 |#1|) $)) (-15 -3826 ($ |#1| $ (-558))) (-15 -3826 ($ (-1 (-114) |#1|) $ (-558))) (-15 -3825 ($ |#1| $ (-558))) (-15 -3825 ($ (-1 (-114) |#1|) $ (-558))))) (-1122)) (T -756)) -((-2650 (*1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1122)))) (-2650 (*1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1122)))) (-2650 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-756 *3)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-756 *3)) (-4 *3 (-1122)))) (-3826 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1122)))) (-3826 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1122)) (-5 *1 (-756 *4)))) (-3825 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1122)))) (-3825 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1122)) (-5 *1 (-756 *4))))) -((-2967 (((-114) $ $) 19 T ELT)) (-3652 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3654 (($ $ $) 77 T ELT)) (-3653 (((-114) $ $) 78 T ELT)) (-3657 (($ (-661 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1713 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2594 (($ $) 66 T ELT)) (-1467 (($ $) 62 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) 61 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) 69 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 T ELT)) (-3656 (($ $ $) 74 T ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT) (($ |#1| $ (-791)) 67 T ELT)) (-3661 (((-1141) $) 21 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2593 (((-661 (-2 (|:| -2286 |#1|) (|:| -2157 (-791)))) $) 65 T ELT)) (-3655 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 54 T ELT)) (-4376 (((-877) $) 17 T ELT)) (-3658 (($ (-661 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1378 (((-114) $ $) 20 T ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 T ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-757 |#1|) (-142) (-1122)) (T -757)) -NIL -(-13 (-715 |t#1|) (-1120 |t#1|)) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-630 (-877)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-715 |#1|) . T) ((-1120 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2651 (((-1294) (-1180)) 8 T ELT))) -(((-758) (-10 -7 (-15 -2651 ((-1294) (-1180))))) (T -758)) -((-2651 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-758))))) -((-2652 (((-661 |#1|) (-661 |#1|) (-661 |#1|)) 15 T ELT))) -(((-759 |#1|) (-10 -7 (-15 -2652 ((-661 |#1|) (-661 |#1|) (-661 |#1|)))) (-861)) (T -759)) -((-2652 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-759 *3))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 |#2|) $) 156 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 149 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 148 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 146 (|has| |#1| (-569)) ELT)) (-3912 (($ $) 105 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 88 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3438 (($ $) 87 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 104 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 89 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3914 (($ $) 103 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 90 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) 22 T CONST)) (-4389 (($ $) 140 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4244 (((-965 |#1|) $ (-791)) 118 T ELT) (((-965 |#1|) $ (-791) (-791)) 117 T ELT)) (-3293 (((-114) $) 157 T ELT)) (-4057 (($) 115 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-791) $ |#2|) 120 T ELT) (((-791) $ |#2| (-791)) 119 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 86 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4367 (((-114) $) 138 T ELT)) (-3294 (($ $ (-661 |#2|) (-661 (-543 |#2|))) 155 T ELT) (($ $ |#2| (-543 |#2|)) 154 T ELT) (($ |#1| (-543 |#2|)) 139 T ELT) (($ $ |#2| (-791)) 122 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 121 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4372 (($ $) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) 135 T ELT)) (-3592 ((|#1| $) 134 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-4242 (($ $ |#2|) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4199 (($ $ (-791)) 123 T ELT)) (-3886 (((-3 $ "failed") $ $) 150 (|has| |#1| (-569)) ELT)) (-4373 (($ $) 113 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (($ $ |#2| $) 131 T ELT) (($ $ (-661 |#2|) (-661 $)) 130 T ELT) (($ $ (-661 (-305 $))) 129 T ELT) (($ $ (-305 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-661 $) (-661 $)) 126 T ELT)) (-4188 (($ $ (-661 |#2|) (-661 (-791))) 49 T ELT) (($ $ |#2| (-791)) 48 T ELT) (($ $ (-661 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4378 (((-543 |#2|) $) 136 T ELT)) (-3915 (($ $) 102 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 91 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 101 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 92 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 100 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 93 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 158 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-175)) ELT) (($ $) 151 (|has| |#1| (-569)) ELT) (($ (-419 (-558))) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4107 ((|#1| $ (-543 |#2|)) 141 T ELT) (($ $ |#2| (-791)) 125 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 124 T ELT)) (-3103 (((-711 $) $) 152 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 111 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 99 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) 147 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 110 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 98 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 109 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 97 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3921 (($ $) 108 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 96 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 107 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 95 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 106 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 94 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-661 |#2|) (-661 (-791))) 52 T ELT) (($ $ |#2| (-791)) 51 T ELT) (($ $ (-661 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 142 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 85 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 145 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) -(((-760 |#1| |#2|) (-142) (-1070) (-861)) (T -760)) -((-4107 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-760 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-861)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-4202 (*1 *2 *1 *3) (-12 (-4 *1 (-760 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *2 (-791)))) (-4202 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-791)) (-4 *1 (-760 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)))) (-4244 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-965 *4)))) (-4244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) (-5 *2 (-965 *4)))) (-4242 (*1 *1 *1 *2) (-12 (-4 *1 (-760 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) (-4 *3 (-38 (-419 (-558))))))) -(-13 (-917 |t#2|) (-994 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-321 $) (-10 -8 (-15 -4107 ($ $ |t#2| (-791))) (-15 -4107 ($ $ (-661 |t#2|) (-661 (-791)))) (-15 -4199 ($ $ (-791))) (-15 -3294 ($ $ |t#2| (-791))) (-15 -3294 ($ $ (-661 |t#2|) (-661 (-791)))) (-15 -4202 ((-791) $ |t#2|)) (-15 -4202 ((-791) $ |t#2| (-791))) (-15 -4244 ((-965 |t#1|) $ (-791))) (-15 -4244 ((-965 |t#1|) $ (-791) (-791))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $ |t#2|)) (-6 (-1023)) (-6 (-1224))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-543 |#2|)) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-302) |has| |#1| (-569)) ((-321 $) . T) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-911 $ |#2|) . T) ((-917 |#2|) . T) ((-919 |#2|) . T) ((-994 |#1| (-543 |#2|) |#2|) . T) ((-1023) |has| |#1| (-38 (-419 (-558)))) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-558)))) ((-1227) |has| |#1| (-38 (-419 (-558)))) ((-1238) . T)) -((-4162 (((-417 (-1192 |#4|)) (-1192 |#4|)) 30 T ELT) (((-417 |#4|) |#4|) 26 T ELT))) -(((-761 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 |#4|) |#4|)) (-15 -4162 ((-417 (-1192 |#4|)) (-1192 |#4|)))) (-861) (-815) (-13 (-319) (-149)) (-969 |#3| |#2| |#1|)) (T -761)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-761 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -((-2655 (((-417 |#4|) |#4| |#2|) 141 T ELT)) (-2653 (((-417 |#4|) |#4|) NIL T ELT)) (-4401 (((-417 (-1192 |#4|)) (-1192 |#4|)) 128 T ELT) (((-417 |#4|) |#4|) 52 T ELT)) (-2657 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-661 (-2 (|:| -4162 (-1192 |#4|)) (|:| -2632 (-558)))))) (-1192 |#4|) (-661 |#2|) (-661 (-661 |#3|))) 81 T ELT)) (-2661 (((-1192 |#3|) (-1192 |#3|) (-558)) 168 T ELT)) (-2660 (((-661 (-791)) (-1192 |#4|) (-661 |#2|) (-791)) 75 T ELT)) (-3480 (((-3 (-661 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-661 |#2|) (-661 (-791)) (-661 |#3|)) 79 T ELT)) (-2658 (((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-661 |#3|)) (|:| |Lfact| (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-661 |#2|) (-661 (-661 |#3|))) 27 T ELT)) (-2656 (((-2 (|:| -2214 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-558)) 72 T ELT)) (-2654 (((-558) (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558))))) 164 T ELT)) (-2659 ((|#4| (-558) (-417 |#4|)) 73 T ELT)) (-3777 (((-114) (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558)))) (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558))))) NIL T ELT))) -(((-762 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-417 |#4|) |#4|)) (-15 -4401 ((-417 (-1192 |#4|)) (-1192 |#4|))) (-15 -2653 ((-417 |#4|) |#4|)) (-15 -2654 ((-558) (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558)))))) (-15 -2655 ((-417 |#4|) |#4| |#2|)) (-15 -2656 ((-2 (|:| -2214 (-1192 |#4|)) (|:| |polval| (-1192 |#3|))) (-1192 |#4|) (-1192 |#3|) (-558))) (-15 -2657 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-661 (-2 (|:| -4162 (-1192 |#4|)) (|:| -2632 (-558)))))) (-1192 |#4|) (-661 |#2|) (-661 (-661 |#3|)))) (-15 -2658 ((-2 (|:| |upol| (-1192 |#3|)) (|:| |Lval| (-661 |#3|)) (|:| |Lfact| (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558))))) (|:| |ctpol| |#3|)) (-1192 |#4|) (-661 |#2|) (-661 (-661 |#3|)))) (-15 -2659 (|#4| (-558) (-417 |#4|))) (-15 -3777 ((-114) (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558)))) (-661 (-2 (|:| -4162 (-1192 |#3|)) (|:| -2632 (-558)))))) (-15 -3480 ((-3 (-661 (-1192 |#4|)) "failed") (-1192 |#4|) (-1192 |#3|) (-1192 |#3|) |#4| (-661 |#2|) (-661 (-791)) (-661 |#3|))) (-15 -2660 ((-661 (-791)) (-1192 |#4|) (-661 |#2|) (-791))) (-15 -2661 ((-1192 |#3|) (-1192 |#3|) (-558)))) (-815) (-861) (-319) (-969 |#3| |#1| |#2|)) (T -762)) -((-2661 (*1 *2 *2 *3) (-12 (-5 *2 (-1192 *6)) (-5 *3 (-558)) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-2660 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-661 *7)) (-4 *7 (-861)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-661 (-791))) (-5 *1 (-762 *6 *7 *8 *9)) (-5 *5 (-791)))) (-3480 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-661 *10)) (-5 *7 (-661 (-791))) (-5 *8 (-661 *11)) (-4 *10 (-861)) (-4 *11 (-319)) (-4 *9 (-815)) (-4 *5 (-969 *11 *9 *10)) (-5 *2 (-661 (-1192 *5))) (-5 *1 (-762 *9 *10 *11 *5)) (-5 *3 (-1192 *5)))) (-3777 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-2 (|:| -4162 (-1192 *6)) (|:| -2632 (-558))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-2659 (*1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-969 *7 *5 *6)) (-5 *1 (-762 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-319)))) (-2658 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1192 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) (-4 *7 (-861)) (-4 *8 (-319)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-661 *8)) (|:| |Lfact| (-661 (-2 (|:| -4162 (-1192 *8)) (|:| -2632 (-558))))) (|:| |ctpol| *8))) (-5 *1 (-762 *6 *7 *8 *9)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) (-4 *7 (-861)) (-4 *8 (-319)) (-4 *6 (-815)) (-4 *9 (-969 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-661 (-2 (|:| -4162 (-1192 *9)) (|:| -2632 (-558))))))) (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1192 *9)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-558)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-319)) (-4 *9 (-969 *8 *6 *7)) (-5 *2 (-2 (|:| -2214 (-1192 *9)) (|:| |polval| (-1192 *8)))) (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8)))) (-2655 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-762 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) (-2654 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -4162 (-1192 *6)) (|:| -2632 (-558))))) (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-558)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-2653 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5))))) -((-2662 (($ $ (-938)) 17 T ELT))) -(((-763 |#1| |#2|) (-10 -7 (-15 -2662 (|#1| |#1| (-938)))) (-764 |#2|) (-175)) (T -763)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2638 (($ $ (-938)) 36 T ELT)) (-2662 (($ $ (-938)) 43 T ELT)) (-2637 (($ $ (-938)) 37 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2824 (($ $ $) 33 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2825 (($ $ $ $) 34 T ELT)) (-2823 (($ $ $) 32 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 38 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) -(((-764 |#1|) (-142) (-175)) (T -764)) -((-2662 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-764 *3)) (-4 *3 (-175))))) -(-13 (-781) (-737 |t#1|) (-10 -8 (-15 -2662 ($ $ (-938))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-740) . T) ((-781) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2664 (((-1056) (-709 (-229)) (-558) (-114) (-558)) 26 T ELT)) (-2663 (((-1056) (-709 (-229)) (-558) (-114) (-558)) 25 T ELT))) -(((-765) (-10 -7 (-15 -2663 ((-1056) (-709 (-229)) (-558) (-114) (-558))) (-15 -2664 ((-1056) (-709 (-229)) (-558) (-114) (-558))))) (T -765)) -((-2664 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1056)) (-5 *1 (-765)))) (-2663 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1056)) (-5 *1 (-765))))) -((-2667 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2666 (((-1056) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-2665 (((-1056) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) 32 T ELT))) -(((-766) (-10 -7 (-15 -2665 ((-1056) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495))))) (-15 -2666 ((-1056) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2667 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -766)) -((-2667 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2666 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) (-5 *1 (-766)))) (-2665 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) (-5 *1 (-766))))) -((-2679 (((-1056) (-558) (-558) (-709 (-229)) (-558)) 34 T ELT)) (-2678 (((-1056) (-558) (-558) (-709 (-229)) (-558)) 33 T ELT)) (-2677 (((-1056) (-558) (-709 (-229)) (-558)) 32 T ELT)) (-2676 (((-1056) (-558) (-709 (-229)) (-558)) 31 T ELT)) (-2675 (((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 30 T ELT)) (-2674 (((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 29 T ELT)) (-2673 (((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-558)) 28 T ELT)) (-2672 (((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-558)) 27 T ELT)) (-2671 (((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 24 T ELT)) (-2670 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558)) 23 T ELT)) (-2669 (((-1056) (-558) (-709 (-229)) (-558)) 22 T ELT)) (-2668 (((-1056) (-558) (-709 (-229)) (-558)) 21 T ELT))) -(((-767) (-10 -7 (-15 -2668 ((-1056) (-558) (-709 (-229)) (-558))) (-15 -2669 ((-1056) (-558) (-709 (-229)) (-558))) (-15 -2670 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2671 ((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2672 ((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2673 ((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2674 ((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2675 ((-1056) (-558) (-558) (-1180) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2676 ((-1056) (-558) (-709 (-229)) (-558))) (-15 -2677 ((-1056) (-558) (-709 (-229)) (-558))) (-15 -2678 ((-1056) (-558) (-558) (-709 (-229)) (-558))) (-15 -2679 ((-1056) (-558) (-558) (-709 (-229)) (-558))))) (T -767)) -((-2679 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2678 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2677 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2676 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2675 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2674 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2673 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2672 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2671 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2670 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2669 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767)))) (-2668 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) -((-2691 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-2690 (((-1056) (-709 (-229)) (-709 (-229)) (-558) (-558)) 51 T ELT)) (-2689 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-2688 (((-1056) (-229) (-229) (-558) (-558) (-558) (-558)) 46 T ELT)) (-2687 (((-1056) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-2686 (((-1056) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-2685 (((-1056) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-2684 (((-1056) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-2683 (((-1056) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) 38 T ELT)) (-2682 (((-1056) (-229) (-229) (-558) (-709 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) 37 T ELT)) (-2681 (((-1056) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) 33 T ELT)) (-2680 (((-1056) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) 32 T ELT))) -(((-768) (-10 -7 (-15 -2680 ((-1056) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495))))) (-15 -2681 ((-1056) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495))))) (-15 -2682 ((-1056) (-229) (-229) (-558) (-709 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495))))) (-15 -2683 ((-1056) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495))))) (-15 -2684 ((-1056) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2685 ((-1056) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2686 ((-1056) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2687 ((-1056) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2688 ((-1056) (-229) (-229) (-558) (-558) (-558) (-558))) (-15 -2689 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2690 ((-1056) (-709 (-229)) (-709 (-229)) (-558) (-558))) (-15 -2691 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558) (-229) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -768)) -((-2691 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2690 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2689 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2688 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2687 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2686 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2685 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2684 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2683 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2682 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2681 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) (-5 *1 (-768)))) (-2680 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) (-5 *1 (-768))))) -((-2699 (((-1056) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-2698 (((-1056) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1056) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-2697 (((-1056) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-2696 (((-1056) (-709 (-229)) (-709 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-2695 (((-1056) (-229) (-558) (-558) (-1180) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-2694 (((-1056) (-229) (-558) (-558) (-229) (-1180) (-229) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-2693 (((-1056) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-2692 (((-1056) (-229) (-558) (-558) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT))) -(((-769) (-10 -7 (-15 -2692 ((-1056) (-229) (-558) (-558) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2693 ((-1056) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2694 ((-1056) (-229) (-558) (-558) (-229) (-1180) (-229) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2695 ((-1056) (-229) (-558) (-558) (-1180) (-558) (-229) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2696 ((-1056) (-709 (-229)) (-709 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2697 ((-1056) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2698 ((-1056) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2698 ((-1056) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2699 ((-1056) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -769)) -((-2699 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2698 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2698 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2697 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2696 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2695 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-558)) (-5 *5 (-1180)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2694 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-558)) (-5 *5 (-1180)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2693 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-769)))) (-2692 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-769))))) -((-2702 (((-1056) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-695 (-229)) (-558)) 46 T ELT)) (-2701 (((-1056) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1180) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-2700 (((-1056) (-558) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 23 T ELT))) -(((-770) (-10 -7 (-15 -2700 ((-1056) (-558) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2701 ((-1056) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1180) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2702 ((-1056) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-695 (-229)) (-558))))) (T -770)) -((-2702 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-695 (-229))) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2701 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-1180)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1056)) (-5 *1 (-770)))) (-2700 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-770))))) -((-2712 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-709 (-229)) (-229) (-229) (-558)) 35 T ELT)) (-2711 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-229) (-229) (-558)) 34 T ELT)) (-2710 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-709 (-229)) (-229) (-229) (-558)) 33 T ELT)) (-2709 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 29 T ELT)) (-2708 (((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 28 T ELT)) (-2707 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558)) 27 T ELT)) (-2706 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558)) 24 T ELT)) (-2705 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558)) 23 T ELT)) (-2704 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558)) 22 T ELT)) (-2703 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)) 21 T ELT))) -(((-771) (-10 -7 (-15 -2703 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))) (-15 -2704 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2705 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2706 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2707 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-229) (-558))) (-15 -2708 ((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2709 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2710 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-709 (-229)) (-229) (-229) (-558))) (-15 -2711 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-229) (-229) (-558))) (-15 -2712 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-709 (-229)) (-229) (-229) (-558))))) (T -771)) -((-2712 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2711 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2710 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2709 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2708 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2707 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2706 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2705 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2704 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771)))) (-2703 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) -((-2730 (((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)) 45 T ELT)) (-2729 (((-1056) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-558)) 44 T ELT)) (-2728 (((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558)) 43 T ELT)) (-2727 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 42 T ELT)) (-2726 (((-1056) (-1180) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558)) 41 T ELT)) (-2725 (((-1056) (-1180) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558)) 40 T ELT)) (-2724 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558) (-558) (-558) (-229) (-709 (-229)) (-558)) 39 T ELT)) (-2723 (((-1056) (-1180) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558))) 38 T ELT)) (-2722 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558)) 35 T ELT)) (-2721 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558)) 34 T ELT)) (-2720 (((-1056) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558)) 33 T ELT)) (-2719 (((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 32 T ELT)) (-2718 (((-1056) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558)) 31 T ELT)) (-2717 (((-1056) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-558)) 30 T ELT)) (-2716 (((-1056) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-558) (-558) (-558)) 29 T ELT)) (-2715 (((-1056) (-558) (-558) (-558) (-229) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-558)) (-558) (-558) (-558)) 28 T ELT)) (-2714 (((-1056) (-558) (-709 (-229)) (-229) (-558)) 24 T ELT)) (-2713 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 21 T ELT))) -(((-772) (-10 -7 (-15 -2713 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2714 ((-1056) (-558) (-709 (-229)) (-229) (-558))) (-15 -2715 ((-1056) (-558) (-558) (-558) (-229) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-558)) (-558) (-558) (-558))) (-15 -2716 ((-1056) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2717 ((-1056) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558) (-558) (-558))) (-15 -2718 ((-1056) (-558) (-229) (-229) (-709 (-229)) (-558) (-558) (-229) (-558))) (-15 -2719 ((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2720 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558))) (-15 -2721 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558))) (-15 -2722 ((-1056) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2723 ((-1056) (-1180) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)))) (-15 -2724 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558) (-558) (-558) (-229) (-709 (-229)) (-558))) (-15 -2725 ((-1056) (-1180) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558))) (-15 -2726 ((-1056) (-1180) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2727 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2728 ((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))) (-15 -2729 ((-1056) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2730 ((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558) (-709 (-229)) (-709 (-229)) (-558) (-558) (-558))))) (T -772)) -((-2730 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2729 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2728 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2727 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2726 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2725 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1180)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2724 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2723 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1180)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2722 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2721 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2720 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2719 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2718 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2717 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2716 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2715 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2714 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) (-5 *1 (-772)))) (-2713 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) -((-2738 (((-1056) (-558) (-558) (-558) (-229) (-709 (-229)) (-558) (-709 (-229)) (-558)) 64 T ELT)) (-2737 (((-1056) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-2736 (((-1056) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-114) (-114) (-558) (-558) (-709 (-229)) (-709 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-2735 (((-1056) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-558) (-558) (-709 (-229)) (-558)) 52 T ELT)) (-2734 (((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-2733 (((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-2732 (((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2731 (((-1056) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT))) -(((-773) (-10 -7 (-15 -2731 ((-1056) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2732 ((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2733 ((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2734 ((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2735 ((-1056) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-558) (-558) (-709 (-229)) (-558))) (-15 -2736 ((-1056) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-114) (-114) (-114) (-558) (-558) (-709 (-229)) (-709 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2737 ((-1056) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2738 ((-1056) (-558) (-558) (-558) (-229) (-709 (-229)) (-558) (-709 (-229)) (-558))))) (T -773)) -((-2738 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2737 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-709 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2736 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-709 (-229))) (-5 *6 (-114)) (-5 *7 (-709 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2735 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2734 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2733 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2732 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1056)) (-5 *1 (-773)))) (-2731 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-773))))) -((-2748 (((-1056) (-1180) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558)) 47 T ELT)) (-2747 (((-1056) (-1180) (-1180) (-558) (-558) (-709 (-171 (-229))) (-558) (-709 (-171 (-229))) (-558) (-558) (-709 (-171 (-229))) (-558)) 46 T ELT)) (-2746 (((-1056) (-558) (-558) (-558) (-709 (-171 (-229))) (-558)) 45 T ELT)) (-2745 (((-1056) (-1180) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 40 T ELT)) (-2744 (((-1056) (-1180) (-1180) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)) (-558)) 39 T ELT)) (-2743 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-558)) 36 T ELT)) (-2742 (((-1056) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558)) 35 T ELT)) (-2741 (((-1056) (-558) (-558) (-558) (-558) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-229) (-229) (-558)) 34 T ELT)) (-2740 (((-1056) (-558) (-558) (-558) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-114) (-229) (-114) (-709 (-558)) (-709 (-229)) (-558)) 33 T ELT)) (-2739 (((-1056) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-558)) 32 T ELT))) -(((-774) (-10 -7 (-15 -2739 ((-1056) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-558))) (-15 -2740 ((-1056) (-558) (-558) (-558) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-709 (-558)) (-114) (-229) (-114) (-709 (-558)) (-709 (-229)) (-558))) (-15 -2741 ((-1056) (-558) (-558) (-558) (-558) (-661 (-114)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-229) (-229) (-558))) (-15 -2742 ((-1056) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558))) (-15 -2743 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-558))) (-15 -2744 ((-1056) (-1180) (-1180) (-558) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)) (-558))) (-15 -2745 ((-1056) (-1180) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2746 ((-1056) (-558) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2747 ((-1056) (-1180) (-1180) (-558) (-558) (-709 (-171 (-229))) (-558) (-709 (-171 (-229))) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2748 ((-1056) (-1180) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558))))) (T -774)) -((-2748 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2747 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2746 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2745 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2744 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2743 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2742 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2741 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-661 (-114))) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *7 (-229)) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2740 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-709 (-558))) (-5 *5 (-114)) (-5 *7 (-709 (-229))) (-5 *3 (-558)) (-5 *6 (-229)) (-5 *2 (-1056)) (-5 *1 (-774)))) (-2739 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-661 (-114))) (-5 *7 (-709 (-229))) (-5 *8 (-709 (-558))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1056)) (-5 *1 (-774))))) -((-2763 (((-1056) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558)) 76 T ELT)) (-2762 (((-1056) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558)) 68 T ELT)) (-2761 (((-1056) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1056) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-2760 (((-1056) (-558) (-558) (-558) (-229) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558)) 37 T ELT)) (-2759 (((-1056) (-558) (-558) (-229) (-229) (-558) (-558) (-709 (-229)) (-558)) 33 T ELT)) (-2758 (((-1056) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558) (-558)) 30 T ELT)) (-2757 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 29 T ELT)) (-2756 (((-1056) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 28 T ELT)) (-2755 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 27 T ELT)) (-2754 (((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-558)) 26 T ELT)) (-2753 (((-1056) (-558) (-558) (-709 (-229)) (-558)) 25 T ELT)) (-2752 (((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 24 T ELT)) (-2751 (((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558)) 23 T ELT)) (-2750 (((-1056) (-709 (-229)) (-558) (-558) (-558) (-558)) 22 T ELT)) (-2749 (((-1056) (-558) (-558) (-709 (-229)) (-558)) 21 T ELT))) -(((-775) (-10 -7 (-15 -2749 ((-1056) (-558) (-558) (-709 (-229)) (-558))) (-15 -2750 ((-1056) (-709 (-229)) (-558) (-558) (-558) (-558))) (-15 -2751 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2752 ((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2753 ((-1056) (-558) (-558) (-709 (-229)) (-558))) (-15 -2754 ((-1056) (-558) (-558) (-558) (-558) (-709 (-229)) (-558))) (-15 -2755 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2756 ((-1056) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2757 ((-1056) (-558) (-558) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2758 ((-1056) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2759 ((-1056) (-558) (-558) (-229) (-229) (-558) (-558) (-709 (-229)) (-558))) (-15 -2760 ((-1056) (-558) (-558) (-558) (-229) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2761 ((-1056) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2761 ((-1056) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2762 ((-1056) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2763 ((-1056) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-709 (-171 (-229))) (-709 (-171 (-229))) (-558))))) (T -775)) -((-2763 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-171 (-229)))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2762 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2761 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2761 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2760 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2759 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2758 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2757 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2756 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2755 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2754 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2753 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2752 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2751 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2750 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-775)))) (-2749 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) -((-2774 (((-1056) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2773 (((-1056) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558)) 60 T ELT)) (-2772 (((-1056) (-558) (-709 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2771 (((-1056) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558)) 37 T ELT)) (-2770 (((-1056) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-558)) 36 T ELT)) (-2769 (((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558)) 33 T ELT)) (-2768 (((-1056) (-558) (-709 (-229)) (-558) (-709 (-558)) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229))) 32 T ELT)) (-2767 (((-1056) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558)) 28 T ELT)) (-2766 (((-1056) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558)) 27 T ELT)) (-2765 (((-1056) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558)) 26 T ELT)) (-2764 (((-1056) (-558) (-709 (-171 (-229))) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-558)) 22 T ELT))) -(((-776) (-10 -7 (-15 -2764 ((-1056) (-558) (-709 (-171 (-229))) (-558) (-558) (-558) (-558) (-709 (-171 (-229))) (-558))) (-15 -2765 ((-1056) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2766 ((-1056) (-558) (-709 (-229)) (-558) (-709 (-229)) (-558))) (-15 -2767 ((-1056) (-709 (-229)) (-558) (-709 (-229)) (-558) (-558) (-558))) (-15 -2768 ((-1056) (-558) (-709 (-229)) (-558) (-709 (-558)) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)))) (-15 -2769 ((-1056) (-558) (-558) (-709 (-229)) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2770 ((-1056) (-558) (-558) (-558) (-229) (-558) (-709 (-229)) (-709 (-229)) (-558))) (-15 -2771 ((-1056) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-558)) (-709 (-229)) (-709 (-558)) (-709 (-558)) (-709 (-229)) (-709 (-229)) (-709 (-558)) (-558))) (-15 -2772 ((-1056) (-558) (-709 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2773 ((-1056) (-558) (-709 (-229)) (-558) (-709 (-229)) (-709 (-558)) (-558) (-709 (-229)) (-558) (-558) (-558) (-558))) (-15 -2774 ((-1056) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-709 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -776)) -((-2774 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2773 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2772 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2771 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2770 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2769 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2768 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2767 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2766 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2765 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-776)))) (-2764 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1056)) (-5 *1 (-776))))) -((-2778 (((-1056) (-1180) (-558) (-558) (-709 (-229)) (-558) (-558) (-709 (-229))) 29 T ELT)) (-2777 (((-1056) (-1180) (-558) (-558) (-709 (-229))) 28 T ELT)) (-2776 (((-1056) (-1180) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-229))) 27 T ELT)) (-2775 (((-1056) (-558) (-558) (-558) (-709 (-229))) 21 T ELT))) -(((-777) (-10 -7 (-15 -2775 ((-1056) (-558) (-558) (-558) (-709 (-229)))) (-15 -2776 ((-1056) (-1180) (-558) (-558) (-709 (-229)) (-558) (-709 (-558)) (-558) (-709 (-229)))) (-15 -2777 ((-1056) (-1180) (-558) (-558) (-709 (-229)))) (-15 -2778 ((-1056) (-1180) (-558) (-558) (-709 (-229)) (-558) (-558) (-709 (-229)))))) (T -777)) -((-2778 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-777)))) (-2777 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-777)))) (-2776 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1180)) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-777)))) (-2775 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-777))))) -((-2816 (((-1056) (-229) (-229) (-229) (-229) (-558)) 62 T ELT)) (-2815 (((-1056) (-229) (-229) (-229) (-558)) 61 T ELT)) (-2814 (((-1056) (-229) (-229) (-229) (-558)) 60 T ELT)) (-2813 (((-1056) (-229) (-229) (-558)) 59 T ELT)) (-2812 (((-1056) (-229) (-558)) 58 T ELT)) (-2811 (((-1056) (-229) (-558)) 57 T ELT)) (-2810 (((-1056) (-229) (-558)) 56 T ELT)) (-2809 (((-1056) (-229) (-558)) 55 T ELT)) (-2808 (((-1056) (-229) (-558)) 54 T ELT)) (-2807 (((-1056) (-229) (-558)) 53 T ELT)) (-2806 (((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558)) 52 T ELT)) (-2805 (((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558)) 51 T ELT)) (-2804 (((-1056) (-229) (-558)) 50 T ELT)) (-2803 (((-1056) (-229) (-558)) 49 T ELT)) (-2802 (((-1056) (-229) (-558)) 48 T ELT)) (-2801 (((-1056) (-229) (-558)) 47 T ELT)) (-2800 (((-1056) (-558) (-229) (-171 (-229)) (-558) (-1180) (-558)) 46 T ELT)) (-2799 (((-1056) (-1180) (-171 (-229)) (-1180) (-558)) 45 T ELT)) (-2798 (((-1056) (-1180) (-171 (-229)) (-1180) (-558)) 44 T ELT)) (-2797 (((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558)) 43 T ELT)) (-2796 (((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558)) 42 T ELT)) (-2795 (((-1056) (-229) (-558)) 39 T ELT)) (-2794 (((-1056) (-229) (-558)) 38 T ELT)) (-2793 (((-1056) (-229) (-558)) 37 T ELT)) (-2792 (((-1056) (-229) (-558)) 36 T ELT)) (-2791 (((-1056) (-229) (-558)) 35 T ELT)) (-2790 (((-1056) (-229) (-558)) 34 T ELT)) (-2789 (((-1056) (-229) (-558)) 33 T ELT)) (-2788 (((-1056) (-229) (-558)) 32 T ELT)) (-2787 (((-1056) (-229) (-558)) 31 T ELT)) (-2786 (((-1056) (-229) (-558)) 30 T ELT)) (-2785 (((-1056) (-229) (-229) (-229) (-558)) 29 T ELT)) (-2784 (((-1056) (-229) (-558)) 28 T ELT)) (-2783 (((-1056) (-229) (-558)) 27 T ELT)) (-2782 (((-1056) (-229) (-558)) 26 T ELT)) (-2781 (((-1056) (-229) (-558)) 25 T ELT)) (-2780 (((-1056) (-229) (-558)) 24 T ELT)) (-2779 (((-1056) (-171 (-229)) (-558)) 21 T ELT))) -(((-778) (-10 -7 (-15 -2779 ((-1056) (-171 (-229)) (-558))) (-15 -2780 ((-1056) (-229) (-558))) (-15 -2781 ((-1056) (-229) (-558))) (-15 -2782 ((-1056) (-229) (-558))) (-15 -2783 ((-1056) (-229) (-558))) (-15 -2784 ((-1056) (-229) (-558))) (-15 -2785 ((-1056) (-229) (-229) (-229) (-558))) (-15 -2786 ((-1056) (-229) (-558))) (-15 -2787 ((-1056) (-229) (-558))) (-15 -2788 ((-1056) (-229) (-558))) (-15 -2789 ((-1056) (-229) (-558))) (-15 -2790 ((-1056) (-229) (-558))) (-15 -2791 ((-1056) (-229) (-558))) (-15 -2792 ((-1056) (-229) (-558))) (-15 -2793 ((-1056) (-229) (-558))) (-15 -2794 ((-1056) (-229) (-558))) (-15 -2795 ((-1056) (-229) (-558))) (-15 -2796 ((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558))) (-15 -2797 ((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558))) (-15 -2798 ((-1056) (-1180) (-171 (-229)) (-1180) (-558))) (-15 -2799 ((-1056) (-1180) (-171 (-229)) (-1180) (-558))) (-15 -2800 ((-1056) (-558) (-229) (-171 (-229)) (-558) (-1180) (-558))) (-15 -2801 ((-1056) (-229) (-558))) (-15 -2802 ((-1056) (-229) (-558))) (-15 -2803 ((-1056) (-229) (-558))) (-15 -2804 ((-1056) (-229) (-558))) (-15 -2805 ((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558))) (-15 -2806 ((-1056) (-229) (-171 (-229)) (-558) (-1180) (-558))) (-15 -2807 ((-1056) (-229) (-558))) (-15 -2808 ((-1056) (-229) (-558))) (-15 -2809 ((-1056) (-229) (-558))) (-15 -2810 ((-1056) (-229) (-558))) (-15 -2811 ((-1056) (-229) (-558))) (-15 -2812 ((-1056) (-229) (-558))) (-15 -2813 ((-1056) (-229) (-229) (-558))) (-15 -2814 ((-1056) (-229) (-229) (-229) (-558))) (-15 -2815 ((-1056) (-229) (-229) (-229) (-558))) (-15 -2816 ((-1056) (-229) (-229) (-229) (-229) (-558))))) (T -778)) -((-2816 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2815 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2814 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2813 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2812 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2806 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2805 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2804 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2800 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-171 (-229))) (-5 *6 (-1180)) (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2799 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2798 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2797 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2796 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2795 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2785 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2784 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) -((-2822 (((-1294)) 20 T ELT)) (-2818 (((-1180)) 35 T ELT)) (-2817 (((-1180)) 34 T ELT)) (-2820 (((-1124) (-1198) (-709 (-558))) 48 T ELT) (((-1124) (-1198) (-709 (-229))) 44 T ELT)) (-2821 (((-114)) 19 T ELT)) (-2819 (((-1180) (-1180)) 38 T ELT))) -(((-779) (-10 -7 (-15 -2817 ((-1180))) (-15 -2818 ((-1180))) (-15 -2819 ((-1180) (-1180))) (-15 -2820 ((-1124) (-1198) (-709 (-229)))) (-15 -2820 ((-1124) (-1198) (-709 (-558)))) (-15 -2821 ((-114))) (-15 -2822 ((-1294))))) (T -779)) -((-2822 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-779)))) (-2821 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-779)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-709 (-558))) (-5 *2 (-1124)) (-5 *1 (-779)))) (-2820 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-709 (-229))) (-5 *2 (-1124)) (-5 *1 (-779)))) (-2819 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-779)))) (-2818 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-779)))) (-2817 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-779))))) -((-2824 (($ $ $) 10 T ELT)) (-2825 (($ $ $ $) 9 T ELT)) (-2823 (($ $ $) 12 T ELT))) -(((-780 |#1|) (-10 -7 (-15 -2823 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1|)) (-15 -2825 (|#1| |#1| |#1| |#1|))) (-781)) (T -780)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2638 (($ $ (-938)) 36 T ELT)) (-2637 (($ $ (-938)) 37 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2824 (($ $ $) 33 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2825 (($ $ $ $) 34 T ELT)) (-2823 (($ $ $) 32 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 38 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-781) (-142)) (T -781)) -((-2825 (*1 *1 *1 *1 *1) (-4 *1 (-781))) (-2824 (*1 *1 *1 *1) (-4 *1 (-781))) (-2823 (*1 *1 *1 *1) (-4 *1 (-781)))) -(-13 (-21) (-740) (-10 -8 (-15 -2825 ($ $ $ $)) (-15 -2824 ($ $ $)) (-15 -2823 ($ $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-740) . T) ((-1122) . T) ((-1238) . T)) -((-4376 (((-877) $) NIL T ELT) (($ (-558)) 10 T ELT))) -(((-782 |#1|) (-10 -7 (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-783)) (T -782)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2635 (((-3 $ #1="failed") $) 48 T ELT)) (-2638 (($ $ (-938)) 36 T ELT) (($ $ (-791)) 43 T ELT)) (-3887 (((-3 $ #1#) $) 46 T ELT)) (-2641 (((-114) $) 42 T ELT)) (-2636 (((-3 $ #1#) $) 47 T ELT)) (-2637 (($ $ (-938)) 37 T ELT) (($ $ (-791)) 44 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2824 (($ $ $) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 39 T ELT)) (-3528 (((-791)) 40 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2825 (($ $ $ $) 34 T ELT)) (-2823 (($ $ $) 32 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 41 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 38 T ELT) (($ $ (-791)) 45 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT))) -(((-783) (-142)) (T -783)) -((-3528 (*1 *2) (-12 (-4 *1 (-783)) (-5 *2 (-791)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-783))))) -(-13 (-781) (-742) (-10 -8 (-15 -3528 ((-791)) -4382) (-15 -4376 ($ (-558))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-740) . T) ((-742) . T) ((-781) . T) ((-1122) . T) ((-1238) . T)) -((-2827 (((-661 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 |#1|)))))) (-709 (-171 (-419 (-558)))) |#1|) 33 T ELT)) (-2826 (((-661 (-171 |#1|)) (-709 (-171 (-419 (-558)))) |#1|) 23 T ELT)) (-2838 (((-965 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))) (-1198)) 20 T ELT) (((-965 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558))))) 19 T ELT))) -(((-784 |#1|) (-10 -7 (-15 -2838 ((-965 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))))) (-15 -2838 ((-965 (-171 (-419 (-558)))) (-709 (-171 (-419 (-558)))) (-1198))) (-15 -2826 ((-661 (-171 |#1|)) (-709 (-171 (-419 (-558)))) |#1|)) (-15 -2827 ((-661 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 |#1|)))))) (-709 (-171 (-419 (-558)))) |#1|))) (-13 (-376) (-860))) (T -784)) -((-2827 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-661 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 (-171 *4))))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-860))))) (-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-661 (-171 *4))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-860))))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *4 (-1198)) (-5 *2 (-965 (-171 (-419 (-558))))) (-5 *1 (-784 *5)) (-4 *5 (-13 (-376) (-860))))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-965 (-171 (-419 (-558))))) (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-860)))))) -((-3015 (((-177 (-558)) |#1|) 27 T ELT))) -(((-785 |#1|) (-10 -7 (-15 -3015 ((-177 (-558)) |#1|))) (-416)) (T -785)) -((-3015 (*1 *2 *3) (-12 (-5 *2 (-177 (-558))) (-5 *1 (-785 *3)) (-4 *3 (-416))))) -((-2941 ((|#1| |#1| |#1|) 28 T ELT)) (-2942 ((|#1| |#1| |#1|) 27 T ELT)) (-2931 ((|#1| |#1| |#1|) 38 T ELT)) (-2939 ((|#1| |#1| |#1|) 33 T ELT)) (-2940 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2947 (((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|) 26 T ELT))) -(((-786 |#1| |#2|) (-10 -7 (-15 -2947 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2940 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2931 (|#1| |#1| |#1|))) (-728 |#2|) (-376)) (T -786)) -((-2931 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-2939 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-2940 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-2941 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-2942 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) (-2947 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-786 *3 *4)) (-4 *3 (-728 *4))))) -((-2954 (((-711 (-1247)) $ (-1247)) 27 T ELT)) (-2955 (((-711 (-562)) $ (-562)) 26 T ELT)) (-2953 (((-791) $ (-131)) 28 T ELT)) (-2956 (((-711 (-130)) $ (-130)) 25 T ELT)) (-2210 (((-711 (-1247)) $) 12 T ELT)) (-2206 (((-711 (-1245)) $) 8 T ELT)) (-2208 (((-711 (-1244)) $) 10 T ELT)) (-2211 (((-711 (-562)) $) 13 T ELT)) (-2207 (((-711 (-560)) $) 9 T ELT)) (-2209 (((-711 (-559)) $) 11 T ELT)) (-2205 (((-791) $ (-131)) 7 T ELT)) (-2212 (((-711 (-130)) $) 14 T ELT)) (-2828 (((-114) $) 32 T ELT)) (-2829 (((-711 $) |#1| (-973)) 33 T ELT)) (-1903 (($ $) 6 T ELT))) -(((-787 |#1|) (-142) (-1122)) (T -787)) -((-2829 (*1 *2 *3 *4) (-12 (-5 *4 (-973)) (-4 *3 (-1122)) (-5 *2 (-711 *1)) (-4 *1 (-787 *3)))) (-2828 (*1 *2 *1) (-12 (-4 *1 (-787 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) -(-13 (-588) (-10 -8 (-15 -2829 ((-711 $) |t#1| (-973))) (-15 -2828 ((-114) $)))) -(((-176) . T) ((-539) . T) ((-588) . T) ((-875) . T)) -((-4349 (((-2 (|:| -2222 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))) (-558)) 72 T ELT)) (-4348 (((-2 (|:| -2222 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558))))) 70 T ELT)) (-4187 (((-558)) 86 T ELT))) -(((-788 |#1| |#2|) (-10 -7 (-15 -4187 ((-558))) (-15 -4348 ((-2 (|:| -2222 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))))) (-15 -4349 ((-2 (|:| -2222 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558)))) (-558)))) (-1264 (-558)) (-422 (-558) |#1|)) (T -788)) -((-4349 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1264 *3)) (-5 *2 (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-788 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4348 (*1 *2) (-12 (-4 *3 (-1264 (-558))) (-5 *2 (-2 (|:| -2222 (-709 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-709 (-558))))) (-5 *1 (-788 *3 *4)) (-4 *4 (-422 (-558) *3)))) (-4187 (*1 *2) (-12 (-4 *3 (-1264 *2)) (-5 *2 (-558)) (-5 *1 (-788 *3 *4)) (-4 *4 (-422 *2 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3574 (((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-789) (-13 (-1122) (-10 -8 (-15 -4376 ($ (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4376 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4376 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3574 ((-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -789)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-789)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-789)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-789)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-789))))) -((-2904 (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|))) 18 T ELT) (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|)) (-661 (-1198))) 17 T ELT)) (-4001 (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|))) 20 T ELT) (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|)) (-661 (-1198))) 19 T ELT))) -(((-790 |#1|) (-10 -7 (-15 -2904 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|)) (-661 (-1198)))) (-15 -2904 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|)))) (-15 -4001 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|)) (-661 (-1198)))) (-15 -4001 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-965 |#1|))))) (-569)) (T -790)) -((-4001 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-790 *4)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-790 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-790 *4)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-790 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2873 (($ $ $) 10 T ELT)) (-1426 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2830 (($ $ (-558)) 11 T ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($ $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3562 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 6 T CONST)) (-3065 (($) NIL T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-791) (-13 (-815) (-746) (-10 -8 (-15 -2962 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -3562 ($ $ $)) (-15 -3280 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -3886 ((-3 $ "failed") $ $)) (-15 -2830 ($ $ (-558))) (-15 -3395 ($ $)) (-6 (-4427 "*"))))) (T -791)) -((-2962 (*1 *1 *1 *1) (-5 *1 (-791))) (-2963 (*1 *1 *1 *1) (-5 *1 (-791))) (-3562 (*1 *1 *1 *1) (-5 *1 (-791))) (-3280 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2184 (-791)) (|:| -3303 (-791)))) (-5 *1 (-791)))) (-3886 (*1 *1 *1 *1) (|partial| -5 *1 (-791))) (-2830 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-791)))) (-3395 (*1 *1 *1) (-5 *1 (-791)))) +(-13 (-539) (-874)) +(((-176) . T) ((-539) . T) ((-874) . T)) +((-2953 (((-710 (-1246)) $ (-1246)) NIL T ELT)) (-2954 (((-710 (-562)) $ (-562)) NIL T ELT)) (-2952 (((-790) $ (-131)) NIL T ELT)) (-2955 (((-710 (-130)) $ (-130)) NIL T ELT)) (-2209 (((-710 (-1246)) $) NIL T ELT)) (-2205 (((-710 (-1244)) $) NIL T ELT)) (-2207 (((-710 (-1243)) $) NIL T ELT)) (-2210 (((-710 (-562)) $) NIL T ELT)) (-2206 (((-710 (-560)) $) NIL T ELT)) (-2208 (((-710 (-559)) $) NIL T ELT)) (-2204 (((-790) $ (-131)) NIL T ELT)) (-2211 (((-710 (-130)) $) NIL T ELT)) (-2956 (((-114) $) NIL T ELT)) (-2339 (($ (-402)) 14 T ELT) (($ (-1179)) 16 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1902 (($ $) NIL T ELT))) +(((-589) (-13 (-588) (-629 (-876)) (-10 -8 (-15 -2339 ($ (-402))) (-15 -2339 ($ (-1179))) (-15 -2956 ((-114) $))))) (T -589)) +((-2339 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-589)))) (-2339 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-589))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3879 (($) 7 T CONST)) (-3659 (((-1179) $) NIL T ELT)) (-2342 (($) 6 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 15 T ELT)) (-2340 (($) 9 T CONST)) (-2341 (($) 8 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 11 T ELT))) +(((-590) (-13 (-1121) (-10 -8 (-15 -2342 ($) -4381) (-15 -3879 ($) -4381) (-15 -2341 ($) -4381) (-15 -2340 ($) -4381)))) (T -590)) +((-2342 (*1 *1) (-5 *1 (-590))) (-3879 (*1 *1) (-5 *1 (-590))) (-2341 (*1 *1) (-5 *1 (-590))) (-2340 (*1 *1) (-5 *1 (-590)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2343 (((-710 $) (-503)) 21 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2345 (($ (-1179)) 14 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 33 T ELT)) (-2344 (((-216 4 (-130)) $) 24 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 26 T ELT))) +(((-591) (-13 (-1121) (-10 -8 (-15 -2345 ($ (-1179))) (-15 -2344 ((-216 4 (-130)) $)) (-15 -2343 ((-710 $) (-503)))))) (T -591)) +((-2345 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591)))) (-2344 (*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-591)))) (-2343 (*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-710 (-591))) (-5 *1 (-591))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $ (-558)) 76 T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3009 (($ (-1191 (-558)) (-558)) 82 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 66 T ELT)) (-3010 (($ $) 43 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4201 (((-790) $) 16 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-3012 (((-558)) 37 T ELT)) (-3011 (((-558) $) 41 T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4198 (($ $ (-558)) 24 T ELT)) (-3885 (((-3 $ #1#) $ $) 72 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) 17 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 73 T ELT)) (-3013 (((-1175 (-558)) $) 19 T ELT)) (-3291 (($ $) 26 T ELT)) (-4375 (((-876) $) 103 T ELT) (($ (-558)) 61 T ELT) (($ $) NIL T ELT)) (-3527 (((-790)) 15 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-558) $ (-558)) 46 T ELT)) (-3058 (($) 44 T CONST)) (-3064 (($) 21 T CONST)) (-3453 (((-114) $ $) 52 T ELT)) (-4266 (($ $) 60 T ELT) (($ $ $) 48 T ELT)) (-4268 (($ $ $) 59 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 62 T ELT) (($ $ $) 63 T ELT))) +(((-592 |#1| |#2|) (-883 |#1|) (-558) (-114)) (T -592)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 30 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 (($ $ (-937)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 59 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 $ #1#) $) 95 T ELT)) (-3573 (($ $) 94 T ELT)) (-1999 (($ (-1287 $)) 93 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 56 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 47 T ELT)) (-3394 (($) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) 61 T ELT)) (-1882 (((-114) $) NIL T ELT)) (-1973 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) 49 (|has| $ (-381)) ELT)) (-2220 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3533 (($ $ (-937)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3864 (((-710 $) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 $) $ (-937)) NIL (|has| $ (-381)) ELT) (((-1191 $) $) 104 T ELT)) (-2219 (((-937) $) 67 T ELT)) (-1806 (((-1191 $) $) NIL (|has| $ (-381)) ELT)) (-1805 (((-3 (-1191 $) #1#) $ $) NIL (|has| $ (-381)) ELT) (((-1191 $) $) NIL (|has| $ (-381)) ELT)) (-1807 (($ $ (-1191 $)) NIL (|has| $ (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL T CONST)) (-2630 (($ (-937)) 60 T ELT)) (-4360 (((-114) $) 87 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) 28 (|has| $ (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 54 T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-937)) 86 T ELT) (((-844 (-937))) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-3 (-790) #1#) $ $) NIL T ELT) (((-790) $) NIL T ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4377 (((-937) $) 85 T ELT) (((-844 (-937)) $) NIL T ELT)) (-3602 (((-1191 $)) 102 T ELT)) (-1876 (($) 66 T ELT)) (-1808 (($) 50 (|has| $ (-381)) ELT)) (-3641 (((-708 $) (-1287 $)) NIL T ELT) (((-1287 $) $) 91 T ELT)) (-4401 (((-558) $) 42 T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) 45 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT)) (-3102 (((-710 $) $) NIL T ELT) (($ $) 105 T ELT)) (-3527 (((-790)) 51 T CONST)) (-1377 (((-114) $ $) 107 T ELT)) (-2221 (((-1287 $) (-937)) 97 T ELT) (((-1287 $)) 96 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) 31 T CONST)) (-3064 (($) 27 T CONST)) (-4357 (($ $ (-790)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 34 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-593 |#1|) (-13 (-363) (-341 $) (-630 (-558))) (-937)) (T -593)) +NIL +((-2346 (((-1293) (-1179)) 10 T ELT))) +(((-594) (-10 -7 (-15 -2346 ((-1293) (-1179))))) (T -594)) +((-2346 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 77 T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2350 ((|#1| $) 30 T ELT)) (-2348 (((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $) 32 T ELT)) (-2351 (($ |#1| (-660 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|)))) 28 T ELT)) (-2349 (((-660 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $) 31 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3232 (($ |#1| |#1|) 38 T ELT) (($ |#1| (-1197)) 49 (|has| |#1| (-1058 (-1197))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2347 (((-114) $) 35 T ELT)) (-4187 ((|#1| $ (-1 |#1| |#1|)) 89 T ELT) ((|#1| $ (-1197)) 90 (|has| |#1| (-916 (-1197))) ELT)) (-4375 (((-876) $) 110 T ELT) (($ |#1|) 29 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 18 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 86 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 16 T ELT) (($ (-419 (-558)) $) 41 T ELT) (($ $ (-419 (-558))) NIL T ELT))) +(((-595 |#1|) (-13 (-736 (-419 (-558))) (-1058 |#1|) (-10 -8 (-15 -2351 ($ |#1| (-660 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) (-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))))) (-15 -2350 (|#1| $)) (-15 -2349 ((-660 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 |#1|)) (|:| |logand| (-1191 |#1|)))) $)) (-15 -2348 ((-660 (-2 (|:| |integrand| |#1|) (|:| |intvar| |#1|))) $)) (-15 -2347 ((-114) $)) (-15 -3232 ($ |#1| |#1|)) (-15 -4187 (|#1| $ (-1 |#1| |#1|))) (IF (|has| |#1| (-916 (-1197))) (-15 -4187 (|#1| $ (-1197))) |%noBranch|) (IF (|has| |#1| (-1058 (-1197))) (-15 -3232 ($ |#1| (-1197))) |%noBranch|))) (-376)) (T -595)) +((-2351 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 *2)) (|:| |logand| (-1191 *2))))) (-5 *4 (-660 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-595 *2)))) (-2350 (*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-2349 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 *3)) (|:| |logand| (-1191 *3))))) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-2348 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-2347 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-595 *3)) (-4 *3 (-376)))) (-3232 (*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-4187 (*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-376)))) (-4187 (*1 *2 *1 *3) (-12 (-4 *2 (-376)) (-4 *2 (-916 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1197)))) (-3232 (*1 *1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *1 (-595 *2)) (-4 *2 (-1058 *3)) (-4 *2 (-376))))) +((-4387 (((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)) 44 T ELT) (((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#)) 11 T ELT) (((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#)) 35 T ELT) (((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|)) 30 T ELT))) +(((-596 |#1| |#2|) (-10 -7 (-15 -4387 ((-595 |#2|) (-1 |#2| |#1|) (-595 |#1|))) (-15 -4387 ((-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1="failed") (-1 |#2| |#1|) (-3 (-2 (|:| -2350 |#1|) (|:| |coeff| |#1|)) #1#))) (-15 -4387 ((-3 |#2| #1#) (-1 |#2| |#1|) (-3 |#1| #1#))) (-15 -4387 ((-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) (-1 |#2| |#1|) (-3 (-2 (|:| |mainpart| |#1|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#1|) (|:| |logand| |#1|))))) #1#)))) (-376) (-376)) (T -596)) +((-4387 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| |mainpart| *5) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) (-4387 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) (-4 *2 (-376)) (-5 *1 (-596 *5 *2)))) (-4387 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) (-5 *4 (-3 (-2 (|:| -2350 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| -2350 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-595 *6)) (-5 *1 (-596 *5 *6))))) +((-3837 (((-595 |#2|) (-595 |#2|)) 42 T ELT)) (-4392 (((-660 |#2|) (-595 |#2|)) 44 T ELT)) (-2362 ((|#2| (-595 |#2|)) 50 T ELT))) +(((-597 |#1| |#2|) (-10 -7 (-15 -3837 ((-595 |#2|) (-595 |#2|))) (-15 -4392 ((-660 |#2|) (-595 |#2|))) (-15 -2362 (|#2| (-595 |#2|)))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-29 |#1|) (-1223))) (T -597)) +((-2362 (*1 *2 *3) (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1223))) (-5 *1 (-597 *4 *2)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1223))) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-660 *5)) (-5 *1 (-597 *4 *5)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1223))) (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-597 *3 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2354 (($ (-518) (-608)) 14 T ELT)) (-2352 (($ (-518) (-608) $) 16 T ELT)) (-2353 (($ (-518) (-608)) 15 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-1202)) 7 T ELT) (((-1202) $) 6 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-598) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -2354 ($ (-518) (-608))) (-15 -2353 ($ (-518) (-608))) (-15 -2352 ($ (-518) (-608) $))))) (T -598)) +((-2354 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-608)) (-5 *1 (-598)))) (-2353 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-608)) (-5 *1 (-598)))) (-2352 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-608)) (-5 *1 (-598))))) +((-2358 (((-114) |#1|) 16 T ELT)) (-2359 (((-3 |#1| #1="failed") |#1|) 14 T ELT)) (-2356 (((-2 (|:| -3094 |#1|) (|:| -2631 (-790))) |#1|) 37 T ELT) (((-3 |#1| #1#) |#1| (-790)) 18 T ELT)) (-2355 (((-114) |#1| (-790)) 19 T ELT)) (-2360 ((|#1| |#1|) 41 T ELT)) (-2357 ((|#1| |#1| (-790)) 44 T ELT))) +(((-599 |#1|) (-10 -7 (-15 -2355 ((-114) |#1| (-790))) (-15 -2356 ((-3 |#1| #1="failed") |#1| (-790))) (-15 -2356 ((-2 (|:| -3094 |#1|) (|:| -2631 (-790))) |#1|)) (-15 -2357 (|#1| |#1| (-790))) (-15 -2358 ((-114) |#1|)) (-15 -2359 ((-3 |#1| #1#) |#1|)) (-15 -2360 (|#1| |#1|))) (-557)) (T -599)) +((-2360 (*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2359 (*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2358 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2357 (*1 *2 *2 *3) (-12 (-5 *3 (-790)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2356 (*1 *2 *3) (-12 (-5 *2 (-2 (|:| -3094 *3) (|:| -2631 (-790)))) (-5 *1 (-599 *3)) (-4 *3 (-557)))) (-2356 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-790)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) (-2355 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +((-2361 (((-1191 |#1|) (-937)) 44 T ELT))) +(((-600 |#1|) (-10 -7 (-15 -2361 ((-1191 |#1|) (-937)))) (-363)) (T -600)) +((-2361 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) (-4 *4 (-363))))) +((-3837 (((-595 (-419 (-964 |#1|))) (-595 (-419 (-964 |#1|)))) 27 T ELT)) (-4241 (((-3 (-326 |#1|) (-660 (-326 |#1|))) (-419 (-964 |#1|)) (-1197)) 34 (|has| |#1| (-149)) ELT)) (-4392 (((-660 (-326 |#1|)) (-595 (-419 (-964 |#1|)))) 19 T ELT)) (-2363 (((-326 |#1|) (-419 (-964 |#1|)) (-1197)) 32 (|has| |#1| (-149)) ELT)) (-2362 (((-326 |#1|) (-595 (-419 (-964 |#1|)))) 21 T ELT))) +(((-601 |#1|) (-10 -7 (-15 -3837 ((-595 (-419 (-964 |#1|))) (-595 (-419 (-964 |#1|))))) (-15 -4392 ((-660 (-326 |#1|)) (-595 (-419 (-964 |#1|))))) (-15 -2362 ((-326 |#1|) (-595 (-419 (-964 |#1|))))) (IF (|has| |#1| (-149)) (PROGN (-15 -4241 ((-3 (-326 |#1|) (-660 (-326 |#1|))) (-419 (-964 |#1|)) (-1197))) (-15 -2363 ((-326 |#1|) (-419 (-964 |#1|)) (-1197)))) |%noBranch|)) (-13 (-464) (-1058 (-558)) (-657 (-558)))) (T -601)) +((-2363 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5)))) (-4241 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-149)) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (-326 *5) (-660 (-326 *5)))) (-5 *1 (-601 *5)))) (-2362 (*1 *2 *3) (-12 (-5 *3 (-595 (-419 (-964 *4)))) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4)))) (-4392 (*1 *2 *3) (-12 (-5 *3 (-595 (-419 (-964 *4)))) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-660 (-326 *4))) (-5 *1 (-601 *4)))) (-3837 (*1 *2 *2) (-12 (-5 *2 (-595 (-419 (-964 *3)))) (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-601 *3))))) +((-2365 (((-660 (-708 (-558))) (-660 (-937)) (-660 (-920 (-558)))) 80 T ELT) (((-660 (-708 (-558))) (-660 (-937))) 81 T ELT) (((-708 (-558)) (-660 (-937)) (-920 (-558))) 74 T ELT)) (-2364 (((-790) (-660 (-937))) 71 T ELT))) +(((-602) (-10 -7 (-15 -2364 ((-790) (-660 (-937)))) (-15 -2365 ((-708 (-558)) (-660 (-937)) (-920 (-558)))) (-15 -2365 ((-660 (-708 (-558))) (-660 (-937)))) (-15 -2365 ((-660 (-708 (-558))) (-660 (-937)) (-660 (-920 (-558))))))) (T -602)) +((-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-937))) (-5 *4 (-660 (-920 (-558)))) (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-602)))) (-2365 (*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-602)))) (-2365 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-937))) (-5 *4 (-920 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-602)))) (-2364 (*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-790)) (-5 *1 (-602))))) +((-3630 (((-660 |#5|) |#5| (-114)) 97 T ELT)) (-2366 (((-114) |#5| (-660 |#5|)) 34 T ELT))) +(((-603 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3630 ((-660 |#5|) |#5| (-114))) (-15 -2366 ((-114) |#5| (-660 |#5|)))) (-13 (-319) (-149)) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1129 |#1| |#2| |#3| |#4|)) (T -603)) +((-2366 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1129 *5 *6 *7 *8)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-603 *5 *6 *7 *8 *3)))) (-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-660 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) (-4 *3 (-1129 *5 *6 *7 *8))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3947 (((-1155) $) 11 T ELT)) (-3948 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-604) (-13 (-1103) (-10 -8 (-15 -3948 ((-1155) $)) (-15 -3947 ((-1155) $))))) (T -604)) +((-3948 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604))))) +((-3951 (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|) 23 T ELT) (((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1109 |#4|)) 32 T ELT))) +(((-605 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3951 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2| (-1109 |#4|))) (-15 -3951 ((-2 (|:| |num| |#4|) (|:| |den| (-558))) |#4| |#2|))) (-814) (-860) (-569) (-968 |#3| |#1| |#2|)) (T -605)) +((-3951 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-605 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-3951 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1109 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-814)) (-4 *4 (-860)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-605 *6 *4 *7 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 71 T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-558)) 58 T ELT) (($ $ (-558) (-558)) 59 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 65 T ELT)) (-2397 (($ $) 109 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2395 (((-876) (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1046 (-854 (-558))) (-1197) |#1| (-419 (-558))) 241 T ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 36 T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3292 (((-114) $) NIL T ELT)) (-4201 (((-558) $) 63 T ELT) (((-558) $ (-558)) 64 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4206 (($ $ (-937)) 83 T ELT)) (-4244 (($ (-1 |#1| (-558)) $) 80 T ELT)) (-4366 (((-114) $) 26 T ELT)) (-3293 (($ |#1| (-558)) 22 T ELT) (($ $ (-1102) (-558)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-558))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 75 T ELT)) (-2401 (($ (-1046 (-854 (-558))) (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 13 T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4241 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2398 (((-3 $ #1#) $ $ (-114)) 108 T ELT)) (-2396 (($ $ $) 116 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2399 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 15 T ELT)) (-2400 (((-1046 (-854 (-558))) $) 14 T ELT)) (-4198 (($ $ (-558)) 47 T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT)) (-4229 ((|#1| $ (-558)) 62 T ELT) (($ $ $) NIL (|has| (-558) (-1132)) ELT)) (-4187 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 77 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-4377 (((-558) $) NIL T ELT)) (-3291 (($ $) 48 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) 29 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 28 (|has| |#1| (-175)) ELT)) (-4106 ((|#1| $ (-558)) 61 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 39 T CONST)) (-4202 ((|#1| $) NIL T ELT)) (-2376 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2388 (($ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2378 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2390 (($ $) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2374 (($ $) 201 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2386 (($ $) 173 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2393 (($ $ (-419 (-558))) 177 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2394 (($ $ |#1|) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2391 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2392 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2373 (($ $) 203 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2385 (($ $) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2375 (($ $) 199 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2387 (($ $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2377 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2389 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2370 (($ $) 209 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2382 (($ $) 185 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2372 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2384 (($ $) 181 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2368 (($ $) 213 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2380 (($ $) 189 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2367 (($ $) 215 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2379 (($ $) 191 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2369 (($ $) 211 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2381 (($ $) 187 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2371 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2383 (($ $) 183 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-4199 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3058 (($) 30 T CONST)) (-3064 (($) 40 T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-3453 (((-114) $ $) 73 T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) 91 T ELT) (($ $ $) 72 T ELT)) (-4268 (($ $ $) 88 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 111 T ELT)) (* (($ (-937) $) 98 T ELT) (($ (-790) $) 96 T ELT) (($ (-558) $) 93 T ELT) (($ $ $) 104 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 123 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-606 |#1|) (-13 (-1266 |#1| (-558)) (-10 -8 (-15 -2401 ($ (-1046 (-854 (-558))) (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -2400 ((-1046 (-854 (-558))) $)) (-15 -2399 ((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $)) (-15 -4247 ($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))))) (-15 -4366 ((-114) $)) (-15 -4244 ($ (-1 |#1| (-558)) $)) (-15 -2398 ((-3 $ "failed") $ $ (-114))) (-15 -2397 ($ $)) (-15 -2396 ($ $ $)) (-15 -2395 ((-876) (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) (-1046 (-854 (-558))) (-1197) |#1| (-419 (-558)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $)) (-15 -2394 ($ $ |#1|)) (-15 -2393 ($ $ (-419 (-558)))) (-15 -2392 ($ $)) (-15 -2391 ($ $)) (-15 -2390 ($ $)) (-15 -2389 ($ $)) (-15 -2388 ($ $)) (-15 -2387 ($ $)) (-15 -2386 ($ $)) (-15 -2385 ($ $)) (-15 -2384 ($ $)) (-15 -2383 ($ $)) (-15 -2382 ($ $)) (-15 -2381 ($ $)) (-15 -2380 ($ $)) (-15 -2379 ($ $)) (-15 -2378 ($ $)) (-15 -2377 ($ $)) (-15 -2376 ($ $)) (-15 -2375 ($ $)) (-15 -2374 ($ $)) (-15 -2373 ($ $)) (-15 -2372 ($ $)) (-15 -2371 ($ $)) (-15 -2370 ($ $)) (-15 -2369 ($ $)) (-15 -2368 ($ $)) (-15 -2367 ($ $))) |%noBranch|))) (-1069)) (T -606)) +((-4366 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-606 *3)) (-4 *3 (-1069)))) (-2401 (*1 *1 *2 *3) (-12 (-5 *2 (-1046 (-854 (-558)))) (-5 *3 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1069)) (-5 *1 (-606 *4)))) (-2400 (*1 *2 *1) (-12 (-5 *2 (-1046 (-854 (-558)))) (-5 *1 (-606 *3)) (-4 *3 (-1069)))) (-2399 (*1 *2 *1) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-606 *3)) (-4 *3 (-1069)))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1069)) (-5 *1 (-606 *3)))) (-4244 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1069)) (-5 *1 (-606 *3)))) (-2398 (*1 *1 *1 *1 *2) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-606 *3)) (-4 *3 (-1069)))) (-2397 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1069)))) (-2396 (*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1069)))) (-2395 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *6)))) (-5 *4 (-1046 (-854 (-558)))) (-5 *5 (-1197)) (-5 *7 (-419 (-558))) (-4 *6 (-1069)) (-5 *2 (-876)) (-5 *1 (-606 *6)))) (-4241 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2394 (*1 *1 *1 *2) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2393 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-606 *3)) (-4 *3 (-38 *2)) (-4 *3 (-1069)))) (-2392 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2391 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2390 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2389 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2388 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2387 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2386 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2385 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2384 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2383 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2382 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2381 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2380 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2379 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2378 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2377 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2376 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2375 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2374 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2373 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2372 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2371 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2370 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2369 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2368 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) (-2367 (*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 63 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4247 (($ (-1175 |#1|)) 9 T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) 44 T ELT)) (-3292 (((-114) $) 56 T ELT)) (-4201 (((-790) $) 61 T ELT) (((-790) $ (-790)) 60 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) 46 (|has| |#1| (-569)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-1175 |#1|) $) 25 T ELT)) (-3527 (((-790)) 55 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) 10 T CONST)) (-3064 (($) 14 T CONST)) (-3453 (((-114) $ $) 24 T ELT)) (-4266 (($ $) 32 T ELT) (($ $ $) 16 T ELT)) (-4268 (($ $ $) 27 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 53 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) 30 T ELT) (($ $ |#1|) 40 T ELT) (($ |#1| $) 39 T ELT) (($ $ (-558)) 38 T ELT))) +(((-607 |#1|) (-13 (-1069) (-111 |#1| |#1|) (-10 -8 (-15 -4246 ((-1175 |#1|) $)) (-15 -4247 ($ (-1175 |#1|))) (-15 -3292 ((-114) $)) (-15 -4201 ((-790) $)) (-15 -4201 ((-790) $ (-790))) (-15 * ($ $ (-558))) (IF (|has| |#1| (-569)) (-6 (-569)) |%noBranch|))) (-1069)) (T -607)) +((-4246 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-607 *3)))) (-3292 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (-4201 (*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) (* (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-607 *3)) (-4 *3 (-1069))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2404 (($) 8 T CONST)) (-2405 (($) 7 T CONST)) (-2402 (($ $ (-660 $)) 16 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2406 (($) 6 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-1202)) 15 T ELT) (((-1202) $) 10 T ELT)) (-2403 (($) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-608) (-13 (-1121) (-502 (-1202)) (-10 -8 (-15 -2406 ($) -4381) (-15 -2405 ($) -4381) (-15 -2404 ($) -4381) (-15 -2403 ($) -4381) (-15 -2402 ($ $ (-660 $)))))) (T -608)) +((-2406 (*1 *1) (-5 *1 (-608))) (-2405 (*1 *1) (-5 *1 (-608))) (-2404 (*1 *1) (-5 *1 (-608))) (-2403 (*1 *1) (-5 *1 (-608))) (-2402 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-608))) (-5 *1 (-608))))) +((-4387 (((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|)) 15 T ELT))) +(((-609 |#1| |#2|) (-13 (-1237) (-10 -7 (-15 -4387 ((-612 |#2|) (-1 |#2| |#1|) (-612 |#1|))))) (-1237) (-1237)) (T -609)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-612 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-612 *6)) (-5 *1 (-609 *5 *6))))) +((-4387 (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1175 |#2|)) 20 T ELT) (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-612 |#2|)) 19 T ELT) (((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|)) 18 T ELT))) +(((-610 |#1| |#2| |#3|) (-10 -7 (-15 -4387 ((-612 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-612 |#2|))) (-15 -4387 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-612 |#2|))) (-15 -4387 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-612 |#1|) (-1175 |#2|)))) (-1237) (-1237) (-1237)) (T -610)) +((-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-1175 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1175 *8)) (-5 *1 (-610 *6 *7 *8)))) (-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-612 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1175 *8)) (-5 *1 (-610 *6 *7 *8)))) (-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-612 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-612 *8)) (-5 *1 (-610 *6 *7 *8))))) +((-2411 ((|#3| |#3| (-660 (-627 |#3|)) (-660 (-1197))) 57 T ELT)) (-2410 (((-171 |#2|) |#3|) 122 T ELT)) (-2407 ((|#3| (-171 |#2|)) 46 T ELT)) (-2408 ((|#2| |#3|) 21 T ELT)) (-2409 ((|#3| |#2|) 35 T ELT))) +(((-611 |#1| |#2| |#3|) (-10 -7 (-15 -2407 (|#3| (-171 |#2|))) (-15 -2408 (|#2| |#3|)) (-15 -2409 (|#3| |#2|)) (-15 -2410 ((-171 |#2|) |#3|)) (-15 -2411 (|#3| |#3| (-660 (-627 |#3|)) (-660 (-1197))))) (-569) (-13 (-433 |#1|) (-1022) (-1223)) (-13 (-433 (-171 |#1|)) (-1022) (-1223))) (T -611)) +((-2411 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-627 *2))) (-5 *4 (-660 (-1197))) (-4 *2 (-13 (-433 (-171 *5)) (-1022) (-1223))) (-4 *5 (-569)) (-5 *1 (-611 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1022) (-1223))))) (-2410 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-611 *4 *5 *3)) (-4 *5 (-13 (-433 *4) (-1022) (-1223))) (-4 *3 (-13 (-433 (-171 *4)) (-1022) (-1223))))) (-2409 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1022) (-1223))) (-5 *1 (-611 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1022) (-1223))))) (-2408 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 *4) (-1022) (-1223))) (-5 *1 (-611 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1022) (-1223))))) (-2407 (*1 *2 *3) (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1022) (-1223))) (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1022) (-1223))) (-5 *1 (-611 *4 *5 *2))))) +((-4139 (($ (-1 (-114) |#1|) $) 19 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3876 (($ (-1 |#1| |#1|) |#1|) 11 T ELT)) (-3875 (($ (-1 (-114) |#1|) $) 15 T ELT)) (-3874 (($ (-1 (-114) |#1|) $) 17 T ELT)) (-3949 (((-1175 |#1|) $) 20 T ELT)) (-4375 (((-876) $) 25 T ELT))) +(((-612 |#1|) (-13 (-629 (-876)) (-10 -8 (-15 -4387 ($ (-1 |#1| |#1|) $)) (-15 -3875 ($ (-1 (-114) |#1|) $)) (-15 -3874 ($ (-1 (-114) |#1|) $)) (-15 -4139 ($ (-1 (-114) |#1|) $)) (-15 -3876 ($ (-1 |#1| |#1|) |#1|)) (-15 -3949 ((-1175 |#1|) $)))) (-1237)) (T -612)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) (-3875 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) (-3874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) (-4139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) (-3876 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) (-3949 (*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1237))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4267 (($ (-790)) NIL (|has| |#1| (-23)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4264 (((-708 |#1|) $ $) NIL (|has| |#1| (-1069)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))) ELT)) (-4262 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))) ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4265 ((|#1| $ $) NIL (|has| |#1| (-1069)) ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4263 (($ $ $) NIL (|has| |#1| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4266 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-745)) ELT) (($ $ |#1|) NIL (|has| |#1| (-745)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-613 |#1| |#2|) (-1286 |#1|) (-1237) (-558)) (T -613)) +NIL +((-2412 (((-1293) $ |#2| |#2|) 35 T ELT)) (-2414 ((|#2| $) 23 T ELT)) (-2415 ((|#2| $) 21 T ELT)) (-2159 (($ (-1 |#3| |#3|) $) 32 T ELT)) (-4387 (($ (-1 |#3| |#3|) $) 30 T ELT)) (-4230 ((|#3| $) 26 T ELT)) (-2413 (($ $ |#3|) 33 T ELT)) (-2416 (((-114) |#3| $) 17 T ELT)) (-2419 (((-660 |#3|) $) 15 T ELT)) (-4229 ((|#3| $ |#2| |#3|) 12 T ELT) ((|#3| $ |#2|) NIL T ELT))) +(((-614 |#1| |#2| |#3|) (-10 -7 (-15 -2412 ((-1293) |#1| |#2| |#2|)) (-15 -2413 (|#1| |#1| |#3|)) (-15 -4230 (|#3| |#1|)) (-15 -2414 (|#2| |#1|)) (-15 -2415 (|#2| |#1|)) (-15 -2416 ((-114) |#3| |#1|)) (-15 -2419 ((-660 |#3|) |#1|)) (-15 -4229 (|#3| |#1| |#2|)) (-15 -4229 (|#3| |#1| |#2| |#3|)) (-15 -2159 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -4387 (|#1| (-1 |#3| |#3|) |#1|))) (-615 |#2| |#3|) (-1121) (-1237)) (T -614)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#2| (-102)) ELT)) (-2412 (((-1293) $ |#1| |#1|) 44 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) 56 (|has| $ (-6 -4425)) ELT)) (-4153 (($) 7 T CONST)) (-1718 ((|#2| $ |#1| |#2|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) 55 T ELT)) (-3289 (((-660 |#2|) $) 30 (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) 47 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#2|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) 27 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 ((|#1| $) 48 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#2| |#2|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#2| (-1121)) ELT)) (-2417 (((-660 |#1|) $) 50 T ELT)) (-2418 (((-114) |#1| $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#2| (-1121)) ELT)) (-4230 ((|#2| $) 46 (|has| |#1| (-860)) ELT)) (-2413 (($ $ |#2|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) 26 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) 25 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) 24 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 23 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#2| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#2| $ |#1| |#2|) 54 T ELT) ((|#2| $ |#1|) 53 T ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) 28 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#2| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#2| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#2| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-615 |#1| |#2|) (-142) (-1121) (-1237)) (T -615)) +((-2419 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-660 *4)))) (-2418 (*1 *2 *3 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-114)))) (-2417 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-660 *3)))) (-2416 (*1 *2 *3 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-615 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114)))) (-2415 (*1 *2 *1) (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1121)) (-4 *2 (-860)))) (-2414 (*1 *2 *1) (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1121)) (-4 *2 (-860)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-860)) (-4 *2 (-1237)))) (-2413 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-615 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237)))) (-2412 (*1 *2 *1 *3 *3) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-1293))))) +(-13 (-501 |t#2|) (-300 |t#1| |t#2|) (-10 -8 (-15 -2419 ((-660 |t#2|) $)) (-15 -2418 ((-114) |t#1| $)) (-15 -2417 ((-660 |t#1|) $)) (IF (|has| |t#2| (-1121)) (IF (|has| $ (-6 -4424)) (-15 -2416 ((-114) |t#2| $)) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-860)) (PROGN (-15 -2415 (|t#1| $)) (-15 -2414 (|t#1| $)) (-15 -4230 (|t#2| $))) |%noBranch|) (IF (|has| $ (-6 -4425)) (PROGN (-15 -2413 ($ $ |t#2|)) (-15 -2412 ((-1293) $ |t#1| |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-629 (-876)) -3956 (|has| |#2| (-1121)) (|has| |#2| (-629 (-876)))) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-1121) |has| |#2| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT) (((-1238) $) 14 T ELT) (($ (-660 (-1238))) 13 T ELT)) (-2420 (((-660 (-1238)) $) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-616) (-13 (-1103) (-629 (-1238)) (-10 -8 (-15 -4375 ($ (-660 (-1238)))) (-15 -2420 ((-660 (-1238)) $))))) (T -616)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-616)))) (-2420 (*1 *2 *1) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-616))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1979 (((-3 $ #1="failed")) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3640 (((-1287 (-708 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1287 (-708 |#1|)) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1931 (((-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4153 (($) NIL T CONST)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1905 (((-3 $ #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1995 (((-708 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1929 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1993 (((-708 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) $ (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2634 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2110 (((-1191 (-964 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2637 (($ $ (-937)) NIL T ELT)) (-1927 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1907 (((-1191 |#1|) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1997 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1925 (((-1191 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1919 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1999 (($ (-1287 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3886 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3510 (((-937)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1916 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2661 (($ $ (-937)) NIL T ELT)) (-1912 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1910 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1914 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1906 (((-3 $ #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1996 (((-708 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1994 (((-708 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) $ (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2635 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2114 (((-1191 (-964 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2636 (($ $ (-937)) NIL T ELT)) (-1928 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1908 (((-1191 |#1|) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1998 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-1191 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1911 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1913 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1915 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1918 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4229 ((|#1| $ (-558)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3641 (((-708 |#1|) (-1287 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1287 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4401 (($ (-1287 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1287 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2102 (((-660 (-964 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-660 (-964 |#1|)) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4375 (((-876) $) NIL T ELT) ((|#2| $) 21 T ELT) (($ |#2|) 22 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1909 (((-660 (-1287 |#1|))) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2824 (($ $ $ $) NIL T ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2943 (($ (-708 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1917 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3058 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) 24 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-617 |#1| |#2|) (-13 (-763 |#1|) (-629 |#2|) (-10 -8 (-15 -4375 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-763 |#1|)) (T -617)) +((-4375 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-617 *3 *2)) (-4 *2 (-763 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-130)) 6 T ELT) (((-130) $) 7 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-618) (-13 (-1121) (-502 (-130)))) (T -618)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2422 (($) 12 T CONST)) (-2444 (($) 10 T CONST)) (-2421 (($) 13 T CONST)) (-2440 (($) 11 T CONST)) (-2437 (($) 14 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-619) (-13 (-1121) (-681) (-10 -8 (-15 -2444 ($) -4381) (-15 -2440 ($) -4381) (-15 -2422 ($) -4381) (-15 -2421 ($) -4381) (-15 -2437 ($) -4381)))) (T -619)) +((-2444 (*1 *1) (-5 *1 (-619))) (-2440 (*1 *1) (-5 *1 (-619))) (-2422 (*1 *1) (-5 *1 (-619))) (-2421 (*1 *1) (-5 *1 (-619))) (-2437 (*1 *1) (-5 *1 (-619)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2433 (($) 11 T CONST)) (-2427 (($) 17 T CONST)) (-2423 (($) 21 T CONST)) (-2425 (($) 19 T CONST)) (-2430 (($) 14 T CONST)) (-2424 (($) 20 T CONST)) (-2432 (($) 12 T CONST)) (-2431 (($) 13 T CONST)) (-2426 (($) 18 T CONST)) (-2429 (($) 15 T CONST)) (-2428 (($) 16 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (((-130) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-620) (-13 (-1121) (-629 (-130)) (-10 -8 (-15 -2433 ($) -4381) (-15 -2432 ($) -4381) (-15 -2431 ($) -4381) (-15 -2430 ($) -4381) (-15 -2429 ($) -4381) (-15 -2428 ($) -4381) (-15 -2427 ($) -4381) (-15 -2426 ($) -4381) (-15 -2425 ($) -4381) (-15 -2424 ($) -4381) (-15 -2423 ($) -4381)))) (T -620)) +((-2433 (*1 *1) (-5 *1 (-620))) (-2432 (*1 *1) (-5 *1 (-620))) (-2431 (*1 *1) (-5 *1 (-620))) (-2430 (*1 *1) (-5 *1 (-620))) (-2429 (*1 *1) (-5 *1 (-620))) (-2428 (*1 *1) (-5 *1 (-620))) (-2427 (*1 *1) (-5 *1 (-620))) (-2426 (*1 *1) (-5 *1 (-620))) (-2425 (*1 *1) (-5 *1 (-620))) (-2424 (*1 *1) (-5 *1 (-620))) (-2423 (*1 *1) (-5 *1 (-620)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2435 (($) 15 T CONST)) (-2434 (($) 16 T CONST)) (-2441 (($) 13 T CONST)) (-2444 (($) 10 T CONST)) (-2442 (($) 12 T CONST)) (-2443 (($) 11 T CONST)) (-2440 (($) 14 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-621) (-13 (-1121) (-681) (-10 -8 (-15 -2444 ($) -4381) (-15 -2443 ($) -4381) (-15 -2442 ($) -4381) (-15 -2441 ($) -4381) (-15 -2440 ($) -4381) (-15 -2435 ($) -4381) (-15 -2434 ($) -4381)))) (T -621)) +((-2444 (*1 *1) (-5 *1 (-621))) (-2443 (*1 *1) (-5 *1 (-621))) (-2442 (*1 *1) (-5 *1 (-621))) (-2441 (*1 *1) (-5 *1 (-621))) (-2440 (*1 *1) (-5 *1 (-621))) (-2435 (*1 *1) (-5 *1 (-621))) (-2434 (*1 *1) (-5 *1 (-621)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2439 (($) 15 T CONST)) (-2436 (($) 18 T CONST)) (-2441 (($) 13 T CONST)) (-2444 (($) 10 T CONST)) (-2442 (($) 12 T CONST)) (-2443 (($) 11 T CONST)) (-2438 (($) 16 T CONST)) (-2440 (($) 14 T CONST)) (-2437 (($) 17 T CONST)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-622) (-13 (-1121) (-681) (-10 -8 (-15 -2444 ($) -4381) (-15 -2443 ($) -4381) (-15 -2442 ($) -4381) (-15 -2441 ($) -4381) (-15 -2440 ($) -4381) (-15 -2439 ($) -4381) (-15 -2438 ($) -4381) (-15 -2437 ($) -4381) (-15 -2436 ($) -4381)))) (T -622)) +((-2444 (*1 *1) (-5 *1 (-622))) (-2443 (*1 *1) (-5 *1 (-622))) (-2442 (*1 *1) (-5 *1 (-622))) (-2441 (*1 *1) (-5 *1 (-622))) (-2440 (*1 *1) (-5 *1 (-622))) (-2439 (*1 *1) (-5 *1 (-622))) (-2438 (*1 *1) (-5 *1 (-622))) (-2437 (*1 *1) (-5 *1 (-622))) (-2436 (*1 *1) (-5 *1 (-622)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 19 T ELT) (($ (-618)) 12 T ELT) (((-618) $) 11 T ELT) (($ (-130)) NIL T ELT) (((-130) $) 14 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-623) (-13 (-1121) (-502 (-618)) (-502 (-130)))) (T -623)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-1899 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) 40 T ELT)) (-4026 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2412 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ (-1179) |#1|) 50 T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#1| #1="failed") (-1179) $) 53 T ELT)) (-4153 (($) NIL T CONST)) (-1903 (($ $ (-1179)) 25 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT)) (-3824 (((-3 |#1| #1#) (-1179) $) 54 T ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3825 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT)) (-4271 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT)) (-1900 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) 39 T ELT)) (-1718 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-1179)) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2484 (($ $) 55 T ELT)) (-1904 (($ (-402)) 23 T ELT) (($ (-402) (-1179)) 22 T ELT)) (-3969 (((-402) $) 41 T ELT)) (-2414 (((-1179) $) NIL (|has| (-1179) (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (((-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT)) (-2415 (((-1179) $) NIL (|has| (-1179) (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2883 (((-660 (-1179)) $) 46 T ELT)) (-2446 (((-114) (-1179) $) NIL T ELT)) (-1901 (((-1179) $) 42 T ELT)) (-1388 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL T ELT)) (-2417 (((-660 (-1179)) $) NIL T ELT)) (-2418 (((-114) (-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 ((|#1| $) NIL (|has| (-1179) (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) #1#) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-660 (-305 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 44 T ELT)) (-4229 ((|#1| $ (-1179) |#1|) NIL T ELT) ((|#1| $ (-1179)) 49 T ELT)) (-1597 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT) (($) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (((-790) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (((-790) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT)) (-4375 (((-876) $) 21 T ELT)) (-1902 (($ $) 26 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1390 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 20 T ELT)) (-4386 (((-790) $) 48 (|has| $ (-6 -4424)) ELT))) +(((-624 |#1|) (-13 (-378 (-402) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) (-1214 (-1179) |#1|) (-10 -8 (-6 -4424) (-15 -2484 ($ $)))) (-1121)) (T -624)) +((-2484 (*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1121))))) +((-3662 (((-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) $) 16 T ELT)) (-2883 (((-660 |#2|) $) 20 T ELT)) (-2446 (((-114) |#2| $) 12 T ELT))) +(((-625 |#1| |#2| |#3|) (-10 -7 (-15 -2883 ((-660 |#2|) |#1|)) (-15 -2446 ((-114) |#2| |#1|)) (-15 -3662 ((-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) |#1|))) (-626 |#2| |#3|) (-1121) (-1121)) (T -625)) +NIL +((-2966 (((-114) $ $) 19 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 59 (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| "failed") |#1| $) 65 T ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 62 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 50 (|has| $ (-6 -4424)) ELT) (((-3 |#2| "failed") |#1| $) 66 T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 60 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 57 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 56 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-2883 (((-660 |#1|) $) 67 T ELT)) (-2446 (((-114) |#1| $) 68 T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 43 T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) "failed") (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 55 T ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 45 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) 26 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 25 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 24 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 23 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 52 T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 54 T ELT)) (-4375 (((-876) $) 17 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 46 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-626 |#1| |#2|) (-142) (-1121) (-1121)) (T -626)) +((-2446 (*1 *2 *3 *1) (-12 (-4 *1 (-626 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-114)))) (-2883 (*1 *2 *1) (-12 (-4 *1 (-626 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-660 *3)))) (-3824 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-626 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-2445 (*1 *2 *3 *1) (|partial| -12 (-4 *1 (-626 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(-13 (-233 (-2 (|:| -4289 |t#1|) (|:| -2285 |t#2|))) (-10 -8 (-15 -2446 ((-114) |t#1| $)) (-15 -2883 ((-660 |t#1|) $)) (-15 -3824 ((-3 |t#2| "failed") |t#1| $)) (-15 -2445 ((-3 |t#2| "failed") |t#1| $)))) +(((-34) . T) ((-107 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-102) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ((-629 (-876)) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876)))) ((-153 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-630 (-547)) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ((-233 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-242 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) -12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ((-501 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-526 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) -12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ((-1121) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-2447 (((-3 (-1197) "failed") $) 46 T ELT)) (-1426 (((-1293) $ (-790)) 22 T ELT)) (-3838 (((-790) $) 20 T ELT)) (-4022 (((-115) $) 9 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2448 (($ (-115) (-660 |#1|) (-790)) 32 T ELT) (($ (-1197)) 33 T ELT)) (-3031 (((-114) $ (-115)) 15 T ELT) (((-114) $ (-1197)) 13 T ELT)) (-3001 (((-790) $) 17 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4401 (((-904 (-558)) $) 99 (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) 106 (|has| |#1| (-630 (-904 (-391)))) ELT) (((-547) $) 92 (|has| |#1| (-630 (-547))) ELT)) (-4375 (((-876) $) 74 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2449 (((-660 |#1|) $) 19 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 51 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 53 T ELT))) +(((-627 |#1|) (-13 (-134) (-860) (-898 |#1|) (-10 -8 (-15 -4022 ((-115) $)) (-15 -2449 ((-660 |#1|) $)) (-15 -3001 ((-790) $)) (-15 -2448 ($ (-115) (-660 |#1|) (-790))) (-15 -2448 ($ (-1197))) (-15 -2447 ((-3 (-1197) "failed") $)) (-15 -3031 ((-114) $ (-115))) (-15 -3031 ((-114) $ (-1197))) (IF (|has| |#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|))) (-1121)) (T -627)) +((-4022 (*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) (-2449 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) (-2448 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-115)) (-5 *3 (-660 *5)) (-5 *4 (-790)) (-4 *5 (-1121)) (-5 *1 (-627 *5)))) (-2448 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) (-2447 (*1 *2 *1) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) (-3031 (*1 *2 *1 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-627 *4)) (-4 *4 (-1121)))) (-3031 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-114)) (-5 *1 (-627 *4)) (-4 *4 (-1121))))) +((-2450 (((-627 |#2|) |#1|) 17 T ELT)) (-2451 (((-3 |#1| "failed") (-627 |#2|)) 21 T ELT))) +(((-628 |#1| |#2|) (-10 -7 (-15 -2450 ((-627 |#2|) |#1|)) (-15 -2451 ((-3 |#1| "failed") (-627 |#2|)))) (-1121) (-1121)) (T -628)) +((-2451 (*1 *2 *3) (|partial| -12 (-5 *3 (-627 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-628 *2 *4)))) (-2450 (*1 *2 *3) (-12 (-5 *2 (-627 *4)) (-5 *1 (-628 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +((-4375 ((|#1| $) 6 T ELT))) +(((-629 |#1|) (-142) (-1237)) (T -629)) +((-4375 (*1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1237))))) +(-13 (-10 -8 (-15 -4375 (|t#1| $)))) +((-4401 ((|#1| $) 6 T ELT))) +(((-630 |#1|) (-142) (-1237)) (T -630)) +((-4401 (*1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237))))) +(-13 (-10 -8 (-15 -4401 (|t#1| $)))) +((-2452 (((-3 (-1191 (-419 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)) 15 T ELT) (((-3 (-1191 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)) 16 T ELT))) +(((-631 |#1| |#2|) (-10 -7 (-15 -2452 ((-3 (-1191 (-419 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|))) (-15 -2452 ((-3 (-1191 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 (-417 |#2|) |#2|)))) (-13 (-149) (-27) (-1058 (-558)) (-1058 (-419 (-558)))) (-1263 |#1|)) (T -631)) +((-2452 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-149) (-27) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-1191 (-419 *6))) (-5 *1 (-631 *5 *6)) (-5 *3 (-419 *6)))) (-2452 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-149) (-27) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-631 *4 *5)) (-5 *3 (-419 *5))))) +((-4375 (($ |#1|) 6 T ELT))) +(((-632 |#1|) (-142) (-1237)) (T -632)) +((-4375 (*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1237))))) +(-13 (-10 -8 (-15 -4375 ($ |t#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-2453 (($) 14 T CONST)) (-3255 (($) 15 T CONST)) (-2959 (($ $ $) 29 T ELT)) (-2958 (($ $) 27 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3253 (($ $ $) 30 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3254 (($) 11 T CONST)) (-3252 (($ $ $) 31 T ELT)) (-4375 (((-876) $) 35 T ELT)) (-3993 (((-114) $ (|[\|\|]| -3254)) 24 T ELT) (((-114) $ (|[\|\|]| -2453)) 26 T ELT) (((-114) $ (|[\|\|]| -3255)) 21 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2960 (($ $ $) 28 T ELT)) (-2523 (($ $ $) NIL T ELT)) (-3453 (((-114) $ $) 18 T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-633) (-13 (-987) (-10 -8 (-15 -2453 ($) -4381) (-15 -3993 ((-114) $ (|[\|\|]| -3254))) (-15 -3993 ((-114) $ (|[\|\|]| -2453))) (-15 -3993 ((-114) $ (|[\|\|]| -3255)))))) (T -633)) +((-2453 (*1 *1) (-5 *1 (-633))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3254)) (-5 *2 (-114)) (-5 *1 (-633)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2453)) (-5 *2 (-114)) (-5 *1 (-633)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3255)) (-5 *2 (-114)) (-5 *1 (-633))))) +((-4401 (($ |#1|) 6 T ELT))) +(((-634 |#1|) (-142) (-1237)) (T -634)) +((-4401 (*1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1237))))) +(-13 (-10 -8 (-15 -4401 ($ |t#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| |#1| (-859)) ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3398 ((|#1| $) 13 T ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3397 ((|#3| $) 15 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT)) (-3527 (((-790)) 20 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| |#1| (-859)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) 12 T CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-4378 (($ $ |#3|) NIL T ELT) (($ |#1| |#3|) 11 T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 17 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-635 |#1| |#2| |#3|) (-13 (-38 |#2|) (-10 -8 (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (-15 -4378 ($ $ |#3|)) (-15 -4378 ($ |#1| |#3|)) (-15 -3398 (|#1| $)) (-15 -3397 (|#3| $)))) (-38 |#2|) (-175) (|SubsetCategory| (-745) |#2|)) (T -635)) +((-4378 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-635 *3 *4 *2)) (-4 *3 (-38 *4)) (-4 *2 (|SubsetCategory| (-745) *4)))) (-4378 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-635 *2 *4 *3)) (-4 *2 (-38 *4)) (-4 *3 (|SubsetCategory| (-745) *4)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-635 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-745) *3)))) (-3397 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-745) *4)) (-5 *1 (-635 *3 *4 *2)) (-4 *3 (-38 *4))))) +((-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT))) +(((-636 |#1| |#2|) (-10 -7 (-15 -4375 (|#1| |#2|)) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-637 |#2|) (-1069)) (T -636)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 46 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#1| $) 47 T ELT))) +(((-637 |#1|) (-142) (-1069)) (T -637)) +((-4375 (*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1069))))) +(-13 (-1069) (-667 |t#1|) (-10 -8 (-15 -4375 ($ |t#1|)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-745) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2454 ((|#2| |#2| (-1197) (-1197)) 16 T ELT))) +(((-638 |#1| |#2|) (-10 -7 (-15 -2454 (|#2| |#2| (-1197) (-1197)))) (-13 (-319) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-978) (-29 |#1|))) (T -638)) +((-2454 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-638 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) +((-2966 (((-114) $ $) 64 T ELT)) (-3605 (((-114) $) 58 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-2455 ((|#1| $) 55 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4180 (((-2 (|:| -1971 $) (|:| -1970 (-419 |#2|))) (-419 |#2|)) 111 (|has| |#1| (-376)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 99 T ELT) (((-3 |#2| #1#) $) 95 T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT) ((|#2| $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) 27 T ELT)) (-3886 (((-3 $ #1#) $) 88 T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4201 (((-558) $) 22 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) 40 T ELT)) (-3293 (($ |#1| (-558)) 24 T ELT)) (-3591 ((|#1| $) 57 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 101 (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 116 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $ $) 93 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-790) $) 115 (|has| |#1| (-376)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 114 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 75 T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-4377 (((-558) $) 38 T ELT)) (-4401 (((-419 |#2|) $) 47 T ELT)) (-4375 (((-876) $) 69 T ELT) (($ (-558)) 35 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) 34 T ELT) (($ |#2|) 25 T ELT)) (-4106 ((|#1| $ (-558)) 72 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 32 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 9 T CONST)) (-3064 (($) 14 T CONST)) (-3069 (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) 21 T ELT)) (-4266 (($ $) 51 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 90 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 49 T ELT))) +(((-639 |#1| |#2|) (-13 (-234 |#2|) (-569) (-630 (-419 |#2|)) (-424 |#1|) (-1058 |#2|) (-10 -8 (-15 -4366 ((-114) $)) (-15 -4377 ((-558) $)) (-15 -4201 ((-558) $)) (-15 -4388 ($ $)) (-15 -3591 (|#1| $)) (-15 -2455 (|#1| $)) (-15 -4106 (|#1| $ (-558))) (-15 -3293 ($ |#1| (-558))) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-6 (-319)) (-15 -4180 ((-2 (|:| -1971 $) (|:| -1970 (-419 |#2|))) (-419 |#2|)))) |%noBranch|))) (-569) (-1263 |#1|)) (T -639)) +((-4366 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-114)) (-5 *1 (-639 *3 *4)) (-4 *4 (-1263 *3)))) (-4377 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-639 *3 *4)) (-4 *4 (-1263 *3)))) (-4201 (*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-639 *3 *4)) (-4 *4 (-1263 *3)))) (-4388 (*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-639 *2 *3)) (-4 *3 (-1263 *2)))) (-3591 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-639 *2 *3)) (-4 *3 (-1263 *2)))) (-2455 (*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-639 *2 *3)) (-4 *3 (-1263 *2)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-639 *2 *4)) (-4 *4 (-1263 *2)))) (-3293 (*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-639 *2 *4)) (-4 *4 (-1263 *2)))) (-4180 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-569)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -1971 (-639 *4 *5)) (|:| -1970 (-419 *5)))) (-5 *1 (-639 *4 *5)) (-5 *3 (-419 *5))))) +((-4111 (((-660 |#6|) (-660 |#4|) (-114)) 54 T ELT)) (-2456 ((|#6| |#6|) 48 T ELT))) +(((-640 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -2456 (|#6| |#6|)) (-15 -4111 ((-660 |#6|) (-660 |#4|) (-114)))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|) (-1129 |#1| |#2| |#3| |#4|)) (T -640)) +((-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 *10)) (-5 *1 (-640 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *10 (-1129 *5 *6 *7 *8)))) (-2456 (*1 *2 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-640 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *2 (-1129 *3 *4 *5 *6))))) +((-2457 (((-114) |#3| (-790) (-660 |#3|)) 30 T ELT)) (-2458 (((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1191 |#3|)))) "failed") |#3| (-660 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1986 (-660 (-2 (|:| |irr| |#4|) (|:| -2625 (-558)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)) 68 T ELT))) +(((-641 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2457 ((-114) |#3| (-790) (-660 |#3|))) (-15 -2458 ((-3 (-2 (|:| |polfac| (-660 |#4|)) (|:| |correct| |#3|) (|:| |corrfact| (-660 (-1191 |#3|)))) "failed") |#3| (-660 (-1191 |#3|)) (-2 (|:| |contp| |#3|) (|:| -1986 (-660 (-2 (|:| |irr| |#4|) (|:| -2625 (-558)))))) (-660 |#3|) (-660 |#1|) (-660 |#3|)))) (-860) (-814) (-319) (-968 |#3| |#2| |#1|)) (T -641)) +((-2458 (*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) (|:| -1986 (-660 (-2 (|:| |irr| *10) (|:| -2625 (-558))))))) (-5 *6 (-660 *3)) (-5 *7 (-660 *8)) (-4 *8 (-860)) (-4 *3 (-319)) (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-814)) (-5 *2 (-2 (|:| |polfac| (-660 *10)) (|:| |correct| *3) (|:| |corrfact| (-660 (-1191 *3))))) (-5 *1 (-641 *8 *9 *3 *10)) (-5 *4 (-660 (-1191 *3))))) (-2457 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-790)) (-5 *5 (-660 *3)) (-4 *3 (-319)) (-4 *6 (-860)) (-4 *7 (-814)) (-5 *2 (-114)) (-5 *1 (-641 *6 *7 *3 *8)) (-4 *8 (-968 *3 *7 *6))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3947 (((-1155) $) 11 T ELT)) (-3948 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-642) (-13 (-1103) (-10 -8 (-15 -3948 ((-1155) $)) (-15 -3947 ((-1155) $))))) (T -642)) +((-3948 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-642)))) (-3947 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-642))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4363 (((-660 |#1|) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4365 (($ $) 77 T ELT)) (-4371 (((-683 |#1| |#2|) $) 60 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 81 T ELT)) (-2459 (((-660 (-305 |#2|)) $ $) 42 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4372 (($ (-683 |#1| |#2|)) 56 T ELT)) (-3409 (($ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-4375 (((-876) $) 66 T ELT) (((-1303 |#1| |#2|) $) NIL T ELT) (((-1308 |#1| |#2|) $) 74 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 61 T CONST)) (-2460 (((-660 (-2 (|:| |k| (-691 |#1|)) (|:| |c| |#2|))) $) 41 T ELT)) (-2461 (((-660 (-683 |#1| |#2|)) (-660 |#1|)) 73 T ELT)) (-3063 (((-660 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $) 46 T ELT)) (-3453 (((-114) $ $) 62 T ELT)) (-4378 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 52 T ELT))) +(((-643 |#1| |#2| |#3|) (-13 (-485) (-10 -8 (-15 -4372 ($ (-683 |#1| |#2|))) (-15 -4371 ((-683 |#1| |#2|) $)) (-15 -3063 ((-660 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $)) (-15 -4375 ((-1303 |#1| |#2|) $)) (-15 -4375 ((-1308 |#1| |#2|) $)) (-15 -4365 ($ $)) (-15 -4363 ((-660 |#1|) $)) (-15 -2461 ((-660 (-683 |#1| |#2|)) (-660 |#1|))) (-15 -2460 ((-660 (-2 (|:| |k| (-691 |#1|)) (|:| |c| |#2|))) $)) (-15 -2459 ((-660 (-305 |#2|)) $ $)))) (-860) (-13 (-175) (-736 (-419 (-558)))) (-937)) (T -643)) +((-4372 (*1 *1 *2) (-12 (-5 *2 (-683 *3 *4)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-5 *1 (-643 *3 *4 *5)) (-14 *5 (-937)))) (-4371 (*1 *2 *1) (-12 (-5 *2 (-683 *3 *4)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-907 *3)) (|:| |c| *4)))) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-13 (-175) (-736 (-419 (-558))))) (-14 *4 (-937)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) (-2461 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-860)) (-5 *2 (-660 (-683 *4 *5))) (-5 *1 (-643 *4 *5 *6)) (-4 *5 (-13 (-175) (-736 (-419 (-558))))) (-14 *6 (-937)))) (-2460 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-691 *3)) (|:| |c| *4)))) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) (-2459 (*1 *2 *1 *1) (-12 (-5 *2 (-660 (-305 *4))) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937))))) +((-4111 (((-660 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|)))) (-660 (-799 |#1| (-877 |#2|))) (-114)) 103 T ELT) (((-660 (-1066 |#1| |#2|)) (-660 (-799 |#1| (-877 |#2|))) (-114)) 77 T ELT)) (-2462 (((-114) (-660 (-799 |#1| (-877 |#2|)))) 26 T ELT)) (-2466 (((-660 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|)))) (-660 (-799 |#1| (-877 |#2|))) (-114)) 102 T ELT)) (-2465 (((-660 (-1066 |#1| |#2|)) (-660 (-799 |#1| (-877 |#2|))) (-114)) 76 T ELT)) (-2464 (((-660 (-799 |#1| (-877 |#2|))) (-660 (-799 |#1| (-877 |#2|)))) 30 T ELT)) (-2463 (((-3 (-660 (-799 |#1| (-877 |#2|))) "failed") (-660 (-799 |#1| (-877 |#2|)))) 29 T ELT))) +(((-644 |#1| |#2|) (-10 -7 (-15 -2462 ((-114) (-660 (-799 |#1| (-877 |#2|))))) (-15 -2463 ((-3 (-660 (-799 |#1| (-877 |#2|))) "failed") (-660 (-799 |#1| (-877 |#2|))))) (-15 -2464 ((-660 (-799 |#1| (-877 |#2|))) (-660 (-799 |#1| (-877 |#2|))))) (-15 -2465 ((-660 (-1066 |#1| |#2|)) (-660 (-799 |#1| (-877 |#2|))) (-114))) (-15 -2466 ((-660 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|)))) (-660 (-799 |#1| (-877 |#2|))) (-114))) (-15 -4111 ((-660 (-1066 |#1| |#2|)) (-660 (-799 |#1| (-877 |#2|))) (-114))) (-15 -4111 ((-660 (-1166 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|)))) (-660 (-799 |#1| (-877 |#2|))) (-114)))) (-464) (-660 (-1197))) (T -644)) +((-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-799 *5 (-877 *6))))) (-5 *1 (-644 *5 *6)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-644 *5 *6)))) (-2466 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-799 *5 (-877 *6))))) (-5 *1 (-644 *5 *6)))) (-2465 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-644 *5 *6)))) (-2464 (*1 *2 *2) (-12 (-5 *2 (-660 (-799 *3 (-877 *4)))) (-4 *3 (-464)) (-14 *4 (-660 (-1197))) (-5 *1 (-644 *3 *4)))) (-2463 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-799 *3 (-877 *4)))) (-4 *3 (-464)) (-14 *4 (-660 (-1197))) (-5 *1 (-644 *3 *4)))) (-2462 (*1 *2 *3) (-12 (-5 *3 (-660 (-799 *4 (-877 *5)))) (-4 *4 (-464)) (-14 *5 (-660 (-1197))) (-5 *2 (-114)) (-5 *1 (-644 *4 *5))))) +((-4022 (((-115) (-115)) 88 T ELT)) (-2470 ((|#2| |#2|) 28 T ELT)) (-3232 ((|#2| |#2| (-1112 |#2|)) 84 T ELT) ((|#2| |#2| (-1197)) 50 T ELT)) (-2468 ((|#2| |#2|) 27 T ELT)) (-2469 ((|#2| |#2|) 29 T ELT)) (-2467 (((-114) (-115)) 33 T ELT)) (-2472 ((|#2| |#2|) 24 T ELT)) (-2473 ((|#2| |#2|) 26 T ELT)) (-2471 ((|#2| |#2|) 25 T ELT))) +(((-645 |#1| |#2|) (-10 -7 (-15 -2467 ((-114) (-115))) (-15 -4022 ((-115) (-115))) (-15 -2473 (|#2| |#2|)) (-15 -2472 (|#2| |#2|)) (-15 -2471 (|#2| |#2|)) (-15 -2470 (|#2| |#2|)) (-15 -2468 (|#2| |#2|)) (-15 -2469 (|#2| |#2|)) (-15 -3232 (|#2| |#2| (-1197))) (-15 -3232 (|#2| |#2| (-1112 |#2|)))) (-569) (-13 (-433 |#1|) (-1022) (-1223))) (T -645)) +((-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-433 *4) (-1022) (-1223))) (-4 *4 (-569)) (-5 *1 (-645 *4 *2)))) (-3232 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-645 *4 *2)) (-4 *2 (-13 (-433 *4) (-1022) (-1223))))) (-2469 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) (-2468 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) (-2470 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) (-2471 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) (-2472 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) (-2473 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) (-4022 (*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-645 *3 *4)) (-4 *4 (-13 (-433 *3) (-1022) (-1223))))) (-2467 (*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-645 *4 *5)) (-4 *5 (-13 (-433 *4) (-1022) (-1223)))))) +((-3911 (($ $) 38 T ELT)) (-4068 (($ $) 21 T ELT)) (-3909 (($ $) 37 T ELT)) (-4067 (($ $) 22 T ELT)) (-3913 (($ $) 36 T ELT)) (-4066 (($ $) 23 T ELT)) (-4056 (($) 48 T ELT)) (-4371 (($ $) 45 T ELT)) (-2470 (($ $) 17 T ELT)) (-3232 (($ $ (-1112 $)) 7 T ELT) (($ $ (-1197)) 6 T ELT)) (-4372 (($ $) 46 T ELT)) (-2468 (($ $) 15 T ELT)) (-2469 (($ $) 16 T ELT)) (-3914 (($ $) 35 T ELT)) (-4065 (($ $) 24 T ELT)) (-3912 (($ $) 34 T ELT)) (-4064 (($ $) 25 T ELT)) (-3910 (($ $) 33 T ELT)) (-4063 (($ $) 26 T ELT)) (-3917 (($ $) 44 T ELT)) (-3905 (($ $) 32 T ELT)) (-3915 (($ $) 43 T ELT)) (-3903 (($ $) 31 T ELT)) (-3919 (($ $) 42 T ELT)) (-3907 (($ $) 30 T ELT)) (-3920 (($ $) 41 T ELT)) (-3908 (($ $) 29 T ELT)) (-3918 (($ $) 40 T ELT)) (-3906 (($ $) 28 T ELT)) (-3916 (($ $) 39 T ELT)) (-3904 (($ $) 27 T ELT)) (-2472 (($ $) 19 T ELT)) (-2473 (($ $) 20 T ELT)) (-2471 (($ $) 18 T ELT)) (** (($ $ $) 47 T ELT))) +(((-646) (-142)) (T -646)) +((-2473 (*1 *1 *1) (-4 *1 (-646))) (-2472 (*1 *1 *1) (-4 *1 (-646))) (-2471 (*1 *1 *1) (-4 *1 (-646))) (-2470 (*1 *1 *1) (-4 *1 (-646))) (-2469 (*1 *1 *1) (-4 *1 (-646))) (-2468 (*1 *1 *1) (-4 *1 (-646)))) +(-13 (-978) (-1223) (-10 -8 (-15 -2473 ($ $)) (-15 -2472 ($ $)) (-15 -2471 ($ $)) (-15 -2470 ($ $)) (-15 -2469 ($ $)) (-15 -2468 ($ $)))) +(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-978) . T) ((-1223) . T) ((-1226) . T)) +((-2483 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 65 T ELT)) (-2476 (((-660 (-255 |#1| |#2|)) (-660 (-493 |#1| |#2|))) 90 T ELT)) (-2477 (((-493 |#1| |#2|) (-660 (-493 |#1| |#2|)) (-877 |#1|)) 92 T ELT) (((-493 |#1| |#2|) (-660 (-493 |#1| |#2|)) (-660 (-493 |#1| |#2|)) (-877 |#1|)) 91 T ELT)) (-2474 (((-2 (|:| |gblist| (-660 (-255 |#1| |#2|))) (|:| |gvlist| (-660 (-558)))) (-660 (-493 |#1| |#2|))) 136 T ELT)) (-2481 (((-660 (-493 |#1| |#2|)) (-877 |#1|) (-660 (-493 |#1| |#2|)) (-660 (-493 |#1| |#2|))) 105 T ELT)) (-2475 (((-2 (|:| |glbase| (-660 (-255 |#1| |#2|))) (|:| |glval| (-660 (-558)))) (-660 (-255 |#1| |#2|))) 147 T ELT)) (-2479 (((-1287 |#2|) (-493 |#1| |#2|) (-660 (-493 |#1| |#2|))) 70 T ELT)) (-2478 (((-660 (-493 |#1| |#2|)) (-660 (-493 |#1| |#2|))) 47 T ELT)) (-2482 (((-255 |#1| |#2|) (-255 |#1| |#2|) (-660 (-255 |#1| |#2|))) 61 T ELT)) (-2480 (((-255 |#1| |#2|) (-660 |#2|) (-255 |#1| |#2|) (-660 (-255 |#1| |#2|))) 113 T ELT))) +(((-647 |#1| |#2|) (-10 -7 (-15 -2474 ((-2 (|:| |gblist| (-660 (-255 |#1| |#2|))) (|:| |gvlist| (-660 (-558)))) (-660 (-493 |#1| |#2|)))) (-15 -2475 ((-2 (|:| |glbase| (-660 (-255 |#1| |#2|))) (|:| |glval| (-660 (-558)))) (-660 (-255 |#1| |#2|)))) (-15 -2476 ((-660 (-255 |#1| |#2|)) (-660 (-493 |#1| |#2|)))) (-15 -2477 ((-493 |#1| |#2|) (-660 (-493 |#1| |#2|)) (-660 (-493 |#1| |#2|)) (-877 |#1|))) (-15 -2477 ((-493 |#1| |#2|) (-660 (-493 |#1| |#2|)) (-877 |#1|))) (-15 -2478 ((-660 (-493 |#1| |#2|)) (-660 (-493 |#1| |#2|)))) (-15 -2479 ((-1287 |#2|) (-493 |#1| |#2|) (-660 (-493 |#1| |#2|)))) (-15 -2480 ((-255 |#1| |#2|) (-660 |#2|) (-255 |#1| |#2|) (-660 (-255 |#1| |#2|)))) (-15 -2481 ((-660 (-493 |#1| |#2|)) (-877 |#1|) (-660 (-493 |#1| |#2|)) (-660 (-493 |#1| |#2|)))) (-15 -2482 ((-255 |#1| |#2|) (-255 |#1| |#2|) (-660 (-255 |#1| |#2|)))) (-15 -2483 ((-493 |#1| |#2|) (-255 |#1| |#2|)))) (-660 (-1197)) (-464)) (T -647)) +((-2483 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *2 (-493 *4 *5)) (-5 *1 (-647 *4 *5)))) (-2482 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *1 (-647 *4 *5)))) (-2481 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-660 (-493 *4 *5))) (-5 *3 (-877 *4)) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *1 (-647 *4 *5)))) (-2480 (*1 *2 *3 *2 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-255 *5 *6))) (-4 *6 (-464)) (-5 *2 (-255 *5 *6)) (-14 *5 (-660 (-1197))) (-5 *1 (-647 *5 *6)))) (-2479 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-660 (-1197))) (-4 *6 (-464)) (-5 *2 (-1287 *6)) (-5 *1 (-647 *5 *6)))) (-2478 (*1 *2 *2) (-12 (-5 *2 (-660 (-493 *3 *4))) (-14 *3 (-660 (-1197))) (-4 *4 (-464)) (-5 *1 (-647 *3 *4)))) (-2477 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-493 *5 *6))) (-5 *4 (-877 *5)) (-14 *5 (-660 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-647 *5 *6)) (-4 *6 (-464)))) (-2477 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-493 *5 *6))) (-5 *4 (-877 *5)) (-14 *5 (-660 (-1197))) (-5 *2 (-493 *5 *6)) (-5 *1 (-647 *5 *6)) (-4 *6 (-464)))) (-2476 (*1 *2 *3) (-12 (-5 *3 (-660 (-493 *4 *5))) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *2 (-660 (-255 *4 *5))) (-5 *1 (-647 *4 *5)))) (-2475 (*1 *2 *3) (-12 (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |glbase| (-660 (-255 *4 *5))) (|:| |glval| (-660 (-558))))) (-5 *1 (-647 *4 *5)) (-5 *3 (-660 (-255 *4 *5))))) (-2474 (*1 *2 *3) (-12 (-5 *3 (-660 (-493 *4 *5))) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *2 (-2 (|:| |gblist| (-660 (-255 *4 *5))) (|:| |gvlist| (-660 (-558))))) (-5 *1 (-647 *4 *5))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) NIL T ELT)) (-2412 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4425)) ELT)) (-4217 (((-51) $ (-1179) (-51)) NIL T ELT) (((-51) $ (-1197) (-51)) 16 T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 (-51) #1="failed") (-1179) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 (-51) #1#) (-1179) $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $ (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (((-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $ (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 (((-51) $ (-1179) (-51)) NIL (|has| $ (-6 -4425)) ELT)) (-3514 (((-51) $ (-1179)) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2484 (($ $) NIL T ELT)) (-2414 (((-1179) $) NIL (|has| (-1179) (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT)) (-2415 (((-1179) $) NIL (|has| (-1179) (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-2485 (($ (-402)) 8 T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-51) (-1121)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT)) (-2883 (((-660 (-1179)) $) NIL T ELT)) (-2446 (((-114) (-1179) $) NIL T ELT)) (-1388 (((-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL T ELT)) (-2417 (((-660 (-1179)) $) NIL T ELT)) (-2418 (((-114) (-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-51) (-1121)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT)) (-4230 (((-51) $) NIL (|has| (-1179) (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) #1#) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL T ELT)) (-2413 (($ $ (-51)) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-660 (-51)) (-660 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-660 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT)) (-2419 (((-660 (-51)) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 (((-51) $ (-1179)) NIL T ELT) (((-51) $ (-1179) (-51)) NIL T ELT) (((-51) $ (-1197)) 14 T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-1121))) ELT) (((-790) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT) (((-790) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-629 (-876))) (|has| (-51) (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 (-51))) (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-648) (-13 (-1214 (-1179) (-51)) (-298 (-1197) (-51)) (-10 -8 (-15 -2485 ($ (-402))) (-15 -2484 ($ $)) (-15 -4217 ((-51) $ (-1197) (-51)))))) (T -648)) +((-2485 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-648)))) (-2484 (*1 *1 *1) (-5 *1 (-648))) (-4217 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1197)) (-5 *1 (-648))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1979 (((-3 $ #1="failed")) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3640 (((-1287 (-708 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1287 (-708 |#1|)) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1931 (((-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4153 (($) NIL T CONST)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1905 (((-3 $ #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1995 (((-708 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1929 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1993 (((-708 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) $ (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2634 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2110 (((-1191 (-964 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2637 (($ $ (-937)) NIL T ELT)) (-1927 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1907 (((-1191 |#1|) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1997 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1925 (((-1191 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1919 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1999 (($ (-1287 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (($ (-1287 |#1|) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3886 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-3510 (((-937)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1916 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2661 (($ $ (-937)) NIL T ELT)) (-1912 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1910 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1914 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1906 (((-3 $ #1#)) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1996 (((-708 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1930 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1994 (((-708 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) $ (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2635 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2114 (((-1191 (-964 |#1|))) NIL (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-376))) ELT)) (-2636 (($ $ (-937)) NIL T ELT)) (-1928 ((|#1| $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1908 (((-1191 |#1|) $) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-1998 ((|#1|) NIL (|has| |#2| (-430 |#1|)) ELT) ((|#1| (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1926 (((-1191 |#1|) $) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1920 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1911 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1913 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1915 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1918 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4229 ((|#1| $ (-558)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-3641 (((-708 |#1|) (-1287 $)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1287 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT) (((-708 |#1|) (-1287 $) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT) (((-1287 |#1|) $ (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4401 (($ (-1287 |#1|)) NIL (|has| |#2| (-430 |#1|)) ELT) (((-1287 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2102 (((-660 (-964 |#1|))) NIL (|has| |#2| (-430 |#1|)) ELT) (((-660 (-964 |#1|)) (-1287 $)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-4375 (((-876) $) NIL T ELT) ((|#2| $) 11 T ELT) (($ |#2|) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL (|has| |#2| (-430 |#1|)) ELT)) (-1909 (((-660 (-1287 |#1|))) NIL (-3956 (-12 (|has| |#2| (-380 |#1|)) (|has| |#1| (-569))) (-12 (|has| |#2| (-430 |#1|)) (|has| |#1| (-569)))) ELT)) (-2824 (($ $ $ $) NIL T ELT)) (-1922 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-2943 (($ (-708 |#1|) $) NIL (|has| |#2| (-430 |#1|)) ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1921 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-1917 (((-114)) NIL (|has| |#2| (-380 |#1|)) ELT)) (-3058 (($) 18 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) 19 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 10 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-649 |#1| |#2|) (-13 (-763 |#1|) (-629 |#2|) (-10 -8 (-15 -4375 ($ |#2|)) (IF (|has| |#2| (-430 |#1|)) (-6 (-430 |#1|)) |%noBranch|) (IF (|has| |#2| (-380 |#1|)) (-6 (-380 |#1|)) |%noBranch|))) (-175) (-763 |#1|)) (T -649)) +((-4375 (*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-649 *3 *2)) (-4 *2 (-763 *3))))) +((-4378 (($ $ |#2|) 10 T ELT))) +(((-650 |#1| |#2|) (-10 -7 (-15 -4378 (|#1| |#1| |#2|))) (-651 |#2|) (-175)) (T -650)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3949 (($ $ $) 39 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 38 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-651 |#1|) (-142) (-175)) (T -651)) +((-3949 (*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-175)))) (-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(-13 (-736 |t#1|) (-10 -8 (-6 |NullSquare|) (-6 |JacobiIdentity|) (-15 -3949 ($ $ $)) (IF (|has| |t#1| (-376)) (-15 -4378 ($ $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2487 (((-3 (-854 |#2|) #1="failed") |#2| (-305 |#2|) (-1179)) 105 T ELT) (((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) #1#)) (|:| |rightHandLimit| (-3 (-854 |#2|) #1#))) #1#) |#2| (-305 (-854 |#2|))) 130 T ELT)) (-2486 (((-3 (-844 |#2|) #1#) |#2| (-305 (-844 |#2|))) 135 T ELT))) +(((-652 |#1| |#2|) (-10 -7 (-15 -2487 ((-3 (-854 |#2|) (-2 (|:| |leftHandLimit| (-3 (-854 |#2|) #1="failed")) (|:| |rightHandLimit| (-3 (-854 |#2|) #1#))) #1#) |#2| (-305 (-854 |#2|)))) (-15 -2486 ((-3 (-844 |#2|) #1#) |#2| (-305 (-844 |#2|)))) (-15 -2487 ((-3 (-854 |#2|) #1#) |#2| (-305 |#2|) (-1179)))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -652)) +((-2487 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1179)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-854 *3)) (-5 *1 (-652 *6 *3)))) (-2486 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-305 (-844 *3))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-844 *3)) (-5 *1 (-652 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 *3))) (-4 *3 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (-854 *3) (-2 (|:| |leftHandLimit| (-3 (-854 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-854 *3) #1#))) "failed")) (-5 *1 (-652 *5 *3))))) +((-2487 (((-3 (-854 (-419 (-964 |#1|))) #1="failed") (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|))) (-1179)) 86 T ELT) (((-3 (-854 (-419 (-964 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#))) #1#) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|)))) 20 T ELT) (((-3 (-854 (-419 (-964 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#))) #1#) (-419 (-964 |#1|)) (-305 (-854 (-964 |#1|)))) 35 T ELT)) (-2486 (((-844 (-419 (-964 |#1|))) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|)))) 23 T ELT) (((-844 (-419 (-964 |#1|))) (-419 (-964 |#1|)) (-305 (-844 (-964 |#1|)))) 43 T ELT))) +(((-653 |#1|) (-10 -7 (-15 -2487 ((-3 (-854 (-419 (-964 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1="failed")) (|:| |rightHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#))) #1#) (-419 (-964 |#1|)) (-305 (-854 (-964 |#1|))))) (-15 -2487 ((-3 (-854 (-419 (-964 |#1|))) (-2 (|:| |leftHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#)) (|:| |rightHandLimit| (-3 (-854 (-419 (-964 |#1|))) #1#))) #1#) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|))))) (-15 -2486 ((-844 (-419 (-964 |#1|))) (-419 (-964 |#1|)) (-305 (-844 (-964 |#1|))))) (-15 -2486 ((-844 (-419 (-964 |#1|))) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|))))) (-15 -2487 ((-3 (-854 (-419 (-964 |#1|))) #1#) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|))) (-1179)))) (-464)) (T -653)) +((-2487 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-305 (-419 (-964 *6)))) (-5 *5 (-1179)) (-5 *3 (-419 (-964 *6))) (-4 *6 (-464)) (-5 *2 (-854 *3)) (-5 *1 (-653 *6)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-964 *5)))) (-5 *3 (-419 (-964 *5))) (-4 *5 (-464)) (-5 *2 (-844 *3)) (-5 *1 (-653 *5)))) (-2486 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-844 (-964 *5)))) (-4 *5 (-464)) (-5 *2 (-844 (-419 (-964 *5)))) (-5 *1 (-653 *5)) (-5 *3 (-419 (-964 *5))))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-419 (-964 *5)))) (-5 *3 (-419 (-964 *5))) (-4 *5 (-464)) (-5 *2 (-3 (-854 *3) (-2 (|:| |leftHandLimit| (-3 (-854 *3) #1="failed")) (|:| |rightHandLimit| (-3 (-854 *3) #1#))) #2="failed")) (-5 *1 (-653 *5)))) (-2487 (*1 *2 *3 *4) (-12 (-5 *4 (-305 (-854 (-964 *5)))) (-4 *5 (-464)) (-5 *2 (-3 (-854 (-419 (-964 *5))) (-2 (|:| |leftHandLimit| (-3 (-854 (-419 (-964 *5))) #1#)) (|:| |rightHandLimit| (-3 (-854 (-419 (-964 *5))) #1#))) #2#)) (-5 *1 (-653 *5)) (-5 *3 (-419 (-964 *5)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 11 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3251 (($ (-218 |#1|)) 12 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-877 |#1|)) 7 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-654 |#1|) (-13 (-856) (-632 (-877 |#1|)) (-10 -8 (-15 -3251 ($ (-218 |#1|))))) (-660 (-1197))) (T -654)) +((-3251 (*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-660 (-1197))) (-5 *1 (-654 *3))))) +((-2490 (((-3 (-1287 (-419 |#1|)) #1="failed") (-1287 |#2|) |#2|) 64 (-2958 (|has| |#1| (-376))) ELT) (((-3 (-1287 |#1|) #1#) (-1287 |#2|) |#2|) 49 (|has| |#1| (-376)) ELT)) (-2488 (((-114) (-1287 |#2|)) 33 T ELT)) (-2489 (((-3 (-1287 |#1|) #1#) (-1287 |#2|)) 40 T ELT))) +(((-655 |#1| |#2|) (-10 -7 (-15 -2488 ((-114) (-1287 |#2|))) (-15 -2489 ((-3 (-1287 |#1|) #1="failed") (-1287 |#2|))) (IF (|has| |#1| (-376)) (-15 -2490 ((-3 (-1287 |#1|) #1#) (-1287 |#2|) |#2|)) (-15 -2490 ((-3 (-1287 (-419 |#1|)) #1#) (-1287 |#2|) |#2|)))) (-569) (-13 (-1069) (-657 |#1|))) (T -655)) +((-2490 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 *5))) (-2958 (-4 *5 (-376))) (-4 *5 (-569)) (-5 *2 (-1287 (-419 *5))) (-5 *1 (-655 *5 *4)))) (-2490 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 *5))) (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-1287 *5)) (-5 *1 (-655 *5 *4)))) (-2489 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-657 *4))) (-4 *4 (-569)) (-5 *2 (-1287 *4)) (-5 *1 (-655 *4 *5)))) (-2488 (*1 *2 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-657 *4))) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-655 *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4203 (((-660 (-886 (-654 |#2|) |#1|)) $) NIL T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3293 (($ |#1| (-654 |#2|)) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2491 (($ (-660 |#1|)) 25 T ELT)) (-2194 (((-654 |#2|) $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4340 (((-136)) 16 T ELT)) (-3641 (((-1287 |#1|) $) 44 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-654 |#2|)) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 20 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 17 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-656 |#1| |#2|) (-13 (-1295 |#1|) (-632 (-654 |#2|)) (-521 |#1| (-654 |#2|)) (-10 -8 (-15 -2491 ($ (-660 |#1|))) (-15 -3641 ((-1287 |#1|) $)))) (-376) (-660 (-1197))) (T -656)) +((-2491 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-376)) (-5 *1 (-656 *3 *4)) (-14 *4 (-660 (-1197))))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1287 *3)) (-5 *1 (-656 *3 *4)) (-4 *3 (-376)) (-14 *4 (-660 (-1197)))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2492 (((-708 |#1|) (-708 $)) 35 T ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 34 T ELT)) (-2493 (((-708 |#1|) (-1287 $)) 37 T ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 36 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-657 |#1|) (-142) (-1069)) (T -657)) +((-2493 (*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-657 *4)) (-4 *4 (-1069)) (-5 *2 (-708 *4)))) (-2493 (*1 *2 *3 *1) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-657 *4)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| -1782 (-708 *4)) (|:| |vec| (-1287 *4)))))) (-2492 (*1 *2 *3) (-12 (-5 *3 (-708 *1)) (-4 *1 (-657 *4)) (-4 *4 (-1069)) (-5 *2 (-708 *4)))) (-2492 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-657 *5)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -1782 (-708 *5)) (|:| |vec| (-1287 *5))))))) +(-13 (-667 |t#1|) (-10 -8 (-15 -2493 ((-708 |t#1|) (-1287 $))) (-15 -2493 ((-2 (|:| -1782 (-708 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-1287 $) $)) (-15 -2492 ((-708 |t#1|) (-708 $))) (-15 -2492 ((-2 (|:| -1782 (-708 |t#1|)) (|:| |vec| (-1287 |t#1|))) (-708 $) (-1287 $))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2494 (($ (-660 |#1|)) 23 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 ((|#1| $ (-656 |#1| |#2|)) 46 T ELT)) (-4340 (((-136)) 13 T ELT)) (-3641 (((-1287 |#1|) $) 42 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 18 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 14 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-658 |#1| |#2|) (-13 (-1295 |#1|) (-298 (-656 |#1| |#2|) |#1|) (-10 -8 (-15 -2494 ($ (-660 |#1|))) (-15 -3641 ((-1287 |#1|) $)))) (-376) (-660 (-1197))) (T -658)) +((-2494 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-376)) (-5 *1 (-658 *3 *4)) (-14 *4 (-660 (-1197))))) (-3641 (*1 *2 *1) (-12 (-5 *2 (-1287 *3)) (-5 *1 (-658 *3 *4)) (-4 *3 (-376)) (-14 *4 (-660 (-1197)))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT) (($ $ |#1|) 20 T ELT))) +(((-659 |#1|) (-142) (-1132)) (T -659)) +NIL +(-13 (-665 |t#1|) (-1071 |t#1|)) +(((-102) . T) ((-629 (-876)) . T) ((-665 |#1|) . T) ((-1071 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) NIL T ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4226 (($ $) NIL T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) NIL (|has| |#1| (-860)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-1932 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $) NIL T ELT)) (-3861 (((-114) $ (-790)) NIL T ELT)) (-3425 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) NIL (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-2497 (($ $ $) 16 (|has| |#1| (-1121)) ELT)) (-2496 (($ $ $) 23 (|has| |#1| (-1121)) ELT)) (-2495 (($ $ $) 26 (|has| |#1| (-1121)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) NIL T ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-4228 (($ $) 22 T ELT) (($ $ (-790)) NIL T ELT)) (-2593 (($ $) NIL (|has| |#1| (-1121)) ELT)) (-1466 (($ $) 15 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) NIL (|has| |#1| (-1121)) ELT) (($ (-1 (-114) |#1|) $) NIL T ELT)) (-3825 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3862 (((-114) $) NIL T ELT)) (-3838 (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) (-1 (-114) |#1|) $) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2499 (((-114) $) 11 T ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-2500 (($) 9 T CONST)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-4148 (((-114) $ (-790)) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3256 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3937 (($ $ $) NIL (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 21 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3961 (($ |#1|) NIL T ELT)) (-4145 (((-114) $ (-790)) NIL T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4036 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2516 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 20 T ELT) (($ $ (-790)) NIL T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3863 (((-114) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) 18 T ELT)) (-3992 (($) 17 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT) ((|#1| $ (-558)) 24 T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-1713 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-2517 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-4221 (($ $) NIL T ELT)) (-4219 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) NIL T ELT)) (-4223 (($ $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) 35 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-3880 (($ |#1| $) 12 T ELT)) (-4220 (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4231 (($ $ $) 14 T ELT) (($ |#1| $) 25 T ELT) (($ (-660 $)) NIL T ELT) (($ $ |#1|) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2498 (($ $ $) 13 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-660 |#1|) (-13 (-685 |#1|) (-10 -8 (-15 -2500 ($) -4381) (-15 -2499 ((-114) $)) (-15 -3880 ($ |#1| $)) (-15 -2498 ($ $ $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -2497 ($ $ $)) (-15 -2496 ($ $ $)) (-15 -2495 ($ $ $))) |%noBranch|))) (-1237)) (T -660)) +((-2500 (*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1237)))) (-2499 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-660 *3)) (-4 *3 (-1237)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1237)))) (-2498 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1237)))) (-2497 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-1237)))) (-2496 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-1237)))) (-2495 (*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-1237))))) +((-4270 (((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|) 16 T ELT)) (-4271 ((|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|) 18 T ELT)) (-4387 (((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)) 13 T ELT))) +(((-661 |#1| |#2|) (-10 -7 (-15 -4270 ((-660 |#2|) (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -4271 (|#2| (-1 |#2| |#1| |#2|) (-660 |#1|) |#2|)) (-15 -4387 ((-660 |#2|) (-1 |#2| |#1|) (-660 |#1|)))) (-1237) (-1237)) (T -661)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-660 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-660 *6)) (-5 *1 (-661 *5 *6)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-660 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-661 *5 *2)))) (-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-660 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-660 *5)) (-5 *1 (-661 *6 *5))))) +((-3841 ((|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)) 18 T ELT) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|)) 19 T ELT) ((|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|) 16 T ELT) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|) 17 T ELT) ((|#2| (-660 |#1|) (-660 |#2|) |#1|) 10 T ELT) (((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|)) 12 T ELT))) +(((-662 |#1| |#2|) (-10 -7 (-15 -3841 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|))) (-15 -3841 (|#2| (-660 |#1|) (-660 |#2|) |#1|)) (-15 -3841 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) |#2|)) (-15 -3841 (|#2| (-660 |#1|) (-660 |#2|) |#1| |#2|)) (-15 -3841 ((-1 |#2| |#1|) (-660 |#1|) (-660 |#2|) (-1 |#2| |#1|))) (-15 -3841 (|#2| (-660 |#1|) (-660 |#2|) |#1| (-1 |#2| |#1|)))) (-1121) (-1237)) (T -662)) +((-3841 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1121)) (-4 *2 (-1237)) (-5 *1 (-662 *5 *2)))) (-3841 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1121)) (-4 *6 (-1237)) (-5 *1 (-662 *5 *6)))) (-3841 (*1 *2 *3 *4 *5 *2) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1121)) (-4 *2 (-1237)) (-5 *1 (-662 *5 *2)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 *5)) (-4 *6 (-1121)) (-4 *5 (-1237)) (-5 *2 (-1 *5 *6)) (-5 *1 (-662 *6 *5)))) (-3841 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1121)) (-4 *2 (-1237)) (-5 *1 (-662 *5 *2)))) (-3841 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1121)) (-4 *6 (-1237)) (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *6))))) +((-4387 (((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)) 21 T ELT))) +(((-663 |#1| |#2| |#3|) (-10 -7 (-15 -4387 ((-660 |#3|) (-1 |#3| |#1| |#2|) (-660 |#1|) (-660 |#2|)))) (-1237) (-1237) (-1237)) (T -663)) +((-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-660 *6)) (-5 *5 (-660 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-660 *8)) (-5 *1 (-663 *6 *7 *8))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 11 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT) ((|#1| $) 8 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-664 |#1|) (-13 (-1103) (-629 |#1|)) (-1121)) (T -664)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (* (($ |#1| $) 17 T ELT))) +(((-665 |#1|) (-142) (-1132)) (T -665)) +((* (*1 *1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1132))))) +(-13 (-1121) (-10 -8 (-15 * ($ |t#1| $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2501 (($ |#1| |#1| $) 44 T ELT)) (-1712 (($ (-1 (-114) |#1|) $) 60 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2593 (($ $) 46 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) 57 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 9 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 38 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 48 T ELT)) (-4036 (($ |#1| $) 29 T ELT) (($ |#1| $ (-790)) 43 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1389 ((|#1| $) 51 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 23 T ELT)) (-3992 (($) 28 T ELT)) (-2502 (((-114) $) 55 T ELT)) (-2592 (((-660 (-2 (|:| -2285 |#1|) (|:| -2156 (-790)))) $) 68 T ELT)) (-1597 (($) 26 T ELT) (($ (-660 |#1|)) 19 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 64 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 20 T ELT)) (-4401 (((-547) $) 35 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-4375 (((-876) $) 14 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 24 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 70 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 17 (|has| $ (-6 -4424)) ELT))) +(((-666 |#1|) (-13 (-714 |#1|) (-10 -8 (-6 -4424) (-15 -2502 ((-114) $)) (-15 -2501 ($ |#1| |#1| $)))) (-1121)) (T -666)) +((-2502 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-666 *3)) (-4 *3 (-1121)))) (-2501 (*1 *1 *2 *2 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1121))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT))) +(((-667 |#1|) (-142) (-1077)) (T -667)) +NIL +(-13 (-21) (-665 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790) $) 17 T ELT)) (-2507 (($ $ |#1|) 69 T ELT)) (-2509 (($ $) 39 T ELT)) (-2510 (($ $) 37 T ELT)) (-3574 (((-3 |#1| "failed") $) 61 T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2544 (($ |#1| |#2| $) 79 T ELT) (($ $ $) 81 T ELT)) (-3952 (((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-558)) 56 T ELT)) (-2511 ((|#1| $ (-558)) 35 T ELT)) (-2512 ((|#2| $ (-558)) 34 T ELT)) (-2503 (($ (-1 |#1| |#1|) $) 41 T ELT)) (-2504 (($ (-1 |#2| |#2|) $) 47 T ELT)) (-2508 (($) 11 T ELT)) (-2514 (($ |#1| |#2|) 24 T ELT)) (-2513 (($ (-660 (-2 (|:| |gen| |#1|) (|:| -4372 |#2|)))) 25 T ELT)) (-2515 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 |#2|))) $) 14 T ELT)) (-2506 (($ |#1| $) 71 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2505 (((-114) $ $) 76 T ELT)) (-4375 (((-876) $) 21 T ELT) (($ |#1|) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 27 T ELT))) +(((-668 |#1| |#2| |#3|) (-13 (-1121) (-1058 |#1|) (-10 -8 (-15 -3952 ((-876) $ (-1 (-876) (-876) (-876)) (-1 (-876) (-876) (-876)) (-558))) (-15 -2515 ((-660 (-2 (|:| |gen| |#1|) (|:| -4372 |#2|))) $)) (-15 -2514 ($ |#1| |#2|)) (-15 -2513 ($ (-660 (-2 (|:| |gen| |#1|) (|:| -4372 |#2|))))) (-15 -2512 (|#2| $ (-558))) (-15 -2511 (|#1| $ (-558))) (-15 -2510 ($ $)) (-15 -2509 ($ $)) (-15 -3537 ((-790) $)) (-15 -2508 ($)) (-15 -2507 ($ $ |#1|)) (-15 -2506 ($ |#1| $)) (-15 -2544 ($ |#1| |#2| $)) (-15 -2544 ($ $ $)) (-15 -2505 ((-114) $ $)) (-15 -2504 ($ (-1 |#2| |#2|) $)) (-15 -2503 ($ (-1 |#1| |#1|) $)))) (-1121) (-23) |#2|) (T -668)) +((-3952 (*1 *2 *1 *3 *3 *4) (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-558)) (-5 *2 (-876)) (-5 *1 (-668 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) (-2515 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 *4)))) (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2514 (*1 *1 *2 *3) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2513 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 *4)))) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-668 *3 *4 *5)))) (-2512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-668 *4 *2 *5)) (-4 *4 (-1121)) (-14 *5 *2))) (-2511 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *2 (-1121)) (-5 *1 (-668 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4))) (-2510 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2509 (*1 *1 *1) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-3537 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2508 (*1 *1) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2507 (*1 *1 *1 *2) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2506 (*1 *1 *2 *1) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2544 (*1 *1 *2 *3 *1) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2544 (*1 *1 *1 *1) (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) (-2505 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) (-2504 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)))) (-2503 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-668 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) +((-2415 (((-558) $) 30 T ELT)) (-2516 (($ |#2| $ (-558)) 26 T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) 12 T ELT)) (-2418 (((-114) (-558) $) 17 T ELT)) (-4231 (($ $ |#2|) 23 T ELT) (($ |#2| $) 24 T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT))) +(((-669 |#1| |#2|) (-10 -7 (-15 -2516 (|#1| |#1| |#1| (-558))) (-15 -2516 (|#1| |#2| |#1| (-558))) (-15 -4231 (|#1| (-660 |#1|))) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4231 (|#1| |#2| |#1|)) (-15 -4231 (|#1| |#1| |#2|)) (-15 -2415 ((-558) |#1|)) (-15 -2417 ((-660 (-558)) |#1|)) (-15 -2418 ((-114) (-558) |#1|))) (-670 |#2|) (-1237)) (T -669)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 84 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 83 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 55 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2413 (($ $ |#1|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 76 T ELT)) (-4231 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-670 |#1|) (-142) (-1237)) (T -670)) +((-4043 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) (-4231 (*1 *1 *1 *2) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1237)))) (-4231 (*1 *1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1237)))) (-4231 (*1 *1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1237)))) (-4231 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) (-4387 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) (-2517 (*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-558))) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) (-2516 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-670 *2)) (-4 *2 (-1237)))) (-2516 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) (-4217 (*1 *2 *1 *3 *2) (-12 (-5 *3 (-1254 (-558))) (|has| *1 (-6 -4425)) (-4 *1 (-670 *2)) (-4 *2 (-1237))))) +(-13 (-615 (-558) |t#1|) (-153 |t#1|) (-298 (-1254 (-558)) $) (-10 -8 (-15 -4043 ($ (-790) |t#1|)) (-15 -4231 ($ $ |t#1|)) (-15 -4231 ($ |t#1| $)) (-15 -4231 ($ $ $)) (-15 -4231 ($ (-660 $))) (-15 -4387 ($ (-1 |t#1| |t#1| |t#1|) $ $)) (-15 -2517 ($ $ (-558))) (-15 -2517 ($ $ (-1254 (-558)))) (-15 -2516 ($ |t#1| $ (-558))) (-15 -2516 ($ $ $ (-558))) (IF (|has| $ (-6 -4425)) (-15 -4217 (|t#1| $ (-1254 (-558)) |t#1|)) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 15 T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| |#1| (-811)) ELT)) (-4153 (($) NIL T CONST)) (-3603 (((-114) $) NIL (|has| |#1| (-811)) ELT)) (-3398 ((|#1| $) 23 T ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-811)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-811)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-811)) ELT)) (-3659 (((-1179) $) 48 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3397 ((|#3| $) 24 T ELT)) (-4375 (((-876) $) 43 T ELT)) (-1377 (((-114) $ $) 22 T ELT)) (-3802 (($ $) NIL (|has| |#1| (-811)) ELT)) (-3058 (($) 10 T CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-811)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-811)) ELT)) (-3453 (((-114) $ $) 20 T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-811)) ELT)) (-3085 (((-114) $ $) 26 (|has| |#1| (-811)) ELT)) (-4378 (($ $ |#3|) 36 T ELT) (($ |#1| |#3|) 37 T ELT)) (-4266 (($ $) 17 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 29 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ |#2| $) 34 T ELT) (($ $ |#2|) NIL T ELT))) +(((-671 |#1| |#2| |#3|) (-13 (-736 |#2|) (-10 -8 (IF (|has| |#1| (-811)) (-6 (-811)) |%noBranch|) (-15 -4378 ($ $ |#3|)) (-15 -4378 ($ |#1| |#3|)) (-15 -3398 (|#1| $)) (-15 -3397 (|#3| $)))) (-736 |#2|) (-175) (|SubsetCategory| (-745) |#2|)) (T -671)) +((-4378 (*1 *1 *1 *2) (-12 (-4 *4 (-175)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-736 *4)) (-4 *2 (|SubsetCategory| (-745) *4)))) (-4378 (*1 *1 *2 *3) (-12 (-4 *4 (-175)) (-5 *1 (-671 *2 *4 *3)) (-4 *2 (-736 *4)) (-4 *3 (|SubsetCategory| (-745) *4)))) (-3398 (*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-736 *3)) (-5 *1 (-671 *2 *3 *4)) (-4 *4 (|SubsetCategory| (-745) *3)))) (-3397 (*1 *2 *1) (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-745) *4)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-736 *4))))) +((-4000 (((-3 |#2| #1="failed") |#3| |#2| (-1197) |#2| (-660 |#2|)) 174 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) #1#) |#3| |#2| (-1197)) 44 T ELT))) +(((-672 |#1| |#2| |#3|) (-10 -7 (-15 -4000 ((-3 (-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) #1="failed") |#3| |#2| (-1197))) (-15 -4000 ((-3 |#2| #1#) |#3| |#2| (-1197) |#2| (-660 |#2|)))) (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149)) (-13 (-29 |#1|) (-1223) (-978)) (-677 |#2|)) (T -672)) +((-4000 (*1 *2 *3 *2 *4 *2 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *1 (-672 *6 *2 *3)) (-4 *3 (-677 *2)))) (-4000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1197)) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2221 (-660 *4)))) (-5 *1 (-672 *6 *4 *3)) (-4 *3 (-677 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2520 (($ $ $) 28 (|has| |#1| (-376)) ELT)) (-2521 (($ $ (-790)) 31 (|has| |#1| (-376)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) NIL T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-790) $) NIL T ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4229 ((|#1| $ |#1|) 24 T ELT)) (-2522 (($ $ $) 33 (|has| |#1| (-376)) ELT)) (-4377 (((-790) $) NIL T ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2943 ((|#1| $ |#1| |#1|) 23 T ELT)) (-2915 (($ $) NIL T ELT)) (-3058 (($) 21 T CONST)) (-3064 (($) 8 T CONST)) (-3069 (($) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-673 |#1| |#2|) (-677 |#1|) (-1069) (-1 |#1| |#1|)) (T -673)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2521 (($ $ (-790)) NIL (|has| |#1| (-376)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) NIL T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-790) $) NIL T ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4229 ((|#1| $ |#1|) NIL T ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4377 (((-790) $) NIL T ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2943 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2915 (($ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-674 |#1|) (-677 |#1|) (-240)) (T -674)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2518 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2520 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2521 (($ $ (-790)) NIL (|has| |#1| (-376)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) NIL T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-790) $) NIL T ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4229 ((|#1| $ |#1|) NIL T ELT) ((|#2| $ |#2|) 13 T ELT)) (-2522 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4377 (((-790) $) NIL T ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2943 ((|#1| $ |#1| |#1|) NIL T ELT)) (-2915 (($ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-675 |#1| |#2|) (-13 (-677 |#1|) (-298 |#2| |#2|)) (-240) (-13 (-667 |#1|) (-10 -8 (-15 -4187 ($ $))))) (T -675)) +NIL +((-2518 (($ $) 29 T ELT)) (-2915 (($ $) 27 T ELT)) (-3069 (($) 13 T ELT))) +(((-676 |#1| |#2|) (-10 -7 (-15 -2518 (|#1| |#1|)) (-15 -2915 (|#1| |#1|)) (-15 -3069 (|#1|))) (-677 |#2|) (-1069)) (T -676)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2518 (($ $) 93 (|has| |#1| (-376)) ELT)) (-2520 (($ $ $) 95 (|has| |#1| (-376)) ELT)) (-2521 (($ $ (-790)) 94 (|has| |#1| (-376)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2934 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2932 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2933 (((-3 $ #1="failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3574 (((-3 (-558) #2="failed") $) 85 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #2#) $) 82 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #2#) $) 79 T ELT)) (-3573 (((-558) $) 84 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 81 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 80 T ELT)) (-4388 (($ $) 74 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3922 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3293 (($ |#1| (-790)) 72 T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 67 (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 68 (|has| |#1| (-569)) ELT)) (-3220 (((-790) $) 76 T ELT)) (-2940 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-2941 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-2930 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2938 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-2939 (((-3 $ #1#) $ $) 61 (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3591 ((|#1| $) 75 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ #1#) $ |#1|) 69 (|has| |#1| (-569)) ELT)) (-4229 ((|#1| $ |#1|) 98 T ELT)) (-2522 (($ $ $) 92 (|has| |#1| (-376)) ELT)) (-4377 (((-790) $) 77 T ELT)) (-3217 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 83 (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) 78 T ELT)) (-4246 (((-660 |#1|) $) 71 T ELT)) (-4106 ((|#1| $ (-790)) 73 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2943 ((|#1| $ |#1| |#1|) 70 T ELT)) (-2915 (($ $) 96 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($) 97 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-677 |#1|) (-142) (-1069)) (T -677)) +((-3069 (*1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)))) (-2915 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)))) (-2520 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2521 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-677 *3)) (-4 *3 (-1069)) (-4 *3 (-376)))) (-2518 (*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2522 (*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(-13 (-865 |t#1|) (-298 |t#1| |t#1|) (-10 -8 (-15 -3069 ($)) (-15 -2915 ($ $)) (IF (|has| |t#1| (-376)) (PROGN (-15 -2520 ($ $ $)) (-15 -2521 ($ $ (-790))) (-15 -2518 ($ $)) (-15 -2522 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-298 |#1| |#1|) . T) ((-424 |#1|) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-745) . T) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-865 |#1|) . T)) +((-2519 (((-660 (-674 (-419 |#2|))) (-674 (-419 |#2|))) 86 (|has| |#1| (-27)) ELT)) (-4161 (((-660 (-674 (-419 |#2|))) (-674 (-419 |#2|))) 85 (|has| |#1| (-27)) ELT) (((-660 (-674 (-419 |#2|))) (-674 (-419 |#2|)) (-1 (-660 |#1|) |#2|)) 19 T ELT))) +(((-678 |#1| |#2|) (-10 -7 (-15 -4161 ((-660 (-674 (-419 |#2|))) (-674 (-419 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -4161 ((-660 (-674 (-419 |#2|))) (-674 (-419 |#2|)))) (-15 -2519 ((-660 (-674 (-419 |#2|))) (-674 (-419 |#2|))))) |%noBranch|)) (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558)))) (-1263 |#1|)) (T -678)) +((-2519 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *2 (-660 (-674 (-419 *5)))) (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-419 *5))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *2 (-660 (-674 (-419 *5)))) (-5 *1 (-678 *4 *5)) (-5 *3 (-674 (-419 *5))))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-674 (-419 *6)))) (-5 *1 (-678 *5 *6)) (-5 *3 (-674 (-419 *6)))))) +((-2520 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 65 T ELT)) (-2521 ((|#2| |#2| (-790) (-1 |#1| |#1|)) 45 T ELT)) (-2522 ((|#2| |#2| |#2| (-1 |#1| |#1|)) 67 T ELT))) +(((-679 |#1| |#2|) (-10 -7 (-15 -2520 (|#2| |#2| |#2| (-1 |#1| |#1|))) (-15 -2521 (|#2| |#2| (-790) (-1 |#1| |#1|))) (-15 -2522 (|#2| |#2| |#2| (-1 |#1| |#1|)))) (-376) (-677 |#1|)) (T -679)) +((-2522 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-679 *4 *2)) (-4 *2 (-677 *4)))) (-2521 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-790)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-679 *5 *2)) (-4 *2 (-677 *5)))) (-2520 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-679 *4 *2)) (-4 *2 (-677 *4))))) +((-2523 (($ $ $) 9 T ELT))) +(((-680 |#1|) (-10 -7 (-15 -2523 (|#1| |#1| |#1|))) (-681)) (T -680)) +NIL +((-2525 (($ $) 8 T ELT)) (-2523 (($ $ $) 6 T ELT)) (-2524 (($ $ $) 7 T ELT))) +(((-681) (-142)) (T -681)) +((-2525 (*1 *1 *1) (-4 *1 (-681))) (-2524 (*1 *1 *1 *1) (-4 *1 (-681))) (-2523 (*1 *1 *1 *1) (-4 *1 (-681)))) +(-13 (-1237) (-10 -8 (-15 -2525 ($ $)) (-15 -2524 ($ $ $)) (-15 -2523 ($ $ $)))) +(((-1237) . T)) +((-2526 (((-3 (-660 (-1191 |#1|)) "failed") (-660 (-1191 |#1|)) (-1191 |#1|)) 33 T ELT))) +(((-682 |#1|) (-10 -7 (-15 -2526 ((-3 (-660 (-1191 |#1|)) "failed") (-660 (-1191 |#1|)) (-1191 |#1|)))) (-928)) (T -682)) +((-2526 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1191 *4))) (-5 *3 (-1191 *4)) (-4 *4 (-928)) (-5 *1 (-682 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4363 (((-660 |#1|) $) 84 T ELT)) (-4376 (($ $ (-790)) 94 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4368 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 50 T ELT)) (-3574 (((-3 (-691 |#1|) #1#) $) NIL T ELT)) (-3573 (((-691 |#1|) $) NIL T ELT)) (-4388 (($ $) 93 T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ (-691 |#1|) |#2|) 70 T ELT)) (-4365 (($ $) 89 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4369 (((-1312 |#1| |#2|) (-1312 |#1| |#2|) $) 49 T ELT)) (-1951 (((-2 (|:| |k| (-691 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3294 (((-691 |#1|) $) NIL T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4197 (($ $ |#1| $) 32 T ELT) (($ $ (-660 |#1|) (-660 $)) 34 T ELT)) (-4377 (((-790) $) 91 T ELT)) (-3949 (($ $ $) 20 T ELT) (($ (-691 |#1|) (-691 |#1|)) 79 T ELT) (($ (-691 |#1|) $) 77 T ELT) (($ $ (-691 |#1|)) 78 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ |#1|) 76 T ELT) (((-1303 |#1| |#2|) $) 60 T ELT) (((-1312 |#1| |#2|) $) 43 T ELT) (($ (-691 |#1|)) 27 T ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-691 |#1|)) NIL T ELT)) (-4383 ((|#2| (-1312 |#1| |#2|) $) 45 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 23 T CONST)) (-3063 (((-660 (-2 (|:| |k| (-691 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4374 (((-3 $ #1#) (-1303 |#1| |#2|)) 62 T ELT)) (-1935 (($ (-691 |#1|)) 14 T ELT)) (-3453 (((-114) $ $) 46 T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) 68 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 31 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) 30 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| (-691 |#1|)) NIL T ELT))) +(((-683 |#1| |#2|) (-13 (-387 |#1| |#2|) (-397 |#2| (-691 |#1|)) (-10 -8 (-15 -4374 ((-3 $ "failed") (-1303 |#1| |#2|))) (-15 -3949 ($ (-691 |#1|) (-691 |#1|))) (-15 -3949 ($ (-691 |#1|) $)) (-15 -3949 ($ $ (-691 |#1|))))) (-860) (-175)) (T -683)) +((-4374 (*1 *1 *2) (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *1 (-683 *3 *4)))) (-3949 (*1 *1 *2 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-5 *1 (-683 *3 *4)) (-4 *4 (-175)))) (-3949 (*1 *1 *2 *1) (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-5 *1 (-683 *3 *4)) (-4 *4 (-175)))) (-3949 (*1 *1 *1 *2) (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-5 *1 (-683 *3 *4)) (-4 *4 (-175))))) +((-1934 (((-114) $) NIL T ELT) (((-114) (-1 (-114) |#2| |#2|) $) 59 T ELT)) (-1932 (($ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $) 12 T ELT)) (-1712 (($ (-1 (-114) |#2|) $) 29 T ELT)) (-2509 (($ $) 65 T ELT)) (-2593 (($ $) 74 T ELT)) (-3824 (($ |#2| $) NIL T ELT) (($ (-1 (-114) |#2|) $) 43 T ELT)) (-4271 ((|#2| (-1 |#2| |#2| |#2|) $) 21 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2|) 60 T ELT) ((|#2| (-1 |#2| |#2| |#2|) $ |#2| |#2|) 62 T ELT)) (-3838 (((-558) |#2| $ (-558)) 71 T ELT) (((-558) |#2| $) NIL T ELT) (((-558) (-1 (-114) |#2|) $) 54 T ELT)) (-4043 (($ (-790) |#2|) 63 T ELT)) (-3256 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 31 T ELT)) (-3937 (($ $ $) NIL T ELT) (($ (-1 (-114) |#2| |#2|) $ $) 24 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 64 T ELT)) (-3961 (($ |#2|) 15 T ELT)) (-4036 (($ $ $ (-558)) 42 T ELT) (($ |#2| $ (-558)) 40 T ELT)) (-1467 (((-3 |#2| "failed") (-1 (-114) |#2|) $) 53 T ELT)) (-1713 (($ $ (-1254 (-558))) 51 T ELT) (($ $ (-558)) 44 T ELT)) (-1933 (($ $ $ (-558)) 70 T ELT)) (-3819 (($ $) 68 T ELT)) (-3085 (((-114) $ $) 76 T ELT))) +(((-684 |#1| |#2|) (-10 -7 (-15 -3961 (|#1| |#2|)) (-15 -1713 (|#1| |#1| (-558))) (-15 -1713 (|#1| |#1| (-1254 (-558)))) (-15 -3824 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -4036 (|#1| |#2| |#1| (-558))) (-15 -4036 (|#1| |#1| |#1| (-558))) (-15 -3256 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1712 (|#1| (-1 (-114) |#2|) |#1|)) (-15 -3824 (|#1| |#2| |#1|)) (-15 -2593 (|#1| |#1|)) (-15 -3256 (|#1| |#1| |#1|)) (-15 -3937 (|#1| (-1 (-114) |#2| |#2|) |#1| |#1|)) (-15 -1934 ((-114) (-1 (-114) |#2| |#2|) |#1|)) (-15 -3838 ((-558) (-1 (-114) |#2|) |#1|)) (-15 -3838 ((-558) |#2| |#1|)) (-15 -3838 ((-558) |#2| |#1| (-558))) (-15 -3937 (|#1| |#1| |#1|)) (-15 -1934 ((-114) |#1|)) (-15 -1933 (|#1| |#1| |#1| (-558))) (-15 -2509 (|#1| |#1|)) (-15 -1932 (|#1| (-1 (-114) |#2| |#2|) |#1|)) (-15 -1932 (|#1| |#1|)) (-15 -3085 ((-114) |#1| |#1|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2| |#2|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1| |#2|)) (-15 -4271 (|#2| (-1 |#2| |#2| |#2|) |#1|)) (-15 -1467 ((-3 |#2| "failed") (-1 (-114) |#2|) |#1|)) (-15 -4043 (|#1| (-790) |#2|)) (-15 -4387 (|#1| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3819 (|#1| |#1|))) (-685 |#2|) (-1237)) (T -684)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-4224 ((|#1| $) 71 T ELT)) (-4226 (($ $) 73 T ELT)) (-2412 (((-1293) $ (-558) (-558)) 107 (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) 58 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) $) 153 (|has| |#1| (-860)) ELT) (((-114) (-1 (-114) |#1| |#1|) $) 147 T ELT)) (-1932 (($ $) 157 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1| |#1|) $) 156 (|has| $ (-6 -4425)) ELT)) (-3309 (($ $) 152 (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $) 146 T ELT)) (-3861 (((-114) $ (-790)) 90 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 62 (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) 60 (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 127 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) 140 T ELT)) (-4139 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4424)) ELT)) (-4225 ((|#1| $) 72 T ELT)) (-4153 (($) 7 T CONST)) (-2509 (($ $) 155 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 145 T ELT)) (-4228 (($ $) 79 T ELT) (($ $ (-790)) 77 T ELT)) (-2593 (($ $) 142 (|has| |#1| (-1121)) ELT)) (-1466 (($ $) 109 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 141 (|has| |#1| (-1121)) ELT) (($ (-1 (-114) |#1|) $) 136 T ELT)) (-3825 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4424)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1718 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 97 T ELT)) (-3862 (((-114) $) 93 T ELT)) (-3838 (((-558) |#1| $ (-558)) 150 (|has| |#1| (-1121)) ELT) (((-558) |#1| $) 149 (|has| |#1| (-1121)) ELT) (((-558) (-1 (-114) |#1|) $) 148 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-4043 (($ (-790) |#1|) 119 T ELT)) (-4148 (((-114) $ (-790)) 91 T ELT)) (-2414 (((-558) $) 105 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 163 (|has| |#1| (-860)) ELT)) (-3256 (($ $ $) 143 (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 139 T ELT)) (-3937 (($ $ $) 151 (|has| |#1| (-860)) ELT) (($ (-1 (-114) |#1| |#1|) $ $) 144 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 104 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 162 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-3961 (($ |#1|) 133 T ELT)) (-4145 (((-114) $ (-790)) 92 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) 76 T ELT) (($ $ (-790)) 74 T ELT)) (-4036 (($ $ $ (-558)) 138 T ELT) (($ |#1| $ (-558)) 137 T ELT)) (-2516 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2417 (((-660 (-558)) $) 102 T ELT)) (-2418 (((-114) (-558) $) 101 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 82 T ELT) (($ $ (-790)) 80 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2413 (($ $ |#1|) 106 (|has| $ (-6 -4425)) ELT)) (-3863 (((-114) $) 94 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 100 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1254 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-1713 (($ $ (-1254 (-558))) 135 T ELT) (($ $ (-558)) 134 T ELT)) (-2517 (($ $ (-1254 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-4221 (($ $) 68 T ELT)) (-4219 (($ $) 65 (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) 69 T ELT)) (-4223 (($ $) 70 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1933 (($ $ $ (-558)) 154 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 108 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 117 T ELT)) (-4220 (($ $ $) 67 T ELT) (($ $ |#1|) 66 T ELT)) (-4231 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-660 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 161 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 159 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) 160 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 158 (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-685 |#1|) (-142) (-1237)) (T -685)) +((-3961 (*1 *1 *2) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1237))))) +(-13 (-1170 |t#1|) (-385 |t#1|) (-294 |t#1|) (-10 -8 (-15 -3961 ($ |t#1|)))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-294 |#1|) . T) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1030 |#1|) . T) ((-1121) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860))) ((-1170 |#1|) . T) ((-1237) . T) ((-1276 |#1|) . T)) +((-4000 (((-660 (-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2221 (-660 |#3|)))) |#4| (-660 |#3|)) 66 T ELT) (((-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2221 (-660 |#3|))) |#4| |#3|) 60 T ELT)) (-3510 (((-790) |#4| |#3|) 18 T ELT)) (-3759 (((-3 |#3| #1#) |#4| |#3|) 21 T ELT)) (-2527 (((-114) |#4| |#3|) 14 T ELT))) +(((-686 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4000 ((-2 (|:| |particular| (-3 |#3| #1="failed")) (|:| -2221 (-660 |#3|))) |#4| |#3|)) (-15 -4000 ((-660 (-2 (|:| |particular| (-3 |#3| #1#)) (|:| -2221 (-660 |#3|)))) |#4| (-660 |#3|))) (-15 -3759 ((-3 |#3| #1#) |#4| |#3|)) (-15 -2527 ((-114) |#4| |#3|)) (-15 -3510 ((-790) |#4| |#3|))) (-376) (-13 (-385 |#1|) (-10 -7 (-6 -4425))) (-13 (-385 |#1|) (-10 -7 (-6 -4425))) (-705 |#1| |#2| |#3|)) (T -686)) +((-3510 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-5 *2 (-790)) (-5 *1 (-686 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4)))) (-2527 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-5 *2 (-114)) (-5 *1 (-686 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4)))) (-3759 (*1 *2 *3 *2) (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4425)))) (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425)))) (-5 *1 (-686 *4 *5 *2 *3)) (-4 *3 (-705 *4 *5 *2)))) (-4000 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-5 *2 (-660 (-2 (|:| |particular| (-3 *7 #1="failed")) (|:| -2221 (-660 *7))))) (-5 *1 (-686 *5 *6 *7 *3)) (-5 *4 (-660 *7)) (-4 *3 (-705 *5 *6 *7)))) (-4000 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2221 (-660 *4)))) (-5 *1 (-686 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4))))) +((-4000 (((-660 (-2 (|:| |particular| (-3 (-1287 |#1|) #1="failed")) (|:| -2221 (-660 (-1287 |#1|))))) (-660 (-660 |#1|)) (-660 (-1287 |#1|))) 22 T ELT) (((-660 (-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|))))) (-708 |#1|) (-660 (-1287 |#1|))) 21 T ELT) (((-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|)))) (-660 (-660 |#1|)) (-1287 |#1|)) 18 T ELT) (((-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|)))) (-708 |#1|) (-1287 |#1|)) 14 T ELT)) (-3510 (((-790) (-708 |#1|) (-1287 |#1|)) 30 T ELT)) (-3759 (((-3 (-1287 |#1|) #1#) (-708 |#1|) (-1287 |#1|)) 24 T ELT)) (-2527 (((-114) (-708 |#1|) (-1287 |#1|)) 27 T ELT))) +(((-687 |#1|) (-10 -7 (-15 -4000 ((-2 (|:| |particular| (-3 (-1287 |#1|) #1="failed")) (|:| -2221 (-660 (-1287 |#1|)))) (-708 |#1|) (-1287 |#1|))) (-15 -4000 ((-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|)))) (-660 (-660 |#1|)) (-1287 |#1|))) (-15 -4000 ((-660 (-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|))))) (-708 |#1|) (-660 (-1287 |#1|)))) (-15 -4000 ((-660 (-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|))))) (-660 (-660 |#1|)) (-660 (-1287 |#1|)))) (-15 -3759 ((-3 (-1287 |#1|) #1#) (-708 |#1|) (-1287 |#1|))) (-15 -2527 ((-114) (-708 |#1|) (-1287 |#1|))) (-15 -3510 ((-790) (-708 |#1|) (-1287 |#1|)))) (-376)) (T -687)) +((-3510 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-376)) (-5 *2 (-790)) (-5 *1 (-687 *5)))) (-2527 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-376)) (-5 *2 (-114)) (-5 *1 (-687 *5)))) (-3759 (*1 *2 *3 *2) (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-708 *4)) (-4 *4 (-376)) (-5 *1 (-687 *4)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-376)) (-5 *2 (-660 (-2 (|:| |particular| (-3 (-1287 *5) #1="failed")) (|:| -2221 (-660 (-1287 *5)))))) (-5 *1 (-687 *5)) (-5 *4 (-660 (-1287 *5))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *5)) (-4 *5 (-376)) (-5 *2 (-660 (-2 (|:| |particular| (-3 (-1287 *5) #1#)) (|:| -2221 (-660 (-1287 *5)))))) (-5 *1 (-687 *5)) (-5 *4 (-660 (-1287 *5))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) #1#)) (|:| -2221 (-660 (-1287 *5))))) (-5 *1 (-687 *5)) (-5 *4 (-1287 *5)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *5) #1#)) (|:| -2221 (-660 (-1287 *5))))) (-5 *1 (-687 *5)) (-5 *4 (-1287 *5))))) +((-2528 (((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -2221 (-660 (-1287 (-419 |#4|))))) (-660 |#4|) (-660 |#3|)) 51 T ELT))) +(((-688 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2528 ((-2 (|:| |particular| (-3 (-1287 (-419 |#4|)) "failed")) (|:| -2221 (-660 (-1287 (-419 |#4|))))) (-660 |#4|) (-660 |#3|)))) (-569) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -688)) +((-2528 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *7)) (-4 *7 (-860)) (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) (|:| -2221 (-660 (-1287 (-419 *8)))))) (-5 *1 (-688 *5 *6 *7 *8))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1979 (((-3 $ #1="failed")) NIL (|has| |#2| (-569)) ELT)) (-3749 ((|#2| $) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3640 (((-1287 (-708 |#2|))) NIL T ELT) (((-1287 (-708 |#2|)) (-1287 $)) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-1931 (((-1287 $)) 41 T ELT)) (-3752 (($ |#2|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3511 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3513 (((-246 |#1| |#2|) $ (-558)) NIL T ELT)) (-2116 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (|has| |#2| (-569)) ELT)) (-1905 (((-3 $ #1#)) NIL (|has| |#2| (-569)) ELT)) (-1995 (((-708 |#2|)) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-1929 ((|#2| $) NIL T ELT)) (-1993 (((-708 |#2|) $) NIL T ELT) (((-708 |#2|) $ (-1287 $)) NIL T ELT)) (-2634 (((-3 $ #1#) $) NIL (|has| |#2| (-569)) ELT)) (-2110 (((-1191 (-964 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2637 (($ $ (-937)) NIL T ELT)) (-1927 ((|#2| $) NIL T ELT)) (-1907 (((-1191 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-1997 ((|#2|) NIL T ELT) ((|#2| (-1287 $)) NIL T ELT)) (-1925 (((-1191 |#2|) $) NIL T ELT)) (-1919 (((-114)) NIL T ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-1999 (($ (-1287 |#2|)) NIL T ELT) (($ (-1287 |#2|) (-1287 $)) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3510 (((-790) $) NIL (|has| |#2| (-569)) ELT) (((-937)) 42 T ELT)) (-3514 ((|#2| $ (-558) (-558)) NIL T ELT)) (-1916 (((-114)) NIL T ELT)) (-2661 (($ $ (-937)) NIL T ELT)) (-3289 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3509 (((-790) $) NIL (|has| |#2| (-569)) ELT)) (-3508 (((-660 (-246 |#1| |#2|)) $) NIL (|has| |#2| (-569)) ELT)) (-3516 (((-790) $) NIL T ELT)) (-1912 (((-114)) NIL T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3746 ((|#2| $) NIL (|has| |#2| (-6 (-4426 #2="*"))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3519 (((-558) $) NIL T ELT)) (-3517 (((-558) $) NIL T ELT)) (-3525 (($ (-660 (-660 |#2|))) NIL T ELT)) (-2159 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4021 (((-660 (-660 |#2|)) $) NIL T ELT)) (-1910 (((-114)) NIL T ELT)) (-1914 (((-114)) NIL T ELT)) (-2117 (((-3 (-2 (|:| |particular| $) (|:| -2221 (-660 $))) #1#)) NIL (|has| |#2| (-569)) ELT)) (-1906 (((-3 $ #1#)) NIL (|has| |#2| (-569)) ELT)) (-1996 (((-708 |#2|)) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-1930 ((|#2| $) NIL T ELT)) (-1994 (((-708 |#2|) $) NIL T ELT) (((-708 |#2|) $ (-1287 $)) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-2635 (((-3 $ #1#) $) NIL (|has| |#2| (-569)) ELT)) (-2114 (((-1191 (-964 |#2|))) NIL (|has| |#2| (-376)) ELT)) (-2636 (($ $ (-937)) NIL T ELT)) (-1928 ((|#2| $) NIL T ELT)) (-1908 (((-1191 |#2|) $) NIL (|has| |#2| (-569)) ELT)) (-1998 ((|#2|) NIL T ELT) ((|#2| (-1287 $)) NIL T ELT)) (-1926 (((-1191 |#2|) $) NIL T ELT)) (-1920 (((-114)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1911 (((-114)) NIL T ELT)) (-1913 (((-114)) NIL T ELT)) (-1915 (((-114)) NIL T ELT)) (-4017 (((-3 $ #1#) $) NIL (|has| |#2| (-376)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1918 (((-114)) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) ((|#2| $ (-558) (-558)) 27 T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4187 (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-3748 ((|#2| $) NIL T ELT)) (-3751 (($ (-660 |#2|)) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-3750 (((-246 |#1| |#2|) $) NIL T ELT)) (-3747 ((|#2| $) NIL (|has| |#2| (-6 (-4426 #2#))) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3641 (((-708 |#2|) (-1287 $)) NIL T ELT) (((-1287 |#2|) $) NIL T ELT) (((-708 |#2|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#2|) $ (-1287 $)) 30 T ELT)) (-4401 (($ (-1287 |#2|)) NIL T ELT) (((-1287 |#2|) $) NIL T ELT)) (-2102 (((-660 (-964 |#2|))) NIL T ELT) (((-660 (-964 |#2|)) (-1287 $)) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-1924 (((-114)) NIL T ELT)) (-3512 (((-246 |#1| |#2|) $ (-558)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (((-708 |#2|) $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) 40 T ELT)) (-1909 (((-660 (-1287 |#2|))) NIL (|has| |#2| (-569)) ELT)) (-2824 (($ $ $ $) NIL T ELT)) (-1922 (((-114)) NIL T ELT)) (-2943 (($ (-708 |#2|) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) NIL T ELT)) (-2822 (($ $ $) NIL T ELT)) (-1923 (((-114)) NIL T ELT)) (-1921 (((-114)) NIL T ELT)) (-1917 (((-114)) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#2| (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) NIL T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-689 |#1| |#2|) (-13 (-1143 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-629 (-708 |#2|)) (-430 |#2|)) (-937) (-175)) (T -689)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3665 (((-660 (-1155)) $) 10 T ELT)) (-4375 (((-876) $) 16 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-690) (-13 (-1103) (-10 -8 (-15 -3665 ((-660 (-1155)) $))))) (T -690)) +((-3665 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-690))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4363 (((-660 |#1|) $) NIL T ELT)) (-3538 (($ $) 62 T ELT)) (-3062 (((-114) $) NIL T ELT)) (-3574 (((-3 |#1| #1="failed") $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-2531 (((-3 $ #1#) (-840 |#1|)) 28 T ELT)) (-2533 (((-114) (-840 |#1|)) 18 T ELT)) (-2532 (($ (-840 |#1|)) 29 T ELT)) (-2906 (((-114) $ $) 36 T ELT)) (-4262 (((-937) $) 43 T ELT)) (-3539 (($ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4161 (((-660 $) (-840 |#1|)) 20 T ELT)) (-4375 (((-876) $) 51 T ELT) (($ |#1|) 40 T ELT) (((-840 |#1|) $) 47 T ELT) (((-696 |#1|) $) 52 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2530 (((-58 (-660 $)) (-660 |#1|) (-937)) 67 T ELT)) (-2529 (((-660 $) (-660 |#1|) (-937)) 70 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 63 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 46 T ELT))) +(((-691 |#1|) (-13 (-860) (-1058 |#1|) (-10 -8 (-15 -3062 ((-114) $)) (-15 -3539 ($ $)) (-15 -3538 ($ $)) (-15 -4262 ((-937) $)) (-15 -2906 ((-114) $ $)) (-15 -4375 ((-840 |#1|) $)) (-15 -4375 ((-696 |#1|) $)) (-15 -4161 ((-660 $) (-840 |#1|))) (-15 -2533 ((-114) (-840 |#1|))) (-15 -2532 ($ (-840 |#1|))) (-15 -2531 ((-3 $ "failed") (-840 |#1|))) (-15 -4363 ((-660 |#1|) $)) (-15 -2530 ((-58 (-660 $)) (-660 |#1|) (-937))) (-15 -2529 ((-660 $) (-660 |#1|) (-937))))) (-860)) (T -691)) +((-3062 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) (-3539 (*1 *1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-860)))) (-3538 (*1 *1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-860)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) (-2906 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) (-4161 (*1 *2 *3) (-12 (-5 *3 (-840 *4)) (-4 *4 (-860)) (-5 *2 (-660 (-691 *4))) (-5 *1 (-691 *4)))) (-2533 (*1 *2 *3) (-12 (-5 *3 (-840 *4)) (-4 *4 (-860)) (-5 *2 (-114)) (-5 *1 (-691 *4)))) (-2532 (*1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *3 (-860)) (-5 *1 (-691 *3)))) (-2531 (*1 *1 *2) (|partial| -12 (-5 *2 (-840 *3)) (-4 *3 (-860)) (-5 *1 (-691 *3)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) (-2530 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-937)) (-4 *5 (-860)) (-5 *2 (-58 (-660 (-691 *5)))) (-5 *1 (-691 *5)))) (-2529 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-937)) (-4 *5 (-860)) (-5 *2 (-660 (-691 *5))) (-5 *1 (-691 *5))))) +((-3821 ((|#2| $) 100 T ELT)) (-4226 (($ $) 121 T ELT)) (-3861 (((-114) $ (-790)) 35 T ELT)) (-4228 (($ $) 109 T ELT) (($ $ (-790)) 112 T ELT)) (-3862 (((-114) $) 122 T ELT)) (-3431 (((-660 $) $) 96 T ELT)) (-3427 (((-114) $ $) 92 T ELT)) (-4148 (((-114) $ (-790)) 33 T ELT)) (-2414 (((-558) $) 66 T ELT)) (-2415 (((-558) $) 65 T ELT)) (-4145 (((-114) $ (-790)) 31 T ELT)) (-3946 (((-114) $) 98 T ELT)) (-4227 ((|#2| $) 113 T ELT) (($ $ (-790)) 117 T ELT)) (-2516 (($ $ $ (-558)) 83 T ELT) (($ |#2| $ (-558)) 82 T ELT)) (-2417 (((-660 (-558)) $) 64 T ELT)) (-2418 (((-114) (-558) $) 59 T ELT)) (-4230 ((|#2| $) NIL T ELT) (($ $ (-790)) 108 T ELT)) (-4198 (($ $ (-558)) 125 T ELT)) (-3863 (((-114) $) 124 T ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 42 T ELT)) (-2419 (((-660 |#2|) $) 46 T ELT)) (-4229 ((|#2| $ "value") NIL T ELT) ((|#2| $ "first") 107 T ELT) (($ $ "rest") 111 T ELT) ((|#2| $ "last") 120 T ELT) (($ $ (-1254 (-558))) 79 T ELT) ((|#2| $ (-558)) 57 T ELT) ((|#2| $ (-558) |#2|) 58 T ELT)) (-3429 (((-558) $ $) 91 T ELT)) (-2517 (($ $ (-1254 (-558))) 78 T ELT) (($ $ (-558)) 72 T ELT)) (-4062 (((-114) $) 87 T ELT)) (-4221 (($ $) 105 T ELT)) (-4222 (((-790) $) 104 T ELT)) (-4223 (($ $) 103 T ELT)) (-3949 (($ (-660 |#2|)) 53 T ELT)) (-3291 (($ $) 126 T ELT)) (-3941 (((-660 $) $) 90 T ELT)) (-3428 (((-114) $ $) 89 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 41 T ELT)) (-3453 (((-114) $ $) 20 T ELT)) (-4386 (((-790) $) 39 T ELT))) +(((-692 |#1| |#2|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -3291 (|#1| |#1|)) (-15 -4198 (|#1| |#1| (-558))) (-15 -3861 ((-114) |#1| (-790))) (-15 -4148 ((-114) |#1| (-790))) (-15 -4145 ((-114) |#1| (-790))) (-15 -3862 ((-114) |#1|)) (-15 -3863 ((-114) |#1|)) (-15 -4229 (|#2| |#1| (-558) |#2|)) (-15 -4229 (|#2| |#1| (-558))) (-15 -2419 ((-660 |#2|) |#1|)) (-15 -2418 ((-114) (-558) |#1|)) (-15 -2417 ((-660 (-558)) |#1|)) (-15 -2415 ((-558) |#1|)) (-15 -2414 ((-558) |#1|)) (-15 -3949 (|#1| (-660 |#2|))) (-15 -4229 (|#1| |#1| (-1254 (-558)))) (-15 -2517 (|#1| |#1| (-558))) (-15 -2517 (|#1| |#1| (-1254 (-558)))) (-15 -2516 (|#1| |#2| |#1| (-558))) (-15 -2516 (|#1| |#1| |#1| (-558))) (-15 -4221 (|#1| |#1|)) (-15 -4222 ((-790) |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -4227 (|#1| |#1| (-790))) (-15 -4229 (|#2| |#1| "last")) (-15 -4227 (|#2| |#1|)) (-15 -4228 (|#1| |#1| (-790))) (-15 -4229 (|#1| |#1| "rest")) (-15 -4228 (|#1| |#1|)) (-15 -4230 (|#1| |#1| (-790))) (-15 -4229 (|#2| |#1| "first")) (-15 -4230 (|#2| |#1|)) (-15 -3427 ((-114) |#1| |#1|)) (-15 -3428 ((-114) |#1| |#1|)) (-15 -3429 ((-558) |#1| |#1|)) (-15 -4062 ((-114) |#1|)) (-15 -4229 (|#2| |#1| "value")) (-15 -3821 (|#2| |#1|)) (-15 -3946 ((-114) |#1|)) (-15 -3431 ((-660 |#1|) |#1|)) (-15 -3941 ((-660 |#1|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#2|) |#1|)) (-15 -4386 ((-790) |#1|))) (-693 |#2|) (-1237)) (T -692)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-4224 ((|#1| $) 71 T ELT)) (-4226 (($ $) 73 T ELT)) (-2412 (((-1293) $ (-558) (-558)) 107 (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) 58 (|has| $ (-6 -4425)) ELT)) (-3861 (((-114) $ (-790)) 90 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 62 (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) 60 (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 127 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 112 T ELT)) (-4225 ((|#1| $) 72 T ELT)) (-4153 (($) 7 T CONST)) (-2535 (($ $) 135 T ELT)) (-4228 (($ $) 79 T ELT) (($ $ (-790)) 77 T ELT)) (-1466 (($ $) 109 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 110 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 113 T ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1718 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 97 T ELT)) (-3862 (((-114) $) 93 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-2534 (((-790) $) 134 T ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-4043 (($ (-790) |#1|) 119 T ELT)) (-4148 (((-114) $ (-790)) 91 T ELT)) (-2414 (((-558) $) 105 (|has| (-558) (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 104 (|has| (-558) (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4145 (((-114) $ (-790)) 92 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-2537 (($ $) 137 T ELT)) (-2538 (((-114) $) 138 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) 76 T ELT) (($ $ (-790)) 74 T ELT)) (-2516 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2417 (((-660 (-558)) $) 102 T ELT)) (-2418 (((-114) (-558) $) 101 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2536 ((|#1| $) 136 T ELT)) (-4230 ((|#1| $) 82 T ELT) (($ $ (-790)) 80 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2413 (($ $ |#1|) 106 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-558)) 133 T ELT)) (-3863 (((-114) $) 94 T ELT)) (-2539 (((-114) $) 139 T ELT)) (-2540 (((-114) $) 140 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 100 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1254 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-2517 (($ $ (-1254 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-4221 (($ $) 68 T ELT)) (-4219 (($ $) 65 (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) 69 T ELT)) (-4223 (($ $) 70 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 108 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 117 T ELT)) (-4220 (($ $ $) 67 (|has| $ (-6 -4425)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4425)) ELT)) (-4231 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-660 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-3291 (($ $) 132 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-693 |#1|) (-142) (-1237)) (T -693)) +((-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-693 *3)) (-4 *3 (-1237)))) (-4139 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-693 *3)) (-4 *3 (-1237)))) (-2540 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-2539 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-2538 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-2537 (*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237)))) (-2536 (*1 *2 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237)))) (-2535 (*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237)))) (-2534 (*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-790)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-693 *3)) (-4 *3 (-1237)))) (-3291 (*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237))))) +(-13 (-1170 |t#1|) (-10 -8 (-15 -3825 ($ (-1 (-114) |t#1|) $)) (-15 -4139 ($ (-1 (-114) |t#1|) $)) (-15 -2540 ((-114) $)) (-15 -2539 ((-114) $)) (-15 -2538 ((-114) $)) (-15 -2537 ($ $)) (-15 -2536 (|t#1| $)) (-15 -2535 ($ $)) (-15 -2534 ((-790) $)) (-15 -4198 ($ $ (-558))) (-15 -3291 ($ $)))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-1030 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1170 |#1|) . T) ((-1237) . T) ((-1276 |#1|) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2546 (($ (-790) (-790) (-790)) 53 (|has| |#1| (-1069)) ELT)) (-2543 ((|#1| $ (-790) (-790) (-790) |#1|) 47 T ELT)) (-4153 (($) NIL T CONST)) (-2544 (($ $ $) 57 (|has| |#1| (-1069)) ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2541 (((-1287 (-790)) $) 12 T ELT)) (-2542 (($ (-1197) $ $) 34 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2545 (($ (-790)) 55 (|has| |#1| (-1069)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-790) (-790) (-790)) 44 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-3949 (($ (-660 (-660 (-660 |#1|)))) 67 T ELT)) (-4375 (($ (-976 (-976 (-976 |#1|)))) 23 T ELT) (((-976 (-976 (-976 |#1|))) $) 19 T ELT) (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-694 |#1|) (-13 (-501 |#1|) (-10 -8 (IF (|has| |#1| (-1069)) (PROGN (-15 -2546 ($ (-790) (-790) (-790))) (-15 -2545 ($ (-790))) (-15 -2544 ($ $ $))) |%noBranch|) (-15 -3949 ($ (-660 (-660 (-660 |#1|))))) (-15 -4229 (|#1| $ (-790) (-790) (-790))) (-15 -2543 (|#1| $ (-790) (-790) (-790) |#1|)) (-15 -4375 ($ (-976 (-976 (-976 |#1|))))) (-15 -4375 ((-976 (-976 (-976 |#1|))) $)) (-15 -2542 ($ (-1197) $ $)) (-15 -2541 ((-1287 (-790)) $)))) (-1121)) (T -694)) +((-2546 (*1 *1 *2 *2 *2) (-12 (-5 *2 (-790)) (-5 *1 (-694 *3)) (-4 *3 (-1069)) (-4 *3 (-1121)))) (-2545 (*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-694 *3)) (-4 *3 (-1069)) (-4 *3 (-1121)))) (-2544 (*1 *1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1069)) (-4 *2 (-1121)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-660 *3)))) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) (-4229 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-790)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-2543 (*1 *2 *1 *3 *3 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) (-2542 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) (-2541 (*1 *2 *1) (-12 (-5 *2 (-1287 (-790))) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3595 (((-495) $) 10 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 19 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-1155) $) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-695) (-13 (-1103) (-10 -8 (-15 -3595 ((-495) $)) (-15 -3650 ((-1155) $))))) (T -695)) +((-3595 (*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-695)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-695))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4363 (((-660 |#1|) $) 15 T ELT)) (-3538 (($ $) 19 T ELT)) (-3062 (((-114) $) 20 T ELT)) (-3574 (((-3 |#1| "failed") $) 23 T ELT)) (-3573 ((|#1| $) 21 T ELT)) (-4228 (($ $) 37 T ELT)) (-4365 (($ $) 25 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-2906 (((-114) $ $) 46 T ELT)) (-4262 (((-937) $) 40 T ELT)) (-3539 (($ $) 18 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 ((|#1| $) 36 T ELT)) (-4375 (((-876) $) 32 T ELT) (($ |#1|) 24 T ELT) (((-840 |#1|) $) 28 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 13 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 44 T ELT)) (* (($ $ $) 35 T ELT))) +(((-696 |#1|) (-13 (-860) (-1058 |#1|) (-10 -8 (-15 * ($ $ $)) (-15 -4375 ((-840 |#1|) $)) (-15 -4230 (|#1| $)) (-15 -3539 ($ $)) (-15 -4262 ((-937) $)) (-15 -2906 ((-114) $ $)) (-15 -4365 ($ $)) (-15 -4228 ($ $)) (-15 -3062 ((-114) $)) (-15 -3538 ($ $)) (-15 -4363 ((-660 |#1|) $)))) (-860)) (T -696)) +((* (*1 *1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) (-4230 (*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) (-3539 (*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) (-2906 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) (-3538 (*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-696 *3)) (-4 *3 (-860))))) +((-2555 ((|#1| (-1 |#1| (-790) |#1|) (-790) |#1|) 11 T ELT)) (-2547 ((|#1| (-1 |#1| |#1|) (-790) |#1|) 9 T ELT))) +(((-697 |#1|) (-10 -7 (-15 -2547 (|#1| (-1 |#1| |#1|) (-790) |#1|)) (-15 -2555 (|#1| (-1 |#1| (-790) |#1|) (-790) |#1|))) (-1121)) (T -697)) +((-2555 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 (-790) *2)) (-5 *4 (-790)) (-4 *2 (-1121)) (-5 *1 (-697 *2)))) (-2547 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-790)) (-4 *2 (-1121)) (-5 *1 (-697 *2))))) +((-2549 ((|#2| |#1| |#2|) 9 T ELT)) (-2548 ((|#1| |#1| |#2|) 8 T ELT))) +(((-698 |#1| |#2|) (-10 -7 (-15 -2548 (|#1| |#1| |#2|)) (-15 -2549 (|#2| |#1| |#2|))) (-1121) (-1121)) (T -698)) +((-2549 (*1 *2 *3 *2) (-12 (-5 *1 (-698 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-2548 (*1 *2 *2 *3) (-12 (-5 *1 (-698 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +((-2550 ((|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|) 11 T ELT))) +(((-699 |#1| |#2| |#3|) (-10 -7 (-15 -2550 (|#3| (-1 |#3| |#2|) (-1 |#2| |#1|) |#1|))) (-1121) (-1121) (-1121)) (T -699)) +((-2550 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)) (-5 *1 (-699 *5 *6 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3735 (((-1238) $) 21 T ELT)) (-3734 (((-660 (-1238)) $) 19 T ELT)) (-2551 (($ (-660 (-1238)) (-1238)) 14 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 29 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT) (((-1238) $) 22 T ELT) (($ (-1135)) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-700) (-13 (-1103) (-629 (-1238)) (-10 -8 (-15 -4375 ($ (-1135))) (-15 -2551 ($ (-660 (-1238)) (-1238))) (-15 -3734 ((-660 (-1238)) $)) (-15 -3735 ((-1238) $))))) (T -700)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-700)))) (-2551 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1238))) (-5 *3 (-1238)) (-5 *1 (-700)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-700)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-700))))) +((-2555 (((-1 |#1| (-790) |#1|) (-1 |#1| (-790) |#1|)) 26 T ELT)) (-2552 (((-1 |#1|) |#1|) 8 T ELT)) (-2554 ((|#1| |#1|) 19 T ELT)) (-2553 (((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-558)) 18 T ELT) ((|#1| (-1 |#1| |#1|)) 11 T ELT)) (-4375 (((-1 |#1|) |#1|) 9 T ELT)) (** (((-1 |#1| |#1|) (-1 |#1| |#1|) (-790)) 23 T ELT))) +(((-701 |#1|) (-10 -7 (-15 -2552 ((-1 |#1|) |#1|)) (-15 -4375 ((-1 |#1|) |#1|)) (-15 -2553 (|#1| (-1 |#1| |#1|))) (-15 -2553 ((-660 |#1|) (-1 (-660 |#1|) (-660 |#1|)) (-558))) (-15 -2554 (|#1| |#1|)) (-15 ** ((-1 |#1| |#1|) (-1 |#1| |#1|) (-790))) (-15 -2555 ((-1 |#1| (-790) |#1|) (-1 |#1| (-790) |#1|)))) (-1121)) (T -701)) +((-2555 (*1 *2 *2) (-12 (-5 *2 (-1 *3 (-790) *3)) (-4 *3 (-1121)) (-5 *1 (-701 *3)))) (** (*1 *2 *2 *3) (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-790)) (-4 *4 (-1121)) (-5 *1 (-701 *4)))) (-2554 (*1 *2 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1121)))) (-2553 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-660 *5) (-660 *5))) (-5 *4 (-558)) (-5 *2 (-660 *5)) (-5 *1 (-701 *5)) (-4 *5 (-1121)))) (-2553 (*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-701 *2)) (-4 *2 (-1121)))) (-4375 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1121)))) (-2552 (*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1121))))) +((-2558 (((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)) 16 T ELT)) (-2557 (((-1 |#2|) (-1 |#2| |#1|) |#1|) 13 T ELT)) (-4381 (((-1 |#2| |#1|) (-1 |#2|)) 14 T ELT)) (-2556 (((-1 |#2| |#1|) |#2|) 11 T ELT))) +(((-702 |#1| |#2|) (-10 -7 (-15 -2556 ((-1 |#2| |#1|) |#2|)) (-15 -2557 ((-1 |#2|) (-1 |#2| |#1|) |#1|)) (-15 -4381 ((-1 |#2| |#1|) (-1 |#2|))) (-15 -2558 ((-1 |#2| |#1|) (-1 |#2| |#1| |#1|)))) (-1121) (-1121)) (T -702)) +((-2558 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-702 *4 *5)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-702 *4 *5)) (-4 *4 (-1121)))) (-2557 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5)) (-5 *1 (-702 *4 *5)))) (-2556 (*1 *2 *3) (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-702 *4 *3)) (-4 *4 (-1121)) (-4 *3 (-1121))))) +((-2563 (((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|)) 17 T ELT)) (-2559 (((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|) 11 T ELT)) (-2560 (((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|) 13 T ELT)) (-2561 (((-1 |#3| |#1| |#2|) (-1 |#3| |#1|)) 14 T ELT)) (-2562 (((-1 |#3| |#1| |#2|) (-1 |#3| |#2|)) 15 T ELT)) (* (((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)) 21 T ELT))) +(((-703 |#1| |#2| |#3|) (-10 -7 (-15 -2559 ((-1 |#3| |#1|) (-1 |#3| |#1| |#2|) |#2|)) (-15 -2560 ((-1 |#3| |#2|) (-1 |#3| |#1| |#2|) |#1|)) (-15 -2561 ((-1 |#3| |#1| |#2|) (-1 |#3| |#1|))) (-15 -2562 ((-1 |#3| |#1| |#2|) (-1 |#3| |#2|))) (-15 -2563 ((-1 |#3| |#2| |#1|) (-1 |#3| |#1| |#2|))) (-15 * ((-1 |#3| |#1|) (-1 |#3| |#2|) (-1 |#2| |#1|)))) (-1121) (-1121) (-1121)) (T -703)) +((* (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) (-5 *1 (-703 *5 *6 *7)))) (-2563 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-703 *4 *5 *6)))) (-2562 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-703 *4 *5 *6)) (-4 *4 (-1121)))) (-2561 (*1 *2 *3) (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) (-5 *1 (-703 *4 *5 *6)) (-4 *5 (-1121)))) (-2560 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6)))) (-2559 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *5 *4 *6))))) +((-4267 (($ (-790) (-790)) 42 T ELT)) (-2568 (($ $ $) 73 T ELT)) (-3833 (($ |#3|) 68 T ELT) (($ $) 69 T ELT)) (-3522 (((-114) $) 36 T ELT)) (-2567 (($ $ (-558) (-558)) 84 T ELT)) (-2566 (($ $ (-558) (-558)) 85 T ELT)) (-2565 (($ $ (-558) (-558) (-558) (-558)) 90 T ELT)) (-2570 (($ $) 71 T ELT)) (-3524 (((-114) $) 15 T ELT)) (-2564 (($ $ (-558) (-558) $) 91 T ELT)) (-4217 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558)) $) 89 T ELT)) (-3752 (($ (-790) |#2|) 55 T ELT)) (-3525 (($ (-660 (-660 |#2|))) 51 T ELT) (($ (-790) (-790) (-1 |#2| (-558) (-558))) 53 T ELT)) (-4021 (((-660 (-660 |#2|)) $) 80 T ELT)) (-2569 (($ $ $) 72 T ELT)) (-3885 (((-3 $ "failed") $ |#2|) 122 T ELT)) (-4229 ((|#2| $ (-558) (-558)) NIL T ELT) ((|#2| $ (-558) (-558) |#2|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558))) 88 T ELT)) (-3751 (($ (-660 |#2|)) 56 T ELT) (($ (-660 $)) 58 T ELT)) (-3523 (((-114) $) 28 T ELT)) (-4375 (($ |#4|) 63 T ELT) (((-876) $) NIL T ELT)) (-3521 (((-114) $) 38 T ELT)) (-4378 (($ $ |#2|) 124 T ELT)) (-4266 (($ $ $) 95 T ELT) (($ $) 98 T ELT)) (-4268 (($ $ $) 93 T ELT)) (** (($ $ (-790)) 111 T ELT) (($ $ (-558)) 128 T ELT)) (* (($ $ $) 104 T ELT) (($ |#2| $) 100 T ELT) (($ $ |#2|) 101 T ELT) (($ (-558) $) 103 T ELT) ((|#4| $ |#4|) 115 T ELT) ((|#3| |#3| $) 119 T ELT))) +(((-704 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4375 ((-876) |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -4378 (|#1| |#1| |#2|)) (-15 -3885 ((-3 |#1| "failed") |#1| |#2|)) (-15 ** (|#1| |#1| (-790))) (-15 * (|#3| |#3| |#1|)) (-15 * (|#4| |#1| |#4|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4268 (|#1| |#1| |#1|)) (-15 -2564 (|#1| |#1| (-558) (-558) |#1|)) (-15 -2565 (|#1| |#1| (-558) (-558) (-558) (-558))) (-15 -2566 (|#1| |#1| (-558) (-558))) (-15 -2567 (|#1| |#1| (-558) (-558))) (-15 -4217 (|#1| |#1| (-660 (-558)) (-660 (-558)) |#1|)) (-15 -4229 (|#1| |#1| (-660 (-558)) (-660 (-558)))) (-15 -4021 ((-660 (-660 |#2|)) |#1|)) (-15 -2568 (|#1| |#1| |#1|)) (-15 -2569 (|#1| |#1| |#1|)) (-15 -2570 (|#1| |#1|)) (-15 -3833 (|#1| |#1|)) (-15 -3833 (|#1| |#3|)) (-15 -4375 (|#1| |#4|)) (-15 -3751 (|#1| (-660 |#1|))) (-15 -3751 (|#1| (-660 |#2|))) (-15 -3752 (|#1| (-790) |#2|)) (-15 -3525 (|#1| (-790) (-790) (-1 |#2| (-558) (-558)))) (-15 -3525 (|#1| (-660 (-660 |#2|)))) (-15 -4267 (|#1| (-790) (-790))) (-15 -3521 ((-114) |#1|)) (-15 -3522 ((-114) |#1|)) (-15 -3523 ((-114) |#1|)) (-15 -3524 ((-114) |#1|)) (-15 -4217 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4229 (|#2| |#1| (-558) (-558) |#2|)) (-15 -4229 (|#2| |#1| (-558) (-558)))) (-705 |#2| |#3| |#4|) (-1069) (-385 |#2|) (-385 |#2|)) (T -704)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4267 (($ (-790) (-790)) 103 T ELT)) (-2568 (($ $ $) 92 T ELT)) (-3833 (($ |#2|) 96 T ELT) (($ $) 95 T ELT)) (-3522 (((-114) $) 105 T ELT)) (-2567 (($ $ (-558) (-558)) 88 T ELT)) (-2566 (($ $ (-558) (-558)) 87 T ELT)) (-2565 (($ $ (-558) (-558) (-558) (-558)) 86 T ELT)) (-2570 (($ $) 94 T ELT)) (-3524 (((-114) $) 107 T ELT)) (-2564 (($ $ (-558) (-558) $) 85 T ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) 48 T ELT) (($ $ (-660 (-558)) (-660 (-558)) $) 89 T ELT)) (-1363 (($ $ (-558) |#2|) 46 T ELT)) (-1362 (($ $ (-558) |#3|) 45 T ELT)) (-3752 (($ (-790) |#1|) 100 T ELT)) (-4153 (($) 7 T CONST)) (-3511 (($ $) 72 (|has| |#1| (-319)) ELT)) (-3513 ((|#2| $ (-558)) 50 T ELT)) (-3510 (((-790) $) 71 (|has| |#1| (-569)) ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) 47 T ELT)) (-3514 ((|#1| $ (-558) (-558)) 52 T ELT)) (-3289 (((-660 |#1|) $) 30 T ELT)) (-3509 (((-790) $) 70 (|has| |#1| (-569)) ELT)) (-3508 (((-660 |#3|) $) 69 (|has| |#1| (-569)) ELT)) (-3516 (((-790) $) 55 T ELT)) (-4043 (($ (-790) (-790) |#1|) 61 T ELT)) (-3515 (((-790) $) 54 T ELT)) (-3746 ((|#1| $) 67 (|has| |#1| (-6 (-4426 #1="*"))) ELT)) (-3520 (((-558) $) 59 T ELT)) (-3518 (((-558) $) 57 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3519 (((-558) $) 58 T ELT)) (-3517 (((-558) $) 56 T ELT)) (-3525 (($ (-660 (-660 |#1|))) 102 T ELT) (($ (-790) (-790) (-1 |#1| (-558) (-558))) 101 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 44 T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) 43 T ELT)) (-4021 (((-660 (-660 |#1|)) $) 91 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4017 (((-3 $ "failed") $) 66 (|has| |#1| (-376)) ELT)) (-2569 (($ $ $) 93 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) 60 T ELT)) (-3885 (((-3 $ "failed") $ |#1|) 74 (|has| |#1| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) (-558)) 53 T ELT) ((|#1| $ (-558) (-558) |#1|) 51 T ELT) (($ $ (-660 (-558)) (-660 (-558))) 90 T ELT)) (-3751 (($ (-660 |#1|)) 99 T ELT) (($ (-660 $)) 98 T ELT)) (-3523 (((-114) $) 106 T ELT)) (-3747 ((|#1| $) 68 (|has| |#1| (-6 (-4426 #1#))) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-3512 ((|#3| $ (-558)) 49 T ELT)) (-4375 (($ |#3|) 97 T ELT) (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) 104 T ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4378 (($ $ |#1|) 73 (|has| |#1| (-376)) ELT)) (-4266 (($ $ $) 83 T ELT) (($ $) 82 T ELT)) (-4268 (($ $ $) 84 T ELT)) (** (($ $ (-790)) 75 T ELT) (($ $ (-558)) 65 (|has| |#1| (-376)) ELT)) (* (($ $ $) 81 T ELT) (($ |#1| $) 80 T ELT) (($ $ |#1|) 79 T ELT) (($ (-558) $) 78 T ELT) ((|#3| $ |#3|) 77 T ELT) ((|#2| |#2| $) 76 T ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-705 |#1| |#2| |#3|) (-142) (-1069) (-385 |t#1|) (-385 |t#1|)) (T -705)) +((-3524 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) (-4267 (*1 *1 *2 *2) (-12 (-5 *2 (-790)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3525 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-1 *4 (-558) (-558))) (-4 *4 (-1069)) (-4 *1 (-705 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) (-3752 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4375 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (-3833 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *1 (-705 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (-3833 (*1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2570 (*1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2569 (*1 *1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-2568 (*1 *1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-660 (-660 *3))))) (-4229 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-660 (-558))) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4217 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-660 (-558))) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2567 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2566 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2565 (*1 *1 *1 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-2564 (*1 *1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (-4266 (*1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-705 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-705 *3 *2 *4)) (-4 *3 (-1069)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) (-3885 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) (-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (-3511 (*1 *1 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-790)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-790)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-660 *5)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4426 #1="*"))) (-4 *2 (-1069)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (|has| *2 (-6 (-4426 #1#))) (-4 *2 (-1069)))) (-4017 (*1 *1 *1) (|partial| -12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376))))) +(-13 (-57 |t#1| |t#2| |t#3|) (-10 -8 (-6 -4425) (-6 -4424) (-15 -3524 ((-114) $)) (-15 -3523 ((-114) $)) (-15 -3522 ((-114) $)) (-15 -3521 ((-114) $)) (-15 -4267 ($ (-790) (-790))) (-15 -3525 ($ (-660 (-660 |t#1|)))) (-15 -3525 ($ (-790) (-790) (-1 |t#1| (-558) (-558)))) (-15 -3752 ($ (-790) |t#1|)) (-15 -3751 ($ (-660 |t#1|))) (-15 -3751 ($ (-660 $))) (-15 -4375 ($ |t#3|)) (-15 -3833 ($ |t#2|)) (-15 -3833 ($ $)) (-15 -2570 ($ $)) (-15 -2569 ($ $ $)) (-15 -2568 ($ $ $)) (-15 -4021 ((-660 (-660 |t#1|)) $)) (-15 -4229 ($ $ (-660 (-558)) (-660 (-558)))) (-15 -4217 ($ $ (-660 (-558)) (-660 (-558)) $)) (-15 -2567 ($ $ (-558) (-558))) (-15 -2566 ($ $ (-558) (-558))) (-15 -2565 ($ $ (-558) (-558) (-558) (-558))) (-15 -2564 ($ $ (-558) (-558) $)) (-15 -4268 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $)) (-15 * ($ $ $)) (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|)) (-15 * ($ (-558) $)) (-15 * (|t#3| $ |t#3|)) (-15 * (|t#2| |t#2| $)) (-15 ** ($ $ (-790))) (IF (|has| |t#1| (-569)) (-15 -3885 ((-3 $ "failed") $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -4378 ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-319)) (-15 -3511 ($ $)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3510 ((-790) $)) (-15 -3509 ((-790) $)) (-15 -3508 ((-660 |t#3|) $))) |%noBranch|) (IF (|has| |t#1| (-6 (-4426 "*"))) (PROGN (-15 -3747 (|t#1| $)) (-15 -3746 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -4017 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-57 |#1| |#2| |#3|) . T) ((-1237) . T)) +((-4271 ((|#5| (-1 |#5| |#1| |#5|) |#4| |#5|) 39 T ELT)) (-4387 (((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|) 37 T ELT) ((|#8| (-1 |#5| |#1|) |#4|) 31 T ELT))) +(((-706 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8|) (-10 -7 (-15 -4387 (|#8| (-1 |#5| |#1|) |#4|)) (-15 -4387 ((-3 |#8| #1="failed") (-1 (-3 |#5| #1#) |#1|) |#4|)) (-15 -4271 (|#5| (-1 |#5| |#1| |#5|) |#4| |#5|))) (-1069) (-385 |#1|) (-385 |#1|) (-705 |#1| |#2| |#3|) (-1069) (-385 |#5|) (-385 |#5|) (-705 |#5| |#6| |#7|)) (T -706)) +((-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1069)) (-4 *2 (-1069)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) (-5 *1 (-706 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-705 *5 *6 *7)) (-4 *10 (-705 *2 *8 *9)))) (-4387 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-705 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-705 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-705 *8 *9 *10)) (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-705 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8))))) +((-3511 ((|#4| |#4|) 92 (|has| |#1| (-319)) ELT)) (-3510 (((-790) |#4|) 121 (|has| |#1| (-569)) ELT)) (-3509 (((-790) |#4|) 96 (|has| |#1| (-569)) ELT)) (-3508 (((-660 |#3|) |#4|) 103 (|has| |#1| (-569)) ELT)) (-2609 (((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|) 137 (|has| |#1| (-319)) ELT)) (-3746 ((|#1| |#4|) 52 T ELT)) (-2575 (((-3 |#4| #1="failed") |#4|) 84 (|has| |#1| (-569)) ELT)) (-4017 (((-3 |#4| #1#) |#4|) 100 (|has| |#1| (-376)) ELT)) (-2574 ((|#4| |#4|) 88 (|has| |#1| (-569)) ELT)) (-2572 ((|#4| |#4| |#1| (-558) (-558)) 60 T ELT)) (-2571 ((|#4| |#4| (-558) (-558)) 55 T ELT)) (-2573 ((|#4| |#4| |#1| (-558) (-558)) 65 T ELT)) (-3747 ((|#1| |#4|) 98 T ELT)) (-2915 (((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|) 89 (|has| |#1| (-569)) ELT))) +(((-707 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3747 (|#1| |#4|)) (-15 -3746 (|#1| |#4|)) (-15 -2571 (|#4| |#4| (-558) (-558))) (-15 -2572 (|#4| |#4| |#1| (-558) (-558))) (-15 -2573 (|#4| |#4| |#1| (-558) (-558))) (IF (|has| |#1| (-569)) (PROGN (-15 -3510 ((-790) |#4|)) (-15 -3509 ((-790) |#4|)) (-15 -3508 ((-660 |#3|) |#4|)) (-15 -2574 (|#4| |#4|)) (-15 -2575 ((-3 |#4| #1="failed") |#4|)) (-15 -2915 ((-2 (|:| |adjMat| |#4|) (|:| |detMat| |#1|)) |#4|))) |%noBranch|) (IF (|has| |#1| (-319)) (PROGN (-15 -3511 (|#4| |#4|)) (-15 -2609 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4017 ((-3 |#4| #1#) |#4|)) |%noBranch|)) (-175) (-385 |#1|) (-385 |#1|) (-705 |#1| |#2| |#3|)) (T -707)) +((-4017 (*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-2609 (*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-707 *3 *4 *5 *6)) (-4 *6 (-705 *3 *4 *5)))) (-3511 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-2915 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-2575 (*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-2574 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-3508 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-660 *6)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3509 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-790)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3510 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-790)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-2573 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-707 *3 *5 *6 *2)) (-4 *2 (-705 *3 *5 *6)))) (-2572 (*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) (-5 *1 (-707 *3 *5 *6 *2)) (-4 *2 (-705 *3 *5 *6)))) (-2571 (*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *1 (-707 *4 *5 *6 *2)) (-4 *2 (-705 *4 *5 *6)))) (-3746 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-707 *2 *4 *5 *3)) (-4 *3 (-705 *2 *4 *5)))) (-3747 (*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) (-5 *1 (-707 *2 *4 *5 *3)) (-4 *3 (-705 *2 *4 *5))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4267 (($ (-790) (-790)) 64 T ELT)) (-2568 (($ $ $) NIL T ELT)) (-3833 (($ (-1287 |#1|)) NIL T ELT) (($ $) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-2567 (($ $ (-558) (-558)) 22 T ELT)) (-2566 (($ $ (-558) (-558)) NIL T ELT)) (-2565 (($ $ (-558) (-558) (-558) (-558)) NIL T ELT)) (-2570 (($ $) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-2564 (($ $ (-558) (-558) $) NIL T ELT)) (-4217 ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558)) $) NIL T ELT)) (-1363 (($ $ (-558) (-1287 |#1|)) NIL T ELT)) (-1362 (($ $ (-558) (-1287 |#1|)) NIL T ELT)) (-3752 (($ (-790) |#1|) 37 T ELT)) (-4153 (($) NIL T CONST)) (-3511 (($ $) 46 (|has| |#1| (-319)) ELT)) (-3513 (((-1287 |#1|) $ (-558)) NIL T ELT)) (-3510 (((-790) $) 48 (|has| |#1| (-569)) ELT)) (-1718 ((|#1| $ (-558) (-558) |#1|) 69 T ELT)) (-3514 ((|#1| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL T ELT)) (-3509 (((-790) $) 50 (|has| |#1| (-569)) ELT)) (-3508 (((-660 (-1287 |#1|)) $) 53 (|has| |#1| (-569)) ELT)) (-3516 (((-790) $) 32 T ELT)) (-4043 (($ (-790) (-790) |#1|) NIL T ELT)) (-3515 (((-790) $) 33 T ELT)) (-3746 ((|#1| $) 44 (|has| |#1| (-6 (-4426 #1="*"))) ELT)) (-3520 (((-558) $) 10 T ELT)) (-3518 (((-558) $) 11 T ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3519 (((-558) $) 14 T ELT)) (-3517 (((-558) $) 65 T ELT)) (-3525 (($ (-660 (-660 |#1|))) NIL T ELT) (($ (-790) (-790) (-1 |#1| (-558) (-558))) NIL T ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $ |#1|) NIL T ELT)) (-4021 (((-660 (-660 |#1|)) $) 76 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4017 (((-3 $ #2="failed") $) 60 (|has| |#1| (-376)) ELT)) (-2569 (($ $ $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2413 (($ $ |#1|) NIL T ELT)) (-3885 (((-3 $ #2#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) (-558)) NIL T ELT) ((|#1| $ (-558) (-558) |#1|) NIL T ELT) (($ $ (-660 (-558)) (-660 (-558))) NIL T ELT)) (-3751 (($ (-660 |#1|)) NIL T ELT) (($ (-660 $)) NIL T ELT) (($ (-1287 |#1|)) 70 T ELT)) (-3523 (((-114) $) NIL T ELT)) (-3747 ((|#1| $) 42 (|has| |#1| (-6 (-4426 #1#))) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) 80 (|has| |#1| (-630 (-547))) ELT)) (-3512 (((-1287 |#1|) $ (-558)) NIL T ELT)) (-4375 (($ (-1287 |#1|)) NIL T ELT) (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) NIL T ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $ $) NIL T ELT) (($ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) 38 T ELT) (($ $ (-558)) 62 (|has| |#1| (-376)) ELT)) (* (($ $ $) 24 T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-558) $) NIL T ELT) (((-1287 |#1|) $ (-1287 |#1|)) NIL T ELT) (((-1287 |#1|) (-1287 |#1|) $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-708 |#1|) (-13 (-705 |#1| (-1287 |#1|) (-1287 |#1|)) (-10 -8 (-15 -3751 ($ (-1287 |#1|))) (IF (|has| |#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4017 ((-3 $ "failed") $)) |%noBranch|))) (-1069)) (T -708)) +((-4017 (*1 *1 *1) (|partial| -12 (-5 *1 (-708 *2)) (-4 *2 (-376)) (-4 *2 (-1069)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-708 *3))))) +((-2581 (((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|)) 37 T ELT)) (-2580 (((-708 |#1|) (-708 |#1|) (-708 |#1|) |#1|) 32 T ELT)) (-2582 (((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|) (-790)) 43 T ELT)) (-2577 (((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|)) 25 T ELT)) (-2578 (((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|)) 29 T ELT) (((-708 |#1|) (-708 |#1|) (-708 |#1|)) 27 T ELT)) (-2579 (((-708 |#1|) (-708 |#1|) |#1| (-708 |#1|)) 31 T ELT)) (-2576 (((-708 |#1|) (-708 |#1|) (-708 |#1|)) 23 T ELT)) (** (((-708 |#1|) (-708 |#1|) (-790)) 46 T ELT))) +(((-709 |#1|) (-10 -7 (-15 -2576 ((-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2577 ((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2578 ((-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2578 ((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2579 ((-708 |#1|) (-708 |#1|) |#1| (-708 |#1|))) (-15 -2580 ((-708 |#1|) (-708 |#1|) (-708 |#1|) |#1|)) (-15 -2581 ((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -2582 ((-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|) (-708 |#1|) (-790))) (-15 ** ((-708 |#1|) (-708 |#1|) (-790)))) (-1069)) (T -709)) +((** (*1 *2 *2 *3) (-12 (-5 *2 (-708 *4)) (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *1 (-709 *4)))) (-2582 (*1 *2 *2 *2 *2 *2 *3) (-12 (-5 *2 (-708 *4)) (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *1 (-709 *4)))) (-2581 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) (-2580 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) (-2579 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) (-2578 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) (-2578 (*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) (-2577 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) (-2576 (*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) +((-3574 (((-3 |#1| "failed") $) 18 T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-2583 (($) 7 T CONST)) (-2584 (($ |#1|) 8 T ELT)) (-4375 (($ |#1|) 16 T ELT) (((-876) $) 23 T ELT)) (-3993 (((-114) $ (|[\|\|]| |#1|)) 14 T ELT) (((-114) $ (|[\|\|]| -2583)) 11 T ELT)) (-3999 ((|#1| $) 15 T ELT))) +(((-710 |#1|) (-13 (-1283) (-1058 |#1|) (-629 (-876)) (-10 -8 (-15 -2584 ($ |#1|)) (-15 -3993 ((-114) $ (|[\|\|]| |#1|))) (-15 -3993 ((-114) $ (|[\|\|]| -2583))) (-15 -3999 (|#1| $)) (-15 -2583 ($) -4381))) (-629 (-876))) (T -710)) +((-2584 (*1 *1 *2) (-12 (-5 *1 (-710 *2)) (-4 *2 (-629 (-876))))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-629 (-876))) (-5 *2 (-114)) (-5 *1 (-710 *4)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2583)) (-5 *2 (-114)) (-5 *1 (-710 *4)) (-4 *4 (-629 (-876))))) (-3999 (*1 *2 *1) (-12 (-5 *1 (-710 *2)) (-4 *2 (-629 (-876))))) (-2583 (*1 *1) (-12 (-5 *1 (-710 *2)) (-4 *2 (-629 (-876)))))) +((-2587 ((|#2| |#2| |#4|) 29 T ELT)) (-2590 (((-708 |#2|) |#3| |#4|) 35 T ELT)) (-2588 (((-708 |#2|) |#2| |#4|) 34 T ELT)) (-2585 (((-1287 |#2|) |#2| |#4|) 16 T ELT)) (-2586 ((|#2| |#3| |#4|) 28 T ELT)) (-2591 (((-708 |#2|) |#3| |#4| (-790) (-790)) 48 T ELT)) (-2589 (((-708 |#2|) |#2| |#4| (-790)) 47 T ELT))) +(((-711 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2585 ((-1287 |#2|) |#2| |#4|)) (-15 -2586 (|#2| |#3| |#4|)) (-15 -2587 (|#2| |#2| |#4|)) (-15 -2588 ((-708 |#2|) |#2| |#4|)) (-15 -2589 ((-708 |#2|) |#2| |#4| (-790))) (-15 -2590 ((-708 |#2|) |#3| |#4|)) (-15 -2591 ((-708 |#2|) |#3| |#4| (-790) (-790)))) (-1121) (-916 |#1|) (-385 |#2|) (-13 (-385 |#1|) (-10 -7 (-6 -4424)))) (T -711)) +((-2591 (*1 *2 *3 *4 *5 *5) (-12 (-5 *5 (-790)) (-4 *6 (-1121)) (-4 *7 (-916 *6)) (-5 *2 (-708 *7)) (-5 *1 (-711 *6 *7 *3 *4)) (-4 *3 (-385 *7)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4424)))))) (-2590 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-916 *5)) (-5 *2 (-708 *6)) (-5 *1 (-711 *5 *6 *3 *4)) (-4 *3 (-385 *6)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))))) (-2589 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-790)) (-4 *6 (-1121)) (-4 *3 (-916 *6)) (-5 *2 (-708 *3)) (-5 *1 (-711 *6 *3 *7 *4)) (-4 *7 (-385 *3)) (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4424)))))) (-2588 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-916 *5)) (-5 *2 (-708 *3)) (-5 *1 (-711 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))))) (-2587 (*1 *2 *2 *3) (-12 (-4 *4 (-1121)) (-4 *2 (-916 *4)) (-5 *1 (-711 *4 *2 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4424)))))) (-2586 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *2 (-916 *5)) (-5 *1 (-711 *5 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424)))))) (-2585 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *3 (-916 *5)) (-5 *2 (-1287 *3)) (-5 *1 (-711 *5 *3 *6 *4)) (-4 *6 (-385 *3)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424))))))) +((-4170 (((-2 (|:| |num| (-708 |#1|)) (|:| |den| |#1|)) (-708 |#2|)) 20 T ELT)) (-4168 ((|#1| (-708 |#2|)) 9 T ELT)) (-4169 (((-708 |#1|) (-708 |#2|)) 18 T ELT))) +(((-712 |#1| |#2|) (-10 -7 (-15 -4168 (|#1| (-708 |#2|))) (-15 -4169 ((-708 |#1|) (-708 |#2|))) (-15 -4170 ((-2 (|:| |num| (-708 |#1|)) (|:| |den| |#1|)) (-708 |#2|)))) (-569) (-1011 |#1|)) (T -712)) +((-4170 (*1 *2 *3) (-12 (-5 *3 (-708 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| (-708 *4)) (|:| |den| *4))) (-5 *1 (-712 *4 *5)))) (-4169 (*1 *2 *3) (-12 (-5 *3 (-708 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-569)) (-5 *2 (-708 *4)) (-5 *1 (-712 *4 *5)))) (-4168 (*1 *2 *3) (-12 (-5 *3 (-708 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-712 *2 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1989 (((-708 (-718))) NIL T ELT) (((-708 (-718)) (-1287 $)) NIL T ELT)) (-3749 (((-718) $) NIL T ELT)) (-3911 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4068 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-718) (-363)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) ELT)) (-4204 (($ $) NIL (-3956 (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) (|has| (-718) (-376))) ELT)) (-4400 (((-417 $) $) NIL (-3956 (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) (|has| (-718) (-376))) ELT)) (-3437 (($ $) NIL (-12 (|has| (-718) (-1022)) (|has| (-718) (-1223))) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) ELT)) (-1787 (((-114) $ $) NIL (|has| (-718) (-319)) ELT)) (-3537 (((-790)) NIL (|has| (-718) (-381)) ELT)) (-3909 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4067 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3913 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4066 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-718) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-718) (-1058 (-419 (-558)))) ELT)) (-3573 (((-558) $) NIL T ELT) (((-718) $) NIL T ELT) (((-419 (-558)) $) NIL (|has| (-718) (-1058 (-419 (-558)))) ELT)) (-1999 (($ (-1287 (-718))) NIL T ELT) (($ (-1287 (-718)) (-1287 $)) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-718) (-363)) ELT)) (-2962 (($ $ $) NIL (|has| (-718) (-319)) ELT)) (-1988 (((-708 (-718)) $) NIL T ELT) (((-708 (-718)) $ (-1287 $)) NIL T ELT)) (-2492 (((-708 (-718)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-718))) (|:| |vec| (-1287 (-718)))) (-708 $) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-718) (-657 (-558))) ELT) (((-708 (-558)) (-708 $)) NIL (|has| (-718) (-657 (-558))) ELT)) (-4271 (((-3 $ #1#) (-419 (-1191 (-718)))) NIL (|has| (-718) (-376)) ELT) (($ (-1191 (-718))) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4072 (((-718) $) 29 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL (|has| (-718) (-557)) ELT)) (-3423 (((-114) $) NIL (|has| (-718) (-557)) ELT)) (-3422 (((-419 (-558)) $) NIL (|has| (-718) (-557)) ELT)) (-3510 (((-937)) NIL T ELT)) (-3394 (($) NIL (|has| (-718) (-381)) ELT)) (-2961 (($ $ $) NIL (|has| (-718) (-319)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| (-718) (-319)) ELT)) (-3233 (($) NIL (|has| (-718) (-363)) ELT)) (-1882 (((-114) $) NIL (|has| (-718) (-363)) ELT)) (-1973 (($ $) NIL (|has| (-718) (-363)) ELT) (($ $ (-790)) NIL (|has| (-718) (-363)) ELT)) (-4152 (((-114) $) NIL (-3956 (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) (|has| (-718) (-376))) ELT)) (-1488 (((-2 (|:| |r| (-718)) (|:| |phi| (-718))) $) NIL (-12 (|has| (-718) (-1080)) (|has| (-718) (-1223))) ELT)) (-4056 (($) NIL (|has| (-718) (-1223)) ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-718) (-900 (-391))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-718) (-900 (-558))) ELT)) (-4201 (((-844 (-937)) $) NIL (|has| (-718) (-363)) ELT) (((-937) $) NIL (|has| (-718) (-363)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (-12 (|has| (-718) (-1022)) (|has| (-718) (-1223))) ELT)) (-3533 (((-718) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| (-718) (-363)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| (-718) (-319)) ELT)) (-2223 (((-1191 (-718)) $) NIL (|has| (-718) (-376)) ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4387 (($ (-1 (-718) (-718)) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| (-718) (-381)) ELT)) (-4371 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3479 (((-1191 (-718)) $) NIL T ELT)) (-2493 (((-708 (-718)) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-718))) (|:| |vec| (-1287 (-718)))) (-1287 $) $) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-718) (-657 (-558))) ELT) (((-708 (-558)) (-1287 $)) NIL (|has| (-718) (-657 (-558))) ELT)) (-2101 (($ (-660 $)) NIL (|has| (-718) (-319)) ELT) (($ $ $) NIL (|has| (-718) (-319)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| (-718) (-376)) ELT)) (-3865 (($) NIL (|has| (-718) (-363)) CONST)) (-2630 (($ (-937)) NIL (|has| (-718) (-381)) ELT)) (-1490 (($) NIL T ELT)) (-4073 (((-718) $) 31 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-718) (-319)) ELT)) (-3561 (($ (-660 $)) NIL (|has| (-718) (-319)) ELT) (($ $ $) NIL (|has| (-718) (-319)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-718) (-363)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) ELT)) (-4161 (((-417 $) $) NIL (-3956 (-12 (|has| (-718) (-319)) (|has| (-718) (-928))) (|has| (-718) (-376))) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-718) (-319)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| (-718) (-319)) ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ (-718)) NIL (|has| (-718) (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| (-718) (-319)) ELT)) (-4372 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4197 (($ $ (-1197) (-718)) NIL (|has| (-718) (-526 (-1197) (-718))) ELT) (($ $ (-660 (-1197)) (-660 (-718))) NIL (|has| (-718) (-526 (-1197) (-718))) ELT) (($ $ (-660 (-305 (-718)))) NIL (|has| (-718) (-321 (-718))) ELT) (($ $ (-305 (-718))) NIL (|has| (-718) (-321 (-718))) ELT) (($ $ (-718) (-718)) NIL (|has| (-718) (-321 (-718))) ELT) (($ $ (-660 (-718)) (-660 (-718))) NIL (|has| (-718) (-321 (-718))) ELT)) (-1786 (((-790) $) NIL (|has| (-718) (-319)) ELT)) (-4229 (($ $ (-718)) NIL (|has| (-718) (-298 (-718) (-718))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| (-718) (-319)) ELT)) (-4186 (((-718)) NIL T ELT) (((-718) (-1287 $)) NIL T ELT)) (-1974 (((-3 (-790) #1#) $ $) NIL (|has| (-718) (-363)) ELT) (((-790) $) NIL (|has| (-718) (-363)) ELT)) (-4187 (($ $ (-1 (-718) (-718)) (-790)) NIL T ELT) (($ $ (-1 (-718) (-718))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-718) (-240)) (|has| (-718) (-376))) (|has| (-718) (-239))) ELT) (($ $) NIL (-3956 (-12 (|has| (-718) (-240)) (|has| (-718) (-376))) (|has| (-718) (-239))) ELT)) (-2638 (((-708 (-718)) (-1287 $) (-1 (-718) (-718))) NIL (|has| (-718) (-376)) ELT)) (-3602 (((-1191 (-718))) NIL T ELT)) (-3914 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4065 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-1876 (($) NIL (|has| (-718) (-363)) ELT)) (-3912 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4064 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3910 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-4063 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3641 (((-708 (-718)) (-1287 $)) NIL T ELT) (((-1287 (-718)) $) NIL T ELT) (((-708 (-718)) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 (-718)) $ (-1287 $)) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-718) (-630 (-547))) ELT) (((-171 (-229)) $) NIL (|has| (-718) (-1040)) ELT) (((-171 (-391)) $) NIL (|has| (-718) (-1040)) ELT) (((-904 (-391)) $) NIL (|has| (-718) (-630 (-904 (-391)))) ELT) (((-904 (-558)) $) NIL (|has| (-718) (-630 (-904 (-558)))) ELT) (($ (-1191 (-718))) NIL T ELT) (((-1191 (-718)) $) NIL T ELT) (($ (-1287 (-718))) NIL T ELT) (((-1287 (-718)) $) NIL T ELT)) (-3409 (($ $) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-3956 (-12 (|has| (-718) (-319)) (|has| $ (-147)) (|has| (-718) (-928))) (|has| (-718) (-363))) ELT)) (-1489 (($ (-718) (-718)) 12 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-718)) NIL T ELT) (($ (-171 (-391))) 13 T ELT) (($ (-171 (-558))) 19 T ELT) (($ (-171 (-718))) 28 T ELT) (($ (-171 (-720))) 25 T ELT) (((-171 (-391)) $) 33 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| (-718) (-376)) (|has| (-718) (-1058 (-419 (-558))))) ELT)) (-3102 (($ $) NIL (|has| (-718) (-363)) ELT) (((-710 $) $) NIL (-3956 (-12 (|has| (-718) (-319)) (|has| $ (-147)) (|has| (-718) (-928))) (|has| (-718) (-147))) ELT)) (-2837 (((-1191 (-718)) $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT)) (-3917 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3905 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3915 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3903 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3919 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3907 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-2449 (((-718) $) NIL (|has| (-718) (-1223)) ELT)) (-3920 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3908 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3918 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3906 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3916 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3904 (($ $) NIL (|has| (-718) (-1223)) ELT)) (-3802 (($ $) NIL (|has| (-718) (-1080)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-718) (-718)) (-790)) NIL T ELT) (($ $ (-1 (-718) (-718))) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-718) (-376)) (|has| (-718) (-916 (-1197)))) (|has| (-718) (-918 (-1197)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-718) (-240)) (|has| (-718) (-376))) (|has| (-718) (-239))) ELT) (($ $) NIL (-3956 (-12 (|has| (-718) (-240)) (|has| (-718) (-376))) (|has| (-718) (-239))) ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL (|has| (-718) (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ $) NIL (|has| (-718) (-1223)) ELT) (($ $ (-419 (-558))) NIL (-12 (|has| (-718) (-1022)) (|has| (-718) (-1223))) ELT) (($ $ (-558)) NIL (|has| (-718) (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-718) $) NIL T ELT) (($ $ (-718)) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-718) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-718) (-376)) ELT))) +(((-713) (-13 (-401) (-168 (-718)) (-10 -8 (-15 -4375 ($ (-171 (-391)))) (-15 -4375 ($ (-171 (-558)))) (-15 -4375 ($ (-171 (-718)))) (-15 -4375 ($ (-171 (-720)))) (-15 -4375 ((-171 (-391)) $))))) (T -713)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-713)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-171 (-558))) (-5 *1 (-713)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-171 (-718))) (-5 *1 (-713)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-171 (-720))) (-5 *1 (-713)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-713))))) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-1712 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2593 (($ $) 66 T ELT)) (-1466 (($ $) 62 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) 61 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT) (($ |#1| $ (-790)) 67 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2592 (((-660 (-2 (|:| -2285 |#1|) (|:| -2156 (-790)))) $) 65 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 |#1|)) 52 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 54 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-714 |#1|) (-142) (-1121)) (T -714)) +((-4036 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-714 *2)) (-4 *2 (-1121)))) (-2593 (*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1121)))) (-2592 (*1 *2 *1) (-12 (-4 *1 (-714 *3)) (-4 *3 (-1121)) (-5 *2 (-660 (-2 (|:| -2285 *3) (|:| -2156 (-790)))))))) +(-13 (-242 |t#1|) (-10 -8 (-15 -4036 ($ |t#1| $ (-790))) (-15 -2593 ($ $)) (-15 -2592 ((-660 (-2 (|:| -2285 |t#1|) (|:| -2156 (-790)))) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2596 (((-660 |#1|) (-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558)))) (-558)) 66 T ELT)) (-2594 ((|#1| |#1| (-558)) 63 T ELT)) (-3561 ((|#1| |#1| |#1| (-558)) 46 T ELT)) (-4161 (((-660 |#1|) |#1| (-558)) 49 T ELT)) (-2597 ((|#1| |#1| (-558) |#1| (-558)) 40 T ELT)) (-2595 (((-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558)))) |#1| (-558)) 62 T ELT))) +(((-715 |#1|) (-10 -7 (-15 -3561 (|#1| |#1| |#1| (-558))) (-15 -2594 (|#1| |#1| (-558))) (-15 -4161 ((-660 |#1|) |#1| (-558))) (-15 -2595 ((-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558)))) |#1| (-558))) (-15 -2596 ((-660 |#1|) (-660 (-2 (|:| -4161 |#1|) (|:| -4377 (-558)))) (-558))) (-15 -2597 (|#1| |#1| (-558) |#1| (-558)))) (-1263 (-558))) (T -715)) +((-2597 (*1 *2 *2 *3 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-715 *2)) (-4 *2 (-1263 *3)))) (-2596 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| -4161 *5) (|:| -4377 (-558))))) (-5 *4 (-558)) (-4 *5 (-1263 *4)) (-5 *2 (-660 *5)) (-5 *1 (-715 *5)))) (-2595 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-660 (-2 (|:| -4161 *3) (|:| -4377 *4)))) (-5 *1 (-715 *3)) (-4 *3 (-1263 *4)))) (-4161 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-660 *3)) (-5 *1 (-715 *3)) (-4 *3 (-1263 *4)))) (-2594 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-715 *2)) (-4 *2 (-1263 *3)))) (-3561 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-715 *2)) (-4 *2 (-1263 *3))))) +((-2601 (((-1 (-961 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229))) 17 T ELT)) (-2598 (((-1153 (-229)) (-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-660 (-270))) 53 T ELT) (((-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-660 (-270))) 55 T ELT) (((-1153 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1109 (-229)) (-1109 (-229)) (-660 (-270))) 57 T ELT)) (-2600 (((-1153 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-660 (-270))) NIL T ELT)) (-2599 (((-1153 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1109 (-229)) (-1109 (-229)) (-660 (-270))) 58 T ELT))) +(((-716) (-10 -7 (-15 -2598 ((-1153 (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined") (-1109 (-229)) (-1109 (-229)) (-660 (-270)))) (-15 -2598 ((-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-660 (-270)))) (-15 -2598 ((-1153 (-229)) (-1153 (-229)) (-1 (-961 (-229)) (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-660 (-270)))) (-15 -2599 ((-1153 (-229)) (-1 (-229) (-229) (-229)) (-3 (-1 (-229) (-229) (-229) (-229)) #1#) (-1109 (-229)) (-1109 (-229)) (-660 (-270)))) (-15 -2600 ((-1153 (-229)) (-326 (-558)) (-326 (-558)) (-326 (-558)) (-1 (-229) (-229)) (-1109 (-229)) (-660 (-270)))) (-15 -2601 ((-1 (-961 (-229)) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229)) (-1 (-229) (-229) (-229) (-229)))))) (T -716)) +((-2601 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) (-5 *2 (-1 (-961 (-229)) (-229) (-229))) (-5 *1 (-716)))) (-2600 (*1 *2 *3 *3 *3 *4 *5 *6) (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) (-5 *6 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-716)))) (-2599 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1="undefined")) (-5 *5 (-1109 (-229))) (-5 *6 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-716)))) (-2598 (*1 *2 *2 *3 *4 *4 *5) (-12 (-5 *2 (-1153 (-229))) (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-229))) (-5 *5 (-660 (-270))) (-5 *1 (-716)))) (-2598 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-229))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-716)))) (-2598 (*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) #1#)) (-5 *5 (-1109 (-229))) (-5 *6 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-716))))) +((-4161 (((-417 (-1191 |#4|)) (-1191 |#4|)) 86 T ELT) (((-417 |#4|) |#4|) 269 T ELT))) +(((-717 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 |#4|) |#4|)) (-15 -4161 ((-417 (-1191 |#4|)) (-1191 |#4|)))) (-860) (-814) (-363) (-968 |#3| |#2| |#1|)) (T -717)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-363)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 97 T ELT)) (-3530 (((-558) $) 34 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4200 (($ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3437 (($ $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3528 (($ $) NIL T ELT)) (-3574 (((-3 (-558) #1#) $) 85 T ELT) (((-3 (-419 (-558)) #1#) $) 28 T ELT) (((-3 (-391) #1#) $) 82 T ELT)) (-3573 (((-558) $) 87 T ELT) (((-419 (-558)) $) 79 T ELT) (((-391) $) 80 T ELT)) (-2962 (($ $ $) 109 T ELT)) (-3886 (((-3 $ #1#) $) 100 T ELT)) (-2961 (($ $ $) 108 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2604 (((-937)) 89 T ELT) (((-937) (-937)) 88 T ELT)) (-3603 (((-114) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL T ELT)) (-4201 (((-558) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-3533 (($ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2602 (((-558) (-558)) 94 T ELT) (((-558)) 95 T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL (-12 (-2958 (|has| $ (-6 -4407))) (-2958 (|has| $ (-6 -4415)))) ELT)) (-2603 (((-558) (-558)) 92 T ELT) (((-558)) 93 T ELT)) (-3257 (($ $ $) NIL T ELT) (($) NIL (-12 (-2958 (|has| $ (-6 -4407))) (-2958 (|has| $ (-6 -4415)))) ELT)) (-2605 (((-558) $) 17 T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 104 T ELT)) (-1976 (((-937) (-558)) NIL (|has| $ (-6 -4415)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL T ELT)) (-3531 (($ $) NIL T ELT)) (-3671 (($ (-558) (-558)) NIL T ELT) (($ (-558) (-558) (-937)) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) 105 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-2631 (((-558) $) 24 T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 107 T ELT)) (-3013 (((-937)) NIL T ELT) (((-937) (-937)) NIL (|has| $ (-6 -4415)) ELT)) (-1975 (((-937) (-558)) NIL (|has| $ (-6 -4415)) ELT)) (-4401 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-904 (-391)) $) NIL T ELT)) (-4375 (((-876) $) 63 T ELT) (($ (-558)) 75 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 78 T ELT) (($ (-558)) 75 T ELT) (($ (-419 (-558))) 78 T ELT) (($ (-391)) 72 T ELT) (((-391) $) 61 T ELT) (($ (-720)) 66 T ELT)) (-3527 (((-790)) 119 T CONST)) (-3347 (($ (-558) (-558) (-937)) 54 T ELT)) (-3532 (($ $) NIL T ELT)) (-1977 (((-937)) NIL T ELT) (((-937) (-937)) NIL (|has| $ (-6 -4415)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (((-937)) 91 T ELT) (((-937) (-937)) 90 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL T ELT)) (-3058 (($) 37 T CONST)) (-3064 (($) 18 T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 96 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 118 T ELT)) (-4378 (($ $ $) 77 T ELT)) (-4266 (($ $) 115 T ELT) (($ $ $) 116 T ELT)) (-4268 (($ $ $) 114 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) 103 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 110 T ELT) (($ $ $) 101 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-718) (-13 (-416) (-401) (-376) (-1058 (-391)) (-1058 (-419 (-558))) (-149) (-10 -8 (-15 -2604 ((-937) (-937))) (-15 -2604 ((-937))) (-15 -3094 ((-937) (-937))) (-15 -2603 ((-558) (-558))) (-15 -2603 ((-558))) (-15 -2602 ((-558) (-558))) (-15 -2602 ((-558))) (-15 -4375 ((-391) $)) (-15 -4375 ($ (-720))) (-15 -2605 ((-558) $)) (-15 -2631 ((-558) $)) (-15 -3347 ($ (-558) (-558) (-937)))))) (T -718)) +((-2631 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) (-2605 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) (-2604 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-718)))) (-2604 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-718)))) (-3094 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-718)))) (-2603 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) (-2603 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) (-2602 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) (-2602 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-718)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-720)) (-5 *1 (-718)))) (-3347 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-937)) (-5 *1 (-718))))) +((-2608 (((-708 |#1|) (-708 |#1|) |#1| |#1|) 85 T ELT)) (-3511 (((-708 |#1|) (-708 |#1|) |#1|) 66 T ELT)) (-2607 (((-708 |#1|) (-708 |#1|) |#1|) 86 T ELT)) (-2606 (((-708 |#1|) (-708 |#1|)) 67 T ELT)) (-2609 (((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|) 84 T ELT))) +(((-719 |#1|) (-10 -7 (-15 -2606 ((-708 |#1|) (-708 |#1|))) (-15 -3511 ((-708 |#1|) (-708 |#1|) |#1|)) (-15 -2607 ((-708 |#1|) (-708 |#1|) |#1|)) (-15 -2608 ((-708 |#1|) (-708 |#1|) |#1| |#1|)) (-15 -2609 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|))) (-319)) (T -719)) +((-2609 (*1 *2 *3 *3) (-12 (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-719 *3)) (-4 *3 (-319)))) (-2608 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3)))) (-2607 (*1 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3)))) (-3511 (*1 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3)))) (-2606 (*1 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2251 (($ $ $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL T ELT)) (-2829 (($ $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) 31 T ELT)) (-3573 (((-558) $) 29 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3423 (((-114) $) NIL T ELT)) (-3422 (((-419 (-558)) $) NIL T ELT)) (-3394 (($ $) NIL T ELT) (($) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2249 (($ $ $ $) NIL T ELT)) (-2257 (($ $ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-1482 (($ $ $) NIL T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3073 (((-114) $) NIL T ELT)) (-3864 (((-710 $) $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-2610 (((-937) (-937)) 10 T ELT) (((-937)) 9 T ELT)) (-3257 (($ $ $) NIL T ELT)) (-2253 (($ $) NIL T ELT)) (-4262 (($ $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT)) (-2101 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2248 (($ $ $) NIL T ELT)) (-3865 (($) NIL T CONST)) (-2255 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-1480 (($ $) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-3074 (((-114) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-2254 (($ $) NIL T ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-229) $) NIL T ELT) (((-391) $) NIL T ELT) (((-904 (-558)) $) NIL T ELT) (((-547) $) NIL T ELT) (((-558) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) 28 T ELT) (($ $) NIL T ELT) (($ (-558)) 28 T ELT) (((-326 $) (-326 (-558))) 18 T ELT)) (-3527 (((-790)) NIL T CONST)) (-2258 (((-114) $ $) NIL T ELT)) (-3503 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (($) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-2252 (($ $ $ $) NIL T ELT)) (-3802 (($ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-720) (-13 (-401) (-557) (-10 -8 (-15 -2610 ((-937) (-937))) (-15 -2610 ((-937))) (-15 -4375 ((-326 $) (-326 (-558))))))) (T -720)) +((-2610 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-720)))) (-2610 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-720)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-326 (-558))) (-5 *2 (-326 (-720))) (-5 *1 (-720))))) +((-2616 (((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)) 19 T ELT)) (-2611 (((-1 |#4| |#2| |#3|) (-1197)) 12 T ELT))) +(((-721 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2611 ((-1 |#4| |#2| |#3|) (-1197))) (-15 -2616 ((-1 |#4| |#2| |#3|) |#1| (-1197) (-1197)))) (-630 (-547)) (-1237) (-1237) (-1237)) (T -721)) +((-2616 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-721 *3 *5 *6 *7)) (-4 *3 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237)))) (-2611 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-721 *4 *5 *6 *7)) (-4 *4 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237))))) +((-2612 (((-1 (-229) (-229) (-229)) |#1| (-1197) (-1197)) 43 T ELT) (((-1 (-229) (-229)) |#1| (-1197)) 48 T ELT))) +(((-722 |#1|) (-10 -7 (-15 -2612 ((-1 (-229) (-229)) |#1| (-1197))) (-15 -2612 ((-1 (-229) (-229) (-229)) |#1| (-1197) (-1197)))) (-630 (-547))) (T -722)) +((-2612 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-722 *3)) (-4 *3 (-630 (-547))))) (-2612 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-722 *3)) (-4 *3 (-630 (-547)))))) +((-2613 (((-1197) |#1| (-1197) (-660 (-1197))) 10 T ELT) (((-1197) |#1| (-1197) (-1197) (-1197)) 13 T ELT) (((-1197) |#1| (-1197) (-1197)) 12 T ELT) (((-1197) |#1| (-1197)) 11 T ELT))) +(((-723 |#1|) (-10 -7 (-15 -2613 ((-1197) |#1| (-1197))) (-15 -2613 ((-1197) |#1| (-1197) (-1197))) (-15 -2613 ((-1197) |#1| (-1197) (-1197) (-1197))) (-15 -2613 ((-1197) |#1| (-1197) (-660 (-1197))))) (-630 (-547))) (T -723)) +((-2613 (*1 *2 *3 *2 *4) (-12 (-5 *4 (-660 (-1197))) (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547))))) (-2613 (*1 *2 *3 *2 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547))))) (-2613 (*1 *2 *3 *2 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547))))) (-2613 (*1 *2 *3 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547)))))) +((-2614 (((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|) 9 T ELT))) +(((-724 |#1| |#2|) (-10 -7 (-15 -2614 ((-2 (|:| |part1| |#1|) (|:| |part2| |#2|)) |#1| |#2|))) (-1237) (-1237)) (T -724)) +((-2614 (*1 *2 *3 *4) (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-724 *3 *4)) (-4 *3 (-1237)) (-4 *4 (-1237))))) +((-2615 (((-1 |#3| |#2|) (-1197)) 11 T ELT)) (-2616 (((-1 |#3| |#2|) |#1| (-1197)) 21 T ELT))) +(((-725 |#1| |#2| |#3|) (-10 -7 (-15 -2615 ((-1 |#3| |#2|) (-1197))) (-15 -2616 ((-1 |#3| |#2|) |#1| (-1197)))) (-630 (-547)) (-1237) (-1237)) (T -725)) +((-2616 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-725 *3 *5 *6)) (-4 *3 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237)))) (-2615 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-725 *4 *5 *6)) (-4 *4 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237))))) +((-2619 (((-3 (-660 (-1191 |#4|)) #1="failed") (-1191 |#4|) (-660 |#2|) (-660 (-1191 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| |#4|)))) (-660 (-790)) (-1287 (-660 (-1191 |#3|))) |#3|) 92 T ELT)) (-2618 (((-3 (-660 (-1191 |#4|)) #1#) (-1191 |#4|) (-660 |#2|) (-660 (-1191 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-790)) |#3|) 110 T ELT)) (-2617 (((-3 (-660 (-1191 |#4|)) #1#) (-1191 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-790)) (-660 (-1191 |#4|)) (-1287 (-660 (-1191 |#3|))) |#3|) 48 T ELT))) +(((-726 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2617 ((-3 (-660 (-1191 |#4|)) #1="failed") (-1191 |#4|) (-660 |#2|) (-660 |#3|) (-660 (-790)) (-660 (-1191 |#4|)) (-1287 (-660 (-1191 |#3|))) |#3|)) (-15 -2618 ((-3 (-660 (-1191 |#4|)) #1#) (-1191 |#4|) (-660 |#2|) (-660 (-1191 |#3|)) (-660 |#3|) (-660 |#4|) (-660 (-790)) |#3|)) (-15 -2619 ((-3 (-660 (-1191 |#4|)) #1#) (-1191 |#4|) (-660 |#2|) (-660 (-1191 |#4|)) (-660 |#3|) (-660 |#4|) (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| |#4|)))) (-660 (-790)) (-1287 (-660 (-1191 |#3|))) |#3|))) (-814) (-860) (-319) (-968 |#3| |#1| |#2|)) (T -726)) +((-2619 (*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) (|partial| -12 (-5 *2 (-660 (-1191 *13))) (-5 *3 (-1191 *13)) (-5 *4 (-660 *12)) (-5 *5 (-660 *10)) (-5 *6 (-660 *13)) (-5 *7 (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| *13))))) (-5 *8 (-660 (-790))) (-5 *9 (-1287 (-660 (-1191 *10)))) (-4 *12 (-860)) (-4 *10 (-319)) (-4 *13 (-968 *10 *11 *12)) (-4 *11 (-814)) (-5 *1 (-726 *11 *12 *10 *13)))) (-2618 (*1 *2 *3 *4 *5 *6 *7 *8 *9) (|partial| -12 (-5 *4 (-660 *11)) (-5 *5 (-660 (-1191 *9))) (-5 *6 (-660 *9)) (-5 *7 (-660 *12)) (-5 *8 (-660 (-790))) (-4 *11 (-860)) (-4 *9 (-319)) (-4 *12 (-968 *9 *10 *11)) (-4 *10 (-814)) (-5 *2 (-660 (-1191 *12))) (-5 *1 (-726 *10 *11 *9 *12)) (-5 *3 (-1191 *12)))) (-2617 (*1 *2 *3 *4 *5 *6 *2 *7 *8) (|partial| -12 (-5 *2 (-660 (-1191 *11))) (-5 *3 (-1191 *11)) (-5 *4 (-660 *10)) (-5 *5 (-660 *8)) (-5 *6 (-660 (-790))) (-5 *7 (-1287 (-660 (-1191 *8)))) (-4 *10 (-860)) (-4 *8 (-319)) (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-814)) (-5 *1 (-726 *9 *10 *8 *11))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-4388 (($ $) 53 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3293 (($ |#1| (-790)) 51 T ELT)) (-3220 (((-790) $) 55 T ELT)) (-3591 ((|#1| $) 54 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4377 (((-790) $) 56 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 50 (|has| |#1| (-175)) ELT)) (-4106 ((|#1| $ (-790)) 52 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 58 T ELT) (($ |#1| $) 57 T ELT))) +(((-727 |#1|) (-142) (-1069)) (T -727)) +((-4377 (*1 *2 *1) (-12 (-4 *1 (-727 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-727 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-727 *2)) (-4 *2 (-1069)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-727 *2)) (-4 *2 (-1069)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-727 *2)) (-4 *2 (-1069)))) (-3293 (*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-727 *2)) (-4 *2 (-1069))))) +(-13 (-1069) (-111 |t#1| |t#1|) (-10 -8 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (-15 -4377 ((-790) $)) (-15 -3220 ((-790) $)) (-15 -3591 (|t#1| $)) (-15 -4388 ($ $)) (-15 -4106 (|t#1| $ (-790))) (-15 -3293 ($ |t#1| (-790))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-745) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-4387 ((|#6| (-1 |#4| |#1|) |#3|) 23 T ELT))) +(((-728 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4387 (|#6| (-1 |#4| |#1|) |#3|))) (-569) (-1263 |#1|) (-1263 (-419 |#2|)) (-569) (-1263 |#4|) (-1263 (-419 |#5|))) (T -728)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1263 *5)) (-4 *2 (-1263 (-419 *8))) (-5 *1 (-728 *5 *6 *4 *7 *8 *2)) (-4 *4 (-1263 (-419 *6))) (-4 *8 (-1263 *7))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2620 (((-1179) (-876)) 38 T ELT)) (-4046 (((-1293) (-1179)) 31 T ELT)) (-2622 (((-1179) (-876)) 28 T ELT)) (-2621 (((-1179) (-876)) 29 T ELT)) (-4375 (((-876) $) NIL T ELT) (((-1179) (-876)) 27 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-729) (-13 (-1121) (-10 -7 (-15 -4375 ((-1179) (-876))) (-15 -2622 ((-1179) (-876))) (-15 -2621 ((-1179) (-876))) (-15 -2620 ((-1179) (-876))) (-15 -4046 ((-1293) (-1179)))))) (T -729)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729)))) (-2622 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729)))) (-2621 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729)))) (-2620 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729)))) (-4046 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-729))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL T ELT)) (-4271 (($ |#1| |#2|) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-3012 ((|#2| $) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-2632 (((-3 $ #1#) $ $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) ((|#1| $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-730 |#1| |#2| |#3| |#4| |#5|) (-13 (-376) (-10 -8 (-15 -3012 (|#2| $)) (-15 -4375 (|#1| $)) (-15 -4271 ($ |#1| |#2|)) (-15 -2632 ((-3 $ #1="failed") $ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -730)) +((-3012 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-730 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1="failed") *2 *2)) (-14 *6 (-1 (-3 *3 #2="failed") *3 *3 *2)))) (-4375 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-730 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4271 (*1 *1 *2 *3) (-12 (-5 *1 (-730 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2632 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-730 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 36 T ELT)) (-4196 (((-1287 |#1|) $ (-790)) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4194 (($ (-1191 |#1|)) NIL T ELT)) (-3485 (((-1191 $) $ (-1102)) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1102))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4184 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3537 (((-790)) 54 (|has| |#1| (-381)) ELT)) (-4190 (($ $ (-790)) NIL T ELT)) (-4189 (($ $ (-790)) NIL T ELT)) (-2629 ((|#2| |#2|) 50 T ELT)) (-4180 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1102) #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-1102) $) NIL T ELT)) (-4185 (($ $ $ (-1102)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) NIL (|has| |#1| (-175)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) 40 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-4271 (($ |#2|) 48 T ELT)) (-3886 (((-3 $ #1#) $) 97 T ELT)) (-3394 (($) 58 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ $) NIL T ELT)) (-4182 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4181 (((-2 (|:| -4383 |#1|) (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-2625 (((-976 $)) 88 T ELT)) (-1803 (($ $ |#1| (-790) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1102) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1102) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-4201 (((-790) $ $) NIL (|has| |#1| (-569)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-1172)) ELT)) (-3486 (($ (-1191 |#1|) (-1102)) NIL T ELT) (($ (-1191 $) (-1102)) NIL T ELT)) (-4206 (($ $ (-790)) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) 85 T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1102)) NIL T ELT) (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3012 ((|#2|) 51 T ELT)) (-3220 (((-790) $) NIL T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-1804 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4195 (((-1191 |#1|) $) NIL T ELT)) (-3484 (((-3 (-1102) #1#) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-3479 ((|#2| $) 47 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) 34 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4191 (((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790)) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1102)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-4241 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (($) NIL (|has| |#1| (-1172)) CONST)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-2623 (($ $) 87 (|has| |#1| (-363)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 96 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1102) |#1|) NIL T ELT) (($ $ (-660 (-1102)) (-660 |#1|)) NIL T ELT) (($ $ (-1102) $) NIL T ELT) (($ $ (-660 (-1102)) (-660 $)) NIL T ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-3 $ #1#) $ (-790)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 98 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1102)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-4377 (((-790) $) 38 T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1102) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-2624 (((-976 $)) 42 T ELT)) (-4183 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4375 (((-876) $) 68 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 65 T ELT) (($ (-1102)) NIL T ELT) (($ |#2|) 75 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) 70 T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) 25 T CONST)) (-2628 (((-1287 |#1|) $) 83 T ELT)) (-2627 (($ (-1287 |#1|)) 57 T ELT)) (-3064 (($) 8 T CONST)) (-3069 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-2626 (((-1287 |#1|) $) NIL T ELT)) (-3453 (((-114) $ $) 76 T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) 79 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 39 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 92 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 64 T ELT) (($ $ $) 82 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 62 T ELT) (($ $ |#1|) NIL T ELT))) +(((-731 |#1| |#2|) (-13 (-1263 |#1|) (-632 |#2|) (-10 -8 (-15 -2629 (|#2| |#2|)) (-15 -3012 (|#2|)) (-15 -4271 ($ |#2|)) (-15 -3479 (|#2| $)) (-15 -2628 ((-1287 |#1|) $)) (-15 -2627 ($ (-1287 |#1|))) (-15 -2626 ((-1287 |#1|) $)) (-15 -2625 ((-976 $))) (-15 -2624 ((-976 $))) (IF (|has| |#1| (-363)) (-15 -2623 ($ $)) |%noBranch|) (IF (|has| |#1| (-381)) (-6 (-381)) |%noBranch|))) (-1069) (-1263 |#1|)) (T -731)) +((-2629 (*1 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-731 *3 *2)) (-4 *2 (-1263 *3)))) (-3012 (*1 *2) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1069)))) (-4271 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-731 *3 *2)) (-4 *2 (-1263 *3)))) (-3479 (*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1069)))) (-2628 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-731 *3 *4)) (-4 *4 (-1263 *3)))) (-2627 (*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-731 *3 *4)) (-4 *4 (-1263 *3)))) (-2626 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-731 *3 *4)) (-4 *4 (-1263 *3)))) (-2625 (*1 *2) (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *4 (-1263 *3)))) (-2624 (*1 *2) (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) (-4 *4 (-1263 *3)))) (-2623 (*1 *1 *1) (-12 (-4 *2 (-363)) (-4 *2 (-1069)) (-5 *1 (-731 *2 *3)) (-4 *3 (-1263 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 ((|#1| $) 13 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2631 ((|#2| $) 12 T ELT)) (-3949 (($ |#1| |#2|) 16 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-2 (|:| -2630 |#1|) (|:| -2631 |#2|))) 15 T ELT) (((-2 (|:| -2630 |#1|) (|:| -2631 |#2|)) $) 14 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 11 T ELT))) +(((-732 |#1| |#2| |#3|) (-13 (-860) (-502 (-2 (|:| -2630 |#1|) (|:| -2631 |#2|))) (-10 -8 (-15 -2631 (|#2| $)) (-15 -2630 (|#1| $)) (-15 -3949 ($ |#1| |#2|)))) (-860) (-1121) (-1 (-114) (-2 (|:| -2630 |#1|) (|:| -2631 |#2|)) (-2 (|:| -2630 |#1|) (|:| -2631 |#2|)))) (T -732)) +((-2631 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-732 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 (-1 (-114) (-2 (|:| -2630 *3) (|:| -2631 *2)) (-2 (|:| -2630 *3) (|:| -2631 *2)))))) (-2630 (*1 *2 *1) (-12 (-4 *2 (-860)) (-5 *1 (-732 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *3)) (-2 (|:| -2630 *2) (|:| -2631 *3)))))) (-3949 (*1 *1 *2 *3) (-12 (-5 *1 (-732 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1121)) (-14 *4 (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *3)) (-2 (|:| -2630 *2) (|:| -2631 *3))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 66 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 101 T ELT) (((-3 (-115) #1#) $) 107 T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-115) $) 39 T ELT)) (-3886 (((-3 $ #1#) $) 102 T ELT)) (-2911 ((|#2| (-115) |#2|) 93 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2910 (($ |#1| (-374 (-115))) 14 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2912 (($ $ (-1 |#2| |#2|)) 65 T ELT)) (-2913 (($ $ (-1 |#2| |#2|)) 44 T ELT)) (-4229 ((|#2| $ |#2|) 33 T ELT)) (-2914 ((|#1| |#1|) 117 (|has| |#1| (-175)) ELT)) (-4375 (((-876) $) 73 T ELT) (($ (-558)) 18 T ELT) (($ |#1|) 17 T ELT) (($ (-115)) 23 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2915 (($ $) 111 (|has| |#1| (-175)) ELT) (($ $ $) 115 (|has| |#1| (-175)) ELT)) (-3058 (($) 21 T CONST)) (-3064 (($) 9 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) 48 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 83 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ (-115) (-558)) NIL T ELT) (($ $ (-558)) 64 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 110 T ELT) (($ $ $) 53 T ELT) (($ |#1| $) 108 (|has| |#1| (-175)) ELT) (($ $ |#1|) 109 (|has| |#1| (-175)) ELT))) +(((-733 |#1| |#2|) (-13 (-1069) (-1058 |#1|) (-1058 (-115)) (-298 |#2| |#2|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2915 ($ $)) (-15 -2915 ($ $ $)) (-15 -2914 (|#1| |#1|))) |%noBranch|) (-15 -2913 ($ $ (-1 |#2| |#2|))) (-15 -2912 ($ $ (-1 |#2| |#2|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2911 (|#2| (-115) |#2|)) (-15 -2910 ($ |#1| (-374 (-115)))))) (-1069) (-667 |#1|)) (T -733)) +((-2915 (*1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1069)) (-5 *1 (-733 *2 *3)) (-4 *3 (-667 *2)))) (-2915 (*1 *1 *1 *1) (-12 (-4 *2 (-175)) (-4 *2 (-1069)) (-5 *1 (-733 *2 *3)) (-4 *3 (-667 *2)))) (-2914 (*1 *2 *2) (-12 (-4 *2 (-175)) (-4 *2 (-1069)) (-5 *1 (-733 *2 *3)) (-4 *3 (-667 *2)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-667 *3)) (-4 *3 (-1069)) (-5 *1 (-733 *3 *4)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-667 *3)) (-4 *3 (-1069)) (-5 *1 (-733 *3 *4)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-733 *4 *5)) (-4 *5 (-667 *4)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *3 (-1069)) (-5 *1 (-733 *3 *4)) (-4 *4 (-667 *3)))) (-2911 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-4 *4 (-1069)) (-5 *1 (-733 *4 *2)) (-4 *2 (-667 *4)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1069)) (-5 *1 (-733 *2 *4)) (-4 *4 (-667 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 33 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4271 (($ |#1| |#2|) 25 T ELT)) (-3886 (((-3 $ #1#) $) 51 T ELT)) (-2640 (((-114) $) 35 T ELT)) (-3012 ((|#2| $) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 52 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2632 (((-3 $ #1#) $ $) 50 T ELT)) (-4375 (((-876) $) 24 T ELT) (($ (-558)) 19 T ELT) ((|#1| $) 13 T ELT)) (-3527 (((-790)) 28 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 16 T CONST)) (-3064 (($) 30 T CONST)) (-3453 (((-114) $ $) 41 T ELT)) (-4266 (($ $) 46 T ELT) (($ $ $) 40 T ELT)) (-4268 (($ $ $) 43 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 21 T ELT) (($ $ $) 20 T ELT))) +(((-734 |#1| |#2| |#3| |#4| |#5|) (-13 (-1069) (-10 -8 (-15 -3012 (|#2| $)) (-15 -4375 (|#1| $)) (-15 -4271 ($ |#1| |#2|)) (-15 -2632 ((-3 $ #1="failed") $ $)) (-15 -3886 ((-3 $ #1#) $)) (-15 -2873 ($ $)))) (-175) (-23) (-1 |#1| |#1| |#2|) (-1 (-3 |#2| #1#) |#2| |#2|) (-1 (-3 |#1| #1#) |#1| |#1| |#2|)) (T -734)) +((-3886 (*1 *1 *1) (|partial| -12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1="failed") *3 *3)) (-14 *6 (-1 (-3 *2 #2="failed") *2 *2 *3)))) (-3012 (*1 *2 *1) (-12 (-4 *2 (-23)) (-5 *1 (-734 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 #1#) *2 *2)) (-14 *6 (-1 (-3 *3 #2#) *3 *3 *2)))) (-4375 (*1 *2 *1) (-12 (-4 *2 (-175)) (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-4271 (*1 *1 *2 *3) (-12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2632 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3)))) (-2873 (*1 *1 *1) (-12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 #1#) *3 *3)) (-14 *6 (-1 (-3 *2 #2#) *2 *2 *3))))) +((* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) 9 T ELT))) +(((-735 |#1| |#2|) (-10 -7 (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|))) (-736 |#2|) (-175)) (T -735)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-736 |#1|) (-142) (-175)) (T -736)) +NIL +(-13 (-111 |t#1| |t#1|) (-659 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-2829 (($ |#1|) 17 T ELT) (($ $ |#1|) 20 T ELT)) (-4276 (($ |#1|) 18 T ELT) (($ $ |#1|) 21 T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT) (($) 19 T ELT) (($ $) 22 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2633 (($ |#1| |#1| |#1| |#1|) 8 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 16 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4197 ((|#1| $ |#1|) 24 T ELT) (((-844 |#1|) $ (-844 |#1|)) 32 T ELT)) (-3409 (($ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-4375 (((-876) $) 39 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 9 T CONST)) (-3453 (((-114) $ $) 48 T ELT)) (-4378 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 14 T ELT))) +(((-737 |#1|) (-13 (-485) (-10 -8 (-15 -2633 ($ |#1| |#1| |#1| |#1|)) (-15 -2829 ($ |#1|)) (-15 -4276 ($ |#1|)) (-15 -3886 ($)) (-15 -2829 ($ $ |#1|)) (-15 -4276 ($ $ |#1|)) (-15 -3886 ($ $)) (-15 -4197 (|#1| $ |#1|)) (-15 -4197 ((-844 |#1|) $ (-844 |#1|))))) (-376)) (T -737)) +((-2633 (*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-2829 (*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-4276 (*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-3886 (*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-2829 (*1 *1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-4276 (*1 *1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-3886 (*1 *1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-4197 (*1 *2 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) (-4197 (*1 *2 *1 *2) (-12 (-5 *2 (-844 *3)) (-4 *3 (-376)) (-5 *1 (-737 *3))))) +((-2637 (($ $ (-937)) 19 T ELT)) (-2636 (($ $ (-937)) 20 T ELT)) (** (($ $ (-937)) 10 T ELT))) +(((-738 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-937))) (-15 -2636 (|#1| |#1| (-937))) (-15 -2637 (|#1| |#1| (-937)))) (-739)) (T -738)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-2637 (($ $ (-937)) 19 T ELT)) (-2636 (($ $ (-937)) 18 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (** (($ $ (-937)) 17 T ELT)) (* (($ $ $) 20 T ELT))) +(((-739) (-142)) (T -739)) +((* (*1 *1 *1 *1) (-4 *1 (-739))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-937)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-937)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-937))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 -2637 ($ $ (-937))) (-15 -2636 ($ $ (-937))) (-15 ** ($ $ (-937))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2637 (($ $ (-937)) NIL T ELT) (($ $ (-790)) 18 T ELT)) (-2640 (((-114) $) 10 T ELT)) (-2636 (($ $ (-937)) NIL T ELT) (($ $ (-790)) 19 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 16 T ELT))) +(((-740 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-790))) (-15 -2636 (|#1| |#1| (-790))) (-15 -2637 (|#1| |#1| (-790))) (-15 -2640 ((-114) |#1|)) (-15 ** (|#1| |#1| (-937))) (-15 -2636 (|#1| |#1| (-937))) (-15 -2637 (|#1| |#1| (-937)))) (-741)) (T -740)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-2634 (((-3 $ "failed") $) 22 T ELT)) (-2637 (($ $ (-937)) 19 T ELT) (($ $ (-790)) 27 T ELT)) (-3886 (((-3 $ "failed") $) 24 T ELT)) (-2640 (((-114) $) 28 T ELT)) (-2635 (((-3 $ "failed") $) 23 T ELT)) (-2636 (($ $ (-937)) 18 T ELT) (($ $ (-790)) 26 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3064 (($) 29 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (** (($ $ (-937)) 17 T ELT) (($ $ (-790)) 25 T ELT)) (* (($ $ $) 20 T ELT))) +(((-741) (-142)) (T -741)) +((-3064 (*1 *1) (-4 *1 (-741))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-741)) (-5 *2 (-114)))) (-2637 (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-790)))) (-2636 (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-790)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-790)))) (-3886 (*1 *1 *1) (|partial| -4 *1 (-741))) (-2635 (*1 *1 *1) (|partial| -4 *1 (-741))) (-2634 (*1 *1 *1) (|partial| -4 *1 (-741)))) +(-13 (-739) (-10 -8 (-15 (-3064) ($) -4381) (-15 -2640 ((-114) $)) (-15 -2637 ($ $ (-790))) (-15 -2636 ($ $ (-790))) (-15 ** ($ $ (-790))) (-15 -3886 ((-3 $ "failed") $)) (-15 -2635 ((-3 $ "failed") $)) (-15 -2634 ((-3 $ "failed") $)))) +(((-102) . T) ((-629 (-876)) . T) ((-739) . T) ((-1121) . T) ((-1237) . T)) +((-3537 (((-790)) 39 T ELT)) (-3574 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 26 T ELT)) (-3573 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 23 T ELT)) (-4271 (($ |#3|) NIL T ELT) (((-3 $ #1#) (-419 |#3|)) 49 T ELT)) (-3886 (((-3 $ #1#) $) 69 T ELT)) (-3394 (($) 43 T ELT)) (-3533 ((|#2| $) 21 T ELT)) (-2639 (($) 18 T ELT)) (-4187 (($ $ (-1 |#2| |#2|)) 57 T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-2638 (((-708 |#2|) (-1287 $) (-1 |#2| |#2|)) 64 T ELT)) (-4401 (((-1287 |#2|) $) NIL T ELT) (($ (-1287 |#2|)) NIL T ELT) ((|#3| $) 10 T ELT) (($ |#3|) 12 T ELT)) (-2837 ((|#3| $) 36 T ELT)) (-2221 (((-1287 $)) 33 T ELT))) +(((-742 |#1| |#2| |#3|) (-10 -7 (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -3394 (|#1|)) (-15 -3537 ((-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|))) (-15 -2638 ((-708 |#2|) (-1287 |#1|) (-1 |#2| |#2|))) (-15 -4271 ((-3 |#1| #1="failed") (-419 |#3|))) (-15 -4401 (|#1| |#3|)) (-15 -4271 (|#1| |#3|)) (-15 -2639 (|#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -4401 (|#3| |#1|)) (-15 -4401 (|#1| (-1287 |#2|))) (-15 -4401 ((-1287 |#2|) |#1|)) (-15 -2221 ((-1287 |#1|))) (-15 -2837 (|#3| |#1|)) (-15 -3533 (|#2| |#1|)) (-15 -3886 ((-3 |#1| #1#) |#1|))) (-743 |#2| |#3|) (-175) (-1263 |#2|)) (T -742)) +((-3537 (*1 *2) (-12 (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-790)) (-5 *1 (-742 *3 *4 *5)) (-4 *3 (-743 *4 *5))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 111 (|has| |#1| (-376)) ELT)) (-2272 (($ $) 112 (|has| |#1| (-376)) ELT)) (-2270 (((-114) $) 114 (|has| |#1| (-376)) ELT)) (-1989 (((-708 |#1|) (-1287 $)) 58 T ELT) (((-708 |#1|)) 74 T ELT)) (-3749 ((|#1| $) 64 T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) 164 (|has| |#1| (-363)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 131 (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) 132 (|has| |#1| (-376)) ELT)) (-1787 (((-114) $ $) 122 (|has| |#1| (-376)) ELT)) (-3537 (((-790)) 105 (|has| |#1| (-381)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 191 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 189 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 186 T ELT)) (-3573 (((-558) $) 190 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 188 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 187 T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) 60 T ELT) (($ (-1287 |#1|)) 77 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) 170 (|has| |#1| (-363)) ELT)) (-2962 (($ $ $) 126 (|has| |#1| (-376)) ELT)) (-1988 (((-708 |#1|) $ (-1287 $)) 65 T ELT) (((-708 |#1|) $) 72 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 183 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 182 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 181 T ELT) (((-708 |#1|) (-708 $)) 180 T ELT)) (-4271 (($ |#2|) 175 T ELT) (((-3 $ "failed") (-419 |#2|)) 172 (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3510 (((-937)) 66 T ELT)) (-3394 (($) 108 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) 125 (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 120 (|has| |#1| (-376)) ELT)) (-3233 (($) 166 (|has| |#1| (-363)) ELT)) (-1882 (((-114) $) 167 (|has| |#1| (-363)) ELT)) (-1973 (($ $ (-790)) 158 (|has| |#1| (-363)) ELT) (($ $) 157 (|has| |#1| (-363)) ELT)) (-4152 (((-114) $) 133 (|has| |#1| (-376)) ELT)) (-4201 (((-937) $) 169 (|has| |#1| (-363)) ELT) (((-844 (-937)) $) 155 (|has| |#1| (-363)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3533 ((|#1| $) 63 T ELT)) (-3864 (((-710 $) $) 159 (|has| |#1| (-363)) ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 129 (|has| |#1| (-376)) ELT)) (-2223 ((|#2| $) 56 (|has| |#1| (-376)) ELT)) (-2219 (((-937) $) 107 (|has| |#1| (-381)) ELT)) (-3479 ((|#2| $) 173 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 185 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 184 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 179 T ELT) (((-708 |#1|) (-1287 $)) 178 T ELT)) (-2101 (($ (-660 $)) 118 (|has| |#1| (-376)) ELT) (($ $ $) 117 (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 134 (|has| |#1| (-376)) ELT)) (-3865 (($) 160 (|has| |#1| (-363)) CONST)) (-2630 (($ (-937)) 106 (|has| |#1| (-381)) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2639 (($) 177 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 119 (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) 116 (|has| |#1| (-376)) ELT) (($ $ $) 115 (|has| |#1| (-376)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) 163 (|has| |#1| (-363)) ELT)) (-4161 (((-417 $) $) 130 (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 128 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 127 (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ "failed") $ $) 110 (|has| |#1| (-376)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 121 (|has| |#1| (-376)) ELT)) (-1786 (((-790) $) 123 (|has| |#1| (-376)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 124 (|has| |#1| (-376)) ELT)) (-4186 ((|#1| (-1287 $)) 59 T ELT) ((|#1|) 73 T ELT)) (-1974 (((-790) $) 168 (|has| |#1| (-363)) ELT) (((-3 (-790) "failed") $ $) 156 (|has| |#1| (-363)) ELT)) (-4187 (($ $ (-790)) 153 (-3956 (-2960 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 151 (-3956 (-2960 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 147 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-1197) (-790)) 146 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1197))) 145 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-1197)) 143 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 142 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-790)) 141 (|has| |#1| (-376)) ELT)) (-2638 (((-708 |#1|) (-1287 $) (-1 |#1| |#1|)) 171 (|has| |#1| (-376)) ELT)) (-3602 ((|#2|) 176 T ELT)) (-1876 (($) 165 (|has| |#1| (-363)) ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 62 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) 61 T ELT) (((-1287 |#1|) $) 79 T ELT) (((-708 |#1|) (-1287 $)) 78 T ELT)) (-4401 (((-1287 |#1|) $) 76 T ELT) (($ (-1287 |#1|)) 75 T ELT) ((|#2| $) 192 T ELT) (($ |#2|) 174 T ELT)) (-3103 (((-3 (-1287 $) "failed") (-708 $)) 162 (|has| |#1| (-363)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ $) 109 (|has| |#1| (-376)) ELT) (($ (-419 (-558))) 104 (-3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3102 (($ $) 161 (|has| |#1| (-363)) ELT) (((-710 $) $) 55 (|has| |#1| (-147)) ELT)) (-2837 ((|#2| $) 57 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2221 (((-1287 $)) 80 T ELT)) (-2271 (((-114) $ $) 113 (|has| |#1| (-376)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-790)) 154 (-3956 (-2960 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) 152 (-3956 (-2960 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 150 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-1197) (-790)) 149 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1197))) 148 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-1197)) 144 (-2960 (|has| |#1| (-918 (-1197))) (|has| |#1| (-376))) ELT) (($ $ (-1 |#1| |#1|)) 140 (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-790)) 139 (|has| |#1| (-376)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 138 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 135 (|has| |#1| (-376)) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ (-419 (-558)) $) 137 (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) 136 (|has| |#1| (-376)) ELT))) +(((-743 |#1| |#2|) (-142) (-175) (-1263 |t#1|)) (T -743)) +((-2639 (*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-743 *2 *3)) (-4 *3 (-1263 *2)))) (-3602 (*1 *2) (-12 (-4 *1 (-743 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1263 *3)))) (-4271 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-743 *3 *2)) (-4 *2 (-1263 *3)))) (-4401 (*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-743 *3 *2)) (-4 *2 (-1263 *3)))) (-3479 (*1 *2 *1) (-12 (-4 *1 (-743 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1263 *3)))) (-4271 (*1 *1 *2) (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-376)) (-4 *3 (-175)) (-4 *1 (-743 *3 *4)))) (-2638 (*1 *2 *3 *4) (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-4 *1 (-743 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1263 *5)) (-5 *2 (-708 *5))))) +(-13 (-422 |t#1| |t#2|) (-175) (-630 |t#2|) (-424 |t#1|) (-390 |t#1|) (-10 -8 (-15 -2639 ($)) (-15 -3602 (|t#2|)) (-15 -4271 ($ |t#2|)) (-15 -4401 ($ |t#2|)) (-15 -3479 (|t#2| $)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-376)) (-6 (-234 |t#1|)) (-15 -4271 ((-3 $ "failed") (-419 |t#2|))) (-15 -2638 ((-708 |t#1|) (-1287 $) (-1 |t#1| |t#1|)))) |%noBranch|) (IF (|has| |t#1| (-363)) (-6 (-363)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-38 |#1|) . T) ((-38 $) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3956 (|has| |#1| (-363)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-363)) (|has| |#1| (-376))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 $) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-629 (-876)) . T) ((-175) . T) ((-630 |#2|) . T) ((-236 $) -3956 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-234 |#1|) |has| |#1| (-376)) ((-240) -3956 (|has| |#1| (-363)) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-239) -3956 (|has| |#1| (-363)) (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (-12 (|has| |#1| (-240)) (|has| |#1| (-376)))) ((-274 |#1|) |has| |#1| (-376)) ((-250) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-302) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-319) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-376) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-414) |has| |#1| (-363)) ((-381) -3956 (|has| |#1| (-363)) (|has| |#1| (-381))) ((-363) |has| |#1| (-363)) ((-383 |#1| |#2|) . T) ((-422 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-569) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-665 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-659 |#1|) . T) ((-659 $) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-736 |#1|) . T) ((-736 $) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-745) . T) ((-910 $ (-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))))) ((-916 (-1197)) -12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197)))) ((-918 (-1197)) -3956 (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#1| (-916 (-1197))))) ((-939) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) -3956 (|has| |#1| (-363)) (|has| |#1| (-376))) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) |has| |#1| (-363)) ((-1237) . T) ((-1242) -3956 (|has| |#1| (-363)) (|has| |#1| (-376)))) +((-4153 (($) 11 T ELT)) (-3886 (((-3 $ "failed") $) 14 T ELT)) (-2640 (((-114) $) 10 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 20 T ELT))) +(((-744 |#1|) (-10 -7 (-15 -3886 ((-3 |#1| "failed") |#1|)) (-15 ** (|#1| |#1| (-790))) (-15 -2640 ((-114) |#1|)) (-15 -4153 (|#1|)) (-15 ** (|#1| |#1| (-937)))) (-745)) (T -744)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-4153 (($) 23 T CONST)) (-3886 (((-3 $ "failed") $) 20 T ELT)) (-2640 (((-114) $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3064 (($) 24 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (** (($ $ (-937)) 17 T ELT) (($ $ (-790)) 21 T ELT)) (* (($ $ $) 18 T ELT))) +(((-745) (-142)) (T -745)) +((-3064 (*1 *1) (-4 *1 (-745))) (-4153 (*1 *1) (-4 *1 (-745))) (-2640 (*1 *2 *1) (-12 (-4 *1 (-745)) (-5 *2 (-114)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-745)) (-5 *2 (-790)))) (-3886 (*1 *1 *1) (|partial| -4 *1 (-745)))) +(-13 (-1132) (-10 -8 (-15 (-3064) ($) -4381) (-15 -4153 ($) -4381) (-15 -2640 ((-114) $)) (-15 ** ($ $ (-790))) (-15 -3886 ((-3 $ "failed") $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2641 (((-2 (|:| -3491 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|)) 39 T ELT)) (-3837 (((-2 (|:| -3491 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|)) 12 T ELT)) (-2642 ((|#2| (-419 |#2|) (-1 |#2| |#2|)) 13 T ELT)) (-3854 (((-2 (|:| |poly| |#2|) (|:| -3491 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)) 48 T ELT))) +(((-746 |#1| |#2|) (-10 -7 (-15 -3837 ((-2 (|:| -3491 |#2|) (|:| |special| |#2|)) |#2| (-1 |#2| |#2|))) (-15 -2641 ((-2 (|:| -3491 (-417 |#2|)) (|:| |special| (-417 |#2|))) |#2| (-1 |#2| |#2|))) (-15 -2642 (|#2| (-419 |#2|) (-1 |#2| |#2|))) (-15 -3854 ((-2 (|:| |poly| |#2|) (|:| -3491 (-419 |#2|)) (|:| |special| (-419 |#2|))) (-419 |#2|) (-1 |#2| |#2|)))) (-376) (-1263 |#1|)) (T -746)) +((-3854 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |poly| *6) (|:| -3491 (-419 *6)) (|:| |special| (-419 *6)))) (-5 *1 (-746 *5 *6)) (-5 *3 (-419 *6)))) (-2642 (*1 *2 *3 *4) (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-746 *5 *2)) (-4 *5 (-376)))) (-2641 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3491 (-417 *3)) (|:| |special| (-417 *3)))) (-5 *1 (-746 *5 *3)))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3491 *3) (|:| |special| *3))) (-5 *1 (-746 *5 *3))))) +((-2643 ((|#7| (-660 |#5|) |#6|) NIL T ELT)) (-4387 ((|#7| (-1 |#5| |#4|) |#6|) 27 T ELT))) +(((-747 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4387 (|#7| (-1 |#5| |#4|) |#6|)) (-15 -2643 (|#7| (-660 |#5|) |#6|))) (-860) (-814) (-814) (-1069) (-1069) (-968 |#4| |#2| |#1|) (-968 |#5| |#3| |#1|)) (T -747)) +((-2643 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *9)) (-4 *9 (-1069)) (-4 *5 (-860)) (-4 *6 (-814)) (-4 *8 (-1069)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-747 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) (-4 *4 (-968 *8 *6 *5)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1069)) (-4 *9 (-1069)) (-4 *5 (-860)) (-4 *6 (-814)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-747 *5 *6 *7 *8 *9 *4 *2)) (-4 *7 (-814)) (-4 *4 (-968 *8 *6 *5))))) +((-4387 ((|#7| (-1 |#2| |#1|) |#6|) 28 T ELT))) +(((-748 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-10 -7 (-15 -4387 (|#7| (-1 |#2| |#1|) |#6|))) (-860) (-860) (-814) (-814) (-1069) (-968 |#5| |#3| |#1|) (-968 |#5| |#4| |#2|)) (T -748)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-814)) (-4 *9 (-1069)) (-4 *2 (-968 *9 *8 *6)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) (-4 *8 (-814)) (-4 *4 (-968 *9 *7 *5))))) +((-4161 (((-417 |#4|) |#4|) 42 T ELT))) +(((-749 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 |#4|) |#4|))) (-814) (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197))))) (-319) (-968 (-964 |#3|) |#1| |#2|)) (T -749)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197)))))) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-749 *4 *5 *6 *3)) (-4 *3 (-968 (-964 *6) *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-877 |#1|)) $) NIL T ELT)) (-3485 (((-1191 $) $ (-877 |#1|)) NIL T ELT) (((-1191 |#2|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-877 |#1|))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-877 |#1|) $) NIL T ELT)) (-4185 (($ $ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#2| (-928)) ELT)) (-1803 (($ $ |#2| (-543 (-877 |#1|)) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-877 |#1|) (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#2|) (-877 |#1|)) NIL T ELT) (($ (-1191 $) (-877 |#1|)) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-543 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-877 |#1|)) NIL T ELT)) (-3220 (((-543 (-877 |#1|)) $) NIL T ELT) (((-790) $ (-877 |#1|)) NIL T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) NIL T ELT)) (-1804 (($ (-1 (-543 (-877 |#1|)) (-543 (-877 |#1|))) $) NIL T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-3484 (((-3 (-877 |#1|) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-877 |#1|)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#2| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#2| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-877 |#1|) |#2|) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 |#2|)) NIL T ELT) (($ $ (-877 |#1|) $) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 $)) NIL T ELT)) (-4186 (($ $ (-877 |#1|)) NIL (|has| |#2| (-175)) ELT)) (-4187 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-4377 (((-543 (-877 |#1|)) $) NIL T ELT) (((-790) $ (-877 |#1|)) NIL T ELT) (((-660 (-790)) $ (-660 (-877 |#1|))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-877 |#1|) (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-877 |#1|) (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT)) (-3217 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-877 |#1|)) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-877 |#1|)) NIL T ELT) (($ $) NIL (|has| |#2| (-569)) ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-543 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#2| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#2| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-877 |#1|)) (-660 (-790))) NIL T ELT) (($ $ (-877 |#1|) (-790)) NIL T ELT) (($ $ (-660 (-877 |#1|))) NIL T ELT) (($ $ (-877 |#1|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-750 |#1| |#2|) (-968 |#2| (-543 (-877 |#1|)) (-877 |#1|)) (-660 (-1197)) (-1069)) (T -750)) +NIL +((-2644 (((-2 (|:| -2872 (-964 |#3|)) (|:| -2267 (-964 |#3|))) |#4|) 14 T ELT)) (-3386 ((|#4| |#4| |#2|) 33 T ELT)) (-2647 ((|#4| (-419 (-964 |#3|)) |#2|) 62 T ELT)) (-2646 ((|#4| (-1191 (-964 |#3|)) |#2|) 74 T ELT)) (-2645 ((|#4| (-1191 |#4|) |#2|) 49 T ELT)) (-3385 ((|#4| |#4| |#2|) 52 T ELT)) (-4161 (((-417 |#4|) |#4|) 40 T ELT))) +(((-751 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2644 ((-2 (|:| -2872 (-964 |#3|)) (|:| -2267 (-964 |#3|))) |#4|)) (-15 -3385 (|#4| |#4| |#2|)) (-15 -2645 (|#4| (-1191 |#4|) |#2|)) (-15 -3386 (|#4| |#4| |#2|)) (-15 -2646 (|#4| (-1191 (-964 |#3|)) |#2|)) (-15 -2647 (|#4| (-419 (-964 |#3|)) |#2|)) (-15 -4161 ((-417 |#4|) |#4|))) (-814) (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)))) (-569) (-968 (-419 (-964 |#3|)) |#1| |#2|)) (T -751)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) (-4 *6 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-964 *6)) *4 *5)))) (-2647 (*1 *2 *3 *4) (-12 (-4 *6 (-569)) (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-751 *5 *4 *6 *2)) (-5 *3 (-419 (-964 *6))) (-4 *5 (-814)) (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))))) (-2646 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 (-964 *6))) (-4 *6 (-569)) (-4 *2 (-968 (-419 (-964 *6)) *5 *4)) (-5 *1 (-751 *5 *4 *6 *2)) (-4 *5 (-814)) (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-814)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) (-4 *5 (-569)) (-5 *1 (-751 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-964 *5)) *4 *3)))) (-2645 (*1 *2 *3 *4) (-12 (-5 *3 (-1191 *2)) (-4 *2 (-968 (-419 (-964 *6)) *5 *4)) (-5 *1 (-751 *5 *4 *6 *2)) (-4 *5 (-814)) (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) (-4 *6 (-569)))) (-3385 (*1 *2 *2 *3) (-12 (-4 *4 (-814)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) (-4 *5 (-569)) (-5 *1 (-751 *4 *3 *5 *2)) (-4 *2 (-968 (-419 (-964 *5)) *4 *3)))) (-2644 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) (-4 *6 (-569)) (-5 *2 (-2 (|:| -2872 (-964 *6)) (|:| -2267 (-964 *6)))) (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-964 *6)) *4 *5))))) +((-4161 (((-417 |#4|) |#4|) 54 T ELT))) +(((-752 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 |#4|) |#4|))) (-814) (-860) (-13 (-319) (-149)) (-968 (-419 |#3|) |#1| |#2|)) (T -752)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-968 (-419 *6) *4 *5))))) +((-4387 (((-754 |#2| |#3|) (-1 |#2| |#1|) (-754 |#1| |#3|)) 18 T ELT))) +(((-753 |#1| |#2| |#3|) (-10 -7 (-15 -4387 ((-754 |#2| |#3|) (-1 |#2| |#1|) (-754 |#1| |#3|)))) (-1069) (-1069) (-745)) (T -753)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-754 *5 *7)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *7 (-745)) (-5 *2 (-754 *6 *7)) (-5 *1 (-753 *5 *6 *7))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 36 T ELT)) (-4203 (((-660 (-2 (|:| -4383 |#1|) (|:| -4367 |#2|))) $) 37 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790)) 22 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) 76 T ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3573 ((|#2| $) NIL T ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) 99 (|has| |#2| (-860)) ELT)) (-3886 (((-3 $ #1#) $) 83 T ELT)) (-3394 (($) 48 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) 70 T ELT)) (-3221 (((-660 $) $) 52 T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| |#2|) 17 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 68 T ELT)) (-2219 (((-937) $) 43 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3294 ((|#2| $) 98 (|has| |#2| (-860)) ELT)) (-3591 ((|#1| $) 97 (|has| |#2| (-860)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 35 (-12 (|has| |#2| (-381)) (|has| |#1| (-381))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 96 T ELT) (($ (-558)) 59 T ELT) (($ |#2|) 55 T ELT) (($ |#1|) 56 T ELT) (($ (-660 (-2 (|:| -4383 |#1|) (|:| -4367 |#2|)))) 11 T ELT)) (-4246 (((-660 |#1|) $) 54 T ELT)) (-4106 ((|#1| $ |#2|) 114 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 12 T CONST)) (-3064 (($) 44 T CONST)) (-3453 (((-114) $ $) 104 T ELT)) (-4266 (($ $) 61 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 33 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 66 T ELT) (($ $ $) 117 T ELT) (($ |#1| $) 63 (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-754 |#1| |#2|) (-13 (-1069) (-1058 |#2|) (-1058 |#1|) (-10 -8 (-15 -3293 ($ |#1| |#2|)) (-15 -4106 (|#1| $ |#2|)) (-15 -4375 ($ (-660 (-2 (|:| -4383 |#1|) (|:| -4367 |#2|))))) (-15 -4203 ((-660 (-2 (|:| -4383 |#1|) (|:| -4367 |#2|))) $)) (-15 -4387 ($ (-1 |#1| |#1|) $)) (-15 -4366 ((-114) $)) (-15 -4246 ((-660 |#1|) $)) (-15 -3221 ((-660 $) $)) (-15 -2648 ((-790) $)) (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-860)) (PROGN (-15 -3294 (|#2| $)) (-15 -3591 (|#1| $)) (-15 -4388 ($ $))) |%noBranch|))) (-1069) (-745)) (T -754)) +((-3293 (*1 *1 *2 *3) (-12 (-5 *1 (-754 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-745)))) (-4106 (*1 *2 *1 *3) (-12 (-4 *2 (-1069)) (-5 *1 (-754 *2 *3)) (-4 *3 (-745)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4383 *3) (|:| -4367 *4)))) (-4 *3 (-1069)) (-4 *4 (-745)) (-5 *1 (-754 *3 *4)))) (-4203 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4383 *3) (|:| -4367 *4)))) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-754 *3 *4)) (-4 *4 (-745)))) (-4366 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) (-4246 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) (-3221 (*1 *2 *1) (-12 (-5 *2 (-660 (-754 *3 *4))) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) (-2648 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) (-3294 (*1 *2 *1) (-12 (-4 *2 (-745)) (-4 *2 (-860)) (-5 *1 (-754 *3 *2)) (-4 *3 (-1069)))) (-3591 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-754 *2 *3)) (-4 *3 (-860)) (-4 *3 (-745)))) (-4388 (*1 *1 *1) (-12 (-5 *1 (-754 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1069)) (-4 *3 (-745))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3651 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 95 T ELT)) (-3653 (($ $ $) 99 T ELT)) (-3652 (((-114) $ $) 107 T ELT)) (-3656 (($ (-660 |#1|)) 26 T ELT) (($) 17 T ELT)) (-1712 (($ (-1 (-114) |#1|) $) 86 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2593 (($ $) 88 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) 71 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT) (($ |#1| $ (-558)) 78 T ELT) (($ (-1 (-114) |#1|) $ (-558)) 81 T ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (($ |#1| $ (-558)) 83 T ELT) (($ (-1 (-114) |#1|) $ (-558)) 84 T ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) 106 T ELT)) (-2649 (($) 15 T ELT) (($ |#1|) 28 T ELT) (($ (-660 |#1|)) 23 T ELT)) (-3006 (((-660 |#1|) $) 38 T ELT)) (-3662 (((-114) |#1| $) 66 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3655 (($ $ $) 97 T ELT)) (-1388 ((|#1| $) 63 T ELT)) (-4036 (($ |#1| $) 64 T ELT) (($ |#1| $ (-790)) 89 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-1389 ((|#1| $) 62 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 57 T ELT)) (-3992 (($) 14 T ELT)) (-2592 (((-660 (-2 (|:| -2285 |#1|) (|:| -2156 (-790)))) $) 56 T ELT)) (-3654 (($ $ |#1|) NIL T ELT) (($ $ $) 98 T ELT)) (-1597 (($) 16 T ELT) (($ (-660 |#1|)) 25 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 69 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 82 T ELT)) (-4401 (((-547) $) 36 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 22 T ELT)) (-4375 (((-876) $) 50 T ELT)) (-3657 (($ (-660 |#1|)) 27 T ELT) (($) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1390 (($ (-660 |#1|)) 24 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 103 T ELT)) (-4386 (((-790) $) 68 (|has| $ (-6 -4424)) ELT))) +(((-755 |#1|) (-13 (-756 |#1|) (-10 -8 (-6 -4424) (-6 -4425) (-15 -2649 ($)) (-15 -2649 ($ |#1|)) (-15 -2649 ($ (-660 |#1|))) (-15 -3006 ((-660 |#1|) $)) (-15 -3825 ($ |#1| $ (-558))) (-15 -3825 ($ (-1 (-114) |#1|) $ (-558))) (-15 -3824 ($ |#1| $ (-558))) (-15 -3824 ($ (-1 (-114) |#1|) $ (-558))))) (-1121)) (T -755)) +((-2649 (*1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-1121)))) (-2649 (*1 *1 *2) (-12 (-5 *1 (-755 *2)) (-4 *2 (-1121)))) (-2649 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-755 *3)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-755 *3)) (-4 *3 (-1121)))) (-3825 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-755 *2)) (-4 *2 (-1121)))) (-3825 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1121)) (-5 *1 (-755 *4)))) (-3824 (*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-755 *2)) (-4 *2 (-1121)))) (-3824 (*1 *1 *2 *1 *3) (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1121)) (-5 *1 (-755 *4))))) +((-2966 (((-114) $ $) 19 T ELT)) (-3651 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3653 (($ $ $) 77 T ELT)) (-3652 (((-114) $ $) 78 T ELT)) (-3656 (($ (-660 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1712 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2593 (($ $) 66 T ELT)) (-1466 (($ $) 62 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) 61 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) 69 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 T ELT)) (-3655 (($ $ $) 74 T ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT) (($ |#1| $ (-790)) 67 T ELT)) (-3660 (((-1140) $) 21 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2592 (((-660 (-2 (|:| -2285 |#1|) (|:| -2156 (-790)))) $) 65 T ELT)) (-3654 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 |#1|)) 52 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 54 T ELT)) (-4375 (((-876) $) 17 T ELT)) (-3657 (($ (-660 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1377 (((-114) $ $) 20 T ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 T ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-756 |#1|) (-142) (-1121)) (T -756)) +NIL +(-13 (-714 |t#1|) (-1119 |t#1|)) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-629 (-876)) . T) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-714 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2650 (((-1293) (-1179)) 8 T ELT))) +(((-757) (-10 -7 (-15 -2650 ((-1293) (-1179))))) (T -757)) +((-2650 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-757))))) +((-2651 (((-660 |#1|) (-660 |#1|) (-660 |#1|)) 15 T ELT))) +(((-758 |#1|) (-10 -7 (-15 -2651 ((-660 |#1|) (-660 |#1|) (-660 |#1|)))) (-860)) (T -758)) +((-2651 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-758 *3))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 |#2|) $) 156 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 149 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 148 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 146 (|has| |#1| (-569)) ELT)) (-3911 (($ $) 105 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 88 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3437 (($ $) 87 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 104 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 89 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 103 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 90 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) 22 T CONST)) (-4388 (($ $) 140 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4243 (((-964 |#1|) $ (-790)) 118 T ELT) (((-964 |#1|) $ (-790) (-790)) 117 T ELT)) (-3292 (((-114) $) 157 T ELT)) (-4056 (($) 115 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-790) $ |#2|) 120 T ELT) (((-790) $ |#2| (-790)) 119 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 86 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4366 (((-114) $) 138 T ELT)) (-3293 (($ $ (-660 |#2|) (-660 (-543 |#2|))) 155 T ELT) (($ $ |#2| (-543 |#2|)) 154 T ELT) (($ |#1| (-543 |#2|)) 139 T ELT) (($ $ |#2| (-790)) 122 T ELT) (($ $ (-660 |#2|) (-660 (-790))) 121 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 137 T ELT)) (-4371 (($ $) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) 135 T ELT)) (-3591 ((|#1| $) 134 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-4241 (($ $ |#2|) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4198 (($ $ (-790)) 123 T ELT)) (-3885 (((-3 $ "failed") $ $) 150 (|has| |#1| (-569)) ELT)) (-4372 (($ $) 113 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (($ $ |#2| $) 131 T ELT) (($ $ (-660 |#2|) (-660 $)) 130 T ELT) (($ $ (-660 (-305 $))) 129 T ELT) (($ $ (-305 $)) 128 T ELT) (($ $ $ $) 127 T ELT) (($ $ (-660 $) (-660 $)) 126 T ELT)) (-4187 (($ $ (-660 |#2|) (-660 (-790))) 49 T ELT) (($ $ |#2| (-790)) 48 T ELT) (($ $ (-660 |#2|)) 47 T ELT) (($ $ |#2|) 45 T ELT)) (-4377 (((-543 |#2|) $) 136 T ELT)) (-3914 (($ $) 102 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 91 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 101 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 92 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 100 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 93 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 158 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 153 (|has| |#1| (-175)) ELT) (($ $) 151 (|has| |#1| (-569)) ELT) (($ (-419 (-558))) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4106 ((|#1| $ (-543 |#2|)) 141 T ELT) (($ $ |#2| (-790)) 125 T ELT) (($ $ (-660 |#2|) (-660 (-790))) 124 T ELT)) (-3102 (((-710 $) $) 152 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 111 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 99 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) 147 (|has| |#1| (-569)) ELT)) (-3915 (($ $) 110 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 98 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 109 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 97 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 108 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 96 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 107 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 95 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 106 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 94 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-660 |#2|) (-660 (-790))) 52 T ELT) (($ $ |#2| (-790)) 51 T ELT) (($ $ (-660 |#2|)) 50 T ELT) (($ $ |#2|) 46 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 142 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ $) 114 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 85 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 145 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 133 T ELT) (($ $ |#1|) 132 T ELT))) +(((-759 |#1| |#2|) (-142) (-1069) (-860)) (T -759)) +((-4106 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-860)))) (-4106 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-790))) (-4 *1 (-759 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-860)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-759 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-860)))) (-3293 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-860)))) (-3293 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-790))) (-4 *1 (-759 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-860)))) (-4201 (*1 *2 *1 *3) (-12 (-4 *1 (-759 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-860)) (-5 *2 (-790)))) (-4201 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-790)) (-4 *1 (-759 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-860)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-860)) (-5 *2 (-964 *4)))) (-4243 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-860)) (-5 *2 (-964 *4)))) (-4241 (*1 *1 *1 *2) (-12 (-4 *1 (-759 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-860)) (-4 *3 (-38 (-419 (-558))))))) +(-13 (-916 |t#2|) (-993 |t#1| (-543 |t#2|) |t#2|) (-526 |t#2| $) (-321 $) (-10 -8 (-15 -4106 ($ $ |t#2| (-790))) (-15 -4106 ($ $ (-660 |t#2|) (-660 (-790)))) (-15 -4198 ($ $ (-790))) (-15 -3293 ($ $ |t#2| (-790))) (-15 -3293 ($ $ (-660 |t#2|) (-660 (-790)))) (-15 -4201 ((-790) $ |t#2|)) (-15 -4201 ((-790) $ |t#2| (-790))) (-15 -4243 ((-964 |t#1|) $ (-790))) (-15 -4243 ((-964 |t#1|) $ (-790) (-790))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $ |t#2|)) (-6 (-1022)) (-6 (-1223))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-543 |#2|)) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-302) |has| |#1| (-569)) ((-321 $) . T) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-526 |#2| $) . T) ((-526 $ $) . T) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) . T) ((-910 $ |#2|) . T) ((-916 |#2|) . T) ((-918 |#2|) . T) ((-993 |#1| (-543 |#2|) |#2|) . T) ((-1022) |has| |#1| (-38 (-419 (-558)))) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-558)))) ((-1226) |has| |#1| (-38 (-419 (-558)))) ((-1237) . T)) +((-4161 (((-417 (-1191 |#4|)) (-1191 |#4|)) 30 T ELT) (((-417 |#4|) |#4|) 26 T ELT))) +(((-760 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 |#4|) |#4|)) (-15 -4161 ((-417 (-1191 |#4|)) (-1191 |#4|)))) (-860) (-814) (-13 (-319) (-149)) (-968 |#3| |#2| |#1|)) (T -760)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-760 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-760 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +((-2654 (((-417 |#4|) |#4| |#2|) 141 T ELT)) (-2652 (((-417 |#4|) |#4|) NIL T ELT)) (-4400 (((-417 (-1191 |#4|)) (-1191 |#4|)) 128 T ELT) (((-417 |#4|) |#4|) 52 T ELT)) (-2656 (((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -4161 (-1191 |#4|)) (|:| -2631 (-558)))))) (-1191 |#4|) (-660 |#2|) (-660 (-660 |#3|))) 81 T ELT)) (-2660 (((-1191 |#3|) (-1191 |#3|) (-558)) 168 T ELT)) (-2659 (((-660 (-790)) (-1191 |#4|) (-660 |#2|) (-790)) 75 T ELT)) (-3479 (((-3 (-660 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-660 |#2|) (-660 (-790)) (-660 |#3|)) 79 T ELT)) (-2657 (((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-660 |#2|) (-660 (-660 |#3|))) 27 T ELT)) (-2655 (((-2 (|:| -2213 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-558)) 72 T ELT)) (-2653 (((-558) (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558))))) 164 T ELT)) (-2658 ((|#4| (-558) (-417 |#4|)) 73 T ELT)) (-3776 (((-114) (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558)))) (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558))))) NIL T ELT))) +(((-761 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4400 ((-417 |#4|) |#4|)) (-15 -4400 ((-417 (-1191 |#4|)) (-1191 |#4|))) (-15 -2652 ((-417 |#4|) |#4|)) (-15 -2653 ((-558) (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558)))))) (-15 -2654 ((-417 |#4|) |#4| |#2|)) (-15 -2655 ((-2 (|:| -2213 (-1191 |#4|)) (|:| |polval| (-1191 |#3|))) (-1191 |#4|) (-1191 |#3|) (-558))) (-15 -2656 ((-2 (|:| |unitPart| |#4|) (|:| |suPart| (-660 (-2 (|:| -4161 (-1191 |#4|)) (|:| -2631 (-558)))))) (-1191 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -2657 ((-2 (|:| |upol| (-1191 |#3|)) (|:| |Lval| (-660 |#3|)) (|:| |Lfact| (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558))))) (|:| |ctpol| |#3|)) (-1191 |#4|) (-660 |#2|) (-660 (-660 |#3|)))) (-15 -2658 (|#4| (-558) (-417 |#4|))) (-15 -3776 ((-114) (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558)))) (-660 (-2 (|:| -4161 (-1191 |#3|)) (|:| -2631 (-558)))))) (-15 -3479 ((-3 (-660 (-1191 |#4|)) "failed") (-1191 |#4|) (-1191 |#3|) (-1191 |#3|) |#4| (-660 |#2|) (-660 (-790)) (-660 |#3|))) (-15 -2659 ((-660 (-790)) (-1191 |#4|) (-660 |#2|) (-790))) (-15 -2660 ((-1191 |#3|) (-1191 |#3|) (-558)))) (-814) (-860) (-319) (-968 |#3| |#1| |#2|)) (T -761)) +((-2660 (*1 *2 *2 *3) (-12 (-5 *2 (-1191 *6)) (-5 *3 (-558)) (-4 *6 (-319)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-761 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2659 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-660 *7)) (-4 *7 (-860)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-814)) (-4 *8 (-319)) (-5 *2 (-660 (-790))) (-5 *1 (-761 *6 *7 *8 *9)) (-5 *5 (-790)))) (-3479 (*1 *2 *3 *4 *4 *5 *6 *7 *8) (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-660 *10)) (-5 *7 (-660 (-790))) (-5 *8 (-660 *11)) (-4 *10 (-860)) (-4 *11 (-319)) (-4 *9 (-814)) (-4 *5 (-968 *11 *9 *10)) (-5 *2 (-660 (-1191 *5))) (-5 *1 (-761 *9 *10 *11 *5)) (-5 *3 (-1191 *5)))) (-3776 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-2 (|:| -4161 (-1191 *6)) (|:| -2631 (-558))))) (-4 *6 (-319)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) (-5 *1 (-761 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2658 (*1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-968 *7 *5 *6)) (-5 *1 (-761 *5 *6 *7 *2)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-319)))) (-2657 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1191 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-860)) (-4 *8 (-319)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-660 *8)) (|:| |Lfact| (-660 (-2 (|:| -4161 (-1191 *8)) (|:| -2631 (-558))))) (|:| |ctpol| *8))) (-5 *1 (-761 *6 *7 *8 *9)))) (-2656 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-860)) (-4 *8 (-319)) (-4 *6 (-814)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) (|:| |suPart| (-660 (-2 (|:| -4161 (-1191 *9)) (|:| -2631 (-558))))))) (-5 *1 (-761 *6 *7 *8 *9)) (-5 *3 (-1191 *9)))) (-2655 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-558)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-319)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| -2213 (-1191 *9)) (|:| |polval| (-1191 *8)))) (-5 *1 (-761 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8)))) (-2654 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-761 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) (-2653 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -4161 (-1191 *6)) (|:| -2631 (-558))))) (-4 *6 (-319)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-558)) (-5 *1 (-761 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-2652 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) (-4400 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-761 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-4400 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) +((-2661 (($ $ (-937)) 17 T ELT))) +(((-762 |#1| |#2|) (-10 -7 (-15 -2661 (|#1| |#1| (-937)))) (-763 |#2|) (-175)) (T -762)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2637 (($ $ (-937)) 36 T ELT)) (-2661 (($ $ (-937)) 43 T ELT)) (-2636 (($ $ (-937)) 37 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2823 (($ $ $) 33 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2824 (($ $ $ $) 34 T ELT)) (-2822 (($ $ $) 32 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 38 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) 45 T ELT) (($ |#1| $) 44 T ELT))) +(((-763 |#1|) (-142) (-175)) (T -763)) +((-2661 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-763 *3)) (-4 *3 (-175))))) +(-13 (-780) (-736 |t#1|) (-10 -8 (-15 -2661 ($ $ (-937))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-739) . T) ((-780) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2663 (((-1055) (-708 (-229)) (-558) (-114) (-558)) 26 T ELT)) (-2662 (((-1055) (-708 (-229)) (-558) (-114) (-558)) 25 T ELT))) +(((-764) (-10 -7 (-15 -2662 ((-1055) (-708 (-229)) (-558) (-114) (-558))) (-15 -2663 ((-1055) (-708 (-229)) (-558) (-114) (-558))))) (T -764)) +((-2663 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1055)) (-5 *1 (-764)))) (-2662 (*1 *2 *3 *4 *5 *4) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1055)) (-5 *1 (-764))))) +((-2666 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) 43 T ELT)) (-2665 (((-1055) (-558) (-558) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) 39 T ELT)) (-2664 (((-1055) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) 32 T ELT))) +(((-765) (-10 -7 (-15 -2664 ((-1055) (-229) (-229) (-229) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494))))) (-15 -2665 ((-1055) (-558) (-558) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN))))) (-15 -2666 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN))))))) (T -765)) +((-2666 (*1 *2 *3 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1055)) (-5 *1 (-765)))) (-2665 (*1 *2 *3 *3 *4 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1055)) (-5 *1 (-765)))) (-2664 (*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) (-5 *1 (-765))))) +((-2678 (((-1055) (-558) (-558) (-708 (-229)) (-558)) 34 T ELT)) (-2677 (((-1055) (-558) (-558) (-708 (-229)) (-558)) 33 T ELT)) (-2676 (((-1055) (-558) (-708 (-229)) (-558)) 32 T ELT)) (-2675 (((-1055) (-558) (-708 (-229)) (-558)) 31 T ELT)) (-2674 (((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 30 T ELT)) (-2673 (((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 29 T ELT)) (-2672 (((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-558)) 28 T ELT)) (-2671 (((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-558)) 27 T ELT)) (-2670 (((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 24 T ELT)) (-2669 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558)) 23 T ELT)) (-2668 (((-1055) (-558) (-708 (-229)) (-558)) 22 T ELT)) (-2667 (((-1055) (-558) (-708 (-229)) (-558)) 21 T ELT))) +(((-766) (-10 -7 (-15 -2667 ((-1055) (-558) (-708 (-229)) (-558))) (-15 -2668 ((-1055) (-558) (-708 (-229)) (-558))) (-15 -2669 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2670 ((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2671 ((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2672 ((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2673 ((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2674 ((-1055) (-558) (-558) (-1179) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2675 ((-1055) (-558) (-708 (-229)) (-558))) (-15 -2676 ((-1055) (-558) (-708 (-229)) (-558))) (-15 -2677 ((-1055) (-558) (-558) (-708 (-229)) (-558))) (-15 -2678 ((-1055) (-558) (-558) (-708 (-229)) (-558))))) (T -766)) +((-2678 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2677 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2676 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2675 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2674 (*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2673 (*1 *2 *3 *3 *4 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2672 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2671 (*1 *2 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2670 (*1 *2 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2669 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2668 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766)))) (-2667 (*1 *2 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) +((-2690 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558) (-229) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 52 T ELT)) (-2689 (((-1055) (-708 (-229)) (-708 (-229)) (-558) (-558)) 51 T ELT)) (-2688 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) 50 T ELT)) (-2687 (((-1055) (-229) (-229) (-558) (-558) (-558) (-558)) 46 T ELT)) (-2686 (((-1055) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 45 T ELT)) (-2685 (((-1055) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 44 T ELT)) (-2684 (((-1055) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 43 T ELT)) (-2683 (((-1055) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) 42 T ELT)) (-2682 (((-1055) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) 38 T ELT)) (-2681 (((-1055) (-229) (-229) (-558) (-708 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) 37 T ELT)) (-2680 (((-1055) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) 33 T ELT)) (-2679 (((-1055) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) 32 T ELT))) +(((-767) (-10 -7 (-15 -2679 ((-1055) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494))))) (-15 -2680 ((-1055) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494))))) (-15 -2681 ((-1055) (-229) (-229) (-558) (-708 (-229)) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494))))) (-15 -2682 ((-1055) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494))))) (-15 -2683 ((-1055) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2684 ((-1055) (-229) (-229) (-229) (-229) (-558) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2685 ((-1055) (-229) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2686 ((-1055) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G))))) (-15 -2687 ((-1055) (-229) (-229) (-558) (-558) (-558) (-558))) (-15 -2688 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558) (-229) (-558) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))) (-15 -2689 ((-1055) (-708 (-229)) (-708 (-229)) (-558) (-558))) (-15 -2690 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558) (-229) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN))))))) (T -767)) +((-2690 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2689 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2688 (*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2687 (*1 *2 *3 *3 *4 *4 *4 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2686 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2685 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2684 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2683 (*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2682 (*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2681 (*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2680 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) (-5 *1 (-767)))) (-2679 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) (-5 *1 (-767))))) +((-2698 (((-1055) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) 76 T ELT)) (-2697 (((-1055) (-708 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402)) 69 T ELT) (((-1055) (-708 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) 68 T ELT)) (-2696 (((-1055) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) 57 T ELT)) (-2695 (((-1055) (-708 (-229)) (-708 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 50 T ELT)) (-2694 (((-1055) (-229) (-558) (-558) (-1179) (-558) (-229) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 49 T ELT)) (-2693 (((-1055) (-229) (-558) (-558) (-229) (-1179) (-229) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 45 T ELT)) (-2692 (((-1055) (-229) (-558) (-558) (-229) (-229) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) 42 T ELT)) (-2691 (((-1055) (-229) (-558) (-558) (-558) (-229) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) 38 T ELT))) +(((-768) (-10 -7 (-15 -2691 ((-1055) (-229) (-558) (-558) (-558) (-229) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2692 ((-1055) (-229) (-558) (-558) (-229) (-229) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2693 ((-1055) (-229) (-558) (-558) (-229) (-1179) (-229) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2694 ((-1055) (-229) (-558) (-558) (-1179) (-558) (-229) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G))) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV))) (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT))))) (-15 -2695 ((-1055) (-708 (-229)) (-708 (-229)) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN))))) (-15 -2696 ((-1055) (-229) (-229) (-558) (-229) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG))))) (-15 -2697 ((-1055) (-708 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))))) (-15 -2697 ((-1055) (-708 (-229)) (-558) (-558) (-229) (-558) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL))) (-402) (-402))) (-15 -2698 ((-1055) (-558) (-558) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS))) (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP))))))) (T -768)) +((-2698 (*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2697 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2697 (*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2696 (*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2695 (*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2694 (*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) (-12 (-5 *4 (-558)) (-5 *5 (-1179)) (-5 *6 (-708 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2693 (*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) (-12 (-5 *4 (-558)) (-5 *5 (-1179)) (-5 *6 (-708 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2692 (*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-768)))) (-2691 (*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-768))))) +((-2701 (((-1055) (-229) (-229) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-229) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-229) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-694 (-229)) (-558)) 46 T ELT)) (-2700 (((-1055) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1179) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) 41 T ELT)) (-2699 (((-1055) (-558) (-558) (-558) (-558) (-229) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 23 T ELT))) +(((-769) (-10 -7 (-15 -2699 ((-1055) (-558) (-558) (-558) (-558) (-229) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2700 ((-1055) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-1179) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF))) (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY))))) (-15 -2701 ((-1055) (-229) (-229) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-229) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-229) (-558) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-694 (-229)) (-558))))) (T -769)) +((-2701 (*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-694 (-229))) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-769)))) (-2700 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-1179)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1055)) (-5 *1 (-769)))) (-2699 (*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-769))))) +((-2711 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-708 (-229)) (-229) (-229) (-558)) 35 T ELT)) (-2710 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-229) (-229) (-558)) 34 T ELT)) (-2709 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-708 (-229)) (-229) (-229) (-558)) 33 T ELT)) (-2708 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 29 T ELT)) (-2707 (((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 28 T ELT)) (-2706 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-229) (-558)) 27 T ELT)) (-2705 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-558)) 24 T ELT)) (-2704 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-558)) 23 T ELT)) (-2703 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558)) 22 T ELT)) (-2702 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558) (-558) (-558)) 21 T ELT))) +(((-770) (-10 -7 (-15 -2702 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558) (-558) (-558))) (-15 -2703 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2704 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-558))) (-15 -2705 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-558))) (-15 -2706 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-229) (-558))) (-15 -2707 ((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2708 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2709 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-708 (-229)) (-229) (-229) (-558))) (-15 -2710 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-229) (-229) (-558))) (-15 -2711 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-708 (-229)) (-229) (-229) (-558))))) (T -770)) +((-2711 (*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2710 (*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2709 (*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *6 (-229)) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2708 (*1 *2 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2707 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2706 (*1 *2 *3 *4 *4 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2705 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2704 (*1 *2 *3 *4 *4 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2703 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770)))) (-2702 (*1 *2 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) +((-2729 (((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-558) (-558) (-558)) 45 T ELT)) (-2728 (((-1055) (-558) (-558) (-558) (-229) (-708 (-229)) (-708 (-229)) (-558)) 44 T ELT)) (-2727 (((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-558)) 43 T ELT)) (-2726 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 42 T ELT)) (-2725 (((-1055) (-1179) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-558)) 41 T ELT)) (-2724 (((-1055) (-1179) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-558)) 40 T ELT)) (-2723 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-558) (-558) (-558) (-229) (-708 (-229)) (-558)) 39 T ELT)) (-2722 (((-1055) (-1179) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-558))) 38 T ELT)) (-2721 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558)) 35 T ELT)) (-2720 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558)) 34 T ELT)) (-2719 (((-1055) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558)) 33 T ELT)) (-2718 (((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 32 T ELT)) (-2717 (((-1055) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-229) (-558)) 31 T ELT)) (-2716 (((-1055) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-229) (-558) (-558) (-558)) 30 T ELT)) (-2715 (((-1055) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-558) (-558) (-558)) 29 T ELT)) (-2714 (((-1055) (-558) (-558) (-558) (-229) (-229) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-558) (-708 (-558)) (-558) (-558) (-558)) 28 T ELT)) (-2713 (((-1055) (-558) (-708 (-229)) (-229) (-558)) 24 T ELT)) (-2712 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 21 T ELT))) +(((-771) (-10 -7 (-15 -2712 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2713 ((-1055) (-558) (-708 (-229)) (-229) (-558))) (-15 -2714 ((-1055) (-558) (-558) (-558) (-229) (-229) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-558) (-708 (-558)) (-558) (-558) (-558))) (-15 -2715 ((-1055) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2716 ((-1055) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-229) (-558) (-558) (-558))) (-15 -2717 ((-1055) (-558) (-229) (-229) (-708 (-229)) (-558) (-558) (-229) (-558))) (-15 -2718 ((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2719 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558))) (-15 -2720 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558))) (-15 -2721 ((-1055) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2722 ((-1055) (-1179) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-558)))) (-15 -2723 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-558) (-558) (-558) (-229) (-708 (-229)) (-558))) (-15 -2724 ((-1055) (-1179) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-558))) (-15 -2725 ((-1055) (-1179) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-229) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2726 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2727 ((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-558))) (-15 -2728 ((-1055) (-558) (-558) (-558) (-229) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2729 ((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558) (-708 (-229)) (-708 (-229)) (-558) (-558) (-558))))) (T -771)) +((-2729 (*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2728 (*1 *2 *3 *3 *3 *4 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2727 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2726 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2725 (*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2724 (*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) (-12 (-5 *3 (-1179)) (-5 *5 (-708 (-229))) (-5 *6 (-229)) (-5 *7 (-708 (-558))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2723 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *6 (-229)) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2722 (*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) (-12 (-5 *3 (-1179)) (-5 *5 (-708 (-229))) (-5 *6 (-229)) (-5 *7 (-708 (-558))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2721 (*1 *2 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2720 (*1 *2 *3 *4 *4 *5 *3 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2719 (*1 *2 *3 *4 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2718 (*1 *2 *3 *3 *4 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2717 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2716 (*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2715 (*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2714 (*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) (-12 (-5 *5 (-708 (-229))) (-5 *6 (-708 (-558))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2713 (*1 *2 *3 *4 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) (-5 *1 (-771)))) (-2712 (*1 *2 *3 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) +((-2737 (((-1055) (-558) (-558) (-558) (-229) (-708 (-229)) (-558) (-708 (-229)) (-558)) 64 T ELT)) (-2736 (((-1055) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-708 (-558)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 63 T ELT)) (-2735 (((-1055) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-114) (-114) (-114) (-558) (-558) (-708 (-229)) (-708 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) 59 T ELT)) (-2734 (((-1055) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-114) (-558) (-558) (-708 (-229)) (-558)) 52 T ELT)) (-2733 (((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) 51 T ELT)) (-2732 (((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) 47 T ELT)) (-2731 (((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) 43 T ELT)) (-2730 (((-1055) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) 39 T ELT))) +(((-772) (-10 -7 (-15 -2730 ((-1055) (-558) (-229) (-229) (-558) (-229) (-114) (-229) (-229) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2731 ((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1))))) (-15 -2732 ((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2))))) (-15 -2733 ((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1))))) (-15 -2734 ((-1055) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-114) (-558) (-558) (-708 (-229)) (-558))) (-15 -2735 ((-1055) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-229) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-114) (-114) (-114) (-558) (-558) (-708 (-229)) (-708 (-558)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS))))) (-15 -2736 ((-1055) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-558) (-114) (-229) (-558) (-229) (-229) (-114) (-229) (-229) (-229) (-229) (-114) (-558) (-558) (-558) (-558) (-558) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-558) (-708 (-558)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN))) (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN))))) (-15 -2737 ((-1055) (-558) (-558) (-558) (-229) (-708 (-229)) (-558) (-708 (-229)) (-558))))) (T -772)) +((-2737 (*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2736 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-708 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2735 (*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) (-12 (-5 *5 (-708 (-229))) (-5 *6 (-114)) (-5 *7 (-708 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2734 (*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-114)) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2733 (*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2732 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2731 (*1 *2 *3 *3 *3 *3 *4 *3 *5) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1055)) (-5 *1 (-772)))) (-2730 (*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-708 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-772))))) +((-2747 (((-1055) (-1179) (-558) (-558) (-558) (-558) (-708 (-171 (-229))) (-708 (-171 (-229))) (-558)) 47 T ELT)) (-2746 (((-1055) (-1179) (-1179) (-558) (-558) (-708 (-171 (-229))) (-558) (-708 (-171 (-229))) (-558) (-558) (-708 (-171 (-229))) (-558)) 46 T ELT)) (-2745 (((-1055) (-558) (-558) (-558) (-708 (-171 (-229))) (-558)) 45 T ELT)) (-2744 (((-1055) (-1179) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 40 T ELT)) (-2743 (((-1055) (-1179) (-1179) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-558) (-558) (-708 (-229)) (-558)) 39 T ELT)) (-2742 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-558)) 36 T ELT)) (-2741 (((-1055) (-558) (-708 (-229)) (-558) (-708 (-558)) (-558)) 35 T ELT)) (-2740 (((-1055) (-558) (-558) (-558) (-558) (-660 (-114)) (-708 (-229)) (-708 (-558)) (-708 (-558)) (-229) (-229) (-558)) 34 T ELT)) (-2739 (((-1055) (-558) (-558) (-558) (-708 (-558)) (-708 (-558)) (-708 (-558)) (-708 (-558)) (-114) (-229) (-114) (-708 (-558)) (-708 (-229)) (-558)) 33 T ELT)) (-2738 (((-1055) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-660 (-114)) (-708 (-229)) (-708 (-558)) (-708 (-558)) (-558)) 32 T ELT))) +(((-773) (-10 -7 (-15 -2738 ((-1055) (-558) (-558) (-558) (-558) (-229) (-114) (-114) (-660 (-114)) (-708 (-229)) (-708 (-558)) (-708 (-558)) (-558))) (-15 -2739 ((-1055) (-558) (-558) (-558) (-708 (-558)) (-708 (-558)) (-708 (-558)) (-708 (-558)) (-114) (-229) (-114) (-708 (-558)) (-708 (-229)) (-558))) (-15 -2740 ((-1055) (-558) (-558) (-558) (-558) (-660 (-114)) (-708 (-229)) (-708 (-558)) (-708 (-558)) (-229) (-229) (-558))) (-15 -2741 ((-1055) (-558) (-708 (-229)) (-558) (-708 (-558)) (-558))) (-15 -2742 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-558))) (-15 -2743 ((-1055) (-1179) (-1179) (-558) (-558) (-708 (-229)) (-558) (-708 (-229)) (-558) (-558) (-708 (-229)) (-558))) (-15 -2744 ((-1055) (-1179) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2745 ((-1055) (-558) (-558) (-558) (-708 (-171 (-229))) (-558))) (-15 -2746 ((-1055) (-1179) (-1179) (-558) (-558) (-708 (-171 (-229))) (-558) (-708 (-171 (-229))) (-558) (-558) (-708 (-171 (-229))) (-558))) (-15 -2747 ((-1055) (-1179) (-558) (-558) (-558) (-558) (-708 (-171 (-229))) (-708 (-171 (-229))) (-558))))) (T -773)) +((-2747 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-171 (-229)))) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2746 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-171 (-229)))) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2745 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-171 (-229)))) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2744 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2743 (*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2742 (*1 *2 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2741 (*1 *2 *3 *4 *3 *5 *3) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2740 (*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) (-12 (-5 *4 (-660 (-114))) (-5 *5 (-708 (-229))) (-5 *6 (-708 (-558))) (-5 *7 (-229)) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2739 (*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) (-12 (-5 *4 (-708 (-558))) (-5 *5 (-114)) (-5 *7 (-708 (-229))) (-5 *3 (-558)) (-5 *6 (-229)) (-5 *2 (-1055)) (-5 *1 (-773)))) (-2738 (*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) (-12 (-5 *6 (-660 (-114))) (-5 *7 (-708 (-229))) (-5 *8 (-708 (-558))) (-5 *3 (-558)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1055)) (-5 *1 (-773))))) +((-2762 (((-1055) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-708 (-171 (-229))) (-708 (-171 (-229))) (-558)) 76 T ELT)) (-2761 (((-1055) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-708 (-229)) (-708 (-229)) (-558)) 68 T ELT)) (-2760 (((-1055) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402)) 56 T ELT) (((-1055) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) 55 T ELT)) (-2759 (((-1055) (-558) (-558) (-558) (-229) (-114) (-558) (-708 (-229)) (-708 (-229)) (-558)) 37 T ELT)) (-2758 (((-1055) (-558) (-558) (-229) (-229) (-558) (-558) (-708 (-229)) (-558)) 33 T ELT)) (-2757 (((-1055) (-708 (-229)) (-558) (-708 (-229)) (-558) (-558) (-558) (-558) (-558)) 30 T ELT)) (-2756 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 29 T ELT)) (-2755 (((-1055) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 28 T ELT)) (-2754 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 27 T ELT)) (-2753 (((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-558)) 26 T ELT)) (-2752 (((-1055) (-558) (-558) (-708 (-229)) (-558)) 25 T ELT)) (-2751 (((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 24 T ELT)) (-2750 (((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558)) 23 T ELT)) (-2749 (((-1055) (-708 (-229)) (-558) (-558) (-558) (-558)) 22 T ELT)) (-2748 (((-1055) (-558) (-558) (-708 (-229)) (-558)) 21 T ELT))) +(((-774) (-10 -7 (-15 -2748 ((-1055) (-558) (-558) (-708 (-229)) (-558))) (-15 -2749 ((-1055) (-708 (-229)) (-558) (-558) (-558) (-558))) (-15 -2750 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2751 ((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2752 ((-1055) (-558) (-558) (-708 (-229)) (-558))) (-15 -2753 ((-1055) (-558) (-558) (-558) (-558) (-708 (-229)) (-558))) (-15 -2754 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2755 ((-1055) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2756 ((-1055) (-558) (-558) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2757 ((-1055) (-708 (-229)) (-558) (-708 (-229)) (-558) (-558) (-558) (-558) (-558))) (-15 -2758 ((-1055) (-558) (-558) (-229) (-229) (-558) (-558) (-708 (-229)) (-558))) (-15 -2759 ((-1055) (-558) (-558) (-558) (-229) (-114) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2760 ((-1055) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))))) (-15 -2760 ((-1055) (-558) (-558) (-229) (-558) (-558) (-558) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT))) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE))) (-402))) (-15 -2761 ((-1055) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2762 ((-1055) (-558) (-558) (-558) (-558) (-558) (-114) (-558) (-114) (-558) (-708 (-171 (-229))) (-708 (-171 (-229))) (-558))))) (T -774)) +((-2762 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-708 (-171 (-229)))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2761 (*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2760 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2760 (*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2759 (*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2758 (*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2757 (*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2756 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2755 (*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2754 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2753 (*1 *2 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2752 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2751 (*1 *2 *3 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2750 (*1 *2 *3 *3 *3 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2749 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-774)))) (-2748 (*1 *2 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) +((-2773 (((-1055) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) 64 T ELT)) (-2772 (((-1055) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-558)) (-558) (-708 (-229)) (-558) (-558) (-558) (-558)) 60 T ELT)) (-2771 (((-1055) (-558) (-708 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) 59 T ELT)) (-2770 (((-1055) (-558) (-558) (-708 (-229)) (-558) (-708 (-558)) (-558) (-708 (-558)) (-708 (-229)) (-708 (-558)) (-708 (-558)) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-558)) 37 T ELT)) (-2769 (((-1055) (-558) (-558) (-558) (-229) (-558) (-708 (-229)) (-708 (-229)) (-558)) 36 T ELT)) (-2768 (((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558)) 33 T ELT)) (-2767 (((-1055) (-558) (-708 (-229)) (-558) (-708 (-558)) (-708 (-558)) (-558) (-708 (-558)) (-708 (-229))) 32 T ELT)) (-2766 (((-1055) (-708 (-229)) (-558) (-708 (-229)) (-558) (-558) (-558)) 28 T ELT)) (-2765 (((-1055) (-558) (-708 (-229)) (-558) (-708 (-229)) (-558)) 27 T ELT)) (-2764 (((-1055) (-558) (-708 (-229)) (-558) (-708 (-229)) (-558)) 26 T ELT)) (-2763 (((-1055) (-558) (-708 (-171 (-229))) (-558) (-558) (-558) (-558) (-708 (-171 (-229))) (-558)) 22 T ELT))) +(((-775) (-10 -7 (-15 -2763 ((-1055) (-558) (-708 (-171 (-229))) (-558) (-558) (-558) (-558) (-708 (-171 (-229))) (-558))) (-15 -2764 ((-1055) (-558) (-708 (-229)) (-558) (-708 (-229)) (-558))) (-15 -2765 ((-1055) (-558) (-708 (-229)) (-558) (-708 (-229)) (-558))) (-15 -2766 ((-1055) (-708 (-229)) (-558) (-708 (-229)) (-558) (-558) (-558))) (-15 -2767 ((-1055) (-558) (-708 (-229)) (-558) (-708 (-558)) (-708 (-558)) (-558) (-708 (-558)) (-708 (-229)))) (-15 -2768 ((-1055) (-558) (-558) (-708 (-229)) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2769 ((-1055) (-558) (-558) (-558) (-229) (-558) (-708 (-229)) (-708 (-229)) (-558))) (-15 -2770 ((-1055) (-558) (-558) (-708 (-229)) (-558) (-708 (-558)) (-558) (-708 (-558)) (-708 (-229)) (-708 (-558)) (-708 (-558)) (-708 (-229)) (-708 (-229)) (-708 (-558)) (-558))) (-15 -2771 ((-1055) (-558) (-708 (-229)) (-114) (-229) (-558) (-558) (-558) (-558) (-229) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD))) (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE))))) (-15 -2772 ((-1055) (-558) (-708 (-229)) (-558) (-708 (-229)) (-708 (-558)) (-558) (-708 (-229)) (-558) (-558) (-558) (-558))) (-15 -2773 ((-1055) (-558) (-558) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-708 (-229)) (-558) (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD))))))) (T -775)) +((-2773 (*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2772 (*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2771 (*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2770 (*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2769 (*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2768 (*1 *2 *3 *3 *4 *4 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2767 (*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2766 (*1 *2 *3 *4 *3 *4 *4 *4) (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2765 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2764 (*1 *2 *3 *4 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-775)))) (-2763 (*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-171 (-229)))) (-5 *2 (-1055)) (-5 *1 (-775))))) +((-2777 (((-1055) (-1179) (-558) (-558) (-708 (-229)) (-558) (-558) (-708 (-229))) 29 T ELT)) (-2776 (((-1055) (-1179) (-558) (-558) (-708 (-229))) 28 T ELT)) (-2775 (((-1055) (-1179) (-558) (-558) (-708 (-229)) (-558) (-708 (-558)) (-558) (-708 (-229))) 27 T ELT)) (-2774 (((-1055) (-558) (-558) (-558) (-708 (-229))) 21 T ELT))) +(((-776) (-10 -7 (-15 -2774 ((-1055) (-558) (-558) (-558) (-708 (-229)))) (-15 -2775 ((-1055) (-1179) (-558) (-558) (-708 (-229)) (-558) (-708 (-558)) (-558) (-708 (-229)))) (-15 -2776 ((-1055) (-1179) (-558) (-558) (-708 (-229)))) (-15 -2777 ((-1055) (-1179) (-558) (-558) (-708 (-229)) (-558) (-558) (-708 (-229)))))) (T -776)) +((-2777 (*1 *2 *3 *4 *4 *5 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-776)))) (-2776 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-776)))) (-2775 (*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) (-12 (-5 *3 (-1179)) (-5 *5 (-708 (-229))) (-5 *6 (-708 (-558))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-776)))) (-2774 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-776))))) +((-2815 (((-1055) (-229) (-229) (-229) (-229) (-558)) 62 T ELT)) (-2814 (((-1055) (-229) (-229) (-229) (-558)) 61 T ELT)) (-2813 (((-1055) (-229) (-229) (-229) (-558)) 60 T ELT)) (-2812 (((-1055) (-229) (-229) (-558)) 59 T ELT)) (-2811 (((-1055) (-229) (-558)) 58 T ELT)) (-2810 (((-1055) (-229) (-558)) 57 T ELT)) (-2809 (((-1055) (-229) (-558)) 56 T ELT)) (-2808 (((-1055) (-229) (-558)) 55 T ELT)) (-2807 (((-1055) (-229) (-558)) 54 T ELT)) (-2806 (((-1055) (-229) (-558)) 53 T ELT)) (-2805 (((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558)) 52 T ELT)) (-2804 (((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558)) 51 T ELT)) (-2803 (((-1055) (-229) (-558)) 50 T ELT)) (-2802 (((-1055) (-229) (-558)) 49 T ELT)) (-2801 (((-1055) (-229) (-558)) 48 T ELT)) (-2800 (((-1055) (-229) (-558)) 47 T ELT)) (-2799 (((-1055) (-558) (-229) (-171 (-229)) (-558) (-1179) (-558)) 46 T ELT)) (-2798 (((-1055) (-1179) (-171 (-229)) (-1179) (-558)) 45 T ELT)) (-2797 (((-1055) (-1179) (-171 (-229)) (-1179) (-558)) 44 T ELT)) (-2796 (((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558)) 43 T ELT)) (-2795 (((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558)) 42 T ELT)) (-2794 (((-1055) (-229) (-558)) 39 T ELT)) (-2793 (((-1055) (-229) (-558)) 38 T ELT)) (-2792 (((-1055) (-229) (-558)) 37 T ELT)) (-2791 (((-1055) (-229) (-558)) 36 T ELT)) (-2790 (((-1055) (-229) (-558)) 35 T ELT)) (-2789 (((-1055) (-229) (-558)) 34 T ELT)) (-2788 (((-1055) (-229) (-558)) 33 T ELT)) (-2787 (((-1055) (-229) (-558)) 32 T ELT)) (-2786 (((-1055) (-229) (-558)) 31 T ELT)) (-2785 (((-1055) (-229) (-558)) 30 T ELT)) (-2784 (((-1055) (-229) (-229) (-229) (-558)) 29 T ELT)) (-2783 (((-1055) (-229) (-558)) 28 T ELT)) (-2782 (((-1055) (-229) (-558)) 27 T ELT)) (-2781 (((-1055) (-229) (-558)) 26 T ELT)) (-2780 (((-1055) (-229) (-558)) 25 T ELT)) (-2779 (((-1055) (-229) (-558)) 24 T ELT)) (-2778 (((-1055) (-171 (-229)) (-558)) 21 T ELT))) +(((-777) (-10 -7 (-15 -2778 ((-1055) (-171 (-229)) (-558))) (-15 -2779 ((-1055) (-229) (-558))) (-15 -2780 ((-1055) (-229) (-558))) (-15 -2781 ((-1055) (-229) (-558))) (-15 -2782 ((-1055) (-229) (-558))) (-15 -2783 ((-1055) (-229) (-558))) (-15 -2784 ((-1055) (-229) (-229) (-229) (-558))) (-15 -2785 ((-1055) (-229) (-558))) (-15 -2786 ((-1055) (-229) (-558))) (-15 -2787 ((-1055) (-229) (-558))) (-15 -2788 ((-1055) (-229) (-558))) (-15 -2789 ((-1055) (-229) (-558))) (-15 -2790 ((-1055) (-229) (-558))) (-15 -2791 ((-1055) (-229) (-558))) (-15 -2792 ((-1055) (-229) (-558))) (-15 -2793 ((-1055) (-229) (-558))) (-15 -2794 ((-1055) (-229) (-558))) (-15 -2795 ((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558))) (-15 -2796 ((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558))) (-15 -2797 ((-1055) (-1179) (-171 (-229)) (-1179) (-558))) (-15 -2798 ((-1055) (-1179) (-171 (-229)) (-1179) (-558))) (-15 -2799 ((-1055) (-558) (-229) (-171 (-229)) (-558) (-1179) (-558))) (-15 -2800 ((-1055) (-229) (-558))) (-15 -2801 ((-1055) (-229) (-558))) (-15 -2802 ((-1055) (-229) (-558))) (-15 -2803 ((-1055) (-229) (-558))) (-15 -2804 ((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558))) (-15 -2805 ((-1055) (-229) (-171 (-229)) (-558) (-1179) (-558))) (-15 -2806 ((-1055) (-229) (-558))) (-15 -2807 ((-1055) (-229) (-558))) (-15 -2808 ((-1055) (-229) (-558))) (-15 -2809 ((-1055) (-229) (-558))) (-15 -2810 ((-1055) (-229) (-558))) (-15 -2811 ((-1055) (-229) (-558))) (-15 -2812 ((-1055) (-229) (-229) (-558))) (-15 -2813 ((-1055) (-229) (-229) (-229) (-558))) (-15 -2814 ((-1055) (-229) (-229) (-229) (-558))) (-15 -2815 ((-1055) (-229) (-229) (-229) (-229) (-558))))) (T -777)) +((-2815 (*1 *2 *3 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2814 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2813 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2812 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2811 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2810 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2809 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2808 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2807 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2806 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2805 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2804 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2803 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2802 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2801 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2800 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2799 (*1 *2 *3 *4 *5 *3 *6 *3) (-12 (-5 *3 (-558)) (-5 *5 (-171 (-229))) (-5 *6 (-1179)) (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2798 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2797 (*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2796 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2795 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2794 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2793 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2792 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2791 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2790 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2789 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2788 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2787 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2786 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2785 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2784 (*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2783 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2782 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2781 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2780 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2779 (*1 *2 *3 *4) (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777)))) (-2778 (*1 *2 *3 *4) (-12 (-5 *3 (-171 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) +((-2821 (((-1293)) 20 T ELT)) (-2817 (((-1179)) 35 T ELT)) (-2816 (((-1179)) 34 T ELT)) (-2819 (((-1123) (-1197) (-708 (-558))) 48 T ELT) (((-1123) (-1197) (-708 (-229))) 44 T ELT)) (-2820 (((-114)) 19 T ELT)) (-2818 (((-1179) (-1179)) 38 T ELT))) +(((-778) (-10 -7 (-15 -2816 ((-1179))) (-15 -2817 ((-1179))) (-15 -2818 ((-1179) (-1179))) (-15 -2819 ((-1123) (-1197) (-708 (-229)))) (-15 -2819 ((-1123) (-1197) (-708 (-558)))) (-15 -2820 ((-114))) (-15 -2821 ((-1293))))) (T -778)) +((-2821 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-778)))) (-2820 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-778)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-708 (-558))) (-5 *2 (-1123)) (-5 *1 (-778)))) (-2819 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-708 (-229))) (-5 *2 (-1123)) (-5 *1 (-778)))) (-2818 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-778)))) (-2817 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-778)))) (-2816 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-778))))) +((-2823 (($ $ $) 10 T ELT)) (-2824 (($ $ $ $) 9 T ELT)) (-2822 (($ $ $) 12 T ELT))) +(((-779 |#1|) (-10 -7 (-15 -2822 (|#1| |#1| |#1|)) (-15 -2823 (|#1| |#1| |#1|)) (-15 -2824 (|#1| |#1| |#1| |#1|))) (-780)) (T -779)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2637 (($ $ (-937)) 36 T ELT)) (-2636 (($ $ (-937)) 37 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2823 (($ $ $) 33 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2824 (($ $ $ $) 34 T ELT)) (-2822 (($ $ $) 32 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 38 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-780) (-142)) (T -780)) +((-2824 (*1 *1 *1 *1 *1) (-4 *1 (-780))) (-2823 (*1 *1 *1 *1) (-4 *1 (-780))) (-2822 (*1 *1 *1 *1) (-4 *1 (-780)))) +(-13 (-21) (-739) (-10 -8 (-15 -2824 ($ $ $ $)) (-15 -2823 ($ $ $)) (-15 -2822 ($ $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-739) . T) ((-1121) . T) ((-1237) . T)) +((-4375 (((-876) $) NIL T ELT) (($ (-558)) 10 T ELT))) +(((-781 |#1|) (-10 -7 (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-782)) (T -781)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2634 (((-3 $ #1="failed") $) 48 T ELT)) (-2637 (($ $ (-937)) 36 T ELT) (($ $ (-790)) 43 T ELT)) (-3886 (((-3 $ #1#) $) 46 T ELT)) (-2640 (((-114) $) 42 T ELT)) (-2635 (((-3 $ #1#) $) 47 T ELT)) (-2636 (($ $ (-937)) 37 T ELT) (($ $ (-790)) 44 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2823 (($ $ $) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 39 T ELT)) (-3527 (((-790)) 40 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2824 (($ $ $ $) 34 T ELT)) (-2822 (($ $ $) 32 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 41 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 38 T ELT) (($ $ (-790)) 45 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 35 T ELT))) +(((-782) (-142)) (T -782)) +((-3527 (*1 *2) (-12 (-4 *1 (-782)) (-5 *2 (-790)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-782))))) +(-13 (-780) (-741) (-10 -8 (-15 -3527 ((-790)) -4381) (-15 -4375 ($ (-558))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-739) . T) ((-741) . T) ((-780) . T) ((-1121) . T) ((-1237) . T)) +((-2826 (((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 (-171 |#1|)))))) (-708 (-171 (-419 (-558)))) |#1|) 33 T ELT)) (-2825 (((-660 (-171 |#1|)) (-708 (-171 (-419 (-558)))) |#1|) 23 T ELT)) (-2837 (((-964 (-171 (-419 (-558)))) (-708 (-171 (-419 (-558)))) (-1197)) 20 T ELT) (((-964 (-171 (-419 (-558)))) (-708 (-171 (-419 (-558))))) 19 T ELT))) +(((-783 |#1|) (-10 -7 (-15 -2837 ((-964 (-171 (-419 (-558)))) (-708 (-171 (-419 (-558)))))) (-15 -2837 ((-964 (-171 (-419 (-558)))) (-708 (-171 (-419 (-558)))) (-1197))) (-15 -2825 ((-660 (-171 |#1|)) (-708 (-171 (-419 (-558)))) |#1|)) (-15 -2826 ((-660 (-2 (|:| |outval| (-171 |#1|)) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 (-171 |#1|)))))) (-708 (-171 (-419 (-558)))) |#1|))) (-13 (-376) (-859))) (T -783)) +((-2826 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *2 (-660 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 (-171 *4))))))) (-5 *1 (-783 *4)) (-4 *4 (-13 (-376) (-859))))) (-2825 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *2 (-660 (-171 *4))) (-5 *1 (-783 *4)) (-4 *4 (-13 (-376) (-859))))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *4 (-1197)) (-5 *2 (-964 (-171 (-419 (-558))))) (-5 *1 (-783 *5)) (-4 *5 (-13 (-376) (-859))))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *2 (-964 (-171 (-419 (-558))))) (-5 *1 (-783 *4)) (-4 *4 (-13 (-376) (-859)))))) +((-3014 (((-177 (-558)) |#1|) 27 T ELT))) +(((-784 |#1|) (-10 -7 (-15 -3014 ((-177 (-558)) |#1|))) (-416)) (T -784)) +((-3014 (*1 *2 *3) (-12 (-5 *2 (-177 (-558))) (-5 *1 (-784 *3)) (-4 *3 (-416))))) +((-2940 ((|#1| |#1| |#1|) 28 T ELT)) (-2941 ((|#1| |#1| |#1|) 27 T ELT)) (-2930 ((|#1| |#1| |#1|) 38 T ELT)) (-2938 ((|#1| |#1| |#1|) 33 T ELT)) (-2939 (((-3 |#1| "failed") |#1| |#1|) 31 T ELT)) (-2946 (((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|) 26 T ELT))) +(((-785 |#1| |#2|) (-10 -7 (-15 -2946 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2939 ((-3 |#1| "failed") |#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2930 (|#1| |#1| |#1|))) (-727 |#2|) (-376)) (T -785)) +((-2930 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) (-2938 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) (-2939 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) (-2940 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) (-2941 (*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) (-2946 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-785 *3 *4)) (-4 *3 (-727 *4))))) +((-2953 (((-710 (-1246)) $ (-1246)) 27 T ELT)) (-2954 (((-710 (-562)) $ (-562)) 26 T ELT)) (-2952 (((-790) $ (-131)) 28 T ELT)) (-2955 (((-710 (-130)) $ (-130)) 25 T ELT)) (-2209 (((-710 (-1246)) $) 12 T ELT)) (-2205 (((-710 (-1244)) $) 8 T ELT)) (-2207 (((-710 (-1243)) $) 10 T ELT)) (-2210 (((-710 (-562)) $) 13 T ELT)) (-2206 (((-710 (-560)) $) 9 T ELT)) (-2208 (((-710 (-559)) $) 11 T ELT)) (-2204 (((-790) $ (-131)) 7 T ELT)) (-2211 (((-710 (-130)) $) 14 T ELT)) (-2827 (((-114) $) 32 T ELT)) (-2828 (((-710 $) |#1| (-972)) 33 T ELT)) (-1902 (($ $) 6 T ELT))) +(((-786 |#1|) (-142) (-1121)) (T -786)) +((-2828 (*1 *2 *3 *4) (-12 (-5 *4 (-972)) (-4 *3 (-1121)) (-5 *2 (-710 *1)) (-4 *1 (-786 *3)))) (-2827 (*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) +(-13 (-588) (-10 -8 (-15 -2828 ((-710 $) |t#1| (-972))) (-15 -2827 ((-114) $)))) +(((-176) . T) ((-539) . T) ((-588) . T) ((-874) . T)) +((-4348 (((-2 (|:| -2221 (-708 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-708 (-558)))) (-558)) 72 T ELT)) (-4347 (((-2 (|:| -2221 (-708 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-708 (-558))))) 70 T ELT)) (-4186 (((-558)) 86 T ELT))) +(((-787 |#1| |#2|) (-10 -7 (-15 -4186 ((-558))) (-15 -4347 ((-2 (|:| -2221 (-708 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-708 (-558)))))) (-15 -4348 ((-2 (|:| -2221 (-708 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-708 (-558)))) (-558)))) (-1263 (-558)) (-422 (-558) |#1|)) (T -787)) +((-4348 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1263 *3)) (-5 *2 (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-787 *4 *5)) (-4 *5 (-422 *3 *4)))) (-4347 (*1 *2) (-12 (-4 *3 (-1263 (-558))) (-5 *2 (-2 (|:| -2221 (-708 (-558))) (|:| |basisDen| (-558)) (|:| |basisInv| (-708 (-558))))) (-5 *1 (-787 *3 *4)) (-4 *4 (-422 (-558) *3)))) (-4186 (*1 *2) (-12 (-4 *3 (-1263 *2)) (-5 *2 (-558)) (-5 *1 (-787 *3 *4)) (-4 *4 (-422 *2 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3573 (((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $) 21 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 13 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 16 T ELT) (($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-788) (-13 (-1121) (-10 -8 (-15 -4375 ($ (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4375 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -4375 ($ (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (-15 -3573 ((-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) $))))) (T -788)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-788)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-788)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-788)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-5 *1 (-788))))) +((-2903 (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|))) 18 T ELT) (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|)) (-660 (-1197))) 17 T ELT)) (-4000 (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|))) 20 T ELT) (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|)) (-660 (-1197))) 19 T ELT))) +(((-789 |#1|) (-10 -7 (-15 -2903 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|)) (-660 (-1197)))) (-15 -2903 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|)))) (-15 -4000 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|)) (-660 (-1197)))) (-15 -4000 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-964 |#1|))))) (-569)) (T -789)) +((-4000 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-789 *4)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-789 *5)))) (-2903 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-789 *4)))) (-2903 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-789 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2872 (($ $ $) 10 T ELT)) (-1425 (((-3 $ #1="failed") $ $) 15 T ELT)) (-2829 (($ $ (-558)) 11 T ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($ $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3561 (($ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 6 T CONST)) (-3064 (($) NIL T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-790) (-13 (-814) (-745) (-10 -8 (-15 -2961 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -3561 ($ $ $)) (-15 -3279 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -3885 ((-3 $ "failed") $ $)) (-15 -2829 ($ $ (-558))) (-15 -3394 ($ $)) (-6 (-4426 "*"))))) (T -790)) +((-2961 (*1 *1 *1 *1) (-5 *1 (-790))) (-2962 (*1 *1 *1 *1) (-5 *1 (-790))) (-3561 (*1 *1 *1 *1) (-5 *1 (-790))) (-3279 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -2183 (-790)) (|:| -3302 (-790)))) (-5 *1 (-790)))) (-3885 (*1 *1 *1 *1) (|partial| -5 *1 (-790))) (-2829 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-790)))) (-3394 (*1 *1 *1) (-5 *1 (-790)))) ((-558) (|%not| (|%ilt| |#1| 0))) -((-4001 (((-3 |#2| "failed") |#2| |#2| (-115) (-1198)) 37 T ELT))) -(((-792 |#1| |#2|) (-10 -7 (-15 -4001 ((-3 |#2| "failed") |#2| |#2| (-115) (-1198)))) (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1224) (-979))) (T -792)) -((-4001 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *1 (-792 *5 *2)) (-4 *2 (-13 (-29 *5) (-1224) (-979)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 7 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 9 T ELT))) -(((-793) (-1122)) (T -793)) -NIL -((-4376 (((-793) |#1|) 8 T ELT))) -(((-794 |#1|) (-10 -7 (-15 -4376 ((-793) |#1|))) (-1238)) (T -794)) -((-4376 (*1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-794 *3)) (-4 *3 (-1238))))) -((-3534 ((|#2| |#4|) 35 T ELT))) -(((-795 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3534 (|#2| |#4|))) (-464) (-1264 |#1|) (-744 |#1| |#2|) (-1264 |#3|)) (T -795)) -((-3534 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-744 *4 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-795 *4 *2 *5 *3)) (-4 *3 (-1264 *5))))) -((-3887 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2833 (((-1294) (-1180) (-1180) |#4| |#5|) 33 T ELT)) (-2831 ((|#4| |#4| |#5|) 74 T ELT)) (-2832 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#5|) 79 T ELT)) (-2834 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|) 16 T ELT))) -(((-796 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3887 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2831 (|#4| |#4| |#5|)) (-15 -2832 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#5|)) (-15 -2833 ((-1294) (-1180) (-1180) |#4| |#5|)) (-15 -2834 ((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -796)) -((-2834 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2833 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1180)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1294)) (-5 *1 (-796 *6 *7 *8 *4 *5)) (-4 *5 (-1092 *6 *7 *8 *4)))) (-2832 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-2831 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *2 (-1086 *4 *5 *6)) (-5 *1 (-796 *4 *5 *6 *2 *3)) (-4 *3 (-1092 *4 *5 *6 *2)))) (-3887 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -((-3575 (((-3 (-1192 (-1192 |#1|)) "failed") |#4|) 53 T ELT)) (-2835 (((-661 |#4|) |#4|) 22 T ELT)) (-4358 ((|#4| |#4|) 17 T ELT))) -(((-797 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2835 ((-661 |#4|) |#4|)) (-15 -3575 ((-3 (-1192 (-1192 |#1|)) "failed") |#4|)) (-15 -4358 (|#4| |#4|))) (-363) (-341 |#1|) (-1264 |#2|) (-1264 |#3|) (-938)) (T -797)) -((-4358 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1264 *4)) (-5 *1 (-797 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-938)))) (-3575 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-938)))) (-2835 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-661 *3)) (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-938))))) -((-2836 (((-2 (|:| |deter| (-661 (-1192 |#5|))) (|:| |dterm| (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-661 |#1|)) (|:| |nlead| (-661 |#5|))) (-1192 |#5|) (-661 |#1|) (-661 |#5|)) 72 T ELT)) (-2837 (((-661 (-791)) |#1|) 20 T ELT))) -(((-798 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2836 ((-2 (|:| |deter| (-661 (-1192 |#5|))) (|:| |dterm| (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-661 |#1|)) (|:| |nlead| (-661 |#5|))) (-1192 |#5|) (-661 |#1|) (-661 |#5|))) (-15 -2837 ((-661 (-791)) |#1|))) (-1264 |#4|) (-815) (-861) (-319) (-969 |#4| |#2| |#3|)) (T -798)) -((-2837 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-661 (-791))) (-5 *1 (-798 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *6)) (-4 *7 (-969 *6 *4 *5)))) (-2836 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1264 *9)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-319)) (-4 *10 (-969 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-661 (-1192 *10))) (|:| |dterm| (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| *10))))) (|:| |nfacts| (-661 *6)) (|:| |nlead| (-661 *10)))) (-5 *1 (-798 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-661 *6)) (-5 *5 (-661 *10))))) -((-2840 (((-661 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#1|))))) (-709 (-419 (-558))) |#1|) 31 T ELT)) (-2839 (((-661 |#1|) (-709 (-419 (-558))) |#1|) 21 T ELT)) (-2838 (((-965 (-419 (-558))) (-709 (-419 (-558))) (-1198)) 18 T ELT) (((-965 (-419 (-558))) (-709 (-419 (-558)))) 17 T ELT))) -(((-799 |#1|) (-10 -7 (-15 -2838 ((-965 (-419 (-558))) (-709 (-419 (-558))))) (-15 -2838 ((-965 (-419 (-558))) (-709 (-419 (-558))) (-1198))) (-15 -2839 ((-661 |#1|) (-709 (-419 (-558))) |#1|)) (-15 -2840 ((-661 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 |#1|))))) (-709 (-419 (-558))) |#1|))) (-13 (-376) (-860))) (T -799)) -((-2840 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-661 (-2 (|:| |outval| *4) (|:| |outmult| (-558)) (|:| |outvect| (-661 (-709 *4)))))) (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-860))))) (-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-860))))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *4 (-1198)) (-5 *2 (-965 (-419 (-558)))) (-5 *1 (-799 *5)) (-4 *5 (-13 (-376) (-860))))) (-2838 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-965 (-419 (-558)))) (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-860)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 36 T ELT)) (-3484 (((-661 |#2|) $) NIL T ELT)) (-3486 (((-1192 $) $ |#2|) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 |#2|)) NIL T ELT)) (-4227 (($ $) 30 T ELT)) (-3584 (((-114) $ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4185 (($ $ $) 110 (|has| |#1| (-569)) ELT)) (-3566 (((-661 $) $ $) 123 (|has| |#1| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-965 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198)))) ELT) (((-3 $ #1#) (-965 (-558))) NIL (-3957 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198))))) ELT) (((-3 $ #1#) (-965 |#1|)) NIL (-3957 (-12 (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558))))) (-2959 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558))))) (-2959 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-1012 (-558)))))) ELT) (((-3 (-1146 |#1| |#2|) #1#) $) 21 T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) ((|#2| $) NIL T ELT) (($ (-965 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198)))) ELT) (($ (-965 (-558))) NIL (-3957 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198))))) ELT) (($ (-965 |#1|)) NIL (-3957 (-12 (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558))))) (-2959 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558))))) (-2959 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-1012 (-558)))))) ELT) (((-1146 |#1| |#2|) $) NIL T ELT)) (-4186 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-569)) ELT)) (-4389 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-4124 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3590 (((-114) $) NIL T ELT)) (-4182 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 81 T ELT)) (-3561 (($ $) 136 (|has| |#1| (-464)) ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-3572 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3573 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3583 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3582 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1804 (($ $ |#1| (-543 |#2|) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| |#1| (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| |#1| (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-2641 (((-114) $) 57 T ELT)) (-2649 (((-791) $) NIL T ELT)) (-4125 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-3563 (($ $ $ $ $) 107 (|has| |#1| (-569)) ELT)) (-3598 ((|#2| $) 22 T ELT)) (-3487 (($ (-1192 |#1|) |#2|) NIL T ELT) (($ (-1192 $) |#2|) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) 38 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-3577 (($ $ $) 63 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#2|) NIL T ELT)) (-3591 (((-114) $) NIL T ELT)) (-3221 (((-543 |#2|) $) NIL T ELT) (((-791) $ |#2|) NIL T ELT) (((-661 (-791)) $ (-661 |#2|)) NIL T ELT)) (-3597 (((-791) $) 23 T ELT)) (-1805 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3485 (((-3 |#2| #1#) $) NIL T ELT)) (-3558 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3559 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3586 (((-661 $) $) NIL T ELT)) (-3589 (($ $) 39 T ELT)) (-3560 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3587 (((-661 $) $) 43 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3588 (($ $) 41 T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3576 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3901 (-791))) $ $) 96 T ELT)) (-3578 (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $) 78 T ELT) (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $ |#2|) NIL T ELT)) (-3579 (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $) NIL T ELT) (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $ |#2|) NIL T ELT)) (-3581 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3580 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3608 (($ $ $) 125 (|has| |#1| (-569)) ELT)) (-3594 (((-661 $) $) 32 T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| |#2|) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-4121 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-4116 (($ $ $) NIL T ELT)) (-3866 (($ $) 24 T ELT)) (-4129 (((-114) $ $) NIL T ELT)) (-4122 (((-114) $ $) NIL T ELT) (((-114) $ (-661 $)) NIL T ELT)) (-4117 (($ $ $) NIL T ELT)) (-3596 (($ $) 26 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3567 (((-2 (|:| -3562 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)) ELT)) (-3568 (((-2 (|:| -3562 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)) ELT)) (-2005 (((-114) $) 56 T ELT)) (-2004 ((|#1| $) 58 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 ((|#1| |#1| $) 133 (|has| |#1| (-464)) ELT) (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3569 (((-2 (|:| -3562 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-569)) ELT)) (-3570 (($ $ |#1|) 129 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3571 (($ $ |#1|) 128 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-661 |#2|) (-661 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-661 |#2|) (-661 $)) NIL T ELT)) (-4187 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4378 (((-543 |#2|) $) NIL T ELT) (((-791) $ |#2|) 45 T ELT) (((-661 (-791)) $ (-661 |#2|)) NIL T ELT)) (-3595 (($ $) NIL T ELT)) (-3593 (($ $) 35 T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT) (($ (-965 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198)))) ELT) (($ (-965 (-558))) NIL (-3957 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-631 (-1198))) (-2959 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-631 (-1198))))) ELT) (($ (-965 |#1|)) NIL (|has| |#2| (-631 (-1198))) ELT) (((-1180) $) NIL (-12 (|has| |#1| (-1059 (-558))) (|has| |#2| (-631 (-1198)))) ELT) (((-965 |#1|) $) NIL (|has| |#2| (-631 (-1198))) ELT)) (-3218 ((|#1| $) 132 (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-965 |#1|) $) NIL (|has| |#2| (-631 (-1198))) ELT) (((-1146 |#1| |#2|) $) 18 T ELT) (($ (-1146 |#1| |#2|)) 19 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) 47 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) 13 T CONST)) (-3585 (((-3 (-114) #1#) $ $) NIL T ELT)) (-3065 (($) 37 T CONST)) (-3564 (($ $ $ $ (-791)) 105 (|has| |#1| (-569)) ELT)) (-3565 (($ $ $ (-791)) 104 (|has| |#1| (-569)) ELT)) (-3070 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-4269 (($ $ $) 85 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 70 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) -(((-800 |#1| |#2|) (-13 (-1086 |#1| (-543 |#2|) |#2|) (-630 (-1146 |#1| |#2|)) (-1059 (-1146 |#1| |#2|))) (-1070) (-861)) (T -800)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 12 T ELT)) (-4197 (((-1288 |#1|) $ (-791)) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4195 (($ (-1192 |#1|)) NIL T ELT)) (-3486 (((-1192 $) $ (-1103)) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1103))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2844 (((-661 $) $ $) 54 (|has| |#1| (-569)) ELT)) (-4185 (($ $ $) 50 (|has| |#1| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4191 (($ $ (-791)) NIL T ELT)) (-4190 (($ $ (-791)) NIL T ELT)) (-4181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1103) #1#) $) NIL T ELT) (((-3 (-1192 |#1|) #1#) $) 10 T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-1103) $) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-4186 (($ $ $ (-1103)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4189 (($ $ $) NIL T ELT)) (-4183 (($ $ $) 87 (|has| |#1| (-569)) ELT)) (-4182 (((-2 (|:| -4384 |#1|) (|:| -2184 $) (|:| -3303 $)) $ $) 86 (|has| |#1| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-791) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1103) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1103) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-4202 (((-791) $ $) NIL (|has| |#1| (-569)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-1173)) ELT)) (-3487 (($ (-1192 |#1|) (-1103)) NIL T ELT) (($ (-1192 $) (-1103)) NIL T ELT)) (-4207 (($ $ (-791)) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-3577 (($ $ $) 27 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1103)) NIL T ELT) (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3221 (((-791) $) NIL T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-1805 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4196 (((-1192 |#1|) $) NIL T ELT)) (-3485 (((-3 (-1103) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3576 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3901 (-791))) $ $) 37 T ELT)) (-2846 (($ $ $) 41 T ELT)) (-2845 (($ $ $) 47 T ELT)) (-3578 (((-2 (|:| -4384 |#1|) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $) 46 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3608 (($ $ $) 56 (|has| |#1| (-569)) ELT)) (-4192 (((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791)) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1103)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-4242 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3866 (($) NIL (|has| |#1| (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3567 (((-2 (|:| -3562 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)) ELT)) (-3568 (((-2 (|:| -3562 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)) ELT)) (-2841 (((-2 (|:| -4186 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2842 (((-2 (|:| -4186 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)) ELT)) (-2005 (((-114) $) 13 T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-4168 (($ $ (-791) |#1| $) 26 T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3569 (((-2 (|:| -3562 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)) ELT)) (-2843 (((-2 (|:| -4186 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1103) |#1|) NIL T ELT) (($ $ (-661 (-1103)) (-661 |#1|)) NIL T ELT) (($ $ (-1103) $) NIL T ELT) (($ $ (-661 (-1103)) (-661 $)) NIL T ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4194 (((-3 $ #1#) $ (-791)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1103)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-4378 (((-791) $) NIL T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1103) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4184 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1103)) NIL T ELT) (((-1192 |#1|) $) 7 T ELT) (($ (-1192 |#1|)) 8 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) 28 T CONST)) (-3065 (($) 32 T CONST)) (-3070 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) -(((-801 |#1|) (-13 (-1264 |#1|) (-630 (-1192 |#1|)) (-1059 (-1192 |#1|)) (-10 -8 (-15 -4168 ($ $ (-791) |#1| $)) (-15 -3577 ($ $ $)) (-15 -3576 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3901 (-791))) $ $)) (-15 -2846 ($ $ $)) (-15 -3578 ((-2 (|:| -4384 |#1|) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -2845 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -2844 ((-661 $) $ $)) (-15 -3608 ($ $ $)) (-15 -3569 ((-2 (|:| -3562 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3568 ((-2 (|:| -3562 $) (|:| |coef1| $)) $ $)) (-15 -3567 ((-2 (|:| -3562 $) (|:| |coef2| $)) $ $)) (-15 -2843 ((-2 (|:| -4186 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2842 ((-2 (|:| -4186 |#1|) (|:| |coef1| $)) $ $)) (-15 -2841 ((-2 (|:| -4186 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1070)) (T -801)) -((-4168 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-801 *3)) (-4 *3 (-1070)))) (-3577 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1070)))) (-3576 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-801 *3)) (|:| |polden| *3) (|:| -3901 (-791)))) (-5 *1 (-801 *3)) (-4 *3 (-1070)))) (-2846 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1070)))) (-3578 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4384 *3) (|:| |gap| (-791)) (|:| -2184 (-801 *3)) (|:| -3303 (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-1070)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1070)))) (-2844 (*1 *2 *1 *1) (-12 (-5 *2 (-661 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) (-3608 (*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-569)) (-4 *2 (-1070)))) (-3569 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3562 (-801 *3)) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) (-3568 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3562 (-801 *3)) (|:| |coef1| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) (-3567 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3562 (-801 *3)) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) (-2843 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4186 *3) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) (-2842 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4186 *3) (|:| |coef1| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) (-2841 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4186 *3) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070))))) -((-4388 (((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)) 13 T ELT))) -(((-802 |#1| |#2|) (-10 -7 (-15 -4388 ((-801 |#2|) (-1 |#2| |#1|) (-801 |#1|)))) (-1070) (-1070)) (T -802)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-801 *6)) (-5 *1 (-802 *5 *6))))) -((-2848 ((|#1| (-791) |#1|) 33 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3202 ((|#1| (-791) |#1|) 23 T ELT)) (-2847 ((|#1| (-791) |#1|) 35 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-803 |#1|) (-10 -7 (-15 -3202 (|#1| (-791) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -2847 (|#1| (-791) |#1|)) (-15 -2848 (|#1| (-791) |#1|))) |%noBranch|)) (-175)) (T -803)) -((-2848 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-2847 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-3202 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-175))))) -((-2967 (((-114) $ $) 7 T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4112 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3484 (((-661 |#3|) $) 37 T ELT)) (-3309 (((-114) $) 30 T ELT)) (-3300 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4118 ((|#4| |#4| $) 97 T ELT)) (-4205 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| $) 133 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4140 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4154 (($) 46 T CONST)) (-3305 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3574 (($ (-661 |#4|)) 39 T ELT)) (-4229 (((-3 $ #1#) $) 87 T ELT)) (-4115 ((|#4| |#4| $) 94 T ELT)) (-1467 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4113 ((|#4| |#4| $) 92 T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) 110 T ELT)) (-3615 (((-114) |#4| $) 143 T ELT)) (-3613 (((-114) |#4| $) 140 T ELT)) (-3616 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3290 (((-661 |#4|) $) 53 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3315 (((-661 |#3|) $) 36 T ELT)) (-3314 (((-114) |#3| $) 35 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3609 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3608 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| |#4| $) 134 T ELT)) (-4228 (((-3 |#4| #1#) $) 88 T ELT)) (-3610 (((-661 $) |#4| $) 136 T ELT)) (-3612 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3656 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3860 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4127 (((-661 |#4|) $) 112 T ELT)) (-4121 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4116 ((|#4| |#4| $) 95 T ELT)) (-4129 (((-114) $ $) 115 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4117 ((|#4| |#4| $) 96 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4231 (((-3 |#4| #1#) $) 89 T ELT)) (-1468 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4199 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) 42 T ELT)) (-3823 (((-114) $) 45 T ELT)) (-3993 (($) 44 T ELT)) (-4378 (((-791) $) 111 T ELT)) (-2157 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 43 T ELT)) (-4402 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 61 T ELT)) (-3311 (($ $ |#3|) 32 T ELT)) (-3313 (($ $ |#3|) 34 T ELT)) (-4114 (($ $) 93 T ELT)) (-3312 (($ $ |#3|) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4108 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3607 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) 86 T ELT)) (-3614 (((-114) |#4| $) 142 T ELT)) (-4363 (((-114) |#3| $) 85 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 47 (|has| $ (-6 -4425)) ELT))) -(((-804 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -804)) -NIL -(-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-877)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1233 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-2851 (((-3 (-391) #1="failed") (-326 |#1|) (-938)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-3 (-391) #1#) (-326 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-3 (-391) #1#) (-419 (-965 |#1|)) (-938)) 41 (|has| |#1| (-569)) ELT) (((-3 (-391) #1#) (-419 (-965 |#1|))) 40 (|has| |#1| (-569)) ELT) (((-3 (-391) #1#) (-965 |#1|) (-938)) 31 (|has| |#1| (-1070)) ELT) (((-3 (-391) #1#) (-965 |#1|)) 30 (|has| |#1| (-1070)) ELT)) (-2849 (((-391) (-326 |#1|) (-938)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-391) (-419 (-965 |#1|)) (-938)) 91 (|has| |#1| (-569)) ELT) (((-391) (-419 (-965 |#1|))) 90 (|has| |#1| (-569)) ELT) (((-391) (-965 |#1|) (-938)) 86 (|has| |#1| (-1070)) ELT) (((-391) (-965 |#1|)) 85 (|has| |#1| (-1070)) ELT) (((-391) |#1| (-938)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2852 (((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)) (-938)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-3 (-171 (-391)) #1#) (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-3 (-171 (-391)) #1#) (-326 |#1|) (-938)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-3 (-171 (-391)) #1#) (-326 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-3 (-171 (-391)) #1#) (-419 (-965 (-171 |#1|))) (-938)) 46 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-965 (-171 |#1|)))) 45 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-965 |#1|)) (-938)) 39 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-965 |#1|))) 38 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-965 |#1|) (-938)) 28 (|has| |#1| (-1070)) ELT) (((-3 (-171 (-391)) #1#) (-965 |#1|)) 26 (|has| |#1| (-1070)) ELT) (((-3 (-171 (-391)) #1#) (-965 (-171 |#1|)) (-938)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) #1#) (-965 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-2850 (((-171 (-391)) (-326 (-171 |#1|)) (-938)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-171 (-391)) (-326 |#1|) (-938)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-861))) ELT) (((-171 (-391)) (-419 (-965 (-171 |#1|))) (-938)) 93 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-965 (-171 |#1|)))) 92 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-965 |#1|)) (-938)) 89 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-965 |#1|))) 88 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-965 |#1|) (-938)) 84 (|has| |#1| (-1070)) ELT) (((-171 (-391)) (-965 |#1|)) 83 (|has| |#1| (-1070)) ELT) (((-171 (-391)) (-965 (-171 |#1|)) (-938)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-965 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-938)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-938)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) -(((-805 |#1|) (-10 -7 (-15 -2849 ((-391) |#1|)) (-15 -2849 ((-391) |#1| (-938))) (-15 -2850 ((-171 (-391)) |#1|)) (-15 -2850 ((-171 (-391)) |#1| (-938))) (IF (|has| |#1| (-175)) (PROGN (-15 -2850 ((-171 (-391)) (-171 |#1|))) (-15 -2850 ((-171 (-391)) (-171 |#1|) (-938))) (-15 -2850 ((-171 (-391)) (-965 (-171 |#1|)))) (-15 -2850 ((-171 (-391)) (-965 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2849 ((-391) (-965 |#1|))) (-15 -2849 ((-391) (-965 |#1|) (-938))) (-15 -2850 ((-171 (-391)) (-965 |#1|))) (-15 -2850 ((-171 (-391)) (-965 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2849 ((-391) (-419 (-965 |#1|)))) (-15 -2849 ((-391) (-419 (-965 |#1|)) (-938))) (-15 -2850 ((-171 (-391)) (-419 (-965 |#1|)))) (-15 -2850 ((-171 (-391)) (-419 (-965 |#1|)) (-938))) (-15 -2850 ((-171 (-391)) (-419 (-965 (-171 |#1|))))) (-15 -2850 ((-171 (-391)) (-419 (-965 (-171 |#1|))) (-938))) (IF (|has| |#1| (-861)) (PROGN (-15 -2849 ((-391) (-326 |#1|))) (-15 -2849 ((-391) (-326 |#1|) (-938))) (-15 -2850 ((-171 (-391)) (-326 |#1|))) (-15 -2850 ((-171 (-391)) (-326 |#1|) (-938))) (-15 -2850 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2850 ((-171 (-391)) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2852 ((-3 (-171 (-391)) #1="failed") (-965 (-171 |#1|)))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-965 (-171 |#1|)) (-938)))) |%noBranch|) (IF (|has| |#1| (-1070)) (PROGN (-15 -2851 ((-3 (-391) #1#) (-965 |#1|))) (-15 -2851 ((-3 (-391) #1#) (-965 |#1|) (-938))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-965 |#1|))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-965 |#1|) (-938)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2851 ((-3 (-391) #1#) (-419 (-965 |#1|)))) (-15 -2851 ((-3 (-391) #1#) (-419 (-965 |#1|)) (-938))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-419 (-965 |#1|)))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-419 (-965 |#1|)) (-938))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-419 (-965 (-171 |#1|))))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-419 (-965 (-171 |#1|))) (-938))) (IF (|has| |#1| (-861)) (PROGN (-15 -2851 ((-3 (-391) #1#) (-326 |#1|))) (-15 -2851 ((-3 (-391) #1#) (-326 |#1|) (-938))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-326 |#1|))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-326 |#1|) (-938))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)))) (-15 -2852 ((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)) (-938)))) |%noBranch|)) |%noBranch|)) (-631 (-391))) (T -805)) -((-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-965 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-965 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2852 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2852 (*1 *2 *3) (|partial| -12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) (-2850 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) (-2850 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) (-4 *3 (-631 (-391))))) (-2850 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) (-4 *3 (-631 (-391))))) (-2849 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2)))) (-2849 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2))))) -((-2856 (((-938) (-1180)) 90 T ELT)) (-2858 (((-3 (-391) "failed") (-1180)) 36 T ELT)) (-2857 (((-391) (-1180)) 34 T ELT)) (-2854 (((-938) (-1180)) 64 T ELT)) (-2855 (((-1180) (-938)) 74 T ELT)) (-2853 (((-1180) (-938)) 63 T ELT))) -(((-806) (-10 -7 (-15 -2853 ((-1180) (-938))) (-15 -2854 ((-938) (-1180))) (-15 -2855 ((-1180) (-938))) (-15 -2856 ((-938) (-1180))) (-15 -2857 ((-391) (-1180))) (-15 -2858 ((-3 (-391) "failed") (-1180))))) (T -806)) -((-2858 (*1 *2 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-806)))) (-2857 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-806)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-938)) (-5 *1 (-806)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1180)) (-5 *1 (-806)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-938)) (-5 *1 (-806)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1180)) (-5 *1 (-806))))) -((-2967 (((-114) $ $) 7 T ELT)) (-2859 (((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 19 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056)) 17 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 20 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-807) (-142)) (T -807)) -((-3069 (*1 *2 *3 *4) (-12 (-4 *1 (-807)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056)))))) (-2859 (*1 *2 *3 *2) (-12 (-4 *1 (-807)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3069 (*1 *2 *3 *4) (-12 (-4 *1 (-807)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056)))))) (-2859 (*1 *2 *3 *2) (-12 (-4 *1 (-807)) (-5 *2 (-1056)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(-13 (-1122) (-10 -7 (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2859 ((-1056) (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) (|:| |extra| (-1056))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2859 ((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1056))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2862 (((-1294) (-1288 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391))) (-391) (-1288 (-391)) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391))) 54 T ELT) (((-1294) (-1288 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391))) (-391) (-1288 (-391)) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391))) 51 T ELT)) (-2863 (((-1294) (-1288 (-391)) (-558) (-391) (-391) (-558) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391))) 61 T ELT)) (-2861 (((-1294) (-1288 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391))) 49 T ELT)) (-2860 (((-1294) (-1288 (-391)) (-558) (-391) (-391) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391))) 63 T ELT) (((-1294) (-1288 (-391)) (-558) (-391) (-391) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391))) 62 T ELT))) -(((-808) (-10 -7 (-15 -2860 ((-1294) (-1288 (-391)) (-558) (-391) (-391) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)))) (-15 -2860 ((-1294) (-1288 (-391)) (-558) (-391) (-391) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)))) (-15 -2861 ((-1294) (-1288 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)))) (-15 -2862 ((-1294) (-1288 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391))) (-391) (-1288 (-391)) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)))) (-15 -2862 ((-1294) (-1288 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391))) (-391) (-1288 (-391)) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)) (-1288 (-391)))) (-15 -2863 ((-1294) (-1288 (-391)) (-558) (-391) (-391) (-558) (-1 (-1294) (-1288 (-391)) (-1288 (-391)) (-391)))))) (T -808)) -((-2863 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) (-2862 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391)))) (-5 *7 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) (-2862 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391)))) (-5 *7 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) (-2861 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) (-2860 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) (-2860 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808))))) -((-2872 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 65 T ELT)) (-2869 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 40 T ELT)) (-2871 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 64 T ELT)) (-2868 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 38 T ELT)) (-2870 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 63 T ELT)) (-2867 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 24 T ELT)) (-2866 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 41 T ELT)) (-2865 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 39 T ELT)) (-2864 (((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 37 T ELT))) -(((-809) (-10 -7 (-15 -2864 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2865 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2866 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2867 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2868 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2869 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2870 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2871 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2872 ((-2 (|:| -3822 (-391)) (|:| -1739 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))))) (T -809)) -((-2872 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2871 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2870 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2869 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2868 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2867 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2866 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2865 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558)))) (-2864 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-809)) (-5 *5 (-558))))) -((-4135 (((-1234 |#1|) |#1| (-229) (-558)) 69 T ELT))) -(((-810 |#1|) (-10 -7 (-15 -4135 ((-1234 |#1|) |#1| (-229) (-558)))) (-995)) (T -810)) -((-4135 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-558)) (-5 *2 (-1234 *3)) (-5 *1 (-810 *3)) (-4 *3 (-995))))) -((-4053 (((-558) $) 17 T ELT)) (-3605 (((-114) $) 10 T ELT)) (-3803 (($ $) 19 T ELT))) -(((-811 |#1|) (-10 -7 (-15 -3803 (|#1| |#1|)) (-15 -4053 ((-558) |#1|)) (-15 -3605 ((-114) |#1|))) (-812)) (T -811)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 31 T ELT)) (-1426 (((-3 $ "failed") $ $) 34 T ELT)) (-4053 (((-558) $) 37 T ELT)) (-4154 (($) 30 T CONST)) (-3604 (((-114) $) 28 T ELT)) (-3605 (((-114) $) 38 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3803 (($ $) 36 T ELT)) (-3059 (($) 29 T CONST)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-4267 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4269 (($ $ $) 25 T ELT)) (* (($ (-938) $) 26 T ELT) (($ (-791) $) 32 T ELT) (($ (-558) $) 39 T ELT))) -(((-812) (-142)) (T -812)) -((-3605 (*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-114)))) (-4053 (*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-558)))) (-3803 (*1 *1 *1) (-4 *1 (-812)))) -(-13 (-819) (-21) (-10 -8 (-15 -3605 ((-114) $)) (-15 -4053 ((-558) $)) (-15 -3803 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-3604 (((-114) $) 10 T ELT))) -(((-813 |#1|) (-10 -7 (-15 -3604 ((-114) |#1|))) (-814)) (T -813)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 31 T ELT)) (-4154 (($) 30 T CONST)) (-3604 (((-114) $) 28 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 29 T CONST)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-4269 (($ $ $) 25 T ELT)) (* (($ (-938) $) 26 T ELT) (($ (-791) $) 32 T ELT))) +((-4000 (((-3 |#2| "failed") |#2| |#2| (-115) (-1197)) 37 T ELT))) +(((-791 |#1| |#2|) (-10 -7 (-15 -4000 ((-3 |#2| "failed") |#2| |#2| (-115) (-1197)))) (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149)) (-13 (-29 |#1|) (-1223) (-978))) (T -791)) +((-4000 (*1 *2 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *1 (-791 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 7 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 9 T ELT))) +(((-792) (-1121)) (T -792)) +NIL +((-4375 (((-792) |#1|) 8 T ELT))) +(((-793 |#1|) (-10 -7 (-15 -4375 ((-792) |#1|))) (-1237)) (T -793)) +((-4375 (*1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-793 *3)) (-4 *3 (-1237))))) +((-3533 ((|#2| |#4|) 35 T ELT))) +(((-794 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3533 (|#2| |#4|))) (-464) (-1263 |#1|) (-743 |#1| |#2|) (-1263 |#3|)) (T -794)) +((-3533 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-743 *4 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-794 *4 *2 *5 *3)) (-4 *3 (-1263 *5))))) +((-3886 (((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|) 57 T ELT)) (-2832 (((-1293) (-1179) (-1179) |#4| |#5|) 33 T ELT)) (-2830 ((|#4| |#4| |#5|) 74 T ELT)) (-2831 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#5|) 79 T ELT)) (-2833 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|) 16 T ELT))) +(((-795 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3886 ((-2 (|:| |num| |#4|) (|:| |den| |#4|)) |#4| |#5|)) (-15 -2830 (|#4| |#4| |#5|)) (-15 -2831 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#5|)) (-15 -2832 ((-1293) (-1179) (-1179) |#4| |#5|)) (-15 -2833 ((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -795)) +((-2833 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) (-5 *1 (-795 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2832 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *4 (-1085 *6 *7 *8)) (-5 *2 (-1293)) (-5 *1 (-795 *6 *7 *8 *4 *5)) (-4 *5 (-1091 *6 *7 *8 *4)))) (-2831 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-795 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-2830 (*1 *2 *2 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *2 (-1085 *4 *5 *6)) (-5 *1 (-795 *4 *5 *6 *2 *3)) (-4 *3 (-1091 *4 *5 *6 *2)))) (-3886 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-795 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) +((-3574 (((-3 (-1191 (-1191 |#1|)) "failed") |#4|) 53 T ELT)) (-2834 (((-660 |#4|) |#4|) 22 T ELT)) (-4357 ((|#4| |#4|) 17 T ELT))) +(((-796 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2834 ((-660 |#4|) |#4|)) (-15 -3574 ((-3 (-1191 (-1191 |#1|)) "failed") |#4|)) (-15 -4357 (|#4| |#4|))) (-363) (-341 |#1|) (-1263 |#2|) (-1263 |#3|) (-937)) (T -796)) +((-4357 (*1 *2 *2) (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1263 *4)) (-5 *1 (-796 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-937)))) (-3574 (*1 *2 *3) (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-796 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-937)))) (-2834 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-660 *3)) (-5 *1 (-796 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-937))))) +((-2835 (((-2 (|:| |deter| (-660 (-1191 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1191 |#5|) (-660 |#1|) (-660 |#5|)) 72 T ELT)) (-2836 (((-660 (-790)) |#1|) 20 T ELT))) +(((-797 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2835 ((-2 (|:| |deter| (-660 (-1191 |#5|))) (|:| |dterm| (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| |#5|))))) (|:| |nfacts| (-660 |#1|)) (|:| |nlead| (-660 |#5|))) (-1191 |#5|) (-660 |#1|) (-660 |#5|))) (-15 -2836 ((-660 (-790)) |#1|))) (-1263 |#4|) (-814) (-860) (-319) (-968 |#4| |#2| |#3|)) (T -797)) +((-2836 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-660 (-790))) (-5 *1 (-797 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *6)) (-4 *7 (-968 *6 *4 *5)))) (-2835 (*1 *2 *3 *4 *5) (-12 (-4 *6 (-1263 *9)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-319)) (-4 *10 (-968 *9 *7 *8)) (-5 *2 (-2 (|:| |deter| (-660 (-1191 *10))) (|:| |dterm| (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| *10))))) (|:| |nfacts| (-660 *6)) (|:| |nlead| (-660 *10)))) (-5 *1 (-797 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-660 *6)) (-5 *5 (-660 *10))))) +((-2839 (((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 |#1|))))) (-708 (-419 (-558))) |#1|) 31 T ELT)) (-2838 (((-660 |#1|) (-708 (-419 (-558))) |#1|) 21 T ELT)) (-2837 (((-964 (-419 (-558))) (-708 (-419 (-558))) (-1197)) 18 T ELT) (((-964 (-419 (-558))) (-708 (-419 (-558)))) 17 T ELT))) +(((-798 |#1|) (-10 -7 (-15 -2837 ((-964 (-419 (-558))) (-708 (-419 (-558))))) (-15 -2837 ((-964 (-419 (-558))) (-708 (-419 (-558))) (-1197))) (-15 -2838 ((-660 |#1|) (-708 (-419 (-558))) |#1|)) (-15 -2839 ((-660 (-2 (|:| |outval| |#1|) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 |#1|))))) (-708 (-419 (-558))) |#1|))) (-13 (-376) (-859))) (T -798)) +((-2839 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *2 (-660 (-2 (|:| |outval| *4) (|:| |outmult| (-558)) (|:| |outvect| (-660 (-708 *4)))))) (-5 *1 (-798 *4)) (-4 *4 (-13 (-376) (-859))))) (-2838 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *2 (-660 *4)) (-5 *1 (-798 *4)) (-4 *4 (-13 (-376) (-859))))) (-2837 (*1 *2 *3 *4) (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *4 (-1197)) (-5 *2 (-964 (-419 (-558)))) (-5 *1 (-798 *5)) (-4 *5 (-13 (-376) (-859))))) (-2837 (*1 *2 *3) (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *2 (-964 (-419 (-558)))) (-5 *1 (-798 *4)) (-4 *4 (-13 (-376) (-859)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 36 T ELT)) (-3483 (((-660 |#2|) $) NIL T ELT)) (-3485 (((-1191 $) $ |#2|) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 |#2|)) NIL T ELT)) (-4226 (($ $) 30 T ELT)) (-3583 (((-114) $ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4184 (($ $ $) 110 (|has| |#1| (-569)) ELT)) (-3565 (((-660 $) $ $) 123 (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 |#2| #1#) $) NIL T ELT) (((-3 $ #1#) (-964 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197)))) ELT) (((-3 $ #1#) (-964 (-558))) NIL (-3956 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197))))) ELT) (((-3 $ #1#) (-964 |#1|)) NIL (-3956 (-12 (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558))))) (-2958 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558))))) (-2958 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-1011 (-558)))))) ELT) (((-3 (-1145 |#1| |#2|) #1#) $) 21 T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) ((|#2| $) NIL T ELT) (($ (-964 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197)))) ELT) (($ (-964 (-558))) NIL (-3956 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197))))) ELT) (($ (-964 |#1|)) NIL (-3956 (-12 (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558))))) (-2958 (|has| |#1| (-38 (-558))))) (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558))))) (-2958 (|has| |#1| (-557)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-1011 (-558)))))) ELT) (((-1145 |#1| |#2|) $) NIL T ELT)) (-4185 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT) (($ $ $) 121 (|has| |#1| (-569)) ELT)) (-4388 (($ $) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-4123 (((-114) $ $) NIL T ELT) (((-114) $ (-660 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3589 (((-114) $) NIL T ELT)) (-4181 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 81 T ELT)) (-3560 (($ $) 136 (|has| |#1| (-464)) ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-3571 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3572 (($ $) NIL (|has| |#1| (-569)) ELT)) (-3582 (($ $ $) 76 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3581 (($ $ $) 79 T ELT) (($ $ $ |#2|) NIL T ELT)) (-1803 (($ $ |#1| (-543 |#2|) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| |#1| (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| |#1| (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-2640 (((-114) $) 57 T ELT)) (-2648 (((-790) $) NIL T ELT)) (-4124 (((-114) $ $) NIL T ELT) (((-114) $ (-660 $)) NIL T ELT)) (-3562 (($ $ $ $ $) 107 (|has| |#1| (-569)) ELT)) (-3597 ((|#2| $) 22 T ELT)) (-3486 (($ (-1191 |#1|) |#2|) NIL T ELT) (($ (-1191 $) |#2|) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-543 |#2|)) NIL T ELT) (($ $ |#2| (-790)) 38 T ELT) (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT)) (-3576 (($ $ $) 63 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#2|) NIL T ELT)) (-3590 (((-114) $) NIL T ELT)) (-3220 (((-543 |#2|) $) NIL T ELT) (((-790) $ |#2|) NIL T ELT) (((-660 (-790)) $ (-660 |#2|)) NIL T ELT)) (-3596 (((-790) $) 23 T ELT)) (-1804 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3484 (((-3 |#2| #1#) $) NIL T ELT)) (-3557 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3558 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3585 (((-660 $) $) NIL T ELT)) (-3588 (($ $) 39 T ELT)) (-3559 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3586 (((-660 $) $) 43 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3587 (($ $) 41 T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT) (($ $ |#2|) 48 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3575 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3900 (-790))) $ $) 96 T ELT)) (-3577 (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $) 78 T ELT) (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $ |#2|) NIL T ELT)) (-3578 (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $) NIL T ELT) (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $ |#2|) NIL T ELT)) (-3580 (($ $ $) 83 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3579 (($ $ $) 86 T ELT) (($ $ $ |#2|) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3607 (($ $ $) 125 (|has| |#1| (-569)) ELT)) (-3593 (((-660 $) $) 32 T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-4120 (((-114) $ $) NIL T ELT) (((-114) $ (-660 $)) NIL T ELT)) (-4115 (($ $ $) NIL T ELT)) (-3865 (($ $) 24 T ELT)) (-4128 (((-114) $ $) NIL T ELT)) (-4121 (((-114) $ $) NIL T ELT) (((-114) $ (-660 $)) NIL T ELT)) (-4116 (($ $ $) NIL T ELT)) (-3595 (($ $) 26 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3566 (((-2 (|:| -3561 $) (|:| |coef2| $)) $ $) 116 (|has| |#1| (-569)) ELT)) (-3567 (((-2 (|:| -3561 $) (|:| |coef1| $)) $ $) 113 (|has| |#1| (-569)) ELT)) (-2004 (((-114) $) 56 T ELT)) (-2003 ((|#1| $) 58 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 ((|#1| |#1| $) 133 (|has| |#1| (-464)) ELT) (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3568 (((-2 (|:| -3561 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 119 (|has| |#1| (-569)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 98 (|has| |#1| (-569)) ELT)) (-3569 (($ $ |#1|) 129 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-3570 (($ $ |#1|) 128 (|has| |#1| (-569)) ELT) (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#2| |#1|) NIL T ELT) (($ $ (-660 |#2|) (-660 |#1|)) NIL T ELT) (($ $ |#2| $) NIL T ELT) (($ $ (-660 |#2|) (-660 $)) NIL T ELT)) (-4186 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-4377 (((-543 |#2|) $) NIL T ELT) (((-790) $ |#2|) 45 T ELT) (((-660 (-790)) $ (-660 |#2|)) NIL T ELT)) (-3594 (($ $) NIL T ELT)) (-3592 (($ $) 35 T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT) (($ (-964 (-419 (-558)))) NIL (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197)))) ELT) (($ (-964 (-558))) NIL (-3956 (-12 (|has| |#1| (-38 (-558))) (|has| |#2| (-630 (-1197))) (-2958 (|has| |#1| (-38 (-419 (-558)))))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#2| (-630 (-1197))))) ELT) (($ (-964 |#1|)) NIL (|has| |#2| (-630 (-1197))) ELT) (((-1179) $) NIL (-12 (|has| |#1| (-1058 (-558))) (|has| |#2| (-630 (-1197)))) ELT) (((-964 |#1|) $) NIL (|has| |#2| (-630 (-1197))) ELT)) (-3217 ((|#1| $) 132 (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#2|) NIL T ELT) (((-964 |#1|) $) NIL (|has| |#2| (-630 (-1197))) ELT) (((-1145 |#1| |#2|) $) 18 T ELT) (($ (-1145 |#1| |#2|)) 19 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-543 |#2|)) NIL T ELT) (($ $ |#2| (-790)) 47 T ELT) (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) 13 T CONST)) (-3584 (((-3 (-114) #1#) $ $) NIL T ELT)) (-3064 (($) 37 T CONST)) (-3563 (($ $ $ $ (-790)) 105 (|has| |#1| (-569)) ELT)) (-3564 (($ $ $ (-790)) 104 (|has| |#1| (-569)) ELT)) (-3069 (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) 75 T ELT)) (-4268 (($ $ $) 85 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 70 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 62 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 61 T ELT) (($ $ |#1|) NIL T ELT))) +(((-799 |#1| |#2|) (-13 (-1085 |#1| (-543 |#2|) |#2|) (-629 (-1145 |#1| |#2|)) (-1058 (-1145 |#1| |#2|))) (-1069) (-860)) (T -799)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 12 T ELT)) (-4196 (((-1287 |#1|) $ (-790)) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4194 (($ (-1191 |#1|)) NIL T ELT)) (-3485 (((-1191 $) $ (-1102)) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1102))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2843 (((-660 $) $ $) 54 (|has| |#1| (-569)) ELT)) (-4184 (($ $ $) 50 (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4190 (($ $ (-790)) NIL T ELT)) (-4189 (($ $ (-790)) NIL T ELT)) (-4180 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1102) #1#) $) NIL T ELT) (((-3 (-1191 |#1|) #1#) $) 10 T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-1102) $) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-4185 (($ $ $ (-1102)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 58 (|has| |#1| (-175)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ $) NIL T ELT)) (-4182 (($ $ $) 87 (|has| |#1| (-569)) ELT)) (-4181 (((-2 (|:| -4383 |#1|) (|:| -2183 $) (|:| -3302 $)) $ $) 86 (|has| |#1| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-790) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1102) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1102) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-4201 (((-790) $ $) NIL (|has| |#1| (-569)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-1172)) ELT)) (-3486 (($ (-1191 |#1|) (-1102)) NIL T ELT) (($ (-1191 $) (-1102)) NIL T ELT)) (-4206 (($ $ (-790)) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-3576 (($ $ $) 27 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1102)) NIL T ELT) (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3220 (((-790) $) NIL T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-1804 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4195 (((-1191 |#1|) $) NIL T ELT)) (-3484 (((-3 (-1102) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3575 (((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3900 (-790))) $ $) 37 T ELT)) (-2845 (($ $ $) 41 T ELT)) (-2844 (($ $ $) 47 T ELT)) (-3577 (((-2 (|:| -4383 |#1|) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $) 46 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3607 (($ $ $) 56 (|has| |#1| (-569)) ELT)) (-4191 (((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790)) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1102)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-4241 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (($) NIL (|has| |#1| (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3566 (((-2 (|:| -3561 $) (|:| |coef2| $)) $ $) 82 (|has| |#1| (-569)) ELT)) (-3567 (((-2 (|:| -3561 $) (|:| |coef1| $)) $ $) 78 (|has| |#1| (-569)) ELT)) (-2840 (((-2 (|:| -4185 |#1|) (|:| |coef2| $)) $ $) 70 (|has| |#1| (-569)) ELT)) (-2841 (((-2 (|:| -4185 |#1|) (|:| |coef1| $)) $ $) 66 (|has| |#1| (-569)) ELT)) (-2004 (((-114) $) 13 T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-4167 (($ $ (-790) |#1| $) 26 T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3568 (((-2 (|:| -3561 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 74 (|has| |#1| (-569)) ELT)) (-2842 (((-2 (|:| -4185 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $) 62 (|has| |#1| (-569)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1102) |#1|) NIL T ELT) (($ $ (-660 (-1102)) (-660 |#1|)) NIL T ELT) (($ $ (-1102) $) NIL T ELT) (($ $ (-660 (-1102)) (-660 $)) NIL T ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ |#1|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-3 $ #1#) $ (-790)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1102)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-4377 (((-790) $) NIL T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1102) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4183 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1102)) NIL T ELT) (((-1191 |#1|) $) 7 T ELT) (($ (-1191 |#1|)) 8 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) 28 T CONST)) (-3064 (($) 32 T CONST)) (-3069 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) 40 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 31 T ELT) (($ $ |#1|) NIL T ELT))) +(((-800 |#1|) (-13 (-1263 |#1|) (-629 (-1191 |#1|)) (-1058 (-1191 |#1|)) (-10 -8 (-15 -4167 ($ $ (-790) |#1| $)) (-15 -3576 ($ $ $)) (-15 -3575 ((-2 (|:| |polnum| $) (|:| |polden| |#1|) (|:| -3900 (-790))) $ $)) (-15 -2845 ($ $ $)) (-15 -3577 ((-2 (|:| -4383 |#1|) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -2844 ($ $ $)) (IF (|has| |#1| (-569)) (PROGN (-15 -2843 ((-660 $) $ $)) (-15 -3607 ($ $ $)) (-15 -3568 ((-2 (|:| -3561 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3567 ((-2 (|:| -3561 $) (|:| |coef1| $)) $ $)) (-15 -3566 ((-2 (|:| -3561 $) (|:| |coef2| $)) $ $)) (-15 -2842 ((-2 (|:| -4185 |#1|) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -2841 ((-2 (|:| -4185 |#1|) (|:| |coef1| $)) $ $)) (-15 -2840 ((-2 (|:| -4185 |#1|) (|:| |coef2| $)) $ $))) |%noBranch|))) (-1069)) (T -800)) +((-4167 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-790)) (-5 *1 (-800 *3)) (-4 *3 (-1069)))) (-3576 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1069)))) (-3575 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| |polnum| (-800 *3)) (|:| |polden| *3) (|:| -3900 (-790)))) (-5 *1 (-800 *3)) (-4 *3 (-1069)))) (-2845 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1069)))) (-3577 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4383 *3) (|:| |gap| (-790)) (|:| -2183 (-800 *3)) (|:| -3302 (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-1069)))) (-2844 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1069)))) (-2843 (*1 *2 *1 *1) (-12 (-5 *2 (-660 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) (-3607 (*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-569)) (-4 *2 (-1069)))) (-3568 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3561 (-800 *3)) (|:| |coef1| (-800 *3)) (|:| |coef2| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) (-3567 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3561 (-800 *3)) (|:| |coef1| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) (-3566 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -3561 (-800 *3)) (|:| |coef2| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) (-2842 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| |coef1| (-800 *3)) (|:| |coef2| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) (-2841 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| |coef1| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) (-2840 (*1 *2 *1 *1) (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| |coef2| (-800 *3)))) (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069))))) +((-4387 (((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)) 13 T ELT))) +(((-801 |#1| |#2|) (-10 -7 (-15 -4387 ((-800 |#2|) (-1 |#2| |#1|) (-800 |#1|)))) (-1069) (-1069)) (T -801)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-800 *6)) (-5 *1 (-801 *5 *6))))) +((-2847 ((|#1| (-790) |#1|) 33 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3201 ((|#1| (-790) |#1|) 23 T ELT)) (-2846 ((|#1| (-790) |#1|) 35 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-802 |#1|) (-10 -7 (-15 -3201 (|#1| (-790) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -2846 (|#1| (-790) |#1|)) (-15 -2847 (|#1| (-790) |#1|))) |%noBranch|)) (-175)) (T -802)) +((-2847 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-802 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-2846 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-802 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-3201 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-802 *2)) (-4 *2 (-175))))) +((-2966 (((-114) $ $) 7 T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) 90 T ELT)) (-4111 (((-660 $) (-660 |#4|)) 91 T ELT) (((-660 $) (-660 |#4|) (-114)) 118 T ELT)) (-3483 (((-660 |#3|) $) 37 T ELT)) (-3308 (((-114) $) 30 T ELT)) (-3299 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4117 ((|#4| |#4| $) 97 T ELT)) (-4204 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| $) 133 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4139 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4153 (($) 46 T CONST)) (-3304 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") (-660 |#4|)) 40 T ELT)) (-3573 (($ (-660 |#4|)) 39 T ELT)) (-4228 (((-3 $ #1#) $) 87 T ELT)) (-4114 ((|#4| |#4| $) 94 T ELT)) (-1466 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4112 ((|#4| |#4| $) 92 T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) 110 T ELT)) (-3614 (((-114) |#4| $) 143 T ELT)) (-3612 (((-114) |#4| $) 140 T ELT)) (-3615 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3289 (((-660 |#4|) $) 53 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3314 (((-660 |#3|) $) 36 T ELT)) (-3313 (((-114) |#3| $) 35 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3608 (((-3 |#4| (-660 $)) |#4| |#4| $) 135 T ELT)) (-3607 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| |#4| $) 134 T ELT)) (-4227 (((-3 |#4| #1#) $) 88 T ELT)) (-3609 (((-660 $) |#4| $) 136 T ELT)) (-3611 (((-3 (-114) (-660 $)) |#4| $) 139 T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3655 (((-660 $) |#4| $) 132 T ELT) (((-660 $) (-660 |#4|) $) 131 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 130 T ELT) (((-660 $) |#4| (-660 $)) 129 T ELT)) (-3859 (($ |#4| $) 124 T ELT) (($ (-660 |#4|) $) 123 T ELT)) (-4126 (((-660 |#4|) $) 112 T ELT)) (-4120 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4115 ((|#4| |#4| $) 95 T ELT)) (-4128 (((-114) $ $) 115 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4116 ((|#4| |#4| $) 96 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4230 (((-3 |#4| #1#) $) 89 T ELT)) (-1467 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4198 (($ $ |#4|) 82 T ELT) (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) 42 T ELT)) (-3822 (((-114) $) 45 T ELT)) (-3992 (($) 44 T ELT)) (-4377 (((-790) $) 111 T ELT)) (-2156 (((-790) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 43 T ELT)) (-4401 (((-547) $) 70 (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 61 T ELT)) (-3310 (($ $ |#3|) 32 T ELT)) (-3312 (($ $ |#3|) 34 T ELT)) (-4113 (($ $) 93 T ELT)) (-3311 (($ $ |#3|) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (((-660 |#4|) $) 41 T ELT)) (-4107 (((-790) $) 81 (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) 103 T ELT)) (-3606 (((-660 $) |#4| $) 128 T ELT) (((-660 $) |#4| (-660 $)) 127 T ELT) (((-660 $) (-660 |#4|) $) 126 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 125 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) 86 T ELT)) (-3613 (((-114) |#4| $) 142 T ELT)) (-4362 (((-114) |#3| $) 85 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 47 (|has| $ (-6 -4424)) ELT))) +(((-803 |#1| |#2| |#3| |#4|) (-142) (-464) (-814) (-860) (-1085 |t#1| |t#2| |t#3|)) (T -803)) +NIL +(-13 (-1091 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-629 (-660 |#4|)) . T) ((-629 (-876)) . T) ((-153 |#4|) . T) ((-630 (-547)) |has| |#4| (-630 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) +((-2850 (((-3 (-391) #1="failed") (-326 |#1|) (-937)) 62 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-3 (-391) #1#) (-326 |#1|)) 54 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-3 (-391) #1#) (-419 (-964 |#1|)) (-937)) 41 (|has| |#1| (-569)) ELT) (((-3 (-391) #1#) (-419 (-964 |#1|))) 40 (|has| |#1| (-569)) ELT) (((-3 (-391) #1#) (-964 |#1|) (-937)) 31 (|has| |#1| (-1069)) ELT) (((-3 (-391) #1#) (-964 |#1|)) 30 (|has| |#1| (-1069)) ELT)) (-2848 (((-391) (-326 |#1|) (-937)) 99 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-391) (-326 |#1|)) 94 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-391) (-419 (-964 |#1|)) (-937)) 91 (|has| |#1| (-569)) ELT) (((-391) (-419 (-964 |#1|))) 90 (|has| |#1| (-569)) ELT) (((-391) (-964 |#1|) (-937)) 86 (|has| |#1| (-1069)) ELT) (((-391) (-964 |#1|)) 85 (|has| |#1| (-1069)) ELT) (((-391) |#1| (-937)) 76 T ELT) (((-391) |#1|) 22 T ELT)) (-2851 (((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)) (-937)) 71 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-3 (-171 (-391)) #1#) (-326 (-171 |#1|))) 70 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-3 (-171 (-391)) #1#) (-326 |#1|) (-937)) 63 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-3 (-171 (-391)) #1#) (-326 |#1|)) 61 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-3 (-171 (-391)) #1#) (-419 (-964 (-171 |#1|))) (-937)) 46 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-964 (-171 |#1|)))) 45 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-964 |#1|)) (-937)) 39 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-419 (-964 |#1|))) 38 (|has| |#1| (-569)) ELT) (((-3 (-171 (-391)) #1#) (-964 |#1|) (-937)) 28 (|has| |#1| (-1069)) ELT) (((-3 (-171 (-391)) #1#) (-964 |#1|)) 26 (|has| |#1| (-1069)) ELT) (((-3 (-171 (-391)) #1#) (-964 (-171 |#1|)) (-937)) 18 (|has| |#1| (-175)) ELT) (((-3 (-171 (-391)) #1#) (-964 (-171 |#1|))) 15 (|has| |#1| (-175)) ELT)) (-2849 (((-171 (-391)) (-326 (-171 |#1|)) (-937)) 102 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-171 (-391)) (-326 (-171 |#1|))) 101 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-171 (-391)) (-326 |#1|) (-937)) 100 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-171 (-391)) (-326 |#1|)) 98 (-12 (|has| |#1| (-569)) (|has| |#1| (-860))) ELT) (((-171 (-391)) (-419 (-964 (-171 |#1|))) (-937)) 93 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-964 (-171 |#1|)))) 92 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-964 |#1|)) (-937)) 89 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-419 (-964 |#1|))) 88 (|has| |#1| (-569)) ELT) (((-171 (-391)) (-964 |#1|) (-937)) 84 (|has| |#1| (-1069)) ELT) (((-171 (-391)) (-964 |#1|)) 83 (|has| |#1| (-1069)) ELT) (((-171 (-391)) (-964 (-171 |#1|)) (-937)) 78 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-964 (-171 |#1|))) 77 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|) (-937)) 80 (|has| |#1| (-175)) ELT) (((-171 (-391)) (-171 |#1|)) 79 (|has| |#1| (-175)) ELT) (((-171 (-391)) |#1| (-937)) 27 T ELT) (((-171 (-391)) |#1|) 25 T ELT))) +(((-804 |#1|) (-10 -7 (-15 -2848 ((-391) |#1|)) (-15 -2848 ((-391) |#1| (-937))) (-15 -2849 ((-171 (-391)) |#1|)) (-15 -2849 ((-171 (-391)) |#1| (-937))) (IF (|has| |#1| (-175)) (PROGN (-15 -2849 ((-171 (-391)) (-171 |#1|))) (-15 -2849 ((-171 (-391)) (-171 |#1|) (-937))) (-15 -2849 ((-171 (-391)) (-964 (-171 |#1|)))) (-15 -2849 ((-171 (-391)) (-964 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-15 -2848 ((-391) (-964 |#1|))) (-15 -2848 ((-391) (-964 |#1|) (-937))) (-15 -2849 ((-171 (-391)) (-964 |#1|))) (-15 -2849 ((-171 (-391)) (-964 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2848 ((-391) (-419 (-964 |#1|)))) (-15 -2848 ((-391) (-419 (-964 |#1|)) (-937))) (-15 -2849 ((-171 (-391)) (-419 (-964 |#1|)))) (-15 -2849 ((-171 (-391)) (-419 (-964 |#1|)) (-937))) (-15 -2849 ((-171 (-391)) (-419 (-964 (-171 |#1|))))) (-15 -2849 ((-171 (-391)) (-419 (-964 (-171 |#1|))) (-937))) (IF (|has| |#1| (-860)) (PROGN (-15 -2848 ((-391) (-326 |#1|))) (-15 -2848 ((-391) (-326 |#1|) (-937))) (-15 -2849 ((-171 (-391)) (-326 |#1|))) (-15 -2849 ((-171 (-391)) (-326 |#1|) (-937))) (-15 -2849 ((-171 (-391)) (-326 (-171 |#1|)))) (-15 -2849 ((-171 (-391)) (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-15 -2851 ((-3 (-171 (-391)) #1="failed") (-964 (-171 |#1|)))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-964 (-171 |#1|)) (-937)))) |%noBranch|) (IF (|has| |#1| (-1069)) (PROGN (-15 -2850 ((-3 (-391) #1#) (-964 |#1|))) (-15 -2850 ((-3 (-391) #1#) (-964 |#1|) (-937))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-964 |#1|))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-964 |#1|) (-937)))) |%noBranch|) (IF (|has| |#1| (-569)) (PROGN (-15 -2850 ((-3 (-391) #1#) (-419 (-964 |#1|)))) (-15 -2850 ((-3 (-391) #1#) (-419 (-964 |#1|)) (-937))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-419 (-964 |#1|)))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-419 (-964 |#1|)) (-937))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-419 (-964 (-171 |#1|))))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-419 (-964 (-171 |#1|))) (-937))) (IF (|has| |#1| (-860)) (PROGN (-15 -2850 ((-3 (-391) #1#) (-326 |#1|))) (-15 -2850 ((-3 (-391) #1#) (-326 |#1|) (-937))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-326 |#1|))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-326 |#1|) (-937))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)))) (-15 -2851 ((-3 (-171 (-391)) #1#) (-326 (-171 |#1|)) (-937)))) |%noBranch|)) |%noBranch|)) (-630 (-391))) (T -804)) +((-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-964 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-964 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2850 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) (-2850 (*1 *2 *3) (|partial| -12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) (-2851 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-964 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-175)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2851 (*1 *2 *3) (|partial| -12 (-5 *3 (-964 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2848 (*1 *2 *3 *4) (-12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) (-2848 (*1 *2 *3) (-12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-964 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-175)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-964 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *3 (-171 *5)) (-5 *4 (-937)) (-4 *5 (-175)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) (-2849 (*1 *2 *3) (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) (-2849 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-171 (-391))) (-5 *1 (-804 *3)) (-4 *3 (-630 (-391))))) (-2849 (*1 *2 *3) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-804 *3)) (-4 *3 (-630 (-391))))) (-2848 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-391)) (-5 *1 (-804 *3)) (-4 *3 (-630 *2)))) (-2848 (*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-804 *3)) (-4 *3 (-630 *2))))) +((-2855 (((-937) (-1179)) 90 T ELT)) (-2857 (((-3 (-391) "failed") (-1179)) 36 T ELT)) (-2856 (((-391) (-1179)) 34 T ELT)) (-2853 (((-937) (-1179)) 64 T ELT)) (-2854 (((-1179) (-937)) 74 T ELT)) (-2852 (((-1179) (-937)) 63 T ELT))) +(((-805) (-10 -7 (-15 -2852 ((-1179) (-937))) (-15 -2853 ((-937) (-1179))) (-15 -2854 ((-1179) (-937))) (-15 -2855 ((-937) (-1179))) (-15 -2856 ((-391) (-1179))) (-15 -2857 ((-3 (-391) "failed") (-1179))))) (T -805)) +((-2857 (*1 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-805)))) (-2856 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-805)))) (-2855 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-937)) (-5 *1 (-805)))) (-2854 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1179)) (-5 *1 (-805)))) (-2853 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-937)) (-5 *1 (-805)))) (-2852 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1179)) (-5 *1 (-805))))) +((-2966 (((-114) $ $) 7 T ELT)) (-2858 (((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 19 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055)) 17 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 20 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-806) (-142)) (T -806)) +((-3068 (*1 *2 *3 *4) (-12 (-4 *1 (-806)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055)))))) (-2858 (*1 *2 *3 *2) (-12 (-4 *1 (-806)) (-5 *2 (-1055)) (-5 *3 (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) (-3068 (*1 *2 *3 *4) (-12 (-4 *1 (-806)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055)))))) (-2858 (*1 *2 *3 *2) (-12 (-4 *1 (-806)) (-5 *2 (-1055)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) +(-13 (-1121) (-10 -7 (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2858 ((-1055) (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) (|:| |extra| (-1055))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2858 ((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) (-1055))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2861 (((-1293) (-1287 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391))) (-391) (-1287 (-391)) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391))) 54 T ELT) (((-1293) (-1287 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391))) (-391) (-1287 (-391)) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391))) 51 T ELT)) (-2862 (((-1293) (-1287 (-391)) (-558) (-391) (-391) (-558) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391))) 61 T ELT)) (-2860 (((-1293) (-1287 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391))) 49 T ELT)) (-2859 (((-1293) (-1287 (-391)) (-558) (-391) (-391) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391))) 63 T ELT) (((-1293) (-1287 (-391)) (-558) (-391) (-391) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391))) 62 T ELT))) +(((-807) (-10 -7 (-15 -2859 ((-1293) (-1287 (-391)) (-558) (-391) (-391) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)))) (-15 -2859 ((-1293) (-1287 (-391)) (-558) (-391) (-391) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)))) (-15 -2860 ((-1293) (-1287 (-391)) (-558) (-391) (-391) (-391) (-391) (-558) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)))) (-15 -2861 ((-1293) (-1287 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391))) (-391) (-1287 (-391)) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)))) (-15 -2861 ((-1293) (-1287 (-391)) (-558) (-391) (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391))) (-391) (-1287 (-391)) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)) (-1287 (-391)))) (-15 -2862 ((-1293) (-1287 (-391)) (-558) (-391) (-391) (-558) (-1 (-1293) (-1287 (-391)) (-1287 (-391)) (-391)))))) (T -807)) +((-2862 (*1 *2 *3 *4 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) (-2861 (*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391)))) (-5 *7 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) (-2861 (*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-558)) (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391)))) (-5 *7 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) (-2860 (*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) (-2859 (*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) (-2859 (*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807))))) +((-2871 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 65 T ELT)) (-2868 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 40 T ELT)) (-2870 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 64 T ELT)) (-2867 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 38 T ELT)) (-2869 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 63 T ELT)) (-2866 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558)) 24 T ELT)) (-2865 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 41 T ELT)) (-2864 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 39 T ELT)) (-2863 (((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558)) 37 T ELT))) +(((-808) (-10 -7 (-15 -2863 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2864 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2865 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558) (-558))) (-15 -2866 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2867 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2868 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2869 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2870 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))) (-15 -2871 ((-2 (|:| -3821 (-391)) (|:| -1738 (-391)) (|:| |totalpts| (-558)) (|:| |success| (-114))) (-1 (-391) (-391)) (-391) (-391) (-391) (-391) (-558) (-558))))) (T -808)) +((-2871 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2870 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2869 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2868 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2867 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2866 (*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2865 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2864 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558)))) (-2863 (*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) (-5 *1 (-808)) (-5 *5 (-558))))) +((-4134 (((-1233 |#1|) |#1| (-229) (-558)) 69 T ELT))) +(((-809 |#1|) (-10 -7 (-15 -4134 ((-1233 |#1|) |#1| (-229) (-558)))) (-994)) (T -809)) +((-4134 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-229)) (-5 *5 (-558)) (-5 *2 (-1233 *3)) (-5 *1 (-809 *3)) (-4 *3 (-994))))) +((-4052 (((-558) $) 17 T ELT)) (-3604 (((-114) $) 10 T ELT)) (-3802 (($ $) 19 T ELT))) +(((-810 |#1|) (-10 -7 (-15 -3802 (|#1| |#1|)) (-15 -4052 ((-558) |#1|)) (-15 -3604 ((-114) |#1|))) (-811)) (T -810)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 31 T ELT)) (-1425 (((-3 $ "failed") $ $) 34 T ELT)) (-4052 (((-558) $) 37 T ELT)) (-4153 (($) 30 T CONST)) (-3603 (((-114) $) 28 T ELT)) (-3604 (((-114) $) 38 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3802 (($ $) 36 T ELT)) (-3058 (($) 29 T CONST)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-4266 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4268 (($ $ $) 25 T ELT)) (* (($ (-937) $) 26 T ELT) (($ (-790) $) 32 T ELT) (($ (-558) $) 39 T ELT))) +(((-811) (-142)) (T -811)) +((-3604 (*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-114)))) (-4052 (*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-558)))) (-3802 (*1 *1 *1) (-4 *1 (-811)))) +(-13 (-818) (-21) (-10 -8 (-15 -3604 ((-114) $)) (-15 -4052 ((-558) $)) (-15 -3802 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-3603 (((-114) $) 10 T ELT))) +(((-812 |#1|) (-10 -7 (-15 -3603 ((-114) |#1|))) (-813)) (T -812)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 31 T ELT)) (-4153 (($) 30 T CONST)) (-3603 (((-114) $) 28 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 29 T CONST)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-4268 (($ $ $) 25 T ELT)) (* (($ (-937) $) 26 T ELT) (($ (-790) $) 32 T ELT))) +(((-813) (-142)) (T -813)) +((-3603 (*1 *2 *1) (-12 (-4 *1 (-813)) (-5 *2 (-114))))) +(-13 (-815) (-23) (-10 -8 (-15 -3603 ((-114) $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-815) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 31 T ELT)) (-2872 (($ $ $) 35 T ELT)) (-1425 (((-3 $ "failed") $ $) 34 T ELT)) (-4153 (($) 30 T CONST)) (-3603 (((-114) $) 28 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 29 T CONST)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-4268 (($ $ $) 25 T ELT)) (* (($ (-937) $) 26 T ELT) (($ (-790) $) 32 T ELT))) (((-814) (-142)) (T -814)) -((-3604 (*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-114))))) -(-13 (-816) (-23) (-10 -8 (-15 -3604 ((-114) $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-816) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 31 T ELT)) (-2873 (($ $ $) 35 T ELT)) (-1426 (((-3 $ "failed") $ $) 34 T ELT)) (-4154 (($) 30 T CONST)) (-3604 (((-114) $) 28 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 29 T CONST)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-4269 (($ $ $) 25 T ELT)) (* (($ (-938) $) 26 T ELT) (($ (-791) $) 32 T ELT))) +((-2872 (*1 *1 *1 *1) (-4 *1 (-814)))) +(-13 (-818) (-10 -8 (-15 -2872 ($ $ $)))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-4268 (($ $ $) 25 T ELT)) (* (($ (-937) $) 26 T ELT))) (((-815) (-142)) (T -815)) -((-2873 (*1 *1 *1 *1) (-4 *1 (-815)))) -(-13 (-819) (-10 -8 (-15 -2873 ($ $ $)))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-4269 (($ $ $) 25 T ELT)) (* (($ (-938) $) 26 T ELT))) -(((-816) (-142)) (T -816)) -NIL -(-13 (-861) (-25)) -(((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-3606 (((-114) $) 42 T ELT)) (-3575 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3574 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 78 T ELT)) (-3424 (((-114) $) 72 T ELT)) (-3423 (((-419 (-558)) $) 76 T ELT)) (-3534 ((|#2| $) 26 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2874 (($ $) 58 T ELT)) (-4402 (((-547) $) 67 T ELT)) (-3410 (($ $) 21 T ELT)) (-4376 (((-877) $) 53 T ELT) (($ (-558)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3528 (((-791)) 10 T ELT)) (-3803 ((|#2| $) 71 T ELT)) (-3454 (((-114) $ $) 30 T ELT)) (-3086 (((-114) $ $) 69 T ELT)) (-4267 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 31 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) -(((-817 |#1| |#2|) (-10 -7 (-15 -3086 ((-114) |#1| |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -2874 (|#1| |#1|)) (-15 -3425 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3423 ((-419 (-558)) |#1|)) (-15 -3424 ((-114) |#1|)) (-15 -3803 (|#2| |#1|)) (-15 -3534 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3528 ((-791))) (-15 -4376 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-818 |#2|) (-175)) (T -817)) -((-3528 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3538 (((-791)) 64 (|has| |#1| (-381)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 106 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3574 (((-558) $) 105 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 102 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 101 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4073 ((|#1| $) 90 T ELT)) (-3425 (((-3 (-419 (-558)) "failed") $) 77 (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) 79 (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) 78 (|has| |#1| (-557)) ELT)) (-3395 (($) 67 (|has| |#1| (-381)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-2879 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3534 ((|#1| $) 82 T ELT)) (-2930 (($ $ $) 68 (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) 69 (|has| |#1| (-861)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2220 (((-938) $) 66 (|has| |#1| (-381)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 76 (|has| |#1| (-376)) ELT)) (-2631 (($ (-938)) 65 (|has| |#1| (-381)) ELT)) (-2876 ((|#1| $) 87 T ELT)) (-2877 ((|#1| $) 88 T ELT)) (-2878 ((|#1| $) 89 T ELT)) (-3407 ((|#1| $) 83 T ELT)) (-3408 ((|#1| $) 84 T ELT)) (-3409 ((|#1| $) 85 T ELT)) (-2875 ((|#1| $) 86 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) 98 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 96 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 95 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 94 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) 93 (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-4230 (($ $ |#1|) 99 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4402 (((-547) $) 74 (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $) 91 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 104 (|has| |#1| (-1059 (-419 (-558)))) ELT)) (-3103 (((-711 $) $) 75 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3803 ((|#1| $) 80 (|has| |#1| (-1081)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 70 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 72 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 71 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 73 (|has| |#1| (-861)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) -(((-818 |#1|) (-142) (-175)) (T -818)) -((-3410 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2878 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-2879 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-2874 (*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-351 |t#1|) (-10 -8 (-15 -3410 ($ $)) (-15 -4073 (|t#1| $)) (-15 -2878 (|t#1| $)) (-15 -2877 (|t#1| $)) (-15 -2876 (|t#1| $)) (-15 -2875 (|t#1| $)) (-15 -3409 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3534 (|t#1| $)) (-15 -2879 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -3803 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2874 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-746) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 31 T ELT)) (-1426 (((-3 $ "failed") $ $) 34 T ELT)) (-4154 (($) 30 T CONST)) (-3604 (((-114) $) 28 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 29 T CONST)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-4269 (($ $ $) 25 T ELT)) (* (($ (-938) $) 26 T ELT) (($ (-791) $) 32 T ELT))) -(((-819) (-142)) (T -819)) -NIL -(-13 (-814) (-133)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-814) . T) ((-816) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-1017 |#1|) #1#) $) 35 T ELT) (((-3 (-558) #1#) $) NIL (-3957 (|has| (-1017 |#1|) (-1059 (-558))) (|has| |#1| (-1059 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-3957 (|has| (-1017 |#1|) (-1059 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3574 ((|#1| $) NIL T ELT) (((-1017 |#1|) $) 33 T ELT) (((-558) $) NIL (-3957 (|has| (-1017 |#1|) (-1059 (-558))) (|has| |#1| (-1059 (-558)))) ELT) (((-419 (-558)) $) NIL (-3957 (|has| (-1017 |#1|) (-1059 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4073 ((|#1| $) 16 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3395 (($) NIL (|has| |#1| (-381)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2879 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1017 |#1|) (-1017 |#1|)) 29 T ELT)) (-3534 ((|#1| $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-2876 ((|#1| $) 22 T ELT)) (-2877 ((|#1| $) 20 T ELT)) (-2878 ((|#1| $) 18 T ELT)) (-3407 ((|#1| $) 26 T ELT)) (-3408 ((|#1| $) 25 T ELT)) (-3409 ((|#1| $) 24 T ELT)) (-2875 ((|#1| $) 23 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-4230 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1017 |#1|)) 30 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| (-1017 |#1|) (-1059 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3803 ((|#1| $) NIL (|has| |#1| (-1081)) ELT)) (-3059 (($) 8 T CONST)) (-3065 (($) 12 T CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-820 |#1|) (-13 (-818 |#1|) (-424 (-1017 |#1|)) (-10 -8 (-15 -2879 ($ (-1017 |#1|) (-1017 |#1|))))) (-175)) (T -820)) -((-2879 (*1 *1 *2 *2) (-12 (-5 *2 (-1017 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3))))) -((-4388 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) -(((-821 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#3| (-1 |#4| |#2|) |#1|))) (-818 |#2|) (-175) (-818 |#4|) (-175)) (T -821)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-818 *6)) (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2880 (((-1056) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-822) (-142)) (T -822)) -((-3069 (*1 *2 *3 *4) (-12 (-4 *1 (-822)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) (-2880 (*1 *2 *3) (-12 (-4 *1 (-822)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1056))))) -(-13 (-1122) (-10 -7 (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2880 ((-1056) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2881 (((-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) |#3| |#2| (-1198)) 19 T ELT))) -(((-823 |#1| |#2| |#3|) (-10 -7 (-15 -2881 ((-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) |#3| |#2| (-1198)))) (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1224) (-979)) (-678 |#2|)) (T -823)) -((-2881 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1198)) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-4 *4 (-13 (-29 *6) (-1224) (-979))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2222 (-661 *4)))) (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-678 *4))))) -((-4001 (((-3 |#2| #1="failed") |#2| (-115) (-305 |#2|) (-661 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) |#2| #1#) |#2| (-115) (-1198)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) |#2| #1#) (-305 |#2|) (-115) (-1198)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2222 (-661 (-1288 |#2|)))) #1#) (-661 |#2|) (-661 (-115)) (-1198)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2222 (-661 (-1288 |#2|)))) #1#) (-661 (-305 |#2|)) (-661 (-115)) (-1198)) 26 T ELT) (((-3 (-661 (-1288 |#2|)) #1#) (-709 |#2|) (-1198)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2222 (-661 (-1288 |#2|)))) #1#) (-709 |#2|) (-1288 |#2|) (-1198)) 35 T ELT))) -(((-824 |#1| |#2|) (-10 -7 (-15 -4001 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2222 (-661 (-1288 |#2|)))) #1="failed") (-709 |#2|) (-1288 |#2|) (-1198))) (-15 -4001 ((-3 (-661 (-1288 |#2|)) #1#) (-709 |#2|) (-1198))) (-15 -4001 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2222 (-661 (-1288 |#2|)))) #1#) (-661 (-305 |#2|)) (-661 (-115)) (-1198))) (-15 -4001 ((-3 (-2 (|:| |particular| (-1288 |#2|)) (|:| -2222 (-661 (-1288 |#2|)))) #1#) (-661 |#2|) (-661 (-115)) (-1198))) (-15 -4001 ((-3 (-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) |#2| #1#) (-305 |#2|) (-115) (-1198))) (-15 -4001 ((-3 (-2 (|:| |particular| |#2|) (|:| -2222 (-661 |#2|))) |#2| #1#) |#2| (-115) (-1198))) (-15 -4001 ((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-661 |#2|))) (-15 -4001 ((-3 |#2| #1#) |#2| (-115) (-305 |#2|) (-661 |#2|)))) (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1224) (-979))) (T -824)) -((-4001 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-661 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *1 (-824 *6 *2)))) (-4001 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-661 *2)) (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-5 *1 (-824 *6 *2)) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))))) (-4001 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1198)) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2222 (-661 *3))) *3 #1="failed")) (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1224) (-979))))) (-4001 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2222 (-661 *7))) *7 #1#)) (-5 *1 (-824 *6 *7)))) (-4001 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2222 (-661 (-1288 *7))))) (-5 *1 (-824 *6 *7)))) (-4001 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2222 (-661 (-1288 *7))))) (-5 *1 (-824 *6 *7)))) (-4001 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-709 *6)) (-5 *4 (-1198)) (-4 *6 (-13 (-29 *5) (-1224) (-979))) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-1288 *6))) (-5 *1 (-824 *5 *6)))) (-4001 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-709 *7)) (-5 *5 (-1198)) (-4 *7 (-13 (-29 *6) (-1224) (-979))) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2222 (-661 (-1288 *7))))) (-5 *1 (-824 *6 *7)) (-5 *4 (-1288 *7))))) -((-2882 (($) 9 T ELT)) (-2886 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-2884 (((-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-4037 (($ (-2 (|:| -4290 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-2885 (($ (-661 (-2 (|:| -4290 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2883 (((-1294)) 11 T ELT))) -(((-825) (-10 -8 (-15 -2882 ($)) (-15 -2883 ((-1294))) (-15 -2884 ((-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2885 ($ (-661 (-2 (|:| -4290 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4037 ($ (-2 (|:| -4290 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2886 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -825)) -((-2886 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-825)))) (-4037 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4290 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-825)))) (-2885 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4290 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2286 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-825)))) (-2884 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-825)))) (-2883 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-825)))) (-2882 (*1 *1) (-5 *1 (-825)))) -((-3890 ((|#2| |#2| (-1198)) 17 T ELT)) (-2887 ((|#2| |#2| (-1198)) 56 T ELT)) (-2888 (((-1 |#2| |#2|) (-1198)) 11 T ELT))) -(((-826 |#1| |#2|) (-10 -7 (-15 -3890 (|#2| |#2| (-1198))) (-15 -2887 (|#2| |#2| (-1198))) (-15 -2888 ((-1 |#2| |#2|) (-1198)))) (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149)) (-13 (-29 |#1|) (-1224) (-979))) (T -826)) -((-2888 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) (-4 *5 (-13 (-29 *4) (-1224) (-979))))) (-2887 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979))))) (-3890 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979)))))) -((-4001 (((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391) (-391)) 129 T ELT) (((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391)) 130 T ELT) (((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-661 (-391)) (-391)) 132 T ELT) (((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-391)) 134 T ELT) (((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-391)) 135 T ELT) (((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391))) 137 T ELT) (((-1056) (-830) (-1084)) 121 T ELT) (((-1056) (-830)) 122 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-830) (-1084)) 80 T ELT) (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-830)) 82 T ELT))) -(((-827) (-10 -7 (-15 -4001 ((-1056) (-830))) (-15 -4001 ((-1056) (-830) (-1084))) (-15 -4001 ((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)))) (-15 -4001 ((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-391))) (-15 -4001 ((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-391))) (-15 -4001 ((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-661 (-391)) (-391))) (-15 -4001 ((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391))) (-15 -4001 ((-1056) (-1288 (-326 (-391))) (-391) (-391) (-661 (-391)) (-326 (-391)) (-661 (-391)) (-391) (-391))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-830))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-830) (-1084))))) (T -827)) -((-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *1 (-827)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1288 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1288 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1288 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-830)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-827)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1056)) (-5 *1 (-827))))) -((-2889 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2222 (-661 |#4|))) (-675 |#4|) |#4|) 33 T ELT))) -(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2889 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2222 (-661 |#4|))) (-675 |#4|) |#4|))) (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558)))) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -828)) -((-2889 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2222 (-661 *4)))) (-5 *1 (-828 *5 *6 *7 *4))))) -((-4171 (((-2 (|:| -3684 |#3|) (|:| |rh| (-661 (-419 |#2|)))) |#4| (-661 (-419 |#2|))) 53 T ELT)) (-2891 (((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#4| |#2|) 62 T ELT) (((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#4|) 61 T ELT) (((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#3| |#2|) 20 T ELT) (((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#3|) 21 T ELT)) (-2892 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2890 ((|#2| |#3| (-661 (-419 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105 T ELT))) -(((-829 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2890 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2890 (|#2| |#3| (-661 (-419 |#2|)))) (-15 -2891 ((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#3|)) (-15 -2891 ((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#3| |#2|)) (-15 -2892 (|#2| |#3| |#1|)) (-15 -2891 ((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#4|)) (-15 -2891 ((-661 (-2 (|:| -4203 |#2|) (|:| -3644 |#2|))) |#4| |#2|)) (-15 -2892 (|#2| |#4| |#1|)) (-15 -4171 ((-2 (|:| -3684 |#3|) (|:| |rh| (-661 (-419 |#2|)))) |#4| (-661 (-419 |#2|))))) (-13 (-376) (-149) (-1059 (-419 (-558)))) (-1264 |#1|) (-678 |#2|) (-678 (-419 |#2|))) (T -829)) -((-4171 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-2 (|:| -3684 *7) (|:| |rh| (-661 (-419 *6))))) (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-661 (-419 *6))) (-4 *7 (-678 *6)) (-4 *3 (-678 (-419 *6))))) (-2892 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-829 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-678 *2)) (-4 *3 (-678 (-419 *2))))) (-2891 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *4 (-1264 *5)) (-5 *2 (-661 (-2 (|:| -4203 *4) (|:| -3644 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) (-4 *6 (-678 *4)) (-4 *3 (-678 (-419 *4))))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *2 (-661 (-2 (|:| -4203 *5) (|:| -3644 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 (-419 *5))))) (-2892 (*1 *2 *3 *4) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-829 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *5 (-678 (-419 *2))))) (-2891 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *4 (-1264 *5)) (-5 *2 (-661 (-2 (|:| -4203 *4) (|:| -3644 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) (-4 *3 (-678 *4)) (-4 *6 (-678 (-419 *4))))) (-2891 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *2 (-661 (-2 (|:| -4203 *5) (|:| -3644 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5))))) (-2890 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *6 (-678 (-419 *2))))) (-2890 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *6 (-678 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3574 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-830) (-13 (-1122) (-10 -8 (-15 -4376 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3574 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -830)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-830))))) -((-2900 (((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3684 |#3|))) |#3| (-1 (-661 |#2|) |#2| (-1192 |#2|)) (-1 (-417 |#2|) |#2|)) 156 T ELT)) (-2901 (((-661 (-2 (|:| |poly| |#2|) (|:| -3684 |#3|))) |#3| (-1 (-661 |#1|) |#2|)) 52 T ELT)) (-2894 (((-661 (-2 (|:| |deg| (-791)) (|:| -3684 |#2|))) |#3|) 123 T ELT)) (-2893 ((|#2| |#3|) 42 T ELT)) (-2895 (((-661 (-2 (|:| -4382 |#1|) (|:| -3684 |#3|))) |#3| (-1 (-661 |#1|) |#2|)) 100 T ELT)) (-2896 ((|#3| |#3| (-419 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) -(((-831 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2893 (|#2| |#3|)) (-15 -2894 ((-661 (-2 (|:| |deg| (-791)) (|:| -3684 |#2|))) |#3|)) (-15 -2895 ((-661 (-2 (|:| -4382 |#1|) (|:| -3684 |#3|))) |#3| (-1 (-661 |#1|) |#2|))) (-15 -2901 ((-661 (-2 (|:| |poly| |#2|) (|:| -3684 |#3|))) |#3| (-1 (-661 |#1|) |#2|))) (-15 -2900 ((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3684 |#3|))) |#3| (-1 (-661 |#2|) |#2| (-1192 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2896 (|#3| |#3| |#2|)) (-15 -2896 (|#3| |#3| (-419 |#2|)))) (-13 (-376) (-149) (-1059 (-419 (-558)))) (-1264 |#1|) (-678 |#2|) (-678 (-419 |#2|))) (T -831)) -((-2896 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-678 *5)) (-4 *6 (-678 *3)))) (-2896 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-1264 *4)) (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-678 *3)) (-4 *5 (-678 (-419 *3))))) (-2900 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-661 *7) *7 (-1192 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-5 *2 (-661 (-2 (|:| |frac| (-419 *7)) (|:| -3684 *3)))) (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-678 *7)) (-4 *8 (-678 (-419 *7))))) (-2901 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3684 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6))))) (-2895 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-2 (|:| -4382 *5) (|:| -3684 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6))))) (-2894 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -3684 *5)))) (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5))))) (-2893 (*1 *2 *3) (-12 (-4 *2 (-1264 *4)) (-5 *1 (-831 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) (-4 *5 (-678 (-419 *2)))))) -((-2897 (((-2 (|:| -2222 (-661 (-419 |#2|))) (|:| -1783 (-709 |#1|))) (-676 |#2| (-419 |#2|)) (-661 (-419 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2222 (-661 (-419 |#2|)))) (-676 |#2| (-419 |#2|)) (-419 |#2|)) 145 T ELT) (((-2 (|:| -2222 (-661 (-419 |#2|))) (|:| -1783 (-709 |#1|))) (-675 (-419 |#2|)) (-661 (-419 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2222 (-661 (-419 |#2|)))) (-675 (-419 |#2|)) (-419 |#2|)) 138 T ELT)) (-2898 ((|#2| (-676 |#2| (-419 |#2|))) 86 T ELT) ((|#2| (-675 (-419 |#2|))) 89 T ELT))) -(((-832 |#1| |#2|) (-10 -7 (-15 -2897 ((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2222 (-661 (-419 |#2|)))) (-675 (-419 |#2|)) (-419 |#2|))) (-15 -2897 ((-2 (|:| -2222 (-661 (-419 |#2|))) (|:| -1783 (-709 |#1|))) (-675 (-419 |#2|)) (-661 (-419 |#2|)))) (-15 -2897 ((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2222 (-661 (-419 |#2|)))) (-676 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2897 ((-2 (|:| -2222 (-661 (-419 |#2|))) (|:| -1783 (-709 |#1|))) (-676 |#2| (-419 |#2|)) (-661 (-419 |#2|)))) (-15 -2898 (|#2| (-675 (-419 |#2|)))) (-15 -2898 (|#2| (-676 |#2| (-419 |#2|))))) (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558)))) (-1264 |#1|)) (T -832)) -((-2898 (*1 *2 *3) (-12 (-5 *3 (-676 *2 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))))) (-2898 (*1 *2 *3) (-12 (-5 *3 (-675 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-832 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-2 (|:| -2222 (-661 (-419 *6))) (|:| -1783 (-709 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6))))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2222 (-661 *4)))) (-5 *1 (-832 *5 *6)))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-2 (|:| -2222 (-661 (-419 *6))) (|:| -1783 (-709 *5)))) (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6))))) (-2897 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2222 (-661 *4)))) (-5 *1 (-832 *5 *6))))) -((-2899 (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|) 49 T ELT))) -(((-833 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2899 ((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#1|))) |#5| |#4|))) (-376) (-678 |#1|) (-1264 |#1|) (-744 |#1| |#3|) (-678 |#4|)) (T -833)) -((-2899 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1264 *5)) (-4 *4 (-744 *5 *7)) (-5 *2 (-2 (|:| -1783 (-709 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 *4))))) -((-2900 (((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3684 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 47 T ELT)) (-2902 (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38 T ELT) (((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 39 T ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36 T ELT) (((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 37 T ELT)) (-2901 (((-661 (-2 (|:| |poly| |#2|) (|:| -3684 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|)) 96 T ELT))) -(((-834 |#1| |#2|) (-10 -7 (-15 -2902 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (-15 -2902 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2902 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (-15 -2902 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2900 ((-661 (-2 (|:| |frac| (-419 |#2|)) (|:| -3684 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2901 ((-661 (-2 (|:| |poly| |#2|) (|:| -3684 (-676 |#2| (-419 |#2|))))) (-676 |#2| (-419 |#2|)) (-1 (-661 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2902 ((-661 (-419 |#2|)) (-675 (-419 |#2|)))) (-15 -2902 ((-661 (-419 |#2|)) (-675 (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2902 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)))) (-15 -2902 ((-661 (-419 |#2|)) (-676 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558)))) (-1264 |#1|)) (T -834)) -((-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-676 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) (-2902 (*1 *2 *3) (-12 (-5 *3 (-675 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3684 (-676 *6 (-419 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6))))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-5 *2 (-661 (-2 (|:| |frac| (-419 *6)) (|:| -3684 (-676 *6 (-419 *6)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6))))) (-2902 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-676 *7 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *7 (-1264 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) (-2902 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *7 (-1264 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) (-2902 (*1 *2 *3 *4) (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6))))) -((-2903 (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#1|))) (-709 |#2|) (-1288 |#1|)) 110 T ELT) (((-2 (|:| A (-709 |#1|)) (|:| |eqs| (-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -3684 |#2|) (|:| |rh| |#1|))))) (-709 |#1|) (-1288 |#1|)) 15 T ELT)) (-2904 (((-2 (|:| |particular| (-3 (-1288 |#1|) #1="failed")) (|:| -2222 (-661 (-1288 |#1|)))) (-709 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2222 (-661 |#1|))) |#2| |#1|)) 116 T ELT)) (-4001 (((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2222 (-709 |#1|))) #1#) (-709 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2222 (-661 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) -(((-835 |#1| |#2|) (-10 -7 (-15 -2903 ((-2 (|:| A (-709 |#1|)) (|:| |eqs| (-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1288 |#1|)) (|:| -3684 |#2|) (|:| |rh| |#1|))))) (-709 |#1|) (-1288 |#1|))) (-15 -2903 ((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#1|))) (-709 |#2|) (-1288 |#1|))) (-15 -4001 ((-3 (-2 (|:| |particular| (-1288 |#1|)) (|:| -2222 (-709 |#1|))) #1="failed") (-709 |#1|) (-1288 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2222 (-661 |#1|))) #1#) |#2| |#1|))) (-15 -2904 ((-2 (|:| |particular| (-3 (-1288 |#1|) #1#)) (|:| -2222 (-661 (-1288 |#1|)))) (-709 |#2|) (-1288 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2222 (-661 |#1|))) |#2| |#1|)))) (-376) (-678 |#1|)) (T -835)) -((-2904 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2222 (-661 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1288 *6) "failed")) (|:| -2222 (-661 (-1288 *6))))) (-5 *1 (-835 *6 *7)) (-5 *4 (-1288 *6)))) (-4001 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2222 (-661 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-678 *6)) (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -2222 (-709 *6)))) (-5 *1 (-835 *6 *7)) (-5 *3 (-709 *6)) (-5 *4 (-1288 *6)))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-678 *5)) (-5 *2 (-2 (|:| -1783 (-709 *6)) (|:| |vec| (-1288 *5)))) (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *6)) (-5 *4 (-1288 *5)))) (-2903 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-709 *5)) (|:| |eqs| (-661 (-2 (|:| C (-709 *5)) (|:| |g| (-1288 *5)) (|:| -3684 *6) (|:| |rh| *5)))))) (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)) (-4 *6 (-678 *5))))) -((-2905 (((-709 |#1|) (-661 |#1|) (-791)) 14 T ELT) (((-709 |#1|) (-661 |#1|)) 15 T ELT)) (-2906 (((-3 (-1288 |#1|) #1="failed") |#2| |#1| (-661 |#1|)) 39 T ELT)) (-3760 (((-3 |#1| #1#) |#2| |#1| (-661 |#1|) (-1 |#1| |#1|)) 46 T ELT))) -(((-836 |#1| |#2|) (-10 -7 (-15 -2905 ((-709 |#1|) (-661 |#1|))) (-15 -2905 ((-709 |#1|) (-661 |#1|) (-791))) (-15 -2906 ((-3 (-1288 |#1|) #1="failed") |#2| |#1| (-661 |#1|))) (-15 -3760 ((-3 |#1| #1#) |#2| |#1| (-661 |#1|) (-1 |#1| |#1|)))) (-376) (-678 |#1|)) (T -836)) -((-3760 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-661 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-836 *2 *3)) (-4 *3 (-678 *2)))) (-2906 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-1288 *4)) (-5 *1 (-836 *4 *3)) (-4 *3 (-678 *4)))) (-2905 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-376)) (-5 *2 (-709 *5)) (-5 *1 (-836 *5 *6)) (-4 *6 (-678 *5)))) (-2905 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)) (-5 *1 (-836 *4 *5)) (-4 *5 (-678 *4))))) -((-2967 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3606 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4137 (($ (-938)) NIL (|has| |#2| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) NIL (|has| |#2| (-815)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3538 (((-791)) NIL (|has| |#2| (-381)) ELT)) (-4218 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1122)) ELT)) (-3574 (((-558) $) NIL (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) ((|#2| $) NIL (|has| |#2| (-1122)) ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-709 $)) NIL (|has| |#2| (-1070)) ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| |#2| (-1070)) ELT)) (-3395 (($) NIL (|has| |#2| (-381)) ELT)) (-1719 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ (-558)) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-815)) ELT)) (-3290 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL (|has| |#2| (-1070)) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-3007 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-2160 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#2| (-381)) ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#2| (-658 (-558))) (|has| |#2| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#2| (-1070)) ELT) (((-709 |#2|) (-1288 $)) NIL (|has| |#2| (-1070)) ELT)) (-3660 (((-1180) $) NIL (|has| |#2| (-1122)) ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-2631 (($ (-938)) NIL (|has| |#2| (-381)) ELT)) (-3661 (((-1141) $) NIL (|has| |#2| (-1122)) ELT)) (-4231 ((|#2| $) NIL (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4266 ((|#2| $ $) NIL (|has| |#2| (-1070)) ELT)) (-1600 (($ (-1288 |#2|)) NIL T ELT)) (-4341 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4188 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1288 |#2|) $) NIL T ELT) (($ (-558)) NIL (-3957 (-12 (|has| |#2| (-1059 (-558))) (|has| |#2| (-1122))) (|has| |#2| (-1070))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1059 (-419 (-558)))) (|has| |#2| (-1122))) ELT) (($ |#2|) NIL (|has| |#2| (-1122)) ELT) (((-877) $) NIL (|has| |#2| (-630 (-877))) ELT)) (-3528 (((-791)) NIL (|has| |#2| (-1070)) CONST)) (-1378 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3059 (($) NIL (|has| |#2| (-23)) CONST)) (-3065 (($) NIL (|has| |#2| (-1070)) CONST)) (-3070 (($ $ (-791)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#2| (-919 (-1198))) (|has| |#2| (-1070))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#2| (-1070)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3086 (((-114) $ $) 11 (|has| |#2| (-861)) ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4269 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#2| (-1070)) ELT) (($ $ (-938)) NIL (|has| |#2| (-1070)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1070)) ELT) (($ $ |#2|) NIL (|has| |#2| (-746)) ELT) (($ |#2| $) NIL (|has| |#2| (-746)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-791) $) NIL (|has| |#2| (-23)) ELT) (($ (-938) $) NIL (|has| |#2| (-25)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-837 |#1| |#2| |#3|) (-245 |#1| |#2|) (-791) (-815) (-1 (-114) (-1288 |#2|) (-1288 |#2|))) (T -837)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1620 (((-661 (-791)) $) NIL T ELT) (((-661 (-791)) $ (-1198)) NIL T ELT)) (-1654 (((-791) $) NIL T ELT) (((-791) $ (-1198)) NIL T ELT)) (-3484 (((-661 (-840 (-1198))) $) NIL T ELT)) (-3486 (((-1192 $) $ (-840 (-1198))) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-840 (-1198)))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-1616 (($ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-840 (-1198)) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL T ELT) (((-3 (-1146 |#1| (-1198)) #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-840 (-1198)) $) NIL T ELT) (((-1198) $) NIL T ELT) (((-1146 |#1| (-1198)) $) NIL T ELT)) (-4186 (($ $ $ (-840 (-1198))) NIL (|has| |#1| (-175)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-840 (-1198))) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-543 (-840 (-1198))) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-840 (-1198)) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-840 (-1198)) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-4202 (((-791) $ (-1198)) NIL T ELT) (((-791) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#1|) (-840 (-1198))) NIL T ELT) (($ (-1192 $) (-840 (-1198))) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-543 (-840 (-1198)))) NIL T ELT) (($ $ (-840 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1198))) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-840 (-1198))) NIL T ELT)) (-3221 (((-543 (-840 (-1198))) $) NIL T ELT) (((-791) $ (-840 (-1198))) NIL T ELT) (((-661 (-791)) $ (-661 (-840 (-1198)))) NIL T ELT)) (-1805 (($ (-1 (-543 (-840 (-1198))) (-543 (-840 (-1198)))) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1655 (((-1 $ (-791)) (-1198)) NIL T ELT) (((-1 $ (-791)) $) NIL (|has| |#1| (-240)) ELT)) (-3485 (((-3 (-840 (-1198)) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-1618 (((-840 (-1198)) $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1619 (((-114) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-840 (-1198))) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-840 (-1198)) |#1|) NIL T ELT) (($ $ (-661 (-840 (-1198))) (-661 |#1|)) NIL T ELT) (($ $ (-840 (-1198)) $) NIL T ELT) (($ $ (-661 (-840 (-1198))) (-661 $)) NIL T ELT) (($ $ (-1198) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1198)) (-661 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4187 (($ $ (-840 (-1198))) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-840 (-1198))) (-661 (-791))) NIL T ELT) (($ $ (-840 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1198)))) NIL T ELT) (($ $ (-840 (-1198))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-1621 (((-661 (-1198)) $) NIL T ELT)) (-4378 (((-543 (-840 (-1198))) $) NIL T ELT) (((-791) $ (-840 (-1198))) NIL T ELT) (((-661 (-791)) $ (-661 (-840 (-1198)))) NIL T ELT) (((-791) $ (-1198)) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-840 (-1198)) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-840 (-1198)) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-840 (-1198)) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-840 (-1198))) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1198))) NIL T ELT) (($ (-1198)) NIL T ELT) (($ (-1146 |#1| (-1198))) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-543 (-840 (-1198)))) NIL T ELT) (($ $ (-840 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1198))) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-840 (-1198))) (-661 (-791))) NIL T ELT) (($ $ (-840 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-840 (-1198)))) NIL T ELT) (($ $ (-840 (-1198))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-838 |#1|) (-13 (-262 |#1| (-1198) (-840 (-1198)) (-543 (-840 (-1198)))) (-1059 (-1146 |#1| (-1198)))) (-1070)) (T -838)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-2273 (($ $) NIL (|has| |#2| (-376)) ELT)) (-2271 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#2| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#2| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-2102 (($ (-661 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-1787 (((-791) $) NIL (|has| |#2| (-376)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4188 (($ $) 13 T ELT) (($ $ (-791)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT) (($ $ (-558)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-376)) ELT))) -(((-839 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1122) (-917 |#1|) |#1|) (T -839)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-1654 (((-791) $) NIL T ELT)) (-4261 ((|#1| $) 10 T ELT)) (-3575 (((-3 |#1| "failed") $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-4202 (((-791) $) 11 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-1655 (($ |#1| (-791)) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4188 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3070 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-840 |#1|) (-277 |#1|) (-861)) (T -840)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-4364 (((-661 |#1|) $) 38 T ELT)) (-3538 (((-791) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4369 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 28 T ELT)) (-3575 (((-3 |#1| #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-4229 (($ $) 42 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-1953 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2512 ((|#1| $ (-558)) NIL T ELT)) (-2513 (((-791) $ (-558)) NIL T ELT)) (-4366 (($ $) 54 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-2504 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2505 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4370 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 25 T ELT)) (-2907 (((-114) $ $) 51 T ELT)) (-4263 (((-791) $) 34 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1954 (($ $ $) NIL T ELT)) (-1955 (($ $ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 ((|#1| $) 41 T ELT)) (-1987 (((-661 (-2 (|:| |gen| |#1|) (|:| -4373 (-791)))) $) NIL T ELT)) (-3280 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2964 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 7 T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 53 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ |#1| (-791)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-841 |#1|) (-13 (-399 |#1|) (-859) (-10 -8 (-15 -4231 (|#1| $)) (-15 -4229 ($ $)) (-15 -4366 ($ $)) (-15 -2907 ((-114) $ $)) (-15 -4370 ((-3 $ #1="failed") $ |#1|)) (-15 -4369 ((-3 $ #1#) $ |#1|)) (-15 -2964 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -4263 ((-791) $)) (-15 -4364 ((-661 |#1|) $)))) (-861)) (T -841)) -((-4231 (*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) (-4229 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) (-4366 (*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) (-2907 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-861)))) (-4370 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) (-4369 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) (-2964 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) (-5 *1 (-841 *3)) (-4 *3 (-861)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-841 *3)) (-4 *3 (-861)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-841 *3)) (-4 *3 (-861))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4053 (((-558) $) 65 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3604 (((-114) $) 63 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3605 (((-114) $) 64 T ELT)) (-2930 (($ $ $) 57 T ELT)) (-3258 (($ $ $) 58 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3803 (($ $) 66 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 59 T ELT)) (-2966 (((-114) $ $) 61 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 60 T ELT)) (-3086 (((-114) $ $) 62 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-842) (-142)) (T -842)) -NIL -(-13 (-569) (-860)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2908 ((|#1| $) 10 T ELT)) (-2909 (($ |#1|) 9 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-791)) NIL T ELT)) (-3221 (((-791) $) NIL T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4188 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-791)) NIL (|has| |#1| (-240)) ELT)) (-4378 (((-791) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-4107 ((|#2| $ (-791)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-791)) NIL (|has| |#1| (-240)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-843 |#1| |#2|) (-13 (-728 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2909 ($ |#1|)) (-15 -2908 (|#1| $)))) (-728 |#2|) (-1070)) (T -843)) -((-2909 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-843 *2 *3)) (-4 *2 (-728 *3)))) (-2908 (*1 *2 *1) (-12 (-4 *2 (-728 *3)) (-5 *1 (-843 *2 *3)) (-4 *3 (-1070))))) -((-2967 (((-114) $ $) 19 T ELT)) (-3652 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3654 (($ $ $) 77 T ELT)) (-3653 (((-114) $ $) 78 T ELT)) (-3657 (($ (-661 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1713 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2594 (($ $) 66 T ELT)) (-1467 (($ $) 62 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ |#1| $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) 61 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) 69 T ELT)) (-2930 ((|#1| $) 83 T ELT)) (-3257 (($ $ $) 86 T ELT)) (-3938 (($ $ $) 85 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3258 ((|#1| $) 84 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 T ELT)) (-3656 (($ $ $) 74 T ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT) (($ |#1| $ (-791)) 67 T ELT)) (-3661 (((-1141) $) 21 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2593 (((-661 (-2 (|:| -2286 |#1|) (|:| -2157 (-791)))) $) 65 T ELT)) (-3655 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 |#1|)) 52 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 54 T ELT)) (-4376 (((-877) $) 17 T ELT)) (-3658 (($ (-661 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1378 (((-114) $ $) 20 T ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 T ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-844 |#1|) (-142) (-861)) (T -844)) -((-2930 (*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-861))))) -(-13 (-757 |t#1|) (-989 |t#1|) (-10 -8 (-15 -2930 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-630 (-877)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-715 |#1|) . T) ((-757 |#1|) . T) ((-989 |#1|) . T) ((-1120 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4053 (((-558) $) NIL (|has| |#1| (-860)) ELT)) (-4154 (($) NIL (|has| |#1| (-21)) CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 9 T ELT)) (-3887 (((-3 $ #1#) $) 42 (|has| |#1| (-860)) ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 52 (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) 46 (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) 49 (|has| |#1| (-557)) ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-2641 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2910 (($) 13 T ELT)) (-2923 (((-114) $) 12 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2924 (((-114) $) 11 T ELT)) (-4376 (((-877) $) 18 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) 8 T ELT) (($ (-558)) NIL (-3957 (|has| |#1| (-860)) (|has| |#1| (-1059 (-558)))) ELT)) (-3528 (((-791)) 36 (|has| |#1| (-860)) CONST)) (-1378 (((-114) $ $) 54 T ELT)) (-3803 (($ $) NIL (|has| |#1| (-860)) ELT)) (-3059 (($) 23 (|has| |#1| (-21)) CONST)) (-3065 (($) 33 (|has| |#1| (-860)) CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3454 (((-114) $ $) 21 T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3086 (((-114) $ $) 45 (|has| |#1| (-860)) ELT)) (-4267 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-938)) NIL (|has| |#1| (-860)) ELT) (($ $ (-791)) NIL (|has| |#1| (-860)) ELT)) (* (($ $ $) 39 (|has| |#1| (-860)) ELT) (($ (-558) $) 27 (|has| |#1| (-21)) ELT) (($ (-791) $) NIL (|has| |#1| (-21)) ELT) (($ (-938) $) NIL (|has| |#1| (-21)) ELT))) -(((-845 |#1|) (-13 (-1122) (-424 |#1|) (-10 -8 (-15 -2910 ($)) (-15 -2924 ((-114) $)) (-15 -2923 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) (-1122)) (T -845)) -((-2910 (*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1122)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-845 *3)) (-4 *3 (-1122)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-845 *3)) (-4 *3 (-1122)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1122))))) -((-4388 (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)) 12 T ELT) (((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|)) 13 T ELT))) -(((-846 |#1| |#2|) (-10 -7 (-15 -4388 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|))) (-15 -4388 ((-845 |#2|) (-1 |#2| |#1|) (-845 |#1|) (-845 |#2|)))) (-1122) (-1122)) (T -846)) -((-4388 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-846 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-845 *6)) (-5 *1 (-846 *5 *6))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-115) #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2912 ((|#1| (-115) |#1|) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2911 (($ |#1| (-374 (-115))) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2913 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2914 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4230 ((|#1| $ |#1|) NIL T ELT)) (-2915 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2916 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ (-115) (-558)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-847 |#1|) (-13 (-1070) (-1059 |#1|) (-1059 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2916 ($ $)) (-15 -2916 ($ $ $)) (-15 -2915 (|#1| |#1|))) |%noBranch|) (-15 -2914 ($ $ (-1 |#1| |#1|))) (-15 -2913 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2912 (|#1| (-115) |#1|)) (-15 -2911 ($ |#1| (-374 (-115)))))) (-1070)) (T -847)) -((-2916 (*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-175)) (-4 *2 (-1070)))) (-2916 (*1 *1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-175)) (-4 *2 (-1070)))) (-2915 (*1 *2 *2) (-12 (-5 *1 (-847 *2)) (-4 *2 (-175)) (-4 *2 (-1070)))) (-2914 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-847 *3)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-847 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-5 *1 (-847 *4)) (-4 *4 (-1070)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-847 *3)) (-4 *3 (-1070)))) (-2912 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-847 *2)) (-4 *2 (-1070)))) (-2911 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-847 *2)) (-4 *2 (-1070))))) -((-3032 (((-114) $ |#2|) 14 T ELT)) (-4376 (((-877) $) 11 T ELT))) -(((-848 |#1| |#2|) (-10 -7 (-15 -3032 ((-114) |#1| |#2|)) (-15 -4376 ((-877) |#1|))) (-849 |#2|) (-1122)) (T -848)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3970 ((|#1| $) 19 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3032 (((-114) $ |#1|) 17 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2917 (((-55) $) 18 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-849 |#1|) (-142) (-1122)) (T -849)) -((-3970 (*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1122)))) (-2917 (*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1122)) (-5 *2 (-55)))) (-3032 (*1 *2 *1 *3) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) -(-13 (-1122) (-10 -8 (-15 -3970 (|t#1| $)) (-15 -2917 ((-55) $)) (-15 -3032 ((-114) $ |t#1|)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2918 (((-217 (-514)) (-1180)) 9 T ELT))) -(((-850) (-10 -7 (-15 -2918 ((-217 (-514)) (-1180))))) (T -850)) -((-2918 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-217 (-514))) (-5 *1 (-850))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3737 (((-1136) $) 10 T ELT)) (-3970 (((-518) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3032 (((-114) $ (-518)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3950 (($ (-518) (-1136)) 8 T ELT)) (-4376 (((-877) $) 25 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2917 (((-55) $) 20 T ELT)) (-3454 (((-114) $ $) 12 T ELT))) -(((-851) (-13 (-849 (-518)) (-10 -8 (-15 -3737 ((-1136) $)) (-15 -3950 ($ (-518) (-1136)))))) (T -851)) -((-3737 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-851)))) (-3950 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-851))))) -((-2967 (((-114) $ $) 7 T ELT)) (-2919 (((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 18 T ELT) (((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 17 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 20 T ELT) (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 19 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-852) (-142)) (T -852)) -((-3069 (*1 *2 *3 *4) (-12 (-4 *1 (-852)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) (-3069 (*1 *2 *3 *4) (-12 (-4 *1 (-852)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) (-2919 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) (-5 *2 (-1056)))) (-2919 (*1 *2 *3) (-12 (-4 *1 (-852)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (-5 *2 (-1056))))) -(-13 (-1122) (-10 -7 (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229))))))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) (-15 -2919 ((-1056) (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) (-15 -2919 ((-1056) (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229))))))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2920 (((-1056) (-661 (-326 (-391))) (-661 (-391))) 164 T ELT) (((-1056) (-326 (-391)) (-661 (-391))) 162 T ELT) (((-1056) (-326 (-391)) (-661 (-391)) (-661 (-855 (-391))) (-661 (-855 (-391)))) 160 T ELT) (((-1056) (-326 (-391)) (-661 (-391)) (-661 (-855 (-391))) (-661 (-326 (-391))) (-661 (-855 (-391)))) 158 T ELT) (((-1056) (-854)) 125 T ELT) (((-1056) (-854) (-1084)) 124 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-854) (-1084)) 85 T ELT) (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-854)) 87 T ELT)) (-2921 (((-1056) (-661 (-326 (-391))) (-661 (-391))) 165 T ELT) (((-1056) (-854)) 148 T ELT))) -(((-853) (-10 -7 (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-854))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-854) (-1084))) (-15 -2920 ((-1056) (-854) (-1084))) (-15 -2920 ((-1056) (-854))) (-15 -2921 ((-1056) (-854))) (-15 -2920 ((-1056) (-326 (-391)) (-661 (-391)) (-661 (-855 (-391))) (-661 (-326 (-391))) (-661 (-855 (-391))))) (-15 -2920 ((-1056) (-326 (-391)) (-661 (-391)) (-661 (-855 (-391))) (-661 (-855 (-391))))) (-15 -2920 ((-1056) (-326 (-391)) (-661 (-391)))) (-15 -2920 ((-1056) (-661 (-326 (-391))) (-661 (-391)))) (-15 -2921 ((-1056) (-661 (-326 (-391))) (-661 (-391)))))) (T -853)) -((-2921 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2920 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *5 (-661 (-855 (-391)))) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2920 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-661 (-391))) (-5 *5 (-661 (-855 (-391)))) (-5 *6 (-661 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2921 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1056)) (-5 *1 (-853)))) (-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-853)))) (-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-854)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *1 (-853)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *1 (-853))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3574 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) $) 21 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-854) (-13 (-1122) (-10 -8 (-15 -4376 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229))))))) (-15 -4376 ($ (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) (-15 -4376 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))))) (-15 -3574 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229)))))) $))))) (T -854)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (-5 *1 (-854)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) (-5 *1 (-854)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) (-5 *1 (-854)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) (|:| |ub| (-661 (-855 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) (-5 *1 (-854))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-2922 (((-1141) $) 31 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4053 (((-558) $) NIL (|has| |#1| (-860)) ELT)) (-4154 (($) NIL (|has| |#1| (-21)) CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 9 T ELT)) (-3887 (((-3 $ #1#) $) 57 (|has| |#1| (-860)) ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 65 (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) 60 (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) 63 (|has| |#1| (-557)) ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-2926 (($) 14 T ELT)) (-2641 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-2925 (($) 16 T ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2923 (((-114) $) 12 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2924 (((-114) $) 11 T ELT)) (-4376 (((-877) $) 24 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) 8 T ELT) (($ (-558)) NIL (-3957 (|has| |#1| (-860)) (|has| |#1| (-1059 (-558)))) ELT)) (-3528 (((-791)) 50 (|has| |#1| (-860)) CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| |#1| (-860)) ELT)) (-3059 (($) 37 (|has| |#1| (-21)) CONST)) (-3065 (($) 47 (|has| |#1| (-860)) CONST)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3454 (((-114) $ $) 35 T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3086 (((-114) $ $) 59 (|has| |#1| (-860)) ELT)) (-4267 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-938)) NIL (|has| |#1| (-860)) ELT) (($ $ (-791)) NIL (|has| |#1| (-860)) ELT)) (* (($ $ $) 54 (|has| |#1| (-860)) ELT) (($ (-558) $) 41 (|has| |#1| (-21)) ELT) (($ (-791) $) NIL (|has| |#1| (-21)) ELT) (($ (-938) $) NIL (|has| |#1| (-21)) ELT))) -(((-855 |#1|) (-13 (-1122) (-424 |#1|) (-10 -8 (-15 -2926 ($)) (-15 -2925 ($)) (-15 -2924 ((-114) $)) (-15 -2923 ((-114) $)) (-15 -2922 ((-1141) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) (-1122)) (T -855)) -((-2926 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1122)))) (-2925 (*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1122)))) (-2924 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-855 *3)) (-4 *3 (-1122)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-855 *3)) (-4 *3 (-1122)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1122)))) (-3424 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) (-3425 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1122))))) -((-4388 (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)) 13 T ELT) (((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|)) 14 T ELT))) -(((-856 |#1| |#2|) (-10 -7 (-15 -4388 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|))) (-15 -4388 ((-855 |#2|) (-1 |#2| |#1|) (-855 |#1|) (-855 |#2|) (-855 |#2|)))) (-1122) (-1122)) (T -856)) -((-4388 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *1 (-856 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-855 *6)) (-5 *1 (-856 *5 *6))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3538 (((-791)) 27 T ELT)) (-3395 (($) 30 T ELT)) (-2930 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-3258 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2220 (((-938) $) 29 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2631 (($ (-938)) 28 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT))) -(((-857) (-142)) (T -857)) -((-2930 (*1 *1) (-4 *1 (-857))) (-3258 (*1 *1) (-4 *1 (-857)))) -(-13 (-861) (-381) (-10 -8 (-15 -2930 ($) -4382) (-15 -3258 ($) -4382))) -(((-102) . T) ((-630 (-877)) . T) ((-381) . T) ((-861) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-2928 (((-114) (-1288 |#2|) (-1288 |#2|)) 19 T ELT)) (-2929 (((-114) (-1288 |#2|) (-1288 |#2|)) 20 T ELT)) (-2927 (((-114) (-1288 |#2|) (-1288 |#2|)) 16 T ELT))) -(((-858 |#1| |#2|) (-10 -7 (-15 -2927 ((-114) (-1288 |#2|) (-1288 |#2|))) (-15 -2928 ((-114) (-1288 |#2|) (-1288 |#2|))) (-15 -2929 ((-114) (-1288 |#2|) (-1288 |#2|)))) (-791) (-814)) (T -858)) -((-2929 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-858 *4 *5)) (-14 *4 (-791)))) (-2928 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-858 *4 *5)) (-14 *4 (-791)))) (-2927 (*1 *2 *3 *3) (-12 (-5 *3 (-1288 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-858 *4 *5)) (-14 *4 (-791))))) -((-2967 (((-114) $ $) 7 T ELT)) (-4154 (($) 29 T CONST)) (-3887 (((-3 $ "failed") $) 32 T ELT)) (-2641 (((-114) $) 30 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3065 (($) 28 T CONST)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (** (($ $ (-938)) 26 T ELT) (($ $ (-791)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +NIL +(-13 (-860) (-25)) +(((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-3605 (((-114) $) 42 T ELT)) (-3574 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 45 T ELT)) (-3573 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 43 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 78 T ELT)) (-3423 (((-114) $) 72 T ELT)) (-3422 (((-419 (-558)) $) 76 T ELT)) (-3533 ((|#2| $) 26 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 23 T ELT)) (-2873 (($ $) 58 T ELT)) (-4401 (((-547) $) 67 T ELT)) (-3409 (($ $) 21 T ELT)) (-4375 (((-876) $) 53 T ELT) (($ (-558)) 40 T ELT) (($ |#2|) 38 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3527 (((-790)) 10 T ELT)) (-3802 ((|#2| $) 71 T ELT)) (-3453 (((-114) $ $) 30 T ELT)) (-3085 (((-114) $ $) 69 T ELT)) (-4266 (($ $) 32 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 31 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 33 T ELT))) +(((-816 |#1| |#2|) (-10 -7 (-15 -3085 ((-114) |#1| |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -2873 (|#1| |#1|)) (-15 -3424 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3422 ((-419 (-558)) |#1|)) (-15 -3423 ((-114) |#1|)) (-15 -3802 (|#2| |#1|)) (-15 -3533 (|#2| |#1|)) (-15 -3409 (|#1| |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3527 ((-790))) (-15 -4375 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4268 (|#1| |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-817 |#2|) (-175)) (T -816)) +((-3527 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-790)) (-5 *1 (-816 *3 *4)) (-4 *3 (-817 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3537 (((-790)) 64 (|has| |#1| (-381)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 106 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 100 T ELT)) (-3573 (((-558) $) 105 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 102 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 101 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4072 ((|#1| $) 90 T ELT)) (-3424 (((-3 (-419 (-558)) "failed") $) 77 (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) 79 (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) 78 (|has| |#1| (-557)) ELT)) (-3394 (($) 67 (|has| |#1| (-381)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-2878 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 81 T ELT)) (-3533 ((|#1| $) 82 T ELT)) (-2929 (($ $ $) 68 (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) 69 (|has| |#1| (-860)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 92 T ELT)) (-2219 (((-937) $) 66 (|has| |#1| (-381)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 76 (|has| |#1| (-376)) ELT)) (-2630 (($ (-937)) 65 (|has| |#1| (-381)) ELT)) (-2875 ((|#1| $) 87 T ELT)) (-2876 ((|#1| $) 88 T ELT)) (-2877 ((|#1| $) 89 T ELT)) (-3406 ((|#1| $) 83 T ELT)) (-3407 ((|#1| $) 84 T ELT)) (-3408 ((|#1| $) 85 T ELT)) (-2874 ((|#1| $) 86 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) 98 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 97 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 96 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 95 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 94 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) 93 (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-4229 (($ $ |#1|) 99 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4401 (((-547) $) 74 (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $) 91 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 104 (|has| |#1| (-1058 (-419 (-558)))) ELT)) (-3102 (((-710 $) $) 75 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3802 ((|#1| $) 80 (|has| |#1| (-1080)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 70 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 72 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 71 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 73 (|has| |#1| (-860)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT))) +(((-817 |#1|) (-142) (-175)) (T -817)) +((-3409 (*1 *1 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-2877 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-2876 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-2875 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-2874 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-2878 (*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-817 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-817 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-2873 (*1 *1 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-351 |t#1|) (-10 -8 (-15 -3409 ($ $)) (-15 -4072 (|t#1| $)) (-15 -2877 (|t#1| $)) (-15 -2876 (|t#1| $)) (-15 -2875 (|t#1| $)) (-15 -2874 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3406 (|t#1| $)) (-15 -3533 (|t#1| $)) (-15 -2878 ($ |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1| |t#1|)) (IF (|has| |t#1| (-381)) (-6 (-381)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -3802 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $))) |%noBranch|) (IF (|has| |t#1| (-376)) (-15 -2873 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-381) |has| |#1| (-381)) ((-351 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-745) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 31 T ELT)) (-1425 (((-3 $ "failed") $ $) 34 T ELT)) (-4153 (($) 30 T CONST)) (-3603 (((-114) $) 28 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 29 T CONST)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-4268 (($ $ $) 25 T ELT)) (* (($ (-937) $) 26 T ELT) (($ (-790) $) 32 T ELT))) +(((-818) (-142)) (T -818)) +NIL +(-13 (-813) (-133)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-813) . T) ((-815) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-1016 |#1|) #1#) $) 35 T ELT) (((-3 (-558) #1#) $) NIL (-3956 (|has| (-1016 |#1|) (-1058 (-558))) (|has| |#1| (-1058 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-3956 (|has| (-1016 |#1|) (-1058 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3573 ((|#1| $) NIL T ELT) (((-1016 |#1|) $) 33 T ELT) (((-558) $) NIL (-3956 (|has| (-1016 |#1|) (-1058 (-558))) (|has| |#1| (-1058 (-558)))) ELT) (((-419 (-558)) $) NIL (-3956 (|has| (-1016 |#1|) (-1058 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4072 ((|#1| $) 16 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3394 (($) NIL (|has| |#1| (-381)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2878 (($ |#1| |#1| |#1| |#1| |#1| |#1| |#1| |#1|) 28 T ELT) (($ (-1016 |#1|) (-1016 |#1|)) 29 T ELT)) (-3533 ((|#1| $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-2875 ((|#1| $) 22 T ELT)) (-2876 ((|#1| $) 20 T ELT)) (-2877 ((|#1| $) 18 T ELT)) (-3406 ((|#1| $) 26 T ELT)) (-3407 ((|#1| $) 25 T ELT)) (-3408 ((|#1| $) 24 T ELT)) (-2874 ((|#1| $) 23 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-4229 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1016 |#1|)) 30 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| (-1016 |#1|) (-1058 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| |#1| (-1080)) ELT)) (-3058 (($) 8 T CONST)) (-3064 (($) 12 T CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 40 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-819 |#1|) (-13 (-817 |#1|) (-424 (-1016 |#1|)) (-10 -8 (-15 -2878 ($ (-1016 |#1|) (-1016 |#1|))))) (-175)) (T -819)) +((-2878 (*1 *1 *2 *2) (-12 (-5 *2 (-1016 *3)) (-4 *3 (-175)) (-5 *1 (-819 *3))))) +((-4387 ((|#3| (-1 |#4| |#2|) |#1|) 20 T ELT))) +(((-820 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#3| (-1 |#4| |#2|) |#1|))) (-817 |#2|) (-175) (-817 |#4|) (-175)) (T -820)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-817 *6)) (-5 *1 (-820 *4 *5 *2 *6)) (-4 *4 (-817 *5))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 18 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2879 (((-1055) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 17 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-821) (-142)) (T -821)) +((-3068 (*1 *2 *3 *4) (-12 (-4 *1 (-821)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) (-2879 (*1 *2 *3) (-12 (-4 *1 (-821)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-1055))))) +(-13 (-1121) (-10 -7 (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -2879 ((-1055) (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2880 (((-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) |#3| |#2| (-1197)) 19 T ELT))) +(((-822 |#1| |#2| |#3|) (-10 -7 (-15 -2880 ((-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) |#3| |#2| (-1197)))) (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149)) (-13 (-29 |#1|) (-1223) (-978)) (-677 |#2|)) (T -822)) +((-2880 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-1197)) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-4 *4 (-13 (-29 *6) (-1223) (-978))) (-5 *2 (-2 (|:| |particular| *4) (|:| -2221 (-660 *4)))) (-5 *1 (-822 *6 *4 *3)) (-4 *3 (-677 *4))))) +((-4000 (((-3 |#2| #1="failed") |#2| (-115) (-305 |#2|) (-660 |#2|)) 28 T ELT) (((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|)) 29 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) |#2| #1#) |#2| (-115) (-1197)) 17 T ELT) (((-3 (-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) |#2| #1#) (-305 |#2|) (-115) (-1197)) 18 T ELT) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -2221 (-660 (-1287 |#2|)))) #1#) (-660 |#2|) (-660 (-115)) (-1197)) 24 T ELT) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -2221 (-660 (-1287 |#2|)))) #1#) (-660 (-305 |#2|)) (-660 (-115)) (-1197)) 26 T ELT) (((-3 (-660 (-1287 |#2|)) #1#) (-708 |#2|) (-1197)) 37 T ELT) (((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -2221 (-660 (-1287 |#2|)))) #1#) (-708 |#2|) (-1287 |#2|) (-1197)) 35 T ELT))) +(((-823 |#1| |#2|) (-10 -7 (-15 -4000 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -2221 (-660 (-1287 |#2|)))) #1="failed") (-708 |#2|) (-1287 |#2|) (-1197))) (-15 -4000 ((-3 (-660 (-1287 |#2|)) #1#) (-708 |#2|) (-1197))) (-15 -4000 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -2221 (-660 (-1287 |#2|)))) #1#) (-660 (-305 |#2|)) (-660 (-115)) (-1197))) (-15 -4000 ((-3 (-2 (|:| |particular| (-1287 |#2|)) (|:| -2221 (-660 (-1287 |#2|)))) #1#) (-660 |#2|) (-660 (-115)) (-1197))) (-15 -4000 ((-3 (-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) |#2| #1#) (-305 |#2|) (-115) (-1197))) (-15 -4000 ((-3 (-2 (|:| |particular| |#2|) (|:| -2221 (-660 |#2|))) |#2| #1#) |#2| (-115) (-1197))) (-15 -4000 ((-3 |#2| #1#) (-305 |#2|) (-115) (-305 |#2|) (-660 |#2|))) (-15 -4000 ((-3 |#2| #1#) |#2| (-115) (-305 |#2|) (-660 |#2|)))) (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149)) (-13 (-29 |#1|) (-1223) (-978))) (T -823)) +((-4000 (*1 *2 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *1 (-823 *6 *2)))) (-4000 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-660 *2)) (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-823 *6 *2)) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))))) (-4000 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2221 (-660 *3))) *3 #1="failed")) (-5 *1 (-823 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) (-4000 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2221 (-660 *7))) *7 #1#)) (-5 *1 (-823 *6 *7)))) (-4000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -2221 (-660 (-1287 *7))))) (-5 *1 (-823 *6 *7)))) (-4000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -2221 (-660 (-1287 *7))))) (-5 *1 (-823 *6 *7)))) (-4000 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-708 *6)) (-5 *4 (-1197)) (-4 *6 (-13 (-29 *5) (-1223) (-978))) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-660 (-1287 *6))) (-5 *1 (-823 *5 *6)))) (-4000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *3 (-708 *7)) (-5 *5 (-1197)) (-4 *7 (-13 (-29 *6) (-1223) (-978))) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -2221 (-660 (-1287 *7))))) (-5 *1 (-823 *6 *7)) (-5 *4 (-1287 *7))))) +((-2881 (($) 9 T ELT)) (-2885 (((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 30 T ELT)) (-2883 (((-660 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $) 27 T ELT)) (-4036 (($ (-2 (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) 24 T ELT)) (-2884 (($ (-660 (-2 (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) 22 T ELT)) (-2882 (((-1293)) 11 T ELT))) +(((-824) (-10 -8 (-15 -2881 ($)) (-15 -2882 ((-1293))) (-15 -2883 ((-660 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) $)) (-15 -2884 ($ (-660 (-2 (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))))) (-15 -4036 ($ (-2 (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-15 -2885 ((-3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))) "failed") (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) (T -824)) +((-2885 (*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) (-5 *1 (-824)))) (-4036 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) (-5 *1 (-824)))) (-2884 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) (-5 *1 (-824)))) (-2883 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-824)))) (-2882 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-824)))) (-2881 (*1 *1) (-5 *1 (-824)))) +((-3889 ((|#2| |#2| (-1197)) 17 T ELT)) (-2886 ((|#2| |#2| (-1197)) 56 T ELT)) (-2887 (((-1 |#2| |#2|) (-1197)) 11 T ELT))) +(((-825 |#1| |#2|) (-10 -7 (-15 -3889 (|#2| |#2| (-1197))) (-15 -2886 (|#2| |#2| (-1197))) (-15 -2887 ((-1 |#2| |#2|) (-1197)))) (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149)) (-13 (-29 |#1|) (-1223) (-978))) (T -825)) +((-2887 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-1 *5 *5)) (-5 *1 (-825 *4 *5)) (-4 *5 (-13 (-29 *4) (-1223) (-978))))) (-2886 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) (-3889 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) +((-4000 (((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-326 (-391)) (-660 (-391)) (-391) (-391)) 129 T ELT) (((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-326 (-391)) (-660 (-391)) (-391)) 130 T ELT) (((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391)) 132 T ELT) (((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-326 (-391)) (-391)) 134 T ELT) (((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-391)) 135 T ELT) (((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391))) 137 T ELT) (((-1055) (-829) (-1083)) 121 T ELT) (((-1055) (-829)) 122 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-829) (-1083)) 80 T ELT) (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-829)) 82 T ELT))) +(((-826) (-10 -7 (-15 -4000 ((-1055) (-829))) (-15 -4000 ((-1055) (-829) (-1083))) (-15 -4000 ((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)))) (-15 -4000 ((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-391))) (-15 -4000 ((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-326 (-391)) (-391))) (-15 -4000 ((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-660 (-391)) (-391))) (-15 -4000 ((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-326 (-391)) (-660 (-391)) (-391))) (-15 -4000 ((-1055) (-1287 (-326 (-391))) (-391) (-391) (-660 (-391)) (-326 (-391)) (-660 (-391)) (-391) (-391))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-829))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-829) (-1083))))) (T -826)) +((-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *1 (-826)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4 *4 *5 *6 *5 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4 *4 *5 *5 *4) (-12 (-5 *3 (-1287 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4 *4 *5 *6 *4) (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-326 (-391))) (-5 *4 (-391)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4 *4 *5 *4) (-12 (-5 *3 (-1287 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4 *4 *5) (-12 (-5 *3 (-1287 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-829)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-826)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1055)) (-5 *1 (-826))))) +((-2888 (((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2221 (-660 |#4|))) (-674 |#4|) |#4|) 33 T ELT))) +(((-827 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2888 ((-2 (|:| |particular| (-3 |#4| "failed")) (|:| -2221 (-660 |#4|))) (-674 |#4|) |#4|))) (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558)))) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|)) (T -827)) +((-2888 (*1 *2 *3 *4) (-12 (-5 *3 (-674 *4)) (-4 *4 (-355 *5 *6 *7)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2221 (-660 *4)))) (-5 *1 (-827 *5 *6 *7 *4))))) +((-4170 (((-2 (|:| -3683 |#3|) (|:| |rh| (-660 (-419 |#2|)))) |#4| (-660 (-419 |#2|))) 53 T ELT)) (-2890 (((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#4| |#2|) 62 T ELT) (((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#4|) 61 T ELT) (((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#3| |#2|) 20 T ELT) (((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#3|) 21 T ELT)) (-2891 ((|#2| |#4| |#1|) 63 T ELT) ((|#2| |#3| |#1|) 28 T ELT)) (-2889 ((|#2| |#3| (-660 (-419 |#2|))) 109 T ELT) (((-3 |#2| "failed") |#3| (-419 |#2|)) 105 T ELT))) +(((-828 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2889 ((-3 |#2| "failed") |#3| (-419 |#2|))) (-15 -2889 (|#2| |#3| (-660 (-419 |#2|)))) (-15 -2890 ((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#3|)) (-15 -2890 ((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#3| |#2|)) (-15 -2891 (|#2| |#3| |#1|)) (-15 -2890 ((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#4|)) (-15 -2890 ((-660 (-2 (|:| -4202 |#2|) (|:| -3643 |#2|))) |#4| |#2|)) (-15 -2891 (|#2| |#4| |#1|)) (-15 -4170 ((-2 (|:| -3683 |#3|) (|:| |rh| (-660 (-419 |#2|)))) |#4| (-660 (-419 |#2|))))) (-13 (-376) (-149) (-1058 (-419 (-558)))) (-1263 |#1|) (-677 |#2|) (-677 (-419 |#2|))) (T -828)) +((-4170 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-2 (|:| -3683 *7) (|:| |rh| (-660 (-419 *6))))) (-5 *1 (-828 *5 *6 *7 *3)) (-5 *4 (-660 (-419 *6))) (-4 *7 (-677 *6)) (-4 *3 (-677 (-419 *6))))) (-2891 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-828 *4 *2 *5 *3)) (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-677 *2)) (-4 *3 (-677 (-419 *2))))) (-2890 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *4 (-1263 *5)) (-5 *2 (-660 (-2 (|:| -4202 *4) (|:| -3643 *4)))) (-5 *1 (-828 *5 *4 *6 *3)) (-4 *6 (-677 *4)) (-4 *3 (-677 (-419 *4))))) (-2890 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *2 (-660 (-2 (|:| -4202 *5) (|:| -3643 *5)))) (-5 *1 (-828 *4 *5 *6 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 (-419 *5))))) (-2891 (*1 *2 *3 *4) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-828 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) (-4 *5 (-677 (-419 *2))))) (-2890 (*1 *2 *3 *4) (-12 (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *4 (-1263 *5)) (-5 *2 (-660 (-2 (|:| -4202 *4) (|:| -3643 *4)))) (-5 *1 (-828 *5 *4 *3 *6)) (-4 *3 (-677 *4)) (-4 *6 (-677 (-419 *4))))) (-2890 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *2 (-660 (-2 (|:| -4202 *5) (|:| -3643 *5)))) (-5 *1 (-828 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-419 *5))))) (-2889 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) (-4 *6 (-677 (-419 *2))))) (-2889 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) (-4 *6 (-677 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3573 (((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 15 T ELT) (($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-829) (-13 (-1121) (-10 -8 (-15 -4375 ($ (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-15 -3573 ((-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))) $))))) (T -829)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-829)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *1 (-829))))) +((-2899 (((-660 (-2 (|:| |frac| (-419 |#2|)) (|:| -3683 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1191 |#2|)) (-1 (-417 |#2|) |#2|)) 156 T ELT)) (-2900 (((-660 (-2 (|:| |poly| |#2|) (|:| -3683 |#3|))) |#3| (-1 (-660 |#1|) |#2|)) 52 T ELT)) (-2893 (((-660 (-2 (|:| |deg| (-790)) (|:| -3683 |#2|))) |#3|) 123 T ELT)) (-2892 ((|#2| |#3|) 42 T ELT)) (-2894 (((-660 (-2 (|:| -4381 |#1|) (|:| -3683 |#3|))) |#3| (-1 (-660 |#1|) |#2|)) 100 T ELT)) (-2895 ((|#3| |#3| (-419 |#2|)) 71 T ELT) ((|#3| |#3| |#2|) 97 T ELT))) +(((-830 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -2892 (|#2| |#3|)) (-15 -2893 ((-660 (-2 (|:| |deg| (-790)) (|:| -3683 |#2|))) |#3|)) (-15 -2894 ((-660 (-2 (|:| -4381 |#1|) (|:| -3683 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -2900 ((-660 (-2 (|:| |poly| |#2|) (|:| -3683 |#3|))) |#3| (-1 (-660 |#1|) |#2|))) (-15 -2899 ((-660 (-2 (|:| |frac| (-419 |#2|)) (|:| -3683 |#3|))) |#3| (-1 (-660 |#2|) |#2| (-1191 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2895 (|#3| |#3| |#2|)) (-15 -2895 (|#3| |#3| (-419 |#2|)))) (-13 (-376) (-149) (-1058 (-419 (-558)))) (-1263 |#1|) (-677 |#2|) (-677 (-419 |#2|))) (T -830)) +((-2895 (*1 *2 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *1 (-830 *4 *5 *2 *6)) (-4 *2 (-677 *5)) (-4 *6 (-677 *3)))) (-2895 (*1 *2 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-1263 *4)) (-5 *1 (-830 *4 *3 *2 *5)) (-4 *2 (-677 *3)) (-4 *5 (-677 (-419 *3))))) (-2899 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 (-660 *7) *7 (-1191 *7))) (-5 *5 (-1 (-417 *7) *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-5 *2 (-660 (-2 (|:| |frac| (-419 *7)) (|:| -3683 *3)))) (-5 *1 (-830 *6 *7 *3 *8)) (-4 *3 (-677 *7)) (-4 *8 (-677 (-419 *7))))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3683 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-419 *6))))) (-2894 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-2 (|:| -4381 *5) (|:| -3683 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-419 *6))))) (-2893 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) (-5 *2 (-660 (-2 (|:| |deg| (-790)) (|:| -3683 *5)))) (-5 *1 (-830 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-419 *5))))) (-2892 (*1 *2 *3) (-12 (-4 *2 (-1263 *4)) (-5 *1 (-830 *4 *2 *3 *5)) (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) (-4 *5 (-677 (-419 *2)))))) +((-2896 (((-2 (|:| -2221 (-660 (-419 |#2|))) (|:| -1782 (-708 |#1|))) (-675 |#2| (-419 |#2|)) (-660 (-419 |#2|))) 146 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2221 (-660 (-419 |#2|)))) (-675 |#2| (-419 |#2|)) (-419 |#2|)) 145 T ELT) (((-2 (|:| -2221 (-660 (-419 |#2|))) (|:| -1782 (-708 |#1|))) (-674 (-419 |#2|)) (-660 (-419 |#2|))) 140 T ELT) (((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2221 (-660 (-419 |#2|)))) (-674 (-419 |#2|)) (-419 |#2|)) 138 T ELT)) (-2897 ((|#2| (-675 |#2| (-419 |#2|))) 86 T ELT) ((|#2| (-674 (-419 |#2|))) 89 T ELT))) +(((-831 |#1| |#2|) (-10 -7 (-15 -2896 ((-2 (|:| |particular| (-3 (-419 |#2|) #1="failed")) (|:| -2221 (-660 (-419 |#2|)))) (-674 (-419 |#2|)) (-419 |#2|))) (-15 -2896 ((-2 (|:| -2221 (-660 (-419 |#2|))) (|:| -1782 (-708 |#1|))) (-674 (-419 |#2|)) (-660 (-419 |#2|)))) (-15 -2896 ((-2 (|:| |particular| (-3 (-419 |#2|) #1#)) (|:| -2221 (-660 (-419 |#2|)))) (-675 |#2| (-419 |#2|)) (-419 |#2|))) (-15 -2896 ((-2 (|:| -2221 (-660 (-419 |#2|))) (|:| -1782 (-708 |#1|))) (-675 |#2| (-419 |#2|)) (-660 (-419 |#2|)))) (-15 -2897 (|#2| (-674 (-419 |#2|)))) (-15 -2897 (|#2| (-675 |#2| (-419 |#2|))))) (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558)))) (-1263 |#1|)) (T -831)) +((-2897 (*1 *2 *3) (-12 (-5 *3 (-675 *2 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-831 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))))) (-2897 (*1 *2 *3) (-12 (-5 *3 (-674 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-831 *4 *2)) (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-2 (|:| -2221 (-660 (-419 *6))) (|:| -1782 (-708 *5)))) (-5 *1 (-831 *5 *6)) (-5 *4 (-660 (-419 *6))))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2221 (-660 *4)))) (-5 *1 (-831 *5 *6)))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-419 *6))) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-2 (|:| -2221 (-660 (-419 *6))) (|:| -1782 (-708 *5)))) (-5 *1 (-831 *5 *6)) (-5 *4 (-660 (-419 *6))))) (-2896 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2221 (-660 *4)))) (-5 *1 (-831 *5 *6))))) +((-2898 (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|) 49 T ELT))) +(((-832 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -2898 ((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#1|))) |#5| |#4|))) (-376) (-677 |#1|) (-1263 |#1|) (-743 |#1| |#3|) (-677 |#4|)) (T -832)) +((-2898 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *7 (-1263 *5)) (-4 *4 (-743 *5 *7)) (-5 *2 (-2 (|:| -1782 (-708 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-832 *5 *6 *7 *4 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 *4))))) +((-2899 (((-660 (-2 (|:| |frac| (-419 |#2|)) (|:| -3683 (-675 |#2| (-419 |#2|))))) (-675 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 47 T ELT)) (-2901 (((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 167 (|has| |#1| (-27)) ELT) (((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|))) 164 (|has| |#1| (-27)) ELT) (((-660 (-419 |#2|)) (-674 (-419 |#2|)) (-1 (-417 |#2|) |#2|)) 168 (|has| |#1| (-27)) ELT) (((-660 (-419 |#2|)) (-674 (-419 |#2|))) 166 (|has| |#1| (-27)) ELT) (((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 38 T ELT) (((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)) (-1 (-660 |#1|) |#2|)) 39 T ELT) (((-660 (-419 |#2|)) (-674 (-419 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-417 |#2|) |#2|)) 36 T ELT) (((-660 (-419 |#2|)) (-674 (-419 |#2|)) (-1 (-660 |#1|) |#2|)) 37 T ELT)) (-2900 (((-660 (-2 (|:| |poly| |#2|) (|:| -3683 (-675 |#2| (-419 |#2|))))) (-675 |#2| (-419 |#2|)) (-1 (-660 |#1|) |#2|)) 96 T ELT))) +(((-833 |#1| |#2|) (-10 -7 (-15 -2901 ((-660 (-419 |#2|)) (-674 (-419 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -2901 ((-660 (-419 |#2|)) (-674 (-419 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2901 ((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)) (-1 (-660 |#1|) |#2|))) (-15 -2901 ((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)) (-1 (-660 |#1|) |#2|) (-1 (-417 |#2|) |#2|))) (-15 -2899 ((-660 (-2 (|:| |frac| (-419 |#2|)) (|:| -3683 (-675 |#2| (-419 |#2|))))) (-675 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2900 ((-660 (-2 (|:| |poly| |#2|) (|:| -3683 (-675 |#2| (-419 |#2|))))) (-675 |#2| (-419 |#2|)) (-1 (-660 |#1|) |#2|))) (IF (|has| |#1| (-27)) (PROGN (-15 -2901 ((-660 (-419 |#2|)) (-674 (-419 |#2|)))) (-15 -2901 ((-660 (-419 |#2|)) (-674 (-419 |#2|)) (-1 (-417 |#2|) |#2|))) (-15 -2901 ((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)))) (-15 -2901 ((-660 (-419 |#2|)) (-675 |#2| (-419 |#2|)) (-1 (-417 |#2|) |#2|)))) |%noBranch|)) (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558)))) (-1263 |#1|)) (T -833)) +((-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-675 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-660 (-419 *5))) (-5 *1 (-833 *4 *5)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6)))) (-2901 (*1 *2 *3) (-12 (-5 *3 (-674 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-660 (-419 *5))) (-5 *1 (-833 *4 *5)))) (-2900 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3683 (-675 *6 (-419 *6)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-419 *6))))) (-2899 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-5 *2 (-660 (-2 (|:| |frac| (-419 *6)) (|:| -3683 (-675 *6 (-419 *6)))))) (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-419 *6))))) (-2901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-675 *7 (-419 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *7 (-1263 *6)) (-5 *2 (-660 (-419 *7))) (-5 *1 (-833 *6 *7)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-675 *6 (-419 *6))) (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6)))) (-2901 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-674 (-419 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) (-4 *6 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *7 (-1263 *6)) (-5 *2 (-660 (-419 *7))) (-5 *1 (-833 *6 *7)))) (-2901 (*1 *2 *3 *4) (-12 (-5 *3 (-674 (-419 *6))) (-5 *4 (-1 (-660 *5) *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6))))) +((-2902 (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#1|))) (-708 |#2|) (-1287 |#1|)) 110 T ELT) (((-2 (|:| A (-708 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-708 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3683 |#2|) (|:| |rh| |#1|))))) (-708 |#1|) (-1287 |#1|)) 15 T ELT)) (-2903 (((-2 (|:| |particular| (-3 (-1287 |#1|) #1="failed")) (|:| -2221 (-660 (-1287 |#1|)))) (-708 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2221 (-660 |#1|))) |#2| |#1|)) 116 T ELT)) (-4000 (((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -2221 (-708 |#1|))) #1#) (-708 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2221 (-660 |#1|))) #1#) |#2| |#1|)) 54 T ELT))) +(((-834 |#1| |#2|) (-10 -7 (-15 -2902 ((-2 (|:| A (-708 |#1|)) (|:| |eqs| (-660 (-2 (|:| C (-708 |#1|)) (|:| |g| (-1287 |#1|)) (|:| -3683 |#2|) (|:| |rh| |#1|))))) (-708 |#1|) (-1287 |#1|))) (-15 -2902 ((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#1|))) (-708 |#2|) (-1287 |#1|))) (-15 -4000 ((-3 (-2 (|:| |particular| (-1287 |#1|)) (|:| -2221 (-708 |#1|))) #1="failed") (-708 |#1|) (-1287 |#1|) (-1 (-3 (-2 (|:| |particular| |#1|) (|:| -2221 (-660 |#1|))) #1#) |#2| |#1|))) (-15 -2903 ((-2 (|:| |particular| (-3 (-1287 |#1|) #1#)) (|:| -2221 (-660 (-1287 |#1|)))) (-708 |#2|) (-1287 |#1|) (-1 (-2 (|:| |particular| (-3 |#1| #1#)) (|:| -2221 (-660 |#1|))) |#2| |#1|)))) (-376) (-677 |#1|)) (T -834)) +((-2903 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *7)) (-5 *5 (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2221 (-660 *6))) *7 *6)) (-4 *6 (-376)) (-4 *7 (-677 *6)) (-5 *2 (-2 (|:| |particular| (-3 (-1287 *6) "failed")) (|:| -2221 (-660 (-1287 *6))))) (-5 *1 (-834 *6 *7)) (-5 *4 (-1287 *6)))) (-4000 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-1 (-3 (-2 (|:| |particular| *6) (|:| -2221 (-660 *6))) "failed") *7 *6)) (-4 *6 (-376)) (-4 *7 (-677 *6)) (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -2221 (-708 *6)))) (-5 *1 (-834 *6 *7)) (-5 *3 (-708 *6)) (-5 *4 (-1287 *6)))) (-2902 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *6 (-677 *5)) (-5 *2 (-2 (|:| -1782 (-708 *6)) (|:| |vec| (-1287 *5)))) (-5 *1 (-834 *5 *6)) (-5 *3 (-708 *6)) (-5 *4 (-1287 *5)))) (-2902 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| A (-708 *5)) (|:| |eqs| (-660 (-2 (|:| C (-708 *5)) (|:| |g| (-1287 *5)) (|:| -3683 *6) (|:| |rh| *5)))))) (-5 *1 (-834 *5 *6)) (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)) (-4 *6 (-677 *5))))) +((-2904 (((-708 |#1|) (-660 |#1|) (-790)) 14 T ELT) (((-708 |#1|) (-660 |#1|)) 15 T ELT)) (-2905 (((-3 (-1287 |#1|) #1="failed") |#2| |#1| (-660 |#1|)) 39 T ELT)) (-3759 (((-3 |#1| #1#) |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)) 46 T ELT))) +(((-835 |#1| |#2|) (-10 -7 (-15 -2904 ((-708 |#1|) (-660 |#1|))) (-15 -2904 ((-708 |#1|) (-660 |#1|) (-790))) (-15 -2905 ((-3 (-1287 |#1|) #1="failed") |#2| |#1| (-660 |#1|))) (-15 -3759 ((-3 |#1| #1#) |#2| |#1| (-660 |#1|) (-1 |#1| |#1|)))) (-376) (-677 |#1|)) (T -835)) +((-3759 (*1 *2 *3 *2 *4 *5) (|partial| -12 (-5 *4 (-660 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) (-5 *1 (-835 *2 *3)) (-4 *3 (-677 *2)))) (-2905 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 (-660 *4)) (-4 *4 (-376)) (-5 *2 (-1287 *4)) (-5 *1 (-835 *4 *3)) (-4 *3 (-677 *4)))) (-2904 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-790)) (-4 *5 (-376)) (-5 *2 (-708 *5)) (-5 *1 (-835 *5 *6)) (-4 *6 (-677 *5)))) (-2904 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-376)) (-5 *2 (-708 *4)) (-5 *1 (-835 *4 *5)) (-4 *5 (-677 *4))))) +((-2966 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3605 (((-114) $) NIL (|has| |#2| (-23)) ELT)) (-4136 (($ (-937)) NIL (|has| |#2| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) NIL (|has| |#2| (-814)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (|has| |#2| (-133)) ELT)) (-3537 (((-790)) NIL (|has| |#2| (-381)) ELT)) (-4217 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (((-3 |#2| #1#) $) NIL (|has| |#2| (-1121)) ELT)) (-3573 (((-558) $) NIL (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) ((|#2| $) NIL (|has| |#2| (-1121)) ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-708 $)) NIL (|has| |#2| (-1069)) ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| |#2| (-1069)) ELT)) (-3394 (($) NIL (|has| |#2| (-381)) ELT)) (-1718 ((|#2| $ (-558) |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ (-558)) NIL T ELT)) (-3603 (((-114) $) NIL (|has| |#2| (-814)) ELT)) (-3289 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL (|has| |#2| (-1069)) ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-3006 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-2159 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#2| (-381)) ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#2| (-657 (-558))) (|has| |#2| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#2| (-1069)) ELT) (((-708 |#2|) (-1287 $)) NIL (|has| |#2| (-1069)) ELT)) (-3659 (((-1179) $) NIL (|has| |#2| (-1121)) ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-2630 (($ (-937)) NIL (|has| |#2| (-381)) ELT)) (-3660 (((-1140) $) NIL (|has| |#2| (-1121)) ELT)) (-4230 ((|#2| $) NIL (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ (-558) |#2|) NIL T ELT) ((|#2| $ (-558)) NIL T ELT)) (-4265 ((|#2| $ $) NIL (|has| |#2| (-1069)) ELT)) (-1599 (($ (-1287 |#2|)) NIL T ELT)) (-4340 (((-136)) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $ (-790)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#2| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1287 |#2|) $) NIL T ELT) (($ (-558)) NIL (-3956 (-12 (|has| |#2| (-1058 (-558))) (|has| |#2| (-1121))) (|has| |#2| (-1069))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#2| (-1058 (-419 (-558)))) (|has| |#2| (-1121))) ELT) (($ |#2|) NIL (|has| |#2| (-1121)) ELT) (((-876) $) NIL (|has| |#2| (-629 (-876))) ELT)) (-3527 (((-790)) NIL (|has| |#2| (-1069)) CONST)) (-1377 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3058 (($) NIL (|has| |#2| (-23)) CONST)) (-3064 (($) NIL (|has| |#2| (-1069)) CONST)) (-3069 (($ $ (-790)) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $) NIL (-12 (|has| |#2| (-239)) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#2| (-918 (-1197))) (|has| |#2| (-1069))) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#2| (-1069)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#2| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3085 (((-114) $ $) 11 (|has| |#2| (-860)) ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $ $) NIL (|has| |#2| (-21)) ELT) (($ $) NIL (|has| |#2| (-21)) ELT)) (-4268 (($ $ $) NIL (|has| |#2| (-25)) ELT)) (** (($ $ (-790)) NIL (|has| |#2| (-1069)) ELT) (($ $ (-937)) NIL (|has| |#2| (-1069)) ELT)) (* (($ $ $) NIL (|has| |#2| (-1069)) ELT) (($ $ |#2|) NIL (|has| |#2| (-745)) ELT) (($ |#2| $) NIL (|has| |#2| (-745)) ELT) (($ (-558) $) NIL (|has| |#2| (-21)) ELT) (($ (-790) $) NIL (|has| |#2| (-23)) ELT) (($ (-937) $) NIL (|has| |#2| (-25)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-836 |#1| |#2| |#3|) (-245 |#1| |#2|) (-790) (-814) (-1 (-114) (-1287 |#2|) (-1287 |#2|))) (T -836)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1619 (((-660 (-790)) $) NIL T ELT) (((-660 (-790)) $ (-1197)) NIL T ELT)) (-1653 (((-790) $) NIL T ELT) (((-790) $ (-1197)) NIL T ELT)) (-3483 (((-660 (-839 (-1197))) $) NIL T ELT)) (-3485 (((-1191 $) $ (-839 (-1197))) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-839 (-1197)))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-1615 (($ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-839 (-1197)) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL T ELT) (((-3 (-1145 |#1| (-1197)) #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-839 (-1197)) $) NIL T ELT) (((-1197) $) NIL T ELT) (((-1145 |#1| (-1197)) $) NIL T ELT)) (-4185 (($ $ $ (-839 (-1197))) NIL (|has| |#1| (-175)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-839 (-1197))) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-543 (-839 (-1197))) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-839 (-1197)) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-839 (-1197)) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-4201 (((-790) $ (-1197)) NIL T ELT) (((-790) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#1|) (-839 (-1197))) NIL T ELT) (($ (-1191 $) (-839 (-1197))) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-543 (-839 (-1197)))) NIL T ELT) (($ $ (-839 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-839 (-1197))) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-839 (-1197))) NIL T ELT)) (-3220 (((-543 (-839 (-1197))) $) NIL T ELT) (((-790) $ (-839 (-1197))) NIL T ELT) (((-660 (-790)) $ (-660 (-839 (-1197)))) NIL T ELT)) (-1804 (($ (-1 (-543 (-839 (-1197))) (-543 (-839 (-1197)))) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1654 (((-1 $ (-790)) (-1197)) NIL T ELT) (((-1 $ (-790)) $) NIL (|has| |#1| (-240)) ELT)) (-3484 (((-3 (-839 (-1197)) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-1617 (((-839 (-1197)) $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1618 (((-114) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-839 (-1197))) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-1616 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-839 (-1197)) |#1|) NIL T ELT) (($ $ (-660 (-839 (-1197))) (-660 |#1|)) NIL T ELT) (($ $ (-839 (-1197)) $) NIL T ELT) (($ $ (-660 (-839 (-1197))) (-660 $)) NIL T ELT) (($ $ (-1197) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-660 (-1197)) (-660 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4186 (($ $ (-839 (-1197))) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-839 (-1197))) (-660 (-790))) NIL T ELT) (($ $ (-839 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-839 (-1197)))) NIL T ELT) (($ $ (-839 (-1197))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-1620 (((-660 (-1197)) $) NIL T ELT)) (-4377 (((-543 (-839 (-1197))) $) NIL T ELT) (((-790) $ (-839 (-1197))) NIL T ELT) (((-660 (-790)) $ (-660 (-839 (-1197)))) NIL T ELT) (((-790) $ (-1197)) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-839 (-1197)) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-839 (-1197)) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-839 (-1197)) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-839 (-1197))) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-839 (-1197))) NIL T ELT) (($ (-1197)) NIL T ELT) (($ (-1145 |#1| (-1197))) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-543 (-839 (-1197)))) NIL T ELT) (($ $ (-839 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-839 (-1197))) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-839 (-1197))) (-660 (-790))) NIL T ELT) (($ $ (-839 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-839 (-1197)))) NIL T ELT) (($ $ (-839 (-1197))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-837 |#1|) (-13 (-262 |#1| (-1197) (-839 (-1197)) (-543 (-839 (-1197)))) (-1058 (-1145 |#1| (-1197)))) (-1069)) (T -837)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#2| (-376)) ELT)) (-2272 (($ $) NIL (|has| |#2| (-376)) ELT)) (-2270 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#2| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#2| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#2| (-376)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#2| (-376)) ELT)) (-2101 (($ (-660 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 20 (|has| |#2| (-376)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#2| (-376)) ELT) (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#2| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#2| (-376)) ELT)) (-1786 (((-790) $) NIL (|has| |#2| (-376)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $) 13 T ELT) (($ $ (-790)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 10 T ELT) ((|#2| $) 11 T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-376)) ELT) (($ $) NIL (|has| |#2| (-376)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) 15 (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT) (($ $ (-558)) 18 (|has| |#2| (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-376)) ELT))) +(((-838 |#1| |#2| |#3|) (-13 (-111 $ $) (-240) (-502 |#2|) (-10 -7 (IF (|has| |#2| (-376)) (-6 (-376)) |%noBranch|))) (-1121) (-916 |#1|) |#1|) (T -838)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-1653 (((-790) $) NIL T ELT)) (-4260 ((|#1| $) 10 T ELT)) (-3574 (((-3 |#1| "failed") $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-4201 (((-790) $) 11 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-1654 (($ |#1| (-790)) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4187 (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3069 (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-839 |#1|) (-277 |#1|) (-860)) (T -839)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-4363 (((-660 |#1|) $) 38 T ELT)) (-3537 (((-790) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4368 (((-3 $ #1="failed") $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 28 T ELT)) (-3574 (((-3 |#1| #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-4228 (($ $) 42 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-1952 (((-2 (|:| |lm| $) (|:| |mm| $) (|:| |rm| $)) $ $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2511 ((|#1| $ (-558)) NIL T ELT)) (-2512 (((-790) $ (-558)) NIL T ELT)) (-4365 (($ $) 54 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-2503 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2504 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-4369 (((-3 $ #1#) $ $) NIL T ELT) (((-3 $ #1#) $ |#1|) 25 T ELT)) (-2906 (((-114) $ $) 51 T ELT)) (-4262 (((-790) $) 34 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1953 (($ $ $) NIL T ELT)) (-1954 (($ $ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 ((|#1| $) 41 T ELT)) (-1986 (((-660 (-2 (|:| |gen| |#1|) (|:| -4372 (-790)))) $) NIL T ELT)) (-3279 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-2963 (((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 7 T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 53 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ |#1| (-790)) NIL T ELT)) (* (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-840 |#1|) (-13 (-399 |#1|) (-858) (-10 -8 (-15 -4230 (|#1| $)) (-15 -4228 ($ $)) (-15 -4365 ($ $)) (-15 -2906 ((-114) $ $)) (-15 -4369 ((-3 $ #1="failed") $ |#1|)) (-15 -4368 ((-3 $ #1#) $ |#1|)) (-15 -2963 ((-3 (-2 (|:| |lm| $) (|:| |rm| $)) #1#) $ $)) (-15 -4262 ((-790) $)) (-15 -4363 ((-660 |#1|) $)))) (-860)) (T -840)) +((-4230 (*1 *2 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) (-4365 (*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) (-2906 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-840 *3)) (-4 *3 (-860)))) (-4369 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) (-4368 (*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) (-2963 (*1 *2 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |lm| (-840 *3)) (|:| |rm| (-840 *3)))) (-5 *1 (-840 *3)) (-4 *3 (-860)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-840 *3)) (-4 *3 (-860)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-840 *3)) (-4 *3 (-860))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4052 (((-558) $) 65 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3603 (((-114) $) 63 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3604 (((-114) $) 64 T ELT)) (-2929 (($ $ $) 57 T ELT)) (-3257 (($ $ $) 58 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3802 (($ $) 66 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 59 T ELT)) (-2965 (((-114) $ $) 61 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 60 T ELT)) (-3085 (((-114) $ $) 62 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-841) (-142)) (T -841)) +NIL +(-13 (-569) (-859)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-811) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-859) . T) ((-860) . T) ((-863) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2907 ((|#1| $) 10 T ELT)) (-2908 (($ |#1|) 9 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-790)) NIL T ELT)) (-3220 (((-790) $) NIL T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4187 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-790)) NIL (|has| |#1| (-240)) ELT)) (-4377 (((-790) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL (|has| |#2| (-175)) ELT)) (-4106 ((|#2| $ (-790)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $) NIL (|has| |#1| (-240)) ELT) (($ $ (-790)) NIL (|has| |#1| (-240)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 12 T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-842 |#1| |#2|) (-13 (-727 |#2|) (-10 -8 (IF (|has| |#1| (-240)) (-6 (-240)) |%noBranch|) (-15 -2908 ($ |#1|)) (-15 -2907 (|#1| $)))) (-727 |#2|) (-1069)) (T -842)) +((-2908 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-842 *2 *3)) (-4 *2 (-727 *3)))) (-2907 (*1 *2 *1) (-12 (-4 *2 (-727 *3)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1069))))) +((-2966 (((-114) $ $) 19 T ELT)) (-3651 (($ |#1| $) 81 T ELT) (($ $ |#1|) 80 T ELT) (($ $ $) 79 T ELT)) (-3653 (($ $ $) 77 T ELT)) (-3652 (((-114) $ $) 78 T ELT)) (-3656 (($ (-660 |#1|)) 73 T ELT) (($) 72 T ELT)) (-1712 (($ (-1 (-114) |#1|) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 59 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2593 (($ $) 66 T ELT)) (-1466 (($ $) 62 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ |#1| $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) 61 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 57 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) 69 T ELT)) (-2929 ((|#1| $) 83 T ELT)) (-3256 (($ $ $) 86 T ELT)) (-3937 (($ $ $) 85 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3257 ((|#1| $) 84 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 T ELT)) (-3655 (($ $ $) 74 T ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT) (($ |#1| $ (-790)) 67 T ELT)) (-3660 (((-1140) $) 21 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 55 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2592 (((-660 (-2 (|:| -2285 |#1|) (|:| -2156 (-790)))) $) 65 T ELT)) (-3654 (($ $ |#1|) 76 T ELT) (($ $ $) 75 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 |#1|)) 52 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 54 T ELT)) (-4375 (((-876) $) 17 T ELT)) (-3657 (($ (-660 |#1|)) 71 T ELT) (($) 70 T ELT)) (-1377 (((-114) $ $) 20 T ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 T ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-843 |#1|) (-142) (-860)) (T -843)) +((-2929 (*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-860))))) +(-13 (-756 |t#1|) (-988 |t#1|) (-10 -8 (-15 -2929 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) . T) ((-629 (-876)) . T) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-242 |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-714 |#1|) . T) ((-756 |#1|) . T) ((-988 |#1|) . T) ((-1119 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4052 (((-558) $) NIL (|has| |#1| (-859)) ELT)) (-4153 (($) NIL (|has| |#1| (-21)) CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 15 T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 9 T ELT)) (-3886 (((-3 $ #1#) $) 42 (|has| |#1| (-859)) ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 52 (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) 46 (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) 49 (|has| |#1| (-557)) ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-2640 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2909 (($) 13 T ELT)) (-2922 (((-114) $) 12 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2923 (((-114) $) 11 T ELT)) (-4375 (((-876) $) 18 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) 8 T ELT) (($ (-558)) NIL (-3956 (|has| |#1| (-859)) (|has| |#1| (-1058 (-558)))) ELT)) (-3527 (((-790)) 36 (|has| |#1| (-859)) CONST)) (-1377 (((-114) $ $) 54 T ELT)) (-3802 (($ $) NIL (|has| |#1| (-859)) ELT)) (-3058 (($) 23 (|has| |#1| (-21)) CONST)) (-3064 (($) 33 (|has| |#1| (-859)) CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3453 (((-114) $ $) 21 T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3085 (((-114) $ $) 45 (|has| |#1| (-859)) ELT)) (-4266 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 29 (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) 31 (|has| |#1| (-21)) ELT)) (** (($ $ (-937)) NIL (|has| |#1| (-859)) ELT) (($ $ (-790)) NIL (|has| |#1| (-859)) ELT)) (* (($ $ $) 39 (|has| |#1| (-859)) ELT) (($ (-558) $) 27 (|has| |#1| (-21)) ELT) (($ (-790) $) NIL (|has| |#1| (-21)) ELT) (($ (-937) $) NIL (|has| |#1| (-21)) ELT))) +(((-844 |#1|) (-13 (-1121) (-424 |#1|) (-10 -8 (-15 -2909 ($)) (-15 -2923 ((-114) $)) (-15 -2922 ((-114) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) (-1121)) (T -844)) +((-2909 (*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1121)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-844 *3)) (-4 *3 (-1121)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-844 *3)) (-4 *3 (-1121)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-844 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-844 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-844 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) +((-4387 (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)) 12 T ELT) (((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|)) 13 T ELT))) +(((-845 |#1| |#2|) (-10 -7 (-15 -4387 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|))) (-15 -4387 ((-844 |#2|) (-1 |#2| |#1|) (-844 |#1|) (-844 |#2|)))) (-1121) (-1121)) (T -845)) +((-4387 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-845 *5 *6)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-844 *6)) (-5 *1 (-845 *5 *6))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-115) #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-115) $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2911 ((|#1| (-115) |#1|) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2910 (($ |#1| (-374 (-115))) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2912 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-2913 (($ $ (-1 |#1| |#1|)) NIL T ELT)) (-4229 ((|#1| $ |#1|) NIL T ELT)) (-2914 ((|#1| |#1|) NIL (|has| |#1| (-175)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-115)) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2915 (($ $) NIL (|has| |#1| (-175)) ELT) (($ $ $) NIL (|has| |#1| (-175)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ (-115) (-558)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-846 |#1|) (-13 (-1069) (-1058 |#1|) (-1058 (-115)) (-298 |#1| |#1|) (-10 -8 (IF (|has| |#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |#1| (-175)) (PROGN (-6 (-38 |#1|)) (-15 -2915 ($ $)) (-15 -2915 ($ $ $)) (-15 -2914 (|#1| |#1|))) |%noBranch|) (-15 -2913 ($ $ (-1 |#1| |#1|))) (-15 -2912 ($ $ (-1 |#1| |#1|))) (-15 ** ($ (-115) (-558))) (-15 ** ($ $ (-558))) (-15 -2911 (|#1| (-115) |#1|)) (-15 -2910 ($ |#1| (-374 (-115)))))) (-1069)) (T -846)) +((-2915 (*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-175)) (-4 *2 (-1069)))) (-2915 (*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-175)) (-4 *2 (-1069)))) (-2914 (*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-175)) (-4 *2 (-1069)))) (-2913 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-846 *3)))) (-2912 (*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-846 *3)))) (** (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-5 *1 (-846 *4)) (-4 *4 (-1069)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-846 *3)) (-4 *3 (-1069)))) (-2911 (*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1069)))) (-2910 (*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1069))))) +((-3031 (((-114) $ |#2|) 14 T ELT)) (-4375 (((-876) $) 11 T ELT))) +(((-847 |#1| |#2|) (-10 -7 (-15 -3031 ((-114) |#1| |#2|)) (-15 -4375 ((-876) |#1|))) (-848 |#2|) (-1121)) (T -847)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3969 ((|#1| $) 19 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3031 (((-114) $ |#1|) 17 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2916 (((-55) $) 18 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-848 |#1|) (-142) (-1121)) (T -848)) +((-3969 (*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1121)))) (-2916 (*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1121)) (-5 *2 (-55)))) (-3031 (*1 *2 *1 *3) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) +(-13 (-1121) (-10 -8 (-15 -3969 (|t#1| $)) (-15 -2916 ((-55) $)) (-15 -3031 ((-114) $ |t#1|)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2917 (((-217 (-514)) (-1179)) 9 T ELT))) +(((-849) (-10 -7 (-15 -2917 ((-217 (-514)) (-1179))))) (T -849)) +((-2917 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-217 (-514))) (-5 *1 (-849))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3736 (((-1135) $) 10 T ELT)) (-3969 (((-518) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3031 (((-114) $ (-518)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3949 (($ (-518) (-1135)) 8 T ELT)) (-4375 (((-876) $) 25 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2916 (((-55) $) 20 T ELT)) (-3453 (((-114) $ $) 12 T ELT))) +(((-850) (-13 (-848 (-518)) (-10 -8 (-15 -3736 ((-1135) $)) (-15 -3949 ($ (-518) (-1135)))))) (T -850)) +((-3736 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-850)))) (-3949 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1135)) (-5 *1 (-850))))) +((-2966 (((-114) $ $) 7 T ELT)) (-2918 (((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 18 T ELT) (((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 17 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 20 T ELT) (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 19 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-851) (-142)) (T -851)) +((-3068 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) (-3068 (*1 *2 *3 *4) (-12 (-4 *1 (-851)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) (-2918 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) (-5 *2 (-1055)))) (-2918 (*1 *2 *3) (-12 (-4 *1 (-851)) (-5 *3 (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (-5 *2 (-1055))))) +(-13 (-1121) (-10 -7 (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229))))))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) (-15 -2918 ((-1055) (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) (-15 -2918 ((-1055) (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229))))))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2919 (((-1055) (-660 (-326 (-391))) (-660 (-391))) 164 T ELT) (((-1055) (-326 (-391)) (-660 (-391))) 162 T ELT) (((-1055) (-326 (-391)) (-660 (-391)) (-660 (-854 (-391))) (-660 (-854 (-391)))) 160 T ELT) (((-1055) (-326 (-391)) (-660 (-391)) (-660 (-854 (-391))) (-660 (-326 (-391))) (-660 (-854 (-391)))) 158 T ELT) (((-1055) (-853)) 125 T ELT) (((-1055) (-853) (-1083)) 124 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-853) (-1083)) 85 T ELT) (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-853)) 87 T ELT)) (-2920 (((-1055) (-660 (-326 (-391))) (-660 (-391))) 165 T ELT) (((-1055) (-853)) 148 T ELT))) +(((-852) (-10 -7 (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-853))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-853) (-1083))) (-15 -2919 ((-1055) (-853) (-1083))) (-15 -2919 ((-1055) (-853))) (-15 -2920 ((-1055) (-853))) (-15 -2919 ((-1055) (-326 (-391)) (-660 (-391)) (-660 (-854 (-391))) (-660 (-326 (-391))) (-660 (-854 (-391))))) (-15 -2919 ((-1055) (-326 (-391)) (-660 (-391)) (-660 (-854 (-391))) (-660 (-854 (-391))))) (-15 -2919 ((-1055) (-326 (-391)) (-660 (-391)))) (-15 -2919 ((-1055) (-660 (-326 (-391))) (-660 (-391)))) (-15 -2920 ((-1055) (-660 (-326 (-391))) (-660 (-391)))))) (T -852)) +((-2920 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-326 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-326 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-391))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2919 (*1 *2 *3 *4 *5 *5) (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-391))) (-5 *5 (-660 (-854 (-391)))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2919 (*1 *2 *3 *4 *5 *6 *5) (-12 (-5 *4 (-660 (-391))) (-5 *5 (-660 (-854 (-391)))) (-5 *6 (-660 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2920 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2919 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) (-2919 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-852)))) (-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *1 (-852)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *1 (-852))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3573 (((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) $) 21 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) 14 T ELT) (($ (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) 16 T ELT) (($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-853) (-13 (-1121) (-10 -8 (-15 -4375 ($ (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229))))))) (-15 -4375 ($ (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) (-15 -4375 ($ (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))))) (-15 -3573 ((-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229)))))) $))))) (T -853)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (-5 *1 (-853)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) (-5 *1 (-853)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) (-5 *1 (-853)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) (-5 *1 (-853))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL (|has| |#1| (-21)) ELT)) (-2921 (((-1140) $) 31 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (|has| |#1| (-21)) ELT)) (-4052 (((-558) $) NIL (|has| |#1| (-859)) ELT)) (-4153 (($) NIL (|has| |#1| (-21)) CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 18 T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 9 T ELT)) (-3886 (((-3 $ #1#) $) 57 (|has| |#1| (-859)) ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 65 (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) 60 (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) 63 (|has| |#1| (-557)) ELT)) (-3603 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-2925 (($) 14 T ELT)) (-2640 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-3604 (((-114) $) NIL (|has| |#1| (-859)) ELT)) (-2924 (($) 16 T ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-859)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2922 (((-114) $) 12 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2923 (((-114) $) 11 T ELT)) (-4375 (((-876) $) 24 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) 8 T ELT) (($ (-558)) NIL (-3956 (|has| |#1| (-859)) (|has| |#1| (-1058 (-558)))) ELT)) (-3527 (((-790)) 50 (|has| |#1| (-859)) CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| |#1| (-859)) ELT)) (-3058 (($) 37 (|has| |#1| (-21)) CONST)) (-3064 (($) 47 (|has| |#1| (-859)) CONST)) (-2964 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3453 (((-114) $ $) 35 T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-859)) ELT)) (-3085 (((-114) $ $) 59 (|has| |#1| (-859)) ELT)) (-4266 (($ $ $) NIL (|has| |#1| (-21)) ELT) (($ $) 43 (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) 45 (|has| |#1| (-21)) ELT)) (** (($ $ (-937)) NIL (|has| |#1| (-859)) ELT) (($ $ (-790)) NIL (|has| |#1| (-859)) ELT)) (* (($ $ $) 54 (|has| |#1| (-859)) ELT) (($ (-558) $) 41 (|has| |#1| (-21)) ELT) (($ (-790) $) NIL (|has| |#1| (-21)) ELT) (($ (-937) $) NIL (|has| |#1| (-21)) ELT))) +(((-854 |#1|) (-13 (-1121) (-424 |#1|) (-10 -8 (-15 -2925 ($)) (-15 -2924 ($)) (-15 -2923 ((-114) $)) (-15 -2922 ((-114) $)) (-15 -2921 ((-1140) $)) (IF (|has| |#1| (-21)) (-6 (-21)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-859)) |%noBranch|) (IF (|has| |#1| (-557)) (PROGN (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) (-1121)) (T -854)) +((-2925 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1121)))) (-2924 (*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1121)))) (-2923 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1121)))) (-2922 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1121)))) (-2921 (*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-854 *3)) (-4 *3 (-1121)))) (-3423 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3422 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) (-3424 (*1 *2 *1) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1121))))) +((-4387 (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)) 13 T ELT) (((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|)) 14 T ELT))) +(((-855 |#1| |#2|) (-10 -7 (-15 -4387 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|))) (-15 -4387 ((-854 |#2|) (-1 |#2| |#1|) (-854 |#1|) (-854 |#2|) (-854 |#2|)))) (-1121) (-1121)) (T -855)) +((-4387 (*1 *2 *3 *4 *2 *2) (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *1 (-855 *5 *6)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3537 (((-790)) 27 T ELT)) (-3394 (($) 30 T ELT)) (-2929 (($ $ $) 23 T ELT) (($) 26 T CONST)) (-3257 (($ $ $) 22 T ELT) (($) 25 T CONST)) (-2219 (((-937) $) 29 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2630 (($ (-937)) 28 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT))) +(((-856) (-142)) (T -856)) +((-2929 (*1 *1) (-4 *1 (-856))) (-3257 (*1 *1) (-4 *1 (-856)))) +(-13 (-860) (-381) (-10 -8 (-15 -2929 ($) -4381) (-15 -3257 ($) -4381))) +(((-102) . T) ((-629 (-876)) . T) ((-381) . T) ((-860) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-2927 (((-114) (-1287 |#2|) (-1287 |#2|)) 19 T ELT)) (-2928 (((-114) (-1287 |#2|) (-1287 |#2|)) 20 T ELT)) (-2926 (((-114) (-1287 |#2|) (-1287 |#2|)) 16 T ELT))) +(((-857 |#1| |#2|) (-10 -7 (-15 -2926 ((-114) (-1287 |#2|) (-1287 |#2|))) (-15 -2927 ((-114) (-1287 |#2|) (-1287 |#2|))) (-15 -2928 ((-114) (-1287 |#2|) (-1287 |#2|)))) (-790) (-813)) (T -857)) +((-2928 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-857 *4 *5)) (-14 *4 (-790)))) (-2927 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-857 *4 *5)) (-14 *4 (-790)))) (-2926 (*1 *2 *3 *3) (-12 (-5 *3 (-1287 *5)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-857 *4 *5)) (-14 *4 (-790))))) +((-2966 (((-114) $ $) 7 T ELT)) (-4153 (($) 29 T CONST)) (-3886 (((-3 $ "failed") $) 32 T ELT)) (-2640 (((-114) $) 30 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3064 (($) 28 T CONST)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (** (($ $ (-937)) 26 T ELT) (($ $ (-790)) 31 T ELT)) (* (($ $ $) 25 T ELT))) +(((-858) (-142)) (T -858)) +NIL +(-13 (-870) (-745)) +(((-102) . T) ((-629 (-876)) . T) ((-745) . T) ((-870) . T) ((-860) . T) ((-863) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 31 T ELT)) (-1425 (((-3 $ "failed") $ $) 34 T ELT)) (-4052 (((-558) $) 37 T ELT)) (-4153 (($) 30 T CONST)) (-3886 (((-3 $ "failed") $) 49 T ELT)) (-3603 (((-114) $) 28 T ELT)) (-2640 (((-114) $) 51 T ELT)) (-3604 (((-114) $) 38 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 53 T ELT)) (-3527 (((-790)) 54 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3802 (($ $) 36 T ELT)) (-3058 (($) 29 T CONST)) (-3064 (($) 52 T CONST)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (-4266 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4268 (($ $ $) 25 T ELT)) (** (($ $ (-790)) 50 T ELT) (($ $ (-937)) 47 T ELT)) (* (($ (-937) $) 26 T ELT) (($ (-790) $) 32 T ELT) (($ (-558) $) 39 T ELT) (($ $ $) 48 T ELT))) (((-859) (-142)) (T -859)) NIL -(-13 (-871) (-746)) -(((-102) . T) ((-630 (-877)) . T) ((-746) . T) ((-871) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 31 T ELT)) (-1426 (((-3 $ "failed") $ $) 34 T ELT)) (-4053 (((-558) $) 37 T ELT)) (-4154 (($) 30 T CONST)) (-3887 (((-3 $ "failed") $) 49 T ELT)) (-3604 (((-114) $) 28 T ELT)) (-2641 (((-114) $) 51 T ELT)) (-3605 (((-114) $) 38 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 53 T ELT)) (-3528 (((-791)) 54 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3803 (($ $) 36 T ELT)) (-3059 (($) 29 T CONST)) (-3065 (($) 52 T CONST)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (-4267 (($ $ $) 41 T ELT) (($ $) 40 T ELT)) (-4269 (($ $ $) 25 T ELT)) (** (($ $ (-791)) 50 T ELT) (($ $ (-938)) 47 T ELT)) (* (($ (-938) $) 26 T ELT) (($ (-791) $) 32 T ELT) (($ (-558) $) 39 T ELT) (($ $ $) 48 T ELT))) +(-13 (-811) (-1069) (-745)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-811) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-860) . T) ((-863) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT))) (((-860) (-142)) (T -860)) NIL -(-13 (-812) (-1070) (-746)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-861) . T) ((-864) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT))) -(((-861) (-142)) (T -861)) -NIL -(-13 (-1122) (-864)) -(((-102) . T) ((-630 (-877)) . T) ((-864) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4376 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-877) $) 15 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 12 T ELT))) -(((-862 |#1| |#2|) (-13 (-864) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-630 (-877))) (-6 (-630 (-877))) |%noBranch|))) (-1238) (-1 (-114) |#1| |#1|)) (T -862)) -NIL -((-2930 (($ $ $) 16 T ELT)) (-3258 (($ $ $) 15 T ELT)) (-1378 (((-114) $ $) 17 T ELT)) (-2965 (((-114) $ $) 12 T ELT)) (-2966 (((-114) $ $) 9 T ELT)) (-3454 (((-114) $ $) 14 T ELT)) (-3085 (((-114) $ $) 11 T ELT))) -(((-863 |#1|) (-10 -7 (-15 -2930 (|#1| |#1| |#1|)) (-15 -3258 (|#1| |#1| |#1|)) (-15 -2965 ((-114) |#1| |#1|)) (-15 -3085 ((-114) |#1| |#1|)) (-15 -2966 ((-114) |#1| |#1|)) (-15 -1378 ((-114) |#1| |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-864)) (T -863)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-2930 (($ $ $) 10 T ELT)) (-3258 (($ $ $) 11 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2965 (((-114) $ $) 12 T ELT)) (-2966 (((-114) $ $) 14 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 13 T ELT)) (-3086 (((-114) $ $) 15 T ELT))) -(((-864) (-142)) (T -864)) -((-3086 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) (-2966 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) (-3085 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) (-2965 (*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) (-3258 (*1 *1 *1 *1) (-4 *1 (-864))) (-2930 (*1 *1 *1 *1) (-4 *1 (-864)))) -(-13 (-102) (-10 -8 (-15 -3086 ((-114) $ $)) (-15 -2966 ((-114) $ $)) (-15 -3085 ((-114) $ $)) (-15 -2965 ((-114) $ $)) (-15 -3258 ($ $ $)) (-15 -2930 ($ $ $)))) -(((-102) . T) ((-1238) . T)) -((-2935 (($ $ $) 49 T ELT)) (-2936 (($ $ $) 48 T ELT)) (-2937 (($ $ $) 46 T ELT)) (-2933 (($ $ $) 55 T ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 50 T ELT)) (-2934 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3575 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3923 (($ $) 39 T ELT)) (-2941 (($ $ $) 43 T ELT)) (-2942 (($ $ $) 42 T ELT)) (-2931 (($ $ $) 51 T ELT)) (-2939 (($ $ $) 57 T ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 45 T ELT)) (-2940 (((-3 $ #1#) $ $) 52 T ELT)) (-3886 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-3218 ((|#2| $) 36 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4247 (((-661 |#2|) $) 21 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) -(((-865 |#1| |#2|) (-10 -7 (-15 -2931 (|#1| |#1| |#1|)) (-15 -2932 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2640 |#1|)) |#1| |#1|)) (-15 -2933 (|#1| |#1| |#1|)) (-15 -2934 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 (|#1| |#1| |#1|)) (-15 -2937 (|#1| |#1| |#1|)) (-15 -2938 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2640 |#1|)) |#1| |#1|)) (-15 -2939 (|#1| |#1| |#1|)) (-15 -2940 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -2942 (|#1| |#1| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -3218 (|#2| |#1|)) (-15 -3886 ((-3 |#1| #1#) |#1| |#2|)) (-15 -4247 ((-661 |#2|) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4376 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4376 ((-877) |#1|))) (-866 |#2|) (-1070)) (T -865)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-2935 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2933 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2934 (((-3 $ "failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3575 (((-3 (-558) #1="failed") $) 85 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 82 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3574 (((-558) $) 84 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 81 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 80 T ELT)) (-4389 (($ $) 74 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3923 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3294 (($ |#1| (-791)) 72 T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 67 (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 68 (|has| |#1| (-569)) ELT)) (-3221 (((-791) $) 76 T ELT)) (-2941 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-2942 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2939 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-2940 (((-3 $ "failed") $ $) 61 (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3592 ((|#1| $) 75 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-569)) ELT)) (-4378 (((-791) $) 77 T ELT)) (-3218 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 83 (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) 78 T ELT)) (-4247 (((-661 |#1|) $) 71 T ELT)) (-4107 ((|#1| $ (-791)) 73 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2944 ((|#1| $ |#1| |#1|) 70 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) -(((-866 |#1|) (-142) (-1070)) (T -866)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) (-3221 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) (-3592 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-4389 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3294 (*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-661 *3)))) (-2944 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) (-3886 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-569)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) (-3218 (*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-3923 (*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) (-2947 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) (-2942 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2941 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2940 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2939 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2938 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2640 *1))) (-4 *1 (-866 *3)))) (-2937 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2948 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) (-2936 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2934 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2933 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-2932 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2640 *1))) (-4 *1 (-866 *3)))) (-2931 (*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(-13 (-1070) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -4378 ((-791) $)) (-15 -3221 ((-791) $)) (-15 -3592 (|t#1| $)) (-15 -4389 ($ $)) (-15 -4107 (|t#1| $ (-791))) (-15 -3294 ($ |t#1| (-791))) (-15 -4247 ((-661 |t#1|) $)) (-15 -2944 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3886 ((-3 $ "failed") $ |t#1|)) (-15 -2945 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -2946 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3218 (|t#1| $)) (-15 -3923 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -2947 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -2942 ($ $ $)) (-15 -2941 ($ $ $)) (-15 -2940 ((-3 $ "failed") $ $)) (-15 -2939 ($ $ $)) (-15 -2938 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $)) (-15 -2937 ($ $ $)) (-15 -2948 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -2936 ($ $ $)) (-15 -2935 ($ $ $)) (-15 -2934 ((-3 $ "failed") $ $)) (-15 -2933 ($ $ $)) (-15 -2932 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $)) (-15 -2931 ($ $ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-424 |#1|) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2943 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2948 (((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)) ELT)) (-2947 (((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-2944 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) -(((-867 |#1| |#2|) (-10 -7 (-15 -2943 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2944 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -2945 ((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2946 ((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -2947 ((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2948 ((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1070) (-866 |#1|)) (T -867)) -((-2948 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2947 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2946 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2945 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1070)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) (-4 *3 (-866 *5)))) (-2944 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) (-4 *3 (-866 *2)))) (-2943 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) (-5 *1 (-867 *5 *2)) (-4 *2 (-866 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2934 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3953 (((-877) $ (-877)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) NIL T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 30 (|has| |#1| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 28 (|has| |#1| (-569)) ELT)) (-3221 (((-791) $) NIL T ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2942 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2940 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4378 (((-791) $) NIL T ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2944 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) 23 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) 19 T ELT) (($ $ (-791)) 24 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) -(((-868 |#1| |#2| |#3|) (-13 (-866 |#1|) (-10 -8 (-15 -3953 ((-877) $ (-877))))) (-1070) (-99 |#1|) (-1 |#1| |#1|)) (T -868)) -((-3953 (*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2935 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2937 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2933 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2932 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2934 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-2948 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#2| (-464)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-791)) 17 T ELT)) (-2946 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-2945 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3221 (((-791) $) NIL T ELT)) (-2941 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2942 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2931 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2939 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2938 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2940 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-2947 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3592 ((|#2| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-4378 (((-791) $) NIL T ELT)) (-3218 ((|#2| $) NIL (|has| |#2| (-464)) ELT)) (-4376 (((-877) $) 24 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (($ (-1285 |#1|)) 19 T ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-791)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2944 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) 13 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) -(((-869 |#1| |#2| |#3| |#4|) (-13 (-866 |#2|) (-633 (-1285 |#1|))) (-1198) (-1070) (-99 |#2|) (-1 |#2| |#2|)) (T -869)) -NIL -((-2951 ((|#1| (-791) |#1|) 45 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2950 ((|#1| (-791) (-791) |#1|) 36 T ELT) ((|#1| (-791) |#1|) 24 T ELT)) (-2949 ((|#1| (-791) |#1|) 40 T ELT)) (-3201 ((|#1| (-791) |#1|) 38 T ELT)) (-3200 ((|#1| (-791) |#1|) 37 T ELT))) -(((-870 |#1|) (-10 -7 (-15 -3200 (|#1| (-791) |#1|)) (-15 -3201 (|#1| (-791) |#1|)) (-15 -2949 (|#1| (-791) |#1|)) (-15 -2950 (|#1| (-791) |#1|)) (-15 -2950 (|#1| (-791) (-791) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -2951 (|#1| (-791) |#1|)) |%noBranch|)) (-175)) (T -870)) -((-2951 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-2950 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) (-2950 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) (-2949 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) (-3201 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175))))) -((-2967 (((-114) $ $) 7 T ELT)) (-2930 (($ $ $) 23 T ELT)) (-3258 (($ $ $) 22 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2965 (((-114) $ $) 21 T ELT)) (-2966 (((-114) $ $) 19 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 20 T ELT)) (-3086 (((-114) $ $) 18 T ELT)) (** (($ $ (-938)) 26 T ELT)) (* (($ $ $) 25 T ELT))) -(((-871) (-142)) (T -871)) -NIL -(-13 (-861) (-1133)) -(((-102) . T) ((-630 (-877)) . T) ((-861) . T) ((-864) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3822 (((-558) $) 14 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-558)) 13 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 9 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 11 T ELT))) -(((-872) (-13 (-861) (-10 -8 (-15 -4376 ($ (-558))) (-15 -3822 ((-558) $))))) (T -872)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-872)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-872))))) -((-2952 (((-1294) (-661 (-51))) 23 T ELT)) (-3880 (((-1294) (-1180) (-877)) 13 T ELT) (((-1294) (-877)) 8 T ELT) (((-1294) (-1180)) 10 T ELT))) -(((-873) (-10 -7 (-15 -3880 ((-1294) (-1180))) (-15 -3880 ((-1294) (-877))) (-15 -3880 ((-1294) (-1180) (-877))) (-15 -2952 ((-1294) (-661 (-51)))))) (T -873)) -((-2952 (*1 *2 *3) (-12 (-5 *3 (-661 (-51))) (-5 *2 (-1294)) (-5 *1 (-873)))) (-3880 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-873)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-873)))) (-3880 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-873))))) -((-2954 (((-711 (-1247)) $ (-1247)) 15 T ELT)) (-2955 (((-711 (-562)) $ (-562)) 12 T ELT)) (-2953 (((-791) $ (-131)) 30 T ELT))) -(((-874 |#1|) (-10 -7 (-15 -2953 ((-791) |#1| (-131))) (-15 -2954 ((-711 (-1247)) |#1| (-1247))) (-15 -2955 ((-711 (-562)) |#1| (-562)))) (-875)) (T -874)) -NIL -((-2954 (((-711 (-1247)) $ (-1247)) 8 T ELT)) (-2955 (((-711 (-562)) $ (-562)) 9 T ELT)) (-2953 (((-791) $ (-131)) 7 T ELT)) (-2956 (((-711 (-130)) $ (-130)) 10 T ELT)) (-1903 (($ $) 6 T ELT))) -(((-875) (-142)) (T -875)) -((-2956 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-711 (-130))) (-5 *3 (-130)))) (-2955 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-711 (-562))) (-5 *3 (-562)))) (-2954 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-711 (-1247))) (-5 *3 (-1247)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *3 (-131)) (-5 *2 (-791))))) -(-13 (-176) (-10 -8 (-15 -2956 ((-711 (-130)) $ (-130))) (-15 -2955 ((-711 (-562)) $ (-562))) (-15 -2954 ((-711 (-1247)) $ (-1247))) (-15 -2953 ((-791) $ (-131))))) +(-13 (-1121) (-863)) +(((-102) . T) ((-629 (-876)) . T) ((-863) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4375 (($ |#1|) 10 T ELT) ((|#1| $) 9 T ELT) (((-876) $) 15 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 12 T ELT))) +(((-861 |#1| |#2|) (-13 (-863) (-502 |#1|) (-10 -7 (IF (|has| |#1| (-629 (-876))) (-6 (-629 (-876))) |%noBranch|))) (-1237) (-1 (-114) |#1| |#1|)) (T -861)) +NIL +((-2929 (($ $ $) 16 T ELT)) (-3257 (($ $ $) 15 T ELT)) (-1377 (((-114) $ $) 17 T ELT)) (-2964 (((-114) $ $) 12 T ELT)) (-2965 (((-114) $ $) 9 T ELT)) (-3453 (((-114) $ $) 14 T ELT)) (-3084 (((-114) $ $) 11 T ELT))) +(((-862 |#1|) (-10 -7 (-15 -2929 (|#1| |#1| |#1|)) (-15 -3257 (|#1| |#1| |#1|)) (-15 -2964 ((-114) |#1| |#1|)) (-15 -3084 ((-114) |#1| |#1|)) (-15 -2965 ((-114) |#1| |#1|)) (-15 -1377 ((-114) |#1| |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-863)) (T -862)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-2929 (($ $ $) 10 T ELT)) (-3257 (($ $ $) 11 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2964 (((-114) $ $) 12 T ELT)) (-2965 (((-114) $ $) 14 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 13 T ELT)) (-3085 (((-114) $ $) 15 T ELT))) +(((-863) (-142)) (T -863)) +((-3085 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) (-2965 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) (-3084 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) (-2964 (*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) (-3257 (*1 *1 *1 *1) (-4 *1 (-863))) (-2929 (*1 *1 *1 *1) (-4 *1 (-863)))) +(-13 (-102) (-10 -8 (-15 -3085 ((-114) $ $)) (-15 -2965 ((-114) $ $)) (-15 -3084 ((-114) $ $)) (-15 -2964 ((-114) $ $)) (-15 -3257 ($ $ $)) (-15 -2929 ($ $ $)))) +(((-102) . T) ((-1237) . T)) +((-2934 (($ $ $) 49 T ELT)) (-2935 (($ $ $) 48 T ELT)) (-2936 (($ $ $) 46 T ELT)) (-2932 (($ $ $) 55 T ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 50 T ELT)) (-2933 (((-3 $ #1="failed") $ $) 53 T ELT)) (-3574 (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 29 T ELT)) (-3922 (($ $) 39 T ELT)) (-2940 (($ $ $) 43 T ELT)) (-2941 (($ $ $) 42 T ELT)) (-2930 (($ $ $) 51 T ELT)) (-2938 (($ $ $) 57 T ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 45 T ELT)) (-2939 (((-3 $ #1#) $ $) 52 T ELT)) (-3885 (((-3 $ #1#) $ |#2|) 32 T ELT)) (-3217 ((|#2| $) 36 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#2|) 13 T ELT)) (-4246 (((-660 |#2|) $) 21 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 25 T ELT))) +(((-864 |#1| |#2|) (-10 -7 (-15 -2930 (|#1| |#1| |#1|)) (-15 -2931 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2639 |#1|)) |#1| |#1|)) (-15 -2932 (|#1| |#1| |#1|)) (-15 -2933 ((-3 |#1| #1="failed") |#1| |#1|)) (-15 -2934 (|#1| |#1| |#1|)) (-15 -2935 (|#1| |#1| |#1|)) (-15 -2936 (|#1| |#1| |#1|)) (-15 -2937 ((-2 (|:| |coef1| |#1|) (|:| |coef2| |#1|) (|:| -2639 |#1|)) |#1| |#1|)) (-15 -2938 (|#1| |#1| |#1|)) (-15 -2939 ((-3 |#1| #1#) |#1| |#1|)) (-15 -2940 (|#1| |#1| |#1|)) (-15 -2941 (|#1| |#1| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -3217 (|#2| |#1|)) (-15 -3885 ((-3 |#1| #1#) |#1| |#2|)) (-15 -4246 ((-660 |#2|) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -4375 (|#1| (-558))) (-15 * (|#1| |#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4375 ((-876) |#1|))) (-865 |#2|) (-1069)) (T -864)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-2934 (($ $ $) 55 (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) 56 (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) 58 (|has| |#1| (-376)) ELT)) (-2932 (($ $ $) 53 (|has| |#1| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 52 (|has| |#1| (-376)) ELT)) (-2933 (((-3 $ "failed") $ $) 54 (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 57 (|has| |#1| (-376)) ELT)) (-3574 (((-3 (-558) #1="failed") $) 85 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 82 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 79 T ELT)) (-3573 (((-558) $) 84 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 81 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 80 T ELT)) (-4388 (($ $) 74 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3922 (($ $) 65 (|has| |#1| (-464)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3293 (($ |#1| (-790)) 72 T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 67 (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 68 (|has| |#1| (-569)) ELT)) (-3220 (((-790) $) 76 T ELT)) (-2940 (($ $ $) 62 (|has| |#1| (-376)) ELT)) (-2941 (($ $ $) 63 (|has| |#1| (-376)) ELT)) (-2930 (($ $ $) 51 (|has| |#1| (-376)) ELT)) (-2938 (($ $ $) 60 (|has| |#1| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 59 (|has| |#1| (-376)) ELT)) (-2939 (((-3 $ "failed") $ $) 61 (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 64 (|has| |#1| (-376)) ELT)) (-3591 ((|#1| $) 75 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ |#1|) 69 (|has| |#1| (-569)) ELT)) (-4377 (((-790) $) 77 T ELT)) (-3217 ((|#1| $) 66 (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 83 (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) 78 T ELT)) (-4246 (((-660 |#1|) $) 71 T ELT)) (-4106 ((|#1| $ (-790)) 73 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2943 ((|#1| $ |#1| |#1|) 70 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 87 T ELT) (($ |#1| $) 86 T ELT))) +(((-865 |#1|) (-142) (-1069)) (T -865)) +((-4377 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-4388 (*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-3293 (*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-660 *3)))) (-2943 (*1 *2 *1 *2 *2) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) (-3885 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-569)))) (-2944 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) (-2945 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) (-3217 (*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) (-3922 (*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) (-2946 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) (-2941 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2940 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2939 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2938 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2937 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2639 *1))) (-4 *1 (-865 *3)))) (-2936 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2947 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) (-2935 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2934 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2933 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2932 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-2931 (*1 *2 *1 *1) (-12 (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2639 *1))) (-4 *1 (-865 *3)))) (-2930 (*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(-13 (-1069) (-111 |t#1| |t#1|) (-424 |t#1|) (-10 -8 (-15 -4377 ((-790) $)) (-15 -3220 ((-790) $)) (-15 -3591 (|t#1| $)) (-15 -4388 ($ $)) (-15 -4106 (|t#1| $ (-790))) (-15 -3293 ($ |t#1| (-790))) (-15 -4246 ((-660 |t#1|) $)) (-15 -2943 (|t#1| $ |t#1| |t#1|)) (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3885 ((-3 $ "failed") $ |t#1|)) (-15 -2944 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -2945 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3217 (|t#1| $)) (-15 -3922 ($ $))) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-15 -2946 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -2941 ($ $ $)) (-15 -2940 ($ $ $)) (-15 -2939 ((-3 $ "failed") $ $)) (-15 -2938 ($ $ $)) (-15 -2937 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $)) (-15 -2936 ($ $ $)) (-15 -2947 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -2935 ($ $ $)) (-15 -2934 ($ $ $)) (-15 -2933 ((-3 $ "failed") $ $)) (-15 -2932 ($ $ $)) (-15 -2931 ((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $)) (-15 -2930 ($ $ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-424 |#1|) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-745) . T) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2942 ((|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|)) 20 T ELT)) (-2947 (((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|)) 46 (|has| |#1| (-376)) ELT)) (-2945 (((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|)) 43 (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|)) 42 (|has| |#1| (-569)) ELT)) (-2946 (((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|)) 45 (|has| |#1| (-376)) ELT)) (-2943 ((|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|)) 33 T ELT))) +(((-866 |#1| |#2|) (-10 -7 (-15 -2942 (|#2| |#2| |#2| (-99 |#1|) (-1 |#1| |#1|))) (-15 -2943 (|#1| |#2| |#1| |#1| (-99 |#1|) (-1 |#1| |#1|))) (IF (|has| |#1| (-569)) (PROGN (-15 -2944 ((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2945 ((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -2946 ((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|))) (-15 -2947 ((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2| (-99 |#1|)))) |%noBranch|)) (-1069) (-865 |#1|)) (T -866)) +((-2947 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-2946 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-2945 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-2944 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1069)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) (-4 *3 (-865 *5)))) (-2943 (*1 *2 *3 *2 *2 *4 *5) (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1069)) (-5 *1 (-866 *2 *3)) (-4 *3 (-865 *2)))) (-2942 (*1 *2 *2 *2 *3 *4) (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1069)) (-5 *1 (-866 *5 *2)) (-4 *2 (-865 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2934 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2932 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2933 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 34 (|has| |#1| (-376)) ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT)) (-3952 (((-876) $ (-876)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) NIL T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 30 (|has| |#1| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 28 (|has| |#1| (-569)) ELT)) (-3220 (((-790) $) NIL T ELT)) (-2940 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2941 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2938 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-2939 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 32 (|has| |#1| (-376)) ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4377 (((-790) $) NIL T ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (($ |#1|) NIL T ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2943 ((|#1| $ |#1| |#1|) 15 T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) 23 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) 19 T ELT) (($ $ (-790)) 24 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 13 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT))) +(((-867 |#1| |#2| |#3|) (-13 (-865 |#1|) (-10 -8 (-15 -3952 ((-876) $ (-876))))) (-1069) (-99 |#1|) (-1 |#1| |#1|)) (T -867)) +((-3952 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2934 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2935 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2936 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2932 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2931 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2933 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-2947 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#2| (-464)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-790)) 17 T ELT)) (-2945 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-2944 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3220 (((-790) $) NIL T ELT)) (-2940 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2941 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2938 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-2937 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-2939 (((-3 $ #1#) $ $) NIL (|has| |#2| (-376)) ELT)) (-2946 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3591 ((|#2| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-4377 (((-790) $) NIL T ELT)) (-3217 ((|#2| $) NIL (|has| |#2| (-464)) ELT)) (-4375 (((-876) $) 24 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (($ (-1284 |#1|)) 19 T ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-790)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2943 ((|#2| $ |#2| |#2|) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) 13 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT))) +(((-868 |#1| |#2| |#3| |#4|) (-13 (-865 |#2|) (-632 (-1284 |#1|))) (-1197) (-1069) (-99 |#2|) (-1 |#2| |#2|)) (T -868)) +NIL +((-2950 ((|#1| (-790) |#1|) 45 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2949 ((|#1| (-790) (-790) |#1|) 36 T ELT) ((|#1| (-790) |#1|) 24 T ELT)) (-2948 ((|#1| (-790) |#1|) 40 T ELT)) (-3200 ((|#1| (-790) |#1|) 38 T ELT)) (-3199 ((|#1| (-790) |#1|) 37 T ELT))) +(((-869 |#1|) (-10 -7 (-15 -3199 (|#1| (-790) |#1|)) (-15 -3200 (|#1| (-790) |#1|)) (-15 -2948 (|#1| (-790) |#1|)) (-15 -2949 (|#1| (-790) |#1|)) (-15 -2949 (|#1| (-790) (-790) |#1|)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -2950 (|#1| (-790) |#1|)) |%noBranch|)) (-175)) (T -869)) +((-2950 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175)))) (-2949 (*1 *2 *3 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) (-2949 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) (-2948 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) (-3200 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) (-3199 (*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175))))) +((-2966 (((-114) $ $) 7 T ELT)) (-2929 (($ $ $) 23 T ELT)) (-3257 (($ $ $) 22 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2964 (((-114) $ $) 21 T ELT)) (-2965 (((-114) $ $) 19 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 20 T ELT)) (-3085 (((-114) $ $) 18 T ELT)) (** (($ $ (-937)) 26 T ELT)) (* (($ $ $) 25 T ELT))) +(((-870) (-142)) (T -870)) +NIL +(-13 (-860) (-1132)) +(((-102) . T) ((-629 (-876)) . T) ((-860) . T) ((-863) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3821 (((-558) $) 14 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-558)) 13 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 9 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 11 T ELT))) +(((-871) (-13 (-860) (-10 -8 (-15 -4375 ($ (-558))) (-15 -3821 ((-558) $))))) (T -871)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-871)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-871))))) +((-2951 (((-1293) (-660 (-51))) 23 T ELT)) (-3879 (((-1293) (-1179) (-876)) 13 T ELT) (((-1293) (-876)) 8 T ELT) (((-1293) (-1179)) 10 T ELT))) +(((-872) (-10 -7 (-15 -3879 ((-1293) (-1179))) (-15 -3879 ((-1293) (-876))) (-15 -3879 ((-1293) (-1179) (-876))) (-15 -2951 ((-1293) (-660 (-51)))))) (T -872)) +((-2951 (*1 *2 *3) (-12 (-5 *3 (-660 (-51))) (-5 *2 (-1293)) (-5 *1 (-872)))) (-3879 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-872)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-872)))) (-3879 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-872))))) +((-2953 (((-710 (-1246)) $ (-1246)) 15 T ELT)) (-2954 (((-710 (-562)) $ (-562)) 12 T ELT)) (-2952 (((-790) $ (-131)) 30 T ELT))) +(((-873 |#1|) (-10 -7 (-15 -2952 ((-790) |#1| (-131))) (-15 -2953 ((-710 (-1246)) |#1| (-1246))) (-15 -2954 ((-710 (-562)) |#1| (-562)))) (-874)) (T -873)) +NIL +((-2953 (((-710 (-1246)) $ (-1246)) 8 T ELT)) (-2954 (((-710 (-562)) $ (-562)) 9 T ELT)) (-2952 (((-790) $ (-131)) 7 T ELT)) (-2955 (((-710 (-130)) $ (-130)) 10 T ELT)) (-1902 (($ $) 6 T ELT))) +(((-874) (-142)) (T -874)) +((-2955 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-710 (-130))) (-5 *3 (-130)))) (-2954 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-710 (-562))) (-5 *3 (-562)))) (-2953 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-710 (-1246))) (-5 *3 (-1246)))) (-2952 (*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-131)) (-5 *2 (-790))))) +(-13 (-176) (-10 -8 (-15 -2955 ((-710 (-130)) $ (-130))) (-15 -2954 ((-710 (-562)) $ (-562))) (-15 -2953 ((-710 (-1246)) $ (-1246))) (-15 -2952 ((-790) $ (-131))))) (((-176) . T)) -((-2954 (((-711 (-1247)) $ (-1247)) NIL T ELT)) (-2955 (((-711 (-562)) $ (-562)) NIL T ELT)) (-2953 (((-791) $ (-131)) NIL T ELT)) (-2956 (((-711 (-130)) $ (-130)) 22 T ELT)) (-2958 (($ (-402)) 12 T ELT) (($ (-1180)) 14 T ELT)) (-2957 (((-114) $) 19 T ELT)) (-4376 (((-877) $) 26 T ELT)) (-1903 (($ $) 23 T ELT))) -(((-876) (-13 (-875) (-630 (-877)) (-10 -8 (-15 -2958 ($ (-402))) (-15 -2958 ($ (-1180))) (-15 -2957 ((-114) $))))) (T -876)) -((-2958 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-876)))) (-2958 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-876)))) (-2957 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-876))))) -((-2967 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2988 (($ $ $) 125 T ELT)) (-3003 (((-558) $) 31 T ELT) (((-558)) 36 T ELT)) (-2998 (($ (-558)) 53 T ELT)) (-2995 (($ $ $) 54 T ELT) (($ (-661 $)) 84 T ELT)) (-2979 (($ $ (-661 $)) 82 T ELT)) (-3000 (((-558) $) 34 T ELT)) (-2982 (($ $ $) 73 T ELT)) (-3952 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3001 (((-558) $) 33 T ELT)) (-2983 (($ $ $) 72 T ELT)) (-3963 (($ $) 114 T ELT)) (-2986 (($ $ $) 129 T ELT)) (-2969 (($ (-661 $)) 61 T ELT)) (-3968 (($ $ (-661 $)) 79 T ELT)) (-2997 (($ (-558) (-558)) 55 T ELT)) (-3010 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3539 (($ $ (-558)) 43 T ELT) (($ $) 46 T ELT)) (-2963 (($ $ $) 97 T ELT)) (-2984 (($ $ $) 132 T ELT)) (-2978 (($ $) 115 T ELT)) (-2962 (($ $ $) 98 T ELT)) (-2974 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-3238 (((-1294) $) 10 T ELT)) (-2977 (($ $) 118 T ELT) (($ $ (-791)) 122 T ELT)) (-2980 (($ $ $) 75 T ELT)) (-2981 (($ $ $) 74 T ELT)) (-2994 (($ $ (-661 $)) 110 T ELT)) (-2992 (($ $ $) 113 T ELT)) (-2971 (($ (-661 $)) 59 T ELT)) (-2972 (($ $) 70 T ELT) (($ (-661 $)) 71 T ELT)) (-2975 (($ $ $) 123 T ELT)) (-2976 (($ $) 116 T ELT)) (-2987 (($ $ $) 128 T ELT)) (-3953 (($ (-558)) 21 T ELT) (($ (-1198)) 23 T ELT) (($ (-1180)) 30 T ELT) (($ (-229)) 25 T ELT)) (-2960 (($ $ $) 101 T ELT)) (-2959 (($ $) 102 T ELT)) (-3005 (((-1294) (-1180)) 15 T ELT)) (-3006 (($ (-1180)) 14 T ELT)) (-3526 (($ (-661 (-661 $))) 58 T ELT)) (-3540 (($ $ (-558)) 42 T ELT) (($ $) 45 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2990 (($ $ $) 131 T ELT)) (-3890 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2991 (((-114) $) 108 T ELT)) (-2993 (($ $ (-661 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2999 (($ (-558)) 39 T ELT)) (-3002 (((-558) $) 32 T ELT) (((-558)) 35 T ELT)) (-2996 (($ $ $) 40 T ELT) (($ (-661 $)) 83 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (($ $ $) 99 T ELT)) (-3993 (($) 13 T ELT)) (-4230 (($ $ (-661 $)) 109 T ELT)) (-3004 (((-1180) (-1180)) 8 T ELT)) (-4266 (($ $) 117 T ELT) (($ $ (-791)) 121 T ELT)) (-2964 (($ $ $) 96 T ELT)) (-4188 (($ $ (-791)) 139 T ELT)) (-2970 (($ (-661 $)) 60 T ELT)) (-4376 (((-877) $) 19 T ELT)) (-4203 (($ $ (-558)) 41 T ELT) (($ $) 44 T ELT)) (-2973 (($ $) 68 T ELT) (($ (-661 $)) 69 T ELT)) (-3658 (($ $) 66 T ELT) (($ (-661 $)) 67 T ELT)) (-2989 (($ $) 124 T ELT)) (-2968 (($ (-661 $)) 65 T ELT)) (-3504 (($ $ $) 105 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2985 (($ $ $) 130 T ELT)) (-2961 (($ $ $) 100 T ELT)) (-4167 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2965 (($ $ $) 89 T ELT)) (-2966 (($ $ $) 87 T ELT)) (-3454 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-3085 (($ $ $) 88 T ELT)) (-3086 (($ $ $) 86 T ELT)) (-4379 (($ $ $) 94 T ELT)) (-4267 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-4269 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) -(((-877) (-13 (-1122) (-10 -8 (-15 -3238 ((-1294) $)) (-15 -3006 ($ (-1180))) (-15 -3005 ((-1294) (-1180))) (-15 -3953 ($ (-558))) (-15 -3953 ($ (-1198))) (-15 -3953 ($ (-1180))) (-15 -3953 ($ (-229))) (-15 -3993 ($)) (-15 -3004 ((-1180) (-1180))) (-15 -3003 ((-558) $)) (-15 -3002 ((-558) $)) (-15 -3003 ((-558))) (-15 -3002 ((-558))) (-15 -3001 ((-558) $)) (-15 -3000 ((-558) $)) (-15 -2999 ($ (-558))) (-15 -2998 ($ (-558))) (-15 -2997 ($ (-558) (-558))) (-15 -3540 ($ $ (-558))) (-15 -3539 ($ $ (-558))) (-15 -4203 ($ $ (-558))) (-15 -3540 ($ $)) (-15 -3539 ($ $)) (-15 -4203 ($ $)) (-15 -2996 ($ $ $)) (-15 -2995 ($ $ $)) (-15 -2996 ($ (-661 $))) (-15 -2995 ($ (-661 $))) (-15 -2994 ($ $ (-661 $))) (-15 -2993 ($ $ (-661 $))) (-15 -2993 ($ $ $ $)) (-15 -2992 ($ $ $)) (-15 -2991 ((-114) $)) (-15 -4230 ($ $ (-661 $))) (-15 -3963 ($ $)) (-15 -2990 ($ $ $)) (-15 -2989 ($ $)) (-15 -3526 ($ (-661 (-661 $)))) (-15 -2988 ($ $ $)) (-15 -3010 ($ $)) (-15 -3010 ($ $ $)) (-15 -2987 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -4188 ($ $ (-791))) (-15 -3504 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2980 ($ $ $)) (-15 -3968 ($ $ (-661 $))) (-15 -2979 ($ $ (-661 $))) (-15 -2978 ($ $)) (-15 -4266 ($ $)) (-15 -4266 ($ $ (-791))) (-15 -2977 ($ $)) (-15 -2977 ($ $ (-791))) (-15 -2976 ($ $)) (-15 -2975 ($ $ $)) (-15 -3952 ($ $)) (-15 -3952 ($ $ $)) (-15 -3952 ($ $ $ $)) (-15 -2974 ($ $)) (-15 -2974 ($ $ $)) (-15 -2974 ($ $ $ $)) (-15 -3890 ($ $)) (-15 -3890 ($ $ $)) (-15 -3890 ($ $ $ $)) (-15 -3658 ($ $)) (-15 -3658 ($ (-661 $))) (-15 -2973 ($ $)) (-15 -2973 ($ (-661 $))) (-15 -2972 ($ $)) (-15 -2972 ($ (-661 $))) (-15 -2971 ($ (-661 $))) (-15 -2970 ($ (-661 $))) (-15 -2969 ($ (-661 $))) (-15 -2968 ($ (-661 $))) (-15 -3454 ($ $ $)) (-15 -2967 ($ $ $)) (-15 -3086 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -4269 ($ $ $)) (-15 -4267 ($ $ $)) (-15 -4267 ($ $)) (-15 * ($ $ $)) (-15 -4379 ($ $ $)) (-15 ** ($ $ $)) (-15 -2964 ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -3886 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -2959 ($ $)) (-15 -4167 ($ $ $)) (-15 -4167 ($ $))))) (T -877)) -((-3238 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-877)))) (-3006 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-3005 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-877)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-877)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-877)))) (-3993 (*1 *1) (-5 *1 (-877))) (-3004 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) (-3003 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3003 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3002 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-2999 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-2997 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3540 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-4203 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) (-3540 (*1 *1 *1) (-5 *1 (-877))) (-3539 (*1 *1 *1) (-5 *1 (-877))) (-4203 (*1 *1 *1) (-5 *1 (-877))) (-2996 (*1 *1 *1 *1) (-5 *1 (-877))) (-2995 (*1 *1 *1 *1) (-5 *1 (-877))) (-2996 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2994 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2993 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-2992 (*1 *1 *1 *1) (-5 *1 (-877))) (-2991 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-877)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-3963 (*1 *1 *1) (-5 *1 (-877))) (-2990 (*1 *1 *1 *1) (-5 *1 (-877))) (-2989 (*1 *1 *1) (-5 *1 (-877))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-877)))) (-5 *1 (-877)))) (-2988 (*1 *1 *1 *1) (-5 *1 (-877))) (-3010 (*1 *1 *1) (-5 *1 (-877))) (-3010 (*1 *1 *1 *1) (-5 *1 (-877))) (-2987 (*1 *1 *1 *1) (-5 *1 (-877))) (-2986 (*1 *1 *1 *1) (-5 *1 (-877))) (-2985 (*1 *1 *1 *1) (-5 *1 (-877))) (-2984 (*1 *1 *1 *1) (-5 *1 (-877))) (-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-877)))) (-3504 (*1 *1 *1 *1) (-5 *1 (-877))) (-2983 (*1 *1 *1 *1) (-5 *1 (-877))) (-2982 (*1 *1 *1 *1) (-5 *1 (-877))) (-2981 (*1 *1 *1 *1) (-5 *1 (-877))) (-2980 (*1 *1 *1 *1) (-5 *1 (-877))) (-3968 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2979 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2978 (*1 *1 *1) (-5 *1 (-877))) (-4266 (*1 *1 *1) (-5 *1 (-877))) (-4266 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-877)))) (-2977 (*1 *1 *1) (-5 *1 (-877))) (-2977 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-877)))) (-2976 (*1 *1 *1) (-5 *1 (-877))) (-2975 (*1 *1 *1 *1) (-5 *1 (-877))) (-3952 (*1 *1 *1) (-5 *1 (-877))) (-3952 (*1 *1 *1 *1) (-5 *1 (-877))) (-3952 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-2974 (*1 *1 *1) (-5 *1 (-877))) (-2974 (*1 *1 *1 *1) (-5 *1 (-877))) (-2974 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-3890 (*1 *1 *1) (-5 *1 (-877))) (-3890 (*1 *1 *1 *1) (-5 *1 (-877))) (-3890 (*1 *1 *1 *1 *1) (-5 *1 (-877))) (-3658 (*1 *1 *1) (-5 *1 (-877))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2973 (*1 *1 *1) (-5 *1 (-877))) (-2973 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2972 (*1 *1 *1) (-5 *1 (-877))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) (-3454 (*1 *1 *1 *1) (-5 *1 (-877))) (-2967 (*1 *1 *1 *1) (-5 *1 (-877))) (-3086 (*1 *1 *1 *1) (-5 *1 (-877))) (-2966 (*1 *1 *1 *1) (-5 *1 (-877))) (-3085 (*1 *1 *1 *1) (-5 *1 (-877))) (-2965 (*1 *1 *1 *1) (-5 *1 (-877))) (-4269 (*1 *1 *1 *1) (-5 *1 (-877))) (-4267 (*1 *1 *1 *1) (-5 *1 (-877))) (-4267 (*1 *1 *1) (-5 *1 (-877))) (* (*1 *1 *1 *1) (-5 *1 (-877))) (-4379 (*1 *1 *1 *1) (-5 *1 (-877))) (** (*1 *1 *1 *1) (-5 *1 (-877))) (-2964 (*1 *1 *1 *1) (-5 *1 (-877))) (-2963 (*1 *1 *1 *1) (-5 *1 (-877))) (-2962 (*1 *1 *1 *1) (-5 *1 (-877))) (-3886 (*1 *1 *1 *1) (-5 *1 (-877))) (-2961 (*1 *1 *1 *1) (-5 *1 (-877))) (-2960 (*1 *1 *1 *1) (-5 *1 (-877))) (-2959 (*1 *1 *1) (-5 *1 (-877))) (-4167 (*1 *1 *1 *1) (-5 *1 (-877))) (-4167 (*1 *1 *1) (-5 *1 (-877)))) -((-2967 (((-114) $ $) NIL T ELT)) (-4261 (((-3 $ "failed") (-1198)) 36 T ELT)) (-3538 (((-791)) 32 T ELT)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) 29 T ELT)) (-3660 (((-1180) $) 43 T ELT)) (-2631 (($ (-938)) 28 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4402 (((-1198) $) 13 T ELT) (((-547) $) 19 T ELT) (((-905 (-391)) $) 26 T ELT) (((-905 (-558)) $) 22 T ELT)) (-4376 (((-877) $) 16 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 40 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 38 T ELT))) -(((-878 |#1|) (-13 (-857) (-631 (-1198)) (-631 (-547)) (-631 (-905 (-391))) (-631 (-905 (-558))) (-10 -8 (-15 -4261 ((-3 $ "failed") (-1198))))) (-661 (-1198))) (T -878)) -((-4261 (*1 *1 *2) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-878 *3)) (-14 *3 (-661 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3970 (((-518) $) 9 T ELT)) (-3007 (((-661 (-451)) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 21 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 16 T ELT))) -(((-879) (-13 (-1122) (-10 -8 (-15 -3970 ((-518) $)) (-15 -3007 ((-661 (-451)) $))))) (T -879)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) (-3007 (*1 *2 *1) (-12 (-5 *2 (-661 (-451))) (-5 *1 (-879))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-965 |#1|)) NIL T ELT) (((-965 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4353 (((-1294) (-791)) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-880 |#1| |#2| |#3| |#4|) (-13 (-1070) (-502 (-965 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4379 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4353 ((-1294) (-791))))) (-1070) (-661 (-1198)) (-661 (-791)) (-791)) (T -880)) -((-4379 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1070)) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-791))) (-14 *5 (-791)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-880 *4 *5 *6 *7)) (-4 *4 (-1070)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 *3)) (-14 *7 *3)))) -((-3008 (((-3 (-177 |#3|) #1="failed") (-791) (-791) |#2| |#2|) 38 T ELT)) (-3009 (((-3 (-419 |#3|) #1#) (-791) (-791) |#2| |#2|) 29 T ELT))) -(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -3009 ((-3 (-419 |#3|) #1="failed") (-791) (-791) |#2| |#2|)) (-15 -3008 ((-3 (-177 |#3|) #1#) (-791) (-791) |#2| |#2|))) (-376) (-1281 |#1|) (-1264 |#1|)) (T -881)) -((-3008 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1281 *5)) (-4 *6 (-1264 *5)))) (-3009 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-419 *6)) (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1281 *5)) (-4 *6 (-1264 *5))))) -((-3009 (((-3 (-419 (-1257 |#2| |#1|)) #1="failed") (-791) (-791) (-1278 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-419 (-1257 |#2| |#1|)) #1#) (-791) (-791) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) 28 T ELT))) -(((-882 |#1| |#2| |#3|) (-10 -7 (-15 -3009 ((-3 (-419 (-1257 |#2| |#1|)) #1="failed") (-791) (-791) (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (-15 -3009 ((-3 (-419 (-1257 |#2| |#1|)) #1#) (-791) (-791) (-1278 |#1| |#2| |#3|)))) (-376) (-1198) |#1|) (T -882)) -((-3009 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1257 *6 *5))) (-5 *1 (-882 *5 *6 *7)))) (-3009 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1257 *6 *5))) (-5 *1 (-882 *5 *6 *7))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $ (-558)) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3010 (($ (-1192 (-558)) (-558)) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3011 (($ $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4202 (((-791) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-3013 (((-558)) NIL T ELT)) (-3012 (((-558) $) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4199 (($ $ (-558)) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3014 (((-1176 (-558)) $) NIL T ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-558) $ (-558)) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-883 |#1|) (-884 |#1|) (-558)) (T -883)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3438 (($ $ (-558)) 75 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-3010 (($ (-1192 (-558)) (-558)) 74 T ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3011 (($ $) 77 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4202 (((-791) $) 82 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-3013 (((-558)) 79 T ELT)) (-3012 (((-558) $) 78 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-4199 (($ $ (-558)) 81 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-3014 (((-1176 (-558)) $) 83 T ELT)) (-3292 (($ $) 80 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-4200 (((-558) $ (-558)) 76 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-884 |#1|) (-142) (-558)) (T -884)) -((-3014 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-1176 (-558))))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-791)))) (-4199 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) (-3292 (*1 *1 *1) (-4 *1 (-884 *2))) (-3013 (*1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) (-3012 (*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) (-3011 (*1 *1 *1) (-4 *1 (-884 *2))) (-4200 (*1 *2 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) (-3438 (*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) (-3010 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *3 (-558)) (-4 *1 (-884 *4))))) -(-13 (-319) (-149) (-10 -8 (-15 -3014 ((-1176 (-558)) $)) (-15 -4202 ((-791) $)) (-15 -4199 ($ $ (-558))) (-15 -3292 ($ $)) (-15 -3013 ((-558))) (-15 -3012 ((-558) $)) (-15 -3011 ($ $)) (-15 -4200 ((-558) $ (-558))) (-15 -3438 ($ $ (-558))) (-15 -3010 ($ (-1192 (-558)) (-558))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-883 |#1|) $) NIL (|has| (-883 |#1|) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-883 |#1|) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-883 |#1|) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-883 |#1|) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-883 |#1|) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-883 |#1|) (-1059 (-558))) ELT)) (-3574 (((-883 |#1|) $) NIL T ELT) (((-1198) $) NIL (|has| (-883 |#1|) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-883 |#1|) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-883 |#1|) (-1059 (-558))) ELT)) (-4160 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-883 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-883 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-883 |#1|))) (|:| |vec| (-1288 (-883 |#1|)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-883 |#1|)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-883 |#1|) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| (-883 |#1|) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-883 |#1|) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-883 |#1|) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-883 |#1|) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| (-883 |#1|) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-883 |#1|) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-883 |#1|) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-883 |#1|) (-861)) ELT)) (-4388 (($ (-1 (-883 |#1|) (-883 |#1|)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-883 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-883 |#1|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-883 |#1|))) (|:| |vec| (-1288 (-883 |#1|)))) (-1288 $) $) NIL T ELT) (((-709 (-883 |#1|)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-883 |#1|) (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-883 |#1|) (-319)) ELT)) (-3532 (((-883 |#1|) $) NIL (|has| (-883 |#1|) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-883 |#1|) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-883 |#1|)) (-661 (-883 |#1|))) NIL (|has| (-883 |#1|) (-321 (-883 |#1|))) ELT) (($ $ (-883 |#1|) (-883 |#1|)) NIL (|has| (-883 |#1|) (-321 (-883 |#1|))) ELT) (($ $ (-305 (-883 |#1|))) NIL (|has| (-883 |#1|) (-321 (-883 |#1|))) ELT) (($ $ (-661 (-305 (-883 |#1|)))) NIL (|has| (-883 |#1|) (-321 (-883 |#1|))) ELT) (($ $ (-661 (-1198)) (-661 (-883 |#1|))) NIL (|has| (-883 |#1|) (-526 (-1198) (-883 |#1|))) ELT) (($ $ (-1198) (-883 |#1|)) NIL (|has| (-883 |#1|) (-526 (-1198) (-883 |#1|))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-883 |#1|)) NIL (|has| (-883 |#1|) (-298 (-883 |#1|) (-883 |#1|))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-883 |#1|) (-883 |#1|))) NIL T ELT) (($ $ (-1 (-883 |#1|) (-883 |#1|)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $) NIL (|has| (-883 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-883 |#1|) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-883 |#1|) $) NIL T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-883 |#1|) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-883 |#1|) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-883 |#1|) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-883 |#1|) (-1041)) ELT) (((-229) $) NIL (|has| (-883 |#1|) (-1041)) ELT)) (-3015 (((-177 (-419 (-558))) $) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-883 |#1|) (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-883 |#1|)) NIL T ELT) (($ (-1198)) NIL (|has| (-883 |#1|) (-1059 (-1198))) ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-883 |#1|) (-929))) (|has| (-883 |#1|) (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 (((-883 |#1|) $) NIL (|has| (-883 |#1|) (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-419 (-558)) $ (-558)) NIL T ELT)) (-3803 (($ $) NIL (|has| (-883 |#1|) (-842)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-883 |#1|) (-883 |#1|))) NIL T ELT) (($ $ (-1 (-883 |#1|) (-883 |#1|)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-883 |#1|) (-919 (-1198))) ELT) (($ $) NIL (|has| (-883 |#1|) (-239)) ELT) (($ $ (-791)) NIL (|has| (-883 |#1|) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-883 |#1|) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-883 |#1|) (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| (-883 |#1|) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-883 |#1|) (-861)) ELT)) (-4379 (($ $ $) NIL T ELT) (($ (-883 |#1|) (-883 |#1|)) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-883 |#1|) $) NIL T ELT) (($ $ (-883 |#1|)) NIL T ELT))) -(((-885 |#1|) (-13 (-1012 (-883 |#1|)) (-10 -8 (-15 -4200 ((-419 (-558)) $ (-558))) (-15 -3015 ((-177 (-419 (-558))) $)) (-15 -4160 ($ $)) (-15 -4160 ($ (-558) $)))) (-558)) (T -885)) -((-4200 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-885 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3015 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-885 *3)) (-14 *3 (-558)))) (-4160 (*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-558)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-885 *3)) (-14 *3 *2)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| |#2| (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (|has| |#2| (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT)) (-3574 ((|#2| $) NIL T ELT) (((-1198) $) NIL (|has| |#2| (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT)) (-4160 (($ $) 35 T ELT) (($ (-558) $) 38 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) 64 T ELT)) (-3395 (($) NIL (|has| |#2| (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| |#2| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| |#2| (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 ((|#2| $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| |#2| (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| |#2| (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#2| (-861)) ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 60 T ELT)) (-3866 (($) NIL (|has| |#2| (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3532 ((|#2| $) NIL (|has| |#2| (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 |#2|) (-661 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-661 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-661 (-1198)) (-661 |#2|)) NIL (|has| |#2| (-526 (-1198) |#2|)) ELT) (($ $ (-1198) |#2|) NIL (|has| |#2| (-526 (-1198) |#2|)) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 ((|#2| $) NIL T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| |#2| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| |#2| (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| |#2| (-631 (-547))) ELT) (((-391) $) NIL (|has| |#2| (-1041)) ELT) (((-229) $) NIL (|has| |#2| (-1041)) ELT)) (-3015 (((-177 (-419 (-558))) $) 78 T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-929))) ELT)) (-4376 (((-877) $) 106 T ELT) (($ (-558)) 20 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1198)) NIL (|has| |#2| (-1059 (-1198))) ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#2| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-3533 ((|#2| $) NIL (|has| |#2| (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-419 (-558)) $ (-558)) 71 T ELT)) (-3803 (($ $) NIL (|has| |#2| (-842)) ELT)) (-3059 (($) 15 T CONST)) (-3065 (($) 17 T CONST)) (-3070 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3454 (((-114) $ $) 46 T ELT)) (-3085 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#2| (-861)) ELT)) (-4379 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-4267 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-4269 (($ $ $) 48 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) 61 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) -(((-886 |#1| |#2|) (-13 (-1012 |#2|) (-10 -8 (-15 -4200 ((-419 (-558)) $ (-558))) (-15 -3015 ((-177 (-419 (-558))) $)) (-15 -4160 ($ $)) (-15 -4160 ($ (-558) $)))) (-558) (-884 |#1|)) (T -886)) -((-4200 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-558))) (-5 *1 (-886 *4 *5)) (-5 *3 (-558)) (-4 *5 (-884 *4)))) (-3015 (*1 *2 *1) (-12 (-14 *3 (-558)) (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-886 *3 *4)) (-4 *4 (-884 *3)))) (-4160 (*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-886 *2 *3)) (-4 *3 (-884 *2)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) (-4 *4 (-884 *3))))) -((-2967 (((-114) $ $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-4226 ((|#2| $) 12 T ELT)) (-3016 (($ |#1| |#2|) 9 T ELT)) (-3660 (((-1180) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-3661 (((-1141) $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#1| $) 11 T ELT)) (-3950 (($ |#1| |#2|) 10 T ELT)) (-4376 (((-877) $) 18 (-3957 (-12 (|has| |#1| (-630 (-877))) (|has| |#2| (-630 (-877)))) (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122)))) ELT)) (-1378 (((-114) $ $) NIL (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT)) (-3454 (((-114) $ $) 23 (-12 (|has| |#1| (-1122)) (|has| |#2| (-1122))) ELT))) -(((-887 |#1| |#2|) (-13 (-1238) (-10 -8 (IF (|has| |#1| (-630 (-877))) (IF (|has| |#2| (-630 (-877))) (-6 (-630 (-877))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1122)) (IF (|has| |#2| (-1122)) (-6 (-1122)) |%noBranch|) |%noBranch|) (-15 -3016 ($ |#1| |#2|)) (-15 -3950 ($ |#1| |#2|)) (-15 -4231 (|#1| $)) (-15 -4226 (|#2| $)))) (-1238) (-1238)) (T -887)) -((-3016 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-3950 (*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) (-4231 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) (-4226 (*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3358 (((-558) $) 16 T ELT)) (-3018 (($ (-159)) 13 T ELT)) (-3017 (($ (-159)) 14 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3357 (((-159) $) 15 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3020 (($ (-159)) 11 T ELT)) (-3021 (($ (-159)) 10 T ELT)) (-4376 (((-877) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-3019 (($ (-159)) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-888) (-13 (-1122) (-10 -8 (-15 -3021 ($ (-159))) (-15 -3020 ($ (-159))) (-15 -3019 ($ (-159))) (-15 -3018 ($ (-159))) (-15 -3017 ($ (-159))) (-15 -3357 ((-159) $)) (-15 -3358 ((-558) $)) (-15 -4376 ($ (-159)))))) (T -888)) -((-3021 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) (-3020 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) (-3017 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) (-3358 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-888)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888))))) -((-4376 (((-326 (-558)) (-419 (-965 (-48)))) 23 T ELT) (((-326 (-558)) (-965 (-48))) 18 T ELT))) -(((-889) (-10 -7 (-15 -4376 ((-326 (-558)) (-965 (-48)))) (-15 -4376 ((-326 (-558)) (-419 (-965 (-48))))))) (T -889)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 (-48)))) (-5 *2 (-326 (-558))) (-5 *1 (-889)))) (-4376 (*1 *2 *3) (-12 (-5 *3 (-965 (-48))) (-5 *2 (-326 (-558))) (-5 *1 (-889))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 18 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3994 (((-114) $ (|[\|\|]| (-518))) 9 T ELT) (((-114) $ (|[\|\|]| (-1180))) 13 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4000 (((-518) $) 10 T ELT) (((-1180) $) 14 T ELT)) (-3454 (((-114) $ $) 15 T ELT))) -(((-890) (-13 (-1104) (-1284) (-10 -8 (-15 -3994 ((-114) $ (|[\|\|]| (-518)))) (-15 -4000 ((-518) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1180)))) (-15 -4000 ((-1180) $))))) (T -890)) -((-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-890)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-114)) (-5 *1 (-890)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-890))))) -((-4388 (((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)) 15 T ELT))) -(((-891 |#1| |#2|) (-10 -7 (-15 -4388 ((-892 |#2|) (-1 |#2| |#1|) (-892 |#1|)))) (-1238) (-1238)) (T -891)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6))))) -((-3791 (($ |#1| |#1|) 8 T ELT)) (-3024 ((|#1| $ (-791)) 15 T ELT))) -(((-892 |#1|) (-10 -8 (-15 -3791 ($ |#1| |#1|)) (-15 -3024 (|#1| $ (-791)))) (-1238)) (T -892)) -((-3024 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) (-3791 (*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238))))) -((-4388 (((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)) 15 T ELT))) -(((-893 |#1| |#2|) (-10 -7 (-15 -4388 ((-894 |#2|) (-1 |#2| |#1|) (-894 |#1|)))) (-1238) (-1238)) (T -893)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6))))) -((-3791 (($ |#1| |#1| |#1|) 8 T ELT)) (-3024 ((|#1| $ (-791)) 15 T ELT))) -(((-894 |#1|) (-10 -8 (-15 -3791 ($ |#1| |#1| |#1|)) (-15 -3024 (|#1| $ (-791)))) (-1238)) (T -894)) -((-3024 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) (-3791 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238))))) -((-3022 (((-661 (-1203)) (-1180)) 9 T ELT))) -(((-895) (-10 -7 (-15 -3022 ((-661 (-1203)) (-1180))))) (T -895)) -((-3022 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-661 (-1203))) (-5 *1 (-895))))) -((-4388 (((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)) 15 T ELT))) -(((-896 |#1| |#2|) (-10 -7 (-15 -4388 ((-897 |#2|) (-1 |#2| |#1|) (-897 |#1|)))) (-1238) (-1238)) (T -896)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6))))) -((-3023 (($ |#1| |#1| |#1|) 8 T ELT)) (-3024 ((|#1| $ (-791)) 15 T ELT))) -(((-897 |#1|) (-10 -8 (-15 -3023 ($ |#1| |#1| |#1|)) (-15 -3024 (|#1| $ (-791)))) (-1238)) (T -897)) -((-3024 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-897 *2)) (-4 *2 (-1238)))) (-3023 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -((-3027 (((-1176 (-661 (-558))) (-661 (-558)) (-1176 (-661 (-558)))) 41 T ELT)) (-3026 (((-1176 (-661 (-558))) (-661 (-558)) (-661 (-558))) 31 T ELT)) (-3028 (((-1176 (-661 (-558))) (-661 (-558))) 53 T ELT) (((-1176 (-661 (-558))) (-661 (-558)) (-661 (-558))) 50 T ELT)) (-3029 (((-1176 (-661 (-558))) (-558)) 55 T ELT)) (-3025 (((-1176 (-661 (-938))) (-1176 (-661 (-938)))) 22 T ELT)) (-3410 (((-661 (-938)) (-661 (-938))) 18 T ELT))) -(((-898) (-10 -7 (-15 -3410 ((-661 (-938)) (-661 (-938)))) (-15 -3025 ((-1176 (-661 (-938))) (-1176 (-661 (-938))))) (-15 -3026 ((-1176 (-661 (-558))) (-661 (-558)) (-661 (-558)))) (-15 -3027 ((-1176 (-661 (-558))) (-661 (-558)) (-1176 (-661 (-558))))) (-15 -3028 ((-1176 (-661 (-558))) (-661 (-558)) (-661 (-558)))) (-15 -3028 ((-1176 (-661 (-558))) (-661 (-558)))) (-15 -3029 ((-1176 (-661 (-558))) (-558))))) (T -898)) -((-3029 (*1 *2 *3) (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-558)))) (-3028 (*1 *2 *3) (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-661 (-558))))) (-3028 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-661 (-558))))) (-3027 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *3 (-661 (-558))) (-5 *1 (-898)))) (-3026 (*1 *2 *3 *3) (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-661 (-558))))) (-3025 (*1 *2 *2) (-12 (-5 *2 (-1176 (-661 (-938)))) (-5 *1 (-898)))) (-3410 (*1 *2 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-898))))) -((-4402 (((-905 (-391)) $) 9 (|has| |#1| (-631 (-905 (-391)))) ELT) (((-905 (-558)) $) 8 (|has| |#1| (-631 (-905 (-558)))) ELT))) -(((-899 |#1|) (-142) (-1238)) (T -899)) -NIL -(-13 (-10 -7 (IF (|has| |t#1| (-631 (-905 (-558)))) (-6 (-631 (-905 (-558)))) |%noBranch|) (IF (|has| |t#1| (-631 (-905 (-391)))) (-6 (-631 (-905 (-391)))) |%noBranch|))) -(((-631 (-905 (-391))) |has| |#1| (-631 (-905 (-391)))) ((-631 (-905 (-558))) |has| |#1| (-631 (-905 (-558))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4044 (($) 14 T ELT)) (-3031 (($ (-903 |#1| |#2|) (-903 |#1| |#3|)) 28 T ELT)) (-3030 (((-903 |#1| |#3|) $) 16 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3039 (((-114) $) 22 T ELT)) (-3038 (($) 19 T ELT)) (-4376 (((-877) $) 31 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3251 (((-903 |#1| |#2|) $) 15 T ELT)) (-3454 (((-114) $ $) 26 T ELT))) -(((-900 |#1| |#2| |#3|) (-13 (-1122) (-10 -8 (-15 -3039 ((-114) $)) (-15 -3038 ($)) (-15 -4044 ($)) (-15 -3031 ($ (-903 |#1| |#2|) (-903 |#1| |#3|))) (-15 -3251 ((-903 |#1| |#2|) $)) (-15 -3030 ((-903 |#1| |#3|) $)))) (-1122) (-1122) (-686 |#2|)) (T -900)) -((-3039 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-114)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-686 *4)))) (-3038 (*1 *1) (-12 (-4 *3 (-1122)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1122)) (-4 *4 (-686 *3)))) (-4044 (*1 *1) (-12 (-4 *3 (-1122)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1122)) (-4 *4 (-686 *3)))) (-3031 (*1 *1 *2 *3) (-12 (-5 *2 (-903 *4 *5)) (-5 *3 (-903 *4 *6)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-686 *5)) (-5 *1 (-900 *4 *5 *6)))) (-3251 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-903 *3 *4)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-686 *4)))) (-3030 (*1 *2 *1) (-12 (-4 *4 (-1122)) (-5 *2 (-903 *3 *5)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1122)) (-4 *5 (-686 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3197 (((-903 |#1| $) $ (-905 |#1|) (-903 |#1| $)) 17 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-901 |#1|) (-142) (-1122)) (T -901)) -((-3197 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-903 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-901 *4)) (-4 *4 (-1122))))) -(-13 (-1122) (-10 -8 (-15 -3197 ((-903 |t#1| $) $ (-905 |t#1|) (-903 |t#1| $))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-3032 (((-114) (-661 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-3033 (((-903 |#1| |#2|) |#2| |#3|) 45 (-12 (-2959 (|has| |#2| (-1059 (-1198)))) (-2959 (|has| |#2| (-1070)))) ELT) (((-661 (-305 (-965 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1070)) (-2959 (|has| |#2| (-1059 (-1198))))) ELT) (((-661 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1059 (-1198))) ELT) (((-900 |#1| |#2| (-661 |#2|)) (-661 |#2|) |#3|) 21 T ELT))) -(((-902 |#1| |#2| |#3|) (-10 -7 (-15 -3032 ((-114) |#2| |#3|)) (-15 -3032 ((-114) (-661 |#2|) |#3|)) (-15 -3033 ((-900 |#1| |#2| (-661 |#2|)) (-661 |#2|) |#3|)) (IF (|has| |#2| (-1059 (-1198))) (-15 -3033 ((-661 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1070)) (-15 -3033 ((-661 (-305 (-965 |#2|))) |#2| |#3|)) (-15 -3033 ((-903 |#1| |#2|) |#2| |#3|))))) (-1122) (-901 |#1|) (-631 (-905 |#1|))) (T -902)) -((-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-903 *5 *3)) (-5 *1 (-902 *5 *3 *4)) (-2959 (-4 *3 (-1059 (-1198)))) (-2959 (-4 *3 (-1070))) (-4 *3 (-901 *5)) (-4 *4 (-631 (-905 *5))))) (-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-661 (-305 (-965 *3)))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1070)) (-2959 (-4 *3 (-1059 (-1198)))) (-4 *3 (-901 *5)) (-4 *4 (-631 (-905 *5))))) (-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-661 (-305 *3))) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-1059 (-1198))) (-4 *3 (-901 *5)) (-4 *4 (-631 (-905 *5))))) (-3033 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-661 *6))) (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-661 *6)) (-4 *4 (-631 (-905 *5))))) (-3032 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-631 (-905 *5))))) (-3032 (*1 *2 *3 *4) (-12 (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-901 *5)) (-4 *4 (-631 (-905 *5)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3652 (($ $ $) 40 T ELT)) (-3060 (((-3 (-114) #1="failed") $ (-905 |#1|)) 37 T ELT)) (-4044 (($) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3035 (($ (-905 |#1|) |#2| $) 20 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3037 (((-3 |#2| #1#) (-905 |#1|) $) 51 T ELT)) (-3039 (((-114) $) 15 T ELT)) (-3038 (($) 13 T ELT)) (-3675 (((-661 (-2 (|:| -4290 (-1198)) (|:| -2286 |#2|))) $) 25 T ELT)) (-3950 (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 |#2|)))) 23 T ELT)) (-4376 (((-877) $) 45 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3034 (($ (-905 |#1|) |#2| $ |#2|) 49 T ELT)) (-3036 (($ (-905 |#1|) |#2| $) 48 T ELT)) (-3454 (((-114) $ $) 42 T ELT))) -(((-903 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3039 ((-114) $)) (-15 -3038 ($)) (-15 -4044 ($)) (-15 -3652 ($ $ $)) (-15 -3037 ((-3 |#2| #1="failed") (-905 |#1|) $)) (-15 -3036 ($ (-905 |#1|) |#2| $)) (-15 -3035 ($ (-905 |#1|) |#2| $)) (-15 -3034 ($ (-905 |#1|) |#2| $ |#2|)) (-15 -3675 ((-661 (-2 (|:| -4290 (-1198)) (|:| -2286 |#2|))) $)) (-15 -3950 ($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 |#2|))))) (-15 -3060 ((-3 (-114) #1#) $ (-905 |#1|))))) (-1122) (-1122)) (T -903)) -((-3039 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3038 (*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4044 (*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3652 (*1 *1 *1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3037 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) (-5 *1 (-903 *4 *2)))) (-3036 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1122)))) (-3035 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1122)))) (-3034 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1122)))) (-3675 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 *4)))) (-5 *1 (-903 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 *4)))) (-4 *4 (-1122)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1122)))) (-3060 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-5 *2 (-114)) (-5 *1 (-903 *4 *5)) (-4 *5 (-1122))))) -((-4388 (((-903 |#1| |#3|) (-1 |#3| |#2|) (-903 |#1| |#2|)) 22 T ELT))) -(((-904 |#1| |#2| |#3|) (-10 -7 (-15 -4388 ((-903 |#1| |#3|) (-1 |#3| |#2|) (-903 |#1| |#2|)))) (-1122) (-1122) (-1122)) (T -904)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-903 *5 *6)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-903 *5 *7)) (-5 *1 (-904 *5 *6 *7))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3047 (($ $ (-661 (-51))) 74 T ELT)) (-3484 (((-661 $) $) 139 T ELT)) (-3044 (((-2 (|:| |var| (-661 (-1198))) (|:| |pred| (-51))) $) 30 T ELT)) (-3678 (((-114) $) 35 T ELT)) (-3045 (($ $ (-661 (-1198)) (-51)) 31 T ELT)) (-3048 (($ $ (-661 (-51))) 73 T ELT)) (-3575 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1198) #1#) $) 167 T ELT)) (-3574 ((|#1| $) 68 T ELT) (((-1198) $) NIL T ELT)) (-3042 (($ $) 126 T ELT)) (-3054 (((-114) $) 55 T ELT)) (-3049 (((-661 (-51)) $) 50 T ELT)) (-3046 (($ (-1198) (-114) (-114) (-114)) 75 T ELT)) (-3040 (((-3 (-661 $) #1#) (-661 $)) 82 T ELT)) (-3051 (((-114) $) 58 T ELT)) (-3052 (((-114) $) 57 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) 41 T ELT)) (-3057 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-3226 (((-3 (-2 (|:| |val| $) (|:| -2632 $)) #1#) $) 97 T ELT)) (-3223 (((-3 (-661 $) #1#) $) 40 T ELT)) (-3058 (((-3 (-661 $) #1#) $ (-115)) 124 T ELT) (((-3 (-2 (|:| -2909 (-115)) (|:| |arg| (-661 $))) #1#) $) 107 T ELT)) (-3056 (((-3 (-661 $) #1#) $) 42 T ELT)) (-3225 (((-3 (-2 (|:| |val| $) (|:| -2632 (-791))) #1#) $) 45 T ELT)) (-3055 (((-114) $) 34 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3043 (((-114) $) 28 T ELT)) (-3050 (((-114) $) 52 T ELT)) (-3041 (((-661 (-51)) $) 130 T ELT)) (-3053 (((-114) $) 56 T ELT)) (-4230 (($ (-115) (-661 $)) 104 T ELT)) (-3743 (((-791) $) 33 T ELT)) (-3820 (($ $) 72 T ELT)) (-4402 (($ (-661 $)) 69 T ELT)) (-4383 (((-114) $) 32 T ELT)) (-4376 (((-877) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1198)) 76 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3061 (($ $ (-51)) 129 T ELT)) (-3059 (($) 103 T CONST)) (-3065 (($) 83 T CONST)) (-3454 (((-114) $ $) 93 T ELT)) (-4379 (($ $ $) 117 T ELT)) (-4269 (($ $ $) 121 T ELT)) (** (($ $ (-791)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) -(((-905 |#1|) (-13 (-1122) (-1059 |#1|) (-1059 (-1198)) (-10 -8 (-15 0 ($) -4382) (-15 1 ($) -4382) (-15 -3223 ((-3 (-661 $) #1="failed") $)) (-15 -3224 ((-3 (-661 $) #1#) $)) (-15 -3058 ((-3 (-661 $) #1#) $ (-115))) (-15 -3058 ((-3 (-2 (|:| -2909 (-115)) (|:| |arg| (-661 $))) #1#) $)) (-15 -3225 ((-3 (-2 (|:| |val| $) (|:| -2632 (-791))) #1#) $)) (-15 -3057 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -3056 ((-3 (-661 $) #1#) $)) (-15 -3226 ((-3 (-2 (|:| |val| $) (|:| -2632 $)) #1#) $)) (-15 -4230 ($ (-115) (-661 $))) (-15 -4269 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791))) (-15 ** ($ $ $)) (-15 -4379 ($ $ $)) (-15 -3743 ((-791) $)) (-15 -4402 ($ (-661 $))) (-15 -3820 ($ $)) (-15 -3055 ((-114) $)) (-15 -3054 ((-114) $)) (-15 -3678 ((-114) $)) (-15 -4383 ((-114) $)) (-15 -3053 ((-114) $)) (-15 -3052 ((-114) $)) (-15 -3051 ((-114) $)) (-15 -3050 ((-114) $)) (-15 -3049 ((-661 (-51)) $)) (-15 -3048 ($ $ (-661 (-51)))) (-15 -3047 ($ $ (-661 (-51)))) (-15 -3046 ($ (-1198) (-114) (-114) (-114))) (-15 -3045 ($ $ (-661 (-1198)) (-51))) (-15 -3044 ((-2 (|:| |var| (-661 (-1198))) (|:| |pred| (-51))) $)) (-15 -3043 ((-114) $)) (-15 -3042 ($ $)) (-15 -3061 ($ $ (-51))) (-15 -3041 ((-661 (-51)) $)) (-15 -3484 ((-661 $) $)) (-15 -3040 ((-3 (-661 $) #1#) (-661 $))))) (-1122)) (T -905)) -((-3059 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (-3065 (*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (-3223 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3224 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3058 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1122)))) (-3058 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2909 (-115)) (|:| |arg| (-661 (-905 *3))))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3225 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2632 (-791)))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3057 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3056 (*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3226 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2632 (-905 *3)))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-4230 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 (-905 *4))) (-5 *1 (-905 *4)) (-4 *4 (-1122)))) (-4269 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (-4379 (*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (-3743 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (-3055 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3678 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3048 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3047 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3046 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-114)) (-5 *1 (-905 *4)) (-4 *4 (-1122)))) (-3045 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-51)) (-5 *1 (-905 *4)) (-4 *4 (-1122)))) (-3044 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-661 (-1198))) (|:| |pred| (-51)))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3042 (*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) (-3061 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3041 (*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3484 (*1 *2 *1) (-12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) (-3040 (*1 *2 *2) (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -((-3627 (((-905 |#1|) (-905 |#1|) (-661 (-1198)) (-1 (-114) (-661 |#2|))) 32 T ELT) (((-905 |#1|) (-905 |#1|) (-661 (-1 (-114) |#2|))) 46 T ELT) (((-905 |#1|) (-905 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-3060 (((-114) (-661 |#2|) (-905 |#1|)) 42 T ELT) (((-114) |#2| (-905 |#1|)) 36 T ELT)) (-3951 (((-1 (-114) |#2|) (-905 |#1|)) 16 T ELT)) (-3062 (((-661 |#2|) (-905 |#1|)) 24 T ELT)) (-3061 (((-905 |#1|) (-905 |#1|) |#2|) 20 T ELT))) -(((-906 |#1| |#2|) (-10 -7 (-15 -3627 ((-905 |#1|) (-905 |#1|) (-1 (-114) |#2|))) (-15 -3627 ((-905 |#1|) (-905 |#1|) (-661 (-1 (-114) |#2|)))) (-15 -3627 ((-905 |#1|) (-905 |#1|) (-661 (-1198)) (-1 (-114) (-661 |#2|)))) (-15 -3951 ((-1 (-114) |#2|) (-905 |#1|))) (-15 -3060 ((-114) |#2| (-905 |#1|))) (-15 -3060 ((-114) (-661 |#2|) (-905 |#1|))) (-15 -3061 ((-905 |#1|) (-905 |#1|) |#2|)) (-15 -3062 ((-661 |#2|) (-905 |#1|)))) (-1122) (-1238)) (T -906)) -((-3062 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-5 *2 (-661 *5)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1238)))) (-3061 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1238)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *6 (-1238)) (-5 *2 (-114)) (-5 *1 (-906 *5 *6)))) (-3060 (*1 *2 *3 *4) (-12 (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-906 *5 *3)) (-4 *3 (-1238)))) (-3951 (*1 *2 *3) (-12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-906 *4 *5)) (-4 *5 (-1238)))) (-3627 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-905 *5)) (-5 *3 (-661 (-1198))) (-5 *4 (-1 (-114) (-661 *6))) (-4 *5 (-1122)) (-4 *6 (-1238)) (-5 *1 (-906 *5 *6)))) (-3627 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-661 (-1 (-114) *5))) (-4 *4 (-1122)) (-4 *5 (-1238)) (-5 *1 (-906 *4 *5)))) (-3627 (*1 *2 *2 *3) (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1122)) (-4 *5 (-1238)) (-5 *1 (-906 *4 *5))))) -((-4388 (((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)) 19 T ELT))) -(((-907 |#1| |#2|) (-10 -7 (-15 -4388 ((-905 |#2|) (-1 |#2| |#1|) (-905 |#1|)))) (-1122) (-1122)) (T -907)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-905 *6)) (-5 *1 (-907 *5 *6))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4364 (((-661 |#1|) $) 19 T ELT)) (-3063 (((-114) $) 49 T ELT)) (-3575 (((-3 (-692 |#1|) "failed") $) 55 T ELT)) (-3574 (((-692 |#1|) $) 53 T ELT)) (-4229 (($ $) 23 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-4263 (((-791) $) 60 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-692 |#1|) $) 21 T ELT)) (-4376 (((-877) $) 47 T ELT) (($ (-692 |#1|)) 26 T ELT) (((-841 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 9 T CONST)) (-3064 (((-661 (-692 |#1|)) $) 28 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 12 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 66 T ELT))) -(((-908 |#1|) (-13 (-861) (-1059 (-692 |#1|)) (-10 -8 (-15 1 ($) -4382) (-15 -4376 ((-841 |#1|) $)) (-15 -4376 ($ |#1|)) (-15 -4231 ((-692 |#1|) $)) (-15 -4263 ((-791) $)) (-15 -3064 ((-661 (-692 |#1|)) $)) (-15 -4229 ($ $)) (-15 -3063 ((-114) $)) (-15 -4364 ((-661 |#1|) $)))) (-861)) (T -908)) -((-3065 (*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-4376 (*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-4231 (*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-3064 (*1 *2 *1) (-12 (-5 *2 (-661 (-692 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-4229 (*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) (-4364 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) -((-3894 ((|#1| |#1| |#1|) 19 T ELT))) -(((-909 |#1| |#2|) (-10 -7 (-15 -3894 (|#1| |#1| |#1|))) (-1264 |#2|) (-1070)) (T -909)) -((-3894 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3))))) -((-3070 ((|#2| $ |#3|) 10 T ELT))) -(((-910 |#1| |#2| |#3|) (-10 -7 (-15 -3070 (|#2| |#1| |#3|))) (-911 |#2| |#3|) (-1238) (-1238)) (T -910)) -NIL -((-4188 ((|#1| $ |#2|) 7 T ELT)) (-3070 ((|#1| $ |#2|) 6 T ELT))) -(((-911 |#1| |#2|) (-142) (-1238) (-1238)) (T -911)) -((-4188 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) (-3070 (*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238))))) -(-13 (-1238) (-10 -8 (-15 -4188 (|t#1| $ |t#2|)) (-15 -3070 (|t#1| $ |t#2|)))) -(((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 18 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3066 (((-1056) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 17 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-912) (-142)) (T -912)) -((-3069 (*1 *2 *3 *4) (-12 (-4 *1 (-912)) (-5 *3 (-1084)) (-5 *4 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) (-3066 (*1 *2 *3) (-12 (-4 *1 (-912)) (-5 *3 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) (-5 *2 (-1056))))) -(-13 (-1122) (-10 -7 (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| |explanations| (-1180))) (-1084) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229))))) (-15 -3066 ((-1056) (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229))))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-3068 ((|#1| |#1| (-791)) 26 T ELT)) (-3067 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3855 (((-3 (-2 (|:| -3540 |#1|) (|:| -3539 |#1|)) #1#) |#1| (-791) (-791)) 29 T ELT) (((-661 |#1|) |#1|) 38 T ELT))) -(((-913 |#1| |#2|) (-10 -7 (-15 -3855 ((-661 |#1|) |#1|)) (-15 -3855 ((-3 (-2 (|:| -3540 |#1|) (|:| -3539 |#1|)) #1="failed") |#1| (-791) (-791))) (-15 -3067 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3068 (|#1| |#1| (-791)))) (-1264 |#2|) (-376)) (T -913)) -((-3068 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-5 *1 (-913 *2 *4)) (-4 *2 (-1264 *4)))) (-3067 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1264 *3)))) (-3855 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-791)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3540 *3) (|:| -3539 *3))) (-5 *1 (-913 *3 *5)) (-4 *3 (-1264 *5)))) (-3855 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-913 *3 *4)) (-4 *3 (-1264 *4))))) -((-4001 (((-1056) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1180)) 103 T ELT) (((-1056) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1180) (-229)) 100 T ELT) (((-1056) (-915) (-1084)) 92 T ELT) (((-1056) (-915)) 93 T ELT)) (-3069 (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-915) (-1084)) 62 T ELT) (((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-915)) 64 T ELT))) -(((-914) (-10 -7 (-15 -4001 ((-1056) (-915))) (-15 -4001 ((-1056) (-915) (-1084))) (-15 -4001 ((-1056) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1180) (-229))) (-15 -4001 ((-1056) (-391) (-391) (-391) (-391) (-791) (-791) (-661 (-326 (-391))) (-661 (-661 (-326 (-391)))) (-1180))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-915))) (-15 -3069 ((-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180)))) (-915) (-1084))))) (T -914)) -((-3069 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *1 (-914)))) (-3069 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) (|:| |explanations| (-661 (-1180))))) (-5 *1 (-914)))) (-4001 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1180)) (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4001 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1180)) (-5 *8 (-229)) (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3574 (((-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229))) $) 19 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 21 T ELT) (($ (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) 18 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-915) (-13 (-1122) (-10 -8 (-15 -4376 ($ (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229))))) (-15 -3574 ((-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229))) $))))) (T -915)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) (-5 *1 (-915)))) (-3574 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-661 (-326 (-229)))) (|:| |constraints| (-661 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) (|:| |dFinish| (-709 (-229)))))) (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) (|:| |tol| (-229)))) (-5 *1 (-915))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $ (-661 |#2|) (-661 (-791))) 44 T ELT) (($ $ |#2| (-791)) 43 T ELT) (($ $ (-661 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3070 (($ $ (-661 |#2|) (-661 (-791))) 47 T ELT) (($ $ |#2| (-791)) 46 T ELT) (($ $ (-661 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-916 |#1| |#2|) (-142) (-1070) (-1122)) (T -916)) -NIL -(-13 (-111 |t#1| |t#1|) (-919 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-737 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-911 $ |#2|) . T) ((-919 |#2|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4188 (($ $ (-661 |#1|) (-661 (-791))) 49 T ELT) (($ $ |#1| (-791)) 48 T ELT) (($ $ (-661 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-661 |#1|) (-661 (-791))) 52 T ELT) (($ $ |#1| (-791)) 51 T ELT) (($ $ (-661 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-917 |#1|) (-142) (-1122)) (T -917)) -NIL -(-13 (-1070) (-919 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-911 $ |#1|) . T) ((-919 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-4188 (($ $ |#2|) NIL T ELT) (($ $ (-661 |#2|)) 10 T ELT) (($ $ |#2| (-791)) 12 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 15 T ELT)) (-3070 (($ $ |#2|) 16 T ELT) (($ $ (-661 |#2|)) 18 T ELT) (($ $ |#2| (-791)) 19 T ELT) (($ $ (-661 |#2|) (-661 (-791))) 21 T ELT))) -(((-918 |#1| |#2|) (-10 -7 (-15 -3070 (|#1| |#1| (-661 |#2|) (-661 (-791)))) (-15 -3070 (|#1| |#1| |#2| (-791))) (-15 -3070 (|#1| |#1| (-661 |#2|))) (-15 -4188 (|#1| |#1| (-661 |#2|) (-661 (-791)))) (-15 -4188 (|#1| |#1| |#2| (-791))) (-15 -4188 (|#1| |#1| (-661 |#2|))) (-15 -3070 (|#1| |#1| |#2|)) (-15 -4188 (|#1| |#1| |#2|))) (-919 |#2|) (-1122)) (T -918)) -NIL -((-4188 (($ $ |#1|) 7 T ELT) (($ $ (-661 |#1|)) 15 T ELT) (($ $ |#1| (-791)) 14 T ELT) (($ $ (-661 |#1|) (-661 (-791))) 13 T ELT)) (-3070 (($ $ |#1|) 6 T ELT) (($ $ (-661 |#1|)) 12 T ELT) (($ $ |#1| (-791)) 11 T ELT) (($ $ (-661 |#1|) (-661 (-791))) 10 T ELT))) -(((-919 |#1|) (-142) (-1122)) (T -919)) -((-4188 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1122)))) (-4188 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-919 *2)) (-4 *2 (-1122)))) (-4188 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-919 *4)) (-4 *4 (-1122)))) (-3070 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1122)))) (-3070 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-919 *2)) (-4 *2 (-1122)))) (-3070 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-919 *4)) (-4 *4 (-1122))))) -(-13 (-911 $ |t#1|) (-10 -8 (-15 -4188 ($ $ (-661 |t#1|))) (-15 -4188 ($ $ |t#1| (-791))) (-15 -4188 ($ $ (-661 |t#1|) (-661 (-791)))) (-15 -3070 ($ $ (-661 |t#1|))) (-15 -3070 ($ $ |t#1| (-791))) (-15 -3070 ($ $ (-661 |t#1|) (-661 (-791)))))) -(((-911 $ |#1|) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 26 T ELT)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-1407 (($ $ $) NIL (|has| $ (-6 -4426)) ELT)) (-1408 (($ $ $) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4426)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3539 (($ $) 25 T ELT)) (-3071 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3540 (($ $) 23 T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) 20 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-4063 (((-114) $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1225 |#1|) $) 9 T ELT) (((-877) $) 29 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-920 |#1|) (-13 (-121 |#1|) (-630 (-1225 |#1|)) (-10 -8 (-15 -3071 ($ |#1|)) (-15 -3071 ($ $ $)))) (-1122)) (T -920)) -((-3071 (*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1122)))) (-3071 (*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3087 (((-1118 |#1|) $) 60 T ELT)) (-3310 (((-661 $) (-661 $)) 103 T ELT)) (-4053 (((-558) $) 83 T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT)) (-4202 (((-791) $) 80 T ELT)) (-3091 (((-1118 |#1|) $ |#1|) 70 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3074 (((-114) $) 88 T ELT)) (-3076 (((-791) $) 84 T ELT)) (-2930 (($ $ $) NIL (-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) ELT)) (-3258 (($ $ $) NIL (-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) ELT)) (-3080 (((-2 (|:| |preimage| (-661 |#1|)) (|:| |image| (-661 |#1|))) $) 55 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 130 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3073 (((-1118 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-3075 (((-114) $) 81 T ELT)) (-4230 ((|#1| $ |#1|) 68 T ELT)) (-4378 (((-791) $) 62 T ELT)) (-3082 (($ (-661 (-661 |#1|))) 118 T ELT)) (-3077 (((-992) $) 74 T ELT)) (-3083 (($ (-661 |#1|)) 32 T ELT)) (-3410 (($ $ $) NIL T ELT)) (-2824 (($ $ $) NIL T ELT)) (-3079 (($ (-661 (-661 |#1|))) 57 T ELT)) (-3078 (($ (-661 (-661 |#1|))) 123 T ELT)) (-3072 (($ (-661 |#1|)) 132 T ELT)) (-4376 (((-877) $) 117 T ELT) (($ (-661 (-661 |#1|))) 91 T ELT) (($ (-661 |#1|)) 92 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) 24 T CONST)) (-2965 (((-114) $ $) NIL (-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) ELT)) (-2966 (((-114) $ $) NIL (-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) ELT)) (-3454 (((-114) $ $) 66 T ELT)) (-3085 (((-114) $ $) NIL (-3957 (|has| |#1| (-381)) (|has| |#1| (-861))) ELT)) (-3086 (((-114) $ $) 90 T ELT)) (-4379 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 33 T ELT))) -(((-921 |#1|) (-13 (-923 |#1|) (-10 -8 (-15 -3080 ((-2 (|:| |preimage| (-661 |#1|)) (|:| |image| (-661 |#1|))) $)) (-15 -3079 ($ (-661 (-661 |#1|)))) (-15 -4376 ($ (-661 (-661 |#1|)))) (-15 -4376 ($ (-661 |#1|))) (-15 -3078 ($ (-661 (-661 |#1|)))) (-15 -4378 ((-791) $)) (-15 -3077 ((-992) $)) (-15 -4202 ((-791) $)) (-15 -3076 ((-791) $)) (-15 -4053 ((-558) $)) (-15 -3075 ((-114) $)) (-15 -3074 ((-114) $)) (-15 -3310 ((-661 $) (-661 $))) (IF (|has| |#1| (-381)) (-15 -3073 ((-1118 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3072 ($ (-661 |#1|))) (IF (|has| |#1| (-381)) (-15 -3072 ($ (-661 |#1|))) |%noBranch|)))) (-1122)) (T -921)) -((-3080 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-661 *3)) (|:| |image| (-661 *3)))) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3079 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-921 *3)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-921 *3)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-921 *3)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-921 *3)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3077 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-4053 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3310 (*1 *2 *2) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-921 *3)) (-4 *3 (-381)) (-4 *3 (-1122)))) (-3072 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-921 *3))))) -((-3081 ((|#2| (-1163 |#1| |#2|)) 48 T ELT))) -(((-922 |#1| |#2|) (-10 -7 (-15 -3081 (|#2| (-1163 |#1| |#2|)))) (-938) (-13 (-1070) (-10 -7 (-6 (-4427 "*"))))) (T -922)) -((-3081 (*1 *2 *3) (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-938)) (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4427 "*"))))) (-5 *1 (-922 *4 *2))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3087 (((-1118 |#1|) $) 42 T ELT)) (-4154 (($) 23 T CONST)) (-3887 (((-3 $ "failed") $) 20 T ELT)) (-3091 (((-1118 |#1|) $ |#1|) 41 T ELT)) (-2641 (((-114) $) 22 T ELT)) (-2930 (($ $ $) 35 (-3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ELT)) (-3258 (($ $ $) 36 (-3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 30 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4230 ((|#1| $ |#1|) 45 T ELT)) (-3082 (($ (-661 (-661 |#1|))) 43 T ELT)) (-3083 (($ (-661 |#1|)) 44 T ELT)) (-3410 (($ $ $) 27 T ELT)) (-2824 (($ $ $) 26 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3065 (($) 24 T CONST)) (-2965 (((-114) $ $) 37 (-3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ELT)) (-2966 (((-114) $ $) 39 (-3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 38 (-3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ELT)) (-3086 (((-114) $ $) 40 T ELT)) (-4379 (($ $ $) 29 T ELT)) (** (($ $ (-938)) 17 T ELT) (($ $ (-791)) 21 T ELT) (($ $ (-558)) 28 T ELT)) (* (($ $ $) 18 T ELT))) -(((-923 |#1|) (-142) (-1122)) (T -923)) -((-3083 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-923 *3)))) (-3082 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-4 *1 (-923 *3)))) (-3087 (*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1118 *3)))) (-3091 (*1 *2 *1 *3) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1118 *3)))) (-3086 (*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) -(-13 (-485) (-298 |t#1| |t#1|) (-10 -8 (-15 -3083 ($ (-661 |t#1|))) (-15 -3082 ($ (-661 (-661 |t#1|)))) (-15 -3087 ((-1118 |t#1|) $)) (-15 -3091 ((-1118 |t#1|) $ |t#1|)) (-15 -3086 ((-114) $ $)) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-861)) |%noBranch|))) -(((-102) . T) ((-630 (-877)) . T) ((-298 |#1| |#1|) . T) ((-485) . T) ((-746) . T) ((-861) -3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ((-864) -3957 (|has| |#1| (-861)) (|has| |#1| (-381))) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3093 (((-661 (-661 (-791))) $) 163 T ELT)) (-3089 (((-661 (-791)) (-921 |#1|) $) 191 T ELT)) (-3088 (((-661 (-791)) (-921 |#1|) $) 192 T ELT)) (-3087 (((-1118 |#1|) $) 155 T ELT)) (-3094 (((-661 (-921 |#1|)) $) 152 T ELT)) (-3395 (((-921 |#1|) $ (-558)) 157 T ELT) (((-921 |#1|) $) 158 T ELT)) (-3092 (($ (-661 (-921 |#1|))) 165 T ELT)) (-4202 (((-791) $) 159 T ELT)) (-3090 (((-1118 (-1118 |#1|)) $) 189 T ELT)) (-3091 (((-1118 |#1|) $ |#1|) 180 T ELT) (((-1118 (-1118 |#1|)) $ (-1118 |#1|)) 201 T ELT) (((-1118 (-661 |#1|)) $ (-661 |#1|)) 204 T ELT)) (-3663 (((-114) (-921 |#1|) $) 140 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3084 (((-1294) $) 145 T ELT) (((-1294) $ (-558) (-558)) 205 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3096 (((-661 (-921 |#1|)) $) 146 T ELT)) (-4230 (((-921 |#1|) $ (-791)) 153 T ELT)) (-4378 (((-791) $) 160 T ELT)) (-4376 (((-877) $) 177 T ELT) (((-661 (-921 |#1|)) $) 28 T ELT) (($ (-661 (-921 |#1|))) 164 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (((-661 |#1|) $) 162 T ELT)) (-3454 (((-114) $ $) 198 T ELT)) (-3085 (((-114) $ $) 195 T ELT)) (-3086 (((-114) $ $) 194 T ELT))) -(((-924 |#1|) (-13 (-1122) (-10 -8 (-15 -4376 ((-661 (-921 |#1|)) $)) (-15 -3096 ((-661 (-921 |#1|)) $)) (-15 -4230 ((-921 |#1|) $ (-791))) (-15 -3395 ((-921 |#1|) $ (-558))) (-15 -3395 ((-921 |#1|) $)) (-15 -4202 ((-791) $)) (-15 -4378 ((-791) $)) (-15 -3095 ((-661 |#1|) $)) (-15 -3094 ((-661 (-921 |#1|)) $)) (-15 -3093 ((-661 (-661 (-791))) $)) (-15 -4376 ($ (-661 (-921 |#1|)))) (-15 -3092 ($ (-661 (-921 |#1|)))) (-15 -3091 ((-1118 |#1|) $ |#1|)) (-15 -3090 ((-1118 (-1118 |#1|)) $)) (-15 -3091 ((-1118 (-1118 |#1|)) $ (-1118 |#1|))) (-15 -3091 ((-1118 (-661 |#1|)) $ (-661 |#1|))) (-15 -3663 ((-114) (-921 |#1|) $)) (-15 -3089 ((-661 (-791)) (-921 |#1|) $)) (-15 -3088 ((-661 (-791)) (-921 |#1|) $)) (-15 -3087 ((-1118 |#1|) $)) (-15 -3086 ((-114) $ $)) (-15 -3085 ((-114) $ $)) (-15 -3084 ((-1294) $)) (-15 -3084 ((-1294) $ (-558) (-558))))) (-1122)) (T -924)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3096 (*1 *2 *1) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-921 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) (-3395 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-921 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) (-3395 (*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4202 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4378 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-791)))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-661 (-921 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) (-3092 (*1 *1 *2) (-12 (-5 *2 (-661 (-921 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) (-3091 (*1 *2 *1 *3) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3090 (*1 *2 *1) (-12 (-5 *2 (-1118 (-1118 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3091 (*1 *2 *1 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-1118 (-1118 *4))) (-5 *1 (-924 *4)) (-5 *3 (-1118 *4)))) (-3091 (*1 *2 *1 *3) (-12 (-4 *4 (-1122)) (-5 *2 (-1118 (-661 *4))) (-5 *1 (-924 *4)) (-5 *3 (-661 *4)))) (-3663 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1122)) (-5 *2 (-114)) (-5 *1 (-924 *4)))) (-3089 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1122)) (-5 *2 (-661 (-791))) (-5 *1 (-924 *4)))) (-3088 (*1 *2 *3 *1) (-12 (-5 *3 (-921 *4)) (-4 *4 (-1122)) (-5 *2 (-661 (-791))) (-5 *1 (-924 *4)))) (-3087 (*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3086 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3085 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3084 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) (-3084 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-924 *4)) (-4 *4 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-4359 (((-791)) NIL T ELT)) (-3750 (($ $ (-938)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 $ #1#) $) NIL T ELT)) (-3574 (($ $) NIL T ELT)) (-2000 (($ (-1288 $)) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-3234 (($) NIL T ELT)) (-1883 (((-114) $) NIL T ELT)) (-1974 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-4202 (((-845 (-938)) $) NIL T ELT) (((-938) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2223 (($) NIL (|has| $ (-381)) ELT)) (-2221 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3534 (($ $ (-938)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3865 (((-711 $) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2224 (((-1192 $) $ (-938)) NIL (|has| $ (-381)) ELT) (((-1192 $) $) NIL T ELT)) (-2220 (((-938) $) NIL T ELT)) (-1807 (((-1192 $) $) NIL (|has| $ (-381)) ELT)) (-1806 (((-3 (-1192 $) #1#) $ $) NIL (|has| $ (-381)) ELT) (((-1192 $) $) NIL (|has| $ (-381)) ELT)) (-1808 (($ $ (-1192 $)) NIL (|has| $ (-381)) ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL T CONST)) (-2631 (($ (-938)) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) NIL (|has| $ (-381)) ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-4360 (((-938)) NIL T ELT) (((-845 (-938))) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-1975 (((-3 (-791) #1#) $ $) NIL T ELT) (((-791) $) NIL T ELT)) (-4341 (((-136)) NIL T ELT)) (-4188 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4378 (((-938) $) NIL T ELT) (((-845 (-938)) $) NIL T ELT)) (-3603 (((-1192 $)) NIL T ELT)) (-1877 (($) NIL T ELT)) (-1809 (($) NIL (|has| $ (-381)) ELT)) (-3642 (((-709 $) (-1288 $)) NIL T ELT) (((-1288 $) $) NIL T ELT)) (-4402 (((-558) $) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT)) (-3103 (((-711 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $) (-938)) NIL T ELT) (((-1288 $)) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4363 (((-114) $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-4358 (($ $ (-791)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-925 |#1|) (-13 (-363) (-341 $) (-631 (-558))) (-938)) (T -925)) -NIL -((-3098 (((-3 (-661 (-1192 |#4|)) #1="failed") (-661 (-1192 |#4|)) (-1192 |#4|)) 164 T ELT)) (-3101 ((|#1|) 101 T ELT)) (-3100 (((-417 (-1192 |#4|)) (-1192 |#4|)) 173 T ELT)) (-3102 (((-417 (-1192 |#4|)) (-661 |#3|) (-1192 |#4|)) 83 T ELT)) (-3099 (((-417 (-1192 |#4|)) (-1192 |#4|)) 183 T ELT)) (-3097 (((-3 (-661 (-1192 |#4|)) #1#) (-661 (-1192 |#4|)) (-1192 |#4|) |#3|) 117 T ELT))) -(((-926 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3098 ((-3 (-661 (-1192 |#4|)) #1="failed") (-661 (-1192 |#4|)) (-1192 |#4|))) (-15 -3099 ((-417 (-1192 |#4|)) (-1192 |#4|))) (-15 -3100 ((-417 (-1192 |#4|)) (-1192 |#4|))) (-15 -3101 (|#1|)) (-15 -3097 ((-3 (-661 (-1192 |#4|)) #1#) (-661 (-1192 |#4|)) (-1192 |#4|) |#3|)) (-15 -3102 ((-417 (-1192 |#4|)) (-661 |#3|) (-1192 |#4|)))) (-929) (-815) (-861) (-969 |#1| |#2| |#3|)) (T -926)) -((-3102 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *7)) (-4 *7 (-861)) (-4 *5 (-929)) (-4 *6 (-815)) (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-417 (-1192 *8))) (-5 *1 (-926 *5 *6 *7 *8)) (-5 *4 (-1192 *8)))) (-3097 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-661 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-969 *5 *6 *4)) (-4 *5 (-929)) (-4 *6 (-815)) (-4 *4 (-861)) (-5 *1 (-926 *5 *6 *4 *7)))) (-3101 (*1 *2) (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-929)) (-5 *1 (-926 *2 *3 *4 *5)) (-4 *5 (-969 *2 *3 *4)))) (-3100 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) (-3098 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1192 *7))) (-5 *3 (-1192 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-929)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-926 *4 *5 *6 *7))))) -((-3098 (((-3 (-661 (-1192 |#2|)) "failed") (-661 (-1192 |#2|)) (-1192 |#2|)) 39 T ELT)) (-3101 ((|#1|) 71 T ELT)) (-3100 (((-417 (-1192 |#2|)) (-1192 |#2|)) 125 T ELT)) (-3102 (((-417 (-1192 |#2|)) (-1192 |#2|)) 109 T ELT)) (-3099 (((-417 (-1192 |#2|)) (-1192 |#2|)) 136 T ELT))) -(((-927 |#1| |#2|) (-10 -7 (-15 -3098 ((-3 (-661 (-1192 |#2|)) "failed") (-661 (-1192 |#2|)) (-1192 |#2|))) (-15 -3099 ((-417 (-1192 |#2|)) (-1192 |#2|))) (-15 -3100 ((-417 (-1192 |#2|)) (-1192 |#2|))) (-15 -3101 (|#1|)) (-15 -3102 ((-417 (-1192 |#2|)) (-1192 |#2|)))) (-929) (-1264 |#1|)) (T -927)) -((-3102 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1264 *4)) (-5 *2 (-417 (-1192 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1192 *5)))) (-3101 (*1 *2) (-12 (-4 *2 (-929)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1264 *2)))) (-3100 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1264 *4)) (-5 *2 (-417 (-1192 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1192 *5)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-929)) (-4 *5 (-1264 *4)) (-5 *2 (-417 (-1192 *5))) (-5 *1 (-927 *4 *5)) (-5 *3 (-1192 *5)))) (-3098 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-929)) (-5 *1 (-927 *4 *5))))) -((-3105 (((-3 (-661 (-1192 $)) "failed") (-661 (-1192 $)) (-1192 $)) 46 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 18 T ELT)) (-3103 (((-711 $) $) 40 T ELT))) -(((-928 |#1|) (-10 -7 (-15 -3103 ((-711 |#1|) |#1|)) (-15 -3105 ((-3 (-661 (-1192 |#1|)) "failed") (-661 (-1192 |#1|)) (-1192 |#1|))) (-15 -3109 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|)))) (-929)) (T -928)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 72 T ELT)) (-4205 (($ $) 63 T ELT)) (-4401 (((-417 $) $) 64 T ELT)) (-3105 (((-3 (-661 (-1192 $)) "failed") (-661 (-1192 $)) (-1192 $)) 69 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4153 (((-114) $) 65 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 70 T ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 71 T ELT)) (-4162 (((-417 $) $) 62 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3104 (((-3 (-1288 $) "failed") (-709 $)) 68 (|has| $ (-147)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3103 (((-711 $) $) 67 (|has| $ (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-929) (-142)) (T -929)) -((-3109 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-929)))) (-3108 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-417 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3107 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-417 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3106 (*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-417 (-1192 *1))) (-5 *3 (-1192 *1)))) (-3105 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-661 (-1192 *1))) (-5 *3 (-1192 *1)) (-4 *1 (-929)))) (-3104 (*1 *2 *3) (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-147)) (-4 *1 (-929)) (-5 *2 (-1288 *1)))) (-3103 (*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-929))))) -(-13 (-1243) (-10 -8 (-15 -3108 ((-417 (-1192 $)) (-1192 $))) (-15 -3107 ((-417 (-1192 $)) (-1192 $))) (-15 -3106 ((-417 (-1192 $)) (-1192 $))) (-15 -3109 ((-1192 $) (-1192 $) (-1192 $))) (-15 -3105 ((-3 (-661 (-1192 $)) "failed") (-661 (-1192 $)) (-1192 $))) (IF (|has| $ (-147)) (PROGN (-15 -3104 ((-3 (-1288 $) "failed") (-709 $))) (-15 -3103 ((-711 $) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-3111 (((-3 (-2 (|:| -4202 (-791)) (|:| -2614 |#5|)) #1="failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3110 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4202 (((-3 (-791) #1#) (-346 |#2| |#3| |#4| |#5|)) 15 T ELT))) -(((-930 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-3 (-791) #1="failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3110 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3111 ((-3 (-2 (|:| -4202 (-791)) (|:| -2614 |#5|)) #1#) (-346 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1059 (-558))) (-433 |#1|) (-1264 |#2|) (-1264 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -930)) -((-3111 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-2 (|:| -4202 (-791)) (|:| -2614 *8))) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-114)) (-5 *1 (-930 *4 *5 *6 *7 *8)))) (-4202 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-791)) (-5 *1 (-930 *4 *5 *6 *7 *8))))) -((-3111 (((-3 (-2 (|:| -4202 (-791)) (|:| -2614 |#3|)) #1="failed") (-346 (-419 (-558)) |#1| |#2| |#3|)) 64 T ELT)) (-3110 (((-114) (-346 (-419 (-558)) |#1| |#2| |#3|)) 16 T ELT)) (-4202 (((-3 (-791) #1#) (-346 (-419 (-558)) |#1| |#2| |#3|)) 14 T ELT))) -(((-931 |#1| |#2| |#3|) (-10 -7 (-15 -4202 ((-3 (-791) #1="failed") (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3110 ((-114) (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3111 ((-3 (-2 (|:| -4202 (-791)) (|:| -2614 |#3|)) #1#) (-346 (-419 (-558)) |#1| |#2| |#3|)))) (-1264 (-419 (-558))) (-1264 (-419 |#1|)) (-355 (-419 (-558)) |#1| |#2|)) (T -931)) -((-3111 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-558)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-2 (|:| -4202 (-791)) (|:| -2614 *6))) (-5 *1 (-931 *4 *5 *6)))) (-3110 (*1 *2 *3) (-12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-558)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-931 *4 *5 *6)))) (-4202 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-558)))) (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-791)) (-5 *1 (-931 *4 *5 *6))))) -((-3116 ((|#2| |#2|) 26 T ELT)) (-3114 (((-558) (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) 15 T ELT)) (-3112 (((-938) (-558)) 38 T ELT)) (-3115 (((-558) |#2|) 45 T ELT)) (-3113 (((-558) |#2|) 21 T ELT) (((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|) 20 T ELT))) -(((-932 |#1| |#2|) (-10 -7 (-15 -3112 ((-938) (-558))) (-15 -3113 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3113 ((-558) |#2|)) (-15 -3114 ((-558) (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -3115 ((-558) |#2|)) (-15 -3116 (|#2| |#2|))) (-1264 (-419 (-558))) (-1264 (-419 |#1|))) (T -932)) -((-3116 (*1 *2 *2) (-12 (-4 *3 (-1264 (-419 (-558)))) (-5 *1 (-932 *3 *2)) (-4 *2 (-1264 (-419 *3))))) (-3115 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-3114 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) (-4 *4 (-1264 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-932 *4 *3)) (-4 *3 (-1264 (-419 *4))))) (-3113 (*1 *2 *3) (-12 (-4 *3 (-1264 (-419 (-558)))) (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-932 *3 *4)) (-4 *4 (-1264 (-419 *3))))) (-3112 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-938)) (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 ((|#1| $) 99 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2963 (($ $ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 93 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3124 (($ |#1| (-417 |#1|)) 91 T ELT)) (-3118 (((-1192 |#1|) |#1| |#1|) 52 T ELT)) (-3117 (($ $) 60 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3119 (((-558) $) 96 T ELT)) (-3120 (($ $ (-558)) 98 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3121 ((|#1| $) 95 T ELT)) (-3122 (((-417 |#1|) $) 94 T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) 92 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3123 (($ $) 49 T ELT)) (-4376 (((-877) $) 123 T ELT) (($ (-558)) 72 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 40 T ELT) (((-419 |#1|) $) 77 T ELT) (($ (-419 (-417 |#1|))) 85 T ELT)) (-3528 (((-791)) 70 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) 24 T CONST)) (-3065 (($) 12 T CONST)) (-3454 (((-114) $ $) 86 T ELT)) (-4379 (($ $ $) NIL T ELT)) (-4267 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 48 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) -(((-933 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -4376 ((-419 |#1|) $)) (-15 -4376 ($ (-419 (-417 |#1|)))) (-15 -3123 ($ $)) (-15 -3122 ((-417 |#1|) $)) (-15 -3121 (|#1| $)) (-15 -3120 ($ $ (-558))) (-15 -3119 ((-558) $)) (-15 -3118 ((-1192 |#1|) |#1| |#1|)) (-15 -3117 ($ $)) (-15 -3124 ($ |#1| (-417 |#1|))) (-15 -3531 (|#1| $)))) (-319)) (T -933)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-319)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-933 *3)))) (-3123 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319)))) (-3122 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-933 *3)) (-4 *3 (-319)))) (-3121 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319)))) (-3120 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-933 *3)) (-4 *3 (-319)))) (-3119 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-933 *3)) (-4 *3 (-319)))) (-3118 (*1 *2 *3 *3) (-12 (-5 *2 (-1192 *3)) (-5 *1 (-933 *3)) (-4 *3 (-319)))) (-3117 (*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319)))) (-3124 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-933 *2)))) (-3531 (*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319))))) -((-3124 (((-51) (-965 |#1|) (-417 (-965 |#1|)) (-1198)) 17 T ELT) (((-51) (-419 (-965 |#1|)) (-1198)) 18 T ELT))) -(((-934 |#1|) (-10 -7 (-15 -3124 ((-51) (-419 (-965 |#1|)) (-1198))) (-15 -3124 ((-51) (-965 |#1|) (-417 (-965 |#1|)) (-1198)))) (-13 (-319) (-149))) (T -934)) -((-3124 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-965 *6))) (-5 *5 (-1198)) (-5 *3 (-965 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-934 *6)))) (-3124 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-934 *5))))) -((-3125 ((|#4| (-661 |#4|)) 148 T ELT) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3562 (((-1192 |#4|) (-661 (-1192 |#4|))) 141 T ELT) (((-1192 |#4|) (-1192 |#4|) (-1192 |#4|)) 61 T ELT) ((|#4| (-661 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) -(((-935 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3562 (|#4| |#4| |#4|)) (-15 -3562 (|#4| (-661 |#4|))) (-15 -3562 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3562 ((-1192 |#4|) (-661 (-1192 |#4|)))) (-15 -3125 (|#4| |#4| |#4|)) (-15 -3125 ((-1192 |#4|) (-1192 |#4|) (-1192 |#4|))) (-15 -3125 (|#4| (-661 |#4|)))) (-815) (-861) (-319) (-969 |#3| |#1| |#2|)) (T -935)) -((-3125 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)))) (-3125 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3125 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-661 (-1192 *7))) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-1192 *7)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) (-3562 (*1 *2 *2 *2) (-12 (-5 *2 (-1192 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *6)))) (-3562 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)))) (-3562 (*1 *2 *2 *2) (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *2)) (-4 *2 (-969 *5 *3 *4))))) -((-3138 (((-924 (-558)) (-992)) 38 T ELT) (((-924 (-558)) (-661 (-558))) 34 T ELT)) (-3126 (((-924 (-558)) (-661 (-558))) 66 T ELT) (((-924 (-558)) (-938)) 67 T ELT)) (-3137 (((-924 (-558))) 39 T ELT)) (-3135 (((-924 (-558))) 53 T ELT) (((-924 (-558)) (-661 (-558))) 52 T ELT)) (-3134 (((-924 (-558))) 51 T ELT) (((-924 (-558)) (-661 (-558))) 50 T ELT)) (-3133 (((-924 (-558))) 49 T ELT) (((-924 (-558)) (-661 (-558))) 48 T ELT)) (-3132 (((-924 (-558))) 47 T ELT) (((-924 (-558)) (-661 (-558))) 46 T ELT)) (-3131 (((-924 (-558))) 45 T ELT) (((-924 (-558)) (-661 (-558))) 44 T ELT)) (-3136 (((-924 (-558))) 55 T ELT) (((-924 (-558)) (-661 (-558))) 54 T ELT)) (-3130 (((-924 (-558)) (-661 (-558))) 71 T ELT) (((-924 (-558)) (-938)) 73 T ELT)) (-3129 (((-924 (-558)) (-661 (-558))) 68 T ELT) (((-924 (-558)) (-938)) 69 T ELT)) (-3127 (((-924 (-558)) (-661 (-558))) 64 T ELT) (((-924 (-558)) (-938)) 65 T ELT)) (-3128 (((-924 (-558)) (-661 (-938))) 57 T ELT))) -(((-936) (-10 -7 (-15 -3126 ((-924 (-558)) (-938))) (-15 -3126 ((-924 (-558)) (-661 (-558)))) (-15 -3127 ((-924 (-558)) (-938))) (-15 -3127 ((-924 (-558)) (-661 (-558)))) (-15 -3128 ((-924 (-558)) (-661 (-938)))) (-15 -3129 ((-924 (-558)) (-938))) (-15 -3129 ((-924 (-558)) (-661 (-558)))) (-15 -3130 ((-924 (-558)) (-938))) (-15 -3130 ((-924 (-558)) (-661 (-558)))) (-15 -3131 ((-924 (-558)) (-661 (-558)))) (-15 -3131 ((-924 (-558)))) (-15 -3132 ((-924 (-558)) (-661 (-558)))) (-15 -3132 ((-924 (-558)))) (-15 -3133 ((-924 (-558)) (-661 (-558)))) (-15 -3133 ((-924 (-558)))) (-15 -3134 ((-924 (-558)) (-661 (-558)))) (-15 -3134 ((-924 (-558)))) (-15 -3135 ((-924 (-558)) (-661 (-558)))) (-15 -3135 ((-924 (-558)))) (-15 -3136 ((-924 (-558)) (-661 (-558)))) (-15 -3136 ((-924 (-558)))) (-15 -3137 ((-924 (-558)))) (-15 -3138 ((-924 (-558)) (-661 (-558)))) (-15 -3138 ((-924 (-558)) (-992))))) (T -936)) -((-3138 (*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3138 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3137 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3136 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3136 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3135 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3134 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3133 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3132 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3131 (*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -((-3140 (((-661 (-965 |#1|)) (-661 (-965 |#1|)) (-661 (-1198))) 14 T ELT)) (-3139 (((-661 (-965 |#1|)) (-661 (-965 |#1|)) (-661 (-1198))) 13 T ELT))) -(((-937 |#1|) (-10 -7 (-15 -3139 ((-661 (-965 |#1|)) (-661 (-965 |#1|)) (-661 (-1198)))) (-15 -3140 ((-661 (-965 |#1|)) (-661 (-965 |#1|)) (-661 (-1198))))) (-464)) (T -937)) -((-3140 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-965 *4))) (-5 *3 (-661 (-1198))) (-4 *4 (-464)) (-5 *1 (-937 *4)))) (-3139 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-965 *4))) (-5 *3 (-661 (-1198))) (-4 *4 (-464)) (-5 *1 (-937 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ "failed") $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3562 (($ $ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3065 (($) NIL T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ $ $) NIL T ELT))) -(((-938) (-13 (-816) (-746) (-10 -8 (-15 -3562 ($ $ $)) (-6 (-4427 "*"))))) (T -938)) -((-3562 (*1 *1 *1 *1) (-5 *1 (-938)))) -((-791) (|%ilt| 0 |#1|)) -((-4376 (((-326 |#1|) (-489)) 16 T ELT))) -(((-939 |#1|) (-10 -7 (-15 -4376 ((-326 |#1|) (-489)))) (-569)) (T -939)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-939 *4)) (-4 *4 (-569))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-940) (-142)) (T -940)) -((-3142 (*1 *2 *3) (-12 (-4 *1 (-940)) (-5 *2 (-2 (|:| -4384 (-661 *1)) (|:| -2640 *1))) (-5 *3 (-661 *1)))) (-3141 (*1 *2 *3 *1) (-12 (-4 *1 (-940)) (-5 *2 (-711 (-661 *1))) (-5 *3 (-661 *1))))) -(-13 (-464) (-10 -8 (-15 -3142 ((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $))) (-15 -3141 ((-711 (-661 $)) (-661 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3508 (((-1192 |#2|) (-661 |#2|) (-661 |#2|)) 17 T ELT) (((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-661 |#2|) (-661 |#2|)) 13 T ELT))) -(((-941 |#1| |#2|) (-10 -7 (-15 -3508 ((-1257 |#1| |#2|) (-1257 |#1| |#2|) (-661 |#2|) (-661 |#2|))) (-15 -3508 ((-1192 |#2|) (-661 |#2|) (-661 |#2|)))) (-1198) (-376)) (T -941)) -((-3508 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *5)) (-4 *5 (-376)) (-5 *2 (-1192 *5)) (-5 *1 (-941 *4 *5)) (-14 *4 (-1198)))) (-3508 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1257 *4 *5)) (-5 *3 (-661 *5)) (-14 *4 (-1198)) (-4 *5 (-376)) (-5 *1 (-941 *4 *5))))) -((-3143 ((|#2| (-661 |#1|) (-661 |#1|)) 28 T ELT))) -(((-942 |#1| |#2|) (-10 -7 (-15 -3143 (|#2| (-661 |#1|) (-661 |#1|)))) (-376) (-1264 |#1|)) (T -942)) -((-3143 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-4 *2 (-1264 *4)) (-5 *1 (-942 *4 *2))))) -((-3145 (((-558) (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-1180)) 175 T ELT)) (-3164 ((|#4| |#4|) 194 T ELT)) (-3149 (((-661 (-419 (-965 |#1|))) (-661 (-1198))) 146 T ELT)) (-3163 (((-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))) (-709 |#4|) (-661 (-419 (-965 |#1|))) (-661 (-661 |#4|)) (-791) (-791) (-558)) 88 T ELT)) (-3153 (((-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))) (-661 |#4|)) 69 T ELT)) (-3162 (((-709 |#4|) (-709 |#4|) (-661 |#4|)) 65 T ELT)) (-3146 (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-1180)) 187 T ELT)) (-3144 (((-558) (-709 |#4|) (-938) (-1180)) 167 T ELT) (((-558) (-709 |#4|) (-661 (-1198)) (-938) (-1180)) 166 T ELT) (((-558) (-709 |#4|) (-661 |#4|) (-938) (-1180)) 165 T ELT) (((-558) (-709 |#4|) (-1180)) 154 T ELT) (((-558) (-709 |#4|) (-661 (-1198)) (-1180)) 153 T ELT) (((-558) (-709 |#4|) (-661 |#4|) (-1180)) 152 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-938)) 151 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 (-1198)) (-938)) 150 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 |#4|) (-938)) 149 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|)) 148 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 (-1198))) 147 T ELT) (((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 |#4|)) 143 T ELT)) (-3150 ((|#4| (-965 |#1|)) 80 T ELT)) (-3160 (((-114) (-661 |#4|) (-661 (-661 |#4|))) 191 T ELT)) (-3159 (((-661 (-661 (-558))) (-558) (-558)) 161 T ELT)) (-3158 (((-661 (-661 |#4|)) (-661 (-661 |#4|))) 106 T ELT)) (-3157 (((-791) (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|))))) 100 T ELT)) (-3156 (((-791) (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|))))) 99 T ELT)) (-3165 (((-114) (-661 (-965 |#1|))) 19 T ELT) (((-114) (-661 |#4|)) 15 T ELT)) (-3151 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-661 |#4|)) (|:| |n0| (-661 |#4|))) (-661 |#4|) (-661 |#4|)) 84 T ELT)) (-3155 (((-661 |#4|) |#4|) 57 T ELT)) (-3148 (((-661 (-419 (-965 |#1|))) (-661 |#4|)) 142 T ELT) (((-709 (-419 (-965 |#1|))) (-709 |#4|)) 66 T ELT) (((-419 (-965 |#1|)) |#4|) 139 T ELT)) (-3147 (((-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))))))) (|:| |rgsz| (-558))) (-709 |#4|) (-661 (-419 (-965 |#1|))) (-791) (-1180) (-558)) 112 T ELT)) (-3152 (((-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))) (-709 |#4|) (-791)) 98 T ELT)) (-3161 (((-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-709 |#4|) (-791)) 121 T ELT)) (-3154 (((-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))) (-2 (|:| -1783 (-709 (-419 (-965 |#1|)))) (|:| |vec| (-661 (-419 (-965 |#1|)))) (|:| -3511 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) 56 T ELT))) -(((-943 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3144 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 |#4|))) (-15 -3144 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 (-1198)))) (-15 -3144 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|))) (-15 -3144 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 |#4|) (-938))) (-15 -3144 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-661 (-1198)) (-938))) (-15 -3144 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-709 |#4|) (-938))) (-15 -3144 ((-558) (-709 |#4|) (-661 |#4|) (-1180))) (-15 -3144 ((-558) (-709 |#4|) (-661 (-1198)) (-1180))) (-15 -3144 ((-558) (-709 |#4|) (-1180))) (-15 -3144 ((-558) (-709 |#4|) (-661 |#4|) (-938) (-1180))) (-15 -3144 ((-558) (-709 |#4|) (-661 (-1198)) (-938) (-1180))) (-15 -3144 ((-558) (-709 |#4|) (-938) (-1180))) (-15 -3145 ((-558) (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-1180))) (-15 -3146 ((-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|))))))))) (-1180))) (-15 -3147 ((-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))))))) (|:| |rgsz| (-558))) (-709 |#4|) (-661 (-419 (-965 |#1|))) (-791) (-1180) (-558))) (-15 -3148 ((-419 (-965 |#1|)) |#4|)) (-15 -3148 ((-709 (-419 (-965 |#1|))) (-709 |#4|))) (-15 -3148 ((-661 (-419 (-965 |#1|))) (-661 |#4|))) (-15 -3149 ((-661 (-419 (-965 |#1|))) (-661 (-1198)))) (-15 -3150 (|#4| (-965 |#1|))) (-15 -3151 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-661 |#4|)) (|:| |n0| (-661 |#4|))) (-661 |#4|) (-661 |#4|))) (-15 -3152 ((-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))) (-709 |#4|) (-791))) (-15 -3153 ((-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))) (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))) (-661 |#4|))) (-15 -3154 ((-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))) (-2 (|:| -1783 (-709 (-419 (-965 |#1|)))) (|:| |vec| (-661 (-419 (-965 |#1|)))) (|:| -3511 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (-15 -3155 ((-661 |#4|) |#4|)) (-15 -3156 ((-791) (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))))) (-15 -3157 ((-791) (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 |#4|)))))) (-15 -3158 ((-661 (-661 |#4|)) (-661 (-661 |#4|)))) (-15 -3159 ((-661 (-661 (-558))) (-558) (-558))) (-15 -3160 ((-114) (-661 |#4|) (-661 (-661 |#4|)))) (-15 -3161 ((-661 (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-709 |#4|) (-791))) (-15 -3162 ((-709 |#4|) (-709 |#4|) (-661 |#4|))) (-15 -3163 ((-2 (|:| |eqzro| (-661 |#4|)) (|:| |neqzro| (-661 |#4|)) (|:| |wcond| (-661 (-965 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 |#1|)))) (|:| -2222 (-661 (-1288 (-419 (-965 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))) (-709 |#4|) (-661 (-419 (-965 |#1|))) (-661 (-661 |#4|)) (-791) (-791) (-558))) (-15 -3164 (|#4| |#4|)) (-15 -3165 ((-114) (-661 |#4|))) (-15 -3165 ((-114) (-661 (-965 |#1|))))) (-13 (-319) (-149)) (-13 (-861) (-631 (-1198))) (-815) (-969 |#1| |#3| |#2|)) (T -943)) -((-3165 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-3165 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-114)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3164 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-861) (-631 (-1198)))) (-4 *5 (-815)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-969 *3 *5 *4)))) (-3163 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-5 *4 (-709 *12)) (-5 *5 (-661 (-419 (-965 *9)))) (-5 *6 (-661 (-661 *12))) (-5 *7 (-791)) (-5 *8 (-558)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-969 *9 *11 *10)) (-4 *10 (-13 (-861) (-631 (-1198)))) (-4 *11 (-815)) (-5 *2 (-2 (|:| |eqzro| (-661 *12)) (|:| |neqzro| (-661 *12)) (|:| |wcond| (-661 (-965 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *9)))) (|:| -2222 (-661 (-1288 (-419 (-965 *9))))))))) (-5 *1 (-943 *9 *10 *11 *12)))) (-3162 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *7)) (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3161 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-791)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3159 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-661 (-661 (-558)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-969 *4 *6 *5)))) (-3158 (*1 *2 *2) (-12 (-5 *2 (-661 (-661 *6))) (-4 *6 (-969 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-861) (-631 (-1198)))) (-4 *5 (-815)) (-5 *1 (-943 *3 *4 *5 *6)))) (-3157 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 *7))))) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-791)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 *7))))) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-791)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3155 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-661 *3)) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-969 *4 *6 *5)))) (-3154 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1783 (-709 (-419 (-965 *4)))) (|:| |vec| (-661 (-419 (-965 *4)))) (|:| -3511 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) (|:| -2222 (-661 (-1288 (-419 (-965 *4))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-3153 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) (|:| -2222 (-661 (-1288 (-419 (-965 *4))))))) (-5 *3 (-661 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-969 *4 *6 *5)) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *1 (-943 *4 *5 *6 *7)))) (-3152 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| -3511 (-791)) (|:| |eqns| (-661 (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558)))))) (|:| |fgb| (-661 *8))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-791)))) (-3151 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-4 *7 (-969 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-661 *7)) (|:| |n0| (-661 *7)))) (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3150 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-969 *4 *6 *5)) (-5 *1 (-943 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-661 (-419 (-965 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-661 (-419 (-965 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-709 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-709 (-419 (-965 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) (-3148 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-419 (-965 *4))) (-5 *1 (-943 *4 *5 *6 *3)) (-4 *3 (-969 *4 *6 *5)))) (-3147 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-709 *11)) (-5 *4 (-661 (-419 (-965 *8)))) (-5 *5 (-791)) (-5 *6 (-1180)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-969 *8 *10 *9)) (-4 *9 (-13 (-861) (-631 (-1198)))) (-4 *10 (-815)) (-5 *2 (-2 (|:| |rgl| (-661 (-2 (|:| |eqzro| (-661 *11)) (|:| |neqzro| (-661 *11)) (|:| |wcond| (-661 (-965 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *8)))) (|:| -2222 (-661 (-1288 (-419 (-965 *8)))))))))) (|:| |rgsz| (-558)))) (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-558)))) (-3146 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) (|:| |wcond| (-661 (-965 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) (|:| -2222 (-661 (-1288 (-419 (-965 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5)))) (-3145 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) (-5 *4 (-1180)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-969 *5 *7 *6)) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-938)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *6 *7 *8 *9)))) (-3144 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 (-1198))) (-5 *5 (-938)) (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-861) (-631 (-1198)))) (-4 *9 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *7 *8 *9 *10)))) (-3144 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 *10)) (-5 *5 (-938)) (-5 *6 (-1180)) (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-861) (-631 (-1198)))) (-4 *9 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *7 *8 *9 *10)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-1180)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *5 *6 *7 *8)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1198))) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *6 *7 *8 *9)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 *9)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *6 *7 *8 *9)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-938)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1198))) (-5 *5 (-938)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) (|:| |wcond| (-661 (-965 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *6)))) (|:| -2222 (-661 (-1288 (-419 (-965 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)))) (-3144 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-709 *9)) (-5 *5 (-938)) (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) (|:| |wcond| (-661 (-965 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *6)))) (|:| -2222 (-661 (-1288 (-419 (-965 *6)))))))))) (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-661 *9)))) (-3144 (*1 *2 *3) (-12 (-5 *3 (-709 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) (|:| |wcond| (-661 (-965 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) (|:| -2222 (-661 (-1288 (-419 (-965 *4)))))))))) (-5 *1 (-943 *4 *5 *6 *7)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-5 *4 (-661 (-1198))) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-709 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-661 (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) (|:| |wcond| (-661 (-965 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) -((-4304 (($ $ (-1110 (-229))) 125 T ELT) (($ $ (-1110 (-229)) (-1110 (-229))) 126 T ELT)) (-3297 (((-1110 (-229)) $) 73 T ELT)) (-3298 (((-1110 (-229)) $) 72 T ELT)) (-3189 (((-1110 (-229)) $) 74 T ELT)) (-3170 (((-558) (-558)) 66 T ELT)) (-3174 (((-558) (-558)) 61 T ELT)) (-3172 (((-558) (-558)) 64 T ELT)) (-3168 (((-114) (-114)) 68 T ELT)) (-3171 (((-558)) 65 T ELT)) (-3536 (($ $ (-1110 (-229))) 129 T ELT) (($ $) 130 T ELT)) (-3191 (($ (-1 (-962 (-229)) (-229)) (-1110 (-229))) 148 T ELT) (($ (-1 (-962 (-229)) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229))) 149 T ELT)) (-3177 (($ (-1 (-229) (-229)) (-1110 (-229))) 156 T ELT) (($ (-1 (-229) (-229))) 160 T ELT)) (-3190 (($ (-1 (-229) (-229)) (-1110 (-229))) 144 T ELT) (($ (-1 (-229) (-229)) (-1110 (-229)) (-1110 (-229))) 145 T ELT) (($ (-661 (-1 (-229) (-229))) (-1110 (-229))) 153 T ELT) (($ (-661 (-1 (-229) (-229))) (-1110 (-229)) (-1110 (-229))) 154 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229))) 146 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229))) 147 T ELT) (($ $ (-1110 (-229))) 131 T ELT)) (-3176 (((-114) $) 69 T ELT)) (-3167 (((-558)) 70 T ELT)) (-3175 (((-558)) 59 T ELT)) (-3173 (((-558)) 62 T ELT)) (-3299 (((-661 (-661 (-962 (-229)))) $) 35 T ELT)) (-3166 (((-114) (-114)) 71 T ELT)) (-4376 (((-877) $) 174 T ELT)) (-3169 (((-114)) 67 T ELT))) -(((-944) (-13 (-974) (-10 -8 (-15 -3190 ($ (-1 (-229) (-229)) (-1110 (-229)))) (-15 -3190 ($ (-1 (-229) (-229)) (-1110 (-229)) (-1110 (-229)))) (-15 -3190 ($ (-661 (-1 (-229) (-229))) (-1110 (-229)))) (-15 -3190 ($ (-661 (-1 (-229) (-229))) (-1110 (-229)) (-1110 (-229)))) (-15 -3190 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229)))) (-15 -3190 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)))) (-15 -3191 ($ (-1 (-962 (-229)) (-229)) (-1110 (-229)))) (-15 -3191 ($ (-1 (-962 (-229)) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)))) (-15 -3177 ($ (-1 (-229) (-229)) (-1110 (-229)))) (-15 -3177 ($ (-1 (-229) (-229)))) (-15 -3190 ($ $ (-1110 (-229)))) (-15 -3176 ((-114) $)) (-15 -4304 ($ $ (-1110 (-229)))) (-15 -4304 ($ $ (-1110 (-229)) (-1110 (-229)))) (-15 -3536 ($ $ (-1110 (-229)))) (-15 -3536 ($ $)) (-15 -3189 ((-1110 (-229)) $)) (-15 -3175 ((-558))) (-15 -3174 ((-558) (-558))) (-15 -3173 ((-558))) (-15 -3172 ((-558) (-558))) (-15 -3171 ((-558))) (-15 -3170 ((-558) (-558))) (-15 -3169 ((-114))) (-15 -3168 ((-114) (-114))) (-15 -3167 ((-558))) (-15 -3166 ((-114) (-114)))))) (T -944)) -((-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3190 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3190 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3190 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3190 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3191 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3191 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3177 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) (-3177 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-944)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) (-3176 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-944)))) (-4304 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) (-4304 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) (-3536 (*1 *1 *1) (-5 *1 (-944))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) (-3175 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3174 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3173 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3172 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3171 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3170 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3169 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944)))) (-3168 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944)))) (-3167 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944)))) (-3166 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -((-3177 (((-944) |#1| (-1198)) 17 T ELT) (((-944) |#1| (-1198) (-1110 (-229))) 21 T ELT)) (-3190 (((-944) |#1| |#1| (-1198) (-1110 (-229))) 19 T ELT) (((-944) |#1| (-1198) (-1110 (-229))) 15 T ELT))) -(((-945 |#1|) (-10 -7 (-15 -3190 ((-944) |#1| (-1198) (-1110 (-229)))) (-15 -3190 ((-944) |#1| |#1| (-1198) (-1110 (-229)))) (-15 -3177 ((-944) |#1| (-1198) (-1110 (-229)))) (-15 -3177 ((-944) |#1| (-1198)))) (-631 (-547))) (T -945)) -((-3177 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-5 *2 (-944)) (-5 *1 (-945 *3)) (-4 *3 (-631 (-547))))) (-3177 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1110 (-229))) (-5 *2 (-944)) (-5 *1 (-945 *3)) (-4 *3 (-631 (-547))))) (-3190 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1110 (-229))) (-5 *2 (-944)) (-5 *1 (-945 *3)) (-4 *3 (-631 (-547))))) (-3190 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1198)) (-5 *5 (-1110 (-229))) (-5 *2 (-944)) (-5 *1 (-945 *3)) (-4 *3 (-631 (-547)))))) -((-4304 (($ $ (-1110 (-229)) (-1110 (-229)) (-1110 (-229))) 123 T ELT)) (-3296 (((-1110 (-229)) $) 64 T ELT)) (-3297 (((-1110 (-229)) $) 63 T ELT)) (-3298 (((-1110 (-229)) $) 62 T ELT)) (-3188 (((-661 (-661 (-229))) $) 69 T ELT)) (-3189 (((-1110 (-229)) $) 65 T ELT)) (-3182 (((-558) (-558)) 57 T ELT)) (-3186 (((-558) (-558)) 52 T ELT)) (-3184 (((-558) (-558)) 55 T ELT)) (-3180 (((-114) (-114)) 59 T ELT)) (-3183 (((-558)) 56 T ELT)) (-3536 (($ $ (-1110 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-3191 (($ (-1 (-962 (-229)) (-229)) (-1110 (-229))) 133 T ELT) (($ (-1 (-962 (-229)) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229))) 134 T ELT)) (-3190 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229))) 140 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229))) 141 T ELT) (($ $ (-1110 (-229))) 129 T ELT)) (-3179 (((-558)) 60 T ELT)) (-3187 (((-558)) 50 T ELT)) (-3185 (((-558)) 53 T ELT)) (-3299 (((-661 (-661 (-962 (-229)))) $) 157 T ELT)) (-3178 (((-114) (-114)) 61 T ELT)) (-4376 (((-877) $) 155 T ELT)) (-3181 (((-114)) 58 T ELT))) -(((-946) (-13 (-995) (-10 -8 (-15 -3191 ($ (-1 (-962 (-229)) (-229)) (-1110 (-229)))) (-15 -3191 ($ (-1 (-962 (-229)) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)))) (-15 -3190 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229)))) (-15 -3190 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)) (-1110 (-229)))) (-15 -3190 ($ $ (-1110 (-229)))) (-15 -4304 ($ $ (-1110 (-229)) (-1110 (-229)) (-1110 (-229)))) (-15 -3536 ($ $ (-1110 (-229)))) (-15 -3536 ($ $)) (-15 -3189 ((-1110 (-229)) $)) (-15 -3188 ((-661 (-661 (-229))) $)) (-15 -3187 ((-558))) (-15 -3186 ((-558) (-558))) (-15 -3185 ((-558))) (-15 -3184 ((-558) (-558))) (-15 -3183 ((-558))) (-15 -3182 ((-558) (-558))) (-15 -3181 ((-114))) (-15 -3180 ((-114) (-114))) (-15 -3179 ((-558))) (-15 -3178 ((-114) (-114)))))) (T -946)) -((-3191 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-946)))) (-3191 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-946)))) (-3190 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-946)))) (-3190 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-946)))) (-3190 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) (-4304 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) (-3536 (*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) (-3536 (*1 *1 *1) (-5 *1 (-946))) (-3189 (*1 *2 *1) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-946)))) (-3187 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3186 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3185 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3184 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3183 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3182 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3181 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-946)))) (-3180 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-946)))) (-3179 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946)))) (-3178 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-946))))) -((-3192 (((-661 (-1110 (-229))) (-661 (-661 (-962 (-229))))) 34 T ELT))) -(((-947) (-10 -7 (-15 -3192 ((-661 (-1110 (-229))) (-661 (-661 (-962 (-229)))))))) (T -947)) -((-3192 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *2 (-661 (-1110 (-229)))) (-5 *1 (-947))))) -((-3194 (((-326 (-558)) (-1198)) 16 T ELT)) (-3195 (((-326 (-558)) (-1198)) 14 T ELT)) (-4382 (((-326 (-558)) (-1198)) 12 T ELT)) (-3193 (((-326 (-558)) (-1198) (-518)) 19 T ELT))) -(((-948) (-10 -7 (-15 -3193 ((-326 (-558)) (-1198) (-518))) (-15 -4382 ((-326 (-558)) (-1198))) (-15 -3194 ((-326 (-558)) (-1198))) (-15 -3195 ((-326 (-558)) (-1198))))) (T -948)) -((-3195 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) (-3194 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) (-4382 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) (-3193 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-518)) (-5 *2 (-326 (-558))) (-5 *1 (-948))))) -((-3194 ((|#2| |#2|) 28 T ELT)) (-3195 ((|#2| |#2|) 29 T ELT)) (-4382 ((|#2| |#2|) 27 T ELT)) (-3193 ((|#2| |#2| (-518)) 26 T ELT))) -(((-949 |#1| |#2|) (-10 -7 (-15 -3193 (|#2| |#2| (-518))) (-15 -4382 (|#2| |#2|)) (-15 -3194 (|#2| |#2|)) (-15 -3195 (|#2| |#2|))) (-1122) (-433 |#1|)) (T -949)) -((-3195 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-433 *3)))) (-3194 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-433 *3)))) (-4382 (*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-433 *3)))) (-3193 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1122)) (-5 *1 (-949 *4 *2)) (-4 *2 (-433 *4))))) -((-3197 (((-903 |#1| |#3|) |#2| (-905 |#1|) (-903 |#1| |#3|)) 25 T ELT)) (-3196 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT))) -(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -3196 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3197 ((-903 |#1| |#3|) |#2| (-905 |#1|) (-903 |#1| |#3|)))) (-1122) (-901 |#1|) (-13 (-1122) (-1059 |#2|))) (T -950)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *6 (-13 (-1122) (-1059 *3))) (-4 *3 (-901 *5)) (-5 *1 (-950 *5 *3 *6)))) (-3196 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1122) (-1059 *5))) (-4 *5 (-901 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-950 *4 *5 *6))))) -((-3197 (((-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|)) 30 T ELT))) -(((-951 |#1| |#2| |#3|) (-10 -7 (-15 -3197 ((-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|)))) (-1122) (-13 (-569) (-901 |#1|)) (-13 (-433 |#2|) (-631 (-905 |#1|)) (-901 |#1|) (-1059 (-628 $)))) (T -951)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-13 (-433 *6) (-631 *4) (-901 *5) (-1059 (-628 $)))) (-5 *4 (-905 *5)) (-4 *6 (-13 (-569) (-901 *5))) (-5 *1 (-951 *5 *6 *3))))) -((-3197 (((-903 (-558) |#1|) |#1| (-905 (-558)) (-903 (-558) |#1|)) 13 T ELT))) -(((-952 |#1|) (-10 -7 (-15 -3197 ((-903 (-558) |#1|) |#1| (-905 (-558)) (-903 (-558) |#1|)))) (-557)) (T -952)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 (-558) *3)) (-5 *4 (-905 (-558))) (-4 *3 (-557)) (-5 *1 (-952 *3))))) -((-3197 (((-903 |#1| |#2|) (-628 |#2|) (-905 |#1|) (-903 |#1| |#2|)) 57 T ELT))) -(((-953 |#1| |#2|) (-10 -7 (-15 -3197 ((-903 |#1| |#2|) (-628 |#2|) (-905 |#1|) (-903 |#1| |#2|)))) (-1122) (-13 (-1122) (-1059 (-628 $)) (-631 (-905 |#1|)) (-901 |#1|))) (T -953)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *6)) (-5 *3 (-628 *6)) (-4 *5 (-1122)) (-4 *6 (-13 (-1122) (-1059 (-628 $)) (-631 *4) (-901 *5))) (-5 *4 (-905 *5)) (-5 *1 (-953 *5 *6))))) -((-3197 (((-900 |#1| |#2| |#3|) |#3| (-905 |#1|) (-900 |#1| |#2| |#3|)) 17 T ELT))) -(((-954 |#1| |#2| |#3|) (-10 -7 (-15 -3197 ((-900 |#1| |#2| |#3|) |#3| (-905 |#1|) (-900 |#1| |#2| |#3|)))) (-1122) (-901 |#1|) (-686 |#2|)) (T -954)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *6 (-901 *5)) (-4 *3 (-686 *6)) (-5 *1 (-954 *5 *6 *3))))) -((-3197 (((-903 |#1| |#5|) |#5| (-905 |#1|) (-903 |#1| |#5|)) 17 (|has| |#3| (-901 |#1|)) ELT) (((-903 |#1| |#5|) |#5| (-905 |#1|) (-903 |#1| |#5|) (-1 (-903 |#1| |#5|) |#3| (-905 |#1|) (-903 |#1| |#5|))) 16 T ELT))) -(((-955 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3197 ((-903 |#1| |#5|) |#5| (-905 |#1|) (-903 |#1| |#5|) (-1 (-903 |#1| |#5|) |#3| (-905 |#1|) (-903 |#1| |#5|)))) (IF (|has| |#3| (-901 |#1|)) (-15 -3197 ((-903 |#1| |#5|) |#5| (-905 |#1|) (-903 |#1| |#5|))) |%noBranch|)) (-1122) (-815) (-861) (-13 (-1070) (-901 |#1|)) (-13 (-969 |#4| |#2| |#3|) (-631 (-905 |#1|)))) (T -955)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-13 (-969 *8 *6 *7) (-631 *4))) (-5 *4 (-905 *5)) (-4 *7 (-901 *5)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-13 (-1070) (-901 *5))) (-5 *1 (-955 *5 *6 *7 *8 *3)))) (-3197 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-903 *6 *3) *8 (-905 *6) (-903 *6 *3))) (-4 *8 (-861)) (-5 *2 (-903 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1122)) (-4 *3 (-13 (-969 *9 *7 *8) (-631 *4))) (-4 *7 (-815)) (-4 *9 (-13 (-1070) (-901 *6))) (-5 *1 (-955 *6 *7 *8 *9 *3))))) -((-3627 (((-326 (-558)) (-1198) (-661 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-558)) (-1198) (-1 (-114) |#1|)) 15 T ELT))) -(((-956 |#1|) (-10 -7 (-15 -3627 ((-326 (-558)) (-1198) (-1 (-114) |#1|))) (-15 -3627 ((-326 (-558)) (-1198) (-661 (-1 (-114) |#1|))))) (-1238)) (T -956)) -((-3627 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-661 (-1 (-114) *5))) (-4 *5 (-1238)) (-5 *2 (-326 (-558))) (-5 *1 (-956 *5)))) (-3627 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1238)) (-5 *2 (-326 (-558))) (-5 *1 (-956 *5))))) -((-3627 ((|#2| |#2| (-661 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT))) -(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -3627 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3627 (|#2| |#2| (-661 (-1 (-114) |#3|))))) (-1122) (-433 |#1|) (-1238)) (T -957)) -((-3627 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-1 (-114) *5))) (-4 *5 (-1238)) (-4 *4 (-1122)) (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-433 *4)))) (-3627 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1238)) (-4 *4 (-1122)) (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-433 *4))))) -((-3197 (((-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|)) 25 T ELT))) -(((-958 |#1| |#2| |#3|) (-10 -7 (-15 -3197 ((-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|)))) (-1122) (-13 (-569) (-901 |#1|) (-631 (-905 |#1|))) (-1012 |#2|)) (T -958)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-1012 *6)) (-4 *6 (-13 (-569) (-901 *5) (-631 *4))) (-5 *4 (-905 *5)) (-5 *1 (-958 *5 *6 *3))))) -((-3197 (((-903 |#1| (-1198)) (-1198) (-905 |#1|) (-903 |#1| (-1198))) 18 T ELT))) -(((-959 |#1|) (-10 -7 (-15 -3197 ((-903 |#1| (-1198)) (-1198) (-905 |#1|) (-903 |#1| (-1198))))) (-1122)) (T -959)) -((-3197 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-903 *5 (-1198))) (-5 *3 (-1198)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-5 *1 (-959 *5))))) -((-3198 (((-903 |#1| |#3|) (-661 |#3|) (-661 (-905 |#1|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|))) 34 T ELT)) (-3197 (((-903 |#1| |#3|) (-661 |#3|) (-661 (-905 |#1|)) (-1 |#3| (-661 |#3|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|))) 33 T ELT))) -(((-960 |#1| |#2| |#3|) (-10 -7 (-15 -3197 ((-903 |#1| |#3|) (-661 |#3|) (-661 (-905 |#1|)) (-1 |#3| (-661 |#3|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|)))) (-15 -3198 ((-903 |#1| |#3|) (-661 |#3|) (-661 (-905 |#1|)) (-903 |#1| |#3|) (-1 (-903 |#1| |#3|) |#3| (-905 |#1|) (-903 |#1| |#3|))))) (-1122) (-1070) (-13 (-1070) (-631 (-905 |#1|)) (-1059 |#2|))) (T -960)) -((-3198 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-905 *6))) (-5 *5 (-1 (-903 *6 *8) *8 (-905 *6) (-903 *6 *8))) (-4 *6 (-1122)) (-4 *8 (-13 (-1070) (-631 (-905 *6)) (-1059 *7))) (-5 *2 (-903 *6 *8)) (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8)))) (-3197 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-661 (-905 *7))) (-5 *5 (-1 *9 (-661 *9))) (-5 *6 (-1 (-903 *7 *9) *9 (-905 *7) (-903 *7 *9))) (-4 *7 (-1122)) (-4 *9 (-13 (-1070) (-631 (-905 *7)) (-1059 *8))) (-5 *2 (-903 *7 *9)) (-5 *3 (-661 *9)) (-4 *8 (-1070)) (-5 *1 (-960 *7 *8 *9))))) -((-3206 (((-1192 (-419 (-558))) (-558)) 80 T ELT)) (-3205 (((-1192 (-558)) (-558)) 83 T ELT)) (-3754 (((-1192 (-558)) (-558)) 77 T ELT)) (-3204 (((-558) (-1192 (-558))) 73 T ELT)) (-3203 (((-1192 (-419 (-558))) (-558)) 66 T ELT)) (-3202 (((-1192 (-558)) (-558)) 49 T ELT)) (-3201 (((-1192 (-558)) (-558)) 85 T ELT)) (-3200 (((-1192 (-558)) (-558)) 84 T ELT)) (-3199 (((-1192 (-419 (-558))) (-558)) 68 T ELT))) -(((-961) (-10 -7 (-15 -3199 ((-1192 (-419 (-558))) (-558))) (-15 -3200 ((-1192 (-558)) (-558))) (-15 -3201 ((-1192 (-558)) (-558))) (-15 -3202 ((-1192 (-558)) (-558))) (-15 -3203 ((-1192 (-419 (-558))) (-558))) (-15 -3204 ((-558) (-1192 (-558)))) (-15 -3754 ((-1192 (-558)) (-558))) (-15 -3205 ((-1192 (-558)) (-558))) (-15 -3206 ((-1192 (-419 (-558))) (-558))))) (T -961)) -((-3206 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3205 (*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3754 (*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3204 (*1 *2 *3) (-12 (-5 *3 (-1192 (-558))) (-5 *2 (-558)) (-5 *1 (-961)))) (-3203 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3202 (*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3200 (*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558)))) (-3199 (*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-961)) (-5 *3 (-558))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4268 (($ (-791)) NIL (|has| |#1| (-23)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-4136 (($ (-661 |#1|)) 9 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4265 (((-709 |#1|) $ $) NIL (|has| |#1| (-1070)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4262 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))) ELT)) (-4263 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))) ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4199 (($ $ (-661 |#1|)) 25 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 18 T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4266 ((|#1| $ $) NIL (|has| |#1| (-1070)) ELT)) (-4341 (((-938) $) 13 T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4264 (($ $ $) 23 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT) (($ (-661 |#1|)) 14 T ELT)) (-3950 (($ (-661 |#1|)) NIL T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4267 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-746)) ELT) (($ $ |#1|) NIL (|has| |#1| (-746)) ELT)) (-4387 (((-791) $) 11 (|has| $ (-6 -4425)) ELT))) -(((-962 |#1|) (-1001 |#1|) (-1070)) (T -962)) -NIL -((-3209 (((-493 |#1| |#2|) (-965 |#2|)) 22 T ELT)) (-3212 (((-255 |#1| |#2|) (-965 |#2|)) 35 T ELT)) (-3210 (((-965 |#2|) (-493 |#1| |#2|)) 27 T ELT)) (-3208 (((-255 |#1| |#2|) (-493 |#1| |#2|)) 57 T ELT)) (-3211 (((-965 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-3207 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT))) -(((-963 |#1| |#2|) (-10 -7 (-15 -3207 ((-493 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3208 ((-255 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3209 ((-493 |#1| |#2|) (-965 |#2|))) (-15 -3210 ((-965 |#2|) (-493 |#1| |#2|))) (-15 -3211 ((-965 |#2|) (-255 |#1| |#2|))) (-15 -3212 ((-255 |#1| |#2|) (-965 |#2|)))) (-661 (-1198)) (-1070)) (T -963)) -((-3212 (*1 *2 *3) (-12 (-5 *3 (-965 *5)) (-4 *5 (-1070)) (-5 *2 (-255 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-661 (-1198))))) (-3211 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) (-5 *2 (-965 *5)) (-5 *1 (-963 *4 *5)))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) (-5 *2 (-965 *5)) (-5 *1 (-963 *4 *5)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-965 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5)) (-14 *4 (-661 (-1198))))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) (-5 *2 (-255 *4 *5)) (-5 *1 (-963 *4 *5)))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) -((-3213 (((-661 |#2|) |#2| |#2|) 10 T ELT)) (-3216 (((-791) (-661 |#1|)) 47 (|has| |#1| (-860)) ELT)) (-3214 (((-661 |#2|) |#2|) 11 T ELT)) (-3217 (((-791) (-661 |#1|) (-558) (-558)) 52 (|has| |#1| (-860)) ELT)) (-3215 ((|#1| |#2|) 37 (|has| |#1| (-860)) ELT))) -(((-964 |#1| |#2|) (-10 -7 (-15 -3213 ((-661 |#2|) |#2| |#2|)) (-15 -3214 ((-661 |#2|) |#2|)) (IF (|has| |#1| (-860)) (PROGN (-15 -3215 (|#1| |#2|)) (-15 -3216 ((-791) (-661 |#1|))) (-15 -3217 ((-791) (-661 |#1|) (-558) (-558)))) |%noBranch|)) (-376) (-1264 |#1|)) (T -964)) -((-3217 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-558)) (-4 *5 (-860)) (-4 *5 (-376)) (-5 *2 (-791)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5)))) (-3216 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-860)) (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4)))) (-3215 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1264 *2)))) (-3214 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4)))) (-3213 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-964 *4 *3)) (-4 *3 (-1264 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1198)) $) 16 T ELT)) (-3486 (((-1192 $) $ (-1198)) 21 T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1198))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1198) #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-1198) $) NIL T ELT)) (-4186 (($ $ $ (-1198)) NIL (|has| |#1| (-175)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1198)) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-543 (-1198)) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1198) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1198) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#1|) (-1198)) NIL T ELT) (($ (-1192 $) (-1198)) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-543 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1198)) NIL T ELT)) (-3221 (((-543 (-1198)) $) NIL T ELT) (((-791) $ (-1198)) NIL T ELT) (((-661 (-791)) $ (-661 (-1198))) NIL T ELT)) (-1805 (($ (-1 (-543 (-1198)) (-543 (-1198))) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3485 (((-3 (-1198) #1#) $) 19 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1198)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-4242 (($ $ (-1198)) 29 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1198) |#1|) NIL T ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL T ELT) (($ $ (-1198) $) NIL T ELT) (($ $ (-661 (-1198)) (-661 $)) NIL T ELT)) (-4187 (($ $ (-1198)) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT)) (-4378 (((-543 (-1198)) $) NIL T ELT) (((-791) $ (-1198)) NIL T ELT) (((-661 (-791)) $ (-661 (-1198))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-1198) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1198) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1198) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1198)) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) 25 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1198)) 27 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-543 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-965 |#1|) (-13 (-969 |#1| (-543 (-1198)) (-1198)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1198))) |%noBranch|))) (-1070)) (T -965)) -((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-965 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070))))) -((-4388 (((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)) 19 T ELT))) -(((-966 |#1| |#2|) (-10 -7 (-15 -4388 ((-965 |#2|) (-1 |#2| |#1|) (-965 |#1|)))) (-1070) (-1070)) (T -966)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-965 *6)) (-5 *1 (-966 *5 *6))))) -((-3486 (((-1257 |#1| (-965 |#2|)) (-965 |#2|) (-1285 |#1|)) 18 T ELT))) -(((-967 |#1| |#2|) (-10 -7 (-15 -3486 ((-1257 |#1| (-965 |#2|)) (-965 |#2|) (-1285 |#1|)))) (-1198) (-1070)) (T -967)) -((-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-1285 *5)) (-14 *5 (-1198)) (-4 *6 (-1070)) (-5 *2 (-1257 *5 (-965 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-965 *6))))) -((-3220 (((-791) $) 88 T ELT) (((-791) $ (-661 |#4|)) 93 T ELT)) (-4205 (($ $) 213 T ELT)) (-4401 (((-417 $) $) 205 T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 141 T ELT)) (-3575 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-4186 (($ $ $ |#4|) 95 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) 131 T ELT) (((-709 |#2|) (-709 $)) 121 T ELT)) (-3923 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-3219 (((-661 $) $) 77 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 239 T ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 232 T ELT)) (-3222 (((-661 $) $) 34 T ELT)) (-3294 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-791)) NIL T ELT) (($ $ (-661 |#4|) (-661 (-791))) 71 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#4|) 202 T ELT)) (-3224 (((-3 (-661 $) #1#) $) 52 T ELT)) (-3223 (((-3 (-661 $) #1#) $) 39 T ELT)) (-3225 (((-3 (-2 (|:| |var| |#4|) (|:| -2632 (-791))) #1#) $) 57 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 134 T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 147 T ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 145 T ELT)) (-4162 (((-417 $) $) 165 T ELT)) (-4198 (($ $ (-661 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-661 |#4|) (-661 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-661 |#4|) (-661 $)) NIL T ELT)) (-4187 (($ $ |#4|) 97 T ELT)) (-4402 (((-905 (-391)) $) 253 T ELT) (((-905 (-558)) $) 246 T ELT) (((-547) $) 261 T ELT)) (-3218 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 184 T ELT)) (-4107 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-791)) 62 T ELT) (($ $ (-661 |#4|) (-661 (-791))) 69 T ELT)) (-3103 (((-711 $) $) 194 T ELT)) (-1378 (((-114) $ $) 226 T ELT))) -(((-968 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3109 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -4401 ((-417 |#1|) |#1|)) (-15 -4205 (|#1| |#1|)) (-15 -3103 ((-711 |#1|) |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -4402 ((-905 (-558)) |#1|)) (-15 -4402 ((-905 (-391)) |#1|)) (-15 -3197 ((-903 (-558) |#1|) |#1| (-905 (-558)) (-903 (-558) |#1|))) (-15 -3197 ((-903 (-391) |#1|) |#1| (-905 (-391)) (-903 (-391) |#1|))) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -3107 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3106 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3105 ((-3 (-661 (-1192 |#1|)) #1="failed") (-661 (-1192 |#1|)) (-1192 |#1|))) (-15 -3104 ((-3 (-1288 |#1|) #1#) (-709 |#1|))) (-15 -3923 (|#1| |#1| |#4|)) (-15 -3218 (|#1| |#1| |#4|)) (-15 -4187 (|#1| |#1| |#4|)) (-15 -4186 (|#1| |#1| |#1| |#4|)) (-15 -3219 ((-661 |#1|) |#1|)) (-15 -3220 ((-791) |#1| (-661 |#4|))) (-15 -3220 ((-791) |#1|)) (-15 -3225 ((-3 (-2 (|:| |var| |#4|) (|:| -2632 (-791))) #1#) |#1|)) (-15 -3224 ((-3 (-661 |#1|) #1#) |#1|)) (-15 -3223 ((-3 (-661 |#1|) #1#) |#1|)) (-15 -3294 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -3294 (|#1| |#1| |#4| (-791))) (-15 -4193 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3222 ((-661 |#1|) |#1|)) (-15 -4107 (|#1| |#1| (-661 |#4|) (-661 (-791)))) (-15 -4107 (|#1| |#1| |#4| (-791))) (-15 -2493 ((-709 |#2|) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-709 (-558)) (-709 |#1|))) (-15 -3575 ((-3 |#4| #1#) |#1|)) (-15 -3574 (|#4| |#1|)) (-15 -4198 (|#1| |#1| (-661 |#4|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#4| |#1|)) (-15 -4198 (|#1| |#1| (-661 |#4|) (-661 |#2|))) (-15 -4198 (|#1| |#1| |#4| |#2|)) (-15 -4198 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#1| |#1|)) (-15 -4198 (|#1| |#1| (-305 |#1|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4107 (|#2| |#1| |#3|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3218 (|#2| |#1|)) (-15 -3923 (|#1| |#1|)) (-15 -1378 ((-114) |#1| |#1|))) (-969 |#2| |#3| |#4|) (-1070) (-815) (-861)) (T -968)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 |#3|) $) 120 T ELT)) (-3486 (((-1192 $) $ |#3|) 135 T ELT) (((-1192 |#1|) $) 134 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) 122 T ELT) (((-791) $ (-661 |#3|)) 121 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 110 (|has| |#1| (-929)) ELT)) (-4205 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 113 (|has| |#1| (-929)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1059 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3574 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1059 (-558))) ELT) ((|#3| $) 151 T ELT)) (-4186 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4389 (($ $) 168 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3923 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) 119 T ELT)) (-4153 (((-114) $) 106 (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| |#2| $) 186 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 94 (-12 (|has| |#3| (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 93 (-12 (|has| |#3| (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-2641 (((-114) $) 40 T ELT)) (-2649 (((-791) $) 183 T ELT)) (-3487 (($ (-1192 |#1|) |#3|) 127 T ELT) (($ (-1192 $) |#3|) 126 T ELT)) (-3222 (((-661 $) $) 136 T ELT)) (-4367 (((-114) $) 166 T ELT)) (-3294 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-791)) 129 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 128 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#3|) 130 T ELT)) (-3221 ((|#2| $) 184 T ELT) (((-791) $ |#3|) 132 T ELT) (((-661 (-791)) $ (-661 |#3|)) 131 T ELT)) (-1805 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3485 (((-3 |#3| "failed") $) 133 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 142 T ELT) (((-709 |#1|) (-1288 $)) 141 T ELT)) (-3295 (($ $) 163 T ELT)) (-3592 ((|#1| $) 162 T ELT)) (-2102 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3224 (((-3 (-661 $) "failed") $) 124 T ELT)) (-3223 (((-3 (-661 $) "failed") $) 125 T ELT)) (-3225 (((-3 (-2 (|:| |var| |#3|) (|:| -2632 (-791))) "failed") $) 123 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-2005 (((-114) $) 180 T ELT)) (-2004 ((|#1| $) 181 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 105 (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 112 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 111 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) 109 (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-661 |#3|) (-661 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-661 |#3|) (-661 $)) 152 T ELT)) (-4187 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 |#3|) (-661 (-791))) 49 T ELT) (($ $ |#3| (-791)) 48 T ELT) (($ $ (-661 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4378 ((|#2| $) 164 T ELT) (((-791) $ |#3|) 140 T ELT) (((-661 (-791)) $ (-661 |#3|)) 139 T ELT)) (-4402 (((-905 (-391)) $) 92 (-12 (|has| |#3| (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) 91 (-12 (|has| |#3| (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 114 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-569)) ELT) (($ (-419 (-558))) 88 (-3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4247 (((-661 |#1|) $) 182 T ELT)) (-4107 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-791)) 138 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 137 T ELT)) (-3103 (((-711 $) $) 89 (-3957 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 37 T CONST)) (-1803 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-661 |#3|) (-661 (-791))) 52 T ELT) (($ $ |#3| (-791)) 51 T ELT) (($ $ (-661 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-969 |#1| |#2| |#3|) (-142) (-1070) (-815) (-861)) (T -969)) -((-3923 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464)))) (-4378 (*1 *2 *1 *3) (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-791)))) (-4378 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 (-791))))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *2 (-861)))) (-4107 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)))) (-3222 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3486 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-1192 *1)) (-4 *1 (-969 *4 *5 *3)))) (-3486 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-1192 *3)))) (-3485 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3221 (*1 *2 *1 *3) (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-791)))) (-3221 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 (-791))))) (-4193 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-969 *4 *5 *3)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *2 (-861)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)))) (-3487 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1070)) (-4 *1 (-969 *4 *5 *3)) (-4 *5 (-815)) (-4 *3 (-861)))) (-3487 (*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)))) (-3223 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3224 (*1 *2 *1) (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-969 *3 *4 *5)))) (-3225 (*1 *2 *1) (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -2632 (-791)))))) (-3220 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-791)))) (-3220 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-791)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *5)))) (-3219 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-969 *3 *4 *5)))) (-4186 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *3 (-175)))) (-4187 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *3 (-175)))) (-3218 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *3 (-464)))) (-3923 (*1 *1 *1 *2) (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *3 (-464)))) (-4205 (*1 *1 *1) (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464)))) (-4401 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-417 *1)) (-4 *1 (-969 *3 *4 *5))))) -(-13 (-917 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1059 |t#3|) (-390 |t#1|) (-10 -8 (-15 -4378 ((-791) $ |t#3|)) (-15 -4378 ((-661 (-791)) $ (-661 |t#3|))) (-15 -4107 ($ $ |t#3| (-791))) (-15 -4107 ($ $ (-661 |t#3|) (-661 (-791)))) (-15 -3222 ((-661 $) $)) (-15 -3486 ((-1192 $) $ |t#3|)) (-15 -3486 ((-1192 |t#1|) $)) (-15 -3485 ((-3 |t#3| "failed") $)) (-15 -3221 ((-791) $ |t#3|)) (-15 -3221 ((-661 (-791)) $ (-661 |t#3|))) (-15 -4193 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |t#3|)) (-15 -3294 ($ $ |t#3| (-791))) (-15 -3294 ($ $ (-661 |t#3|) (-661 (-791)))) (-15 -3487 ($ (-1192 |t#1|) |t#3|)) (-15 -3487 ($ (-1192 $) |t#3|)) (-15 -3223 ((-3 (-661 $) "failed") $)) (-15 -3224 ((-3 (-661 $) "failed") $)) (-15 -3225 ((-3 (-2 (|:| |var| |t#3|) (|:| -2632 (-791))) "failed") $)) (-15 -3220 ((-791) $)) (-15 -3220 ((-791) $ (-661 |t#3|))) (-15 -3484 ((-661 |t#3|) $)) (-15 -3219 ((-661 $) $)) (IF (|has| |t#1| (-631 (-547))) (IF (|has| |t#3| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-631 (-905 (-558)))) (IF (|has| |t#3| (-631 (-905 (-558)))) (-6 (-631 (-905 (-558)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-631 (-905 (-391)))) (IF (|has| |t#3| (-631 (-905 (-391)))) (-6 (-631 (-905 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-558))) (IF (|has| |t#3| (-901 (-558))) (-6 (-901 (-558))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-901 (-391))) (IF (|has| |t#3| (-901 (-391))) (-6 (-901 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4186 ($ $ $ |t#3|)) (-15 -4187 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3218 ($ $ |t#3|)) (-15 -3923 ($ $)) (-15 -3923 ($ $ |t#3|)) (-15 -4401 ((-417 $) $)) (-15 -4205 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4423)) (-6 -4423) |%noBranch|) (IF (|has| |t#1| (-929)) (-6 (-929)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 |#3|) . T) ((-633 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ((-631 (-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#3| (-631 (-905 (-391))))) ((-631 (-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#3| (-631 (-905 (-558))))) ((-302) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3957 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-746) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-391)) -12 (|has| |#1| (-901 (-391))) (|has| |#3| (-901 (-391)))) ((-901 (-558)) -12 (|has| |#1| (-901 (-558))) (|has| |#3| (-901 (-558)))) ((-929) |has| |#1| (-929)) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) |has| |#1| (-929))) -((-3484 (((-661 |#2|) |#5|) 40 T ELT)) (-3486 (((-1192 |#5|) |#5| |#2| (-1192 |#5|)) 23 T ELT) (((-419 (-1192 |#5|)) |#5| |#2|) 16 T ELT)) (-3487 ((|#5| (-419 (-1192 |#5|)) |#2|) 30 T ELT)) (-3485 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-3224 (((-3 (-661 |#5|) #1#) |#5|) 64 T ELT)) (-3226 (((-3 (-2 (|:| |val| |#5|) (|:| -2632 (-558))) #1#) |#5|) 53 T ELT)) (-3223 (((-3 (-661 |#5|) #1#) |#5|) 66 T ELT)) (-3225 (((-3 (-2 (|:| |var| |#2|) (|:| -2632 (-558))) #1#) |#5|) 56 T ELT))) -(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3484 ((-661 |#2|) |#5|)) (-15 -3485 ((-3 |#2| #1="failed") |#5|)) (-15 -3486 ((-419 (-1192 |#5|)) |#5| |#2|)) (-15 -3487 (|#5| (-419 (-1192 |#5|)) |#2|)) (-15 -3486 ((-1192 |#5|) |#5| |#2| (-1192 |#5|))) (-15 -3223 ((-3 (-661 |#5|) #1#) |#5|)) (-15 -3224 ((-3 (-661 |#5|) #1#) |#5|)) (-15 -3225 ((-3 (-2 (|:| |var| |#2|) (|:| -2632 (-558))) #1#) |#5|)) (-15 -3226 ((-3 (-2 (|:| |val| |#5|) (|:| -2632 (-558))) #1#) |#5|))) (-815) (-861) (-1070) (-969 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4376 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -970)) -((-3226 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2632 (-558)))) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3225 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2632 (-558)))) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3224 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3223 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3486 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) (-4 *7 (-969 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-1070)) (-5 *1 (-970 *5 *4 *6 *7 *3)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *2 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) (-5 *1 (-970 *5 *4 *6 *7 *2)) (-4 *7 (-969 *6 *5 *4)))) (-3486 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-419 (-1192 *3))) (-5 *1 (-970 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) (-3485 (*1 *2 *3) (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1070)) (-4 *6 (-969 *5 *4 *2)) (-4 *2 (-861)) (-5 *1 (-970 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *6)) (-15 -3399 (*6 $)) (-15 -3398 (*6 $))))))) (-3484 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-661 *5)) (-5 *1 (-970 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) -((-4388 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) -(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4388 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-815) (-861) (-1070) (-969 |#3| |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -4269 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791)))))) (T -971)) -((-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) (-4 *6 (-815)) (-4 *2 (-13 (-1122) (-10 -8 (-15 -4269 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791)))))) (-5 *1 (-971 *6 *7 *8 *5 *2)) (-4 *5 (-969 *8 *6 *7))))) -((-3227 (((-2 (|:| -2632 (-791)) (|:| -4384 |#5|) (|:| |radicand| |#5|)) |#3| (-791)) 48 T ELT)) (-3228 (((-2 (|:| -2632 (-791)) (|:| -4384 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-791)) 43 T ELT)) (-3230 (((-2 (|:| -2632 (-791)) (|:| -4384 |#4|) (|:| |radicand| (-661 |#4|))) |#4| (-791)) 64 T ELT)) (-3229 (((-2 (|:| -2632 (-791)) (|:| -4384 |#5|) (|:| |radicand| |#5|)) |#5| (-791)) 73 (|has| |#3| (-464)) ELT))) -(((-972 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3227 ((-2 (|:| -2632 (-791)) (|:| -4384 |#5|) (|:| |radicand| |#5|)) |#3| (-791))) (-15 -3228 ((-2 (|:| -2632 (-791)) (|:| -4384 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-791))) (IF (|has| |#3| (-464)) (-15 -3229 ((-2 (|:| -2632 (-791)) (|:| -4384 |#5|) (|:| |radicand| |#5|)) |#5| (-791))) |%noBranch|) (-15 -3230 ((-2 (|:| -2632 (-791)) (|:| -4384 |#4|) (|:| |radicand| (-661 |#4|))) |#4| (-791)))) (-815) (-861) (-569) (-969 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4376 ($ |#4|)) (-15 -3399 (|#4| $)) (-15 -3398 (|#4| $))))) (T -972)) -((-3230 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-569)) (-4 *3 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *3) (|:| |radicand| (-661 *3)))) (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-791)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4376 ($ *3)) (-15 -3399 (*3 $)) (-15 -3398 (*3 $))))))) (-3229 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-569)) (-4 *8 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *3) (|:| |radicand| *3))) (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-791)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4376 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $))))))) (-3228 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-558))) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-569)) (-4 *8 (-969 *7 *5 *6)) (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *9) (|:| |radicand| *9))) (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-791)) (-4 *9 (-13 (-376) (-10 -8 (-15 -4376 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $))))))) (-3227 (*1 *2 *3 *4) (-12 (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-569)) (-4 *7 (-969 *3 *5 *6)) (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *8) (|:| |radicand| *8))) (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-791)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3231 (($ (-1141)) 8 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 15 T ELT) (((-1141) $) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 11 T ELT))) -(((-973) (-13 (-1122) (-630 (-1141)) (-10 -8 (-15 -3231 ($ (-1141)))))) (T -973)) -((-3231 (*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) -((-3297 (((-1110 (-229)) $) 8 T ELT)) (-3298 (((-1110 (-229)) $) 9 T ELT)) (-3299 (((-661 (-661 (-962 (-229)))) $) 10 T ELT)) (-4376 (((-877) $) 6 T ELT))) -(((-974) (-142)) (T -974)) -((-3299 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-661 (-661 (-962 (-229))))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1110 (-229))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1110 (-229)))))) -(-13 (-630 (-877)) (-10 -8 (-15 -3299 ((-661 (-661 (-962 (-229)))) $)) (-15 -3298 ((-1110 (-229)) $)) (-15 -3297 ((-1110 (-229)) $)))) -(((-630 (-877)) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 79 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 80 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) 31 T ELT)) (-3887 (((-3 $ #1#) $) 42 T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1804 (($ $ |#1| |#2| $) 63 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) 17 T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| |#2|) NIL T ELT)) (-3221 ((|#2| $) 24 T ELT)) (-1805 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3295 (($ $) 28 T ELT)) (-3592 ((|#1| $) 26 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) 51 T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-4168 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-133)) (|has| |#1| (-569))) ELT)) (-3886 (((-3 $ #1#) $ $) 92 (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ |#1|) 86 (|has| |#1| (-569)) ELT)) (-4378 ((|#2| $) 22 T ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) 46 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 41 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ |#2|) 37 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 15 T CONST)) (-1803 (($ $ $ (-791)) 75 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) 85 (|has| |#1| (-569)) ELT)) (-3059 (($) 27 T CONST)) (-3065 (($) 12 T CONST)) (-3454 (((-114) $ $) 84 T ELT)) (-4379 (($ $ |#1|) 93 (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) 70 T ELT) (($ $ (-791)) 68 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-975 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-133)) (-15 -4168 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1070) (-814)) (T -975)) -((-4168 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-975 *3 *2)) (-4 *2 (-133)) (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *2 (-814))))) -((-3232 (((-3 (-709 |#1|) "failed") |#2| (-938)) 18 T ELT))) -(((-976 |#1| |#2|) (-10 -7 (-15 -3232 ((-3 (-709 |#1|) "failed") |#2| (-938)))) (-569) (-678 |#1|)) (T -976)) -((-3232 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-938)) (-4 *5 (-569)) (-5 *2 (-709 *5)) (-5 *1 (-976 *5 *3)) (-4 *3 (-678 *5))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 20 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 19 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 17 T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) |#1|) 16 T ELT)) (-2415 (((-558) $) 11 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) 21 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) 13 T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 18 T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 22 T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 15 T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4387 (((-791) $) 8 (|has| $ (-6 -4425)) ELT))) -(((-977 |#1|) (-19 |#1|) (-1238)) (T -977)) -NIL -((-4271 (((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 16 T ELT)) (-4272 ((|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|) 18 T ELT)) (-4388 (((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)) 13 T ELT))) -(((-978 |#1| |#2|) (-10 -7 (-15 -4271 ((-977 |#2|) (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4272 (|#2| (-1 |#2| |#1| |#2|) (-977 |#1|) |#2|)) (-15 -4388 ((-977 |#2|) (-1 |#2| |#1|) (-977 |#1|)))) (-1238) (-1238)) (T -978)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-977 *6)) (-5 *1 (-978 *5 *6)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-978 *5 *2)))) (-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-977 *5)) (-5 *1 (-978 *6 *5))))) -((-3233 (($ $ (-1113 $)) 7 T ELT) (($ $ (-1198)) 6 T ELT))) -(((-979) (-142)) (T -979)) -((-3233 (*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-979)))) (-3233 (*1 *1 *1 *2) (-12 (-4 *1 (-979)) (-5 *2 (-1198))))) -(-13 (-10 -8 (-15 -3233 ($ $ (-1198))) (-15 -3233 ($ $ (-1113 $))))) -((-3234 (((-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-661 (-965 |#1|)) (-661 (-1198)) (-1198)) 26 T ELT) (((-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-661 (-965 |#1|)) (-661 (-1198))) 27 T ELT) (((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1192 |#1|))) (-965 |#1|) (-1198) (-965 |#1|) (-1198)) 49 T ELT))) -(((-980 |#1|) (-10 -7 (-15 -3234 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1192 |#1|))) (-965 |#1|) (-1198) (-965 |#1|) (-1198))) (-15 -3234 ((-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-661 (-965 |#1|)) (-661 (-1198)))) (-15 -3234 ((-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 |#1|))) (|:| |prim| (-1192 |#1|))) (-661 (-965 |#1|)) (-661 (-1198)) (-1198)))) (-13 (-376) (-149))) (T -980)) -((-3234 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-965 *6))) (-5 *4 (-661 (-1198))) (-5 *5 (-1198)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 *6))) (|:| |prim| (-1192 *6)))) (-5 *1 (-980 *6)))) (-3234 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-661 (-1198))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 *5))) (|:| |prim| (-1192 *5)))) (-5 *1 (-980 *5)))) (-3234 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-965 *5)) (-5 *4 (-1198)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1192 *5)))) (-5 *1 (-980 *5))))) -((-3237 (((-661 |#1|) |#1| |#1|) 47 T ELT)) (-4153 (((-114) |#1|) 44 T ELT)) (-3236 ((|#1| |#1|) 80 T ELT)) (-3235 ((|#1| |#1|) 79 T ELT))) -(((-981 |#1|) (-10 -7 (-15 -4153 ((-114) |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3236 (|#1| |#1|)) (-15 -3237 ((-661 |#1|) |#1| |#1|))) (-557)) (T -981)) -((-3237 (*1 *2 *3 *3) (-12 (-5 *2 (-661 *3)) (-5 *1 (-981 *3)) (-4 *3 (-557)))) (-3236 (*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557)))) (-3235 (*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557)))) (-4153 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-981 *3)) (-4 *3 (-557))))) -((-3238 (((-1294) (-877)) 9 T ELT))) -(((-982) (-10 -7 (-15 -3238 ((-1294) (-877))))) (T -982)) -((-3238 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-982))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-2873 (($ $ $) 65 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-1426 (((-3 $ #1="failed") $ $) 52 (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (-3538 (((-791)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3239 ((|#2| $) 22 T ELT)) (-3240 ((|#1| $) 21 T ELT)) (-4154 (($) NIL (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-3887 (((-3 $ #1#) $) NIL (-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT)) (-3395 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3604 (((-114) $) NIL (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) ELT)) (-2641 (((-114) $) NIL (-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT)) (-2930 (($ $ $) NIL (-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ELT)) (-3258 (($ $ $) NIL (-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ELT)) (-3241 (($ |#1| |#2|) 20 T ELT)) (-2220 (((-938) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2631 (($ (-938)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3410 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2824 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4376 (((-877) $) 14 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 42 (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) CONST)) (-3065 (($) 25 (-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) CONST)) (-2965 (((-114) $ $) NIL (-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ELT)) (-2966 (((-114) $ $) NIL (-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ELT)) (-3454 (((-114) $ $) 19 T ELT)) (-3085 (((-114) $ $) NIL (-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ELT)) (-3086 (((-114) $ $) 69 (-3957 (-12 (|has| |#1| (-815)) (|has| |#2| (-815))) (-12 (|has| |#1| (-861)) (|has| |#2| (-861)))) ELT)) (-4379 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4267 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-4269 (($ $ $) 45 (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT)) (** (($ $ (-558)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT) (($ $ (-791)) 32 (-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT) (($ $ (-938)) NIL (-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT)) (* (($ (-558) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-791) $) 48 (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ (-938) $) NIL (-3957 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-815)) (|has| |#2| (-815)))) ELT) (($ $ $) 28 (-3957 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-746)) (|has| |#2| (-746)))) ELT))) -(((-983 |#1| |#2|) (-13 (-1122) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-746)) (IF (|has| |#2| (-746)) (-6 (-746)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-815)) (IF (|has| |#2| (-815)) (-6 (-815)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-861)) (IF (|has| |#2| (-861)) (-6 (-861)) |%noBranch|) |%noBranch|) (-15 -3241 ($ |#1| |#2|)) (-15 -3240 (|#1| $)) (-15 -3239 (|#2| $)))) (-1122) (-1122)) (T -983)) -((-3241 (*1 *1 *2 *3) (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3240 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1122)))) (-3239 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1122))))) -((-3822 (((-1124) $) 12 T ELT)) (-3242 (($ (-518) (-1124)) 14 T ELT)) (-3970 (((-518) $) 9 T ELT)) (-4376 (((-877) $) 24 T ELT))) -(((-984) (-13 (-630 (-877)) (-10 -8 (-15 -3970 ((-518) $)) (-15 -3822 ((-1124) $)) (-15 -3242 ($ (-518) (-1124)))))) (T -984)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-984)))) (-3242 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-984))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3256 (($) 17 T CONST)) (-2960 (($ $ $) 37 T ELT)) (-2959 (($ $) 29 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3247 (((-711 (-887 $ $)) $) 62 T ELT)) (-3249 (((-711 $) $) 52 T ELT)) (-3246 (((-711 (-887 $ $)) $) 63 T ELT)) (-3245 (((-711 (-887 $ $)) $) 64 T ELT)) (-3250 (((-711 |#1|) $) 43 T ELT)) (-3248 (((-711 (-887 $ $)) $) 61 T ELT)) (-3254 (($ $ $) 38 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3255 (($) 16 T CONST)) (-3253 (($ $ $) 39 T ELT)) (-3243 (($ $ $) 36 T ELT)) (-3244 (($ $ $) 34 T ELT)) (-4376 (((-877) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2961 (($ $ $) 35 T ELT)) (-2524 (($ $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-985 |#1|) (-13 (-988) (-633 |#1|) (-10 -8 (-15 -3250 ((-711 |#1|) $)) (-15 -3249 ((-711 $) $)) (-15 -3248 ((-711 (-887 $ $)) $)) (-15 -3247 ((-711 (-887 $ $)) $)) (-15 -3246 ((-711 (-887 $ $)) $)) (-15 -3245 ((-711 (-887 $ $)) $)) (-15 -3244 ($ $ $)) (-15 -3243 ($ $ $)))) (-1122)) (T -985)) -((-3250 (*1 *2 *1) (-12 (-5 *2 (-711 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1122)))) (-3249 (*1 *2 *1) (-12 (-5 *2 (-711 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1122)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1122)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1122)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1122)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) (-4 *3 (-1122)))) (-3244 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1122)))) (-3243 (*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1122))))) -((-4079 (((-985 |#1|) (-985 |#1|)) 46 T ELT)) (-3252 (((-985 |#1|) (-985 |#1|)) 22 T ELT)) (-3251 (((-1118 |#1|) (-985 |#1|)) 41 T ELT))) -(((-986 |#1|) (-13 (-1238) (-10 -7 (-15 -3252 ((-985 |#1|) (-985 |#1|))) (-15 -3251 ((-1118 |#1|) (-985 |#1|))) (-15 -4079 ((-985 |#1|) (-985 |#1|))))) (-1122)) (T -986)) -((-3252 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1122)) (-5 *1 (-986 *3)))) (-3251 (*1 *2 *3) (-12 (-5 *3 (-985 *4)) (-4 *4 (-1122)) (-5 *2 (-1118 *4)) (-5 *1 (-986 *4)))) (-4079 (*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1122)) (-5 *1 (-986 *3))))) -((-4388 (((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|)) 29 T ELT))) -(((-987 |#1| |#2|) (-13 (-1238) (-10 -7 (-15 -4388 ((-985 |#2|) (-1 |#2| |#1|) (-985 |#1|))))) (-1122) (-1122)) (T -987)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6))))) -((-2967 (((-114) $ $) 19 T ELT)) (-2526 (($ $) 8 T ELT)) (-3256 (($) 17 T CONST)) (-2960 (($ $ $) 9 T ELT)) (-2959 (($ $) 11 T ELT)) (-3660 (((-1180) $) 23 T ELT)) (-3254 (($ $ $) 15 T ELT)) (-3661 (((-1141) $) 22 T ELT)) (-3255 (($) 16 T CONST)) (-3253 (($ $ $) 14 T ELT)) (-4376 (((-877) $) 21 T ELT)) (-1378 (((-114) $ $) 20 T ELT)) (-2961 (($ $ $) 10 T ELT)) (-2524 (($ $ $) 6 T ELT)) (-3454 (((-114) $ $) 18 T ELT)) (-2525 (($ $ $) 7 T ELT))) -(((-988) (-142)) (T -988)) -((-3256 (*1 *1) (-4 *1 (-988))) (-3255 (*1 *1) (-4 *1 (-988))) (-3254 (*1 *1 *1 *1) (-4 *1 (-988))) (-3253 (*1 *1 *1 *1) (-4 *1 (-988)))) -(-13 (-113) (-1122) (-10 -8 (-15 -3256 ($) -4382) (-15 -3255 ($) -4382) (-15 -3254 ($ $ $)) (-15 -3253 ($ $ $)))) -(((-102) . T) ((-113) . T) ((-630 (-877)) . T) ((-682) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4154 (($) 7 T CONST)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3257 (($ $ $) 47 T ELT)) (-3938 (($ $ $) 48 T ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3258 ((|#1| $) 49 T ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-989 |#1|) (-142) (-861)) (T -989)) -((-3258 (*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) (-3257 (*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3258 (|t#1| $)) (-15 -3938 ($ $ $)) (-15 -3257 ($ $ $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-3270 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3562 |#2|)) |#2| |#2|) 105 T ELT)) (-4185 ((|#2| |#2| |#2|) 103 T ELT)) (-3271 (((-2 (|:| |coef2| |#2|) (|:| -3562 |#2|)) |#2| |#2|) 107 T ELT)) (-3272 (((-2 (|:| |coef1| |#2|) (|:| -3562 |#2|)) |#2| |#2|) 109 T ELT)) (-3279 (((-2 (|:| |coef2| |#2|) (|:| -3277 |#1|)) |#2| |#2|) 132 (|has| |#1| (-464)) ELT)) (-3286 (((-2 (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|) 56 T ELT)) (-3260 (((-2 (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|) 80 T ELT)) (-3261 (((-2 (|:| |coef1| |#2|) (|:| -4186 |#1|)) |#2| |#2|) 82 T ELT)) (-3269 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-3264 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 89 T ELT)) (-3274 (((-2 (|:| |coef2| |#2|) (|:| -4187 |#1|)) |#2|) 121 T ELT)) (-3267 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 92 T ELT)) (-3276 (((-661 (-791)) |#2| |#2|) 102 T ELT)) (-3284 ((|#1| |#2| |#2|) 50 T ELT)) (-3278 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3277 |#1|)) |#2| |#2|) 130 (|has| |#1| (-464)) ELT)) (-3277 ((|#1| |#2| |#2|) 128 (|has| |#1| (-464)) ELT)) (-3285 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|) 54 T ELT)) (-3259 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|) 79 T ELT)) (-4186 ((|#1| |#2| |#2|) 76 T ELT)) (-4182 (((-2 (|:| -4384 |#1|) (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2|) 41 T ELT)) (-3283 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3268 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3608 ((|#2| |#2| |#2|) 93 T ELT)) (-3263 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 87 T ELT)) (-3262 ((|#2| |#2| |#2| (-791)) 85 T ELT)) (-3562 ((|#2| |#2| |#2|) 136 (|has| |#1| (-464)) ELT)) (-3886 (((-1288 |#2|) (-1288 |#2|) |#1|) 22 T ELT)) (-3280 (((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2|) 46 T ELT)) (-3273 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4187 |#1|)) |#2|) 119 T ELT)) (-4187 ((|#1| |#2|) 116 T ELT)) (-3266 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791)) 91 T ELT)) (-3265 ((|#2| |#2| |#2| (-791)) 90 T ELT)) (-3275 (((-661 |#2|) |#2| |#2|) 99 T ELT)) (-3282 ((|#2| |#2| |#1| |#1| (-791)) 62 T ELT)) (-3281 ((|#1| |#1| |#1| (-791)) 61 T ELT)) (* (((-1288 |#2|) |#1| (-1288 |#2|)) 17 T ELT))) -(((-990 |#1| |#2|) (-10 -7 (-15 -4186 (|#1| |#2| |#2|)) (-15 -3259 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|)) (-15 -3260 ((-2 (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|)) (-15 -3261 ((-2 (|:| |coef1| |#2|) (|:| -4186 |#1|)) |#2| |#2|)) (-15 -3262 (|#2| |#2| |#2| (-791))) (-15 -3263 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3264 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3265 (|#2| |#2| |#2| (-791))) (-15 -3266 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3267 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-791))) (-15 -3608 (|#2| |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4185 (|#2| |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3562 |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| |coef2| |#2|) (|:| -3562 |#2|)) |#2| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| -3562 |#2|)) |#2| |#2|)) (-15 -4187 (|#1| |#2|)) (-15 -3273 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4187 |#1|)) |#2|)) (-15 -3274 ((-2 (|:| |coef2| |#2|) (|:| -4187 |#1|)) |#2|)) (-15 -3275 ((-661 |#2|) |#2| |#2|)) (-15 -3276 ((-661 (-791)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3277 (|#1| |#2| |#2|)) (-15 -3278 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3277 |#1|)) |#2| |#2|)) (-15 -3279 ((-2 (|:| |coef2| |#2|) (|:| -3277 |#1|)) |#2| |#2|)) (-15 -3562 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1288 |#2|) |#1| (-1288 |#2|))) (-15 -3886 ((-1288 |#2|) (-1288 |#2|) |#1|)) (-15 -4182 ((-2 (|:| -4384 |#1|) (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3280 ((-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) |#2| |#2|)) (-15 -3281 (|#1| |#1| |#1| (-791))) (-15 -3282 (|#2| |#2| |#1| |#1| (-791))) (-15 -3283 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3284 (|#1| |#2| |#2|)) (-15 -3285 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|)) (-15 -3286 ((-2 (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2| |#2|))) (-569) (-1264 |#1|)) (T -990)) -((-3286 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4186 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3285 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4186 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3284 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3283 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3282 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3281 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *2 (-569)) (-5 *1 (-990 *2 *4)) (-4 *4 (-1264 *2)))) (-3280 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4182 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4384 *4) (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3886 (*1 *2 *2 *3) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-569)) (-5 *1 (-990 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-569)) (-5 *1 (-990 *3 *4)))) (-3562 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3277 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3277 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-791))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3274 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4187 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3273 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4187 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4187 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) (-3272 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3562 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3562 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3562 *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4185 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3608 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) (-3267 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3265 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-3264 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3263 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5)))) (-3262 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4)))) (-3261 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4186 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4186 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4186 *4))) (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) (-4186 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3736 (((-1239) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3624 (((-1156) $) 10 T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-991) (-13 (-1104) (-10 -8 (-15 -3624 ((-1156) $)) (-15 -3736 ((-1239) $))))) (T -991)) -((-3624 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-991))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 40 T ELT)) (-1426 (((-3 $ "failed") $ $) 54 T ELT)) (-4154 (($) NIL T CONST)) (-3288 (((-661 (-887 (-938) (-938))) $) 67 T ELT)) (-3604 (((-114) $) NIL T ELT)) (-3287 (((-938) $) 94 T ELT)) (-3290 (((-661 (-938)) $) 17 T ELT)) (-3289 (((-1176 $) (-791)) 39 T ELT)) (-3291 (($ (-661 (-938))) 16 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3410 (($ $) 70 T ELT)) (-4376 (((-877) $) 90 T ELT) (((-661 (-938)) $) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 8 T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 44 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 42 T ELT)) (-4269 (($ $ $) 46 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) 49 T ELT)) (-4387 (((-791) $) 22 T ELT))) -(((-992) (-13 (-819) (-630 (-661 (-938))) (-10 -8 (-15 -3291 ($ (-661 (-938)))) (-15 -3290 ((-661 (-938)) $)) (-15 -4387 ((-791) $)) (-15 -3289 ((-1176 $) (-791))) (-15 -3288 ((-661 (-887 (-938) (-938))) $)) (-15 -3287 ((-938) $)) (-15 -3410 ($ $))))) (T -992)) -((-3291 (*1 *1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-992)))) (-3290 (*1 *2 *1) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-992)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-992)))) (-3289 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1176 (-992))) (-5 *1 (-992)))) (-3288 (*1 *2 *1) (-12 (-5 *2 (-661 (-887 (-938) (-938)))) (-5 *1 (-992)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-992)))) (-3410 (*1 *1 *1) (-5 *1 (-992)))) -((-4379 (($ $ |#2|) 31 T ELT)) (-4267 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-419 (-558)) $) 27 T ELT) (($ $ (-419 (-558))) 29 T ELT))) -(((-993 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4379 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 * (|#1| (-938) |#1|))) (-994 |#2| |#3| |#4|) (-1070) (-814) (-861)) (T -993)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 |#3|) $) 92 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3293 (((-114) $) 91 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-661 |#3|) (-661 |#2|)) 93 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4378 ((|#2| $) 81 T ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4107 ((|#1| $ |#2|) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-994 |#1| |#2| |#3|) (-142) (-1070) (-814) (-861)) (T -994)) -((-3592 (*1 *2 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-3295 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *4 (-861)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *2 (-814)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-814)) (-4 *2 (-861)))) (-3294 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 *5)) (-4 *1 (-994 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-814)) (-4 *6 (-861)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-814)) (-4 *5 (-861)) (-5 *2 (-661 *5)))) (-3293 (*1 *2 *1) (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-814)) (-4 *5 (-861)) (-5 *2 (-114)))) (-3292 (*1 *1 *1) (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *4 (-861))))) -(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3294 ($ $ |t#3| |t#2|)) (-15 -3294 ($ $ (-661 |t#3|) (-661 |t#2|))) (-15 -3295 ($ $)) (-15 -3592 (|t#1| $)) (-15 -4378 (|t#2| $)) (-15 -3484 ((-661 |t#3|) $)) (-15 -3293 ((-114) $)) (-15 -3292 ($ $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3296 (((-1110 (-229)) $) 8 T ELT)) (-3297 (((-1110 (-229)) $) 9 T ELT)) (-3298 (((-1110 (-229)) $) 10 T ELT)) (-3299 (((-661 (-661 (-962 (-229)))) $) 11 T ELT)) (-4376 (((-877) $) 6 T ELT))) -(((-995) (-142)) (T -995)) -((-3299 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-661 (-661 (-962 (-229))))))) (-3298 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1110 (-229))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1110 (-229))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1110 (-229)))))) -(-13 (-630 (-877)) (-10 -8 (-15 -3299 ((-661 (-661 (-962 (-229)))) $)) (-15 -3298 ((-1110 (-229)) $)) (-15 -3297 ((-1110 (-229)) $)) (-15 -3296 ((-1110 (-229)) $)))) -(((-630 (-877)) . T)) -((-3484 (((-661 |#4|) $) 23 T ELT)) (-3309 (((-114) $) 55 T ELT)) (-3300 (((-114) $) 54 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3305 (((-114) $) 56 T ELT)) (-3307 (((-114) $ $) 62 T ELT)) (-3306 (((-114) $ $) 65 T ELT)) (-3308 (((-114) $) 60 T ELT)) (-3301 (((-661 |#5|) (-661 |#5|) $) 98 T ELT)) (-3302 (((-661 |#5|) (-661 |#5|) $) 95 T ELT)) (-3303 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3315 (((-661 |#4|) $) 27 T ELT)) (-3314 (((-114) |#4| $) 34 T ELT)) (-3304 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3311 (($ $ |#4|) 39 T ELT)) (-3313 (($ $ |#4|) 38 T ELT)) (-3312 (($ $ |#4|) 40 T ELT)) (-3454 (((-114) $ $) 46 T ELT))) -(((-996 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3300 ((-114) |#1|)) (-15 -3301 ((-661 |#5|) (-661 |#5|) |#1|)) (-15 -3302 ((-661 |#5|) (-661 |#5|) |#1|)) (-15 -3303 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3304 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3305 ((-114) |#1|)) (-15 -3306 ((-114) |#1| |#1|)) (-15 -3307 ((-114) |#1| |#1|)) (-15 -3308 ((-114) |#1|)) (-15 -3309 ((-114) |#1|)) (-15 -3310 ((-2 (|:| |under| |#1|) (|:| -3532 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3314 ((-114) |#4| |#1|)) (-15 -3315 ((-661 |#4|) |#1|)) (-15 -3484 ((-661 |#4|) |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-997 |#2| |#3| |#4| |#5|) (-1070) (-815) (-861) (-1086 |#2| |#3| |#4|)) (T -996)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3484 (((-661 |#3|) $) 37 T ELT)) (-3309 (((-114) $) 30 T ELT)) (-3300 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4140 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 46 T CONST)) (-3305 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3574 (($ (-661 |#4|)) 39 T ELT)) (-1467 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#4|) $) 53 (|has| $ (-6 -4425)) ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3315 (((-661 |#3|) $) 36 T ELT)) (-3314 (((-114) |#3| $) 35 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1468 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) 42 T ELT)) (-3823 (((-114) $) 45 T ELT)) (-3993 (($) 44 T ELT)) (-2157 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 43 T ELT)) (-4402 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 61 T ELT)) (-3311 (($ $ |#3|) 32 T ELT)) (-3313 (($ $ |#3|) 34 T ELT)) (-3312 (($ $ |#3|) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 47 (|has| $ (-6 -4425)) ELT))) -(((-997 |#1| |#2| |#3| |#4|) (-142) (-1070) (-815) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -997)) -((-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) (-3598 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) (-3484 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *5)))) (-3315 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *5)))) (-3314 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-114)))) (-3313 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3312 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) (-4 *5 (-1086 *3 *4 *2)))) (-3310 (*1 *2 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3532 *1) (|:| |upper| *1))) (-4 *1 (-997 *4 *5 *3 *6)))) (-3309 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3307 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3306 (*1 *2 *1 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3305 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3304 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3302 (*1 *2 *2 *1) (-12 (-5 *2 (-661 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)))) (-3301 (*1 *2 *2 *1) (-12 (-5 *2 (-661 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)))) (-3300 (*1 *2 *1) (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) -(-13 (-1122) (-153 |t#4|) (-630 (-661 |t#4|)) (-10 -8 (-6 -4425) (-15 -3575 ((-3 $ "failed") (-661 |t#4|))) (-15 -3574 ($ (-661 |t#4|))) (-15 -3598 (|t#3| $)) (-15 -3484 ((-661 |t#3|) $)) (-15 -3315 ((-661 |t#3|) $)) (-15 -3314 ((-114) |t#3| $)) (-15 -3313 ($ $ |t#3|)) (-15 -3312 ($ $ |t#3|)) (-15 -3311 ($ $ |t#3|)) (-15 -3310 ((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |t#3|)) (-15 -3309 ((-114) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -3308 ((-114) $)) (-15 -3307 ((-114) $ $)) (-15 -3306 ((-114) $ $)) (-15 -3305 ((-114) $)) (-15 -3304 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3303 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3302 ((-661 |t#4|) (-661 |t#4|) $)) (-15 -3301 ((-661 |t#4|) (-661 |t#4|) $)) (-15 -3300 ((-114) $))) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-877)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-1122) . T) ((-1238) . T)) -((-3317 (((-661 |#4|) |#4| |#4|) 137 T ELT)) (-3340 (((-661 |#4|) (-661 |#4|) (-114)) 125 (|has| |#1| (-464)) ELT) (((-661 |#4|) (-661 |#4|)) 126 (|has| |#1| (-464)) ELT)) (-3327 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 44 T ELT)) (-3326 (((-114) |#4|) 43 T ELT)) (-3339 (((-661 |#4|) |#4|) 121 (|has| |#1| (-464)) ELT)) (-3322 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-1 (-114) |#4|) (-661 |#4|)) 24 T ELT)) (-3323 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|)) 30 T ELT)) (-3324 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|)) 31 T ELT)) (-3335 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3744 (-661 |#4|))) "failed") (-661 |#4|)) 90 T ELT)) (-3337 (((-661 |#4|) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3338 (((-661 |#4|) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3316 (((-661 |#4|) (-661 |#4|)) 128 T ELT)) (-3332 (((-661 |#4|) (-661 |#4|) (-661 |#4|) (-114)) 59 T ELT) (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 61 T ELT)) (-3333 ((|#4| |#4| (-661 |#4|)) 60 T ELT)) (-3341 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 133 (|has| |#1| (-464)) ELT)) (-3343 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 136 (|has| |#1| (-464)) ELT)) (-3342 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 135 (|has| |#1| (-464)) ELT)) (-3318 (((-661 |#4|) (-661 |#4|) (-661 |#4|) (-1 (-661 |#4|) (-661 |#4|))) 105 T ELT) (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 107 T ELT) (((-661 |#4|) (-661 |#4|) |#4|) 141 T ELT) (((-661 |#4|) |#4| |#4|) 138 T ELT) (((-661 |#4|) (-661 |#4|)) 106 T ELT)) (-3346 (((-661 |#4|) (-661 |#4|) (-661 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3325 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 52 T ELT)) (-3321 (((-114) (-661 |#4|)) 79 T ELT)) (-3320 (((-114) (-661 |#4|) (-661 (-661 |#4|))) 67 T ELT)) (-3329 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 37 T ELT)) (-3328 (((-114) |#4|) 36 T ELT)) (-3345 (((-661 |#4|) (-661 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3344 (((-661 |#4|) (-661 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3334 (((-661 |#4|) (-661 |#4|)) 83 T ELT)) (-3336 (((-661 |#4|) (-661 |#4|)) 97 T ELT)) (-3319 (((-114) (-661 |#4|) (-661 |#4|)) 65 T ELT)) (-3331 (((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|)) 50 T ELT)) (-3330 (((-114) |#4|) 45 T ELT))) -(((-998 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3318 ((-661 |#4|) (-661 |#4|))) (-15 -3318 ((-661 |#4|) |#4| |#4|)) (-15 -3316 ((-661 |#4|) (-661 |#4|))) (-15 -3317 ((-661 |#4|) |#4| |#4|)) (-15 -3318 ((-661 |#4|) (-661 |#4|) |#4|)) (-15 -3318 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3318 ((-661 |#4|) (-661 |#4|) (-661 |#4|) (-1 (-661 |#4|) (-661 |#4|)))) (-15 -3319 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3320 ((-114) (-661 |#4|) (-661 (-661 |#4|)))) (-15 -3321 ((-114) (-661 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-1 (-114) |#4|) (-661 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 (-1 (-114) |#4|)) (-661 |#4|))) (-15 -3325 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3326 ((-114) |#4|)) (-15 -3327 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3328 ((-114) |#4|)) (-15 -3329 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3330 ((-114) |#4|)) (-15 -3331 ((-2 (|:| |goodPols| (-661 |#4|)) (|:| |badPols| (-661 |#4|))) (-661 |#4|))) (-15 -3332 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3332 ((-661 |#4|) (-661 |#4|) (-661 |#4|) (-114))) (-15 -3333 (|#4| |#4| (-661 |#4|))) (-15 -3334 ((-661 |#4|) (-661 |#4|))) (-15 -3335 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3744 (-661 |#4|))) "failed") (-661 |#4|))) (-15 -3336 ((-661 |#4|) (-661 |#4|))) (-15 -3337 ((-661 |#4|) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3338 ((-661 |#4|) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3339 ((-661 |#4|) |#4|)) (-15 -3340 ((-661 |#4|) (-661 |#4|))) (-15 -3340 ((-661 |#4|) (-661 |#4|) (-114))) (-15 -3341 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3342 ((-661 |#4|) (-661 |#4|) (-661 |#4|))) (-15 -3343 ((-661 |#4|) (-661 |#4|) (-661 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3344 ((-661 |#4|) (-661 |#4|))) (-15 -3345 ((-661 |#4|) (-661 |#4|))) (-15 -3346 ((-661 |#4|) (-661 |#4|) (-661 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-815) (-861) (-1086 |#1| |#2| |#3|)) (T -998)) -((-3346 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3345 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3343 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3342 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3340 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3340 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3339 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3338 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-998 *5 *6 *7 *8)))) (-3337 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-661 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9)))) (-3336 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3335 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3744 (-661 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3334 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3333 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2)))) (-3332 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3332 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3331 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7)))) (-3324 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) (-3321 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3320 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *5 *6 *7 *8)))) (-3319 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3318 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-661 *7) (-661 *7))) (-5 *2 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7)))) (-3318 (*1 *2 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3318 (*1 *2 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3316 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) (-3318 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) (-3318 (*1 *2 *2) (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) -((-3347 (((-2 (|:| R (-709 |#1|)) (|:| A (-709 |#1|)) (|:| |Ainv| (-709 |#1|))) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3349 (((-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1288 |#1|)))) (-709 |#1|) (-1288 |#1|)) 45 T ELT)) (-3348 (((-709 |#1|) (-709 |#1|) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) -(((-999 |#1|) (-10 -7 (-15 -3347 ((-2 (|:| R (-709 |#1|)) (|:| A (-709 |#1|)) (|:| |Ainv| (-709 |#1|))) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3348 ((-709 |#1|) (-709 |#1|) (-709 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3349 ((-661 (-2 (|:| C (-709 |#1|)) (|:| |g| (-1288 |#1|)))) (-709 |#1|) (-1288 |#1|)))) (-376)) (T -999)) -((-3349 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-661 (-2 (|:| C (-709 *5)) (|:| |g| (-1288 *5))))) (-5 *1 (-999 *5)) (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)))) (-3348 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-709 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-999 *5)))) (-3347 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-709 *6)) (|:| A (-709 *6)) (|:| |Ainv| (-709 *6)))) (-5 *1 (-999 *6)) (-5 *3 (-709 *6))))) -((-4401 (((-417 |#4|) |#4|) 61 T ELT))) -(((-1000 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4401 ((-417 |#4|) |#4|))) (-861) (-815) (-464) (-969 |#3| |#2| |#1|)) (T -1000)) -((-4401 (*1 *2 *3) (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-464)) (-5 *2 (-417 *3)) (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4268 (($ (-791)) 121 (|has| |#1| (-23)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4426)) ELT) (($ $) 97 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4426))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2510 (($ $) 99 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 109 T ELT)) (-1467 (($ $) 84 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 83 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 55 T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1122)) ELT)) (-4136 (($ (-661 |#1|)) 127 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-4265 (((-709 |#1|) $ $) 114 (|has| |#1| (-1070)) ELT)) (-4044 (($ (-791) |#1|) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 91 (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 92 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4262 ((|#1| $) 111 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))) ELT)) (-4263 ((|#1| $) 112 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))) ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2414 (($ $ |#1|) 45 (|has| $ (-6 -4426)) ELT)) (-4199 (($ $ (-661 |#1|)) 125 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-4266 ((|#1| $ $) 115 (|has| |#1| (-1070)) ELT)) (-4341 (((-938) $) 126 T ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-4264 (($ $ $) 113 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1934 (($ $ $ (-558)) 100 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT) (($ (-661 |#1|)) 128 T ELT)) (-3950 (($ (-661 |#1|)) 76 T ELT)) (-4232 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 93 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 95 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) 94 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 96 (|has| |#1| (-861)) ELT)) (-4267 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-558) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-746)) ELT) (($ $ |#1|) 116 (|has| |#1| (-746)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1001 |#1|) (-142) (-1070)) (T -1001)) -((-4136 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) (-4341 (*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-938)))) (-4264 (*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) (-4199 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070))))) -(-13 (-1287 |t#1|) (-635 (-661 |t#1|)) (-10 -8 (-15 -4136 ($ (-661 |t#1|))) (-15 -4341 ((-938) $)) (-15 -4264 ($ $ $)) (-15 -4199 ($ $ (-661 |t#1|))))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-635 (-661 |#1|)) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1122) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861))) ((-1238) . T) ((-1287 |#1|) . T)) -((-4388 (((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)) 17 T ELT))) -(((-1002 |#1| |#2|) (-10 -7 (-15 -4388 ((-962 |#2|) (-1 |#2| |#1|) (-962 |#1|)))) (-1070) (-1070)) (T -1002)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6))))) -((-3352 ((|#1| (-962 |#1|)) 14 T ELT)) (-3351 ((|#1| (-962 |#1|)) 13 T ELT)) (-3350 ((|#1| (-962 |#1|)) 12 T ELT)) (-3354 ((|#1| (-962 |#1|)) 16 T ELT)) (-3358 ((|#1| (-962 |#1|)) 24 T ELT)) (-3353 ((|#1| (-962 |#1|)) 15 T ELT)) (-3355 ((|#1| (-962 |#1|)) 17 T ELT)) (-3357 ((|#1| (-962 |#1|)) 23 T ELT)) (-3356 ((|#1| (-962 |#1|)) 22 T ELT))) -(((-1003 |#1|) (-10 -7 (-15 -3350 (|#1| (-962 |#1|))) (-15 -3351 (|#1| (-962 |#1|))) (-15 -3352 (|#1| (-962 |#1|))) (-15 -3353 (|#1| (-962 |#1|))) (-15 -3354 (|#1| (-962 |#1|))) (-15 -3355 (|#1| (-962 |#1|))) (-15 -3356 (|#1| (-962 |#1|))) (-15 -3357 (|#1| (-962 |#1|))) (-15 -3358 (|#1| (-962 |#1|)))) (-1070)) (T -1003)) -((-3358 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3357 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -((-3376 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3364 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3374 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3362 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3378 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3366 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3359 (((-3 |#1| "failed") |#1| (-791)) 1 T ELT)) (-3361 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3360 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3379 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3367 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3377 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3365 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3375 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3363 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3382 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3370 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3380 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3368 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3384 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3372 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3385 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3373 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3383 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3371 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3381 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3369 (((-3 |#1| "failed") |#1|) 11 T ELT))) -(((-1004 |#1|) (-142) (-1224)) (T -1004)) -((-3385 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3384 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3376 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3375 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224)))) (-3359 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-791)) (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(-13 (-10 -7 (-15 -3359 ((-3 |t#1| "failed") |t#1| (-791))) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -3375 ((-3 |t#1| "failed") |t#1|)) (-15 -3376 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)) (-15 -3384 ((-3 |t#1| "failed") |t#1|)) (-15 -3385 ((-3 |t#1| "failed") |t#1|)))) -((-3387 ((|#4| |#4| (-661 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3386 ((|#4| |#4| (-661 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4388 ((|#4| (-1 |#4| (-965 |#1|)) |#4|) 31 T ELT))) -(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3386 (|#4| |#4| |#3|)) (-15 -3386 (|#4| |#4| (-661 |#3|))) (-15 -3387 (|#4| |#4| |#3|)) (-15 -3387 (|#4| |#4| (-661 |#3|))) (-15 -4388 (|#4| (-1 |#4| (-965 |#1|)) |#4|))) (-1070) (-815) (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198))))) (-969 (-965 |#1|) |#2| |#3|)) (T -1005)) -((-4388 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-965 *4))) (-4 *4 (-1070)) (-4 *2 (-969 (-965 *4) *5 *6)) (-4 *5 (-815)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1="failed") (-1198)))))) (-5 *1 (-1005 *4 *5 *6 *2)))) (-3387 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1#) (-1198)))))) (-4 *4 (-1070)) (-4 *5 (-815)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-969 (-965 *4) *5 *6)))) (-3387 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1#) (-1198)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-969 (-965 *4) *5 *3)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-661 *6)) (-4 *6 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1#) (-1198)))))) (-4 *4 (-1070)) (-4 *5 (-815)) (-5 *1 (-1005 *4 *5 *6 *2)) (-4 *2 (-969 (-965 *4) *5 *6)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1#) (-1198)))))) (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-969 (-965 *4) *5 *3))))) -((-3388 ((|#2| |#3|) 35 T ELT)) (-4349 (((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|) 79 T ELT)) (-4348 (((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) 100 T ELT))) -(((-1006 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4348 ((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))))) (-15 -4349 ((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|)) (-15 -3388 (|#2| |#3|))) (-363) (-1264 |#1|) (-1264 |#2|) (-744 |#2| |#3|)) (T -1006)) -((-3388 (*1 *2 *3) (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1006 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-744 *2 *3)))) (-4349 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-744 *3 *5)))) (-4348 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2222 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-744 *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3821 (((-3 (-114) #1="failed") $) 71 T ELT)) (-4079 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3392 (($ $ (-3 (-114) #1#)) 72 T ELT)) (-3393 (($ (-661 |#4|) |#4|) 25 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3389 (($ $) 69 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3823 (((-114) $) 70 T ELT)) (-3993 (($) 30 T ELT)) (-3390 ((|#4| $) 74 T ELT)) (-3391 (((-661 |#4|) $) 73 T ELT)) (-4376 (((-877) $) 68 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1007 |#1| |#2| |#3| |#4|) (-13 (-1122) (-630 (-877)) (-10 -8 (-15 -3993 ($)) (-15 -3393 ($ (-661 |#4|) |#4|)) (-15 -3821 ((-3 (-114) #1="failed") $)) (-15 -3392 ($ $ (-3 (-114) #1#))) (-15 -3823 ((-114) $)) (-15 -3391 ((-661 |#4|) $)) (-15 -3390 (|#4| $)) (-15 -3389 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4079 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-861) (-815) (-969 |#1| |#3| |#2|)) (T -1007)) -((-3993 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-815)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) (-3393 (*1 *1 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-969 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) (-4 *6 (-815)) (-5 *1 (-1007 *4 *5 *6 *3)))) (-3821 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3392 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3823 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *2 (-114)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3391 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *2 (-661 *6)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-1007 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)))) (-3389 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-815)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) (-4079 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-815)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3))))) -((-3394 (((-1007 (-419 (-558)) (-878 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558)))) (-1007 (-419 (-558)) (-878 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558))))) 82 T ELT))) -(((-1008 |#1| |#2|) (-10 -7 (-15 -3394 ((-1007 (-419 (-558)) (-878 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558)))) (-1007 (-419 (-558)) (-878 |#1|) (-246 |#2| (-791)) (-255 |#1| (-419 (-558))))))) (-661 (-1198)) (-791)) (T -1008)) -((-3394 (*1 *2 *2) (-12 (-5 *2 (-1007 (-419 (-558)) (-878 *3) (-246 *4 (-791)) (-255 *3 (-419 (-558))))) (-14 *3 (-661 (-1198))) (-14 *4 (-791)) (-5 *1 (-1008 *3 *4))))) -((-3688 (((-114) |#5| |#5|) 44 T ELT)) (-3691 (((-114) |#5| |#5|) 59 T ELT)) (-3696 (((-114) |#5| (-661 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3692 (((-114) (-661 |#4|) (-661 |#4|)) 65 T ELT)) (-3698 (((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) 70 T ELT)) (-3687 (((-1294)) 32 T ELT)) (-3686 (((-1294) (-1180) (-1180) (-1180)) 28 T ELT)) (-3697 (((-661 |#5|) (-661 |#5|)) 100 T ELT)) (-3699 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)))) 92 T ELT)) (-3700 (((-661 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114)) 122 T ELT)) (-3690 (((-114) |#5| |#5|) 53 T ELT)) (-3695 (((-3 (-114) #1="failed") |#5| |#5|) 78 T ELT)) (-3693 (((-114) (-661 |#4|) (-661 |#4|)) 64 T ELT)) (-3694 (((-114) (-661 |#4|) (-661 |#4|)) 66 T ELT)) (-4129 (((-114) (-661 |#4|) (-661 |#4|)) 67 T ELT)) (-3701 (((-3 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|))) #1#) (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-3689 (((-661 |#5|) (-661 |#5|)) 49 T ELT))) -(((-1009 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3686 ((-1294) (-1180) (-1180) (-1180))) (-15 -3687 ((-1294))) (-15 -3688 ((-114) |#5| |#5|)) (-15 -3689 ((-661 |#5|) (-661 |#5|))) (-15 -3690 ((-114) |#5| |#5|)) (-15 -3691 ((-114) |#5| |#5|)) (-15 -3692 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3693 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3694 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -4129 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3695 ((-3 (-114) #1="failed") |#5| |#5|)) (-15 -3696 ((-114) |#5| |#5|)) (-15 -3696 ((-114) |#5| (-661 |#5|))) (-15 -3697 ((-661 |#5|) (-661 |#5|))) (-15 -3698 ((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)))) (-15 -3699 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) (-15 -3700 ((-661 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3701 ((-3 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|))) #1#) (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1009)) -((-3701 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *4) (|:| |ineq| (-661 *9)))) (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3700 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *10) (|:| |ineq| (-661 *9))))) (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9)))) (-3699 (*1 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1743 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1009 *5 *6 *7 *8 *3)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3687 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3686 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -((-4261 (((-1198) $) 15 T ELT)) (-3822 (((-1180) $) 16 T ELT)) (-3644 (($ (-1198) (-1180)) 14 T ELT)) (-4376 (((-877) $) 13 T ELT))) -(((-1010) (-13 (-630 (-877)) (-10 -8 (-15 -3644 ($ (-1198) (-1180))) (-15 -4261 ((-1198) $)) (-15 -3822 ((-1180) $))))) (T -1010)) -((-3644 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-1010)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1010)))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1010))))) -((-3575 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1198) #1#) $) 72 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) 102 T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-1198) $) 67 T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) 99 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) 121 T ELT) (((-709 |#2|) (-709 $)) 35 T ELT)) (-3395 (($) 105 T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 82 T ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 91 T ELT)) (-3397 (($ $) 10 T ELT)) (-3865 (((-711 $) $) 27 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3866 (($) 16 T ELT)) (-3530 (($ $) 61 T ELT)) (-4188 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3396 (($ $) 12 T ELT)) (-4402 (((-905 (-558)) $) 77 T ELT) (((-905 (-391)) $) 86 T ELT) (((-547) $) 47 T ELT) (((-391) $) 51 T ELT) (((-229) $) 55 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1198)) 64 T ELT)) (-3528 (((-791)) 38 T ELT)) (-3086 (((-114) $ $) 57 T ELT))) -(((-1011 |#1| |#2|) (-10 -7 (-15 -3086 ((-114) |#1| |#1|)) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -3866 (|#1|)) (-15 -3865 ((-711 |#1|) |#1|)) (-15 -3575 ((-3 (-558) #1="failed") |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -4402 ((-229) |#1|)) (-15 -4402 ((-391) |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -4376 (|#1| (-1198))) (-15 -3575 ((-3 (-1198) #1#) |#1|)) (-15 -3574 ((-1198) |#1|)) (-15 -3395 (|#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3397 (|#1| |#1|)) (-15 -3197 ((-903 (-391) |#1|) |#1| (-905 (-391)) (-903 (-391) |#1|))) (-15 -3197 ((-903 (-558) |#1|) |#1| (-905 (-558)) (-903 (-558) |#1|))) (-15 -4402 ((-905 (-391)) |#1|)) (-15 -4402 ((-905 (-558)) |#1|)) (-15 -2493 ((-709 |#2|) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-709 (-558)) (-709 |#1|))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4376 (|#1| |#1|)) (-15 -3528 ((-791))) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-1012 |#2|) (-569)) (T -1011)) -((-3528 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-1011 *3 *4)) (-4 *3 (-1012 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3531 ((|#1| $) 170 (|has| |#1| (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 161 (|has| |#1| (-929)) ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 164 (|has| |#1| (-929)) ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4053 (((-558) $) 151 (|has| |#1| (-842)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1198) #2#) $) 159 (|has| |#1| (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #2#) $) 142 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-558) #2#) $) 140 (|has| |#1| (-1059 (-558))) ELT)) (-3574 ((|#1| $) 201 T ELT) (((-1198) $) 160 (|has| |#1| (-1059 (-1198))) ELT) (((-419 (-558)) $) 143 (|has| |#1| (-1059 (-558))) ELT) (((-558) $) 141 (|has| |#1| (-1059 (-558))) ELT)) (-2963 (($ $ $) 68 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 185 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 184 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 183 T ELT) (((-709 |#1|) (-709 $)) 182 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3395 (($) 168 (|has| |#1| (-557)) ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-3604 (((-114) $) 153 (|has| |#1| (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 177 (|has| |#1| (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 176 (|has| |#1| (-901 (-391))) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3397 (($ $) 172 T ELT)) (-3399 ((|#1| $) 174 T ELT)) (-3865 (((-711 $) $) 139 (|has| |#1| (-1173)) ELT)) (-3605 (((-114) $) 152 (|has| |#1| (-842)) ELT)) (-1785 (((-3 (-661 $) #3="failed") (-661 $) $) 65 T ELT)) (-2930 (($ $ $) 144 (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) 145 (|has| |#1| (-861)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 187 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 186 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 181 T ELT) (((-709 |#1|) (-1288 $)) 180 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3866 (($) 138 (|has| |#1| (-1173)) CONST)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3530 (($ $) 169 (|has| |#1| (-319)) ELT)) (-3532 ((|#1| $) 166 (|has| |#1| (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 163 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 162 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) 198 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 196 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 195 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 194 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) 193 (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-1787 (((-791) $) 71 T ELT)) (-4230 (($ $ |#1|) 199 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-4188 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 190 T ELT) (($ $) 137 (|has| |#1| (-239)) ELT) (($ $ (-791)) 135 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 133 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 131 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 130 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 129 (|has| |#1| (-919 (-1198))) ELT)) (-3396 (($ $) 171 T ELT)) (-3398 ((|#1| $) 173 T ELT)) (-4402 (((-905 (-558)) $) 179 (|has| |#1| (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) 178 (|has| |#1| (-631 (-905 (-391)))) ELT) (((-547) $) 156 (|has| |#1| (-631 (-547))) ELT) (((-391) $) 155 (|has| |#1| (-1041)) ELT) (((-229) $) 154 (|has| |#1| (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 165 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1198)) 158 (|has| |#1| (-1059 (-1198))) ELT)) (-3103 (((-711 $) $) 157 (-3957 (|has| |#1| (-147)) (-2961 (|has| $ (-147)) (|has| |#1| (-929)))) ELT)) (-3528 (((-791)) 37 T CONST)) (-3533 ((|#1| $) 167 (|has| |#1| (-557)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3803 (($ $) 150 (|has| |#1| (-842)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 188 T ELT) (($ $) 136 (|has| |#1| (-239)) ELT) (($ $ (-791)) 134 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 132 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 128 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 127 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 126 (|has| |#1| (-919 (-1198))) ELT)) (-2965 (((-114) $ $) 146 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 148 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 147 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 149 (|has| |#1| (-861)) ELT)) (-4379 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) -(((-1012 |#1|) (-142) (-569)) (T -1012)) -((-4379 (*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)))) (-3399 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)))) (-3397 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) (-3530 (*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) (-3395 (*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-557)) (-4 *2 (-569)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-557))))) -(-13 (-376) (-38 |t#1|) (-1059 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-899 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4379 ($ |t#1| |t#1|)) (-15 -3399 (|t#1| $)) (-15 -3398 (|t#1| $)) (-15 -3397 ($ $)) (-15 -3396 ($ $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-1059 (-558))) (PROGN (-6 (-1059 (-558))) (-6 (-1059 (-419 (-558))))) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-842)) (-6 (-842)) |%noBranch|) (IF (|has| |t#1| (-1041)) (-6 (-1041)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1059 (-1198))) (-6 (-1059 (-1198))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3531 (|t#1| $)) (-15 -3530 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3395 ($)) (-15 -3533 (|t#1| $)) (-15 -3532 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-929)) (-6 (-929)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 (-1198)) |has| |#1| (-1059 (-1198))) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-631 (-229)) |has| |#1| (-1041)) ((-631 (-391)) |has| |#1| (-1041)) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-631 (-905 (-391))) |has| |#1| (-631 (-905 (-391)))) ((-631 (-905 (-558))) |has| |#1| (-631 (-905 (-558)))) ((-236 $) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) . T) ((-737 |#1|) . T) ((-737 $) . T) ((-746) . T) ((-812) |has| |#1| (-842)) ((-814) |has| |#1| (-842)) ((-816) |has| |#1| (-842)) ((-819) |has| |#1| (-842)) ((-842) |has| |#1| (-842)) ((-860) |has| |#1| (-842)) ((-861) -3957 (|has| |#1| (-861)) (|has| |#1| (-842))) ((-864) -3957 (|has| |#1| (-861)) (|has| |#1| (-842))) ((-911 $ (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-917 (-1198)) |has| |#1| (-917 (-1198))) ((-919 (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-901 (-391)) |has| |#1| (-901 (-391))) ((-901 (-558)) |has| |#1| (-901 (-558))) ((-899 |#1|) . T) ((-929) |has| |#1| (-929)) ((-940) . T) ((-1041) |has| |#1| (-1041)) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-558))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 (-1198)) |has| |#1| (-1059 (-1198))) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1243) . T)) -((-4388 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) -(((-1013 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1012 |#1|) (-1012 |#2|)) (T -1013)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1012 *6)) (-5 *1 (-1013 *5 *6 *4 *2)) (-4 *4 (-1012 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ "failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3400 (($ (-1163 |#1| |#2|)) 11 T ELT)) (-3526 (((-1163 |#1| |#2|) $) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT))) -(((-1014 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3400 ($ (-1163 |#1| |#2|))) (-15 -3526 ((-1163 |#1| |#2|) $)))) (-938) (-376)) (T -1014)) -((-3400 (*1 *1 *2) (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-938)) (-4 *4 (-376)) (-5 *1 (-1014 *3 *4)))) (-3526 (*1 *2 *1) (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-938)) (-4 *4 (-376))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3624 (((-1156) $) 9 T ELT)) (-4376 (((-877) $) 15 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1015) (-13 (-1104) (-10 -8 (-15 -3624 ((-1156) $))))) (T -1015)) -((-3624 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015))))) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4154 (($) 7 T CONST)) (-3403 (($ $) 50 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4263 (((-791) $) 49 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-3402 ((|#1| $) 48 T ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3405 ((|#1| |#1| $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-3404 ((|#1| $) 51 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-3401 ((|#1| $) 47 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1016 |#1|) (-142) (-1238)) (T -1016)) -((-3405 (*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3404 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3403 (*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-791)))) (-3402 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3405 (|t#1| |t#1| $)) (-15 -3404 (|t#1| $)) (-15 -3403 ($ $)) (-15 -4263 ((-791) $)) (-15 -3402 (|t#1| $)) (-15 -3401 (|t#1| $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4073 ((|#1| $) 12 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3406 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3534 ((|#1| $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3407 ((|#1| $) 15 T ELT)) (-3408 ((|#1| $) 14 T ELT)) (-3409 ((|#1| $) 13 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-4230 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4188 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3803 ((|#1| $) NIL (|has| |#1| (-1081)) ELT)) (-3059 (($) 8 T CONST)) (-3065 (($) 10 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT))) -(((-1017 |#1|) (-1019 |#1|) (-175)) (T -1017)) -NIL -((-3606 (((-114) $) 43 T ELT)) (-3575 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3574 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) 78 T ELT)) (-3424 (((-114) $) 72 T ELT)) (-3423 (((-419 (-558)) $) 76 T ELT)) (-2641 (((-114) $) 42 T ELT)) (-3534 ((|#2| $) 22 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2874 (($ $) 58 T ELT)) (-4188 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-4402 (((-547) $) 67 T ELT)) (-3410 (($ $) 17 T ELT)) (-4376 (((-877) $) 53 T ELT) (($ (-558)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3528 (((-791)) 10 T ELT)) (-3803 ((|#2| $) 71 T ELT)) (-3454 (((-114) $ $) 26 T ELT)) (-3086 (((-114) $ $) 69 T ELT)) (-4267 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-4269 (($ $ $) 27 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) -(((-1018 |#1| |#2|) (-10 -7 (-15 -4376 (|#1| (-419 (-558)))) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -3086 ((-114) |#1| |#1|)) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 -2874 (|#1| |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -3425 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3423 ((-419 (-558)) |#1|)) (-15 -3424 ((-114) |#1|)) (-15 -3803 (|#2| |#1|)) (-15 -3534 (|#2| |#1|)) (-15 -3410 (|#1| |#1|)) (-15 -4388 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3528 ((-791))) (-15 -4376 (|#1| (-558))) (-15 -2641 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-791) |#1|)) (-15 -3606 ((-114) |#1|)) (-15 * (|#1| (-938) |#1|)) (-15 -4269 (|#1| |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-1019 |#2|) (-175)) (T -1018)) -((-3528 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-1018 *3 *4)) (-4 *3 (-1019 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 (-558) #1="failed") $) 140 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 138 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3574 (((-558) $) 139 (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) 137 (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) 136 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 120 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 119 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 118 T ELT) (((-709 |#1|) (-709 $)) 117 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4073 ((|#1| $) 108 T ELT)) (-3425 (((-3 (-419 (-558)) "failed") $) 104 (|has| |#1| (-557)) ELT)) (-3424 (((-114) $) 106 (|has| |#1| (-557)) ELT)) (-3423 (((-419 (-558)) $) 105 (|has| |#1| (-557)) ELT)) (-3406 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3534 ((|#1| $) 110 T ELT)) (-2930 (($ $ $) 92 (|has| |#1| (-861)) ELT)) (-3258 (($ $ $) 93 (|has| |#1| (-861)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 122 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 121 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 116 T ELT) (((-709 |#1|) (-1288 $)) 115 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 101 (|has| |#1| (-376)) ELT)) (-3407 ((|#1| $) 111 T ELT)) (-3408 ((|#1| $) 112 T ELT)) (-3409 ((|#1| $) 113 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) 129 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 127 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-305 |#1|))) 126 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) 125 (|has| |#1| (-526 (-1198) |#1|)) ELT) (($ $ (-1198) |#1|) 124 (|has| |#1| (-526 (-1198) |#1|)) ELT)) (-4230 (($ $ |#1|) 130 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4188 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 133 T ELT) (($ $) 91 (|has| |#1| (-239)) ELT) (($ $ (-791)) 89 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 87 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 85 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 84 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 83 (|has| |#1| (-919 (-1198))) ELT)) (-4402 (((-547) $) 102 (|has| |#1| (-631 (-547))) ELT)) (-3410 (($ $) 114 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 79 (-3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3103 (((-711 $) $) 103 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3803 ((|#1| $) 107 (|has| |#1| (-1081)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 131 T ELT) (($ $) 90 (|has| |#1| (-239)) ELT) (($ $ (-791)) 88 (|has| |#1| (-239)) ELT) (($ $ (-1198)) 86 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 82 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 81 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 80 (|has| |#1| (-919 (-1198))) ELT)) (-2965 (((-114) $ $) 94 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 96 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 95 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 97 (|has| |#1| (-861)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 100 (|has| |#1| (-376)) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-419 (-558))) 99 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) 98 (|has| |#1| (-376)) ELT))) -(((-1019 |#1|) (-142) (-175)) (T -1019)) -((-3410 (*1 *1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-3409 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-3534 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-3406 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-4073 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) (-3803 (*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) (-3424 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1019 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3425 (*1 *2 *1) (|partial| -12 (-4 *1 (-1019 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558)))))) -(-13 (-38 |t#1|) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -3410 ($ $)) (-15 -3409 (|t#1| $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3534 (|t#1| $)) (-15 -3406 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4073 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-861)) (-6 (-861)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1081)) (-15 -3803 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3424 ((-114) $)) (-15 -3423 ((-419 (-558)) $)) (-15 -3425 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-376))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-236 $) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3957 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -3957 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1198) |#1|) |has| |#1| (-526 (-1198) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-666 (-419 (-558))) |has| |#1| (-376)) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-376)) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-376)) ((-660 |#1|) . T) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) |has| |#1| (-376)) ((-737 |#1|) . T) ((-746) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-911 $ (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-917 (-1198)) |has| |#1| (-917 (-1198))) ((-919 (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) |has| |#1| (-376)) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1077 (-419 (-558))) |has| |#1| (-376)) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-4388 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) -(((-1020 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#3| (-1 |#4| |#2|) |#1|))) (-1019 |#2|) (-175) (-1019 |#4|) (-175)) (T -1020)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1019 *6)) (-5 *1 (-1020 *4 *5 *2 *6)) (-4 *4 (-1019 *5))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4154 (($) NIL T CONST)) (-3403 (($ $) 23 T ELT)) (-3411 (($ (-661 |#1|)) 33 T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4263 (((-791) $) 26 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 28 T ELT)) (-4037 (($ |#1| $) 17 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-3402 ((|#1| $) 27 T ELT)) (-1390 ((|#1| $) 22 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3405 ((|#1| |#1| $) 16 T ELT)) (-3823 (((-114) $) 18 T ELT)) (-3993 (($) NIL T ELT)) (-3404 ((|#1| $) 21 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) NIL T ELT)) (-3401 ((|#1| $) 30 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1021 |#1|) (-13 (-1016 |#1|) (-10 -8 (-15 -3411 ($ (-661 |#1|))))) (-1122)) (T -1021)) -((-3411 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-1021 *3))))) -((-3438 (($ $) 12 T ELT)) (-3412 (($ $ (-558)) 13 T ELT))) -(((-1022 |#1|) (-10 -7 (-15 -3438 (|#1| |#1|)) (-15 -3412 (|#1| |#1| (-558)))) (-1023)) (T -1022)) -NIL -((-3438 (($ $) 6 T ELT)) (-3412 (($ $ (-558)) 7 T ELT)) (** (($ $ (-419 (-558))) 8 T ELT))) -(((-1023) (-142)) (T -1023)) -((** (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-558))))) (-3412 (*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-558)))) (-3438 (*1 *1 *1) (-4 *1 (-1023)))) -(-13 (-10 -8 (-15 -3438 ($ $)) (-15 -3412 ($ $ (-558))) (-15 ** ($ $ (-419 (-558)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1850 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2273 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2271 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1990 (((-709 (-419 |#2|)) (-1288 $)) NIL T ELT) (((-709 (-419 |#2|))) NIL T ELT)) (-3750 (((-419 |#2|) $) NIL T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1788 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3538 (((-791)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1864 (((-114)) NIL T ELT)) (-1863 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| (-419 |#2|) (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| (-419 |#2|) (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-419 |#2|) (-1059 (-419 (-558)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-2000 (($ (-1288 (-419 |#2|)) (-1288 $)) NIL T ELT) (($ (-1288 (-419 |#2|))) 79 T ELT) (($ (-1288 |#2|) |#2|) NIL T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2963 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1989 (((-709 (-419 |#2|)) $ (-1288 $)) NIL T ELT) (((-709 (-419 |#2|)) $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-419 |#2|)) (-709 $)) NIL T ELT)) (-1855 (((-1288 $) (-1288 $)) NIL T ELT)) (-4272 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-1842 (((-661 (-661 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1867 (((-114) |#1| |#1|) NIL T ELT)) (-3511 (((-938)) NIL T ELT)) (-3395 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1862 (((-114)) NIL T ELT)) (-1861 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-2962 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3923 (($ $) NIL T ELT)) (-3234 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1883 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1974 (($ $ (-791)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4153 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4202 (((-938) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-845 (-938)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3797 (((-791)) NIL T ELT)) (-1856 (((-1288 $) (-1288 $)) NIL T ELT)) (-3534 (((-419 |#2|) $) NIL T ELT)) (-1843 (((-661 (-965 |#1|)) (-1198)) NIL (|has| |#1| (-376)) ELT)) (-3865 (((-711 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2224 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2220 (((-938) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3480 ((|#3| $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-419 |#2|) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-419 |#2|))) (|:| |vec| (-1288 (-419 |#2|)))) (-1288 $) $) NIL T ELT) (((-709 (-419 |#2|)) (-1288 $)) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1851 (((-709 (-419 |#2|))) 57 T ELT)) (-1853 (((-709 (-419 |#2|))) 56 T ELT)) (-2874 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1848 (($ (-1288 |#2|) |#2|) 80 T ELT)) (-1852 (((-709 (-419 |#2|))) 55 T ELT)) (-1854 (((-709 (-419 |#2|))) 54 T ELT)) (-1847 (((-2 (|:| |num| (-709 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1849 (((-2 (|:| |num| (-1288 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1860 (((-1288 $)) 51 T ELT)) (-4348 (((-1288 $)) 50 T ELT)) (-1859 (((-114) $) NIL T ELT)) (-1858 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3866 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2631 (($ (-938)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1845 (((-3 |#2| #1#)) 70 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1869 (((-791)) NIL T ELT)) (-2640 (($) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4162 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1787 (((-791) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4230 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1846 (((-3 |#2| #1#)) 68 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4187 (((-419 |#2|) (-1288 $)) NIL T ELT) (((-419 |#2|)) 47 T ELT)) (-1975 (((-791) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-791) #1#) $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4188 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2639 (((-709 (-419 |#2|)) (-1288 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3603 ((|#3|) 58 T ELT)) (-1877 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3642 (((-1288 (-419 |#2|)) $ (-1288 $)) NIL T ELT) (((-709 (-419 |#2|)) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 (-419 |#2|)) $) 81 T ELT) (((-709 (-419 |#2|)) (-1288 $)) NIL T ELT)) (-4402 (((-1288 (-419 |#2|)) $) NIL T ELT) (($ (-1288 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1857 (((-1288 $) (-1288 $)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3103 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-711 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2838 ((|#3| $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1866 (((-114)) 65 T ELT)) (-1865 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1844 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1868 (((-114)) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-791)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-917 (-1198)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-919 (-1198))))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3957 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-419 |#2|) (-376)) ELT))) -(((-1024 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1243) (-1264 |#1|) (-1264 (-419 |#2|)) (-419 |#2|) (-791)) (T -1024)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3418 (((-661 (-558)) $) 73 T ELT)) (-3414 (($ (-661 (-558))) 81 T ELT)) (-3531 (((-558) $) 48 (|has| (-558) (-319)) ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL (|has| (-558) (-842)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) 60 T ELT) (((-3 (-1198) #1#) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-3 (-419 (-558)) #1#) $) 57 (|has| (-558) (-1059 (-558))) ELT) (((-3 (-558) #1#) $) 60 (|has| (-558) (-1059 (-558))) ELT)) (-3574 (((-558) $) NIL T ELT) (((-1198) $) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1059 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1059 (-558))) ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3395 (($) NIL (|has| (-558) (-557)) ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3416 (((-661 (-558)) $) 79 T ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (|has| (-558) (-901 (-558))) ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (|has| (-558) (-901 (-391))) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL T ELT)) (-3399 (((-558) $) 45 T ELT)) (-3865 (((-711 $) $) NIL (|has| (-558) (-1173)) ELT)) (-3605 (((-114) $) NIL (|has| (-558) (-842)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-558) (-861)) ELT)) (-4388 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| (-558) (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL T ELT)) (-3866 (($) NIL (|has| (-558) (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3530 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) 50 T ELT)) (-3417 (((-1176 (-558)) $) 78 T ELT)) (-3413 (($ (-661 (-558)) (-661 (-558))) 82 T ELT)) (-3532 (((-558) $) 64 (|has| (-558) (-557)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| (-558) (-929)) ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-4198 (($ $ (-661 (-558)) (-661 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-661 (-1198)) (-661 (-558))) NIL (|has| (-558) (-526 (-1198) (-558))) ELT) (($ $ (-1198) (-558)) NIL (|has| (-558) (-526 (-1198) (-558))) ELT)) (-1787 (((-791) $) NIL T ELT)) (-4230 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) 15 (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) 47 T ELT)) (-3415 (((-661 (-558)) $) 80 T ELT)) (-4402 (((-905 (-558)) $) NIL (|has| (-558) (-631 (-905 (-558)))) ELT) (((-905 (-391)) $) NIL (|has| (-558) (-631 (-905 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-631 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1041)) ELT) (((-229) $) NIL (|has| (-558) (-1041)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-929))) ELT)) (-4376 (((-877) $) 108 T ELT) (($ (-558)) 51 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 27 T ELT) (($ (-558)) 51 T ELT) (($ (-1198)) NIL (|has| (-558) (-1059 (-1198))) ELT) (((-419 (-558)) $) 25 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-558) (-929))) (|has| (-558) (-147))) ELT)) (-3528 (((-791)) 13 T CONST)) (-3533 (((-558) $) 62 (|has| (-558) (-557)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3803 (($ $) NIL (|has| (-558) (-842)) ELT)) (-3059 (($) 14 T CONST)) (-3065 (($) 17 T CONST)) (-3070 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| (-558) (-919 (-1198))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-791)) NIL (|has| (-558) (-239)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3454 (((-114) $ $) 21 T ELT)) (-3085 (((-114) $ $) NIL (|has| (-558) (-861)) ELT)) (-3086 (((-114) $ $) 40 (|has| (-558) (-861)) ELT)) (-4379 (($ $ $) 36 T ELT) (($ (-558) (-558)) 38 T ELT)) (-4267 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-4269 (($ $ $) 28 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ $ (-558)) NIL T ELT))) -(((-1025 |#1|) (-13 (-1012 (-558)) (-630 (-419 (-558))) (-10 -8 (-15 -3530 ((-419 (-558)) $)) (-15 -3418 ((-661 (-558)) $)) (-15 -3417 ((-1176 (-558)) $)) (-15 -3416 ((-661 (-558)) $)) (-15 -3415 ((-661 (-558)) $)) (-15 -3414 ($ (-661 (-558)))) (-15 -3413 ($ (-661 (-558)) (-661 (-558)))))) (-558)) (T -1025)) -((-3530 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) (-3418 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-1176 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) (-3414 (*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) (-3413 (*1 *1 *2 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) -((-3419 (((-51) (-419 (-558)) (-558)) 9 T ELT))) -(((-1026) (-10 -7 (-15 -3419 ((-51) (-419 (-558)) (-558))))) (T -1026)) -((-3419 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-558))) (-5 *4 (-558)) (-5 *2 (-51)) (-5 *1 (-1026))))) -((-3538 (((-558)) 21 T ELT)) (-3422 (((-558)) 26 T ELT)) (-3421 (((-1294) (-558)) 24 T ELT)) (-3420 (((-558) (-558)) 27 T ELT) (((-558)) 20 T ELT))) -(((-1027) (-10 -7 (-15 -3420 ((-558))) (-15 -3538 ((-558))) (-15 -3420 ((-558) (-558))) (-15 -3421 ((-1294) (-558))) (-15 -3422 ((-558))))) (T -1027)) -((-3422 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027)))) (-3421 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1027)))) (-3420 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027)))) (-3538 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027)))) (-3420 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027))))) -((-4163 (((-417 |#1|) |#1|) 43 T ELT)) (-4162 (((-417 |#1|) |#1|) 41 T ELT))) -(((-1028 |#1|) (-10 -7 (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4163 ((-417 |#1|) |#1|))) (-1264 (-419 (-558)))) (T -1028)) -((-4163 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-558)))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-558))))))) -((-3425 (((-3 (-419 (-558)) "failed") |#1|) 15 T ELT)) (-3424 (((-114) |#1|) 14 T ELT)) (-3423 (((-419 (-558)) |#1|) 10 T ELT))) -(((-1029 |#1|) (-10 -7 (-15 -3423 ((-419 (-558)) |#1|)) (-15 -3424 ((-114) |#1|)) (-15 -3425 ((-3 (-419 (-558)) "failed") |#1|))) (-1059 (-419 (-558)))) (T -1029)) -((-3425 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2)))) (-3424 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-558)))))) (-3423 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) -((-4218 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-4230 ((|#2| $ #1#) 10 T ELT)) (-3429 (((-114) $ $) 18 T ELT))) -(((-1030 |#1| |#2|) (-10 -7 (-15 -4218 (|#2| |#1| #1="value" |#2|)) (-15 -3429 ((-114) |#1| |#1|)) (-15 -4230 (|#2| |#1| #1#))) (-1031 |#2|) (-1238)) (T -1030)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4154 (($) 7 T CONST)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ "value") 51 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1031 |#1|) (-142) (-1238)) (T -1031)) -((-3942 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-661 *1)) (-4 *1 (-1031 *3)))) (-3432 (*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-661 *1)) (-4 *1 (-1031 *3)))) (-3947 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-3822 (*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-4063 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-3431 (*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-661 *3)))) (-3430 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-558)))) (-3429 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114)))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114)))) (-3427 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *1)) (|has| *1 (-6 -4426)) (-4 *1 (-1031 *3)) (-4 *3 (-1238)))) (-4218 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4426)) (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) (-3426 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) -(-13 (-501 |t#1|) (-10 -8 (-15 -3942 ((-661 $) $)) (-15 -3432 ((-661 $) $)) (-15 -3947 ((-114) $)) (-15 -3822 (|t#1| $)) (-15 -4230 (|t#1| $ "value")) (-15 -4063 ((-114) $)) (-15 -3431 ((-661 |t#1|) $)) (-15 -3430 ((-558) $ $)) (IF (|has| |t#1| (-1122)) (PROGN (-15 -3429 ((-114) $ $)) (-15 -3428 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4426)) (PROGN (-15 -3427 ($ $ (-661 $))) (-15 -4218 (|t#1| $ "value" |t#1|)) (-15 -3426 (|t#1| $ |t#1|))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-3438 (($ $) 9 T ELT) (($ $ (-938)) 49 T ELT) (($ (-419 (-558))) 13 T ELT) (($ (-558)) 15 T ELT)) (-3601 (((-3 $ #1="failed") (-1192 $) (-938) (-877)) 24 T ELT) (((-3 $ #1#) (-1192 $) (-938)) 32 T ELT)) (-3412 (($ $ (-558)) 58 T ELT)) (-3528 (((-791)) 18 T ELT)) (-3602 (((-661 $) (-1192 $)) NIL T ELT) (((-661 $) (-1192 (-419 (-558)))) 63 T ELT) (((-661 $) (-1192 (-558))) 68 T ELT) (((-661 $) (-965 $)) 72 T ELT) (((-661 $) (-965 (-419 (-558)))) 76 T ELT) (((-661 $) (-965 (-558))) 80 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) 53 T ELT))) -(((-1032 |#1|) (-10 -7 (-15 -3438 (|#1| (-558))) (-15 -3438 (|#1| (-419 (-558)))) (-15 -3438 (|#1| |#1| (-938))) (-15 -3602 ((-661 |#1|) (-965 (-558)))) (-15 -3602 ((-661 |#1|) (-965 (-419 (-558))))) (-15 -3602 ((-661 |#1|) (-965 |#1|))) (-15 -3602 ((-661 |#1|) (-1192 (-558)))) (-15 -3602 ((-661 |#1|) (-1192 (-419 (-558))))) (-15 -3602 ((-661 |#1|) (-1192 |#1|))) (-15 -3601 ((-3 |#1| #1="failed") (-1192 |#1|) (-938))) (-15 -3601 ((-3 |#1| #1#) (-1192 |#1|) (-938) (-877))) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3412 (|#1| |#1| (-558))) (-15 -3438 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3528 ((-791))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-938)))) (-1033)) (T -1032)) -((-3528 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1032 *3)) (-4 *3 (-1033))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 108 T ELT)) (-2273 (($ $) 109 T ELT)) (-2271 (((-114) $) 111 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 128 T ELT)) (-4401 (((-417 $) $) 129 T ELT)) (-3438 (($ $) 92 T ELT) (($ $ (-938)) 78 T ELT) (($ (-419 (-558))) 77 T ELT) (($ (-558)) 76 T ELT)) (-1788 (((-114) $ $) 119 T ELT)) (-4053 (((-558) $) 145 T ELT)) (-4154 (($) 22 T CONST)) (-3601 (((-3 $ "failed") (-1192 $) (-938) (-877)) 86 T ELT) (((-3 $ "failed") (-1192 $) (-938)) 85 T ELT)) (-3575 (((-3 (-558) #1="failed") $) 105 (|has| (-419 (-558)) (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| (-419 (-558)) (-1059 (-419 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) 100 T ELT)) (-3574 (((-558) $) 104 (|has| (-419 (-558)) (-1059 (-558))) ELT) (((-419 (-558)) $) 102 (|has| (-419 (-558)) (-1059 (-419 (-558)))) ELT) (((-419 (-558)) $) 101 T ELT)) (-3434 (($ $ (-877)) 75 T ELT)) (-3433 (($ $ (-877)) 74 T ELT)) (-2963 (($ $ $) 123 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 122 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 117 T ELT)) (-4153 (((-114) $) 130 T ELT)) (-3604 (((-114) $) 143 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 91 T ELT)) (-3605 (((-114) $) 144 T ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 126 T ELT)) (-2930 (($ $ $) 137 T ELT)) (-3258 (($ $ $) 138 T ELT)) (-3435 (((-3 (-1192 $) "failed") $) 87 T ELT)) (-3437 (((-3 (-877) "failed") $) 89 T ELT)) (-3436 (((-3 (-1192 $) "failed") $) 88 T ELT)) (-2102 (($ (-661 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 131 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 116 T ELT)) (-3562 (($ (-661 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-4162 (((-417 $) $) 127 T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 124 T ELT)) (-3886 (((-3 $ "failed") $ $) 107 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 118 T ELT)) (-1787 (((-791) $) 120 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 121 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 135 T ELT) (($ $) 106 T ELT) (($ (-419 (-558))) 99 T ELT) (($ (-558)) 98 T ELT) (($ (-419 (-558))) 95 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 110 T ELT)) (-4200 (((-419 (-558)) $ $) 73 T ELT)) (-3602 (((-661 $) (-1192 $)) 84 T ELT) (((-661 $) (-1192 (-419 (-558)))) 83 T ELT) (((-661 $) (-1192 (-558))) 82 T ELT) (((-661 $) (-965 $)) 81 T ELT) (((-661 $) (-965 (-419 (-558)))) 80 T ELT) (((-661 $) (-965 (-558))) 79 T ELT)) (-3803 (($ $) 146 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 139 T ELT)) (-2966 (((-114) $ $) 141 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 140 T ELT)) (-3086 (((-114) $ $) 142 T ELT)) (-4379 (($ $ $) 136 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 132 T ELT) (($ $ (-419 (-558))) 90 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-558)) $) 134 T ELT) (($ $ (-419 (-558))) 133 T ELT) (($ (-558) $) 97 T ELT) (($ $ (-558)) 96 T ELT) (($ (-419 (-558)) $) 94 T ELT) (($ $ (-419 (-558))) 93 T ELT))) -(((-1033) (-142)) (T -1033)) -((-3438 (*1 *1 *1) (-4 *1 (-1033))) (-3437 (*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-877)))) (-3436 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1033)))) (-3435 (*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1033)))) (-3601 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-5 *4 (-877)) (-4 *1 (-1033)))) (-3601 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-4 *1 (-1033)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1033)) (-5 *2 (-661 *1)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1192 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-1192 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-1033)) (-5 *2 (-661 *1)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-965 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) (-3602 (*1 *2 *3) (-12 (-5 *3 (-965 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) (-3438 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-938)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1033)))) (-3438 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1033)))) (-3434 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-877)))) (-3433 (*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-877)))) (-4200 (*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-558)))))) -(-13 (-149) (-860) (-175) (-376) (-424 (-419 (-558))) (-38 (-558)) (-38 (-419 (-558))) (-1023) (-10 -8 (-15 -3437 ((-3 (-877) "failed") $)) (-15 -3436 ((-3 (-1192 $) "failed") $)) (-15 -3435 ((-3 (-1192 $) "failed") $)) (-15 -3601 ((-3 $ "failed") (-1192 $) (-938) (-877))) (-15 -3601 ((-3 $ "failed") (-1192 $) (-938))) (-15 -3602 ((-661 $) (-1192 $))) (-15 -3602 ((-661 $) (-1192 (-419 (-558))))) (-15 -3602 ((-661 $) (-1192 (-558)))) (-15 -3602 ((-661 $) (-965 $))) (-15 -3602 ((-661 $) (-965 (-419 (-558))))) (-15 -3602 ((-661 $) (-965 (-558)))) (-15 -3438 ($ $ (-938))) (-15 -3438 ($ $)) (-15 -3438 ($ (-419 (-558)))) (-15 -3438 ($ (-558))) (-15 -3434 ($ $ (-877))) (-15 -3433 ($ $ (-877))) (-15 -4200 ((-419 (-558)) $ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 (-558)) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 (-558) (-558)) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-424 (-419 (-558))) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 (-558)) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 (-558)) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 (-558)) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-940) . T) ((-1023) . T) ((-1059 (-419 (-558))) . T) ((-1059 (-558)) |has| (-419 (-558)) (-1059 (-558))) ((-1072 (-419 (-558))) . T) ((-1072 (-558)) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 (-558)) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-3439 (((-2 (|:| |ans| |#2|) (|:| -3539 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) -(((-1034 |#1| |#2|) (-10 -7 (-15 -3439 ((-2 (|:| |ans| |#2|) (|:| -3539 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-464) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-27) (-433 |#1|))) (T -1034)) -((-3439 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1198)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-661 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1224) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1059 *3) (-658 *3))) (-5 *3 (-558)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3539 *4) (|:| |sol?| (-114)))) (-5 *1 (-1034 *8 *4))))) -((-3440 (((-3 (-661 |#2|) #1="failed") (-558) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) -(((-1035 |#1| |#2|) (-10 -7 (-15 -3440 ((-3 (-661 |#2|) #1="failed") (-558) |#2| |#2| |#2| (-1198) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-661 |#2|)) (-1 (-3 (-2 (|:| -2351 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-464) (-149) (-1059 (-558)) (-658 (-558))) (-13 (-1224) (-27) (-433 |#1|))) (T -1035)) -((-3440 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1198)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-661 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1224) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1059 *3) (-658 *3))) (-5 *3 (-558)) (-5 *2 (-661 *4)) (-5 *1 (-1035 *8 *4))))) -((-3443 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3684 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)) 39 T ELT)) (-3441 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3496 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3442 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|)) 76 T ELT))) -(((-1036 |#1| |#2|) (-10 -7 (-15 -3441 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3496 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3442 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|))) (-15 -3443 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3684 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1059 (-558))) (-1264 |#1|)) (T -1036)) -((-3443 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) (-4 *6 (-13 (-376) (-149) (-1059 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -3684 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1036 *6 *3)))) (-3442 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-3441 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3496 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) -((-3444 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3496 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3445 (((-3 (-661 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34 T ELT))) -(((-1037 |#1| |#2|) (-10 -7 (-15 -3444 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3496 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3445 ((-3 (-661 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-376) (-149) (-1059 (-558))) (-1264 |#1|)) (T -1037)) -((-3445 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) (-5 *2 (-661 (-419 *5))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5)))) (-3444 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-13 (-376) (-149) (-1059 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -3496 *6))) (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) -((-3446 (((-1 |#1|) (-661 (-2 (|:| -3822 |#1|) (|:| -1654 (-558))))) 34 T ELT)) (-3503 (((-1 |#1|) (-1118 |#1|)) 42 T ELT)) (-3447 (((-1 |#1|) (-1288 |#1|) (-1288 (-558)) (-558)) 31 T ELT))) -(((-1038 |#1|) (-10 -7 (-15 -3503 ((-1 |#1|) (-1118 |#1|))) (-15 -3446 ((-1 |#1|) (-661 (-2 (|:| -3822 |#1|) (|:| -1654 (-558)))))) (-15 -3447 ((-1 |#1|) (-1288 |#1|) (-1288 (-558)) (-558)))) (-1122)) (T -1038)) -((-3447 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-558))) (-5 *5 (-558)) (-4 *6 (-1122)) (-5 *2 (-1 *6)) (-5 *1 (-1038 *6)))) (-3446 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3822 *4) (|:| -1654 (-558))))) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-1118 *4)) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) -((-4202 (((-791) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) -(((-1039 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4202 ((-791) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1264 |#1|) (-1264 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1039)) -((-4202 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-791)) (-5 *1 (-1039 *6 *7 *4 *8 *9))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4023 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-1156) $) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1040) (-13 (-1104) (-10 -8 (-15 -4023 ((-1156) $)) (-15 -3651 ((-1156) $))))) (T -1040)) -((-4023 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040))))) -((-4402 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT))) -(((-1041) (-142)) (T -1041)) -NIL -(-13 (-631 (-229)) (-631 (-391))) -(((-631 (-229)) . T) ((-631 (-391)) . T)) -((-3536 (((-3 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) "failed") |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) 32 T ELT) (((-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558))) 29 T ELT)) (-3450 (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558))) 34 T ELT) (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-419 (-558))) 30 T ELT) (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) 33 T ELT) (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1|) 28 T ELT)) (-3449 (((-661 (-419 (-558))) (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) 20 T ELT)) (-3448 (((-419 (-558)) (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) 17 T ELT))) -(((-1042 |#1|) (-10 -7 (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1|)) (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558)))) (-15 -3536 ((-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558)))) (-15 -3536 ((-3 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) "failed") |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-15 -3448 ((-419 (-558)) (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-15 -3449 ((-661 (-419 (-558))) (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))))) (-1264 (-558))) (T -1042)) -((-3449 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *2 (-661 (-419 (-558)))) (-5 *1 (-1042 *4)) (-4 *4 (-1264 (-558))))) (-3448 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) (-5 *2 (-419 (-558))) (-5 *1 (-1042 *4)) (-4 *4 (-1264 (-558))))) (-3536 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))))) (-3536 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) (-5 *4 (-419 (-558))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))))) (-3450 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3540 *5) (|:| -3539 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))) (-5 *4 (-2 (|:| -3540 *5) (|:| -3539 *5))))) (-3450 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))) (-5 *4 (-419 (-558))))) (-3450 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))) (-5 *4 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558)))))) -((-3536 (((-3 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) "failed") |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) 35 T ELT) (((-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558))) 32 T ELT)) (-3450 (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558))) 30 T ELT) (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-419 (-558))) 26 T ELT) (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) 28 T ELT) (((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1|) 24 T ELT))) -(((-1043 |#1|) (-10 -7 (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1|)) (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3450 ((-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558)))) (-15 -3536 ((-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-419 (-558)))) (-15 -3536 ((-3 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) "failed") |#1| (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))) (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))))) (-1264 (-419 (-558)))) (T -1043)) -((-3536 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 (-419 (-558)))))) (-3536 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) (-5 *4 (-419 (-558))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 *4)))) (-3450 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3540 *5) (|:| -3539 *5)))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 *5)) (-5 *4 (-2 (|:| -3540 *5) (|:| -3539 *5))))) (-3450 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3540 *4) (|:| -3539 *4)))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 *4)))) (-3450 (*1 *2 *3 *4) (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 (-419 (-558)))) (-5 *4 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))))) (-3450 (*1 *2 *3) (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 (-419 (-558))))))) -((-4001 (((-661 (-391)) (-965 (-558)) (-391)) 28 T ELT) (((-661 (-391)) (-965 (-419 (-558))) (-391)) 27 T ELT)) (-4399 (((-661 (-661 (-391))) (-661 (-965 (-558))) (-661 (-1198)) (-391)) 37 T ELT))) -(((-1044) (-10 -7 (-15 -4001 ((-661 (-391)) (-965 (-419 (-558))) (-391))) (-15 -4001 ((-661 (-391)) (-965 (-558)) (-391))) (-15 -4399 ((-661 (-661 (-391))) (-661 (-965 (-558))) (-661 (-1198)) (-391))))) (T -1044)) -((-4399 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-661 (-1198))) (-5 *2 (-661 (-661 (-391)))) (-5 *1 (-1044)) (-5 *5 (-391)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-558))) (-5 *2 (-661 (-391))) (-5 *1 (-1044)) (-5 *4 (-391)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-965 (-419 (-558)))) (-5 *2 (-661 (-391))) (-5 *1 (-1044)) (-5 *4 (-391))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 75 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-3438 (($ $) NIL T ELT) (($ $ (-938)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) 70 T ELT)) (-4154 (($) NIL T CONST)) (-3601 (((-3 $ #1#) (-1192 $) (-938) (-877)) NIL T ELT) (((-3 $ #1#) (-1192 $) (-938)) 55 T ELT)) (-3575 (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 (-558)) (-1059 (-419 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 116 T ELT) (((-3 (-558) #1#) $) NIL (-3957 (|has| (-419 (-558)) (-1059 (-558))) (|has| |#1| (-1059 (-558)))) ELT)) (-3574 (((-419 (-558)) $) 17 (|has| (-419 (-558)) (-1059 (-419 (-558)))) ELT) (((-419 (-558)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-558) $) NIL (-3957 (|has| (-419 (-558)) (-1059 (-558))) (|has| |#1| (-1059 (-558)))) ELT)) (-3434 (($ $ (-877)) 47 T ELT)) (-3433 (($ $ (-877)) 48 T ELT)) (-2963 (($ $ $) NIL T ELT)) (-3600 (((-419 (-558)) $ $) 21 T ELT)) (-3887 (((-3 $ #1#) $) 88 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-3604 (((-114) $) 66 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL T ELT)) (-3605 (((-114) $) 69 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3435 (((-3 (-1192 $) #1#) $) 83 T ELT)) (-3437 (((-3 (-877) #1#) $) 82 T ELT)) (-3436 (((-3 (-1192 $) #1#) $) 80 T ELT)) (-3451 (((-3 (-1082 $ (-1192 $)) #1#) $) 78 T ELT)) (-2102 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 89 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4376 (((-877) $) 87 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) 63 T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-4200 (((-419 (-558)) $ $) 27 T ELT)) (-3602 (((-661 $) (-1192 $)) 61 T ELT) (((-661 $) (-1192 (-419 (-558)))) NIL T ELT) (((-661 $) (-1192 (-558))) NIL T ELT) (((-661 $) (-965 $)) NIL T ELT) (((-661 $) (-965 (-419 (-558)))) NIL T ELT) (((-661 $) (-965 (-558))) NIL T ELT)) (-3452 (($ (-1082 $ (-1192 $)) (-877)) 46 T ELT)) (-3803 (($ $) 22 T ELT)) (-3059 (($) 32 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 76 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 24 T ELT)) (-4379 (($ $ $) 37 T ELT)) (-4267 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-4269 (($ $ $) 112 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-558) $) 98 T ELT) (($ $ (-558)) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1045 |#1|) (-13 (-1033) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -3452 ($ (-1082 $ (-1192 $)) (-877))) (-15 -3451 ((-3 (-1082 $ (-1192 $)) "failed") $)) (-15 -3600 ((-419 (-558)) $ $)))) (-13 (-860) (-376) (-1041))) (T -1045)) -((-3452 (*1 *1 *2 *3) (-12 (-5 *2 (-1082 (-1045 *4) (-1192 (-1045 *4)))) (-5 *3 (-877)) (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-376) (-1041))))) (-3451 (*1 *2 *1) (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1192 (-1045 *3)))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-376) (-1041))))) (-3600 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-376) (-1041)))))) -((-3453 (((-2 (|:| -3684 |#2|) (|:| -2909 (-661 |#1|))) |#2| (-661 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) -(((-1046 |#1| |#2|) (-10 -7 (-15 -3453 (|#2| |#2| |#1|)) (-15 -3453 ((-2 (|:| -3684 |#2|) (|:| -2909 (-661 |#1|))) |#2| (-661 |#1|)))) (-376) (-678 |#1|)) (T -1046)) -((-3453 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3684 *3) (|:| -2909 (-661 *5)))) (-5 *1 (-1046 *5 *3)) (-5 *4 (-661 *5)) (-4 *3 (-678 *5)))) (-3453 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-678 *3))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3455 ((|#1| $ |#1|) 14 T ELT)) (-4218 ((|#1| $ |#1|) 12 T ELT)) (-3457 (($ |#1|) 10 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4230 ((|#1| $) 11 T ELT)) (-3456 ((|#1| $) 13 T ELT)) (-4376 (((-877) $) 19 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3454 (((-114) $ $) 9 T ELT))) -(((-1047 |#1|) (-13 (-1238) (-10 -8 (-15 -3457 ($ |#1|)) (-15 -4230 (|#1| $)) (-15 -4218 (|#1| $ |#1|)) (-15 -3456 (|#1| $)) (-15 -3455 (|#1| $ |#1|)) (-15 -3454 ((-114) $ $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1238)) (T -1047)) -((-3457 (*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-4230 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-4218 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3456 (*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3455 (*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) (-3454 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4112 (((-661 $) (-661 |#4|)) 117 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT) (((-661 $) (-661 |#4|) (-114) (-114)) 116 T ELT) (((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114)) 119 T ELT)) (-3484 (((-661 |#3|) $) NIL T ELT)) (-3309 (((-114) $) NIL T ELT)) (-3300 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4118 ((|#4| |#4| $) NIL T ELT)) (-4205 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| $) 111 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4140 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-4154 (($) NIL T CONST)) (-3305 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ #1#) (-661 |#4|)) NIL T ELT)) (-3574 (($ (-661 |#4|)) NIL T ELT)) (-4229 (((-3 $ #1#) $) 45 T ELT)) (-4115 ((|#4| |#4| $) 69 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-3826 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4113 ((|#4| |#4| $) NIL T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) NIL T ELT)) (-3615 (((-114) |#4| $) NIL T ELT)) (-3613 (((-114) |#4| $) NIL T ELT)) (-3616 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3858 (((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114)) 132 T ELT)) (-3290 (((-661 |#4|) $) 18 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 19 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3315 (((-661 |#3|) $) NIL T ELT)) (-3314 (((-114) |#3| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3609 (((-3 |#4| (-661 $)) |#4| |#4| $) NIL T ELT)) (-3608 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| |#4| $) 109 T ELT)) (-4228 (((-3 |#4| #1#) $) 42 T ELT)) (-3610 (((-661 $) |#4| $) 92 T ELT)) (-3612 (((-3 (-114) (-661 $)) |#4| $) NIL T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |#4| $) 102 T ELT) (((-114) |#4| $) 64 T ELT)) (-3656 (((-661 $) |#4| $) 114 T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 115 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT)) (-3859 (((-661 $) (-661 |#4|) (-114) (-114) (-114)) 127 T ELT)) (-3860 (($ |#4| $) 81 T ELT) (($ (-661 |#4|) $) 82 T ELT) (((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 78 T ELT)) (-4127 (((-661 |#4|) $) NIL T ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-4129 (((-114) $ $) NIL T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-3 |#4| #1#) $) 40 T ELT)) (-1468 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4199 (($ $ |#4|) NIL T ELT) (((-661 $) |#4| $) 94 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 88 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 17 T ELT)) (-3993 (($) 14 T ELT)) (-4378 (((-791) $) NIL T ELT)) (-2157 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 13 T ELT)) (-4402 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 22 T ELT)) (-3311 (($ $ |#3|) 52 T ELT)) (-3313 (($ $ |#3|) 54 T ELT)) (-4114 (($ $) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-4376 (((-877) $) 35 T ELT) (((-661 |#4|) $) 46 T ELT)) (-4108 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-3607 (((-661 $) |#4| $) 91 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) NIL T ELT)) (-3614 (((-114) |#4| $) NIL T ELT)) (-4363 (((-114) |#3| $) 65 T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1048 |#1| |#2| |#3| |#4|) (-13 (-1092 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3860 ((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4112 ((-661 $) (-661 |#4|) (-114) (-114))) (-15 -4112 ((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114))) (-15 -3859 ((-661 $) (-661 |#4|) (-114) (-114) (-114))) (-15 -3858 ((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114))))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|)) (T -1048)) -((-3860 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-4112 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-4112 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3859 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *8))) (-5 *1 (-1048 *5 *6 *7 *8)))) (-3858 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1048 *5 *6 *7 *8))))) (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-661 *8))))) -((-3458 (((-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558))))))) (-709 (-419 (-965 (-558))))) 67 T ELT)) (-3459 (((-661 (-709 (-326 (-558)))) (-326 (-558)) (-709 (-419 (-965 (-558))))) 52 T ELT)) (-3460 (((-661 (-326 (-558))) (-709 (-419 (-965 (-558))))) 45 T ELT)) (-3464 (((-661 (-709 (-326 (-558)))) (-709 (-419 (-965 (-558))))) 85 T ELT)) (-3462 (((-709 (-326 (-558))) (-709 (-326 (-558)))) 38 T ELT)) (-3463 (((-661 (-709 (-326 (-558)))) (-661 (-709 (-326 (-558))))) 74 T ELT)) (-3461 (((-3 (-709 (-326 (-558))) "failed") (-709 (-419 (-965 (-558))))) 82 T ELT))) -(((-1049) (-10 -7 (-15 -3458 ((-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558))))))) (-709 (-419 (-965 (-558)))))) (-15 -3459 ((-661 (-709 (-326 (-558)))) (-326 (-558)) (-709 (-419 (-965 (-558)))))) (-15 -3460 ((-661 (-326 (-558))) (-709 (-419 (-965 (-558)))))) (-15 -3461 ((-3 (-709 (-326 (-558))) "failed") (-709 (-419 (-965 (-558)))))) (-15 -3462 ((-709 (-326 (-558))) (-709 (-326 (-558))))) (-15 -3463 ((-661 (-709 (-326 (-558)))) (-661 (-709 (-326 (-558)))))) (-15 -3464 ((-661 (-709 (-326 (-558)))) (-709 (-419 (-965 (-558)))))))) (T -1049)) -((-3464 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1049)))) (-3463 (*1 *2 *2) (-12 (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1049)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1049)))) (-3461 (*1 *2 *3) (|partial| -12 (-5 *3 (-709 (-419 (-965 (-558))))) (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1049)))) (-3460 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-326 (-558)))) (-5 *1 (-1049)))) (-3459 (*1 *2 *3 *4) (-12 (-5 *4 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1049)) (-5 *3 (-326 (-558))))) (-3458 (*1 *2 *3) (-12 (-5 *3 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-661 (-709 (-326 (-558)))))))) (-5 *1 (-1049))))) -((-3468 (((-661 (-709 |#1|)) (-661 (-709 |#1|))) 70 T ELT) (((-709 |#1|) (-709 |#1|)) 69 T ELT) (((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-661 (-709 |#1|))) 68 T ELT) (((-709 |#1|) (-709 |#1|) (-709 |#1|)) 65 T ELT)) (-3467 (((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-938)) 63 T ELT) (((-709 |#1|) (-709 |#1|) (-938)) 62 T ELT)) (-3469 (((-661 (-709 (-558))) (-661 (-661 (-558)))) 81 T ELT) (((-661 (-709 (-558))) (-661 (-921 (-558))) (-558)) 80 T ELT) (((-709 (-558)) (-661 (-558))) 77 T ELT) (((-709 (-558)) (-921 (-558)) (-558)) 75 T ELT)) (-3466 (((-709 (-965 |#1|)) (-791)) 95 T ELT)) (-3465 (((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-938)) 49 (|has| |#1| (-6 (-4427 #1="*"))) ELT) (((-709 |#1|) (-709 |#1|) (-938)) 47 (|has| |#1| (-6 (-4427 #1#))) ELT))) -(((-1050 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4427 #1="*"))) (-15 -3465 ((-709 |#1|) (-709 |#1|) (-938))) |%noBranch|) (IF (|has| |#1| (-6 (-4427 #1#))) (-15 -3465 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-938))) |%noBranch|) (-15 -3466 ((-709 (-965 |#1|)) (-791))) (-15 -3467 ((-709 |#1|) (-709 |#1|) (-938))) (-15 -3467 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-938))) (-15 -3468 ((-709 |#1|) (-709 |#1|) (-709 |#1|))) (-15 -3468 ((-661 (-709 |#1|)) (-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3468 ((-709 |#1|) (-709 |#1|))) (-15 -3468 ((-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3469 ((-709 (-558)) (-921 (-558)) (-558))) (-15 -3469 ((-709 (-558)) (-661 (-558)))) (-15 -3469 ((-661 (-709 (-558))) (-661 (-921 (-558))) (-558))) (-15 -3469 ((-661 (-709 (-558))) (-661 (-661 (-558)))))) (-1070)) (T -1050)) -((-3469 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-558)))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-1050 *4)) (-4 *4 (-1070)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-921 (-558)))) (-5 *4 (-558)) (-5 *2 (-661 (-709 *4))) (-5 *1 (-1050 *5)) (-4 *5 (-1070)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1050 *4)) (-4 *4 (-1070)))) (-3469 (*1 *2 *3 *4) (-12 (-5 *3 (-921 (-558))) (-5 *4 (-558)) (-5 *2 (-709 *4)) (-5 *1 (-1050 *5)) (-4 *5 (-1070)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) (-3468 (*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) (-3468 (*1 *2 *2 *2) (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) (-3468 (*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-938)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-3467 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-938)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-3466 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-709 (-965 *4))) (-5 *1 (-1050 *4)) (-4 *4 (-1070)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-938)) (|has| *4 (-6 (-4427 "*"))) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) (-3465 (*1 *2 *2 *3) (-12 (-5 *2 (-709 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4427 "*"))) (-4 *4 (-1070)) (-5 *1 (-1050 *4))))) -((-3473 (((-709 |#1|) (-661 (-709 |#1|)) (-1288 |#1|)) 69 (|has| |#1| (-319)) ELT)) (-3838 (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1288 (-1288 |#1|))) 109 (|has| |#1| (-376)) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1288 |#1|)) 116 (|has| |#1| (-376)) ELT)) (-3477 (((-1288 |#1|) (-661 (-1288 |#1|)) (-558)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3476 (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-938)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114) (-558) (-558)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3475 (((-114) (-661 (-709 |#1|))) 102 (|has| |#1| (-376)) ELT) (((-114) (-661 (-709 |#1|)) (-558)) 105 (|has| |#1| (-376)) ELT)) (-3472 (((-1288 (-1288 |#1|)) (-661 (-709 |#1|)) (-1288 |#1|)) 66 (|has| |#1| (-319)) ELT)) (-3471 (((-709 |#1|) (-661 (-709 |#1|)) (-709 |#1|)) 46 T ELT)) (-3470 (((-709 |#1|) (-1288 (-1288 |#1|))) 39 T ELT)) (-3474 (((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-558)) 93 (|has| |#1| (-376)) ELT) (((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|))) 92 (|has| |#1| (-376)) ELT) (((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-114) (-558)) 100 (|has| |#1| (-376)) ELT))) -(((-1051 |#1|) (-10 -7 (-15 -3470 ((-709 |#1|) (-1288 (-1288 |#1|)))) (-15 -3471 ((-709 |#1|) (-661 (-709 |#1|)) (-709 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3472 ((-1288 (-1288 |#1|)) (-661 (-709 |#1|)) (-1288 |#1|))) (-15 -3473 ((-709 |#1|) (-661 (-709 |#1|)) (-1288 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3474 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-114) (-558))) (-15 -3474 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3474 ((-709 |#1|) (-661 (-709 |#1|)) (-661 (-709 |#1|)) (-558))) (-15 -3475 ((-114) (-661 (-709 |#1|)) (-558))) (-15 -3475 ((-114) (-661 (-709 |#1|)))) (-15 -3838 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1288 |#1|))) (-15 -3838 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-1288 (-1288 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3476 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114) (-558) (-558))) (-15 -3476 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)))) (-15 -3476 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-114))) (-15 -3476 ((-661 (-661 (-709 |#1|))) (-661 (-709 |#1|)) (-938))) (-15 -3477 ((-1288 |#1|) (-661 (-1288 |#1|)) (-558)))) |%noBranch|) |%noBranch|)) (-1070)) (T -1051)) -((-3477 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1288 *5))) (-5 *4 (-558)) (-5 *2 (-1288 *5)) (-5 *1 (-1051 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1070)))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1070)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-661 (-709 *5))))) (-3476 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1070)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-661 (-709 *5))))) (-3476 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1070)) (-5 *2 (-661 (-661 (-709 *4)))) (-5 *1 (-1051 *4)) (-5 *3 (-661 (-709 *4))))) (-3476 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-558)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1070)) (-5 *2 (-661 (-661 (-709 *6)))) (-5 *1 (-1051 *6)) (-5 *3 (-661 (-709 *6))))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-376)) (-4 *5 (-1070)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-661 (-709 *5))))) (-3838 (*1 *2 *3 *4) (-12 (-5 *4 (-1288 *5)) (-4 *5 (-376)) (-4 *5 (-1070)) (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) (-5 *3 (-661 (-709 *5))))) (-3475 (*1 *2 *3) (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-4 *4 (-1070)) (-5 *2 (-114)) (-5 *1 (-1051 *4)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-4 *5 (-376)) (-4 *5 (-1070)) (-5 *2 (-114)) (-5 *1 (-1051 *5)))) (-3474 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-5 *2 (-709 *5)) (-5 *1 (-1051 *5)) (-4 *5 (-376)) (-4 *5 (-1070)))) (-3474 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-5 *1 (-1051 *4)) (-4 *4 (-376)) (-4 *4 (-1070)))) (-3474 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-661 (-709 *6))) (-5 *4 (-114)) (-5 *5 (-558)) (-5 *2 (-709 *6)) (-5 *1 (-1051 *6)) (-4 *6 (-376)) (-4 *6 (-1070)))) (-3473 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-319)) (-4 *5 (-1070)) (-5 *2 (-709 *5)) (-5 *1 (-1051 *5)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-709 *5))) (-4 *5 (-319)) (-4 *5 (-1070)) (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1051 *5)) (-5 *4 (-1288 *5)))) (-3471 (*1 *2 *3 *2) (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-4 *4 (-1070)) (-5 *1 (-1051 *4)))) (-3470 (*1 *2 *3) (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-709 *4)) (-5 *1 (-1051 *4))))) -((-3478 ((|#1| (-938) |#1|) 18 T ELT))) -(((-1052 |#1|) (-10 -7 (-15 -3478 (|#1| (-938) |#1|))) (-13 (-1122) (-10 -8 (-15 -4269 ($ $ $))))) (T -1052)) -((-3478 (*1 *2 *3 *2) (-12 (-5 *3 (-938)) (-5 *1 (-1052 *2)) (-4 *2 (-13 (-1122) (-10 -8 (-15 -4269 ($ $ $)))))))) -((-3479 ((|#1| |#1| (-938)) 18 T ELT))) -(((-1053 |#1|) (-10 -7 (-15 -3479 (|#1| |#1| (-938)))) (-13 (-1122) (-10 -8 (-15 * ($ $ $))))) (T -1053)) -((-3479 (*1 *2 *2 *3) (-12 (-5 *3 (-938)) (-5 *1 (-1053 *2)) (-4 *2 (-13 (-1122) (-10 -8 (-15 * ($ $ $)))))))) -((-4376 ((|#1| (-323)) 11 T ELT) (((-1294) |#1|) 9 T ELT))) -(((-1054 |#1|) (-10 -7 (-15 -4376 ((-1294) |#1|)) (-15 -4376 (|#1| (-323)))) (-1238)) (T -1054)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) (-4376 (*1 *2 *3) (-12 (-5 *2 (-1294)) (-5 *1 (-1054 *3)) (-4 *3 (-1238))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-4272 (($ |#4|) 25 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3480 ((|#4| $) 27 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 46 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3528 (((-791)) 43 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 21 T CONST)) (-3065 (($) 23 T CONST)) (-3454 (((-114) $ $) 40 T ELT)) (-4267 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 29 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1055 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -4272 ($ |#4|)) (-15 -4376 ($ |#4|)) (-15 -3480 (|#4| $)))) (-376) (-815) (-861) (-969 |#1| |#2| |#3|) (-661 |#4|)) (T -1055)) -((-4272 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-661 *2)))) (-4376 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-661 *2)))) (-3480 (*1 *2 *1) (-12 (-4 *2 (-969 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-14 *6 (-661 *2))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-2413 (((-1294) $ (-1198) (-1198)) NIL (|has| $ (-6 -4426)) ELT)) (-3482 (((-114) (-114)) 43 T ELT)) (-3481 (((-114) (-114)) 42 T ELT)) (-4218 (((-51) $ (-1198) (-51)) NIL T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 (-51) #1="failed") (-1198) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 (-51) #1#) (-1198) $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 (((-51) $ (-1198) (-51)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-51) $ (-1198)) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 (((-1198) $) NIL (|has| (-1198) (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT)) (-2416 (((-1198) $) NIL (|has| (-1198) (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-51) (-1122)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT)) (-2884 (((-661 (-1198)) $) 37 T ELT)) (-2447 (((-114) (-1198) $) NIL T ELT)) (-1389 (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL T ELT)) (-2418 (((-661 (-1198)) $) NIL T ELT)) (-2419 (((-114) (-1198) $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-51) (-1122)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT)) (-4231 (((-51) $) NIL (|has| (-1198) (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) #1#) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL T ELT)) (-2414 (($ $ (-51)) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-661 (-51)) (-661 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-661 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT)) (-2420 (((-661 (-51)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 (((-51) $ (-1198)) 39 T ELT) (((-51) $ (-1198) (-51)) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (((-791) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT) (((-791) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-4376 (((-877) $) 41 (-3957 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-630 (-877))) (|has| (-51) (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1056) (-13 (-1215 (-1198) (-51)) (-10 -7 (-15 -3482 ((-114) (-114))) (-15 -3481 ((-114) (-114))) (-6 -4425)))) (T -1056)) -((-3482 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1056)))) (-3481 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1056))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3624 (((-1156) $) 9 T ELT)) (-4376 (((-877) $) 15 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1057) (-13 (-1104) (-10 -8 (-15 -3624 ((-1156) $))))) (T -1057)) -((-3624 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057))))) -((-3574 ((|#2| $) 10 T ELT))) -(((-1058 |#1| |#2|) (-10 -7 (-15 -3574 (|#2| |#1|))) (-1059 |#2|) (-1238)) (T -1058)) -NIL -((-3575 (((-3 |#1| "failed") $) 9 T ELT)) (-3574 ((|#1| $) 8 T ELT)) (-4376 (($ |#1|) 6 T ELT))) -(((-1059 |#1|) (-142) (-1238)) (T -1059)) -((-3575 (*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) (-3574 (*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238))))) -(-13 (-633 |t#1|) (-10 -8 (-15 -3575 ((-3 |t#1| "failed") $)) (-15 -3574 (|t#1| $)))) -(((-633 |#1|) . T)) -((-3483 (((-661 (-661 (-305 (-419 (-965 |#2|))))) (-661 (-965 |#2|)) (-661 (-1198))) 38 T ELT))) -(((-1060 |#1| |#2|) (-10 -7 (-15 -3483 ((-661 (-661 (-305 (-419 (-965 |#2|))))) (-661 (-965 |#2|)) (-661 (-1198))))) (-569) (-13 (-569) (-1059 |#1|))) (T -1060)) -((-3483 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *6))) (-5 *4 (-661 (-1198))) (-4 *6 (-13 (-569) (-1059 *5))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *6)))))) (-5 *1 (-1060 *5 *6))))) -((-3484 (((-661 (-1198)) (-419 (-965 |#1|))) 17 T ELT)) (-3486 (((-419 (-1192 (-419 (-965 |#1|)))) (-419 (-965 |#1|)) (-1198)) 24 T ELT)) (-3487 (((-419 (-965 |#1|)) (-419 (-1192 (-419 (-965 |#1|)))) (-1198)) 26 T ELT)) (-3485 (((-3 (-1198) "failed") (-419 (-965 |#1|))) 20 T ELT)) (-4198 (((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-661 (-305 (-419 (-965 |#1|))))) 32 T ELT) (((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|)))) 33 T ELT) (((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-661 (-1198)) (-661 (-419 (-965 |#1|)))) 28 T ELT) (((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-1198) (-419 (-965 |#1|))) 29 T ELT)) (-4376 (((-419 (-965 |#1|)) |#1|) 11 T ELT))) -(((-1061 |#1|) (-10 -7 (-15 -3484 ((-661 (-1198)) (-419 (-965 |#1|)))) (-15 -3485 ((-3 (-1198) "failed") (-419 (-965 |#1|)))) (-15 -3486 ((-419 (-1192 (-419 (-965 |#1|)))) (-419 (-965 |#1|)) (-1198))) (-15 -3487 ((-419 (-965 |#1|)) (-419 (-1192 (-419 (-965 |#1|)))) (-1198))) (-15 -4198 ((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-1198) (-419 (-965 |#1|)))) (-15 -4198 ((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-661 (-1198)) (-661 (-419 (-965 |#1|))))) (-15 -4198 ((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-305 (-419 (-965 |#1|))))) (-15 -4198 ((-419 (-965 |#1|)) (-419 (-965 |#1|)) (-661 (-305 (-419 (-965 |#1|)))))) (-15 -4376 ((-419 (-965 |#1|)) |#1|))) (-569)) (T -1061)) -((-4376 (*1 *2 *3) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-1061 *3)) (-4 *3 (-569)))) (-4198 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-305 (-419 (-965 *4))))) (-5 *2 (-419 (-965 *4))) (-4 *4 (-569)) (-5 *1 (-1061 *4)))) (-4198 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-419 (-965 *4)))) (-5 *2 (-419 (-965 *4))) (-4 *4 (-569)) (-5 *1 (-1061 *4)))) (-4198 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-661 (-1198))) (-5 *4 (-661 (-419 (-965 *5)))) (-5 *2 (-419 (-965 *5))) (-4 *5 (-569)) (-5 *1 (-1061 *5)))) (-4198 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-965 *4))) (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-1061 *4)))) (-3487 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1192 (-419 (-965 *5))))) (-5 *4 (-1198)) (-5 *2 (-419 (-965 *5))) (-5 *1 (-1061 *5)) (-4 *5 (-569)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-569)) (-5 *2 (-419 (-1192 (-419 (-965 *5))))) (-5 *1 (-1061 *5)) (-5 *3 (-419 (-965 *5))))) (-3485 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-5 *2 (-1198)) (-5 *1 (-1061 *4)))) (-3484 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-1198))) (-5 *1 (-1061 *4))))) -((-3488 (((-391)) 17 T ELT)) (-3503 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-3496 (((-1 (-391)) (-791)) 48 T ELT)) (-3489 (((-391)) 37 T ELT)) (-3492 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-3490 (((-391)) 29 T ELT)) (-3493 (((-1 (-391)) (-391)) 30 T ELT)) (-3491 (((-391) (-791)) 43 T ELT)) (-3494 (((-1 (-391)) (-791)) 44 T ELT)) (-3495 (((-1 (-391)) (-791) (-791)) 47 T ELT)) (-3804 (((-1 (-391)) (-791) (-791)) 45 T ELT))) -(((-1062) (-10 -7 (-15 -3488 ((-391))) (-15 -3489 ((-391))) (-15 -3490 ((-391))) (-15 -3491 ((-391) (-791))) (-15 -3503 ((-1 (-391)) (-391) (-391))) (-15 -3492 ((-1 (-391)) (-391) (-391))) (-15 -3493 ((-1 (-391)) (-391))) (-15 -3494 ((-1 (-391)) (-791))) (-15 -3804 ((-1 (-391)) (-791) (-791))) (-15 -3495 ((-1 (-391)) (-791) (-791))) (-15 -3496 ((-1 (-391)) (-791))))) (T -1062)) -((-3496 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062)))) (-3495 (*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062)))) (-3804 (*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062)))) (-3494 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062)))) (-3493 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1062)) (-5 *3 (-391)))) (-3492 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1062)) (-5 *3 (-391)))) (-3503 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1062)) (-5 *3 (-391)))) (-3491 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-391)) (-5 *1 (-1062)))) (-3490 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1062)))) (-3489 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1062)))) (-3488 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1062))))) -((-4162 (((-417 |#1|) |#1|) 33 T ELT))) -(((-1063 |#1|) (-10 -7 (-15 -4162 ((-417 |#1|) |#1|))) (-1264 (-419 (-965 (-558))))) (T -1063)) -((-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1063 *3)) (-4 *3 (-1264 (-419 (-965 (-558)))))))) -((-3497 (((-419 (-417 (-965 |#1|))) (-419 (-965 |#1|))) 14 T ELT))) -(((-1064 |#1|) (-10 -7 (-15 -3497 ((-419 (-417 (-965 |#1|))) (-419 (-965 |#1|))))) (-319)) (T -1064)) -((-3497 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-965 *4)))) (-5 *1 (-1064 *4))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4154 (($) 22 T CONST)) (-3501 ((|#1| $) 28 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3500 ((|#1| $) 27 T ELT)) (-3498 ((|#1|) 25 T CONST)) (-4376 (((-877) $) 13 T ELT)) (-3499 ((|#1| $) 26 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT))) +((-2953 (((-710 (-1246)) $ (-1246)) NIL T ELT)) (-2954 (((-710 (-562)) $ (-562)) NIL T ELT)) (-2952 (((-790) $ (-131)) NIL T ELT)) (-2955 (((-710 (-130)) $ (-130)) 22 T ELT)) (-2957 (($ (-402)) 12 T ELT) (($ (-1179)) 14 T ELT)) (-2956 (((-114) $) 19 T ELT)) (-4375 (((-876) $) 26 T ELT)) (-1902 (($ $) 23 T ELT))) +(((-875) (-13 (-874) (-629 (-876)) (-10 -8 (-15 -2957 ($ (-402))) (-15 -2957 ($ (-1179))) (-15 -2956 ((-114) $))))) (T -875)) +((-2957 (*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-875)))) (-2957 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) (-2956 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-875))))) +((-2966 (((-114) $ $) NIL T ELT) (($ $ $) 85 T ELT)) (-2987 (($ $ $) 125 T ELT)) (-3002 (((-558) $) 31 T ELT) (((-558)) 36 T ELT)) (-2997 (($ (-558)) 53 T ELT)) (-2994 (($ $ $) 54 T ELT) (($ (-660 $)) 84 T ELT)) (-2978 (($ $ (-660 $)) 82 T ELT)) (-2999 (((-558) $) 34 T ELT)) (-2981 (($ $ $) 73 T ELT)) (-3951 (($ $) 140 T ELT) (($ $ $) 141 T ELT) (($ $ $ $) 142 T ELT)) (-3000 (((-558) $) 33 T ELT)) (-2982 (($ $ $) 72 T ELT)) (-3962 (($ $) 114 T ELT)) (-2985 (($ $ $) 129 T ELT)) (-2968 (($ (-660 $)) 61 T ELT)) (-3967 (($ $ (-660 $)) 79 T ELT)) (-2996 (($ (-558) (-558)) 55 T ELT)) (-3009 (($ $) 126 T ELT) (($ $ $) 127 T ELT)) (-3538 (($ $ (-558)) 43 T ELT) (($ $) 46 T ELT)) (-2962 (($ $ $) 97 T ELT)) (-2983 (($ $ $) 132 T ELT)) (-2977 (($ $) 115 T ELT)) (-2961 (($ $ $) 98 T ELT)) (-2973 (($ $) 143 T ELT) (($ $ $) 144 T ELT) (($ $ $ $) 145 T ELT)) (-3237 (((-1293) $) 10 T ELT)) (-2976 (($ $) 118 T ELT) (($ $ (-790)) 122 T ELT)) (-2979 (($ $ $) 75 T ELT)) (-2980 (($ $ $) 74 T ELT)) (-2993 (($ $ (-660 $)) 110 T ELT)) (-2991 (($ $ $) 113 T ELT)) (-2970 (($ (-660 $)) 59 T ELT)) (-2971 (($ $) 70 T ELT) (($ (-660 $)) 71 T ELT)) (-2974 (($ $ $) 123 T ELT)) (-2975 (($ $) 116 T ELT)) (-2986 (($ $ $) 128 T ELT)) (-3952 (($ (-558)) 21 T ELT) (($ (-1197)) 23 T ELT) (($ (-1179)) 30 T ELT) (($ (-229)) 25 T ELT)) (-2959 (($ $ $) 101 T ELT)) (-2958 (($ $) 102 T ELT)) (-3004 (((-1293) (-1179)) 15 T ELT)) (-3005 (($ (-1179)) 14 T ELT)) (-3525 (($ (-660 (-660 $))) 58 T ELT)) (-3539 (($ $ (-558)) 42 T ELT) (($ $) 45 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2989 (($ $ $) 131 T ELT)) (-3889 (($ $) 146 T ELT) (($ $ $) 147 T ELT) (($ $ $ $) 148 T ELT)) (-2990 (((-114) $) 108 T ELT)) (-2992 (($ $ (-660 $)) 111 T ELT) (($ $ $ $) 112 T ELT)) (-2998 (($ (-558)) 39 T ELT)) (-3001 (((-558) $) 32 T ELT) (((-558)) 35 T ELT)) (-2995 (($ $ $) 40 T ELT) (($ (-660 $)) 83 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (($ $ $) 99 T ELT)) (-3992 (($) 13 T ELT)) (-4229 (($ $ (-660 $)) 109 T ELT)) (-3003 (((-1179) (-1179)) 8 T ELT)) (-4265 (($ $) 117 T ELT) (($ $ (-790)) 121 T ELT)) (-2963 (($ $ $) 96 T ELT)) (-4187 (($ $ (-790)) 139 T ELT)) (-2969 (($ (-660 $)) 60 T ELT)) (-4375 (((-876) $) 19 T ELT)) (-4202 (($ $ (-558)) 41 T ELT) (($ $) 44 T ELT)) (-2972 (($ $) 68 T ELT) (($ (-660 $)) 69 T ELT)) (-3657 (($ $) 66 T ELT) (($ (-660 $)) 67 T ELT)) (-2988 (($ $) 124 T ELT)) (-2967 (($ (-660 $)) 65 T ELT)) (-3503 (($ $ $) 105 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2984 (($ $ $) 130 T ELT)) (-2960 (($ $ $) 100 T ELT)) (-4166 (($ $ $) 103 T ELT) (($ $) 104 T ELT)) (-2964 (($ $ $) 89 T ELT)) (-2965 (($ $ $) 87 T ELT)) (-3453 (((-114) $ $) 16 T ELT) (($ $ $) 17 T ELT)) (-3084 (($ $ $) 88 T ELT)) (-3085 (($ $ $) 86 T ELT)) (-4378 (($ $ $) 94 T ELT)) (-4266 (($ $ $) 91 T ELT) (($ $) 92 T ELT)) (-4268 (($ $ $) 90 T ELT)) (** (($ $ $) 95 T ELT)) (* (($ $ $) 93 T ELT))) +(((-876) (-13 (-1121) (-10 -8 (-15 -3237 ((-1293) $)) (-15 -3005 ($ (-1179))) (-15 -3004 ((-1293) (-1179))) (-15 -3952 ($ (-558))) (-15 -3952 ($ (-1197))) (-15 -3952 ($ (-1179))) (-15 -3952 ($ (-229))) (-15 -3992 ($)) (-15 -3003 ((-1179) (-1179))) (-15 -3002 ((-558) $)) (-15 -3001 ((-558) $)) (-15 -3002 ((-558))) (-15 -3001 ((-558))) (-15 -3000 ((-558) $)) (-15 -2999 ((-558) $)) (-15 -2998 ($ (-558))) (-15 -2997 ($ (-558))) (-15 -2996 ($ (-558) (-558))) (-15 -3539 ($ $ (-558))) (-15 -3538 ($ $ (-558))) (-15 -4202 ($ $ (-558))) (-15 -3539 ($ $)) (-15 -3538 ($ $)) (-15 -4202 ($ $)) (-15 -2995 ($ $ $)) (-15 -2994 ($ $ $)) (-15 -2995 ($ (-660 $))) (-15 -2994 ($ (-660 $))) (-15 -2993 ($ $ (-660 $))) (-15 -2992 ($ $ (-660 $))) (-15 -2992 ($ $ $ $)) (-15 -2991 ($ $ $)) (-15 -2990 ((-114) $)) (-15 -4229 ($ $ (-660 $))) (-15 -3962 ($ $)) (-15 -2989 ($ $ $)) (-15 -2988 ($ $)) (-15 -3525 ($ (-660 (-660 $)))) (-15 -2987 ($ $ $)) (-15 -3009 ($ $)) (-15 -3009 ($ $ $)) (-15 -2986 ($ $ $)) (-15 -2985 ($ $ $)) (-15 -2984 ($ $ $)) (-15 -2983 ($ $ $)) (-15 -4187 ($ $ (-790))) (-15 -3503 ($ $ $)) (-15 -2982 ($ $ $)) (-15 -2981 ($ $ $)) (-15 -2980 ($ $ $)) (-15 -2979 ($ $ $)) (-15 -3967 ($ $ (-660 $))) (-15 -2978 ($ $ (-660 $))) (-15 -2977 ($ $)) (-15 -4265 ($ $)) (-15 -4265 ($ $ (-790))) (-15 -2976 ($ $)) (-15 -2976 ($ $ (-790))) (-15 -2975 ($ $)) (-15 -2974 ($ $ $)) (-15 -3951 ($ $)) (-15 -3951 ($ $ $)) (-15 -3951 ($ $ $ $)) (-15 -2973 ($ $)) (-15 -2973 ($ $ $)) (-15 -2973 ($ $ $ $)) (-15 -3889 ($ $)) (-15 -3889 ($ $ $)) (-15 -3889 ($ $ $ $)) (-15 -3657 ($ $)) (-15 -3657 ($ (-660 $))) (-15 -2972 ($ $)) (-15 -2972 ($ (-660 $))) (-15 -2971 ($ $)) (-15 -2971 ($ (-660 $))) (-15 -2970 ($ (-660 $))) (-15 -2969 ($ (-660 $))) (-15 -2968 ($ (-660 $))) (-15 -2967 ($ (-660 $))) (-15 -3453 ($ $ $)) (-15 -2966 ($ $ $)) (-15 -3085 ($ $ $)) (-15 -2965 ($ $ $)) (-15 -3084 ($ $ $)) (-15 -2964 ($ $ $)) (-15 -4268 ($ $ $)) (-15 -4266 ($ $ $)) (-15 -4266 ($ $)) (-15 * ($ $ $)) (-15 -4378 ($ $ $)) (-15 ** ($ $ $)) (-15 -2963 ($ $ $)) (-15 -2962 ($ $ $)) (-15 -2961 ($ $ $)) (-15 -3885 ($ $ $)) (-15 -2960 ($ $ $)) (-15 -2959 ($ $ $)) (-15 -2958 ($ $)) (-15 -4166 ($ $ $)) (-15 -4166 ($ $))))) (T -876)) +((-3237 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) (-3005 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3004 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3952 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-876)))) (-3992 (*1 *1) (-5 *1 (-876))) (-3003 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) (-3002 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3001 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3002 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3001 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3000 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-2999 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-2998 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-2997 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-2996 (*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3539 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3538 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-4202 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) (-3539 (*1 *1 *1) (-5 *1 (-876))) (-3538 (*1 *1 *1) (-5 *1 (-876))) (-4202 (*1 *1 *1) (-5 *1 (-876))) (-2995 (*1 *1 *1 *1) (-5 *1 (-876))) (-2994 (*1 *1 *1 *1) (-5 *1 (-876))) (-2995 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2994 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2993 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2992 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2992 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-2991 (*1 *1 *1 *1) (-5 *1 (-876))) (-2990 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-876)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-3962 (*1 *1 *1) (-5 *1 (-876))) (-2989 (*1 *1 *1 *1) (-5 *1 (-876))) (-2988 (*1 *1 *1) (-5 *1 (-876))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-876)))) (-5 *1 (-876)))) (-2987 (*1 *1 *1 *1) (-5 *1 (-876))) (-3009 (*1 *1 *1) (-5 *1 (-876))) (-3009 (*1 *1 *1 *1) (-5 *1 (-876))) (-2986 (*1 *1 *1 *1) (-5 *1 (-876))) (-2985 (*1 *1 *1 *1) (-5 *1 (-876))) (-2984 (*1 *1 *1 *1) (-5 *1 (-876))) (-2983 (*1 *1 *1 *1) (-5 *1 (-876))) (-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-876)))) (-3503 (*1 *1 *1 *1) (-5 *1 (-876))) (-2982 (*1 *1 *1 *1) (-5 *1 (-876))) (-2981 (*1 *1 *1 *1) (-5 *1 (-876))) (-2980 (*1 *1 *1 *1) (-5 *1 (-876))) (-2979 (*1 *1 *1 *1) (-5 *1 (-876))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2978 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2977 (*1 *1 *1) (-5 *1 (-876))) (-4265 (*1 *1 *1) (-5 *1 (-876))) (-4265 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-876)))) (-2976 (*1 *1 *1) (-5 *1 (-876))) (-2976 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-876)))) (-2975 (*1 *1 *1) (-5 *1 (-876))) (-2974 (*1 *1 *1 *1) (-5 *1 (-876))) (-3951 (*1 *1 *1) (-5 *1 (-876))) (-3951 (*1 *1 *1 *1) (-5 *1 (-876))) (-3951 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-2973 (*1 *1 *1) (-5 *1 (-876))) (-2973 (*1 *1 *1 *1) (-5 *1 (-876))) (-2973 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3889 (*1 *1 *1) (-5 *1 (-876))) (-3889 (*1 *1 *1 *1) (-5 *1 (-876))) (-3889 (*1 *1 *1 *1 *1) (-5 *1 (-876))) (-3657 (*1 *1 *1) (-5 *1 (-876))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2972 (*1 *1 *1) (-5 *1 (-876))) (-2972 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2971 (*1 *1 *1) (-5 *1 (-876))) (-2971 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2970 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2969 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2968 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-2967 (*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) (-3453 (*1 *1 *1 *1) (-5 *1 (-876))) (-2966 (*1 *1 *1 *1) (-5 *1 (-876))) (-3085 (*1 *1 *1 *1) (-5 *1 (-876))) (-2965 (*1 *1 *1 *1) (-5 *1 (-876))) (-3084 (*1 *1 *1 *1) (-5 *1 (-876))) (-2964 (*1 *1 *1 *1) (-5 *1 (-876))) (-4268 (*1 *1 *1 *1) (-5 *1 (-876))) (-4266 (*1 *1 *1 *1) (-5 *1 (-876))) (-4266 (*1 *1 *1) (-5 *1 (-876))) (* (*1 *1 *1 *1) (-5 *1 (-876))) (-4378 (*1 *1 *1 *1) (-5 *1 (-876))) (** (*1 *1 *1 *1) (-5 *1 (-876))) (-2963 (*1 *1 *1 *1) (-5 *1 (-876))) (-2962 (*1 *1 *1 *1) (-5 *1 (-876))) (-2961 (*1 *1 *1 *1) (-5 *1 (-876))) (-3885 (*1 *1 *1 *1) (-5 *1 (-876))) (-2960 (*1 *1 *1 *1) (-5 *1 (-876))) (-2959 (*1 *1 *1 *1) (-5 *1 (-876))) (-2958 (*1 *1 *1) (-5 *1 (-876))) (-4166 (*1 *1 *1 *1) (-5 *1 (-876))) (-4166 (*1 *1 *1) (-5 *1 (-876)))) +((-2966 (((-114) $ $) NIL T ELT)) (-4260 (((-3 $ "failed") (-1197)) 36 T ELT)) (-3537 (((-790)) 32 T ELT)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) 29 T ELT)) (-3659 (((-1179) $) 43 T ELT)) (-2630 (($ (-937)) 28 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4401 (((-1197) $) 13 T ELT) (((-547) $) 19 T ELT) (((-904 (-391)) $) 26 T ELT) (((-904 (-558)) $) 22 T ELT)) (-4375 (((-876) $) 16 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 40 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 38 T ELT))) +(((-877 |#1|) (-13 (-856) (-630 (-1197)) (-630 (-547)) (-630 (-904 (-391))) (-630 (-904 (-558))) (-10 -8 (-15 -4260 ((-3 $ "failed") (-1197))))) (-660 (-1197))) (T -877)) +((-4260 (*1 *1 *2) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-877 *3)) (-14 *3 (-660 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3969 (((-518) $) 9 T ELT)) (-3006 (((-660 (-451)) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 21 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 16 T ELT))) +(((-878) (-13 (-1121) (-10 -8 (-15 -3969 ((-518) $)) (-15 -3006 ((-660 (-451)) $))))) (T -878)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-878)))) (-3006 (*1 *2 *1) (-12 (-5 *2 (-660 (-451))) (-5 *1 (-878))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-964 |#1|)) NIL T ELT) (((-964 |#1|) $) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4352 (((-1293) (-790)) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-879 |#1| |#2| |#3| |#4|) (-13 (-1069) (-502 (-964 |#1|)) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4378 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4352 ((-1293) (-790))))) (-1069) (-660 (-1197)) (-660 (-790)) (-790)) (T -879)) +((-4378 (*1 *1 *1 *1) (|partial| -12 (-5 *1 (-879 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1069)) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-790))) (-14 *5 (-790)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-879 *4 *5 *6 *7)) (-4 *4 (-1069)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 *3)) (-14 *7 *3)))) +((-3007 (((-3 (-177 |#3|) #1="failed") (-790) (-790) |#2| |#2|) 38 T ELT)) (-3008 (((-3 (-419 |#3|) #1#) (-790) (-790) |#2| |#2|) 29 T ELT))) +(((-880 |#1| |#2| |#3|) (-10 -7 (-15 -3008 ((-3 (-419 |#3|) #1="failed") (-790) (-790) |#2| |#2|)) (-15 -3007 ((-3 (-177 |#3|) #1#) (-790) (-790) |#2| |#2|))) (-376) (-1280 |#1|) (-1263 |#1|)) (T -880)) +((-3007 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-790)) (-4 *5 (-376)) (-5 *2 (-177 *6)) (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1263 *5)))) (-3008 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-790)) (-4 *5 (-376)) (-5 *2 (-419 *6)) (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1263 *5))))) +((-3008 (((-3 (-419 (-1256 |#2| |#1|)) #1="failed") (-790) (-790) (-1277 |#1| |#2| |#3|)) 30 T ELT) (((-3 (-419 (-1256 |#2| |#1|)) #1#) (-790) (-790) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) 28 T ELT))) +(((-881 |#1| |#2| |#3|) (-10 -7 (-15 -3008 ((-3 (-419 (-1256 |#2| |#1|)) #1="failed") (-790) (-790) (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (-15 -3008 ((-3 (-419 (-1256 |#2| |#1|)) #1#) (-790) (-790) (-1277 |#1| |#2| |#3|)))) (-376) (-1197) |#1|) (T -881)) +((-3008 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *3 (-790)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1256 *6 *5))) (-5 *1 (-881 *5 *6 *7)))) (-3008 (*1 *2 *3 *3 *4 *4) (|partial| -12 (-5 *3 (-790)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-376)) (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1256 *6 *5))) (-5 *1 (-881 *5 *6 *7))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $ (-558)) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3009 (($ (-1191 (-558)) (-558)) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3010 (($ $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4201 (((-790) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-3012 (((-558)) NIL T ELT)) (-3011 (((-558) $) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-4198 (($ $ (-558)) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3013 (((-1175 (-558)) $) NIL T ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-558) $ (-558)) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-882 |#1|) (-883 |#1|) (-558)) (T -882)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3437 (($ $ (-558)) 75 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-3009 (($ (-1191 (-558)) (-558)) 74 T ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3010 (($ $) 77 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4201 (((-790) $) 82 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-3012 (((-558)) 79 T ELT)) (-3011 (((-558) $) 78 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-4198 (($ $ (-558)) 81 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-3013 (((-1175 (-558)) $) 83 T ELT)) (-3291 (($ $) 80 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-4199 (((-558) $ (-558)) 76 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-883 |#1|) (-142) (-558)) (T -883)) +((-3013 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1175 (-558))))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-790)))) (-4198 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) (-3291 (*1 *1 *1) (-4 *1 (-883 *2))) (-3012 (*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) (-3011 (*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) (-3010 (*1 *1 *1) (-4 *1 (-883 *2))) (-4199 (*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) (-3437 (*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) (-3009 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *3 (-558)) (-4 *1 (-883 *4))))) +(-13 (-319) (-149) (-10 -8 (-15 -3013 ((-1175 (-558)) $)) (-15 -4201 ((-790) $)) (-15 -4198 ($ $ (-558))) (-15 -3291 ($ $)) (-15 -3012 ((-558))) (-15 -3011 ((-558) $)) (-15 -3010 ($ $)) (-15 -4199 ((-558) $ (-558))) (-15 -3437 ($ $ (-558))) (-15 -3009 ($ (-1191 (-558)) (-558))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-319) . T) ((-464) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-882 |#1|) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-882 |#1|) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-882 |#1|) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-882 |#1|) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| (-882 |#1|) (-1058 (-558))) ELT)) (-3573 (((-882 |#1|) $) NIL T ELT) (((-1197) $) NIL (|has| (-882 |#1|) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-882 |#1|) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-882 |#1|) (-1058 (-558))) ELT)) (-4159 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-882 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-882 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-882 |#1|))) (|:| |vec| (-1287 (-882 |#1|)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-882 |#1|)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-882 |#1|) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| (-882 |#1|) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-882 |#1|) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-882 |#1|) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-882 |#1|) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| (-882 |#1|) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-882 |#1|) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-882 |#1|) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-882 |#1|) (-860)) ELT)) (-4387 (($ (-1 (-882 |#1|) (-882 |#1|)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-882 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-882 |#1|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-882 |#1|))) (|:| |vec| (-1287 (-882 |#1|)))) (-1287 $) $) NIL T ELT) (((-708 (-882 |#1|)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-882 |#1|) (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-882 |#1|) (-319)) ELT)) (-3531 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-882 |#1|) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-882 |#1|)) (-660 (-882 |#1|))) NIL (|has| (-882 |#1|) (-321 (-882 |#1|))) ELT) (($ $ (-882 |#1|) (-882 |#1|)) NIL (|has| (-882 |#1|) (-321 (-882 |#1|))) ELT) (($ $ (-305 (-882 |#1|))) NIL (|has| (-882 |#1|) (-321 (-882 |#1|))) ELT) (($ $ (-660 (-305 (-882 |#1|)))) NIL (|has| (-882 |#1|) (-321 (-882 |#1|))) ELT) (($ $ (-660 (-1197)) (-660 (-882 |#1|))) NIL (|has| (-882 |#1|) (-526 (-1197) (-882 |#1|))) ELT) (($ $ (-1197) (-882 |#1|)) NIL (|has| (-882 |#1|) (-526 (-1197) (-882 |#1|))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-882 |#1|)) NIL (|has| (-882 |#1|) (-298 (-882 |#1|) (-882 |#1|))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL T ELT) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $) NIL (|has| (-882 |#1|) (-239)) ELT) (($ $ (-790)) NIL (|has| (-882 |#1|) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-882 |#1|) $) NIL T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-882 |#1|) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-882 |#1|) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-882 |#1|) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-882 |#1|) (-1040)) ELT) (((-229) $) NIL (|has| (-882 |#1|) (-1040)) ELT)) (-3014 (((-177 (-419 (-558))) $) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-882 |#1|) (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-882 |#1|)) NIL T ELT) (($ (-1197)) NIL (|has| (-882 |#1|) (-1058 (-1197))) ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-882 |#1|) (-928))) (|has| (-882 |#1|) (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 (((-882 |#1|) $) NIL (|has| (-882 |#1|) (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-419 (-558)) $ (-558)) NIL T ELT)) (-3802 (($ $) NIL (|has| (-882 |#1|) (-841)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-882 |#1|) (-882 |#1|))) NIL T ELT) (($ $ (-1 (-882 |#1|) (-882 |#1|)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-882 |#1|) (-918 (-1197))) ELT) (($ $) NIL (|has| (-882 |#1|) (-239)) ELT) (($ $ (-790)) NIL (|has| (-882 |#1|) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-882 |#1|) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-882 |#1|) (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| (-882 |#1|) (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-882 |#1|) (-860)) ELT)) (-4378 (($ $ $) NIL T ELT) (($ (-882 |#1|) (-882 |#1|)) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-882 |#1|) $) NIL T ELT) (($ $ (-882 |#1|)) NIL T ELT))) +(((-884 |#1|) (-13 (-1011 (-882 |#1|)) (-10 -8 (-15 -4199 ((-419 (-558)) $ (-558))) (-15 -3014 ((-177 (-419 (-558))) $)) (-15 -4159 ($ $)) (-15 -4159 ($ (-558) $)))) (-558)) (T -884)) +((-4199 (*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-884 *4)) (-14 *4 *3) (-5 *3 (-558)))) (-3014 (*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-884 *3)) (-14 *3 (-558)))) (-4159 (*1 *1 *1) (-12 (-5 *1 (-884 *2)) (-14 *2 (-558)))) (-4159 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-884 *3)) (-14 *3 *2)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 ((|#2| $) NIL (|has| |#2| (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| |#2| (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (|has| |#2| (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT)) (-3573 ((|#2| $) NIL T ELT) (((-1197) $) NIL (|has| |#2| (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT)) (-4159 (($ $) 35 T ELT) (($ (-558) $) 38 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) 64 T ELT)) (-3394 (($) NIL (|has| |#2| (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) NIL (|has| |#2| (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| |#2| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| |#2| (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 ((|#2| $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| |#2| (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| |#2| (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#2| (-860)) ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 60 T ELT)) (-3865 (($) NIL (|has| |#2| (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| |#2| (-319)) ELT)) (-3531 ((|#2| $) NIL (|has| |#2| (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 |#2|) (-660 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ |#2| |#2|) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-305 |#2|)) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-660 (-305 |#2|))) NIL (|has| |#2| (-321 |#2|)) ELT) (($ $ (-660 (-1197)) (-660 |#2|)) NIL (|has| |#2| (-526 (-1197) |#2|)) ELT) (($ $ (-1197) |#2|) NIL (|has| |#2| (-526 (-1197) |#2|)) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ |#2|) NIL (|has| |#2| (-298 |#2| |#2|)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 ((|#2| $) NIL T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| |#2| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| |#2| (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| |#2| (-630 (-547))) ELT) (((-391) $) NIL (|has| |#2| (-1040)) ELT) (((-229) $) NIL (|has| |#2| (-1040)) ELT)) (-3014 (((-177 (-419 (-558))) $) 78 T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-928))) ELT)) (-4375 (((-876) $) 106 T ELT) (($ (-558)) 20 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 25 T ELT) (($ |#2|) 19 T ELT) (($ (-1197)) NIL (|has| |#2| (-1058 (-1197))) ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#2| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-3532 ((|#2| $) NIL (|has| |#2| (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-419 (-558)) $ (-558)) 71 T ELT)) (-3802 (($ $) NIL (|has| |#2| (-841)) ELT)) (-3058 (($) 15 T CONST)) (-3064 (($) 17 T CONST)) (-3069 (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3453 (((-114) $ $) 46 T ELT)) (-3084 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#2| (-860)) ELT)) (-4378 (($ $ $) 24 T ELT) (($ |#2| |#2|) 65 T ELT)) (-4266 (($ $) 50 T ELT) (($ $ $) 52 T ELT)) (-4268 (($ $ $) 48 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) 61 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 53 T ELT) (($ $ $) 55 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#2| $) 66 T ELT) (($ $ |#2|) NIL T ELT))) +(((-885 |#1| |#2|) (-13 (-1011 |#2|) (-10 -8 (-15 -4199 ((-419 (-558)) $ (-558))) (-15 -3014 ((-177 (-419 (-558))) $)) (-15 -4159 ($ $)) (-15 -4159 ($ (-558) $)))) (-558) (-883 |#1|)) (T -885)) +((-4199 (*1 *2 *1 *3) (-12 (-14 *4 *3) (-5 *2 (-419 (-558))) (-5 *1 (-885 *4 *5)) (-5 *3 (-558)) (-4 *5 (-883 *4)))) (-3014 (*1 *2 *1) (-12 (-14 *3 (-558)) (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-885 *3 *4)) (-4 *4 (-883 *3)))) (-4159 (*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-885 *2 *3)) (-4 *3 (-883 *2)))) (-4159 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-885 *3 *4)) (-4 *4 (-883 *3))))) +((-2966 (((-114) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-4225 ((|#2| $) 12 T ELT)) (-3015 (($ |#1| |#2|) 9 T ELT)) (-3659 (((-1179) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-3660 (((-1140) $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#1| $) 11 T ELT)) (-3949 (($ |#1| |#2|) 10 T ELT)) (-4375 (((-876) $) 18 (-3956 (-12 (|has| |#1| (-629 (-876))) (|has| |#2| (-629 (-876)))) (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121)))) ELT)) (-1377 (((-114) $ $) NIL (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT)) (-3453 (((-114) $ $) 23 (-12 (|has| |#1| (-1121)) (|has| |#2| (-1121))) ELT))) +(((-886 |#1| |#2|) (-13 (-1237) (-10 -8 (IF (|has| |#1| (-629 (-876))) (IF (|has| |#2| (-629 (-876))) (-6 (-629 (-876))) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-1121)) (IF (|has| |#2| (-1121)) (-6 (-1121)) |%noBranch|) |%noBranch|) (-15 -3015 ($ |#1| |#2|)) (-15 -3949 ($ |#1| |#2|)) (-15 -4230 (|#1| $)) (-15 -4225 (|#2| $)))) (-1237) (-1237)) (T -886)) +((-3015 (*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-3949 (*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) (-4230 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1237)))) (-4225 (*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1237))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3357 (((-558) $) 16 T ELT)) (-3017 (($ (-159)) 13 T ELT)) (-3016 (($ (-159)) 14 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3356 (((-159) $) 15 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3019 (($ (-159)) 11 T ELT)) (-3020 (($ (-159)) 10 T ELT)) (-4375 (((-876) $) 24 T ELT) (($ (-159)) 17 T ELT)) (-3018 (($ (-159)) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-887) (-13 (-1121) (-10 -8 (-15 -3020 ($ (-159))) (-15 -3019 ($ (-159))) (-15 -3018 ($ (-159))) (-15 -3017 ($ (-159))) (-15 -3016 ($ (-159))) (-15 -3356 ((-159) $)) (-15 -3357 ((-558) $)) (-15 -4375 ($ (-159)))))) (T -887)) +((-3020 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) (-3019 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) (-3018 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) (-3017 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) (-3016 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) (-3356 (*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) (-3357 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-887)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887))))) +((-4375 (((-326 (-558)) (-419 (-964 (-48)))) 23 T ELT) (((-326 (-558)) (-964 (-48))) 18 T ELT))) +(((-888) (-10 -7 (-15 -4375 ((-326 (-558)) (-964 (-48)))) (-15 -4375 ((-326 (-558)) (-419 (-964 (-48))))))) (T -888)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 (-48)))) (-5 *2 (-326 (-558))) (-5 *1 (-888)))) (-4375 (*1 *2 *3) (-12 (-5 *3 (-964 (-48))) (-5 *2 (-326 (-558))) (-5 *1 (-888))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 18 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3993 (((-114) $ (|[\|\|]| (-518))) 9 T ELT) (((-114) $ (|[\|\|]| (-1179))) 13 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3999 (((-518) $) 10 T ELT) (((-1179) $) 14 T ELT)) (-3453 (((-114) $ $) 15 T ELT))) +(((-889) (-13 (-1103) (-1283) (-10 -8 (-15 -3993 ((-114) $ (|[\|\|]| (-518)))) (-15 -3999 ((-518) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1179)))) (-15 -3999 ((-1179) $))))) (T -889)) +((-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-889)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-889)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-114)) (-5 *1 (-889)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-889))))) +((-4387 (((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)) 15 T ELT))) +(((-890 |#1| |#2|) (-10 -7 (-15 -4387 ((-891 |#2|) (-1 |#2| |#1|) (-891 |#1|)))) (-1237) (-1237)) (T -890)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6))))) +((-3790 (($ |#1| |#1|) 8 T ELT)) (-3023 ((|#1| $ (-790)) 15 T ELT))) +(((-891 |#1|) (-10 -8 (-15 -3790 ($ |#1| |#1|)) (-15 -3023 (|#1| $ (-790)))) (-1237)) (T -891)) +((-3023 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-891 *2)) (-4 *2 (-1237)))) (-3790 (*1 *1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1237))))) +((-4387 (((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)) 15 T ELT))) +(((-892 |#1| |#2|) (-10 -7 (-15 -4387 ((-893 |#2|) (-1 |#2| |#1|) (-893 |#1|)))) (-1237) (-1237)) (T -892)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6))))) +((-3790 (($ |#1| |#1| |#1|) 8 T ELT)) (-3023 ((|#1| $ (-790)) 15 T ELT))) +(((-893 |#1|) (-10 -8 (-15 -3790 ($ |#1| |#1| |#1|)) (-15 -3023 (|#1| $ (-790)))) (-1237)) (T -893)) +((-3023 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-893 *2)) (-4 *2 (-1237)))) (-3790 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1237))))) +((-3021 (((-660 (-1202)) (-1179)) 9 T ELT))) +(((-894) (-10 -7 (-15 -3021 ((-660 (-1202)) (-1179))))) (T -894)) +((-3021 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-660 (-1202))) (-5 *1 (-894))))) +((-4387 (((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)) 15 T ELT))) +(((-895 |#1| |#2|) (-10 -7 (-15 -4387 ((-896 |#2|) (-1 |#2| |#1|) (-896 |#1|)))) (-1237) (-1237)) (T -895)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6))))) +((-3022 (($ |#1| |#1| |#1|) 8 T ELT)) (-3023 ((|#1| $ (-790)) 15 T ELT))) +(((-896 |#1|) (-10 -8 (-15 -3022 ($ |#1| |#1| |#1|)) (-15 -3023 (|#1| $ (-790)))) (-1237)) (T -896)) +((-3023 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-896 *2)) (-4 *2 (-1237)))) (-3022 (*1 *1 *2 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1237))))) +((-3026 (((-1175 (-660 (-558))) (-660 (-558)) (-1175 (-660 (-558)))) 41 T ELT)) (-3025 (((-1175 (-660 (-558))) (-660 (-558)) (-660 (-558))) 31 T ELT)) (-3027 (((-1175 (-660 (-558))) (-660 (-558))) 53 T ELT) (((-1175 (-660 (-558))) (-660 (-558)) (-660 (-558))) 50 T ELT)) (-3028 (((-1175 (-660 (-558))) (-558)) 55 T ELT)) (-3024 (((-1175 (-660 (-937))) (-1175 (-660 (-937)))) 22 T ELT)) (-3409 (((-660 (-937)) (-660 (-937))) 18 T ELT))) +(((-897) (-10 -7 (-15 -3409 ((-660 (-937)) (-660 (-937)))) (-15 -3024 ((-1175 (-660 (-937))) (-1175 (-660 (-937))))) (-15 -3025 ((-1175 (-660 (-558))) (-660 (-558)) (-660 (-558)))) (-15 -3026 ((-1175 (-660 (-558))) (-660 (-558)) (-1175 (-660 (-558))))) (-15 -3027 ((-1175 (-660 (-558))) (-660 (-558)) (-660 (-558)))) (-15 -3027 ((-1175 (-660 (-558))) (-660 (-558)))) (-15 -3028 ((-1175 (-660 (-558))) (-558))))) (T -897)) +((-3028 (*1 *2 *3) (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-558)))) (-3027 (*1 *2 *3) (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-660 (-558))))) (-3027 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-660 (-558))))) (-3026 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *3 (-660 (-558))) (-5 *1 (-897)))) (-3025 (*1 *2 *3 *3) (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-660 (-558))))) (-3024 (*1 *2 *2) (-12 (-5 *2 (-1175 (-660 (-937)))) (-5 *1 (-897)))) (-3409 (*1 *2 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-897))))) +((-4401 (((-904 (-391)) $) 9 (|has| |#1| (-630 (-904 (-391)))) ELT) (((-904 (-558)) $) 8 (|has| |#1| (-630 (-904 (-558)))) ELT))) +(((-898 |#1|) (-142) (-1237)) (T -898)) +NIL +(-13 (-10 -7 (IF (|has| |t#1| (-630 (-904 (-558)))) (-6 (-630 (-904 (-558)))) |%noBranch|) (IF (|has| |t#1| (-630 (-904 (-391)))) (-6 (-630 (-904 (-391)))) |%noBranch|))) +(((-630 (-904 (-391))) |has| |#1| (-630 (-904 (-391)))) ((-630 (-904 (-558))) |has| |#1| (-630 (-904 (-558))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4043 (($) 14 T ELT)) (-3030 (($ (-902 |#1| |#2|) (-902 |#1| |#3|)) 28 T ELT)) (-3029 (((-902 |#1| |#3|) $) 16 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3038 (((-114) $) 22 T ELT)) (-3037 (($) 19 T ELT)) (-4375 (((-876) $) 31 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3250 (((-902 |#1| |#2|) $) 15 T ELT)) (-3453 (((-114) $ $) 26 T ELT))) +(((-899 |#1| |#2| |#3|) (-13 (-1121) (-10 -8 (-15 -3038 ((-114) $)) (-15 -3037 ($)) (-15 -4043 ($)) (-15 -3030 ($ (-902 |#1| |#2|) (-902 |#1| |#3|))) (-15 -3250 ((-902 |#1| |#2|) $)) (-15 -3029 ((-902 |#1| |#3|) $)))) (-1121) (-1121) (-685 |#2|)) (T -899)) +((-3038 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-114)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-685 *4)))) (-3037 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-685 *3)))) (-4043 (*1 *1) (-12 (-4 *3 (-1121)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1121)) (-4 *4 (-685 *3)))) (-3030 (*1 *1 *2 *3) (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-685 *5)) (-5 *1 (-899 *4 *5 *6)))) (-3250 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-902 *3 *4)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-685 *4)))) (-3029 (*1 *2 *1) (-12 (-4 *4 (-1121)) (-5 *2 (-902 *3 *5)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1121)) (-4 *5 (-685 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3196 (((-902 |#1| $) $ (-904 |#1|) (-902 |#1| $)) 17 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-900 |#1|) (-142) (-1121)) (T -900)) +((-3196 (*1 *2 *1 *3 *2) (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-904 *4)) (-4 *1 (-900 *4)) (-4 *4 (-1121))))) +(-13 (-1121) (-10 -8 (-15 -3196 ((-902 |t#1| $) $ (-904 |t#1|) (-902 |t#1| $))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-3031 (((-114) (-660 |#2|) |#3|) 23 T ELT) (((-114) |#2| |#3|) 18 T ELT)) (-3032 (((-902 |#1| |#2|) |#2| |#3|) 45 (-12 (-2958 (|has| |#2| (-1058 (-1197)))) (-2958 (|has| |#2| (-1069)))) ELT) (((-660 (-305 (-964 |#2|))) |#2| |#3|) 44 (-12 (|has| |#2| (-1069)) (-2958 (|has| |#2| (-1058 (-1197))))) ELT) (((-660 (-305 |#2|)) |#2| |#3|) 36 (|has| |#2| (-1058 (-1197))) ELT) (((-899 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|) 21 T ELT))) +(((-901 |#1| |#2| |#3|) (-10 -7 (-15 -3031 ((-114) |#2| |#3|)) (-15 -3031 ((-114) (-660 |#2|) |#3|)) (-15 -3032 ((-899 |#1| |#2| (-660 |#2|)) (-660 |#2|) |#3|)) (IF (|has| |#2| (-1058 (-1197))) (-15 -3032 ((-660 (-305 |#2|)) |#2| |#3|)) (IF (|has| |#2| (-1069)) (-15 -3032 ((-660 (-305 (-964 |#2|))) |#2| |#3|)) (-15 -3032 ((-902 |#1| |#2|) |#2| |#3|))))) (-1121) (-900 |#1|) (-630 (-904 |#1|))) (T -901)) +((-3032 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-902 *5 *3)) (-5 *1 (-901 *5 *3 *4)) (-2958 (-4 *3 (-1058 (-1197)))) (-2958 (-4 *3 (-1069))) (-4 *3 (-900 *5)) (-4 *4 (-630 (-904 *5))))) (-3032 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-660 (-305 (-964 *3)))) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-1069)) (-2958 (-4 *3 (-1058 (-1197)))) (-4 *3 (-900 *5)) (-4 *4 (-630 (-904 *5))))) (-3032 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-660 (-305 *3))) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-1058 (-1197))) (-4 *3 (-900 *5)) (-4 *4 (-630 (-904 *5))))) (-3032 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-4 *6 (-900 *5)) (-5 *2 (-899 *5 *6 (-660 *6))) (-5 *1 (-901 *5 *6 *4)) (-5 *3 (-660 *6)) (-4 *4 (-630 (-904 *5))))) (-3031 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-4 *6 (-900 *5)) (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-901 *5 *6 *4)) (-4 *4 (-630 (-904 *5))))) (-3031 (*1 *2 *3 *4) (-12 (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-900 *5)) (-4 *4 (-630 (-904 *5)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3651 (($ $ $) 40 T ELT)) (-3059 (((-3 (-114) #1="failed") $ (-904 |#1|)) 37 T ELT)) (-4043 (($) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3034 (($ (-904 |#1|) |#2| $) 20 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3036 (((-3 |#2| #1#) (-904 |#1|) $) 51 T ELT)) (-3038 (((-114) $) 15 T ELT)) (-3037 (($) 13 T ELT)) (-3674 (((-660 (-2 (|:| -4289 (-1197)) (|:| -2285 |#2|))) $) 25 T ELT)) (-3949 (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 |#2|)))) 23 T ELT)) (-4375 (((-876) $) 45 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3033 (($ (-904 |#1|) |#2| $ |#2|) 49 T ELT)) (-3035 (($ (-904 |#1|) |#2| $) 48 T ELT)) (-3453 (((-114) $ $) 42 T ELT))) +(((-902 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3038 ((-114) $)) (-15 -3037 ($)) (-15 -4043 ($)) (-15 -3651 ($ $ $)) (-15 -3036 ((-3 |#2| #1="failed") (-904 |#1|) $)) (-15 -3035 ($ (-904 |#1|) |#2| $)) (-15 -3034 ($ (-904 |#1|) |#2| $)) (-15 -3033 ($ (-904 |#1|) |#2| $ |#2|)) (-15 -3674 ((-660 (-2 (|:| -4289 (-1197)) (|:| -2285 |#2|))) $)) (-15 -3949 ($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 |#2|))))) (-15 -3059 ((-3 (-114) #1#) $ (-904 |#1|))))) (-1121) (-1121)) (T -902)) +((-3038 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3037 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4043 (*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3651 (*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3036 (*1 *2 *3 *1) (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) (-5 *1 (-902 *4 *2)))) (-3035 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1121)))) (-3034 (*1 *1 *2 *3 *1) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1121)))) (-3033 (*1 *1 *2 *3 *1 *3) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1121)))) (-3674 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 *4)))) (-5 *1 (-902 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 *4)))) (-4 *4 (-1121)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1121)))) (-3059 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-5 *2 (-114)) (-5 *1 (-902 *4 *5)) (-4 *5 (-1121))))) +((-4387 (((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)) 22 T ELT))) +(((-903 |#1| |#2| |#3|) (-10 -7 (-15 -4387 ((-902 |#1| |#3|) (-1 |#3| |#2|) (-902 |#1| |#2|)))) (-1121) (-1121) (-1121)) (T -903)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-902 *5 *7)) (-5 *1 (-903 *5 *6 *7))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3046 (($ $ (-660 (-51))) 74 T ELT)) (-3483 (((-660 $) $) 139 T ELT)) (-3043 (((-2 (|:| |var| (-660 (-1197))) (|:| |pred| (-51))) $) 30 T ELT)) (-3677 (((-114) $) 35 T ELT)) (-3044 (($ $ (-660 (-1197)) (-51)) 31 T ELT)) (-3047 (($ $ (-660 (-51))) 73 T ELT)) (-3574 (((-3 |#1| #1="failed") $) 71 T ELT) (((-3 (-1197) #1#) $) 167 T ELT)) (-3573 ((|#1| $) 68 T ELT) (((-1197) $) NIL T ELT)) (-3041 (($ $) 126 T ELT)) (-3053 (((-114) $) 55 T ELT)) (-3048 (((-660 (-51)) $) 50 T ELT)) (-3045 (($ (-1197) (-114) (-114) (-114)) 75 T ELT)) (-3039 (((-3 (-660 $) #1#) (-660 $)) 82 T ELT)) (-3050 (((-114) $) 58 T ELT)) (-3051 (((-114) $) 57 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) 41 T ELT)) (-3056 (((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $) 48 T ELT)) (-3225 (((-3 (-2 (|:| |val| $) (|:| -2631 $)) #1#) $) 97 T ELT)) (-3222 (((-3 (-660 $) #1#) $) 40 T ELT)) (-3057 (((-3 (-660 $) #1#) $ (-115)) 124 T ELT) (((-3 (-2 (|:| -2908 (-115)) (|:| |arg| (-660 $))) #1#) $) 107 T ELT)) (-3055 (((-3 (-660 $) #1#) $) 42 T ELT)) (-3224 (((-3 (-2 (|:| |val| $) (|:| -2631 (-790))) #1#) $) 45 T ELT)) (-3054 (((-114) $) 34 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3042 (((-114) $) 28 T ELT)) (-3049 (((-114) $) 52 T ELT)) (-3040 (((-660 (-51)) $) 130 T ELT)) (-3052 (((-114) $) 56 T ELT)) (-4229 (($ (-115) (-660 $)) 104 T ELT)) (-3742 (((-790) $) 33 T ELT)) (-3819 (($ $) 72 T ELT)) (-4401 (($ (-660 $)) 69 T ELT)) (-4382 (((-114) $) 32 T ELT)) (-4375 (((-876) $) 63 T ELT) (($ |#1|) 23 T ELT) (($ (-1197)) 76 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3060 (($ $ (-51)) 129 T ELT)) (-3058 (($) 103 T CONST)) (-3064 (($) 83 T CONST)) (-3453 (((-114) $ $) 93 T ELT)) (-4378 (($ $ $) 117 T ELT)) (-4268 (($ $ $) 121 T ELT)) (** (($ $ (-790)) 115 T ELT) (($ $ $) 64 T ELT)) (* (($ $ $) 122 T ELT))) +(((-904 |#1|) (-13 (-1121) (-1058 |#1|) (-1058 (-1197)) (-10 -8 (-15 0 ($) -4381) (-15 1 ($) -4381) (-15 -3222 ((-3 (-660 $) #1="failed") $)) (-15 -3223 ((-3 (-660 $) #1#) $)) (-15 -3057 ((-3 (-660 $) #1#) $ (-115))) (-15 -3057 ((-3 (-2 (|:| -2908 (-115)) (|:| |arg| (-660 $))) #1#) $)) (-15 -3224 ((-3 (-2 (|:| |val| $) (|:| -2631 (-790))) #1#) $)) (-15 -3056 ((-3 (-2 (|:| |num| $) (|:| |den| $)) #1#) $)) (-15 -3055 ((-3 (-660 $) #1#) $)) (-15 -3225 ((-3 (-2 (|:| |val| $) (|:| -2631 $)) #1#) $)) (-15 -4229 ($ (-115) (-660 $))) (-15 -4268 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-790))) (-15 ** ($ $ $)) (-15 -4378 ($ $ $)) (-15 -3742 ((-790) $)) (-15 -4401 ($ (-660 $))) (-15 -3819 ($ $)) (-15 -3054 ((-114) $)) (-15 -3053 ((-114) $)) (-15 -3677 ((-114) $)) (-15 -4382 ((-114) $)) (-15 -3052 ((-114) $)) (-15 -3051 ((-114) $)) (-15 -3050 ((-114) $)) (-15 -3049 ((-114) $)) (-15 -3048 ((-660 (-51)) $)) (-15 -3047 ($ $ (-660 (-51)))) (-15 -3046 ($ $ (-660 (-51)))) (-15 -3045 ($ (-1197) (-114) (-114) (-114))) (-15 -3044 ($ $ (-660 (-1197)) (-51))) (-15 -3043 ((-2 (|:| |var| (-660 (-1197))) (|:| |pred| (-51))) $)) (-15 -3042 ((-114) $)) (-15 -3041 ($ $)) (-15 -3060 ($ $ (-51))) (-15 -3040 ((-660 (-51)) $)) (-15 -3483 ((-660 $) $)) (-15 -3039 ((-3 (-660 $) #1#) (-660 $))))) (-1121)) (T -904)) +((-3058 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (-3064 (*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (-3222 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3223 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3057 (*1 *2 *1 *3) (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-904 *4))) (-5 *1 (-904 *4)) (-4 *4 (-1121)))) (-3057 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| -2908 (-115)) (|:| |arg| (-660 (-904 *3))))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3224 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2631 (-790)))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3056 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |num| (-904 *3)) (|:| |den| (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3055 (*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3225 (*1 *2 *1) (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2631 (-904 *3)))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-4229 (*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 (-904 *4))) (-5 *1 (-904 *4)) (-4 *4 (-1121)))) (-4268 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (* (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (** (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (-4378 (*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (-3742 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3819 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (-3054 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3053 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3677 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3052 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3051 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3050 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3049 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3048 (*1 *2 *1) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3047 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3046 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3045 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-114)) (-5 *1 (-904 *4)) (-4 *4 (-1121)))) (-3044 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-51)) (-5 *1 (-904 *4)) (-4 *4 (-1121)))) (-3043 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |var| (-660 (-1197))) (|:| |pred| (-51)))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3042 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3041 (*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) (-3060 (*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3040 (*1 *2 *1) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3483 (*1 *2 *1) (-12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) (-3039 (*1 *2 *2) (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +((-3626 (((-904 |#1|) (-904 |#1|) (-660 (-1197)) (-1 (-114) (-660 |#2|))) 32 T ELT) (((-904 |#1|) (-904 |#1|) (-660 (-1 (-114) |#2|))) 46 T ELT) (((-904 |#1|) (-904 |#1|) (-1 (-114) |#2|)) 35 T ELT)) (-3059 (((-114) (-660 |#2|) (-904 |#1|)) 42 T ELT) (((-114) |#2| (-904 |#1|)) 36 T ELT)) (-3950 (((-1 (-114) |#2|) (-904 |#1|)) 16 T ELT)) (-3061 (((-660 |#2|) (-904 |#1|)) 24 T ELT)) (-3060 (((-904 |#1|) (-904 |#1|) |#2|) 20 T ELT))) +(((-905 |#1| |#2|) (-10 -7 (-15 -3626 ((-904 |#1|) (-904 |#1|) (-1 (-114) |#2|))) (-15 -3626 ((-904 |#1|) (-904 |#1|) (-660 (-1 (-114) |#2|)))) (-15 -3626 ((-904 |#1|) (-904 |#1|) (-660 (-1197)) (-1 (-114) (-660 |#2|)))) (-15 -3950 ((-1 (-114) |#2|) (-904 |#1|))) (-15 -3059 ((-114) |#2| (-904 |#1|))) (-15 -3059 ((-114) (-660 |#2|) (-904 |#1|))) (-15 -3060 ((-904 |#1|) (-904 |#1|) |#2|)) (-15 -3061 ((-660 |#2|) (-904 |#1|)))) (-1121) (-1237)) (T -905)) +((-3061 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-5 *2 (-660 *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1237)))) (-3060 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1237)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *6 (-1237)) (-5 *2 (-114)) (-5 *1 (-905 *5 *6)))) (-3059 (*1 *2 *3 *4) (-12 (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-905 *5 *3)) (-4 *3 (-1237)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-905 *4 *5)) (-4 *5 (-1237)))) (-3626 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-904 *5)) (-5 *3 (-660 (-1197))) (-5 *4 (-1 (-114) (-660 *6))) (-4 *5 (-1121)) (-4 *6 (-1237)) (-5 *1 (-905 *5 *6)))) (-3626 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-5 *3 (-660 (-1 (-114) *5))) (-4 *4 (-1121)) (-4 *5 (-1237)) (-5 *1 (-905 *4 *5)))) (-3626 (*1 *2 *2 *3) (-12 (-5 *2 (-904 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1121)) (-4 *5 (-1237)) (-5 *1 (-905 *4 *5))))) +((-4387 (((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)) 19 T ELT))) +(((-906 |#1| |#2|) (-10 -7 (-15 -4387 ((-904 |#2|) (-1 |#2| |#1|) (-904 |#1|)))) (-1121) (-1121)) (T -906)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-904 *6)) (-5 *1 (-906 *5 *6))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4363 (((-660 |#1|) $) 19 T ELT)) (-3062 (((-114) $) 49 T ELT)) (-3574 (((-3 (-691 |#1|) "failed") $) 55 T ELT)) (-3573 (((-691 |#1|) $) 53 T ELT)) (-4228 (($ $) 23 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-4262 (((-790) $) 60 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-691 |#1|) $) 21 T ELT)) (-4375 (((-876) $) 47 T ELT) (($ (-691 |#1|)) 26 T ELT) (((-840 |#1|) $) 36 T ELT) (($ |#1|) 25 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 9 T CONST)) (-3063 (((-660 (-691 |#1|)) $) 28 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 12 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 66 T ELT))) +(((-907 |#1|) (-13 (-860) (-1058 (-691 |#1|)) (-10 -8 (-15 1 ($) -4381) (-15 -4375 ((-840 |#1|) $)) (-15 -4375 ($ |#1|)) (-15 -4230 ((-691 |#1|) $)) (-15 -4262 ((-790) $)) (-15 -3063 ((-660 (-691 |#1|)) $)) (-15 -4228 ($ $)) (-15 -3062 ((-114) $)) (-15 -4363 ((-660 |#1|) $)))) (-860)) (T -907)) +((-3064 (*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-860)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) (-4375 (*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-860)))) (-4230 (*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) (-3063 (*1 *2 *1) (-12 (-5 *2 (-660 (-691 *3))) (-5 *1 (-907 *3)) (-4 *3 (-860)))) (-4228 (*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-860)))) (-3062 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) (-4363 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-907 *3)) (-4 *3 (-860))))) +((-3893 ((|#1| |#1| |#1|) 19 T ELT))) +(((-908 |#1| |#2|) (-10 -7 (-15 -3893 (|#1| |#1| |#1|))) (-1263 |#2|) (-1069)) (T -908)) +((-3893 (*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-908 *2 *3)) (-4 *2 (-1263 *3))))) +((-3069 ((|#2| $ |#3|) 10 T ELT))) +(((-909 |#1| |#2| |#3|) (-10 -7 (-15 -3069 (|#2| |#1| |#3|))) (-910 |#2| |#3|) (-1237) (-1237)) (T -909)) +NIL +((-4187 ((|#1| $ |#2|) 7 T ELT)) (-3069 ((|#1| $ |#2|) 6 T ELT))) +(((-910 |#1| |#2|) (-142) (-1237) (-1237)) (T -910)) +((-4187 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) (-3069 (*1 *2 *1 *3) (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237))))) +(-13 (-1237) (-10 -8 (-15 -4187 (|t#1| $ |t#2|)) (-15 -3069 (|t#1| $ |t#2|)))) +(((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 18 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3065 (((-1055) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 17 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-911) (-142)) (T -911)) +((-3068 (*1 *2 *3 *4) (-12 (-4 *1 (-911)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) (-3065 (*1 *2 *3) (-12 (-4 *1 (-911)) (-5 *3 (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) (-5 *2 (-1055))))) +(-13 (-1121) (-10 -7 (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| |explanations| (-1179))) (-1083) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229))))) (-15 -3065 ((-1055) (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229))))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-3067 ((|#1| |#1| (-790)) 26 T ELT)) (-3066 (((-3 |#1| #1="failed") |#1| |#1|) 23 T ELT)) (-3854 (((-3 (-2 (|:| -3539 |#1|) (|:| -3538 |#1|)) #1#) |#1| (-790) (-790)) 29 T ELT) (((-660 |#1|) |#1|) 38 T ELT))) +(((-912 |#1| |#2|) (-10 -7 (-15 -3854 ((-660 |#1|) |#1|)) (-15 -3854 ((-3 (-2 (|:| -3539 |#1|) (|:| -3538 |#1|)) #1="failed") |#1| (-790) (-790))) (-15 -3066 ((-3 |#1| #1#) |#1| |#1|)) (-15 -3067 (|#1| |#1| (-790)))) (-1263 |#2|) (-376)) (T -912)) +((-3067 (*1 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-376)) (-5 *1 (-912 *2 *4)) (-4 *2 (-1263 *4)))) (-3066 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-376)) (-5 *1 (-912 *2 *3)) (-4 *2 (-1263 *3)))) (-3854 (*1 *2 *3 *4 *4) (|partial| -12 (-5 *4 (-790)) (-4 *5 (-376)) (-5 *2 (-2 (|:| -3539 *3) (|:| -3538 *3))) (-5 *1 (-912 *3 *5)) (-4 *3 (-1263 *5)))) (-3854 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-660 *3)) (-5 *1 (-912 *3 *4)) (-4 *3 (-1263 *4))))) +((-4000 (((-1055) (-391) (-391) (-391) (-391) (-790) (-790) (-660 (-326 (-391))) (-660 (-660 (-326 (-391)))) (-1179)) 103 T ELT) (((-1055) (-391) (-391) (-391) (-391) (-790) (-790) (-660 (-326 (-391))) (-660 (-660 (-326 (-391)))) (-1179) (-229)) 100 T ELT) (((-1055) (-914) (-1083)) 92 T ELT) (((-1055) (-914)) 93 T ELT)) (-3068 (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-914) (-1083)) 62 T ELT) (((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-914)) 64 T ELT))) +(((-913) (-10 -7 (-15 -4000 ((-1055) (-914))) (-15 -4000 ((-1055) (-914) (-1083))) (-15 -4000 ((-1055) (-391) (-391) (-391) (-391) (-790) (-790) (-660 (-326 (-391))) (-660 (-660 (-326 (-391)))) (-1179) (-229))) (-15 -4000 ((-1055) (-391) (-391) (-391) (-391) (-790) (-790) (-660 (-326 (-391))) (-660 (-660 (-326 (-391)))) (-1179))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-914))) (-15 -3068 ((-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179)))) (-914) (-1083))))) (T -913)) +((-3068 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *1 (-913)))) (-3068 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) (|:| |explanations| (-660 (-1179))))) (-5 *1 (-913)))) (-4000 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) (-12 (-5 *4 (-790)) (-5 *6 (-660 (-660 (-326 *3)))) (-5 *7 (-1179)) (-5 *5 (-660 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1055)) (-5 *1 (-913)))) (-4000 (*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) (-12 (-5 *4 (-790)) (-5 *6 (-660 (-660 (-326 *3)))) (-5 *7 (-1179)) (-5 *8 (-229)) (-5 *5 (-660 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1055)) (-5 *1 (-913)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-913)))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1055)) (-5 *1 (-913))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3573 (((-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229))) $) 19 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 21 T ELT) (($ (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) 18 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-914) (-13 (-1121) (-10 -8 (-15 -4375 ($ (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229))))) (-15 -3573 ((-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229))) $))))) (T -914)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) (-5 *1 (-914)))) (-3573 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| (-660 (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) (|:| |dFinish| (-708 (-229)))))) (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) (-5 *1 (-914))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $ (-660 |#2|) (-660 (-790))) 44 T ELT) (($ $ |#2| (-790)) 43 T ELT) (($ $ (-660 |#2|)) 42 T ELT) (($ $ |#2|) 40 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3069 (($ $ (-660 |#2|) (-660 (-790))) 47 T ELT) (($ $ |#2| (-790)) 46 T ELT) (($ $ (-660 |#2|)) 45 T ELT) (($ $ |#2|) 41 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-915 |#1| |#2|) (-142) (-1069) (-1121)) (T -915)) +NIL +(-13 (-111 |t#1| |t#1|) (-918 |t#2|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-736 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-910 $ |#2|) . T) ((-918 |#2|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4187 (($ $ (-660 |#1|) (-660 (-790))) 49 T ELT) (($ $ |#1| (-790)) 48 T ELT) (($ $ (-660 |#1|)) 47 T ELT) (($ $ |#1|) 45 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-660 |#1|) (-660 (-790))) 52 T ELT) (($ $ |#1| (-790)) 51 T ELT) (($ $ (-660 |#1|)) 50 T ELT) (($ $ |#1|) 46 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-916 |#1|) (-142) (-1121)) (T -916)) +NIL +(-13 (-1069) (-918 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-910 $ |#1|) . T) ((-918 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-4187 (($ $ |#2|) NIL T ELT) (($ $ (-660 |#2|)) 10 T ELT) (($ $ |#2| (-790)) 12 T ELT) (($ $ (-660 |#2|) (-660 (-790))) 15 T ELT)) (-3069 (($ $ |#2|) 16 T ELT) (($ $ (-660 |#2|)) 18 T ELT) (($ $ |#2| (-790)) 19 T ELT) (($ $ (-660 |#2|) (-660 (-790))) 21 T ELT))) +(((-917 |#1| |#2|) (-10 -7 (-15 -3069 (|#1| |#1| (-660 |#2|) (-660 (-790)))) (-15 -3069 (|#1| |#1| |#2| (-790))) (-15 -3069 (|#1| |#1| (-660 |#2|))) (-15 -4187 (|#1| |#1| (-660 |#2|) (-660 (-790)))) (-15 -4187 (|#1| |#1| |#2| (-790))) (-15 -4187 (|#1| |#1| (-660 |#2|))) (-15 -3069 (|#1| |#1| |#2|)) (-15 -4187 (|#1| |#1| |#2|))) (-918 |#2|) (-1121)) (T -917)) +NIL +((-4187 (($ $ |#1|) 7 T ELT) (($ $ (-660 |#1|)) 15 T ELT) (($ $ |#1| (-790)) 14 T ELT) (($ $ (-660 |#1|) (-660 (-790))) 13 T ELT)) (-3069 (($ $ |#1|) 6 T ELT) (($ $ (-660 |#1|)) 12 T ELT) (($ $ |#1| (-790)) 11 T ELT) (($ $ (-660 |#1|) (-660 (-790))) 10 T ELT))) +(((-918 |#1|) (-142) (-1121)) (T -918)) +((-4187 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1121)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-918 *2)) (-4 *2 (-1121)))) (-4187 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-790))) (-4 *1 (-918 *4)) (-4 *4 (-1121)))) (-3069 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1121)))) (-3069 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-918 *2)) (-4 *2 (-1121)))) (-3069 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-790))) (-4 *1 (-918 *4)) (-4 *4 (-1121))))) +(-13 (-910 $ |t#1|) (-10 -8 (-15 -4187 ($ $ (-660 |t#1|))) (-15 -4187 ($ $ |t#1| (-790))) (-15 -4187 ($ $ (-660 |t#1|) (-660 (-790)))) (-15 -3069 ($ $ (-660 |t#1|))) (-15 -3069 ($ $ |t#1| (-790))) (-15 -3069 ($ $ (-660 |t#1|) (-660 (-790)))))) +(((-910 $ |#1|) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 26 T ELT)) (-3425 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-1406 (($ $ $) NIL (|has| $ (-6 -4425)) ELT)) (-1407 (($ $ $) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) (($ $ #2="left" $) NIL (|has| $ (-6 -4425)) ELT) (($ $ #3="right" $) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3538 (($ $) 25 T ELT)) (-3070 (($ |#1|) 12 T ELT) (($ $ $) 17 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3539 (($ $) 23 T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) 20 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) (($ $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-4062 (((-114) $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1224 |#1|) $) 9 T ELT) (((-876) $) 29 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 21 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-919 |#1|) (-13 (-121 |#1|) (-629 (-1224 |#1|)) (-10 -8 (-15 -3070 ($ |#1|)) (-15 -3070 ($ $ $)))) (-1121)) (T -919)) +((-3070 (*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1121)))) (-3070 (*1 *1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3086 (((-1117 |#1|) $) 60 T ELT)) (-3309 (((-660 $) (-660 $)) 103 T ELT)) (-4052 (((-558) $) 83 T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT)) (-4201 (((-790) $) 80 T ELT)) (-3090 (((-1117 |#1|) $ |#1|) 70 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3073 (((-114) $) 88 T ELT)) (-3075 (((-790) $) 84 T ELT)) (-2929 (($ $ $) NIL (-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) ELT)) (-3257 (($ $ $) NIL (-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) ELT)) (-3079 (((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $) 55 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 130 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3072 (((-1117 |#1|) $) 136 (|has| |#1| (-381)) ELT)) (-3074 (((-114) $) 81 T ELT)) (-4229 ((|#1| $ |#1|) 68 T ELT)) (-4377 (((-790) $) 62 T ELT)) (-3081 (($ (-660 (-660 |#1|))) 118 T ELT)) (-3076 (((-991) $) 74 T ELT)) (-3082 (($ (-660 |#1|)) 32 T ELT)) (-3409 (($ $ $) NIL T ELT)) (-2823 (($ $ $) NIL T ELT)) (-3078 (($ (-660 (-660 |#1|))) 57 T ELT)) (-3077 (($ (-660 (-660 |#1|))) 123 T ELT)) (-3071 (($ (-660 |#1|)) 132 T ELT)) (-4375 (((-876) $) 117 T ELT) (($ (-660 (-660 |#1|))) 91 T ELT) (($ (-660 |#1|)) 92 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) 24 T CONST)) (-2964 (((-114) $ $) NIL (-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) ELT)) (-2965 (((-114) $ $) NIL (-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) ELT)) (-3453 (((-114) $ $) 66 T ELT)) (-3084 (((-114) $ $) NIL (-3956 (|has| |#1| (-381)) (|has| |#1| (-860))) ELT)) (-3085 (((-114) $ $) 90 T ELT)) (-4378 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ $ $) 33 T ELT))) +(((-920 |#1|) (-13 (-922 |#1|) (-10 -8 (-15 -3079 ((-2 (|:| |preimage| (-660 |#1|)) (|:| |image| (-660 |#1|))) $)) (-15 -3078 ($ (-660 (-660 |#1|)))) (-15 -4375 ($ (-660 (-660 |#1|)))) (-15 -4375 ($ (-660 |#1|))) (-15 -3077 ($ (-660 (-660 |#1|)))) (-15 -4377 ((-790) $)) (-15 -3076 ((-991) $)) (-15 -4201 ((-790) $)) (-15 -3075 ((-790) $)) (-15 -4052 ((-558) $)) (-15 -3074 ((-114) $)) (-15 -3073 ((-114) $)) (-15 -3309 ((-660 $) (-660 $))) (IF (|has| |#1| (-381)) (-15 -3072 ((-1117 |#1|) $)) |%noBranch|) (IF (|has| |#1| (-557)) (-15 -3071 ($ (-660 |#1|))) (IF (|has| |#1| (-381)) (-15 -3071 ($ (-660 |#1|))) |%noBranch|)))) (-1121)) (T -920)) +((-3079 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |preimage| (-660 *3)) (|:| |image| (-660 *3)))) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3078 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-920 *3)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-920 *3)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-920 *3)))) (-3077 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-920 *3)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3076 (*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3075 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3074 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3073 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3309 (*1 *2 *2) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) (-3072 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-920 *3)) (-4 *3 (-381)) (-4 *3 (-1121)))) (-3071 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-920 *3))))) +((-3080 ((|#2| (-1162 |#1| |#2|)) 48 T ELT))) +(((-921 |#1| |#2|) (-10 -7 (-15 -3080 (|#2| (-1162 |#1| |#2|)))) (-937) (-13 (-1069) (-10 -7 (-6 (-4426 "*"))))) (T -921)) +((-3080 (*1 *2 *3) (-12 (-5 *3 (-1162 *4 *2)) (-14 *4 (-937)) (-4 *2 (-13 (-1069) (-10 -7 (-6 (-4426 "*"))))) (-5 *1 (-921 *4 *2))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3086 (((-1117 |#1|) $) 42 T ELT)) (-4153 (($) 23 T CONST)) (-3886 (((-3 $ "failed") $) 20 T ELT)) (-3090 (((-1117 |#1|) $ |#1|) 41 T ELT)) (-2640 (((-114) $) 22 T ELT)) (-2929 (($ $ $) 35 (-3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ELT)) (-3257 (($ $ $) 36 (-3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 30 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4229 ((|#1| $ |#1|) 45 T ELT)) (-3081 (($ (-660 (-660 |#1|))) 43 T ELT)) (-3082 (($ (-660 |#1|)) 44 T ELT)) (-3409 (($ $ $) 27 T ELT)) (-2823 (($ $ $) 26 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3064 (($) 24 T CONST)) (-2964 (((-114) $ $) 37 (-3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ELT)) (-2965 (((-114) $ $) 39 (-3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 38 (-3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ELT)) (-3085 (((-114) $ $) 40 T ELT)) (-4378 (($ $ $) 29 T ELT)) (** (($ $ (-937)) 17 T ELT) (($ $ (-790)) 21 T ELT) (($ $ (-558)) 28 T ELT)) (* (($ $ $) 18 T ELT))) +(((-922 |#1|) (-142) (-1121)) (T -922)) +((-3082 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-3081 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3)))) (-3086 (*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1117 *3)))) (-3090 (*1 *2 *1 *3) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1117 *3)))) (-3085 (*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) +(-13 (-485) (-298 |t#1| |t#1|) (-10 -8 (-15 -3082 ($ (-660 |t#1|))) (-15 -3081 ($ (-660 (-660 |t#1|)))) (-15 -3086 ((-1117 |t#1|) $)) (-15 -3090 ((-1117 |t#1|) $ |t#1|)) (-15 -3085 ((-114) $ $)) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-381)) (-6 (-860)) |%noBranch|))) +(((-102) . T) ((-629 (-876)) . T) ((-298 |#1| |#1|) . T) ((-485) . T) ((-745) . T) ((-860) -3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ((-863) -3956 (|has| |#1| (-860)) (|has| |#1| (-381))) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3092 (((-660 (-660 (-790))) $) 163 T ELT)) (-3088 (((-660 (-790)) (-920 |#1|) $) 191 T ELT)) (-3087 (((-660 (-790)) (-920 |#1|) $) 192 T ELT)) (-3086 (((-1117 |#1|) $) 155 T ELT)) (-3093 (((-660 (-920 |#1|)) $) 152 T ELT)) (-3394 (((-920 |#1|) $ (-558)) 157 T ELT) (((-920 |#1|) $) 158 T ELT)) (-3091 (($ (-660 (-920 |#1|))) 165 T ELT)) (-4201 (((-790) $) 159 T ELT)) (-3089 (((-1117 (-1117 |#1|)) $) 189 T ELT)) (-3090 (((-1117 |#1|) $ |#1|) 180 T ELT) (((-1117 (-1117 |#1|)) $ (-1117 |#1|)) 201 T ELT) (((-1117 (-660 |#1|)) $ (-660 |#1|)) 204 T ELT)) (-3662 (((-114) (-920 |#1|) $) 140 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3083 (((-1293) $) 145 T ELT) (((-1293) $ (-558) (-558)) 205 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3095 (((-660 (-920 |#1|)) $) 146 T ELT)) (-4229 (((-920 |#1|) $ (-790)) 153 T ELT)) (-4377 (((-790) $) 160 T ELT)) (-4375 (((-876) $) 177 T ELT) (((-660 (-920 |#1|)) $) 28 T ELT) (($ (-660 (-920 |#1|))) 164 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (((-660 |#1|) $) 162 T ELT)) (-3453 (((-114) $ $) 198 T ELT)) (-3084 (((-114) $ $) 195 T ELT)) (-3085 (((-114) $ $) 194 T ELT))) +(((-923 |#1|) (-13 (-1121) (-10 -8 (-15 -4375 ((-660 (-920 |#1|)) $)) (-15 -3095 ((-660 (-920 |#1|)) $)) (-15 -4229 ((-920 |#1|) $ (-790))) (-15 -3394 ((-920 |#1|) $ (-558))) (-15 -3394 ((-920 |#1|) $)) (-15 -4201 ((-790) $)) (-15 -4377 ((-790) $)) (-15 -3094 ((-660 |#1|) $)) (-15 -3093 ((-660 (-920 |#1|)) $)) (-15 -3092 ((-660 (-660 (-790))) $)) (-15 -4375 ($ (-660 (-920 |#1|)))) (-15 -3091 ($ (-660 (-920 |#1|)))) (-15 -3090 ((-1117 |#1|) $ |#1|)) (-15 -3089 ((-1117 (-1117 |#1|)) $)) (-15 -3090 ((-1117 (-1117 |#1|)) $ (-1117 |#1|))) (-15 -3090 ((-1117 (-660 |#1|)) $ (-660 |#1|))) (-15 -3662 ((-114) (-920 |#1|) $)) (-15 -3088 ((-660 (-790)) (-920 |#1|) $)) (-15 -3087 ((-660 (-790)) (-920 |#1|) $)) (-15 -3086 ((-1117 |#1|) $)) (-15 -3085 ((-114) $ $)) (-15 -3084 ((-114) $ $)) (-15 -3083 ((-1293) $)) (-15 -3083 ((-1293) $ (-558) (-558))))) (-1121)) (T -923)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3095 (*1 *2 *1) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-920 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-3394 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-920 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) (-3394 (*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4201 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4377 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3094 (*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3093 (*1 *2 *1) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3092 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-790)))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-660 (-920 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-3091 (*1 *1 *2) (-12 (-5 *2 (-660 (-920 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) (-3090 (*1 *2 *1 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3089 (*1 *2 *1) (-12 (-5 *2 (-1117 (-1117 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3090 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-923 *4)) (-5 *3 (-1117 *4)))) (-3090 (*1 *2 *1 *3) (-12 (-4 *4 (-1121)) (-5 *2 (-1117 (-660 *4))) (-5 *1 (-923 *4)) (-5 *3 (-660 *4)))) (-3662 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1121)) (-5 *2 (-114)) (-5 *1 (-923 *4)))) (-3088 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1121)) (-5 *2 (-660 (-790))) (-5 *1 (-923 *4)))) (-3087 (*1 *2 *3 *1) (-12 (-5 *3 (-920 *4)) (-4 *4 (-1121)) (-5 *2 (-660 (-790))) (-5 *1 (-923 *4)))) (-3086 (*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3085 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3084 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3083 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) (-3083 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) (-4 *4 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-4361 (((-114) $) NIL T ELT)) (-4358 (((-790)) NIL T ELT)) (-3749 (($ $ (-937)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 $ #1#) $) NIL T ELT)) (-3573 (($ $) NIL T ELT)) (-1999 (($ (-1287 $)) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-3233 (($) NIL T ELT)) (-1882 (((-114) $) NIL T ELT)) (-1973 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-4201 (((-844 (-937)) $) NIL T ELT) (((-937) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2222 (($) NIL (|has| $ (-381)) ELT)) (-2220 (((-114) $) NIL (|has| $ (-381)) ELT)) (-3533 (($ $ (-937)) NIL (|has| $ (-381)) ELT) (($ $) NIL T ELT)) (-3864 (((-710 $) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2223 (((-1191 $) $ (-937)) NIL (|has| $ (-381)) ELT) (((-1191 $) $) NIL T ELT)) (-2219 (((-937) $) NIL T ELT)) (-1806 (((-1191 $) $) NIL (|has| $ (-381)) ELT)) (-1805 (((-3 (-1191 $) #1#) $ $) NIL (|has| $ (-381)) ELT) (((-1191 $) $) NIL (|has| $ (-381)) ELT)) (-1807 (($ $ (-1191 $)) NIL (|has| $ (-381)) ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL T CONST)) (-2630 (($ (-937)) NIL T ELT)) (-4360 (((-114) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) NIL (|has| $ (-381)) ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-4359 (((-937)) NIL T ELT) (((-844 (-937))) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-1974 (((-3 (-790) #1#) $ $) NIL T ELT) (((-790) $) NIL T ELT)) (-4340 (((-136)) NIL T ELT)) (-4187 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4377 (((-937) $) NIL T ELT) (((-844 (-937)) $) NIL T ELT)) (-3602 (((-1191 $)) NIL T ELT)) (-1876 (($) NIL T ELT)) (-1808 (($) NIL (|has| $ (-381)) ELT)) (-3641 (((-708 $) (-1287 $)) NIL T ELT) (((-1287 $) $) NIL T ELT)) (-4401 (((-558) $) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT)) (-3102 (((-710 $) $) NIL T ELT) (($ $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $) (-937)) NIL T ELT) (((-1287 $)) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4362 (((-114) $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-4357 (($ $ (-790)) NIL (|has| $ (-381)) ELT) (($ $) NIL (|has| $ (-381)) ELT)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-924 |#1|) (-13 (-363) (-341 $) (-630 (-558))) (-937)) (T -924)) +NIL +((-3097 (((-3 (-660 (-1191 |#4|)) #1="failed") (-660 (-1191 |#4|)) (-1191 |#4|)) 164 T ELT)) (-3100 ((|#1|) 101 T ELT)) (-3099 (((-417 (-1191 |#4|)) (-1191 |#4|)) 173 T ELT)) (-3101 (((-417 (-1191 |#4|)) (-660 |#3|) (-1191 |#4|)) 83 T ELT)) (-3098 (((-417 (-1191 |#4|)) (-1191 |#4|)) 183 T ELT)) (-3096 (((-3 (-660 (-1191 |#4|)) #1#) (-660 (-1191 |#4|)) (-1191 |#4|) |#3|) 117 T ELT))) +(((-925 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3097 ((-3 (-660 (-1191 |#4|)) #1="failed") (-660 (-1191 |#4|)) (-1191 |#4|))) (-15 -3098 ((-417 (-1191 |#4|)) (-1191 |#4|))) (-15 -3099 ((-417 (-1191 |#4|)) (-1191 |#4|))) (-15 -3100 (|#1|)) (-15 -3096 ((-3 (-660 (-1191 |#4|)) #1#) (-660 (-1191 |#4|)) (-1191 |#4|) |#3|)) (-15 -3101 ((-417 (-1191 |#4|)) (-660 |#3|) (-1191 |#4|)))) (-928) (-814) (-860) (-968 |#1| |#2| |#3|)) (T -925)) +((-3101 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *7)) (-4 *7 (-860)) (-4 *5 (-928)) (-4 *6 (-814)) (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-417 (-1191 *8))) (-5 *1 (-925 *5 *6 *7 *8)) (-5 *4 (-1191 *8)))) (-3096 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *2 (-660 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-814)) (-4 *4 (-860)) (-5 *1 (-925 *5 *6 *4 *7)))) (-3100 (*1 *2) (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-928)) (-5 *1 (-925 *2 *3 *4 *5)) (-4 *5 (-968 *2 *3 *4)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-3098 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) (-3097 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1191 *7))) (-5 *3 (-1191 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-925 *4 *5 *6 *7))))) +((-3097 (((-3 (-660 (-1191 |#2|)) "failed") (-660 (-1191 |#2|)) (-1191 |#2|)) 39 T ELT)) (-3100 ((|#1|) 71 T ELT)) (-3099 (((-417 (-1191 |#2|)) (-1191 |#2|)) 125 T ELT)) (-3101 (((-417 (-1191 |#2|)) (-1191 |#2|)) 109 T ELT)) (-3098 (((-417 (-1191 |#2|)) (-1191 |#2|)) 136 T ELT))) +(((-926 |#1| |#2|) (-10 -7 (-15 -3097 ((-3 (-660 (-1191 |#2|)) "failed") (-660 (-1191 |#2|)) (-1191 |#2|))) (-15 -3098 ((-417 (-1191 |#2|)) (-1191 |#2|))) (-15 -3099 ((-417 (-1191 |#2|)) (-1191 |#2|))) (-15 -3100 (|#1|)) (-15 -3101 ((-417 (-1191 |#2|)) (-1191 |#2|)))) (-928) (-1263 |#1|)) (T -926)) +((-3101 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1263 *4)) (-5 *2 (-417 (-1191 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1191 *5)))) (-3100 (*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1263 *2)))) (-3099 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1263 *4)) (-5 *2 (-417 (-1191 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1191 *5)))) (-3098 (*1 *2 *3) (-12 (-4 *4 (-928)) (-4 *5 (-1263 *4)) (-5 *2 (-417 (-1191 *5))) (-5 *1 (-926 *4 *5)) (-5 *3 (-1191 *5)))) (-3097 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) +((-3104 (((-3 (-660 (-1191 $)) "failed") (-660 (-1191 $)) (-1191 $)) 46 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 18 T ELT)) (-3102 (((-710 $) $) 40 T ELT))) +(((-927 |#1|) (-10 -7 (-15 -3102 ((-710 |#1|) |#1|)) (-15 -3104 ((-3 (-660 (-1191 |#1|)) "failed") (-660 (-1191 |#1|)) (-1191 |#1|))) (-15 -3108 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|)))) (-928)) (T -927)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 72 T ELT)) (-4204 (($ $) 63 T ELT)) (-4400 (((-417 $) $) 64 T ELT)) (-3104 (((-3 (-660 (-1191 $)) "failed") (-660 (-1191 $)) (-1191 $)) 69 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4152 (((-114) $) 65 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 70 T ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 71 T ELT)) (-4161 (((-417 $) $) 62 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3103 (((-3 (-1287 $) "failed") (-708 $)) 68 (|has| $ (-147)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3102 (((-710 $) $) 67 (|has| $ (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-928) (-142)) (T -928)) +((-3108 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-928)))) (-3107 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-417 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3106 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-417 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3105 (*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-417 (-1191 *1))) (-5 *3 (-1191 *1)))) (-3104 (*1 *2 *2 *3) (|partial| -12 (-5 *2 (-660 (-1191 *1))) (-5 *3 (-1191 *1)) (-4 *1 (-928)))) (-3103 (*1 *2 *3) (|partial| -12 (-5 *3 (-708 *1)) (-4 *1 (-147)) (-4 *1 (-928)) (-5 *2 (-1287 *1)))) (-3102 (*1 *2 *1) (-12 (-5 *2 (-710 *1)) (-4 *1 (-147)) (-4 *1 (-928))))) +(-13 (-1242) (-10 -8 (-15 -3107 ((-417 (-1191 $)) (-1191 $))) (-15 -3106 ((-417 (-1191 $)) (-1191 $))) (-15 -3105 ((-417 (-1191 $)) (-1191 $))) (-15 -3108 ((-1191 $) (-1191 $) (-1191 $))) (-15 -3104 ((-3 (-660 (-1191 $)) "failed") (-660 (-1191 $)) (-1191 $))) (IF (|has| $ (-147)) (PROGN (-15 -3103 ((-3 (-1287 $) "failed") (-708 $))) (-15 -3102 ((-710 $) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-3110 (((-3 (-2 (|:| -4201 (-790)) (|:| -2613 |#5|)) #1="failed") (-346 |#2| |#3| |#4| |#5|)) 77 T ELT)) (-3109 (((-114) (-346 |#2| |#3| |#4| |#5|)) 17 T ELT)) (-4201 (((-3 (-790) #1#) (-346 |#2| |#3| |#4| |#5|)) 15 T ELT))) +(((-929 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4201 ((-3 (-790) #1="failed") (-346 |#2| |#3| |#4| |#5|))) (-15 -3109 ((-114) (-346 |#2| |#3| |#4| |#5|))) (-15 -3110 ((-3 (-2 (|:| -4201 (-790)) (|:| -2613 |#5|)) #1#) (-346 |#2| |#3| |#4| |#5|)))) (-13 (-569) (-1058 (-558))) (-433 |#1|) (-1263 |#2|) (-1263 (-419 |#3|)) (-355 |#2| |#3| |#4|)) (T -929)) +((-3110 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-2 (|:| -4201 (-790)) (|:| -2613 *8))) (-5 *1 (-929 *4 *5 *6 *7 *8)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-114)) (-5 *1 (-929 *4 *5 *6 *7 *8)))) (-4201 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-790)) (-5 *1 (-929 *4 *5 *6 *7 *8))))) +((-3110 (((-3 (-2 (|:| -4201 (-790)) (|:| -2613 |#3|)) #1="failed") (-346 (-419 (-558)) |#1| |#2| |#3|)) 64 T ELT)) (-3109 (((-114) (-346 (-419 (-558)) |#1| |#2| |#3|)) 16 T ELT)) (-4201 (((-3 (-790) #1#) (-346 (-419 (-558)) |#1| |#2| |#3|)) 14 T ELT))) +(((-930 |#1| |#2| |#3|) (-10 -7 (-15 -4201 ((-3 (-790) #1="failed") (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3109 ((-114) (-346 (-419 (-558)) |#1| |#2| |#3|))) (-15 -3110 ((-3 (-2 (|:| -4201 (-790)) (|:| -2613 |#3|)) #1#) (-346 (-419 (-558)) |#1| |#2| |#3|)))) (-1263 (-419 (-558))) (-1263 (-419 |#1|)) (-355 (-419 (-558)) |#1| |#2|)) (T -930)) +((-3110 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-558)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-2 (|:| -4201 (-790)) (|:| -2613 *6))) (-5 *1 (-930 *4 *5 *6)))) (-3109 (*1 *2 *3) (-12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-558)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-114)) (-5 *1 (-930 *4 *5 *6)))) (-4201 (*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-558)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-790)) (-5 *1 (-930 *4 *5 *6))))) +((-3115 ((|#2| |#2|) 26 T ELT)) (-3113 (((-558) (-660 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) 15 T ELT)) (-3111 (((-937) (-558)) 38 T ELT)) (-3114 (((-558) |#2|) 45 T ELT)) (-3112 (((-558) |#2|) 21 T ELT) (((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|) 20 T ELT))) +(((-931 |#1| |#2|) (-10 -7 (-15 -3111 ((-937) (-558))) (-15 -3112 ((-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))) |#1|)) (-15 -3112 ((-558) |#2|)) (-15 -3113 ((-558) (-660 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))))) (-15 -3114 ((-558) |#2|)) (-15 -3115 (|#2| |#2|))) (-1263 (-419 (-558))) (-1263 (-419 |#1|))) (T -931)) +((-3115 (*1 *2 *2) (-12 (-4 *3 (-1263 (-419 (-558)))) (-5 *1 (-931 *3 *2)) (-4 *2 (-1263 (-419 *3))))) (-3114 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-931 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-3113 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) (-4 *4 (-1263 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-931 *4 *5)) (-4 *5 (-1263 (-419 *4))))) (-3112 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-931 *4 *3)) (-4 *3 (-1263 (-419 *4))))) (-3112 (*1 *2 *3) (-12 (-4 *3 (-1263 (-419 (-558)))) (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-931 *3 *4)) (-4 *4 (-1263 (-419 *3))))) (-3111 (*1 *2 *3) (-12 (-5 *3 (-558)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-937)) (-5 *1 (-931 *4 *5)) (-4 *5 (-1263 (-419 *4)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 ((|#1| $) 99 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2962 (($ $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 93 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3123 (($ |#1| (-417 |#1|)) 91 T ELT)) (-3117 (((-1191 |#1|) |#1| |#1|) 52 T ELT)) (-3116 (($ $) 60 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3118 (((-558) $) 96 T ELT)) (-3119 (($ $ (-558)) 98 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3120 ((|#1| $) 95 T ELT)) (-3121 (((-417 |#1|) $) 94 T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) 92 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3122 (($ $) 49 T ELT)) (-4375 (((-876) $) 123 T ELT) (($ (-558)) 72 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 40 T ELT) (((-419 |#1|) $) 77 T ELT) (($ (-419 (-417 |#1|))) 85 T ELT)) (-3527 (((-790)) 70 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) 24 T CONST)) (-3064 (($) 12 T CONST)) (-3453 (((-114) $ $) 86 T ELT)) (-4378 (($ $ $) NIL T ELT)) (-4266 (($ $) 107 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 48 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 109 T ELT) (($ $ $) 47 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ |#1| $) 108 T ELT) (($ $ |#1|) NIL T ELT))) +(((-932 |#1|) (-13 (-376) (-38 |#1|) (-10 -8 (-15 -4375 ((-419 |#1|) $)) (-15 -4375 ($ (-419 (-417 |#1|)))) (-15 -3122 ($ $)) (-15 -3121 ((-417 |#1|) $)) (-15 -3120 (|#1| $)) (-15 -3119 ($ $ (-558))) (-15 -3118 ((-558) $)) (-15 -3117 ((-1191 |#1|) |#1| |#1|)) (-15 -3116 ($ $)) (-15 -3123 ($ |#1| (-417 |#1|))) (-15 -3530 (|#1| $)))) (-319)) (T -932)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-932 *3)) (-4 *3 (-319)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-932 *3)))) (-3122 (*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319)))) (-3121 (*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-932 *3)) (-4 *3 (-319)))) (-3120 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319)))) (-3119 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-932 *3)) (-4 *3 (-319)))) (-3118 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-932 *3)) (-4 *3 (-319)))) (-3117 (*1 *2 *3 *3) (-12 (-5 *2 (-1191 *3)) (-5 *1 (-932 *3)) (-4 *3 (-319)))) (-3116 (*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319)))) (-3123 (*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-932 *2)))) (-3530 (*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319))))) +((-3123 (((-51) (-964 |#1|) (-417 (-964 |#1|)) (-1197)) 17 T ELT) (((-51) (-419 (-964 |#1|)) (-1197)) 18 T ELT))) +(((-933 |#1|) (-10 -7 (-15 -3123 ((-51) (-419 (-964 |#1|)) (-1197))) (-15 -3123 ((-51) (-964 |#1|) (-417 (-964 |#1|)) (-1197)))) (-13 (-319) (-149))) (T -933)) +((-3123 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-417 (-964 *6))) (-5 *5 (-1197)) (-5 *3 (-964 *6)) (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-933 *6)))) (-3123 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-933 *5))))) +((-3124 ((|#4| (-660 |#4|)) 148 T ELT) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 85 T ELT) ((|#4| |#4| |#4|) 147 T ELT)) (-3561 (((-1191 |#4|) (-660 (-1191 |#4|))) 141 T ELT) (((-1191 |#4|) (-1191 |#4|) (-1191 |#4|)) 61 T ELT) ((|#4| (-660 |#4|)) 70 T ELT) ((|#4| |#4| |#4|) 108 T ELT))) +(((-934 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3561 (|#4| |#4| |#4|)) (-15 -3561 (|#4| (-660 |#4|))) (-15 -3561 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3561 ((-1191 |#4|) (-660 (-1191 |#4|)))) (-15 -3124 (|#4| |#4| |#4|)) (-15 -3124 ((-1191 |#4|) (-1191 |#4|) (-1191 |#4|))) (-15 -3124 (|#4| (-660 |#4|)))) (-814) (-860) (-319) (-968 |#3| |#1| |#2|)) (T -934)) +((-3124 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-934 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)))) (-3124 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *6)))) (-3124 (*1 *2 *2 *2) (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-660 (-1191 *7))) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-1191 *7)) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) (-3561 (*1 *2 *2 *2) (-12 (-5 *2 (-1191 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *6)))) (-3561 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-934 *4 *5 *6 *2)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)))) (-3561 (*1 *2 *2 *2) (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *2)) (-4 *2 (-968 *5 *3 *4))))) +((-3137 (((-923 (-558)) (-991)) 38 T ELT) (((-923 (-558)) (-660 (-558))) 34 T ELT)) (-3125 (((-923 (-558)) (-660 (-558))) 66 T ELT) (((-923 (-558)) (-937)) 67 T ELT)) (-3136 (((-923 (-558))) 39 T ELT)) (-3134 (((-923 (-558))) 53 T ELT) (((-923 (-558)) (-660 (-558))) 52 T ELT)) (-3133 (((-923 (-558))) 51 T ELT) (((-923 (-558)) (-660 (-558))) 50 T ELT)) (-3132 (((-923 (-558))) 49 T ELT) (((-923 (-558)) (-660 (-558))) 48 T ELT)) (-3131 (((-923 (-558))) 47 T ELT) (((-923 (-558)) (-660 (-558))) 46 T ELT)) (-3130 (((-923 (-558))) 45 T ELT) (((-923 (-558)) (-660 (-558))) 44 T ELT)) (-3135 (((-923 (-558))) 55 T ELT) (((-923 (-558)) (-660 (-558))) 54 T ELT)) (-3129 (((-923 (-558)) (-660 (-558))) 71 T ELT) (((-923 (-558)) (-937)) 73 T ELT)) (-3128 (((-923 (-558)) (-660 (-558))) 68 T ELT) (((-923 (-558)) (-937)) 69 T ELT)) (-3126 (((-923 (-558)) (-660 (-558))) 64 T ELT) (((-923 (-558)) (-937)) 65 T ELT)) (-3127 (((-923 (-558)) (-660 (-937))) 57 T ELT))) +(((-935) (-10 -7 (-15 -3125 ((-923 (-558)) (-937))) (-15 -3125 ((-923 (-558)) (-660 (-558)))) (-15 -3126 ((-923 (-558)) (-937))) (-15 -3126 ((-923 (-558)) (-660 (-558)))) (-15 -3127 ((-923 (-558)) (-660 (-937)))) (-15 -3128 ((-923 (-558)) (-937))) (-15 -3128 ((-923 (-558)) (-660 (-558)))) (-15 -3129 ((-923 (-558)) (-937))) (-15 -3129 ((-923 (-558)) (-660 (-558)))) (-15 -3130 ((-923 (-558)) (-660 (-558)))) (-15 -3130 ((-923 (-558)))) (-15 -3131 ((-923 (-558)) (-660 (-558)))) (-15 -3131 ((-923 (-558)))) (-15 -3132 ((-923 (-558)) (-660 (-558)))) (-15 -3132 ((-923 (-558)))) (-15 -3133 ((-923 (-558)) (-660 (-558)))) (-15 -3133 ((-923 (-558)))) (-15 -3134 ((-923 (-558)) (-660 (-558)))) (-15 -3134 ((-923 (-558)))) (-15 -3135 ((-923 (-558)) (-660 (-558)))) (-15 -3135 ((-923 (-558)))) (-15 -3136 ((-923 (-558)))) (-15 -3137 ((-923 (-558)) (-660 (-558)))) (-15 -3137 ((-923 (-558)) (-991))))) (T -935)) +((-3137 (*1 *2 *3) (-12 (-5 *3 (-991)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3137 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3136 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3135 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3135 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3134 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3134 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3133 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3133 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3132 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3132 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3131 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3131 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3130 (*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3130 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3129 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3128 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3127 (*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3126 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) (-3125 (*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +((-3139 (((-660 (-964 |#1|)) (-660 (-964 |#1|)) (-660 (-1197))) 14 T ELT)) (-3138 (((-660 (-964 |#1|)) (-660 (-964 |#1|)) (-660 (-1197))) 13 T ELT))) +(((-936 |#1|) (-10 -7 (-15 -3138 ((-660 (-964 |#1|)) (-660 (-964 |#1|)) (-660 (-1197)))) (-15 -3139 ((-660 (-964 |#1|)) (-660 (-964 |#1|)) (-660 (-1197))))) (-464)) (T -936)) +((-3139 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-964 *4))) (-5 *3 (-660 (-1197))) (-4 *4 (-464)) (-5 *1 (-936 *4)))) (-3138 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-964 *4))) (-5 *3 (-660 (-1197))) (-4 *4 (-464)) (-5 *1 (-936 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ "failed") $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3561 (($ $ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3064 (($) NIL T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ $ $) NIL T ELT))) +(((-937) (-13 (-815) (-745) (-10 -8 (-15 -3561 ($ $ $)) (-6 (-4426 "*"))))) (T -937)) +((-3561 (*1 *1 *1 *1) (-5 *1 (-937)))) +((-790) (|%ilt| 0 |#1|)) +((-4375 (((-326 |#1|) (-489)) 16 T ELT))) +(((-938 |#1|) (-10 -7 (-15 -4375 ((-326 |#1|) (-489)))) (-569)) (T -938)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) (-4 *4 (-569))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-939) (-142)) (T -939)) +((-3141 (*1 *2 *3) (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -4383 (-660 *1)) (|:| -2639 *1))) (-5 *3 (-660 *1)))) (-3140 (*1 *2 *3 *1) (-12 (-4 *1 (-939)) (-5 *2 (-710 (-660 *1))) (-5 *3 (-660 *1))))) +(-13 (-464) (-10 -8 (-15 -3141 ((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $))) (-15 -3140 ((-710 (-660 $)) (-660 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3507 (((-1191 |#2|) (-660 |#2|) (-660 |#2|)) 17 T ELT) (((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-660 |#2|) (-660 |#2|)) 13 T ELT))) +(((-940 |#1| |#2|) (-10 -7 (-15 -3507 ((-1256 |#1| |#2|) (-1256 |#1| |#2|) (-660 |#2|) (-660 |#2|))) (-15 -3507 ((-1191 |#2|) (-660 |#2|) (-660 |#2|)))) (-1197) (-376)) (T -940)) +((-3507 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *5)) (-4 *5 (-376)) (-5 *2 (-1191 *5)) (-5 *1 (-940 *4 *5)) (-14 *4 (-1197)))) (-3507 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1256 *4 *5)) (-5 *3 (-660 *5)) (-14 *4 (-1197)) (-4 *5 (-376)) (-5 *1 (-940 *4 *5))))) +((-3142 ((|#2| (-660 |#1|) (-660 |#1|)) 28 T ELT))) +(((-941 |#1| |#2|) (-10 -7 (-15 -3142 (|#2| (-660 |#1|) (-660 |#1|)))) (-376) (-1263 |#1|)) (T -941)) +((-3142 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-376)) (-4 *2 (-1263 *4)) (-5 *1 (-941 *4 *2))))) +((-3144 (((-558) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-1179)) 175 T ELT)) (-3163 ((|#4| |#4|) 194 T ELT)) (-3148 (((-660 (-419 (-964 |#1|))) (-660 (-1197))) 146 T ELT)) (-3162 (((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))) (-708 |#4|) (-660 (-419 (-964 |#1|))) (-660 (-660 |#4|)) (-790) (-790) (-558)) 88 T ELT)) (-3152 (((-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))) (-660 |#4|)) 69 T ELT)) (-3161 (((-708 |#4|) (-708 |#4|) (-660 |#4|)) 65 T ELT)) (-3145 (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-1179)) 187 T ELT)) (-3143 (((-558) (-708 |#4|) (-937) (-1179)) 167 T ELT) (((-558) (-708 |#4|) (-660 (-1197)) (-937) (-1179)) 166 T ELT) (((-558) (-708 |#4|) (-660 |#4|) (-937) (-1179)) 165 T ELT) (((-558) (-708 |#4|) (-1179)) 154 T ELT) (((-558) (-708 |#4|) (-660 (-1197)) (-1179)) 153 T ELT) (((-558) (-708 |#4|) (-660 |#4|) (-1179)) 152 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-937)) 151 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 (-1197)) (-937)) 150 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 |#4|) (-937)) 149 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|)) 148 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 (-1197))) 147 T ELT) (((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 |#4|)) 143 T ELT)) (-3149 ((|#4| (-964 |#1|)) 80 T ELT)) (-3159 (((-114) (-660 |#4|) (-660 (-660 |#4|))) 191 T ELT)) (-3158 (((-660 (-660 (-558))) (-558) (-558)) 161 T ELT)) (-3157 (((-660 (-660 |#4|)) (-660 (-660 |#4|))) 106 T ELT)) (-3156 (((-790) (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 |#4|))))) 100 T ELT)) (-3155 (((-790) (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 |#4|))))) 99 T ELT)) (-3164 (((-114) (-660 (-964 |#1|))) 19 T ELT) (((-114) (-660 |#4|)) 15 T ELT)) (-3150 (((-2 (|:| |sysok| (-114)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|)) 84 T ELT)) (-3154 (((-660 |#4|) |#4|) 57 T ELT)) (-3147 (((-660 (-419 (-964 |#1|))) (-660 |#4|)) 142 T ELT) (((-708 (-419 (-964 |#1|))) (-708 |#4|)) 66 T ELT) (((-419 (-964 |#1|)) |#4|) 139 T ELT)) (-3146 (((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))))))) (|:| |rgsz| (-558))) (-708 |#4|) (-660 (-419 (-964 |#1|))) (-790) (-1179) (-558)) 112 T ELT)) (-3151 (((-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 |#4|)))) (-708 |#4|) (-790)) 98 T ELT)) (-3160 (((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) (-708 |#4|) (-790)) 121 T ELT)) (-3153 (((-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))) (-2 (|:| -1782 (-708 (-419 (-964 |#1|)))) (|:| |vec| (-660 (-419 (-964 |#1|)))) (|:| -3510 (-790)) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) 56 T ELT))) +(((-942 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3143 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 |#4|))) (-15 -3143 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 (-1197)))) (-15 -3143 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|))) (-15 -3143 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 |#4|) (-937))) (-15 -3143 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-660 (-1197)) (-937))) (-15 -3143 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-708 |#4|) (-937))) (-15 -3143 ((-558) (-708 |#4|) (-660 |#4|) (-1179))) (-15 -3143 ((-558) (-708 |#4|) (-660 (-1197)) (-1179))) (-15 -3143 ((-558) (-708 |#4|) (-1179))) (-15 -3143 ((-558) (-708 |#4|) (-660 |#4|) (-937) (-1179))) (-15 -3143 ((-558) (-708 |#4|) (-660 (-1197)) (-937) (-1179))) (-15 -3143 ((-558) (-708 |#4|) (-937) (-1179))) (-15 -3144 ((-558) (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-1179))) (-15 -3145 ((-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|))))))))) (-1179))) (-15 -3146 ((-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))))))) (|:| |rgsz| (-558))) (-708 |#4|) (-660 (-419 (-964 |#1|))) (-790) (-1179) (-558))) (-15 -3147 ((-419 (-964 |#1|)) |#4|)) (-15 -3147 ((-708 (-419 (-964 |#1|))) (-708 |#4|))) (-15 -3147 ((-660 (-419 (-964 |#1|))) (-660 |#4|))) (-15 -3148 ((-660 (-419 (-964 |#1|))) (-660 (-1197)))) (-15 -3149 (|#4| (-964 |#1|))) (-15 -3150 ((-2 (|:| |sysok| (-114)) (|:| |z0| (-660 |#4|)) (|:| |n0| (-660 |#4|))) (-660 |#4|) (-660 |#4|))) (-15 -3151 ((-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 |#4|)))) (-708 |#4|) (-790))) (-15 -3152 ((-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))) (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))) (-660 |#4|))) (-15 -3153 ((-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))) (-2 (|:| -1782 (-708 (-419 (-964 |#1|)))) (|:| |vec| (-660 (-419 (-964 |#1|)))) (|:| -3510 (-790)) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (-15 -3154 ((-660 |#4|) |#4|)) (-15 -3155 ((-790) (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -3156 ((-790) (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 |#4|)))))) (-15 -3157 ((-660 (-660 |#4|)) (-660 (-660 |#4|)))) (-15 -3158 ((-660 (-660 (-558))) (-558) (-558))) (-15 -3159 ((-114) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -3160 ((-660 (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) (-708 |#4|) (-790))) (-15 -3161 ((-708 |#4|) (-708 |#4|) (-660 |#4|))) (-15 -3162 ((-2 (|:| |eqzro| (-660 |#4|)) (|:| |neqzro| (-660 |#4|)) (|:| |wcond| (-660 (-964 |#1|))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 |#1|)))) (|:| -2221 (-660 (-1287 (-419 (-964 |#1|)))))))) (-2 (|:| |det| |#4|) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))) (-708 |#4|) (-660 (-419 (-964 |#1|))) (-660 (-660 |#4|)) (-790) (-790) (-558))) (-15 -3163 (|#4| |#4|)) (-15 -3164 ((-114) (-660 |#4|))) (-15 -3164 ((-114) (-660 (-964 |#1|))))) (-13 (-319) (-149)) (-13 (-860) (-630 (-1197))) (-814) (-968 |#1| |#3| |#2|)) (T -942)) +((-3164 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-114)) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3164 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-114)) (-5 *1 (-942 *4 *5 *6 *7)))) (-3163 (*1 *2 *2) (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-860) (-630 (-1197)))) (-4 *5 (-814)) (-5 *1 (-942 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4)))) (-3162 (*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 (-2 (|:| |det| *12) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) (-5 *4 (-708 *12)) (-5 *5 (-660 (-419 (-964 *9)))) (-5 *6 (-660 (-660 *12))) (-5 *7 (-790)) (-5 *8 (-558)) (-4 *9 (-13 (-319) (-149))) (-4 *12 (-968 *9 *11 *10)) (-4 *10 (-13 (-860) (-630 (-1197)))) (-4 *11 (-814)) (-5 *2 (-2 (|:| |eqzro| (-660 *12)) (|:| |neqzro| (-660 *12)) (|:| |wcond| (-660 (-964 *9))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *9)))) (|:| -2221 (-660 (-1287 (-419 (-964 *9))))))))) (-5 *1 (-942 *9 *10 *11 *12)))) (-3161 (*1 *2 *2 *3) (-12 (-5 *2 (-708 *7)) (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *1 (-942 *4 *5 *6 *7)))) (-3160 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *8)) (-5 *4 (-790)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-660 (-2 (|:| |det| *8) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3159 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-114)) (-5 *1 (-942 *5 *6 *7 *8)))) (-3158 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-660 (-660 (-558)))) (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-558)) (-4 *7 (-968 *4 *6 *5)))) (-3157 (*1 *2 *2) (-12 (-5 *2 (-660 (-660 *6))) (-4 *6 (-968 *3 *5 *4)) (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-860) (-630 (-1197)))) (-4 *5 (-814)) (-5 *1 (-942 *3 *4 *5 *6)))) (-3156 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| *7) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-790)) (-5 *1 (-942 *4 *5 *6 *7)))) (-3155 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| *7) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 *7))))) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-790)) (-5 *1 (-942 *4 *5 *6 *7)))) (-3154 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-660 *3)) (-5 *1 (-942 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-3153 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -1782 (-708 (-419 (-964 *4)))) (|:| |vec| (-660 (-419 (-964 *4)))) (|:| -3510 (-790)) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) (|:| -2221 (-660 (-1287 (-419 (-964 *4))))))) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3152 (*1 *2 *2 *3) (-12 (-5 *2 (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) (|:| -2221 (-660 (-1287 (-419 (-964 *4))))))) (-5 *3 (-660 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-968 *4 *6 *5)) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *1 (-942 *4 *5 *6 *7)))) (-3151 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-660 (-2 (|:| -3510 (-790)) (|:| |eqns| (-660 (-2 (|:| |det| *8) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558)))))) (|:| |fgb| (-660 *8))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-790)))) (-3150 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-4 *7 (-968 *4 *6 *5)) (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-660 *7)) (|:| |n0| (-660 *7)))) (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3149 (*1 *2 *3) (-12 (-5 *3 (-964 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-968 *4 *6 *5)) (-5 *1 (-942 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)))) (-3148 (*1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-660 (-419 (-964 *4)))) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-660 (-419 (-964 *4)))) (-5 *1 (-942 *4 *5 *6 *7)))) (-3147 (*1 *2 *3) (-12 (-5 *3 (-708 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-708 (-419 (-964 *4)))) (-5 *1 (-942 *4 *5 *6 *7)))) (-3147 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-419 (-964 *4))) (-5 *1 (-942 *4 *5 *6 *3)) (-4 *3 (-968 *4 *6 *5)))) (-3146 (*1 *2 *3 *4 *5 *6 *7) (-12 (-5 *3 (-708 *11)) (-5 *4 (-660 (-419 (-964 *8)))) (-5 *5 (-790)) (-5 *6 (-1179)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-968 *8 *10 *9)) (-4 *9 (-13 (-860) (-630 (-1197)))) (-4 *10 (-814)) (-5 *2 (-2 (|:| |rgl| (-660 (-2 (|:| |eqzro| (-660 *11)) (|:| |neqzro| (-660 *11)) (|:| |wcond| (-660 (-964 *8))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *8)))) (|:| -2221 (-660 (-1287 (-419 (-964 *8)))))))))) (|:| |rgsz| (-558)))) (-5 *1 (-942 *8 *9 *10 *11)) (-5 *7 (-558)))) (-3145 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) (|:| |wcond| (-660 (-964 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) (|:| -2221 (-660 (-1287 (-419 (-964 *4)))))))))) (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5)))) (-3144 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) (-5 *4 (-1179)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-968 *5 *7 *6)) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *5 *6 *7 *8)))) (-3143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *9)) (-5 *4 (-937)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *6 *7 *8 *9)))) (-3143 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-708 *10)) (-5 *4 (-660 (-1197))) (-5 *5 (-937)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-860) (-630 (-1197)))) (-4 *9 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *7 *8 *9 *10)))) (-3143 (*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-708 *10)) (-5 *4 (-660 *10)) (-5 *5 (-937)) (-5 *6 (-1179)) (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) (-4 *8 (-13 (-860) (-630 (-1197)))) (-4 *9 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *7 *8 *9 *10)))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *5 *6 *7 *8)))) (-3143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *9)) (-5 *4 (-660 (-1197))) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *6 *7 *8 *9)))) (-3143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *9)) (-5 *4 (-660 *9)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *6 *7 *8 *9)))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *8)) (-5 *4 (-937)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *9)) (-5 *4 (-660 (-1197))) (-5 *5 (-937)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) (|:| |wcond| (-660 (-964 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *6)))) (|:| -2221 (-660 (-1287 (-419 (-964 *6)))))))))) (-5 *1 (-942 *6 *7 *8 *9)))) (-3143 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-708 *9)) (-5 *5 (-937)) (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) (|:| |wcond| (-660 (-964 *6))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *6)))) (|:| -2221 (-660 (-1287 (-419 (-964 *6)))))))))) (-5 *1 (-942 *6 *7 *8 *9)) (-5 *4 (-660 *9)))) (-3143 (*1 *2 *3) (-12 (-5 *3 (-708 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) (|:| |wcond| (-660 (-964 *4))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) (|:| -2221 (-660 (-1287 (-419 (-964 *4)))))))))) (-5 *1 (-942 *4 *5 *6 *7)))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *8)) (-5 *4 (-660 (-1197))) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) (-5 *1 (-942 *5 *6 *7 *8)))) (-3143 (*1 *2 *3 *4) (-12 (-5 *3 (-708 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-660 (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) +((-4303 (($ $ (-1109 (-229))) 125 T ELT) (($ $ (-1109 (-229)) (-1109 (-229))) 126 T ELT)) (-3296 (((-1109 (-229)) $) 73 T ELT)) (-3297 (((-1109 (-229)) $) 72 T ELT)) (-3188 (((-1109 (-229)) $) 74 T ELT)) (-3169 (((-558) (-558)) 66 T ELT)) (-3173 (((-558) (-558)) 61 T ELT)) (-3171 (((-558) (-558)) 64 T ELT)) (-3167 (((-114) (-114)) 68 T ELT)) (-3170 (((-558)) 65 T ELT)) (-3535 (($ $ (-1109 (-229))) 129 T ELT) (($ $) 130 T ELT)) (-3190 (($ (-1 (-961 (-229)) (-229)) (-1109 (-229))) 148 T ELT) (($ (-1 (-961 (-229)) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229))) 149 T ELT)) (-3176 (($ (-1 (-229) (-229)) (-1109 (-229))) 156 T ELT) (($ (-1 (-229) (-229))) 160 T ELT)) (-3189 (($ (-1 (-229) (-229)) (-1109 (-229))) 144 T ELT) (($ (-1 (-229) (-229)) (-1109 (-229)) (-1109 (-229))) 145 T ELT) (($ (-660 (-1 (-229) (-229))) (-1109 (-229))) 153 T ELT) (($ (-660 (-1 (-229) (-229))) (-1109 (-229)) (-1109 (-229))) 154 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229))) 146 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229))) 147 T ELT) (($ $ (-1109 (-229))) 131 T ELT)) (-3175 (((-114) $) 69 T ELT)) (-3166 (((-558)) 70 T ELT)) (-3174 (((-558)) 59 T ELT)) (-3172 (((-558)) 62 T ELT)) (-3298 (((-660 (-660 (-961 (-229)))) $) 35 T ELT)) (-3165 (((-114) (-114)) 71 T ELT)) (-4375 (((-876) $) 174 T ELT)) (-3168 (((-114)) 67 T ELT))) +(((-943) (-13 (-973) (-10 -8 (-15 -3189 ($ (-1 (-229) (-229)) (-1109 (-229)))) (-15 -3189 ($ (-1 (-229) (-229)) (-1109 (-229)) (-1109 (-229)))) (-15 -3189 ($ (-660 (-1 (-229) (-229))) (-1109 (-229)))) (-15 -3189 ($ (-660 (-1 (-229) (-229))) (-1109 (-229)) (-1109 (-229)))) (-15 -3189 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229)))) (-15 -3189 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)))) (-15 -3190 ($ (-1 (-961 (-229)) (-229)) (-1109 (-229)))) (-15 -3190 ($ (-1 (-961 (-229)) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)))) (-15 -3176 ($ (-1 (-229) (-229)) (-1109 (-229)))) (-15 -3176 ($ (-1 (-229) (-229)))) (-15 -3189 ($ $ (-1109 (-229)))) (-15 -3175 ((-114) $)) (-15 -4303 ($ $ (-1109 (-229)))) (-15 -4303 ($ $ (-1109 (-229)) (-1109 (-229)))) (-15 -3535 ($ $ (-1109 (-229)))) (-15 -3535 ($ $)) (-15 -3188 ((-1109 (-229)) $)) (-15 -3174 ((-558))) (-15 -3173 ((-558) (-558))) (-15 -3172 ((-558))) (-15 -3171 ((-558) (-558))) (-15 -3170 ((-558))) (-15 -3169 ((-558) (-558))) (-15 -3168 ((-114))) (-15 -3167 ((-114) (-114))) (-15 -3166 ((-558))) (-15 -3165 ((-114) (-114)))))) (T -943)) +((-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3189 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3189 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1 (-229) (-229)))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3189 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-1 (-229) (-229)))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3189 (*1 *1 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3189 (*1 *1 *2 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3190 (*1 *1 *2 *3 *3 *3) (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3176 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) (-3176 (*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-943)))) (-3189 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) (-3175 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-943)))) (-4303 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) (-4303 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) (-3535 (*1 *1 *1) (-5 *1 (-943))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) (-3174 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3173 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3172 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3171 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3170 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3169 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3168 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-943)))) (-3167 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-943)))) (-3166 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943)))) (-3165 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-943))))) +((-3176 (((-943) |#1| (-1197)) 17 T ELT) (((-943) |#1| (-1197) (-1109 (-229))) 21 T ELT)) (-3189 (((-943) |#1| |#1| (-1197) (-1109 (-229))) 19 T ELT) (((-943) |#1| (-1197) (-1109 (-229))) 15 T ELT))) +(((-944 |#1|) (-10 -7 (-15 -3189 ((-943) |#1| (-1197) (-1109 (-229)))) (-15 -3189 ((-943) |#1| |#1| (-1197) (-1109 (-229)))) (-15 -3176 ((-943) |#1| (-1197) (-1109 (-229)))) (-15 -3176 ((-943) |#1| (-1197)))) (-630 (-547))) (T -944)) +((-3176 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-5 *2 (-943)) (-5 *1 (-944 *3)) (-4 *3 (-630 (-547))))) (-3176 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1109 (-229))) (-5 *2 (-943)) (-5 *1 (-944 *3)) (-4 *3 (-630 (-547))))) (-3189 (*1 *2 *3 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1109 (-229))) (-5 *2 (-943)) (-5 *1 (-944 *3)) (-4 *3 (-630 (-547))))) (-3189 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1197)) (-5 *5 (-1109 (-229))) (-5 *2 (-943)) (-5 *1 (-944 *3)) (-4 *3 (-630 (-547)))))) +((-4303 (($ $ (-1109 (-229)) (-1109 (-229)) (-1109 (-229))) 123 T ELT)) (-3295 (((-1109 (-229)) $) 64 T ELT)) (-3296 (((-1109 (-229)) $) 63 T ELT)) (-3297 (((-1109 (-229)) $) 62 T ELT)) (-3187 (((-660 (-660 (-229))) $) 69 T ELT)) (-3188 (((-1109 (-229)) $) 65 T ELT)) (-3181 (((-558) (-558)) 57 T ELT)) (-3185 (((-558) (-558)) 52 T ELT)) (-3183 (((-558) (-558)) 55 T ELT)) (-3179 (((-114) (-114)) 59 T ELT)) (-3182 (((-558)) 56 T ELT)) (-3535 (($ $ (-1109 (-229))) 126 T ELT) (($ $) 127 T ELT)) (-3190 (($ (-1 (-961 (-229)) (-229)) (-1109 (-229))) 133 T ELT) (($ (-1 (-961 (-229)) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229))) 134 T ELT)) (-3189 (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229))) 140 T ELT) (($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229))) 141 T ELT) (($ $ (-1109 (-229))) 129 T ELT)) (-3178 (((-558)) 60 T ELT)) (-3186 (((-558)) 50 T ELT)) (-3184 (((-558)) 53 T ELT)) (-3298 (((-660 (-660 (-961 (-229)))) $) 157 T ELT)) (-3177 (((-114) (-114)) 61 T ELT)) (-4375 (((-876) $) 155 T ELT)) (-3180 (((-114)) 58 T ELT))) +(((-945) (-13 (-994) (-10 -8 (-15 -3190 ($ (-1 (-961 (-229)) (-229)) (-1109 (-229)))) (-15 -3190 ($ (-1 (-961 (-229)) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)))) (-15 -3189 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229)))) (-15 -3189 ($ (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1 (-229) (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)) (-1109 (-229)))) (-15 -3189 ($ $ (-1109 (-229)))) (-15 -4303 ($ $ (-1109 (-229)) (-1109 (-229)) (-1109 (-229)))) (-15 -3535 ($ $ (-1109 (-229)))) (-15 -3535 ($ $)) (-15 -3188 ((-1109 (-229)) $)) (-15 -3187 ((-660 (-660 (-229))) $)) (-15 -3186 ((-558))) (-15 -3185 ((-558) (-558))) (-15 -3184 ((-558))) (-15 -3183 ((-558) (-558))) (-15 -3182 ((-558))) (-15 -3181 ((-558) (-558))) (-15 -3180 ((-114))) (-15 -3179 ((-114) (-114))) (-15 -3178 ((-558))) (-15 -3177 ((-114) (-114)))))) (T -945)) +((-3190 (*1 *1 *2 *3) (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-945)))) (-3190 (*1 *1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-945)))) (-3189 (*1 *1 *2 *2 *2 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-945)))) (-3189 (*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-945)))) (-3189 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) (-4303 (*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) (-3535 (*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) (-3535 (*1 *1 *1) (-5 *1 (-945))) (-3188 (*1 *2 *1) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) (-3187 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-229)))) (-5 *1 (-945)))) (-3186 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3185 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3184 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3183 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3182 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3181 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3180 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-945)))) (-3179 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-945)))) (-3178 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945)))) (-3177 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-945))))) +((-3191 (((-660 (-1109 (-229))) (-660 (-660 (-961 (-229))))) 34 T ELT))) +(((-946) (-10 -7 (-15 -3191 ((-660 (-1109 (-229))) (-660 (-660 (-961 (-229)))))))) (T -946)) +((-3191 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *2 (-660 (-1109 (-229)))) (-5 *1 (-946))))) +((-3193 (((-326 (-558)) (-1197)) 16 T ELT)) (-3194 (((-326 (-558)) (-1197)) 14 T ELT)) (-4381 (((-326 (-558)) (-1197)) 12 T ELT)) (-3192 (((-326 (-558)) (-1197) (-518)) 19 T ELT))) +(((-947) (-10 -7 (-15 -3192 ((-326 (-558)) (-1197) (-518))) (-15 -4381 ((-326 (-558)) (-1197))) (-15 -3193 ((-326 (-558)) (-1197))) (-15 -3194 ((-326 (-558)) (-1197))))) (T -947)) +((-3194 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) (-3193 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) (-4381 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) (-3192 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-558))) (-5 *1 (-947))))) +((-3193 ((|#2| |#2|) 28 T ELT)) (-3194 ((|#2| |#2|) 29 T ELT)) (-4381 ((|#2| |#2|) 27 T ELT)) (-3192 ((|#2| |#2| (-518)) 26 T ELT))) +(((-948 |#1| |#2|) (-10 -7 (-15 -3192 (|#2| |#2| (-518))) (-15 -4381 (|#2| |#2|)) (-15 -3193 (|#2| |#2|)) (-15 -3194 (|#2| |#2|))) (-1121) (-433 |#1|)) (T -948)) +((-3194 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-433 *3)))) (-3193 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-433 *3)))) (-4381 (*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-433 *3)))) (-3192 (*1 *2 *2 *3) (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) (-4 *2 (-433 *4))))) +((-3196 (((-902 |#1| |#3|) |#2| (-904 |#1|) (-902 |#1| |#3|)) 25 T ELT)) (-3195 (((-1 (-114) |#2|) (-1 (-114) |#3|)) 13 T ELT))) +(((-949 |#1| |#2| |#3|) (-10 -7 (-15 -3195 ((-1 (-114) |#2|) (-1 (-114) |#3|))) (-15 -3196 ((-902 |#1| |#3|) |#2| (-904 |#1|) (-902 |#1| |#3|)))) (-1121) (-900 |#1|) (-13 (-1121) (-1058 |#2|))) (T -949)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1058 *3))) (-4 *3 (-900 *5)) (-5 *1 (-949 *5 *3 *6)))) (-3195 (*1 *2 *3) (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1121) (-1058 *5))) (-4 *5 (-900 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-114) *5)) (-5 *1 (-949 *4 *5 *6))))) +((-3196 (((-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|)) 30 T ELT))) +(((-950 |#1| |#2| |#3|) (-10 -7 (-15 -3196 ((-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|)))) (-1121) (-13 (-569) (-900 |#1|)) (-13 (-433 |#2|) (-630 (-904 |#1|)) (-900 |#1|) (-1058 (-627 $)))) (T -950)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-433 *6) (-630 *4) (-900 *5) (-1058 (-627 $)))) (-5 *4 (-904 *5)) (-4 *6 (-13 (-569) (-900 *5))) (-5 *1 (-950 *5 *6 *3))))) +((-3196 (((-902 (-558) |#1|) |#1| (-904 (-558)) (-902 (-558) |#1|)) 13 T ELT))) +(((-951 |#1|) (-10 -7 (-15 -3196 ((-902 (-558) |#1|) |#1| (-904 (-558)) (-902 (-558) |#1|)))) (-557)) (T -951)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 (-558) *3)) (-5 *4 (-904 (-558))) (-4 *3 (-557)) (-5 *1 (-951 *3))))) +((-3196 (((-902 |#1| |#2|) (-627 |#2|) (-904 |#1|) (-902 |#1| |#2|)) 57 T ELT))) +(((-952 |#1| |#2|) (-10 -7 (-15 -3196 ((-902 |#1| |#2|) (-627 |#2|) (-904 |#1|) (-902 |#1| |#2|)))) (-1121) (-13 (-1121) (-1058 (-627 $)) (-630 (-904 |#1|)) (-900 |#1|))) (T -952)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-627 *6)) (-4 *5 (-1121)) (-4 *6 (-13 (-1121) (-1058 (-627 $)) (-630 *4) (-900 *5))) (-5 *4 (-904 *5)) (-5 *1 (-952 *5 *6))))) +((-3196 (((-899 |#1| |#2| |#3|) |#3| (-904 |#1|) (-899 |#1| |#2| |#3|)) 17 T ELT))) +(((-953 |#1| |#2| |#3|) (-10 -7 (-15 -3196 ((-899 |#1| |#2| |#3|) |#3| (-904 |#1|) (-899 |#1| |#2| |#3|)))) (-1121) (-900 |#1|) (-685 |#2|)) (T -953)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-899 *5 *6 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *6 (-900 *5)) (-4 *3 (-685 *6)) (-5 *1 (-953 *5 *6 *3))))) +((-3196 (((-902 |#1| |#5|) |#5| (-904 |#1|) (-902 |#1| |#5|)) 17 (|has| |#3| (-900 |#1|)) ELT) (((-902 |#1| |#5|) |#5| (-904 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-904 |#1|) (-902 |#1| |#5|))) 16 T ELT))) +(((-954 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3196 ((-902 |#1| |#5|) |#5| (-904 |#1|) (-902 |#1| |#5|) (-1 (-902 |#1| |#5|) |#3| (-904 |#1|) (-902 |#1| |#5|)))) (IF (|has| |#3| (-900 |#1|)) (-15 -3196 ((-902 |#1| |#5|) |#5| (-904 |#1|) (-902 |#1| |#5|))) |%noBranch|)) (-1121) (-814) (-860) (-13 (-1069) (-900 |#1|)) (-13 (-968 |#4| |#2| |#3|) (-630 (-904 |#1|)))) (T -954)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-13 (-968 *8 *6 *7) (-630 *4))) (-5 *4 (-904 *5)) (-4 *7 (-900 *5)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-13 (-1069) (-900 *5))) (-5 *1 (-954 *5 *6 *7 *8 *3)))) (-3196 (*1 *2 *3 *4 *2 *5) (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-904 *6) (-902 *6 *3))) (-4 *8 (-860)) (-5 *2 (-902 *6 *3)) (-5 *4 (-904 *6)) (-4 *6 (-1121)) (-4 *3 (-13 (-968 *9 *7 *8) (-630 *4))) (-4 *7 (-814)) (-4 *9 (-13 (-1069) (-900 *6))) (-5 *1 (-954 *6 *7 *8 *9 *3))))) +((-3626 (((-326 (-558)) (-1197) (-660 (-1 (-114) |#1|))) 18 T ELT) (((-326 (-558)) (-1197) (-1 (-114) |#1|)) 15 T ELT))) +(((-955 |#1|) (-10 -7 (-15 -3626 ((-326 (-558)) (-1197) (-1 (-114) |#1|))) (-15 -3626 ((-326 (-558)) (-1197) (-660 (-1 (-114) |#1|))))) (-1237)) (T -955)) +((-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-660 (-1 (-114) *5))) (-4 *5 (-1237)) (-5 *2 (-326 (-558))) (-5 *1 (-955 *5)))) (-3626 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1237)) (-5 *2 (-326 (-558))) (-5 *1 (-955 *5))))) +((-3626 ((|#2| |#2| (-660 (-1 (-114) |#3|))) 12 T ELT) ((|#2| |#2| (-1 (-114) |#3|)) 13 T ELT))) +(((-956 |#1| |#2| |#3|) (-10 -7 (-15 -3626 (|#2| |#2| (-1 (-114) |#3|))) (-15 -3626 (|#2| |#2| (-660 (-1 (-114) |#3|))))) (-1121) (-433 |#1|) (-1237)) (T -956)) +((-3626 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-1 (-114) *5))) (-4 *5 (-1237)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-433 *4)))) (-3626 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1237)) (-4 *4 (-1121)) (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-433 *4))))) +((-3196 (((-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|)) 25 T ELT))) +(((-957 |#1| |#2| |#3|) (-10 -7 (-15 -3196 ((-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|)))) (-1121) (-13 (-569) (-900 |#1|) (-630 (-904 |#1|))) (-1011 |#2|)) (T -957)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1011 *6)) (-4 *6 (-13 (-569) (-900 *5) (-630 *4))) (-5 *4 (-904 *5)) (-5 *1 (-957 *5 *6 *3))))) +((-3196 (((-902 |#1| (-1197)) (-1197) (-904 |#1|) (-902 |#1| (-1197))) 18 T ELT))) +(((-958 |#1|) (-10 -7 (-15 -3196 ((-902 |#1| (-1197)) (-1197) (-904 |#1|) (-902 |#1| (-1197))))) (-1121)) (T -958)) +((-3196 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-902 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-5 *1 (-958 *5))))) +((-3197 (((-902 |#1| |#3|) (-660 |#3|) (-660 (-904 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|))) 34 T ELT)) (-3196 (((-902 |#1| |#3|) (-660 |#3|) (-660 (-904 |#1|)) (-1 |#3| (-660 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|))) 33 T ELT))) +(((-959 |#1| |#2| |#3|) (-10 -7 (-15 -3196 ((-902 |#1| |#3|) (-660 |#3|) (-660 (-904 |#1|)) (-1 |#3| (-660 |#3|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|)))) (-15 -3197 ((-902 |#1| |#3|) (-660 |#3|) (-660 (-904 |#1|)) (-902 |#1| |#3|) (-1 (-902 |#1| |#3|) |#3| (-904 |#1|) (-902 |#1| |#3|))))) (-1121) (-1069) (-13 (-1069) (-630 (-904 |#1|)) (-1058 |#2|))) (T -959)) +((-3197 (*1 *2 *3 *4 *2 *5) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-904 *6))) (-5 *5 (-1 (-902 *6 *8) *8 (-904 *6) (-902 *6 *8))) (-4 *6 (-1121)) (-4 *8 (-13 (-1069) (-630 (-904 *6)) (-1058 *7))) (-5 *2 (-902 *6 *8)) (-4 *7 (-1069)) (-5 *1 (-959 *6 *7 *8)))) (-3196 (*1 *2 *3 *4 *5 *2 *6) (-12 (-5 *4 (-660 (-904 *7))) (-5 *5 (-1 *9 (-660 *9))) (-5 *6 (-1 (-902 *7 *9) *9 (-904 *7) (-902 *7 *9))) (-4 *7 (-1121)) (-4 *9 (-13 (-1069) (-630 (-904 *7)) (-1058 *8))) (-5 *2 (-902 *7 *9)) (-5 *3 (-660 *9)) (-4 *8 (-1069)) (-5 *1 (-959 *7 *8 *9))))) +((-3205 (((-1191 (-419 (-558))) (-558)) 80 T ELT)) (-3204 (((-1191 (-558)) (-558)) 83 T ELT)) (-3753 (((-1191 (-558)) (-558)) 77 T ELT)) (-3203 (((-558) (-1191 (-558))) 73 T ELT)) (-3202 (((-1191 (-419 (-558))) (-558)) 66 T ELT)) (-3201 (((-1191 (-558)) (-558)) 49 T ELT)) (-3200 (((-1191 (-558)) (-558)) 85 T ELT)) (-3199 (((-1191 (-558)) (-558)) 84 T ELT)) (-3198 (((-1191 (-419 (-558))) (-558)) 68 T ELT))) +(((-960) (-10 -7 (-15 -3198 ((-1191 (-419 (-558))) (-558))) (-15 -3199 ((-1191 (-558)) (-558))) (-15 -3200 ((-1191 (-558)) (-558))) (-15 -3201 ((-1191 (-558)) (-558))) (-15 -3202 ((-1191 (-419 (-558))) (-558))) (-15 -3203 ((-558) (-1191 (-558)))) (-15 -3753 ((-1191 (-558)) (-558))) (-15 -3204 ((-1191 (-558)) (-558))) (-15 -3205 ((-1191 (-419 (-558))) (-558))))) (T -960)) +((-3205 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3204 (*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3753 (*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3203 (*1 *2 *3) (-12 (-5 *3 (-1191 (-558))) (-5 *2 (-558)) (-5 *1 (-960)))) (-3202 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3201 (*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3200 (*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3199 (*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558)))) (-3198 (*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-960)) (-5 *3 (-558))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4267 (($ (-790)) NIL (|has| |#1| (-23)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-4135 (($ (-660 |#1|)) 9 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4264 (((-708 |#1|) $ $) NIL (|has| |#1| (-1069)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))) ELT)) (-4262 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))) ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-660 |#1|)) 25 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 18 T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4265 ((|#1| $ $) NIL (|has| |#1| (-1069)) ELT)) (-4340 (((-937) $) 13 T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4263 (($ $ $) 23 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT) (($ (-660 |#1|)) 14 T ELT)) (-3949 (($ (-660 |#1|)) NIL T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) 24 T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4266 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-745)) ELT) (($ $ |#1|) NIL (|has| |#1| (-745)) ELT)) (-4386 (((-790) $) 11 (|has| $ (-6 -4424)) ELT))) +(((-961 |#1|) (-1000 |#1|) (-1069)) (T -961)) +NIL +((-3208 (((-493 |#1| |#2|) (-964 |#2|)) 22 T ELT)) (-3211 (((-255 |#1| |#2|) (-964 |#2|)) 35 T ELT)) (-3209 (((-964 |#2|) (-493 |#1| |#2|)) 27 T ELT)) (-3207 (((-255 |#1| |#2|) (-493 |#1| |#2|)) 57 T ELT)) (-3210 (((-964 |#2|) (-255 |#1| |#2|)) 32 T ELT)) (-3206 (((-493 |#1| |#2|) (-255 |#1| |#2|)) 48 T ELT))) +(((-962 |#1| |#2|) (-10 -7 (-15 -3206 ((-493 |#1| |#2|) (-255 |#1| |#2|))) (-15 -3207 ((-255 |#1| |#2|) (-493 |#1| |#2|))) (-15 -3208 ((-493 |#1| |#2|) (-964 |#2|))) (-15 -3209 ((-964 |#2|) (-493 |#1| |#2|))) (-15 -3210 ((-964 |#2|) (-255 |#1| |#2|))) (-15 -3211 ((-255 |#1| |#2|) (-964 |#2|)))) (-660 (-1197)) (-1069)) (T -962)) +((-3211 (*1 *2 *3) (-12 (-5 *3 (-964 *5)) (-4 *5 (-1069)) (-5 *2 (-255 *4 *5)) (-5 *1 (-962 *4 *5)) (-14 *4 (-660 (-1197))))) (-3210 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) (-5 *2 (-964 *5)) (-5 *1 (-962 *4 *5)))) (-3209 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) (-5 *2 (-964 *5)) (-5 *1 (-962 *4 *5)))) (-3208 (*1 *2 *3) (-12 (-5 *3 (-964 *5)) (-4 *5 (-1069)) (-5 *2 (-493 *4 *5)) (-5 *1 (-962 *4 *5)) (-14 *4 (-660 (-1197))))) (-3207 (*1 *2 *3) (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) (-5 *2 (-255 *4 *5)) (-5 *1 (-962 *4 *5)))) (-3206 (*1 *2 *3) (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) (-5 *2 (-493 *4 *5)) (-5 *1 (-962 *4 *5))))) +((-3212 (((-660 |#2|) |#2| |#2|) 10 T ELT)) (-3215 (((-790) (-660 |#1|)) 47 (|has| |#1| (-859)) ELT)) (-3213 (((-660 |#2|) |#2|) 11 T ELT)) (-3216 (((-790) (-660 |#1|) (-558) (-558)) 52 (|has| |#1| (-859)) ELT)) (-3214 ((|#1| |#2|) 37 (|has| |#1| (-859)) ELT))) +(((-963 |#1| |#2|) (-10 -7 (-15 -3212 ((-660 |#2|) |#2| |#2|)) (-15 -3213 ((-660 |#2|) |#2|)) (IF (|has| |#1| (-859)) (PROGN (-15 -3214 (|#1| |#2|)) (-15 -3215 ((-790) (-660 |#1|))) (-15 -3216 ((-790) (-660 |#1|) (-558) (-558)))) |%noBranch|)) (-376) (-1263 |#1|)) (T -963)) +((-3216 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-558)) (-4 *5 (-859)) (-4 *5 (-376)) (-5 *2 (-790)) (-5 *1 (-963 *5 *6)) (-4 *6 (-1263 *5)))) (-3215 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-859)) (-4 *4 (-376)) (-5 *2 (-790)) (-5 *1 (-963 *4 *5)) (-4 *5 (-1263 *4)))) (-3214 (*1 *2 *3) (-12 (-4 *2 (-376)) (-4 *2 (-859)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1263 *2)))) (-3213 (*1 *2 *3) (-12 (-4 *4 (-376)) (-5 *2 (-660 *3)) (-5 *1 (-963 *4 *3)) (-4 *3 (-1263 *4)))) (-3212 (*1 *2 *3 *3) (-12 (-4 *4 (-376)) (-5 *2 (-660 *3)) (-5 *1 (-963 *4 *3)) (-4 *3 (-1263 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1197)) $) 16 T ELT)) (-3485 (((-1191 $) $ (-1197)) 21 T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1197))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 8 T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1197) #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-1197) $) NIL T ELT)) (-4185 (($ $ $ (-1197)) NIL (|has| |#1| (-175)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1197)) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-543 (-1197)) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1197) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1197) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#1|) (-1197)) NIL T ELT) (($ (-1191 $) (-1197)) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-543 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1197)) NIL T ELT)) (-3220 (((-543 (-1197)) $) NIL T ELT) (((-790) $ (-1197)) NIL T ELT) (((-660 (-790)) $ (-660 (-1197))) NIL T ELT)) (-1804 (($ (-1 (-543 (-1197)) (-543 (-1197))) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3484 (((-3 (-1197) #1#) $) 19 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1197)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-4241 (($ $ (-1197)) 29 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1197) |#1|) NIL T ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL T ELT) (($ $ (-1197) $) NIL T ELT) (($ $ (-660 (-1197)) (-660 $)) NIL T ELT)) (-4186 (($ $ (-1197)) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT)) (-4377 (((-543 (-1197)) $) NIL T ELT) (((-790) $ (-1197)) NIL T ELT) (((-660 (-790)) $ (-660 (-1197))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-1197) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1197) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1197) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1197)) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) 25 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1197)) 27 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-543 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-964 |#1|) (-13 (-968 |#1| (-543 (-1197)) (-1197)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1197))) |%noBranch|))) (-1069)) (T -964)) +((-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-964 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069))))) +((-4387 (((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)) 19 T ELT))) +(((-965 |#1| |#2|) (-10 -7 (-15 -4387 ((-964 |#2|) (-1 |#2| |#1|) (-964 |#1|)))) (-1069) (-1069)) (T -965)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-964 *6)) (-5 *1 (-965 *5 *6))))) +((-3485 (((-1256 |#1| (-964 |#2|)) (-964 |#2|) (-1284 |#1|)) 18 T ELT))) +(((-966 |#1| |#2|) (-10 -7 (-15 -3485 ((-1256 |#1| (-964 |#2|)) (-964 |#2|) (-1284 |#1|)))) (-1197) (-1069)) (T -966)) +((-3485 (*1 *2 *3 *4) (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1069)) (-5 *2 (-1256 *5 (-964 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-964 *6))))) +((-3219 (((-790) $) 88 T ELT) (((-790) $ (-660 |#4|)) 93 T ELT)) (-4204 (($ $) 213 T ELT)) (-4400 (((-417 $) $) 205 T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 141 T ELT)) (-3574 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) 74 T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) ((|#4| $) 73 T ELT)) (-4185 (($ $ $ |#4|) 95 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) 131 T ELT) (((-708 |#2|) (-708 $)) 121 T ELT)) (-3922 (($ $) 220 T ELT) (($ $ |#4|) 223 T ELT)) (-3218 (((-660 $) $) 77 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 239 T ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 232 T ELT)) (-3221 (((-660 $) $) 34 T ELT)) (-3293 (($ |#2| |#3|) NIL T ELT) (($ $ |#4| (-790)) NIL T ELT) (($ $ (-660 |#4|) (-660 (-790))) 71 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#4|) 202 T ELT)) (-3223 (((-3 (-660 $) #1#) $) 52 T ELT)) (-3222 (((-3 (-660 $) #1#) $) 39 T ELT)) (-3224 (((-3 (-2 (|:| |var| |#4|) (|:| -2631 (-790))) #1#) $) 57 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 134 T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 147 T ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 145 T ELT)) (-4161 (((-417 $) $) 165 T ELT)) (-4197 (($ $ (-660 (-305 $))) 24 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#4| |#2|) NIL T ELT) (($ $ (-660 |#4|) (-660 |#2|)) NIL T ELT) (($ $ |#4| $) NIL T ELT) (($ $ (-660 |#4|) (-660 $)) NIL T ELT)) (-4186 (($ $ |#4|) 97 T ELT)) (-4401 (((-904 (-391)) $) 253 T ELT) (((-904 (-558)) $) 246 T ELT) (((-547) $) 261 T ELT)) (-3217 ((|#2| $) NIL T ELT) (($ $ |#4|) 215 T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 184 T ELT)) (-4106 ((|#2| $ |#3|) NIL T ELT) (($ $ |#4| (-790)) 62 T ELT) (($ $ (-660 |#4|) (-660 (-790))) 69 T ELT)) (-3102 (((-710 $) $) 194 T ELT)) (-1377 (((-114) $ $) 226 T ELT))) +(((-967 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3108 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -4400 ((-417 |#1|) |#1|)) (-15 -4204 (|#1| |#1|)) (-15 -3102 ((-710 |#1|) |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -4401 ((-904 (-558)) |#1|)) (-15 -4401 ((-904 (-391)) |#1|)) (-15 -3196 ((-902 (-558) |#1|) |#1| (-904 (-558)) (-902 (-558) |#1|))) (-15 -3196 ((-902 (-391) |#1|) |#1| (-904 (-391)) (-902 (-391) |#1|))) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -3106 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3105 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3104 ((-3 (-660 (-1191 |#1|)) #1="failed") (-660 (-1191 |#1|)) (-1191 |#1|))) (-15 -3103 ((-3 (-1287 |#1|) #1#) (-708 |#1|))) (-15 -3922 (|#1| |#1| |#4|)) (-15 -3217 (|#1| |#1| |#4|)) (-15 -4186 (|#1| |#1| |#4|)) (-15 -4185 (|#1| |#1| |#1| |#4|)) (-15 -3218 ((-660 |#1|) |#1|)) (-15 -3219 ((-790) |#1| (-660 |#4|))) (-15 -3219 ((-790) |#1|)) (-15 -3224 ((-3 (-2 (|:| |var| |#4|) (|:| -2631 (-790))) #1#) |#1|)) (-15 -3223 ((-3 (-660 |#1|) #1#) |#1|)) (-15 -3222 ((-3 (-660 |#1|) #1#) |#1|)) (-15 -3293 (|#1| |#1| (-660 |#4|) (-660 (-790)))) (-15 -3293 (|#1| |#1| |#4| (-790))) (-15 -4192 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1| |#4|)) (-15 -3221 ((-660 |#1|) |#1|)) (-15 -4106 (|#1| |#1| (-660 |#4|) (-660 (-790)))) (-15 -4106 (|#1| |#1| |#4| (-790))) (-15 -2492 ((-708 |#2|) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-708 (-558)) (-708 |#1|))) (-15 -3574 ((-3 |#4| #1#) |#1|)) (-15 -3573 (|#4| |#1|)) (-15 -4197 (|#1| |#1| (-660 |#4|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#4| |#1|)) (-15 -4197 (|#1| |#1| (-660 |#4|) (-660 |#2|))) (-15 -4197 (|#1| |#1| |#4| |#2|)) (-15 -4197 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| (-305 |#1|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -3293 (|#1| |#2| |#3|)) (-15 -4106 (|#2| |#1| |#3|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3217 (|#2| |#1|)) (-15 -3922 (|#1| |#1|)) (-15 -1377 ((-114) |#1| |#1|))) (-968 |#2| |#3| |#4|) (-1069) (-814) (-860)) (T -967)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 |#3|) $) 120 T ELT)) (-3485 (((-1191 $) $ |#3|) 135 T ELT) (((-1191 |#1|) $) 134 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) 122 T ELT) (((-790) $ (-660 |#3|)) 121 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 110 (|has| |#1| (-928)) ELT)) (-4204 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 113 (|has| |#1| (-928)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1058 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT)) (-3573 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1058 (-558))) ELT) ((|#3| $) 151 T ELT)) (-4185 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT)) (-4388 (($ $) 168 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 146 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 145 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 144 T ELT) (((-708 |#1|) (-708 $)) 143 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3922 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) 119 T ELT)) (-4152 (((-114) $) 106 (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| |#2| $) 186 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 94 (-12 (|has| |#3| (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 93 (-12 (|has| |#3| (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-2640 (((-114) $) 40 T ELT)) (-2648 (((-790) $) 183 T ELT)) (-3486 (($ (-1191 |#1|) |#3|) 127 T ELT) (($ (-1191 $) |#3|) 126 T ELT)) (-3221 (((-660 $) $) 136 T ELT)) (-4366 (((-114) $) 166 T ELT)) (-3293 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-790)) 129 T ELT) (($ $ (-660 |#3|) (-660 (-790))) 128 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#3|) 130 T ELT)) (-3220 ((|#2| $) 184 T ELT) (((-790) $ |#3|) 132 T ELT) (((-660 (-790)) $ (-660 |#3|)) 131 T ELT)) (-1804 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3484 (((-3 |#3| "failed") $) 133 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 148 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 147 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 142 T ELT) (((-708 |#1|) (-1287 $)) 141 T ELT)) (-3294 (($ $) 163 T ELT)) (-3591 ((|#1| $) 162 T ELT)) (-2101 (($ (-660 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3223 (((-3 (-660 $) "failed") $) 124 T ELT)) (-3222 (((-3 (-660 $) "failed") $) 125 T ELT)) (-3224 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-790))) "failed") $) 123 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-2004 (((-114) $) 180 T ELT)) (-2003 ((|#1| $) 181 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 105 (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 112 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 111 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) 109 (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-660 $) (-660 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-660 |#3|) (-660 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-660 |#3|) (-660 $)) 152 T ELT)) (-4186 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 |#3|) (-660 (-790))) 49 T ELT) (($ $ |#3| (-790)) 48 T ELT) (($ $ (-660 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4377 ((|#2| $) 164 T ELT) (((-790) $ |#3|) 140 T ELT) (((-660 (-790)) $ (-660 |#3|)) 139 T ELT)) (-4401 (((-904 (-391)) $) 92 (-12 (|has| |#3| (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) 91 (-12 (|has| |#3| (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 114 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (($ $) 95 (|has| |#1| (-569)) ELT) (($ (-419 (-558))) 88 (-3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4246 (((-660 |#1|) $) 182 T ELT)) (-4106 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-790)) 138 T ELT) (($ $ (-660 |#3|) (-660 (-790))) 137 T ELT)) (-3102 (((-710 $) $) 89 (-3956 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 37 T CONST)) (-1802 (($ $ $ (-790)) 187 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-660 |#3|) (-660 (-790))) 52 T ELT) (($ $ |#3| (-790)) 51 T ELT) (($ $ (-660 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-968 |#1| |#2| |#3|) (-142) (-1069) (-814) (-860)) (T -968)) +((-3922 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) (-4377 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-790)))) (-4377 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 (-790))))) (-4106 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *2 (-860)))) (-4106 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-790))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)))) (-3221 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-968 *3 *4 *5)))) (-3485 (*1 *2 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-1191 *1)) (-4 *1 (-968 *4 *5 *3)))) (-3485 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-1191 *3)))) (-3484 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3220 (*1 *2 *1 *3) (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-790)))) (-3220 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 (-790))))) (-4192 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-968 *4 *5 *3)))) (-3293 (*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *2 (-860)))) (-3293 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-790))) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)))) (-3486 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1069)) (-4 *1 (-968 *4 *5 *3)) (-4 *5 (-814)) (-4 *3 (-860)))) (-3486 (*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)))) (-3222 (*1 *2 *1) (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-968 *3 *4 *5)))) (-3223 (*1 *2 *1) (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-968 *3 *4 *5)))) (-3224 (*1 *2 *1) (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-790)))))) (-3219 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-790)))) (-3219 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-790)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *5)))) (-3218 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-968 *3 *4 *5)))) (-4185 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-175)))) (-4186 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-175)))) (-3217 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-464)))) (-3922 (*1 *1 *1 *2) (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-464)))) (-4204 (*1 *1 *1) (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) (-4400 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-417 *1)) (-4 *1 (-968 *3 *4 *5))))) +(-13 (-916 |t#3|) (-338 |t#1| |t#2|) (-321 $) (-526 |t#3| |t#1|) (-526 |t#3| $) (-1058 |t#3|) (-390 |t#1|) (-10 -8 (-15 -4377 ((-790) $ |t#3|)) (-15 -4377 ((-660 (-790)) $ (-660 |t#3|))) (-15 -4106 ($ $ |t#3| (-790))) (-15 -4106 ($ $ (-660 |t#3|) (-660 (-790)))) (-15 -3221 ((-660 $) $)) (-15 -3485 ((-1191 $) $ |t#3|)) (-15 -3485 ((-1191 |t#1|) $)) (-15 -3484 ((-3 |t#3| "failed") $)) (-15 -3220 ((-790) $ |t#3|)) (-15 -3220 ((-660 (-790)) $ (-660 |t#3|))) (-15 -4192 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |t#3|)) (-15 -3293 ($ $ |t#3| (-790))) (-15 -3293 ($ $ (-660 |t#3|) (-660 (-790)))) (-15 -3486 ($ (-1191 |t#1|) |t#3|)) (-15 -3486 ($ (-1191 $) |t#3|)) (-15 -3222 ((-3 (-660 $) "failed") $)) (-15 -3223 ((-3 (-660 $) "failed") $)) (-15 -3224 ((-3 (-2 (|:| |var| |t#3|) (|:| -2631 (-790))) "failed") $)) (-15 -3219 ((-790) $)) (-15 -3219 ((-790) $ (-660 |t#3|))) (-15 -3483 ((-660 |t#3|) $)) (-15 -3218 ((-660 $) $)) (IF (|has| |t#1| (-630 (-547))) (IF (|has| |t#3| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-630 (-904 (-558)))) (IF (|has| |t#3| (-630 (-904 (-558)))) (-6 (-630 (-904 (-558)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-630 (-904 (-391)))) (IF (|has| |t#3| (-630 (-904 (-391)))) (-6 (-630 (-904 (-391)))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-900 (-558))) (IF (|has| |t#3| (-900 (-558))) (-6 (-900 (-558))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-900 (-391))) (IF (|has| |t#3| (-900 (-391))) (-6 (-900 (-391))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4185 ($ $ $ |t#3|)) (-15 -4186 ($ $ |t#3|))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-6 (-464)) (-15 -3217 ($ $ |t#3|)) (-15 -3922 ($ $)) (-15 -3922 ($ $ |t#3|)) (-15 -4400 ((-417 $) $)) (-15 -4204 ($ $))) |%noBranch|) (IF (|has| |t#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 |#3|) . T) ((-632 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-630 (-547)) -12 (|has| |#1| (-630 (-547))) (|has| |#3| (-630 (-547)))) ((-630 (-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#3| (-630 (-904 (-391))))) ((-630 (-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#3| (-630 (-904 (-558))))) ((-302) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3956 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-745) . T) ((-910 $ |#3|) . T) ((-916 |#3|) . T) ((-918 |#3|) . T) ((-900 (-391)) -12 (|has| |#1| (-900 (-391))) (|has| |#3| (-900 (-391)))) ((-900 (-558)) -12 (|has| |#1| (-900 (-558))) (|has| |#3| (-900 (-558)))) ((-928) |has| |#1| (-928)) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1058 |#3|) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) |has| |#1| (-928))) +((-3483 (((-660 |#2|) |#5|) 40 T ELT)) (-3485 (((-1191 |#5|) |#5| |#2| (-1191 |#5|)) 23 T ELT) (((-419 (-1191 |#5|)) |#5| |#2|) 16 T ELT)) (-3486 ((|#5| (-419 (-1191 |#5|)) |#2|) 30 T ELT)) (-3484 (((-3 |#2| #1="failed") |#5|) 70 T ELT)) (-3223 (((-3 (-660 |#5|) #1#) |#5|) 64 T ELT)) (-3225 (((-3 (-2 (|:| |val| |#5|) (|:| -2631 (-558))) #1#) |#5|) 53 T ELT)) (-3222 (((-3 (-660 |#5|) #1#) |#5|) 66 T ELT)) (-3224 (((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-558))) #1#) |#5|) 56 T ELT))) +(((-969 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3483 ((-660 |#2|) |#5|)) (-15 -3484 ((-3 |#2| #1="failed") |#5|)) (-15 -3485 ((-419 (-1191 |#5|)) |#5| |#2|)) (-15 -3486 (|#5| (-419 (-1191 |#5|)) |#2|)) (-15 -3485 ((-1191 |#5|) |#5| |#2| (-1191 |#5|))) (-15 -3222 ((-3 (-660 |#5|) #1#) |#5|)) (-15 -3223 ((-3 (-660 |#5|) #1#) |#5|)) (-15 -3224 ((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-558))) #1#) |#5|)) (-15 -3225 ((-3 (-2 (|:| |val| |#5|) (|:| -2631 (-558))) #1#) |#5|))) (-814) (-860) (-1069) (-968 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4375 ($ |#4|)) (-15 -3398 (|#4| $)) (-15 -3397 (|#4| $))))) (T -969)) +((-3225 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2631 (-558)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) (-3224 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-558)))) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) (-3223 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) (-3222 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) (-3485 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))) (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-1069)) (-5 *1 (-969 *5 *4 *6 *7 *3)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-1069)) (-4 *2 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))) (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) (-3485 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-419 (-1191 *3))) (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) (-3484 (*1 *2 *3) (|partial| -12 (-4 *4 (-814)) (-4 *5 (-1069)) (-4 *6 (-968 *5 *4 *2)) (-4 *2 (-860)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *6)) (-15 -3398 (*6 $)) (-15 -3397 (*6 $))))))) (-3483 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-660 *5)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) +((-4387 ((|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|) 24 T ELT))) +(((-970 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4387 (|#5| (-1 |#5| |#2|) (-1 |#5| |#3|) |#4|))) (-814) (-860) (-1069) (-968 |#3| |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -4268 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-790)))))) (T -970)) +((-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1069)) (-4 *6 (-814)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -4268 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-790)))))) (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7))))) +((-3226 (((-2 (|:| -2631 (-790)) (|:| -4383 |#5|) (|:| |radicand| |#5|)) |#3| (-790)) 48 T ELT)) (-3227 (((-2 (|:| -2631 (-790)) (|:| -4383 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-790)) 43 T ELT)) (-3229 (((-2 (|:| -2631 (-790)) (|:| -4383 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-790)) 64 T ELT)) (-3228 (((-2 (|:| -2631 (-790)) (|:| -4383 |#5|) (|:| |radicand| |#5|)) |#5| (-790)) 73 (|has| |#3| (-464)) ELT))) +(((-971 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3226 ((-2 (|:| -2631 (-790)) (|:| -4383 |#5|) (|:| |radicand| |#5|)) |#3| (-790))) (-15 -3227 ((-2 (|:| -2631 (-790)) (|:| -4383 |#5|) (|:| |radicand| |#5|)) (-419 (-558)) (-790))) (IF (|has| |#3| (-464)) (-15 -3228 ((-2 (|:| -2631 (-790)) (|:| -4383 |#5|) (|:| |radicand| |#5|)) |#5| (-790))) |%noBranch|) (-15 -3229 ((-2 (|:| -2631 (-790)) (|:| -4383 |#4|) (|:| |radicand| (-660 |#4|))) |#4| (-790)))) (-814) (-860) (-569) (-968 |#3| |#1| |#2|) (-13 (-376) (-10 -8 (-15 -4375 ($ |#4|)) (-15 -3398 (|#4| $)) (-15 -3397 (|#4| $))))) (T -971)) +((-3229 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-569)) (-4 *3 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *3) (|:| |radicand| (-660 *3)))) (-5 *1 (-971 *5 *6 *7 *3 *8)) (-5 *4 (-790)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4375 ($ *3)) (-15 -3398 (*3 $)) (-15 -3397 (*3 $))))))) (-3228 (*1 *2 *3 *4) (-12 (-4 *7 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-569)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *3) (|:| |radicand| *3))) (-5 *1 (-971 *5 *6 *7 *8 *3)) (-5 *4 (-790)) (-4 *3 (-13 (-376) (-10 -8 (-15 -4375 ($ *8)) (-15 -3398 (*8 $)) (-15 -3397 (*8 $))))))) (-3227 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-558))) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-569)) (-4 *8 (-968 *7 *5 *6)) (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *9) (|:| |radicand| *9))) (-5 *1 (-971 *5 *6 *7 *8 *9)) (-5 *4 (-790)) (-4 *9 (-13 (-376) (-10 -8 (-15 -4375 ($ *8)) (-15 -3398 (*8 $)) (-15 -3397 (*8 $))))))) (-3226 (*1 *2 *3 *4) (-12 (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-569)) (-4 *7 (-968 *3 *5 *6)) (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *8) (|:| |radicand| *8))) (-5 *1 (-971 *5 *6 *3 *7 *8)) (-5 *4 (-790)) (-4 *8 (-13 (-376) (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3230 (($ (-1140)) 8 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 15 T ELT) (((-1140) $) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 11 T ELT))) +(((-972) (-13 (-1121) (-629 (-1140)) (-10 -8 (-15 -3230 ($ (-1140)))))) (T -972)) +((-3230 (*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-972))))) +((-3296 (((-1109 (-229)) $) 8 T ELT)) (-3297 (((-1109 (-229)) $) 9 T ELT)) (-3298 (((-660 (-660 (-961 (-229)))) $) 10 T ELT)) (-4375 (((-876) $) 6 T ELT))) +(((-973) (-142)) (T -973)) +((-3298 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-660 (-660 (-961 (-229))))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1109 (-229))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1109 (-229)))))) +(-13 (-629 (-876)) (-10 -8 (-15 -3298 ((-660 (-660 (-961 (-229)))) $)) (-15 -3297 ((-1109 (-229)) $)) (-15 -3296 ((-1109 (-229)) $)))) +(((-629 (-876)) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 79 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 80 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 34 T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) 31 T ELT)) (-3886 (((-3 $ #1#) $) 42 T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1803 (($ $ |#1| |#2| $) 63 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) 17 T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| |#2|) NIL T ELT)) (-3220 ((|#2| $) 24 T ELT)) (-1804 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3294 (($ $) 28 T ELT)) (-3591 ((|#1| $) 26 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) 51 T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-4167 (($ $ |#2| |#1| $) 91 (-12 (|has| |#2| (-133)) (|has| |#1| (-569))) ELT)) (-3885 (((-3 $ #1#) $ $) 92 (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ |#1|) 86 (|has| |#1| (-569)) ELT)) (-4377 ((|#2| $) 22 T ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) 46 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 41 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ |#2|) 37 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 15 T CONST)) (-1802 (($ $ $ (-790)) 75 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) 85 (|has| |#1| (-569)) ELT)) (-3058 (($) 27 T CONST)) (-3064 (($) 12 T CONST)) (-3453 (((-114) $ $) 84 T ELT)) (-4378 (($ $ |#1|) 93 (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) 70 T ELT) (($ $ (-790)) 68 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 67 T ELT) (($ $ |#1|) 65 T ELT) (($ |#1| $) 64 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-974 |#1| |#2|) (-13 (-338 |#1| |#2|) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| |#2| (-133)) (-15 -4167 ($ $ |#2| |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|))) (-1069) (-813)) (T -974)) +((-4167 (*1 *1 *1 *2 *3 *1) (-12 (-5 *1 (-974 *3 *2)) (-4 *2 (-133)) (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *2 (-813))))) +((-3231 (((-3 (-708 |#1|) "failed") |#2| (-937)) 18 T ELT))) +(((-975 |#1| |#2|) (-10 -7 (-15 -3231 ((-3 (-708 |#1|) "failed") |#2| (-937)))) (-569) (-677 |#1|)) (T -975)) +((-3231 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-937)) (-4 *5 (-569)) (-5 *2 (-708 *5)) (-5 *1 (-975 *5 *3)) (-4 *3 (-677 *5))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 20 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 19 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 17 T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) |#1|) 16 T ELT)) (-2414 (((-558) $) 11 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) 21 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) 13 T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) 18 T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 22 T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 15 T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4386 (((-790) $) 8 (|has| $ (-6 -4424)) ELT))) +(((-976 |#1|) (-19 |#1|) (-1237)) (T -976)) +NIL +((-4270 (((-976 |#2|) (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|) 16 T ELT)) (-4271 ((|#2| (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|) 18 T ELT)) (-4387 (((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)) 13 T ELT))) +(((-977 |#1| |#2|) (-10 -7 (-15 -4270 ((-976 |#2|) (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|)) (-15 -4271 (|#2| (-1 |#2| |#1| |#2|) (-976 |#1|) |#2|)) (-15 -4387 ((-976 |#2|) (-1 |#2| |#1|) (-976 |#1|)))) (-1237) (-1237)) (T -977)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-976 *6)) (-5 *1 (-977 *5 *6)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-977 *5 *2)))) (-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-976 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-976 *5)) (-5 *1 (-977 *6 *5))))) +((-3232 (($ $ (-1112 $)) 7 T ELT) (($ $ (-1197)) 6 T ELT))) +(((-978) (-142)) (T -978)) +((-3232 (*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-978)))) (-3232 (*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197))))) +(-13 (-10 -8 (-15 -3232 ($ $ (-1197))) (-15 -3232 ($ $ (-1112 $))))) +((-3233 (((-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-660 (-964 |#1|)) (-660 (-1197)) (-1197)) 26 T ELT) (((-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-660 (-964 |#1|)) (-660 (-1197))) 27 T ELT) (((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1191 |#1|))) (-964 |#1|) (-1197) (-964 |#1|) (-1197)) 49 T ELT))) +(((-979 |#1|) (-10 -7 (-15 -3233 ((-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1191 |#1|))) (-964 |#1|) (-1197) (-964 |#1|) (-1197))) (-15 -3233 ((-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-660 (-964 |#1|)) (-660 (-1197)))) (-15 -3233 ((-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 |#1|))) (|:| |prim| (-1191 |#1|))) (-660 (-964 |#1|)) (-660 (-1197)) (-1197)))) (-13 (-376) (-149))) (T -979)) +((-3233 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-964 *6))) (-5 *4 (-660 (-1197))) (-5 *5 (-1197)) (-4 *6 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 *6))) (|:| |prim| (-1191 *6)))) (-5 *1 (-979 *6)))) (-3233 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-660 (-1197))) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 *5))) (|:| |prim| (-1191 *5)))) (-5 *1 (-979 *5)))) (-3233 (*1 *2 *3 *4 *3 *4) (-12 (-5 *3 (-964 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-376) (-149))) (-5 *2 (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1191 *5)))) (-5 *1 (-979 *5))))) +((-3236 (((-660 |#1|) |#1| |#1|) 47 T ELT)) (-4152 (((-114) |#1|) 44 T ELT)) (-3235 ((|#1| |#1|) 80 T ELT)) (-3234 ((|#1| |#1|) 79 T ELT))) +(((-980 |#1|) (-10 -7 (-15 -4152 ((-114) |#1|)) (-15 -3234 (|#1| |#1|)) (-15 -3235 (|#1| |#1|)) (-15 -3236 ((-660 |#1|) |#1| |#1|))) (-557)) (T -980)) +((-3236 (*1 *2 *3 *3) (-12 (-5 *2 (-660 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) (-3235 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-3234 (*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557)))) (-4152 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) +((-3237 (((-1293) (-876)) 9 T ELT))) +(((-981) (-10 -7 (-15 -3237 ((-1293) (-876))))) (T -981)) +((-3237 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (-2872 (($ $ $) 65 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) ELT)) (-1425 (((-3 $ #1="failed") $ $) 52 (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (-3537 (((-790)) 36 (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3238 ((|#2| $) 22 T ELT)) (-3239 ((|#1| $) 21 T ELT)) (-4153 (($) NIL (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) CONST)) (-3886 (((-3 $ #1#) $) NIL (-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) ELT)) (-3394 (($) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3603 (((-114) $) NIL (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) ELT)) (-2640 (((-114) $) NIL (-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) ELT)) (-2929 (($ $ $) NIL (-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ELT)) (-3257 (($ $ $) NIL (-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ELT)) (-3240 (($ |#1| |#2|) 20 T ELT)) (-2219 (((-937) $) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 39 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2630 (($ (-937)) NIL (-12 (|has| |#1| (-381)) (|has| |#2| (-381))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3409 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-2823 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4375 (((-876) $) 14 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 42 (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) CONST)) (-3064 (($) 25 (-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) CONST)) (-2964 (((-114) $ $) NIL (-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ELT)) (-2965 (((-114) $ $) NIL (-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ELT)) (-3453 (((-114) $ $) 19 T ELT)) (-3084 (((-114) $ $) NIL (-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ELT)) (-3085 (((-114) $ $) 69 (-3956 (-12 (|has| |#1| (-814)) (|has| |#2| (-814))) (-12 (|has| |#1| (-860)) (|has| |#2| (-860)))) ELT)) (-4378 (($ $ $) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT)) (-4266 (($ $ $) 58 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ $) 55 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT)) (-4268 (($ $ $) 45 (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT)) (** (($ $ (-558)) NIL (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) ELT) (($ $ (-790)) 32 (-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) ELT) (($ $ (-937)) NIL (-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) ELT)) (* (($ (-558) $) 62 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) ELT) (($ (-790) $) 48 (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT) (($ (-937) $) NIL (-3956 (-12 (|has| |#1| (-21)) (|has| |#2| (-21))) (-12 (|has| |#1| (-23)) (|has| |#2| (-23))) (-12 (|has| |#1| (-133)) (|has| |#2| (-133))) (-12 (|has| |#1| (-814)) (|has| |#2| (-814)))) ELT) (($ $ $) 28 (-3956 (-12 (|has| |#1| (-485)) (|has| |#2| (-485))) (-12 (|has| |#1| (-745)) (|has| |#2| (-745)))) ELT))) +(((-982 |#1| |#2|) (-13 (-1121) (-10 -8 (IF (|has| |#1| (-381)) (IF (|has| |#2| (-381)) (-6 (-381)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-745)) (IF (|has| |#2| (-745)) (-6 (-745)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-23)) (IF (|has| |#2| (-23)) (-6 (-23)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-133)) (IF (|has| |#2| (-133)) (-6 (-133)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-485)) (IF (|has| |#2| (-485)) (-6 (-485)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-21)) (IF (|has| |#2| (-21)) (-6 (-21)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-814)) (IF (|has| |#2| (-814)) (-6 (-814)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-860)) (IF (|has| |#2| (-860)) (-6 (-860)) |%noBranch|) |%noBranch|) (-15 -3240 ($ |#1| |#2|)) (-15 -3239 (|#1| $)) (-15 -3238 (|#2| $)))) (-1121) (-1121)) (T -982)) +((-3240 (*1 *1 *2 *3) (-12 (-5 *1 (-982 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3239 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1121)))) (-3238 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-982 *3 *2)) (-4 *3 (-1121))))) +((-3821 (((-1123) $) 12 T ELT)) (-3241 (($ (-518) (-1123)) 14 T ELT)) (-3969 (((-518) $) 9 T ELT)) (-4375 (((-876) $) 24 T ELT))) +(((-983) (-13 (-629 (-876)) (-10 -8 (-15 -3969 ((-518) $)) (-15 -3821 ((-1123) $)) (-15 -3241 ($ (-518) (-1123)))))) (T -983)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-983)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-983)))) (-3241 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-983))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3255 (($) 17 T CONST)) (-2959 (($ $ $) 37 T ELT)) (-2958 (($ $) 29 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3246 (((-710 (-886 $ $)) $) 62 T ELT)) (-3248 (((-710 $) $) 52 T ELT)) (-3245 (((-710 (-886 $ $)) $) 63 T ELT)) (-3244 (((-710 (-886 $ $)) $) 64 T ELT)) (-3249 (((-710 |#1|) $) 43 T ELT)) (-3247 (((-710 (-886 $ $)) $) 61 T ELT)) (-3253 (($ $ $) 38 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3254 (($) 16 T CONST)) (-3252 (($ $ $) 39 T ELT)) (-3242 (($ $ $) 36 T ELT)) (-3243 (($ $ $) 34 T ELT)) (-4375 (((-876) $) 66 T ELT) (($ |#1|) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2960 (($ $ $) 35 T ELT)) (-2523 (($ $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-984 |#1|) (-13 (-987) (-632 |#1|) (-10 -8 (-15 -3249 ((-710 |#1|) $)) (-15 -3248 ((-710 $) $)) (-15 -3247 ((-710 (-886 $ $)) $)) (-15 -3246 ((-710 (-886 $ $)) $)) (-15 -3245 ((-710 (-886 $ $)) $)) (-15 -3244 ((-710 (-886 $ $)) $)) (-15 -3243 ($ $ $)) (-15 -3242 ($ $ $)))) (-1121)) (T -984)) +((-3249 (*1 *2 *1) (-12 (-5 *2 (-710 *3)) (-5 *1 (-984 *3)) (-4 *3 (-1121)))) (-3248 (*1 *2 *1) (-12 (-5 *2 (-710 (-984 *3))) (-5 *1 (-984 *3)) (-4 *3 (-1121)))) (-3247 (*1 *2 *1) (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1121)))) (-3246 (*1 *2 *1) (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1121)))) (-3245 (*1 *2 *1) (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1121)))) (-3244 (*1 *2 *1) (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) (-4 *3 (-1121)))) (-3243 (*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1121)))) (-3242 (*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1121))))) +((-4078 (((-984 |#1|) (-984 |#1|)) 46 T ELT)) (-3251 (((-984 |#1|) (-984 |#1|)) 22 T ELT)) (-3250 (((-1117 |#1|) (-984 |#1|)) 41 T ELT))) +(((-985 |#1|) (-13 (-1237) (-10 -7 (-15 -3251 ((-984 |#1|) (-984 |#1|))) (-15 -3250 ((-1117 |#1|) (-984 |#1|))) (-15 -4078 ((-984 |#1|) (-984 |#1|))))) (-1121)) (T -985)) +((-3251 (*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1121)) (-5 *1 (-985 *3)))) (-3250 (*1 *2 *3) (-12 (-5 *3 (-984 *4)) (-4 *4 (-1121)) (-5 *2 (-1117 *4)) (-5 *1 (-985 *4)))) (-4078 (*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1121)) (-5 *1 (-985 *3))))) +((-4387 (((-984 |#2|) (-1 |#2| |#1|) (-984 |#1|)) 29 T ELT))) +(((-986 |#1| |#2|) (-13 (-1237) (-10 -7 (-15 -4387 ((-984 |#2|) (-1 |#2| |#1|) (-984 |#1|))))) (-1121) (-1121)) (T -986)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-984 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-984 *6)) (-5 *1 (-986 *5 *6))))) +((-2966 (((-114) $ $) 19 T ELT)) (-2525 (($ $) 8 T ELT)) (-3255 (($) 17 T CONST)) (-2959 (($ $ $) 9 T ELT)) (-2958 (($ $) 11 T ELT)) (-3659 (((-1179) $) 23 T ELT)) (-3253 (($ $ $) 15 T ELT)) (-3660 (((-1140) $) 22 T ELT)) (-3254 (($) 16 T CONST)) (-3252 (($ $ $) 14 T ELT)) (-4375 (((-876) $) 21 T ELT)) (-1377 (((-114) $ $) 20 T ELT)) (-2960 (($ $ $) 10 T ELT)) (-2523 (($ $ $) 6 T ELT)) (-3453 (((-114) $ $) 18 T ELT)) (-2524 (($ $ $) 7 T ELT))) +(((-987) (-142)) (T -987)) +((-3255 (*1 *1) (-4 *1 (-987))) (-3254 (*1 *1) (-4 *1 (-987))) (-3253 (*1 *1 *1 *1) (-4 *1 (-987))) (-3252 (*1 *1 *1 *1) (-4 *1 (-987)))) +(-13 (-113) (-1121) (-10 -8 (-15 -3255 ($) -4381) (-15 -3254 ($) -4381) (-15 -3253 ($ $ $)) (-15 -3252 ($ $ $)))) +(((-102) . T) ((-113) . T) ((-629 (-876)) . T) ((-681) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4153 (($) 7 T CONST)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3256 (($ $ $) 47 T ELT)) (-3937 (($ $ $) 48 T ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3257 ((|#1| $) 49 T ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-988 |#1|) (-142) (-860)) (T -988)) +((-3257 (*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-860)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-860)))) (-3256 (*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-860))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4424) (-15 -3257 (|t#1| $)) (-15 -3937 ($ $ $)) (-15 -3256 ($ $ $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-3269 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3561 |#2|)) |#2| |#2|) 105 T ELT)) (-4184 ((|#2| |#2| |#2|) 103 T ELT)) (-3270 (((-2 (|:| |coef2| |#2|) (|:| -3561 |#2|)) |#2| |#2|) 107 T ELT)) (-3271 (((-2 (|:| |coef1| |#2|) (|:| -3561 |#2|)) |#2| |#2|) 109 T ELT)) (-3278 (((-2 (|:| |coef2| |#2|) (|:| -3276 |#1|)) |#2| |#2|) 132 (|has| |#1| (-464)) ELT)) (-3285 (((-2 (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|) 56 T ELT)) (-3259 (((-2 (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|) 80 T ELT)) (-3260 (((-2 (|:| |coef1| |#2|) (|:| -4185 |#1|)) |#2| |#2|) 82 T ELT)) (-3268 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 96 T ELT)) (-3263 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790)) 89 T ELT)) (-3273 (((-2 (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2|) 121 T ELT)) (-3266 (((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790)) 92 T ELT)) (-3275 (((-660 (-790)) |#2| |#2|) 102 T ELT)) (-3283 ((|#1| |#2| |#2|) 50 T ELT)) (-3277 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3276 |#1|)) |#2| |#2|) 130 (|has| |#1| (-464)) ELT)) (-3276 ((|#1| |#2| |#2|) 128 (|has| |#1| (-464)) ELT)) (-3284 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|) 54 T ELT)) (-3258 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|) 79 T ELT)) (-4185 ((|#1| |#2| |#2|) 76 T ELT)) (-4181 (((-2 (|:| -4383 |#1|) (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2|) 41 T ELT)) (-3282 ((|#2| |#2| |#2| |#2| |#1|) 67 T ELT)) (-3267 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|) 94 T ELT)) (-3607 ((|#2| |#2| |#2|) 93 T ELT)) (-3262 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790)) 87 T ELT)) (-3261 ((|#2| |#2| |#2| (-790)) 85 T ELT)) (-3561 ((|#2| |#2| |#2|) 136 (|has| |#1| (-464)) ELT)) (-3885 (((-1287 |#2|) (-1287 |#2|) |#1|) 22 T ELT)) (-3279 (((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2|) 46 T ELT)) (-3272 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2|) 119 T ELT)) (-4186 ((|#1| |#2|) 116 T ELT)) (-3265 (((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790)) 91 T ELT)) (-3264 ((|#2| |#2| |#2| (-790)) 90 T ELT)) (-3274 (((-660 |#2|) |#2| |#2|) 99 T ELT)) (-3281 ((|#2| |#2| |#1| |#1| (-790)) 62 T ELT)) (-3280 ((|#1| |#1| |#1| (-790)) 61 T ELT)) (* (((-1287 |#2|) |#1| (-1287 |#2|)) 17 T ELT))) +(((-989 |#1| |#2|) (-10 -7 (-15 -4185 (|#1| |#2| |#2|)) (-15 -3258 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|)) (-15 -3259 ((-2 (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|)) (-15 -3260 ((-2 (|:| |coef1| |#2|) (|:| -4185 |#1|)) |#2| |#2|)) (-15 -3261 (|#2| |#2| |#2| (-790))) (-15 -3262 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790))) (-15 -3263 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790))) (-15 -3264 (|#2| |#2| |#2| (-790))) (-15 -3265 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790))) (-15 -3266 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2| (-790))) (-15 -3607 (|#2| |#2| |#2|)) (-15 -3267 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -3268 ((-2 (|:| |coef2| |#2|) (|:| |subResultant| |#2|)) |#2| |#2|)) (-15 -4184 (|#2| |#2| |#2|)) (-15 -3269 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -3270 ((-2 (|:| |coef2| |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -3271 ((-2 (|:| |coef1| |#2|) (|:| -3561 |#2|)) |#2| |#2|)) (-15 -4186 (|#1| |#2|)) (-15 -3272 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2|)) (-15 -3273 ((-2 (|:| |coef2| |#2|) (|:| -4186 |#1|)) |#2|)) (-15 -3274 ((-660 |#2|) |#2| |#2|)) (-15 -3275 ((-660 (-790)) |#2| |#2|)) (IF (|has| |#1| (-464)) (PROGN (-15 -3276 (|#1| |#2| |#2|)) (-15 -3277 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -3276 |#1|)) |#2| |#2|)) (-15 -3278 ((-2 (|:| |coef2| |#2|) (|:| -3276 |#1|)) |#2| |#2|)) (-15 -3561 (|#2| |#2| |#2|))) |%noBranch|) (-15 * ((-1287 |#2|) |#1| (-1287 |#2|))) (-15 -3885 ((-1287 |#2|) (-1287 |#2|) |#1|)) (-15 -4181 ((-2 (|:| -4383 |#1|) (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2|)) (-15 -3279 ((-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) |#2| |#2|)) (-15 -3280 (|#1| |#1| |#1| (-790))) (-15 -3281 (|#2| |#2| |#1| |#1| (-790))) (-15 -3282 (|#2| |#2| |#2| |#2| |#1|)) (-15 -3283 (|#1| |#2| |#2|)) (-15 -3284 ((-2 (|:| |coef1| |#2|) (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|)) (-15 -3285 ((-2 (|:| |coef2| |#2|) (|:| -4185 |#1|)) |#2| |#2|))) (-569) (-1263 |#1|)) (T -989)) +((-3285 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4185 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3284 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4185 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3283 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) (-3282 (*1 *2 *2 *2 *2 *3) (-12 (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-3281 (*1 *2 *2 *3 *3 *4) (-12 (-5 *4 (-790)) (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-3280 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *2 (-569)) (-5 *1 (-989 *2 *4)) (-4 *4 (-1263 *2)))) (-3279 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4181 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4383 *4) (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3885 (*1 *2 *2 *3) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-569)) (-5 *1 (-989 *3 *4)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-569)) (-5 *1 (-989 *3 *4)))) (-3561 (*1 *2 *2 *2) (-12 (-4 *3 (-464)) (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-3278 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3276 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3277 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3276 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3276 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-4 *2 (-464)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) (-3275 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-790))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3274 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3273 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4186 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3272 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4186 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4186 (*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) (-3271 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3561 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3270 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3561 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3269 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3561 *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4184 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-3268 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3267 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3607 (*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) (-3266 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-3265 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-3264 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-569)) (-5 *1 (-989 *4 *2)) (-4 *2 (-1263 *4)))) (-3263 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-3262 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5)))) (-3261 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-569)) (-5 *1 (-989 *4 *2)) (-4 *2 (-1263 *4)))) (-3260 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4185 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3259 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4185 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-3258 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4185 *4))) (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) (-4185 (*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3735 (((-1238) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3623 (((-1155) $) 10 T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-990) (-13 (-1103) (-10 -8 (-15 -3623 ((-1155) $)) (-15 -3735 ((-1238) $))))) (T -990)) +((-3623 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-990)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-990))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 40 T ELT)) (-1425 (((-3 $ "failed") $ $) 54 T ELT)) (-4153 (($) NIL T CONST)) (-3287 (((-660 (-886 (-937) (-937))) $) 67 T ELT)) (-3603 (((-114) $) NIL T ELT)) (-3286 (((-937) $) 94 T ELT)) (-3289 (((-660 (-937)) $) 17 T ELT)) (-3288 (((-1175 $) (-790)) 39 T ELT)) (-3290 (($ (-660 (-937))) 16 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3409 (($ $) 70 T ELT)) (-4375 (((-876) $) 90 T ELT) (((-660 (-937)) $) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 8 T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 44 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 42 T ELT)) (-4268 (($ $ $) 46 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) 49 T ELT)) (-4386 (((-790) $) 22 T ELT))) +(((-991) (-13 (-818) (-629 (-660 (-937))) (-10 -8 (-15 -3290 ($ (-660 (-937)))) (-15 -3289 ((-660 (-937)) $)) (-15 -4386 ((-790) $)) (-15 -3288 ((-1175 $) (-790))) (-15 -3287 ((-660 (-886 (-937) (-937))) $)) (-15 -3286 ((-937) $)) (-15 -3409 ($ $))))) (T -991)) +((-3290 (*1 *1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-991)))) (-3289 (*1 *2 *1) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-991)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-991)))) (-3288 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1175 (-991))) (-5 *1 (-991)))) (-3287 (*1 *2 *1) (-12 (-5 *2 (-660 (-886 (-937) (-937)))) (-5 *1 (-991)))) (-3286 (*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-991)))) (-3409 (*1 *1 *1) (-5 *1 (-991)))) +((-4378 (($ $ |#2|) 31 T ELT)) (-4266 (($ $) 23 T ELT) (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 17 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) 21 T ELT) (($ |#2| $) 20 T ELT) (($ (-419 (-558)) $) 27 T ELT) (($ $ (-419 (-558))) 29 T ELT))) +(((-992 |#1| |#2| |#3| |#4|) (-10 -7 (-15 * (|#1| |#1| (-419 (-558)))) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 -4378 (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 * (|#1| (-937) |#1|))) (-993 |#2| |#3| |#4|) (-1069) (-813) (-860)) (T -992)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 |#3|) $) 92 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3292 (((-114) $) 91 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| |#2|) 78 T ELT) (($ $ |#3| |#2|) 94 T ELT) (($ $ (-660 |#3|) (-660 |#2|)) 93 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4377 ((|#2| $) 81 T ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4106 ((|#1| $ |#2|) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-993 |#1| |#2| |#3|) (-142) (-1069) (-813) (-860)) (T -993)) +((-3591 (*1 *2 *1) (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *3 (-813)) (-4 *4 (-860)) (-4 *2 (-1069)))) (-3294 (*1 *1 *1) (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *4 (-860)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *2 *4)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *2 (-813)))) (-3293 (*1 *1 *1 *2 *3) (-12 (-4 *1 (-993 *4 *3 *2)) (-4 *4 (-1069)) (-4 *3 (-813)) (-4 *2 (-860)))) (-3293 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 *5)) (-4 *1 (-993 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-813)) (-4 *6 (-860)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-813)) (-4 *5 (-860)) (-5 *2 (-660 *5)))) (-3292 (*1 *2 *1) (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-813)) (-4 *5 (-860)) (-5 *2 (-114)))) (-3291 (*1 *1 *1) (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *4 (-860))))) +(-13 (-47 |t#1| |t#2|) (-10 -8 (-15 -3293 ($ $ |t#3| |t#2|)) (-15 -3293 ($ $ (-660 |t#3|) (-660 |t#2|))) (-15 -3294 ($ $)) (-15 -3591 (|t#1| $)) (-15 -4377 (|t#2| $)) (-15 -3483 ((-660 |t#3|) $)) (-15 -3292 ((-114) $)) (-15 -3291 ($ $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3295 (((-1109 (-229)) $) 8 T ELT)) (-3296 (((-1109 (-229)) $) 9 T ELT)) (-3297 (((-1109 (-229)) $) 10 T ELT)) (-3298 (((-660 (-660 (-961 (-229)))) $) 11 T ELT)) (-4375 (((-876) $) 6 T ELT))) +(((-994) (-142)) (T -994)) +((-3298 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-660 (-660 (-961 (-229))))))) (-3297 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1109 (-229))))) (-3296 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1109 (-229))))) (-3295 (*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1109 (-229)))))) +(-13 (-629 (-876)) (-10 -8 (-15 -3298 ((-660 (-660 (-961 (-229)))) $)) (-15 -3297 ((-1109 (-229)) $)) (-15 -3296 ((-1109 (-229)) $)) (-15 -3295 ((-1109 (-229)) $)))) +(((-629 (-876)) . T)) +((-3483 (((-660 |#4|) $) 23 T ELT)) (-3308 (((-114) $) 55 T ELT)) (-3299 (((-114) $) 54 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#4|) 42 T ELT)) (-3304 (((-114) $) 56 T ELT)) (-3306 (((-114) $ $) 62 T ELT)) (-3305 (((-114) $ $) 65 T ELT)) (-3307 (((-114) $) 60 T ELT)) (-3300 (((-660 |#5|) (-660 |#5|) $) 98 T ELT)) (-3301 (((-660 |#5|) (-660 |#5|) $) 95 T ELT)) (-3302 (((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| $) 88 T ELT)) (-3314 (((-660 |#4|) $) 27 T ELT)) (-3313 (((-114) |#4| $) 34 T ELT)) (-3303 (((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| $) 81 T ELT)) (-3310 (($ $ |#4|) 39 T ELT)) (-3312 (($ $ |#4|) 38 T ELT)) (-3311 (($ $ |#4|) 40 T ELT)) (-3453 (((-114) $ $) 46 T ELT))) +(((-995 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3299 ((-114) |#1|)) (-15 -3300 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -3301 ((-660 |#5|) (-660 |#5|) |#1|)) (-15 -3302 ((-2 (|:| |rnum| |#2|) (|:| |polnum| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3303 ((-2 (|:| |num| |#5|) (|:| |den| |#2|)) |#5| |#1|)) (-15 -3304 ((-114) |#1|)) (-15 -3305 ((-114) |#1| |#1|)) (-15 -3306 ((-114) |#1| |#1|)) (-15 -3307 ((-114) |#1|)) (-15 -3308 ((-114) |#1|)) (-15 -3309 ((-2 (|:| |under| |#1|) (|:| -3531 |#1|) (|:| |upper| |#1|)) |#1| |#4|)) (-15 -3310 (|#1| |#1| |#4|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3313 ((-114) |#4| |#1|)) (-15 -3314 ((-660 |#4|) |#1|)) (-15 -3483 ((-660 |#4|) |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-996 |#2| |#3| |#4| |#5|) (-1069) (-814) (-860) (-1085 |#2| |#3| |#4|)) (T -995)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3483 (((-660 |#3|) $) 37 T ELT)) (-3308 (((-114) $) 30 T ELT)) (-3299 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4139 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 46 T CONST)) (-3304 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") (-660 |#4|)) 40 T ELT)) (-3573 (($ (-660 |#4|)) 39 T ELT)) (-1466 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#4|) $) 53 (|has| $ (-6 -4424)) ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3314 (((-660 |#3|) $) 36 T ELT)) (-3313 (((-114) |#3| $) 35 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1467 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) 42 T ELT)) (-3822 (((-114) $) 45 T ELT)) (-3992 (($) 44 T ELT)) (-2156 (((-790) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 43 T ELT)) (-4401 (((-547) $) 70 (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 61 T ELT)) (-3310 (($ $ |#3|) 32 T ELT)) (-3312 (($ $ |#3|) 34 T ELT)) (-3311 (($ $ |#3|) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (((-660 |#4|) $) 41 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 47 (|has| $ (-6 -4424)) ELT))) +(((-996 |#1| |#2| |#3| |#4|) (-142) (-1069) (-814) (-860) (-1085 |t#1| |t#2| |t#3|)) (T -996)) +((-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *1 (-996 *3 *4 *5 *6)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *1 (-996 *3 *4 *5 *6)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-1085 *3 *4 *2)) (-4 *2 (-860)))) (-3483 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *5)))) (-3314 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *5)))) (-3313 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *3 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-114)))) (-3312 (*1 *1 *1 *2) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *5 (-1085 *3 *4 *2)))) (-3311 (*1 *1 *1 *2) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *5 (-1085 *3 *4 *2)))) (-3310 (*1 *1 *1 *2) (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *5 (-1085 *3 *4 *2)))) (-3309 (*1 *2 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-2 (|:| |under| *1) (|:| -3531 *1) (|:| |upper| *1))) (-4 *1 (-996 *4 *5 *3 *6)))) (-3308 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-3307 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3306 (*1 *2 *1 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3305 (*1 *2 *1 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3304 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114)))) (-3303 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))))) (-3302 (*1 *2 *3 *1) (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4))))) (-3301 (*1 *2 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)))) (-3300 (*1 *2 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)))) (-3299 (*1 *2 *1) (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) +(-13 (-1121) (-153 |t#4|) (-629 (-660 |t#4|)) (-10 -8 (-6 -4424) (-15 -3574 ((-3 $ "failed") (-660 |t#4|))) (-15 -3573 ($ (-660 |t#4|))) (-15 -3597 (|t#3| $)) (-15 -3483 ((-660 |t#3|) $)) (-15 -3314 ((-660 |t#3|) $)) (-15 -3313 ((-114) |t#3| $)) (-15 -3312 ($ $ |t#3|)) (-15 -3311 ($ $ |t#3|)) (-15 -3310 ($ $ |t#3|)) (-15 -3309 ((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |t#3|)) (-15 -3308 ((-114) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -3307 ((-114) $)) (-15 -3306 ((-114) $ $)) (-15 -3305 ((-114) $ $)) (-15 -3304 ((-114) $)) (-15 -3303 ((-2 (|:| |num| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3302 ((-2 (|:| |rnum| |t#1|) (|:| |polnum| |t#4|) (|:| |den| |t#1|)) |t#4| $)) (-15 -3301 ((-660 |t#4|) (-660 |t#4|) $)) (-15 -3300 ((-660 |t#4|) (-660 |t#4|) $)) (-15 -3299 ((-114) $))) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-629 (-660 |#4|)) . T) ((-629 (-876)) . T) ((-153 |#4|) . T) ((-630 (-547)) |has| |#4| (-630 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-1121) . T) ((-1237) . T)) +((-3316 (((-660 |#4|) |#4| |#4|) 137 T ELT)) (-3339 (((-660 |#4|) (-660 |#4|) (-114)) 125 (|has| |#1| (-464)) ELT) (((-660 |#4|) (-660 |#4|)) 126 (|has| |#1| (-464)) ELT)) (-3326 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 44 T ELT)) (-3325 (((-114) |#4|) 43 T ELT)) (-3338 (((-660 |#4|) |#4|) 121 (|has| |#1| (-464)) ELT)) (-3321 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-114) |#4|) (-660 |#4|)) 24 T ELT)) (-3322 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-114) |#4|)) (-660 |#4|)) 30 T ELT)) (-3323 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-114) |#4|)) (-660 |#4|)) 31 T ELT)) (-3334 (((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3743 (-660 |#4|))) "failed") (-660 |#4|)) 90 T ELT)) (-3336 (((-660 |#4|) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 103 T ELT)) (-3337 (((-660 |#4|) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 129 T ELT)) (-3315 (((-660 |#4|) (-660 |#4|)) 128 T ELT)) (-3331 (((-660 |#4|) (-660 |#4|) (-660 |#4|) (-114)) 59 T ELT) (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 61 T ELT)) (-3332 ((|#4| |#4| (-660 |#4|)) 60 T ELT)) (-3340 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 133 (|has| |#1| (-464)) ELT)) (-3342 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 136 (|has| |#1| (-464)) ELT)) (-3341 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 135 (|has| |#1| (-464)) ELT)) (-3317 (((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|))) 105 T ELT) (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 107 T ELT) (((-660 |#4|) (-660 |#4|) |#4|) 141 T ELT) (((-660 |#4|) |#4| |#4|) 138 T ELT) (((-660 |#4|) (-660 |#4|)) 106 T ELT)) (-3345 (((-660 |#4|) (-660 |#4|) (-660 |#4|)) 118 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3324 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 52 T ELT)) (-3320 (((-114) (-660 |#4|)) 79 T ELT)) (-3319 (((-114) (-660 |#4|) (-660 (-660 |#4|))) 67 T ELT)) (-3328 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 37 T ELT)) (-3327 (((-114) |#4|) 36 T ELT)) (-3344 (((-660 |#4|) (-660 |#4|)) 116 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3343 (((-660 |#4|) (-660 |#4|)) 117 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3333 (((-660 |#4|) (-660 |#4|)) 83 T ELT)) (-3335 (((-660 |#4|) (-660 |#4|)) 97 T ELT)) (-3318 (((-114) (-660 |#4|) (-660 |#4|)) 65 T ELT)) (-3330 (((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|)) 50 T ELT)) (-3329 (((-114) |#4|) 45 T ELT))) +(((-997 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3317 ((-660 |#4|) (-660 |#4|))) (-15 -3317 ((-660 |#4|) |#4| |#4|)) (-15 -3315 ((-660 |#4|) (-660 |#4|))) (-15 -3316 ((-660 |#4|) |#4| |#4|)) (-15 -3317 ((-660 |#4|) (-660 |#4|) |#4|)) (-15 -3317 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -3317 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-1 (-660 |#4|) (-660 |#4|)))) (-15 -3318 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3319 ((-114) (-660 |#4|) (-660 (-660 |#4|)))) (-15 -3320 ((-114) (-660 |#4|))) (-15 -3321 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-1 (-114) |#4|) (-660 |#4|))) (-15 -3322 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-114) |#4|)) (-660 |#4|))) (-15 -3323 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 (-1 (-114) |#4|)) (-660 |#4|))) (-15 -3324 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3325 ((-114) |#4|)) (-15 -3326 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3327 ((-114) |#4|)) (-15 -3328 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3329 ((-114) |#4|)) (-15 -3330 ((-2 (|:| |goodPols| (-660 |#4|)) (|:| |badPols| (-660 |#4|))) (-660 |#4|))) (-15 -3331 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -3331 ((-660 |#4|) (-660 |#4|) (-660 |#4|) (-114))) (-15 -3332 (|#4| |#4| (-660 |#4|))) (-15 -3333 ((-660 |#4|) (-660 |#4|))) (-15 -3334 ((-3 (-2 (|:| |bas| (-488 |#1| |#2| |#3| |#4|)) (|:| -3743 (-660 |#4|))) "failed") (-660 |#4|))) (-15 -3335 ((-660 |#4|) (-660 |#4|))) (-15 -3336 ((-660 |#4|) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -3337 ((-660 |#4|) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3338 ((-660 |#4|) |#4|)) (-15 -3339 ((-660 |#4|) (-660 |#4|))) (-15 -3339 ((-660 |#4|) (-660 |#4|) (-114))) (-15 -3340 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -3341 ((-660 |#4|) (-660 |#4|) (-660 |#4|))) (-15 -3342 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (PROGN (-15 -3343 ((-660 |#4|) (-660 |#4|))) (-15 -3344 ((-660 |#4|) (-660 |#4|))) (-15 -3345 ((-660 |#4|) (-660 |#4|) (-660 |#4|)))) |%noBranch|) |%noBranch|)) (-569) (-814) (-860) (-1085 |#1| |#2| |#3|)) (T -997)) +((-3345 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3344 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3343 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3342 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3341 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3340 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3339 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-114)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *7)))) (-3339 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3338 (*1 *2 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3337 (*1 *2 *2 *3 *4) (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-997 *5 *6 *7 *8)))) (-3336 (*1 *2 *2 *3 *4 *5) (-12 (-5 *2 (-660 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-860)) (-5 *1 (-997 *6 *7 *8 *9)))) (-3335 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3334 (*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3743 (-660 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3333 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3332 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *2)))) (-3331 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-660 *7)) (-5 *3 (-114)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *7)))) (-3331 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3330 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3329 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3328 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3327 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3326 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3325 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3324 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7)))) (-3323 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1 (-114) *8))) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-3322 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1 (-114) *8))) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-3321 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) (-3320 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *7)))) (-3319 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *5 *6 *7 *8)))) (-3318 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *7)))) (-3317 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-1 (-660 *7) (-660 *7))) (-5 *2 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *7)))) (-3317 (*1 *2 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3317 (*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *3)))) (-3316 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3315 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) (-3317 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) (-3317 (*1 *2 *2) (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) +((-3346 (((-2 (|:| R (-708 |#1|)) (|:| A (-708 |#1|)) (|:| |Ainv| (-708 |#1|))) (-708 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 19 T ELT)) (-3348 (((-660 (-2 (|:| C (-708 |#1|)) (|:| |g| (-1287 |#1|)))) (-708 |#1|) (-1287 |#1|)) 45 T ELT)) (-3347 (((-708 |#1|) (-708 |#1|) (-708 |#1|) (-99 |#1|) (-1 |#1| |#1|)) 16 T ELT))) +(((-998 |#1|) (-10 -7 (-15 -3346 ((-2 (|:| R (-708 |#1|)) (|:| A (-708 |#1|)) (|:| |Ainv| (-708 |#1|))) (-708 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3347 ((-708 |#1|) (-708 |#1|) (-708 |#1|) (-99 |#1|) (-1 |#1| |#1|))) (-15 -3348 ((-660 (-2 (|:| C (-708 |#1|)) (|:| |g| (-1287 |#1|)))) (-708 |#1|) (-1287 |#1|)))) (-376)) (T -998)) +((-3348 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-660 (-2 (|:| C (-708 *5)) (|:| |g| (-1287 *5))))) (-5 *1 (-998 *5)) (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)))) (-3347 (*1 *2 *2 *2 *3 *4) (-12 (-5 *2 (-708 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-998 *5)))) (-3346 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) (-5 *2 (-2 (|:| R (-708 *6)) (|:| A (-708 *6)) (|:| |Ainv| (-708 *6)))) (-5 *1 (-998 *6)) (-5 *3 (-708 *6))))) +((-4400 (((-417 |#4|) |#4|) 61 T ELT))) +(((-999 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4400 ((-417 |#4|) |#4|))) (-860) (-814) (-464) (-968 |#3| |#2| |#1|)) (T -999)) +((-4400 (*1 *2 *3) (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-464)) (-5 *2 (-417 *3)) (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4267 (($ (-790)) 121 (|has| |#1| (-23)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4425)) ELT) (($ $) 97 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4425))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2509 (($ $) 99 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 109 T ELT)) (-1466 (($ $) 84 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 83 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 55 T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1121)) ELT)) (-4135 (($ (-660 |#1|)) 127 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-4264 (((-708 |#1|) $ $) 114 (|has| |#1| (-1069)) ELT)) (-4043 (($ (-790) |#1|) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 91 (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 92 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4261 ((|#1| $) 111 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))) ELT)) (-4262 ((|#1| $) 112 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))) ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2413 (($ $ |#1|) 45 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-660 |#1|)) 125 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-4265 ((|#1| $ $) 115 (|has| |#1| (-1069)) ELT)) (-4340 (((-937) $) 126 T ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-4263 (($ $ $) 113 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1933 (($ $ $ (-558)) 100 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| |#1| (-630 (-547))) ELT) (($ (-660 |#1|)) 128 T ELT)) (-3949 (($ (-660 |#1|)) 76 T ELT)) (-4231 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 93 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 95 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) 94 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 96 (|has| |#1| (-860)) ELT)) (-4266 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-558) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-745)) ELT) (($ $ |#1|) 116 (|has| |#1| (-745)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1000 |#1|) (-142) (-1069)) (T -1000)) +((-4135 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1069)) (-4 *1 (-1000 *3)))) (-4340 (*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1069)) (-5 *2 (-937)))) (-4263 (*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1069)))) (-4198 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1000 *3)) (-4 *3 (-1069))))) +(-13 (-1286 |t#1|) (-634 (-660 |t#1|)) (-10 -8 (-15 -4135 ($ (-660 |t#1|))) (-15 -4340 ((-937) $)) (-15 -4263 ($ $ $)) (-15 -4198 ($ $ (-660 |t#1|))))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-634 (-660 |#1|)) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1121) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860))) ((-1237) . T) ((-1286 |#1|) . T)) +((-4387 (((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)) 17 T ELT))) +(((-1001 |#1| |#2|) (-10 -7 (-15 -4387 ((-961 |#2|) (-1 |#2| |#1|) (-961 |#1|)))) (-1069) (-1069)) (T -1001)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-961 *6)) (-5 *1 (-1001 *5 *6))))) +((-3351 ((|#1| (-961 |#1|)) 14 T ELT)) (-3350 ((|#1| (-961 |#1|)) 13 T ELT)) (-3349 ((|#1| (-961 |#1|)) 12 T ELT)) (-3353 ((|#1| (-961 |#1|)) 16 T ELT)) (-3357 ((|#1| (-961 |#1|)) 24 T ELT)) (-3352 ((|#1| (-961 |#1|)) 15 T ELT)) (-3354 ((|#1| (-961 |#1|)) 17 T ELT)) (-3356 ((|#1| (-961 |#1|)) 23 T ELT)) (-3355 ((|#1| (-961 |#1|)) 22 T ELT))) +(((-1002 |#1|) (-10 -7 (-15 -3349 (|#1| (-961 |#1|))) (-15 -3350 (|#1| (-961 |#1|))) (-15 -3351 (|#1| (-961 |#1|))) (-15 -3352 (|#1| (-961 |#1|))) (-15 -3353 (|#1| (-961 |#1|))) (-15 -3354 (|#1| (-961 |#1|))) (-15 -3355 (|#1| (-961 |#1|))) (-15 -3356 (|#1| (-961 |#1|))) (-15 -3357 (|#1| (-961 |#1|)))) (-1069)) (T -1002)) +((-3357 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3356 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3355 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3354 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3353 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3352 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3351 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3350 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069)))) (-3349 (*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +((-3375 (((-3 |#1| "failed") |#1|) 18 T ELT)) (-3363 (((-3 |#1| "failed") |#1|) 6 T ELT)) (-3373 (((-3 |#1| "failed") |#1|) 16 T ELT)) (-3361 (((-3 |#1| "failed") |#1|) 4 T ELT)) (-3377 (((-3 |#1| "failed") |#1|) 20 T ELT)) (-3365 (((-3 |#1| "failed") |#1|) 8 T ELT)) (-3358 (((-3 |#1| "failed") |#1| (-790)) 1 T ELT)) (-3360 (((-3 |#1| "failed") |#1|) 3 T ELT)) (-3359 (((-3 |#1| "failed") |#1|) 2 T ELT)) (-3378 (((-3 |#1| "failed") |#1|) 21 T ELT)) (-3366 (((-3 |#1| "failed") |#1|) 9 T ELT)) (-3376 (((-3 |#1| "failed") |#1|) 19 T ELT)) (-3364 (((-3 |#1| "failed") |#1|) 7 T ELT)) (-3374 (((-3 |#1| "failed") |#1|) 17 T ELT)) (-3362 (((-3 |#1| "failed") |#1|) 5 T ELT)) (-3381 (((-3 |#1| "failed") |#1|) 24 T ELT)) (-3369 (((-3 |#1| "failed") |#1|) 12 T ELT)) (-3379 (((-3 |#1| "failed") |#1|) 22 T ELT)) (-3367 (((-3 |#1| "failed") |#1|) 10 T ELT)) (-3383 (((-3 |#1| "failed") |#1|) 26 T ELT)) (-3371 (((-3 |#1| "failed") |#1|) 14 T ELT)) (-3384 (((-3 |#1| "failed") |#1|) 27 T ELT)) (-3372 (((-3 |#1| "failed") |#1|) 15 T ELT)) (-3382 (((-3 |#1| "failed") |#1|) 25 T ELT)) (-3370 (((-3 |#1| "failed") |#1|) 13 T ELT)) (-3380 (((-3 |#1| "failed") |#1|) 23 T ELT)) (-3368 (((-3 |#1| "failed") |#1|) 11 T ELT))) +(((-1003 |#1|) (-142) (-1223)) (T -1003)) +((-3384 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3383 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3382 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3381 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3380 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3379 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3378 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3377 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3376 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3375 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3374 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3373 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3372 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3371 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3370 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3369 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3368 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3367 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3366 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3365 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3364 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3363 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3362 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3361 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3360 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3359 (*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223)))) (-3358 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-790)) (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(-13 (-10 -7 (-15 -3358 ((-3 |t#1| "failed") |t#1| (-790))) (-15 -3359 ((-3 |t#1| "failed") |t#1|)) (-15 -3360 ((-3 |t#1| "failed") |t#1|)) (-15 -3361 ((-3 |t#1| "failed") |t#1|)) (-15 -3362 ((-3 |t#1| "failed") |t#1|)) (-15 -3363 ((-3 |t#1| "failed") |t#1|)) (-15 -3364 ((-3 |t#1| "failed") |t#1|)) (-15 -3365 ((-3 |t#1| "failed") |t#1|)) (-15 -3366 ((-3 |t#1| "failed") |t#1|)) (-15 -3367 ((-3 |t#1| "failed") |t#1|)) (-15 -3368 ((-3 |t#1| "failed") |t#1|)) (-15 -3369 ((-3 |t#1| "failed") |t#1|)) (-15 -3370 ((-3 |t#1| "failed") |t#1|)) (-15 -3371 ((-3 |t#1| "failed") |t#1|)) (-15 -3372 ((-3 |t#1| "failed") |t#1|)) (-15 -3373 ((-3 |t#1| "failed") |t#1|)) (-15 -3374 ((-3 |t#1| "failed") |t#1|)) (-15 -3375 ((-3 |t#1| "failed") |t#1|)) (-15 -3376 ((-3 |t#1| "failed") |t#1|)) (-15 -3377 ((-3 |t#1| "failed") |t#1|)) (-15 -3378 ((-3 |t#1| "failed") |t#1|)) (-15 -3379 ((-3 |t#1| "failed") |t#1|)) (-15 -3380 ((-3 |t#1| "failed") |t#1|)) (-15 -3381 ((-3 |t#1| "failed") |t#1|)) (-15 -3382 ((-3 |t#1| "failed") |t#1|)) (-15 -3383 ((-3 |t#1| "failed") |t#1|)) (-15 -3384 ((-3 |t#1| "failed") |t#1|)))) +((-3386 ((|#4| |#4| (-660 |#3|)) 57 T ELT) ((|#4| |#4| |#3|) 56 T ELT)) (-3385 ((|#4| |#4| (-660 |#3|)) 24 T ELT) ((|#4| |#4| |#3|) 20 T ELT)) (-4387 ((|#4| (-1 |#4| (-964 |#1|)) |#4|) 31 T ELT))) +(((-1004 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3385 (|#4| |#4| |#3|)) (-15 -3385 (|#4| |#4| (-660 |#3|))) (-15 -3386 (|#4| |#4| |#3|)) (-15 -3386 (|#4| |#4| (-660 |#3|))) (-15 -4387 (|#4| (-1 |#4| (-964 |#1|)) |#4|))) (-1069) (-814) (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197))))) (-968 (-964 |#1|) |#2| |#3|)) (T -1004)) +((-4387 (*1 *2 *3 *2) (-12 (-5 *3 (-1 *2 (-964 *4))) (-4 *4 (-1069)) (-4 *2 (-968 (-964 *4) *5 *6)) (-4 *5 (-814)) (-4 *6 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1="failed") (-1197)))))) (-5 *1 (-1004 *4 *5 *6 *2)))) (-3386 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1#) (-1197)))))) (-4 *4 (-1069)) (-4 *5 (-814)) (-5 *1 (-1004 *4 *5 *6 *2)) (-4 *2 (-968 (-964 *4) *5 *6)))) (-3386 (*1 *2 *2 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1#) (-1197)))))) (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-968 (-964 *4) *5 *3)))) (-3385 (*1 *2 *2 *3) (-12 (-5 *3 (-660 *6)) (-4 *6 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1#) (-1197)))))) (-4 *4 (-1069)) (-4 *5 (-814)) (-5 *1 (-1004 *4 *5 *6 *2)) (-4 *2 (-968 (-964 *4) *5 *6)))) (-3385 (*1 *2 *2 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1#) (-1197)))))) (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-968 (-964 *4) *5 *3))))) +((-3387 ((|#2| |#3|) 35 T ELT)) (-4348 (((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) |#2|) 79 T ELT)) (-4347 (((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|)))) 100 T ELT))) +(((-1005 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4347 ((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))))) (-15 -4348 ((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) |#2|)) (-15 -3387 (|#2| |#3|))) (-363) (-1263 |#1|) (-1263 |#2|) (-743 |#2| |#3|)) (T -1005)) +((-3387 (*1 *2 *3) (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1005 *4 *2 *3 *5)) (-4 *4 (-363)) (-4 *5 (-743 *2 *3)))) (-4348 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-1005 *4 *3 *5 *6)) (-4 *6 (-743 *3 *5)))) (-4347 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -2221 (-708 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-708 *4)))) (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-743 *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3820 (((-3 (-114) #1="failed") $) 71 T ELT)) (-4078 (($ $) 36 (-12 (|has| |#1| (-149)) (|has| |#1| (-319))) ELT)) (-3391 (($ $ (-3 (-114) #1#)) 72 T ELT)) (-3392 (($ (-660 |#4|) |#4|) 25 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3388 (($ $) 69 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3822 (((-114) $) 70 T ELT)) (-3992 (($) 30 T ELT)) (-3389 ((|#4| $) 74 T ELT)) (-3390 (((-660 |#4|) $) 73 T ELT)) (-4375 (((-876) $) 68 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1006 |#1| |#2| |#3| |#4|) (-13 (-1121) (-629 (-876)) (-10 -8 (-15 -3992 ($)) (-15 -3392 ($ (-660 |#4|) |#4|)) (-15 -3820 ((-3 (-114) #1="failed") $)) (-15 -3391 ($ $ (-3 (-114) #1#))) (-15 -3822 ((-114) $)) (-15 -3390 ((-660 |#4|) $)) (-15 -3389 (|#4| $)) (-15 -3388 ($ $)) (IF (|has| |#1| (-319)) (IF (|has| |#1| (-149)) (-15 -4078 ($ $)) |%noBranch|) |%noBranch|))) (-464) (-860) (-814) (-968 |#1| |#3| |#2|)) (T -1006)) +((-3992 (*1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-860)) (-4 *4 (-814)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-3392 (*1 *1 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-860)) (-4 *6 (-814)) (-5 *1 (-1006 *4 *5 *6 *3)))) (-3820 (*1 *2 *1) (|partial| -12 (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3391 (*1 *1 *1 *2) (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3822 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3390 (*1 *2 *1) (-12 (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *2 (-660 *6)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) (-3389 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)))) (-3388 (*1 *1 *1) (-12 (-4 *2 (-464)) (-4 *3 (-860)) (-4 *4 (-814)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) (-4078 (*1 *1 *1) (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-860)) (-4 *4 (-814)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3))))) +((-3393 (((-1006 (-419 (-558)) (-877 |#1|) (-246 |#2| (-790)) (-255 |#1| (-419 (-558)))) (-1006 (-419 (-558)) (-877 |#1|) (-246 |#2| (-790)) (-255 |#1| (-419 (-558))))) 82 T ELT))) +(((-1007 |#1| |#2|) (-10 -7 (-15 -3393 ((-1006 (-419 (-558)) (-877 |#1|) (-246 |#2| (-790)) (-255 |#1| (-419 (-558)))) (-1006 (-419 (-558)) (-877 |#1|) (-246 |#2| (-790)) (-255 |#1| (-419 (-558))))))) (-660 (-1197)) (-790)) (T -1007)) +((-3393 (*1 *2 *2) (-12 (-5 *2 (-1006 (-419 (-558)) (-877 *3) (-246 *4 (-790)) (-255 *3 (-419 (-558))))) (-14 *3 (-660 (-1197))) (-14 *4 (-790)) (-5 *1 (-1007 *3 *4))))) +((-3687 (((-114) |#5| |#5|) 44 T ELT)) (-3690 (((-114) |#5| |#5|) 59 T ELT)) (-3695 (((-114) |#5| (-660 |#5|)) 81 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3691 (((-114) (-660 |#4|) (-660 |#4|)) 65 T ELT)) (-3697 (((-114) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) 70 T ELT)) (-3686 (((-1293)) 32 T ELT)) (-3685 (((-1293) (-1179) (-1179) (-1179)) 28 T ELT)) (-3696 (((-660 |#5|) (-660 |#5|)) 100 T ELT)) (-3698 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)))) 92 T ELT)) (-3699 (((-660 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-114) (-114)) 122 T ELT)) (-3689 (((-114) |#5| |#5|) 53 T ELT)) (-3694 (((-3 (-114) #1="failed") |#5| |#5|) 78 T ELT)) (-3692 (((-114) (-660 |#4|) (-660 |#4|)) 64 T ELT)) (-3693 (((-114) (-660 |#4|) (-660 |#4|)) 66 T ELT)) (-4128 (((-114) (-660 |#4|) (-660 |#4|)) 67 T ELT)) (-3700 (((-3 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|))) #1#) (-660 |#4|) |#5| (-660 |#4|) (-114) (-114) (-114) (-114) (-114)) 117 T ELT)) (-3688 (((-660 |#5|) (-660 |#5|)) 49 T ELT))) +(((-1008 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-1293) (-1179) (-1179) (-1179))) (-15 -3686 ((-1293))) (-15 -3687 ((-114) |#5| |#5|)) (-15 -3688 ((-660 |#5|) (-660 |#5|))) (-15 -3689 ((-114) |#5| |#5|)) (-15 -3690 ((-114) |#5| |#5|)) (-15 -3691 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3692 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3693 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -4128 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3694 ((-3 (-114) #1="failed") |#5| |#5|)) (-15 -3695 ((-114) |#5| |#5|)) (-15 -3695 ((-114) |#5| (-660 |#5|))) (-15 -3696 ((-660 |#5|) (-660 |#5|))) (-15 -3697 ((-114) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)))) (-15 -3698 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) (-15 -3699 ((-660 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-114) (-114))) (-15 -3700 ((-3 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|))) #1#) (-660 |#4|) |#5| (-660 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1008)) +((-3700 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *4) (|:| |ineq| (-660 *9)))) (-5 *1 (-1008 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) (-4 *4 (-1091 *6 *7 *8 *9)))) (-3699 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-660 *10)) (-5 *5 (-114)) (-4 *10 (-1091 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *10) (|:| |ineq| (-660 *9))))) (-5 *1 (-1008 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -1742 *7)))) (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1008 *5 *6 *7 *8 *3)))) (-3695 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-4128 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) (-3687 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3686 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) +((-4260 (((-1197) $) 15 T ELT)) (-3821 (((-1179) $) 16 T ELT)) (-3643 (($ (-1197) (-1179)) 14 T ELT)) (-4375 (((-876) $) 13 T ELT))) +(((-1009) (-13 (-629 (-876)) (-10 -8 (-15 -3643 ($ (-1197) (-1179))) (-15 -4260 ((-1197) $)) (-15 -3821 ((-1179) $))))) (T -1009)) +((-3643 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1009)))) (-4260 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1009)))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1009))))) +((-3574 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-1197) #1#) $) 72 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) 102 T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-1197) $) 67 T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) 99 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) 121 T ELT) (((-708 |#2|) (-708 $)) 35 T ELT)) (-3394 (($) 105 T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 82 T ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 91 T ELT)) (-3396 (($ $) 10 T ELT)) (-3864 (((-710 $) $) 27 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 29 T ELT)) (-3865 (($) 16 T ELT)) (-3529 (($ $) 61 T ELT)) (-4187 (($ $ (-1 |#2| |#2|)) 43 T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3395 (($ $) 12 T ELT)) (-4401 (((-904 (-558)) $) 77 T ELT) (((-904 (-391)) $) 86 T ELT) (((-547) $) 47 T ELT) (((-391) $) 51 T ELT) (((-229) $) 55 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 97 T ELT) (($ |#2|) NIL T ELT) (($ (-1197)) 64 T ELT)) (-3527 (((-790)) 38 T ELT)) (-3085 (((-114) $ $) 57 T ELT))) +(((-1010 |#1| |#2|) (-10 -7 (-15 -3085 ((-114) |#1| |#1|)) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -3865 (|#1|)) (-15 -3864 ((-710 |#1|) |#1|)) (-15 -3574 ((-3 (-558) #1="failed") |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -4401 ((-229) |#1|)) (-15 -4401 ((-391) |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -4375 (|#1| (-1197))) (-15 -3574 ((-3 (-1197) #1#) |#1|)) (-15 -3573 ((-1197) |#1|)) (-15 -3394 (|#1|)) (-15 -3529 (|#1| |#1|)) (-15 -3395 (|#1| |#1|)) (-15 -3396 (|#1| |#1|)) (-15 -3196 ((-902 (-391) |#1|) |#1| (-904 (-391)) (-902 (-391) |#1|))) (-15 -3196 ((-902 (-558) |#1|) |#1| (-904 (-558)) (-902 (-558) |#1|))) (-15 -4401 ((-904 (-391)) |#1|)) (-15 -4401 ((-904 (-558)) |#1|)) (-15 -2492 ((-708 |#2|) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-708 (-558)) (-708 |#1|))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4375 (|#1| |#1|)) (-15 -3527 ((-790))) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-1011 |#2|) (-569)) (T -1010)) +((-3527 (*1 *2) (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-1010 *3 *4)) (-4 *3 (-1011 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3530 ((|#1| $) 170 (|has| |#1| (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 161 (|has| |#1| (-928)) ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 164 (|has| |#1| (-928)) ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4052 (((-558) $) 151 (|has| |#1| (-841)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| #2="failed") $) 200 T ELT) (((-3 (-1197) #2#) $) 159 (|has| |#1| (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #2#) $) 142 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-558) #2#) $) 140 (|has| |#1| (-1058 (-558))) ELT)) (-3573 ((|#1| $) 201 T ELT) (((-1197) $) 160 (|has| |#1| (-1058 (-1197))) ELT) (((-419 (-558)) $) 143 (|has| |#1| (-1058 (-558))) ELT) (((-558) $) 141 (|has| |#1| (-1058 (-558))) ELT)) (-2962 (($ $ $) 68 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 185 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 184 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 183 T ELT) (((-708 |#1|) (-708 $)) 182 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3394 (($) 168 (|has| |#1| (-557)) ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-3603 (((-114) $) 153 (|has| |#1| (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 177 (|has| |#1| (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 176 (|has| |#1| (-900 (-391))) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3396 (($ $) 172 T ELT)) (-3398 ((|#1| $) 174 T ELT)) (-3864 (((-710 $) $) 139 (|has| |#1| (-1172)) ELT)) (-3604 (((-114) $) 152 (|has| |#1| (-841)) ELT)) (-1784 (((-3 (-660 $) #3="failed") (-660 $) $) 65 T ELT)) (-2929 (($ $ $) 144 (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) 145 (|has| |#1| (-860)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 192 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 187 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 186 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 181 T ELT) (((-708 |#1|) (-1287 $)) 180 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3865 (($) 138 (|has| |#1| (-1172)) CONST)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3529 (($ $) 169 (|has| |#1| (-319)) ELT)) (-3531 ((|#1| $) 166 (|has| |#1| (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 163 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 162 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) 198 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 197 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 196 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 195 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 194 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) 193 (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-1786 (((-790) $) 71 T ELT)) (-4229 (($ $ |#1|) 199 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-4187 (($ $ (-1 |#1| |#1|)) 191 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 190 T ELT) (($ $) 137 (|has| |#1| (-239)) ELT) (($ $ (-790)) 135 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 133 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 131 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 130 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 129 (|has| |#1| (-918 (-1197))) ELT)) (-3395 (($ $) 171 T ELT)) (-3397 ((|#1| $) 173 T ELT)) (-4401 (((-904 (-558)) $) 179 (|has| |#1| (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) 178 (|has| |#1| (-630 (-904 (-391)))) ELT) (((-547) $) 156 (|has| |#1| (-630 (-547))) ELT) (((-391) $) 155 (|has| |#1| (-1040)) ELT) (((-229) $) 154 (|has| |#1| (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 165 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 204 T ELT) (($ (-1197)) 158 (|has| |#1| (-1058 (-1197))) ELT)) (-3102 (((-710 $) $) 157 (-3956 (|has| |#1| (-147)) (-2960 (|has| $ (-147)) (|has| |#1| (-928)))) ELT)) (-3527 (((-790)) 37 T CONST)) (-3532 ((|#1| $) 167 (|has| |#1| (-557)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3802 (($ $) 150 (|has| |#1| (-841)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) 189 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 188 T ELT) (($ $) 136 (|has| |#1| (-239)) ELT) (($ $ (-790)) 134 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 132 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 128 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 127 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 126 (|has| |#1| (-918 (-1197))) ELT)) (-2964 (((-114) $ $) 146 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 148 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 147 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 149 (|has| |#1| (-860)) ELT)) (-4378 (($ $ $) 80 T ELT) (($ |#1| |#1|) 175 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ |#1| $) 203 T ELT) (($ $ |#1|) 202 T ELT))) +(((-1011 |#1|) (-142) (-569)) (T -1011)) +((-4378 (*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)))) (-3398 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)))) (-3397 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)))) (-3396 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)))) (-3395 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) (-3529 (*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) (-3394 (*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-569)))) (-3532 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-557))))) +(-13 (-376) (-38 |t#1|) (-1058 |t#1|) (-351 |t#1|) (-234 |t#1|) (-390 |t#1|) (-898 |t#1|) (-412 |t#1|) (-10 -8 (-15 -4378 ($ |t#1| |t#1|)) (-15 -3398 (|t#1| $)) (-15 -3397 (|t#1| $)) (-15 -3396 ($ $)) (-15 -3395 ($ $)) (IF (|has| |t#1| (-1172)) (-6 (-1172)) |%noBranch|) (IF (|has| |t#1| (-1058 (-558))) (PROGN (-6 (-1058 (-558))) (-6 (-1058 (-419 (-558))))) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-841)) (-6 (-841)) |%noBranch|) (IF (|has| |t#1| (-1040)) (-6 (-1040)) |%noBranch|) (IF (|has| |t#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1058 (-1197))) (-6 (-1058 (-1197))) |%noBranch|) (IF (|has| |t#1| (-319)) (PROGN (-15 -3530 (|t#1| $)) (-15 -3529 ($ $))) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3394 ($)) (-15 -3532 (|t#1| $)) (-15 -3531 (|t#1| $))) |%noBranch|) (IF (|has| |t#1| (-928)) (-6 (-928)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 |#1|) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 (-1197)) |has| |#1| (-1058 (-1197))) ((-632 |#1|) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-630 (-229)) |has| |#1| (-1040)) ((-630 (-391)) |has| |#1| (-1040)) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-630 (-904 (-391))) |has| |#1| (-630 (-904 (-391)))) ((-630 (-904 (-558))) |has| |#1| (-630 (-904 (-558)))) ((-236 $) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) . T) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) . T) ((-319) . T) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-376) . T) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-412 |#1|) . T) ((-464) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) . T) ((-736 |#1|) . T) ((-736 $) . T) ((-745) . T) ((-811) |has| |#1| (-841)) ((-813) |has| |#1| (-841)) ((-815) |has| |#1| (-841)) ((-818) |has| |#1| (-841)) ((-841) |has| |#1| (-841)) ((-859) |has| |#1| (-841)) ((-860) -3956 (|has| |#1| (-860)) (|has| |#1| (-841))) ((-863) -3956 (|has| |#1| (-860)) (|has| |#1| (-841))) ((-910 $ (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-916 (-1197)) |has| |#1| (-916 (-1197))) ((-918 (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-900 (-391)) |has| |#1| (-900 (-391))) ((-900 (-558)) |has| |#1| (-900 (-558))) ((-898 |#1|) . T) ((-928) |has| |#1| (-928)) ((-939) . T) ((-1040) |has| |#1| (-1040)) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-558))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 (-1197)) |has| |#1| (-1058 (-1197))) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) |has| |#1| (-1172)) ((-1237) . T) ((-1242) . T)) +((-4387 ((|#4| (-1 |#2| |#1|) |#3|) 14 T ELT))) +(((-1012 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#4| (-1 |#2| |#1|) |#3|))) (-569) (-569) (-1011 |#1|) (-1011 |#2|)) (T -1012)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1011 *6)) (-5 *1 (-1012 *5 *6 *4 *2)) (-4 *4 (-1011 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ "failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3399 (($ (-1162 |#1| |#2|)) 11 T ELT)) (-3525 (((-1162 |#1| |#2|) $) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 ((|#2| $ (-246 |#1| |#2|)) 16 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT))) +(((-1013 |#1| |#2|) (-13 (-21) (-298 (-246 |#1| |#2|) |#2|) (-10 -8 (-15 -3399 ($ (-1162 |#1| |#2|))) (-15 -3525 ((-1162 |#1| |#2|) $)))) (-937) (-376)) (T -1013)) +((-3399 (*1 *1 *2) (-12 (-5 *2 (-1162 *3 *4)) (-14 *3 (-937)) (-4 *4 (-376)) (-5 *1 (-1013 *3 *4)))) (-3525 (*1 *2 *1) (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1013 *3 *4)) (-14 *3 (-937)) (-4 *4 (-376))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3623 (((-1155) $) 9 T ELT)) (-4375 (((-876) $) 15 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1014) (-13 (-1103) (-10 -8 (-15 -3623 ((-1155) $))))) (T -1014)) +((-3623 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1014))))) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4153 (($) 7 T CONST)) (-3402 (($ $) 50 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-4262 (((-790) $) 49 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-3401 ((|#1| $) 48 T ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3404 ((|#1| |#1| $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-3403 ((|#1| $) 51 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-3400 ((|#1| $) 47 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1015 |#1|) (-142) (-1237)) (T -1015)) +((-3404 (*1 *2 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-3403 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-3402 (*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-4262 (*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1237)) (-5 *2 (-790)))) (-3401 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237)))) (-3400 (*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4424) (-15 -3404 (|t#1| |t#1| $)) (-15 -3403 (|t#1| $)) (-15 -3402 ($ $)) (-15 -4262 ((-790) $)) (-15 -3401 (|t#1| $)) (-15 -3400 (|t#1| $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4072 ((|#1| $) 12 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) NIL (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) NIL (|has| |#1| (-557)) ELT)) (-3405 (($ |#1| |#1| |#1| |#1|) 16 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3533 ((|#1| $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3406 ((|#1| $) 15 T ELT)) (-3407 ((|#1| $) 14 T ELT)) (-3408 ((|#1| $) 13 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) NIL (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-4229 (($ $ |#1|) NIL (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4187 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3802 ((|#1| $) NIL (|has| |#1| (-1080)) ELT)) (-3058 (($) 8 T CONST)) (-3064 (($) 10 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 20 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT))) +(((-1016 |#1|) (-1018 |#1|) (-175)) (T -1016)) +NIL +((-3605 (((-114) $) 43 T ELT)) (-3574 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#2| #1#) $) 46 T ELT)) (-3573 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#2| $) 44 T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) 78 T ELT)) (-3423 (((-114) $) 72 T ELT)) (-3422 (((-419 (-558)) $) 76 T ELT)) (-2640 (((-114) $) 42 T ELT)) (-3533 ((|#2| $) 22 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 19 T ELT)) (-2873 (($ $) 58 T ELT)) (-4187 (($ $ (-1 |#2| |#2|)) 35 T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-4401 (((-547) $) 67 T ELT)) (-3409 (($ $) 17 T ELT)) (-4375 (((-876) $) 53 T ELT) (($ (-558)) 39 T ELT) (($ |#2|) 37 T ELT) (($ (-419 (-558))) NIL T ELT)) (-3527 (((-790)) 10 T ELT)) (-3802 ((|#2| $) 71 T ELT)) (-3453 (((-114) $ $) 26 T ELT)) (-3085 (((-114) $ $) 69 T ELT)) (-4266 (($ $) 30 T ELT) (($ $ $) 29 T ELT)) (-4268 (($ $ $) 27 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 34 T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) 31 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT))) +(((-1017 |#1| |#2|) (-10 -7 (-15 -4375 (|#1| (-419 (-558)))) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -3085 ((-114) |#1| |#1|)) (-15 * (|#1| (-419 (-558)) |#1|)) (-15 * (|#1| |#1| (-419 (-558)))) (-15 -2873 (|#1| |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -3424 ((-3 (-419 (-558)) #1="failed") |#1|)) (-15 -3422 ((-419 (-558)) |#1|)) (-15 -3423 ((-114) |#1|)) (-15 -3802 (|#2| |#1|)) (-15 -3533 (|#2| |#1|)) (-15 -3409 (|#1| |#1|)) (-15 -4387 (|#1| (-1 |#2| |#2|) |#1|)) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|))) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 -3527 ((-790))) (-15 -4375 (|#1| (-558))) (-15 -2640 ((-114) |#1|)) (-15 * (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 * (|#1| (-790) |#1|)) (-15 -3605 ((-114) |#1|)) (-15 * (|#1| (-937) |#1|)) (-15 -4268 (|#1| |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-1018 |#2|) (-175)) (T -1017)) +((-3527 (*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-790)) (-5 *1 (-1017 *3 *4)) (-4 *3 (-1018 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 (-558) #1="failed") $) 140 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 138 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) 135 T ELT)) (-3573 (((-558) $) 139 (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) 137 (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) 136 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 120 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 119 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 118 T ELT) (((-708 |#1|) (-708 $)) 117 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4072 ((|#1| $) 108 T ELT)) (-3424 (((-3 (-419 (-558)) "failed") $) 104 (|has| |#1| (-557)) ELT)) (-3423 (((-114) $) 106 (|has| |#1| (-557)) ELT)) (-3422 (((-419 (-558)) $) 105 (|has| |#1| (-557)) ELT)) (-3405 (($ |#1| |#1| |#1| |#1|) 109 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3533 ((|#1| $) 110 T ELT)) (-2929 (($ $ $) 92 (|has| |#1| (-860)) ELT)) (-3257 (($ $ $) 93 (|has| |#1| (-860)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 123 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 122 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 121 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 116 T ELT) (((-708 |#1|) (-1287 $)) 115 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 101 (|has| |#1| (-376)) ELT)) (-3406 ((|#1| $) 111 T ELT)) (-3407 ((|#1| $) 112 T ELT)) (-3408 ((|#1| $) 113 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) 129 (|has| |#1| (-321 |#1|)) ELT) (($ $ |#1| |#1|) 128 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-305 |#1|)) 127 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-305 |#1|))) 126 (|has| |#1| (-321 |#1|)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) 125 (|has| |#1| (-526 (-1197) |#1|)) ELT) (($ $ (-1197) |#1|) 124 (|has| |#1| (-526 (-1197) |#1|)) ELT)) (-4229 (($ $ |#1|) 130 (|has| |#1| (-298 |#1| |#1|)) ELT)) (-4187 (($ $ (-1 |#1| |#1|)) 134 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 133 T ELT) (($ $) 91 (|has| |#1| (-239)) ELT) (($ $ (-790)) 89 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 87 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 85 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 84 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 83 (|has| |#1| (-918 (-1197))) ELT)) (-4401 (((-547) $) 102 (|has| |#1| (-630 (-547))) ELT)) (-3409 (($ $) 114 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 49 T ELT) (($ (-419 (-558))) 79 (-3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3102 (((-710 $) $) 103 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3802 ((|#1| $) 107 (|has| |#1| (-1080)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 |#1| |#1|)) 132 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 131 T ELT) (($ $) 90 (|has| |#1| (-239)) ELT) (($ $ (-790)) 88 (|has| |#1| (-239)) ELT) (($ $ (-1197)) 86 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 82 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 81 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 80 (|has| |#1| (-918 (-1197))) ELT)) (-2964 (((-114) $ $) 94 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 96 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 95 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 97 (|has| |#1| (-860)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 100 (|has| |#1| (-376)) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 51 T ELT) (($ |#1| $) 50 T ELT) (($ $ (-419 (-558))) 99 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) 98 (|has| |#1| (-376)) ELT))) +(((-1018 |#1|) (-142) (-175)) (T -1018)) +((-3409 (*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-3408 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-3407 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-3406 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-3533 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-3405 (*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-4072 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) (-3802 (*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) (-3423 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) (-3422 (*1 *2 *1) (-12 (-4 *1 (-1018 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) (-3424 (*1 *2 *1) (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558)))))) +(-13 (-38 |t#1|) (-424 |t#1|) (-234 |t#1|) (-351 |t#1|) (-390 |t#1|) (-10 -8 (-15 -3409 ($ $)) (-15 -3408 (|t#1| $)) (-15 -3407 (|t#1| $)) (-15 -3406 (|t#1| $)) (-15 -3533 (|t#1| $)) (-15 -3405 ($ |t#1| |t#1| |t#1| |t#1|)) (-15 -4072 (|t#1| $)) (IF (|has| |t#1| (-302)) (-6 (-302)) |%noBranch|) (IF (|has| |t#1| (-860)) (-6 (-860)) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-250)) |%noBranch|) (IF (|has| |t#1| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-147)) |%noBranch|) (IF (|has| |t#1| (-1080)) (-15 -3802 (|t#1| $)) |%noBranch|) (IF (|has| |t#1| (-557)) (PROGN (-15 -3423 ((-114) $)) (-15 -3422 ((-419 (-558)) $)) (-15 -3424 ((-3 (-419 (-558)) "failed") $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-376)) ((-38 |#1|) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-376)) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-376))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-236 $) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-234 |#1|) . T) ((-240) |has| |#1| (-240)) ((-239) -3956 (|has| |#1| (-239)) (|has| |#1| (-240))) ((-274 |#1|) . T) ((-250) |has| |#1| (-376)) ((-298 |#1| $) |has| |#1| (-298 |#1| |#1|)) ((-302) -3956 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-321 |#1|) |has| |#1| (-321 |#1|)) ((-351 |#1|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-526 (-1197) |#1|) |has| |#1| (-526 (-1197) |#1|)) ((-526 |#1| |#1|) |has| |#1| (-321 |#1|)) ((-665 (-419 (-558))) |has| |#1| (-376)) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-376)) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-376)) ((-659 |#1|) . T) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) |has| |#1| (-376)) ((-736 |#1|) . T) ((-745) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-910 $ (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-916 (-1197)) |has| |#1| (-916 (-1197))) ((-918 (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) |has| |#1| (-376)) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1076 (-419 (-558))) |has| |#1| (-376)) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-376)) (|has| |#1| (-302))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-4387 ((|#3| (-1 |#4| |#2|) |#1|) 16 T ELT))) +(((-1019 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#3| (-1 |#4| |#2|) |#1|))) (-1018 |#2|) (-175) (-1018 |#4|) (-175)) (T -1019)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1018 *6)) (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4153 (($) NIL T CONST)) (-3402 (($ $) 23 T ELT)) (-3410 (($ (-660 |#1|)) 33 T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4262 (((-790) $) 26 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 28 T ELT)) (-4036 (($ |#1| $) 17 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-3401 ((|#1| $) 27 T ELT)) (-1389 ((|#1| $) 22 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3404 ((|#1| |#1| $) 16 T ELT)) (-3822 (((-114) $) 18 T ELT)) (-3992 (($) NIL T ELT)) (-3403 ((|#1| $) 21 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) NIL T ELT)) (-3400 ((|#1| $) 30 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1020 |#1|) (-13 (-1015 |#1|) (-10 -8 (-15 -3410 ($ (-660 |#1|))))) (-1121)) (T -1020)) +((-3410 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-1020 *3))))) +((-3437 (($ $) 12 T ELT)) (-3411 (($ $ (-558)) 13 T ELT))) +(((-1021 |#1|) (-10 -7 (-15 -3437 (|#1| |#1|)) (-15 -3411 (|#1| |#1| (-558)))) (-1022)) (T -1021)) +NIL +((-3437 (($ $) 6 T ELT)) (-3411 (($ $ (-558)) 7 T ELT)) (** (($ $ (-419 (-558))) 8 T ELT))) +(((-1022) (-142)) (T -1022)) +((** (*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-419 (-558))))) (-3411 (*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-558)))) (-3437 (*1 *1 *1) (-4 *1 (-1022)))) +(-13 (-10 -8 (-15 -3437 ($ $)) (-15 -3411 ($ $ (-558))) (-15 ** ($ $ (-419 (-558)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1849 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2272 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2270 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1989 (((-708 (-419 |#2|)) (-1287 $)) NIL T ELT) (((-708 (-419 |#2|))) NIL T ELT)) (-3749 (((-419 |#2|) $) NIL T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1787 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3537 (((-790)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1863 (((-114)) NIL T ELT)) (-1862 (((-114) |#1|) 162 T ELT) (((-114) |#2|) 166 T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| (-419 |#2|) (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 |#2|) (-1058 (-419 (-558)))) ELT) (((-3 (-419 |#2|) #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| (-419 |#2|) (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-419 |#2|) (-1058 (-419 (-558)))) ELT) (((-419 |#2|) $) NIL T ELT)) (-1999 (($ (-1287 (-419 |#2|)) (-1287 $)) NIL T ELT) (($ (-1287 (-419 |#2|))) 79 T ELT) (($ (-1287 |#2|) |#2|) NIL T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2962 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1988 (((-708 (-419 |#2|)) $ (-1287 $)) NIL T ELT) (((-708 (-419 |#2|)) $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-419 |#2|)) (-708 $)) NIL T ELT)) (-1854 (((-1287 $) (-1287 $)) NIL T ELT)) (-4271 (($ |#3|) 73 T ELT) (((-3 $ #1#) (-419 |#3|)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-1841 (((-660 (-660 |#1|))) NIL (|has| |#1| (-381)) ELT)) (-1866 (((-114) |#1| |#1|) NIL T ELT)) (-3510 (((-937)) NIL T ELT)) (-3394 (($) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1861 (((-114)) NIL T ELT)) (-1860 (((-114) |#1|) 61 T ELT) (((-114) |#2|) 164 T ELT)) (-2961 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3922 (($ $) NIL T ELT)) (-3233 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1882 (((-114) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1973 (($ $ (-790)) NIL (|has| (-419 |#2|) (-363)) ELT) (($ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4152 (((-114) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4201 (((-937) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-844 (-937)) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3796 (((-790)) NIL T ELT)) (-1855 (((-1287 $) (-1287 $)) NIL T ELT)) (-3533 (((-419 |#2|) $) NIL T ELT)) (-1842 (((-660 (-964 |#1|)) (-1197)) NIL (|has| |#1| (-376)) ELT)) (-3864 (((-710 $) $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2223 ((|#3| $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-2219 (((-937) $) NIL (|has| (-419 |#2|) (-381)) ELT)) (-3479 ((|#3| $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-419 |#2|) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-419 |#2|))) (|:| |vec| (-1287 (-419 |#2|)))) (-1287 $) $) NIL T ELT) (((-708 (-419 |#2|)) (-1287 $)) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1850 (((-708 (-419 |#2|))) 57 T ELT)) (-1852 (((-708 (-419 |#2|))) 56 T ELT)) (-2873 (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1847 (($ (-1287 |#2|) |#2|) 80 T ELT)) (-1851 (((-708 (-419 |#2|))) 55 T ELT)) (-1853 (((-708 (-419 |#2|))) 54 T ELT)) (-1846 (((-2 (|:| |num| (-708 |#2|)) (|:| |den| |#2|)) (-1 |#2| |#2|)) 95 T ELT)) (-1848 (((-2 (|:| |num| (-1287 |#2|)) (|:| |den| |#2|)) $) 86 T ELT)) (-1859 (((-1287 $)) 51 T ELT)) (-4347 (((-1287 $)) 50 T ELT)) (-1858 (((-114) $) NIL T ELT)) (-1857 (((-114) $) NIL T ELT) (((-114) $ |#1|) NIL T ELT) (((-114) $ |#2|) NIL T ELT)) (-3865 (($) NIL (|has| (-419 |#2|) (-363)) CONST)) (-2630 (($ (-937)) NIL (|has| (-419 |#2|) (-381)) ELT)) (-1844 (((-3 |#2| #1#)) 70 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1868 (((-790)) NIL T ELT)) (-2639 (($) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4161 (((-417 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| (-419 |#2|) (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1786 (((-790) $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4229 ((|#1| $ |#1| |#1|) NIL T ELT)) (-1845 (((-3 |#2| #1#)) 68 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4186 (((-419 |#2|) (-1287 $)) NIL T ELT) (((-419 |#2|)) 47 T ELT)) (-1974 (((-790) $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-3 (-790) #1#) $ $) NIL (|has| (-419 |#2|) (-363)) ELT)) (-4187 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-790)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-2638 (((-708 (-419 |#2|)) (-1287 $) (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3602 ((|#3|) 58 T ELT)) (-1876 (($) NIL (|has| (-419 |#2|) (-363)) ELT)) (-3641 (((-1287 (-419 |#2|)) $ (-1287 $)) NIL T ELT) (((-708 (-419 |#2|)) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 (-419 |#2|)) $) 81 T ELT) (((-708 (-419 |#2|)) (-1287 $)) NIL T ELT)) (-4401 (((-1287 (-419 |#2|)) $) NIL T ELT) (($ (-1287 (-419 |#2|))) NIL T ELT) ((|#3| $) NIL T ELT) (($ |#3|) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| (-419 |#2|) (-363)) ELT)) (-1856 (((-1287 $) (-1287 $)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 |#2|)) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-3102 (($ $) NIL (|has| (-419 |#2|) (-363)) ELT) (((-710 $) $) NIL (|has| (-419 |#2|) (-147)) ELT)) (-2837 ((|#3| $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1865 (((-114)) 65 T ELT)) (-1864 (((-114) |#1|) 167 T ELT) (((-114) |#2|) 168 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-1843 (((-2 (|:| |num| $) (|:| |den| |#2|) (|:| |derivden| |#2|) (|:| |gd| |#2|)) $ (-1 |#2| |#2|)) NIL T ELT)) (-1867 (((-114)) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-1 (-419 |#2|) (-419 |#2|))) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-1 (-419 |#2|) (-419 |#2|)) (-790)) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-916 (-1197)))) (-12 (|has| (-419 |#2|) (-376)) (|has| (-419 |#2|) (-918 (-1197))))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT) (($ $) NIL (-3956 (-12 (|has| (-419 |#2|) (-240)) (|has| (-419 |#2|) (-376))) (-12 (|has| (-419 |#2|) (-239)) (|has| (-419 |#2|) (-376))) (|has| (-419 |#2|) (-363))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ $) NIL (|has| (-419 |#2|) (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| (-419 |#2|) (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 |#2|)) NIL T ELT) (($ (-419 |#2|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-419 |#2|) (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| (-419 |#2|) (-376)) ELT))) +(((-1023 |#1| |#2| |#3| |#4| |#5|) (-355 |#1| |#2| |#3|) (-1242) (-1263 |#1|) (-1263 (-419 |#2|)) (-419 |#2|) (-790)) (T -1023)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3417 (((-660 (-558)) $) 73 T ELT)) (-3413 (($ (-660 (-558))) 81 T ELT)) (-3530 (((-558) $) 48 (|has| (-558) (-319)) ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL (|has| (-558) (-841)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) 60 T ELT) (((-3 (-1197) #1#) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-3 (-419 (-558)) #1#) $) 57 (|has| (-558) (-1058 (-558))) ELT) (((-3 (-558) #1#) $) 60 (|has| (-558) (-1058 (-558))) ELT)) (-3573 (((-558) $) NIL T ELT) (((-1197) $) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) NIL (|has| (-558) (-1058 (-558))) ELT) (((-558) $) NIL (|has| (-558) (-1058 (-558))) ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3394 (($) NIL (|has| (-558) (-557)) ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3415 (((-660 (-558)) $) 79 T ELT)) (-3603 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (|has| (-558) (-900 (-558))) ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (|has| (-558) (-900 (-391))) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL T ELT)) (-3398 (((-558) $) 45 T ELT)) (-3864 (((-710 $) $) NIL (|has| (-558) (-1172)) ELT)) (-3604 (((-114) $) NIL (|has| (-558) (-841)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-558) (-860)) ELT)) (-4387 (($ (-1 (-558) (-558)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| (-558) (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL T ELT)) (-3865 (($) NIL (|has| (-558) (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3529 (($ $) NIL (|has| (-558) (-319)) ELT) (((-419 (-558)) $) 50 T ELT)) (-3416 (((-1175 (-558)) $) 78 T ELT)) (-3412 (($ (-660 (-558)) (-660 (-558))) 82 T ELT)) (-3531 (((-558) $) 64 (|has| (-558) (-557)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| (-558) (-928)) ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-4197 (($ $ (-660 (-558)) (-660 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-558) (-558)) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-305 (-558))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-305 (-558)))) NIL (|has| (-558) (-321 (-558))) ELT) (($ $ (-660 (-1197)) (-660 (-558))) NIL (|has| (-558) (-526 (-1197) (-558))) ELT) (($ $ (-1197) (-558)) NIL (|has| (-558) (-526 (-1197) (-558))) ELT)) (-1786 (((-790) $) NIL T ELT)) (-4229 (($ $ (-558)) NIL (|has| (-558) (-298 (-558) (-558))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) 15 (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-3395 (($ $) NIL T ELT)) (-3397 (((-558) $) 47 T ELT)) (-3414 (((-660 (-558)) $) 80 T ELT)) (-4401 (((-904 (-558)) $) NIL (|has| (-558) (-630 (-904 (-558)))) ELT) (((-904 (-391)) $) NIL (|has| (-558) (-630 (-904 (-391)))) ELT) (((-547) $) NIL (|has| (-558) (-630 (-547))) ELT) (((-391) $) NIL (|has| (-558) (-1040)) ELT) (((-229) $) NIL (|has| (-558) (-1040)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-558) (-928))) ELT)) (-4375 (((-876) $) 108 T ELT) (($ (-558)) 51 T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 27 T ELT) (($ (-558)) 51 T ELT) (($ (-1197)) NIL (|has| (-558) (-1058 (-1197))) ELT) (((-419 (-558)) $) 25 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-558) (-928))) (|has| (-558) (-147))) ELT)) (-3527 (((-790)) 13 T CONST)) (-3532 (((-558) $) 62 (|has| (-558) (-557)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3802 (($ $) NIL (|has| (-558) (-841)) ELT)) (-3058 (($) 14 T CONST)) (-3064 (($) 17 T CONST)) (-3069 (($ $ (-1 (-558) (-558))) NIL T ELT) (($ $ (-1 (-558) (-558)) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| (-558) (-918 (-1197))) ELT) (($ $) NIL (|has| (-558) (-239)) ELT) (($ $ (-790)) NIL (|has| (-558) (-239)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3453 (((-114) $ $) 21 T ELT)) (-3084 (((-114) $ $) NIL (|has| (-558) (-860)) ELT)) (-3085 (((-114) $ $) 40 (|has| (-558) (-860)) ELT)) (-4378 (($ $ $) 36 T ELT) (($ (-558) (-558)) 38 T ELT)) (-4266 (($ $) 23 T ELT) (($ $ $) 30 T ELT)) (-4268 (($ $ $) 28 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ $ $) 34 T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ (-558) $) 32 T ELT) (($ $ (-558)) NIL T ELT))) +(((-1024 |#1|) (-13 (-1011 (-558)) (-629 (-419 (-558))) (-10 -8 (-15 -3529 ((-419 (-558)) $)) (-15 -3417 ((-660 (-558)) $)) (-15 -3416 ((-1175 (-558)) $)) (-15 -3415 ((-660 (-558)) $)) (-15 -3414 ((-660 (-558)) $)) (-15 -3413 ($ (-660 (-558)))) (-15 -3412 ($ (-660 (-558)) (-660 (-558)))))) (-558)) (T -1024)) +((-3529 (*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) (-3417 (*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) (-3416 (*1 *2 *1) (-12 (-5 *2 (-1175 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) (-3415 (*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) (-3414 (*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) (-3413 (*1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) (-3412 (*1 *1 *2 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) +((-3418 (((-51) (-419 (-558)) (-558)) 9 T ELT))) +(((-1025) (-10 -7 (-15 -3418 ((-51) (-419 (-558)) (-558))))) (T -1025)) +((-3418 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-558))) (-5 *4 (-558)) (-5 *2 (-51)) (-5 *1 (-1025))))) +((-3537 (((-558)) 21 T ELT)) (-3421 (((-558)) 26 T ELT)) (-3420 (((-1293) (-558)) 24 T ELT)) (-3419 (((-558) (-558)) 27 T ELT) (((-558)) 20 T ELT))) +(((-1026) (-10 -7 (-15 -3419 ((-558))) (-15 -3537 ((-558))) (-15 -3419 ((-558) (-558))) (-15 -3420 ((-1293) (-558))) (-15 -3421 ((-558))))) (T -1026)) +((-3421 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026)))) (-3420 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1026)))) (-3419 (*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026)))) (-3537 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026)))) (-3419 (*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026))))) +((-4162 (((-417 |#1|) |#1|) 43 T ELT)) (-4161 (((-417 |#1|) |#1|) 41 T ELT))) +(((-1027 |#1|) (-10 -7 (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4162 ((-417 |#1|) |#1|))) (-1263 (-419 (-558)))) (T -1027)) +((-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1027 *3)) (-4 *3 (-1263 (-419 (-558)))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1027 *3)) (-4 *3 (-1263 (-419 (-558))))))) +((-3424 (((-3 (-419 (-558)) "failed") |#1|) 15 T ELT)) (-3423 (((-114) |#1|) 14 T ELT)) (-3422 (((-419 (-558)) |#1|) 10 T ELT))) +(((-1028 |#1|) (-10 -7 (-15 -3422 ((-419 (-558)) |#1|)) (-15 -3423 ((-114) |#1|)) (-15 -3424 ((-3 (-419 (-558)) "failed") |#1|))) (-1058 (-419 (-558)))) (T -1028)) +((-3424 (*1 *2 *3) (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2)))) (-3423 (*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1028 *3)) (-4 *3 (-1058 (-419 (-558)))))) (-3422 (*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2))))) +((-4217 ((|#2| $ #1="value" |#2|) 12 T ELT)) (-4229 ((|#2| $ #1#) 10 T ELT)) (-3428 (((-114) $ $) 18 T ELT))) +(((-1029 |#1| |#2|) (-10 -7 (-15 -4217 (|#2| |#1| #1="value" |#2|)) (-15 -3428 ((-114) |#1| |#1|)) (-15 -4229 (|#2| |#1| #1#))) (-1030 |#2|) (-1237)) (T -1029)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ "value" |#1|) 44 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4153 (($) 7 T CONST)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ "value") 51 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1030 |#1|) (-142) (-1237)) (T -1030)) +((-3941 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-660 *1)) (-4 *1 (-1030 *3)))) (-3431 (*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-660 *1)) (-4 *1 (-1030 *3)))) (-3946 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-3821 (*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) (-4062 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-3430 (*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-660 *3)))) (-3429 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-558)))) (-3428 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114)))) (-3427 (*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114)))) (-3426 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *1)) (|has| *1 (-6 -4425)) (-4 *1 (-1030 *3)) (-4 *3 (-1237)))) (-4217 (*1 *2 *1 *3 *2) (-12 (-5 *3 "value") (|has| *1 (-6 -4425)) (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) (-3425 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1030 *2)) (-4 *2 (-1237))))) +(-13 (-501 |t#1|) (-10 -8 (-15 -3941 ((-660 $) $)) (-15 -3431 ((-660 $) $)) (-15 -3946 ((-114) $)) (-15 -3821 (|t#1| $)) (-15 -4229 (|t#1| $ "value")) (-15 -4062 ((-114) $)) (-15 -3430 ((-660 |t#1|) $)) (-15 -3429 ((-558) $ $)) (IF (|has| |t#1| (-1121)) (PROGN (-15 -3428 ((-114) $ $)) (-15 -3427 ((-114) $ $))) |%noBranch|) (IF (|has| $ (-6 -4425)) (PROGN (-15 -3426 ($ $ (-660 $))) (-15 -4217 (|t#1| $ "value" |t#1|)) (-15 -3425 (|t#1| $ |t#1|))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-3437 (($ $) 9 T ELT) (($ $ (-937)) 49 T ELT) (($ (-419 (-558))) 13 T ELT) (($ (-558)) 15 T ELT)) (-3600 (((-3 $ #1="failed") (-1191 $) (-937) (-876)) 24 T ELT) (((-3 $ #1#) (-1191 $) (-937)) 32 T ELT)) (-3411 (($ $ (-558)) 58 T ELT)) (-3527 (((-790)) 18 T ELT)) (-3601 (((-660 $) (-1191 $)) NIL T ELT) (((-660 $) (-1191 (-419 (-558)))) 63 T ELT) (((-660 $) (-1191 (-558))) 68 T ELT) (((-660 $) (-964 $)) 72 T ELT) (((-660 $) (-964 (-419 (-558)))) 76 T ELT) (((-660 $) (-964 (-558))) 80 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) 53 T ELT))) +(((-1031 |#1|) (-10 -7 (-15 -3437 (|#1| (-558))) (-15 -3437 (|#1| (-419 (-558)))) (-15 -3437 (|#1| |#1| (-937))) (-15 -3601 ((-660 |#1|) (-964 (-558)))) (-15 -3601 ((-660 |#1|) (-964 (-419 (-558))))) (-15 -3601 ((-660 |#1|) (-964 |#1|))) (-15 -3601 ((-660 |#1|) (-1191 (-558)))) (-15 -3601 ((-660 |#1|) (-1191 (-419 (-558))))) (-15 -3601 ((-660 |#1|) (-1191 |#1|))) (-15 -3600 ((-3 |#1| #1="failed") (-1191 |#1|) (-937))) (-15 -3600 ((-3 |#1| #1#) (-1191 |#1|) (-937) (-876))) (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -3411 (|#1| |#1| (-558))) (-15 -3437 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3527 ((-790))) (-15 ** (|#1| |#1| (-790))) (-15 ** (|#1| |#1| (-937)))) (-1032)) (T -1031)) +((-3527 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1031 *3)) (-4 *3 (-1032))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 108 T ELT)) (-2272 (($ $) 109 T ELT)) (-2270 (((-114) $) 111 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 128 T ELT)) (-4400 (((-417 $) $) 129 T ELT)) (-3437 (($ $) 92 T ELT) (($ $ (-937)) 78 T ELT) (($ (-419 (-558))) 77 T ELT) (($ (-558)) 76 T ELT)) (-1787 (((-114) $ $) 119 T ELT)) (-4052 (((-558) $) 145 T ELT)) (-4153 (($) 22 T CONST)) (-3600 (((-3 $ "failed") (-1191 $) (-937) (-876)) 86 T ELT) (((-3 $ "failed") (-1191 $) (-937)) 85 T ELT)) (-3574 (((-3 (-558) #1="failed") $) 105 (|has| (-419 (-558)) (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| (-419 (-558)) (-1058 (-419 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) 100 T ELT)) (-3573 (((-558) $) 104 (|has| (-419 (-558)) (-1058 (-558))) ELT) (((-419 (-558)) $) 102 (|has| (-419 (-558)) (-1058 (-419 (-558)))) ELT) (((-419 (-558)) $) 101 T ELT)) (-3433 (($ $ (-876)) 75 T ELT)) (-3432 (($ $ (-876)) 74 T ELT)) (-2962 (($ $ $) 123 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 122 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 117 T ELT)) (-4152 (((-114) $) 130 T ELT)) (-3603 (((-114) $) 143 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 91 T ELT)) (-3604 (((-114) $) 144 T ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 126 T ELT)) (-2929 (($ $ $) 137 T ELT)) (-3257 (($ $ $) 138 T ELT)) (-3434 (((-3 (-1191 $) "failed") $) 87 T ELT)) (-3436 (((-3 (-876) "failed") $) 89 T ELT)) (-3435 (((-3 (-1191 $) "failed") $) 88 T ELT)) (-2101 (($ (-660 $)) 115 T ELT) (($ $ $) 114 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 131 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 116 T ELT)) (-3561 (($ (-660 $)) 113 T ELT) (($ $ $) 112 T ELT)) (-4161 (((-417 $) $) 127 T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 125 T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 124 T ELT)) (-3885 (((-3 $ "failed") $ $) 107 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 118 T ELT)) (-1786 (((-790) $) 120 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 121 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 135 T ELT) (($ $) 106 T ELT) (($ (-419 (-558))) 99 T ELT) (($ (-558)) 98 T ELT) (($ (-419 (-558))) 95 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 110 T ELT)) (-4199 (((-419 (-558)) $ $) 73 T ELT)) (-3601 (((-660 $) (-1191 $)) 84 T ELT) (((-660 $) (-1191 (-419 (-558)))) 83 T ELT) (((-660 $) (-1191 (-558))) 82 T ELT) (((-660 $) (-964 $)) 81 T ELT) (((-660 $) (-964 (-419 (-558)))) 80 T ELT) (((-660 $) (-964 (-558))) 79 T ELT)) (-3802 (($ $) 146 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 139 T ELT)) (-2965 (((-114) $ $) 141 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 140 T ELT)) (-3085 (((-114) $ $) 142 T ELT)) (-4378 (($ $ $) 136 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 132 T ELT) (($ $ (-419 (-558))) 90 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ (-419 (-558)) $) 134 T ELT) (($ $ (-419 (-558))) 133 T ELT) (($ (-558) $) 97 T ELT) (($ $ (-558)) 96 T ELT) (($ (-419 (-558)) $) 94 T ELT) (($ $ (-419 (-558))) 93 T ELT))) +(((-1032) (-142)) (T -1032)) +((-3437 (*1 *1 *1) (-4 *1 (-1032))) (-3436 (*1 *2 *1) (|partial| -12 (-4 *1 (-1032)) (-5 *2 (-876)))) (-3435 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1032)))) (-3434 (*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1032)))) (-3600 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-5 *4 (-876)) (-4 *1 (-1032)))) (-3600 (*1 *1 *2 *3) (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-4 *1 (-1032)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1032)) (-5 *2 (-660 *1)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1191 (-419 (-558)))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-1191 (-558))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-964 *1)) (-4 *1 (-1032)) (-5 *2 (-660 *1)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-964 (-419 (-558)))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) (-3601 (*1 *2 *3) (-12 (-5 *3 (-964 (-558))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) (-3437 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-937)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1032)))) (-3437 (*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1032)))) (-3433 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-876)))) (-3432 (*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-876)))) (-4199 (*1 *2 *1 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-419 (-558)))))) +(-13 (-149) (-859) (-175) (-376) (-424 (-419 (-558))) (-38 (-558)) (-38 (-419 (-558))) (-1022) (-10 -8 (-15 -3436 ((-3 (-876) "failed") $)) (-15 -3435 ((-3 (-1191 $) "failed") $)) (-15 -3434 ((-3 (-1191 $) "failed") $)) (-15 -3600 ((-3 $ "failed") (-1191 $) (-937) (-876))) (-15 -3600 ((-3 $ "failed") (-1191 $) (-937))) (-15 -3601 ((-660 $) (-1191 $))) (-15 -3601 ((-660 $) (-1191 (-419 (-558))))) (-15 -3601 ((-660 $) (-1191 (-558)))) (-15 -3601 ((-660 $) (-964 $))) (-15 -3601 ((-660 $) (-964 (-419 (-558))))) (-15 -3601 ((-660 $) (-964 (-558)))) (-15 -3437 ($ $ (-937))) (-15 -3437 ($ $)) (-15 -3437 ($ (-419 (-558)))) (-15 -3437 ($ (-558))) (-15 -3433 ($ $ (-876))) (-15 -3432 ($ $ (-876))) (-15 -4199 ((-419 (-558)) $ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 (-558)) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 (-558) (-558)) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-424 (-419 (-558))) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 (-558)) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 (-558)) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 (-558)) . T) ((-736 $) . T) ((-745) . T) ((-811) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-859) . T) ((-860) . T) ((-863) . T) ((-939) . T) ((-1022) . T) ((-1058 (-419 (-558))) . T) ((-1058 (-558)) |has| (-419 (-558)) (-1058 (-558))) ((-1071 (-419 (-558))) . T) ((-1071 (-558)) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 (-558)) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-3438 (((-2 (|:| |ans| |#2|) (|:| -3538 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 67 T ELT))) +(((-1033 |#1| |#2|) (-10 -7 (-15 -3438 ((-2 (|:| |ans| |#2|) (|:| -3538 |#2|) (|:| |sol?| (-114))) (-558) |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1="failed") |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-464) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-27) (-433 |#1|))) (T -1033)) +((-3438 (*1 *2 *3 *4 *4 *5 *6 *7) (-12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-660 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2350 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1058 *3) (-657 *3))) (-5 *3 (-558)) (-5 *2 (-2 (|:| |ans| *4) (|:| -3538 *4) (|:| |sol?| (-114)))) (-5 *1 (-1033 *8 *4))))) +((-3439 (((-3 (-660 |#2|) #1="failed") (-558) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)) 55 T ELT))) +(((-1034 |#1| |#2|) (-10 -7 (-15 -3439 ((-3 (-660 |#2|) #1="failed") (-558) |#2| |#2| |#2| (-1197) (-1 (-3 (-2 (|:| |mainpart| |#2|) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| |#2|) (|:| |logand| |#2|))))) #1#) |#2| (-660 |#2|)) (-1 (-3 (-2 (|:| -2350 |#2|) (|:| |coeff| |#2|)) #1#) |#2| |#2|)))) (-13 (-464) (-149) (-1058 (-558)) (-657 (-558))) (-13 (-1223) (-27) (-433 |#1|))) (T -1034)) +((-3439 (*1 *2 *3 *4 *4 *4 *5 *6 *7) (|partial| -12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") *4 (-660 *4))) (-5 *7 (-1 (-3 (-2 (|:| -2350 *4) (|:| |coeff| *4)) "failed") *4 *4)) (-4 *4 (-13 (-1223) (-27) (-433 *8))) (-4 *8 (-13 (-464) (-149) (-1058 *3) (-657 *3))) (-5 *3 (-558)) (-5 *2 (-660 *4)) (-5 *1 (-1034 *8 *4))))) +((-3442 (((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3683 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)) 39 T ELT)) (-3440 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3495 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 71 T ELT)) (-3441 (((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|)) 76 T ELT))) +(((-1035 |#1| |#2|) (-10 -7 (-15 -3440 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |c| (-419 |#2|)) (|:| -3495 |#2|)) "failed") (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3441 ((-2 (|:| |ans| (-419 |#2|)) (|:| |nosol| (-114))) (-419 |#2|) (-419 |#2|))) (-15 -3442 ((-3 (|:| |ans| (-2 (|:| |ans| |#2|) (|:| |nosol| (-114)))) (|:| -3683 (-2 (|:| |b| |#2|) (|:| |c| |#2|) (|:| |m| (-558)) (|:| |alpha| |#2|) (|:| |beta| |#2|)))) |#2| |#2| |#2| (-558) (-1 |#2| |#2|)))) (-13 (-376) (-149) (-1058 (-558))) (-1263 |#1|)) (T -1035)) +((-3442 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) (-4 *6 (-13 (-376) (-149) (-1058 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) (|:| -3683 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) (-5 *1 (-1035 *6 *3)))) (-3441 (*1 *2 *3 *3) (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5)))) (-3440 (*1 *2 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3495 *6))) (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) +((-3443 (((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3495 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|)) 22 T ELT)) (-3444 (((-3 (-660 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)) 34 T ELT))) +(((-1036 |#1| |#2|) (-10 -7 (-15 -3443 ((-3 (-2 (|:| |a| |#2|) (|:| |b| (-419 |#2|)) (|:| |h| |#2|) (|:| |c1| (-419 |#2|)) (|:| |c2| (-419 |#2|)) (|:| -3495 |#2|)) #1="failed") (-419 |#2|) (-419 |#2|) (-419 |#2|) (-1 |#2| |#2|))) (-15 -3444 ((-3 (-660 (-419 |#2|)) #1#) (-419 |#2|) (-419 |#2|) (-419 |#2|)))) (-13 (-376) (-149) (-1058 (-558))) (-1263 |#1|)) (T -1036)) +((-3444 (*1 *2 *3 *3 *3) (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) (-5 *2 (-660 (-419 *5))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5)))) (-3443 (*1 *2 *3 *3 *3 *4) (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-13 (-376) (-149) (-1058 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) (|:| |c2| (-419 *6)) (|:| -3495 *6))) (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) +((-3445 (((-1 |#1|) (-660 (-2 (|:| -3821 |#1|) (|:| -1653 (-558))))) 34 T ELT)) (-3502 (((-1 |#1|) (-1117 |#1|)) 42 T ELT)) (-3446 (((-1 |#1|) (-1287 |#1|) (-1287 (-558)) (-558)) 31 T ELT))) +(((-1037 |#1|) (-10 -7 (-15 -3502 ((-1 |#1|) (-1117 |#1|))) (-15 -3445 ((-1 |#1|) (-660 (-2 (|:| -3821 |#1|) (|:| -1653 (-558)))))) (-15 -3446 ((-1 |#1|) (-1287 |#1|) (-1287 (-558)) (-558)))) (-1121)) (T -1037)) +((-3446 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-558))) (-5 *5 (-558)) (-4 *6 (-1121)) (-5 *2 (-1 *6)) (-5 *1 (-1037 *6)))) (-3445 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3821 *4) (|:| -1653 (-558))))) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1037 *4)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-1117 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1037 *4))))) +((-4201 (((-790) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)) 23 T ELT))) +(((-1038 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4201 ((-790) (-346 |#1| |#2| |#3| |#4|) |#3| (-1 |#5| |#1|)))) (-376) (-1263 |#1|) (-1263 (-419 |#2|)) (-355 |#1| |#2| |#3|) (-13 (-381) (-376))) (T -1038)) +((-4201 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) (-4 *9 (-13 (-381) (-376))) (-5 *2 (-790)) (-5 *1 (-1038 *6 *7 *4 *8 *9))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4022 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-1155) $) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1039) (-13 (-1103) (-10 -8 (-15 -4022 ((-1155) $)) (-15 -3650 ((-1155) $))))) (T -1039)) +((-4022 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039))))) +((-4401 (((-229) $) 6 T ELT) (((-391) $) 9 T ELT))) +(((-1040) (-142)) (T -1040)) +NIL +(-13 (-630 (-229)) (-630 (-391))) +(((-630 (-229)) . T) ((-630 (-391)) . T)) +((-3535 (((-3 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) "failed") |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) 32 T ELT) (((-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558))) 29 T ELT)) (-3449 (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558))) 34 T ELT) (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-419 (-558))) 30 T ELT) (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) 33 T ELT) (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1|) 28 T ELT)) (-3448 (((-660 (-419 (-558))) (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) 20 T ELT)) (-3447 (((-419 (-558)) (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) 17 T ELT))) +(((-1041 |#1|) (-10 -7 (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1|)) (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558)))) (-15 -3535 ((-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558)))) (-15 -3535 ((-3 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) "failed") |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-15 -3447 ((-419 (-558)) (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-15 -3448 ((-660 (-419 (-558))) (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))))) (-1263 (-558))) (T -1041)) +((-3448 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *2 (-660 (-419 (-558)))) (-5 *1 (-1041 *4)) (-4 *4 (-1263 (-558))))) (-3447 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) (-5 *2 (-419 (-558))) (-5 *1 (-1041 *4)) (-4 *4 (-1263 (-558))))) (-3535 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))))) (-3535 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) (-5 *4 (-419 (-558))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))))) (-3449 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-558))) (-5 *2 (-660 (-2 (|:| -3539 *5) (|:| -3538 *5)))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))) (-5 *4 (-2 (|:| -3539 *5) (|:| -3538 *5))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))) (-5 *4 (-419 (-558))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))) (-5 *4 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558)))))) +((-3535 (((-3 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) "failed") |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) 35 T ELT) (((-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558))) 32 T ELT)) (-3449 (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558))) 30 T ELT) (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-419 (-558))) 26 T ELT) (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) 28 T ELT) (((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1|) 24 T ELT))) +(((-1042 |#1|) (-10 -7 (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1|)) (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-419 (-558)))) (-15 -3449 ((-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558)))) (-15 -3535 ((-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-419 (-558)))) (-15 -3535 ((-3 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) "failed") |#1| (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))) (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))))) (-1263 (-419 (-558)))) (T -1042)) +((-3535 (*1 *2 *3 *2 *2) (|partial| -12 (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 (-419 (-558)))))) (-3535 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) (-5 *4 (-419 (-558))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 *4)))) (-3449 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-419 (-558))) (-5 *2 (-660 (-2 (|:| -3539 *5) (|:| -3538 *5)))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 *5)) (-5 *4 (-2 (|:| -3539 *5) (|:| -3538 *5))))) (-3449 (*1 *2 *3 *4) (-12 (-5 *4 (-419 (-558))) (-5 *2 (-660 (-2 (|:| -3539 *4) (|:| -3538 *4)))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 *4)))) (-3449 (*1 *2 *3 *4) (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 (-419 (-558)))) (-5 *4 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))))) (-3449 (*1 *2 *3) (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 (-419 (-558))))))) +((-4000 (((-660 (-391)) (-964 (-558)) (-391)) 28 T ELT) (((-660 (-391)) (-964 (-419 (-558))) (-391)) 27 T ELT)) (-4398 (((-660 (-660 (-391))) (-660 (-964 (-558))) (-660 (-1197)) (-391)) 37 T ELT))) +(((-1043) (-10 -7 (-15 -4000 ((-660 (-391)) (-964 (-419 (-558))) (-391))) (-15 -4000 ((-660 (-391)) (-964 (-558)) (-391))) (-15 -4398 ((-660 (-660 (-391))) (-660 (-964 (-558))) (-660 (-1197)) (-391))))) (T -1043)) +((-4398 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-660 (-1197))) (-5 *2 (-660 (-660 (-391)))) (-5 *1 (-1043)) (-5 *5 (-391)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-964 (-558))) (-5 *2 (-660 (-391))) (-5 *1 (-1043)) (-5 *4 (-391)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-964 (-419 (-558)))) (-5 *2 (-660 (-391))) (-5 *1 (-1043)) (-5 *4 (-391))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 75 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-3437 (($ $) NIL T ELT) (($ $ (-937)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) 70 T ELT)) (-4153 (($) NIL T CONST)) (-3600 (((-3 $ #1#) (-1191 $) (-937) (-876)) NIL T ELT) (((-3 $ #1#) (-1191 $) (-937)) 55 T ELT)) (-3574 (((-3 (-419 (-558)) #1#) $) NIL (|has| (-419 (-558)) (-1058 (-419 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#1| #1#) $) 116 T ELT) (((-3 (-558) #1#) $) NIL (-3956 (|has| (-419 (-558)) (-1058 (-558))) (|has| |#1| (-1058 (-558)))) ELT)) (-3573 (((-419 (-558)) $) 17 (|has| (-419 (-558)) (-1058 (-419 (-558)))) ELT) (((-419 (-558)) $) 17 T ELT) ((|#1| $) 117 T ELT) (((-558) $) NIL (-3956 (|has| (-419 (-558)) (-1058 (-558))) (|has| |#1| (-1058 (-558)))) ELT)) (-3433 (($ $ (-876)) 47 T ELT)) (-3432 (($ $ (-876)) 48 T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3599 (((-419 (-558)) $ $) 21 T ELT)) (-3886 (((-3 $ #1#) $) 88 T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-3603 (((-114) $) 66 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL T ELT)) (-3604 (((-114) $) 69 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3434 (((-3 (-1191 $) #1#) $) 83 T ELT)) (-3436 (((-3 (-876) #1#) $) 82 T ELT)) (-3435 (((-3 (-1191 $) #1#) $) 80 T ELT)) (-3450 (((-3 (-1081 $ (-1191 $)) #1#) $) 78 T ELT)) (-2101 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 89 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4375 (((-876) $) 87 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) 63 T ELT) (($ (-419 (-558))) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#1|) 119 T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-4199 (((-419 (-558)) $ $) 27 T ELT)) (-3601 (((-660 $) (-1191 $)) 61 T ELT) (((-660 $) (-1191 (-419 (-558)))) NIL T ELT) (((-660 $) (-1191 (-558))) NIL T ELT) (((-660 $) (-964 $)) NIL T ELT) (((-660 $) (-964 (-419 (-558)))) NIL T ELT) (((-660 $) (-964 (-558))) NIL T ELT)) (-3451 (($ (-1081 $ (-1191 $)) (-876)) 46 T ELT)) (-3802 (($ $) 22 T ELT)) (-3058 (($) 32 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 76 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 24 T ELT)) (-4378 (($ $ $) 37 T ELT)) (-4266 (($ $) 38 T ELT) (($ $ $) 74 T ELT)) (-4268 (($ $ $) 112 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 98 T ELT) (($ $ $) 104 T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ (-558) $) 98 T ELT) (($ $ (-558)) NIL T ELT) (($ (-419 (-558)) $) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT) (($ |#1| $) 102 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1044 |#1|) (-13 (-1032) (-424 |#1|) (-38 |#1|) (-10 -8 (-15 -3451 ($ (-1081 $ (-1191 $)) (-876))) (-15 -3450 ((-3 (-1081 $ (-1191 $)) "failed") $)) (-15 -3599 ((-419 (-558)) $ $)))) (-13 (-859) (-376) (-1040))) (T -1044)) +((-3451 (*1 *1 *2 *3) (-12 (-5 *2 (-1081 (-1044 *4) (-1191 (-1044 *4)))) (-5 *3 (-876)) (-5 *1 (-1044 *4)) (-4 *4 (-13 (-859) (-376) (-1040))))) (-3450 (*1 *2 *1) (|partial| -12 (-5 *2 (-1081 (-1044 *3) (-1191 (-1044 *3)))) (-5 *1 (-1044 *3)) (-4 *3 (-13 (-859) (-376) (-1040))))) (-3599 (*1 *2 *1 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1044 *3)) (-4 *3 (-13 (-859) (-376) (-1040)))))) +((-3452 (((-2 (|:| -3683 |#2|) (|:| -2908 (-660 |#1|))) |#2| (-660 |#1|)) 32 T ELT) ((|#2| |#2| |#1|) 27 T ELT))) +(((-1045 |#1| |#2|) (-10 -7 (-15 -3452 (|#2| |#2| |#1|)) (-15 -3452 ((-2 (|:| -3683 |#2|) (|:| -2908 (-660 |#1|))) |#2| (-660 |#1|)))) (-376) (-677 |#1|)) (T -1045)) +((-3452 (*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3683 *3) (|:| -2908 (-660 *5)))) (-5 *1 (-1045 *5 *3)) (-5 *4 (-660 *5)) (-4 *3 (-677 *5)))) (-3452 (*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-677 *3))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3454 ((|#1| $ |#1|) 14 T ELT)) (-4217 ((|#1| $ |#1|) 12 T ELT)) (-3456 (($ |#1|) 10 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4229 ((|#1| $) 11 T ELT)) (-3455 ((|#1| $) 13 T ELT)) (-4375 (((-876) $) 19 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3453 (((-114) $ $) 9 T ELT))) +(((-1046 |#1|) (-13 (-1237) (-10 -8 (-15 -3456 ($ |#1|)) (-15 -4229 (|#1| $)) (-15 -4217 (|#1| $ |#1|)) (-15 -3455 (|#1| $)) (-15 -3454 (|#1| $ |#1|)) (-15 -3453 ((-114) $ $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1237)) (T -1046)) +((-3456 (*1 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-4229 (*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-4217 (*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-3455 (*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-3454 (*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) (-3453 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1046 *3)) (-4 *3 (-1237))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-4111 (((-660 $) (-660 |#4|)) 117 T ELT) (((-660 $) (-660 |#4|) (-114)) 118 T ELT) (((-660 $) (-660 |#4|) (-114) (-114)) 116 T ELT) (((-660 $) (-660 |#4|) (-114) (-114) (-114) (-114)) 119 T ELT)) (-3483 (((-660 |#3|) $) NIL T ELT)) (-3308 (((-114) $) NIL T ELT)) (-3299 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-4204 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| $) 111 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4139 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) 66 T ELT)) (-4153 (($) NIL T CONST)) (-3304 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ #1#) (-660 |#4|)) NIL T ELT)) (-3573 (($ (-660 |#4|)) NIL T ELT)) (-4228 (((-3 $ #1#) $) 45 T ELT)) (-4114 ((|#4| |#4| $) 69 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-3825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 84 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4112 ((|#4| |#4| $) NIL T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) NIL T ELT)) (-3614 (((-114) |#4| $) NIL T ELT)) (-3612 (((-114) |#4| $) NIL T ELT)) (-3615 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3857 (((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-114) (-114)) 132 T ELT)) (-3289 (((-660 |#4|) $) 18 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 19 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3314 (((-660 |#3|) $) NIL T ELT)) (-3313 (((-114) |#3| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3608 (((-3 |#4| (-660 $)) |#4| |#4| $) NIL T ELT)) (-3607 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| |#4| $) 109 T ELT)) (-4227 (((-3 |#4| #1#) $) 42 T ELT)) (-3609 (((-660 $) |#4| $) 92 T ELT)) (-3611 (((-3 (-114) (-660 $)) |#4| $) NIL T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |#4| $) 102 T ELT) (((-114) |#4| $) 64 T ELT)) (-3655 (((-660 $) |#4| $) 114 T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 115 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT)) (-3858 (((-660 $) (-660 |#4|) (-114) (-114) (-114)) 127 T ELT)) (-3859 (($ |#4| $) 81 T ELT) (($ (-660 |#4|) $) 82 T ELT) (((-660 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 78 T ELT)) (-4126 (((-660 |#4|) $) NIL T ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-4128 (((-114) $ $) NIL T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-3 |#4| #1#) $) 40 T ELT)) (-1467 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4198 (($ $ |#4|) NIL T ELT) (((-660 $) |#4| $) 94 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 88 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 17 T ELT)) (-3992 (($) 14 T ELT)) (-4377 (((-790) $) NIL T ELT)) (-2156 (((-790) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (((-790) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 13 T ELT)) (-4401 (((-547) $) NIL (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 22 T ELT)) (-3310 (($ $ |#3|) 52 T ELT)) (-3312 (($ $ |#3|) 54 T ELT)) (-4113 (($ $) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-4375 (((-876) $) 35 T ELT) (((-660 |#4|) $) 46 T ELT)) (-4107 (((-790) $) NIL (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) NIL T ELT)) (-3606 (((-660 $) |#4| $) 91 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) NIL T ELT)) (-3613 (((-114) |#4| $) NIL T ELT)) (-4362 (((-114) |#3| $) 65 T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1047 |#1| |#2| |#3| |#4|) (-13 (-1091 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3859 ((-660 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4111 ((-660 $) (-660 |#4|) (-114) (-114))) (-15 -4111 ((-660 $) (-660 |#4|) (-114) (-114) (-114) (-114))) (-15 -3858 ((-660 $) (-660 |#4|) (-114) (-114) (-114))) (-15 -3857 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-114) (-114))))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|)) (T -1047)) +((-3859 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *3))) (-5 *1 (-1047 *5 *6 *7 *3)) (-4 *3 (-1085 *5 *6 *7)))) (-4111 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-4111 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-3858 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *8))) (-5 *1 (-1047 *5 *6 *7 *8)))) (-3857 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1047 *5 *6 *7 *8))))) (-5 *1 (-1047 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +((-3457 (((-660 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-660 (-708 (-326 (-558))))))) (-708 (-419 (-964 (-558))))) 67 T ELT)) (-3458 (((-660 (-708 (-326 (-558)))) (-326 (-558)) (-708 (-419 (-964 (-558))))) 52 T ELT)) (-3459 (((-660 (-326 (-558))) (-708 (-419 (-964 (-558))))) 45 T ELT)) (-3463 (((-660 (-708 (-326 (-558)))) (-708 (-419 (-964 (-558))))) 85 T ELT)) (-3461 (((-708 (-326 (-558))) (-708 (-326 (-558)))) 38 T ELT)) (-3462 (((-660 (-708 (-326 (-558)))) (-660 (-708 (-326 (-558))))) 74 T ELT)) (-3460 (((-3 (-708 (-326 (-558))) "failed") (-708 (-419 (-964 (-558))))) 82 T ELT))) +(((-1048) (-10 -7 (-15 -3457 ((-660 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-660 (-708 (-326 (-558))))))) (-708 (-419 (-964 (-558)))))) (-15 -3458 ((-660 (-708 (-326 (-558)))) (-326 (-558)) (-708 (-419 (-964 (-558)))))) (-15 -3459 ((-660 (-326 (-558))) (-708 (-419 (-964 (-558)))))) (-15 -3460 ((-3 (-708 (-326 (-558))) "failed") (-708 (-419 (-964 (-558)))))) (-15 -3461 ((-708 (-326 (-558))) (-708 (-326 (-558))))) (-15 -3462 ((-660 (-708 (-326 (-558)))) (-660 (-708 (-326 (-558)))))) (-15 -3463 ((-660 (-708 (-326 (-558)))) (-708 (-419 (-964 (-558)))))))) (T -1048)) +((-3463 (*1 *2 *3) (-12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-708 (-326 (-558))))) (-5 *1 (-1048)))) (-3462 (*1 *2 *2) (-12 (-5 *2 (-660 (-708 (-326 (-558))))) (-5 *1 (-1048)))) (-3461 (*1 *2 *2) (-12 (-5 *2 (-708 (-326 (-558)))) (-5 *1 (-1048)))) (-3460 (*1 *2 *3) (|partial| -12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 (-708 (-326 (-558)))) (-5 *1 (-1048)))) (-3459 (*1 *2 *3) (-12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-326 (-558)))) (-5 *1 (-1048)))) (-3458 (*1 *2 *3 *4) (-12 (-5 *4 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-708 (-326 (-558))))) (-5 *1 (-1048)) (-5 *3 (-326 (-558))))) (-3457 (*1 *2 *3) (-12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) (|:| |radvect| (-660 (-708 (-326 (-558)))))))) (-5 *1 (-1048))))) +((-3467 (((-660 (-708 |#1|)) (-660 (-708 |#1|))) 70 T ELT) (((-708 |#1|) (-708 |#1|)) 69 T ELT) (((-660 (-708 |#1|)) (-660 (-708 |#1|)) (-660 (-708 |#1|))) 68 T ELT) (((-708 |#1|) (-708 |#1|) (-708 |#1|)) 65 T ELT)) (-3466 (((-660 (-708 |#1|)) (-660 (-708 |#1|)) (-937)) 63 T ELT) (((-708 |#1|) (-708 |#1|) (-937)) 62 T ELT)) (-3468 (((-660 (-708 (-558))) (-660 (-660 (-558)))) 81 T ELT) (((-660 (-708 (-558))) (-660 (-920 (-558))) (-558)) 80 T ELT) (((-708 (-558)) (-660 (-558))) 77 T ELT) (((-708 (-558)) (-920 (-558)) (-558)) 75 T ELT)) (-3465 (((-708 (-964 |#1|)) (-790)) 95 T ELT)) (-3464 (((-660 (-708 |#1|)) (-660 (-708 |#1|)) (-937)) 49 (|has| |#1| (-6 (-4426 #1="*"))) ELT) (((-708 |#1|) (-708 |#1|) (-937)) 47 (|has| |#1| (-6 (-4426 #1#))) ELT))) +(((-1049 |#1|) (-10 -7 (IF (|has| |#1| (-6 (-4426 #1="*"))) (-15 -3464 ((-708 |#1|) (-708 |#1|) (-937))) |%noBranch|) (IF (|has| |#1| (-6 (-4426 #1#))) (-15 -3464 ((-660 (-708 |#1|)) (-660 (-708 |#1|)) (-937))) |%noBranch|) (-15 -3465 ((-708 (-964 |#1|)) (-790))) (-15 -3466 ((-708 |#1|) (-708 |#1|) (-937))) (-15 -3466 ((-660 (-708 |#1|)) (-660 (-708 |#1|)) (-937))) (-15 -3467 ((-708 |#1|) (-708 |#1|) (-708 |#1|))) (-15 -3467 ((-660 (-708 |#1|)) (-660 (-708 |#1|)) (-660 (-708 |#1|)))) (-15 -3467 ((-708 |#1|) (-708 |#1|))) (-15 -3467 ((-660 (-708 |#1|)) (-660 (-708 |#1|)))) (-15 -3468 ((-708 (-558)) (-920 (-558)) (-558))) (-15 -3468 ((-708 (-558)) (-660 (-558)))) (-15 -3468 ((-660 (-708 (-558))) (-660 (-920 (-558))) (-558))) (-15 -3468 ((-660 (-708 (-558))) (-660 (-660 (-558)))))) (-1069)) (T -1049)) +((-3468 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-558)))) (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-1049 *4)) (-4 *4 (-1069)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-920 (-558)))) (-5 *4 (-558)) (-5 *2 (-660 (-708 *4))) (-5 *1 (-1049 *5)) (-4 *5 (-1069)))) (-3468 (*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-1049 *4)) (-4 *4 (-1069)))) (-3468 (*1 *2 *3 *4) (-12 (-5 *3 (-920 (-558))) (-5 *4 (-558)) (-5 *2 (-708 *4)) (-5 *1 (-1049 *5)) (-4 *5 (-1069)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-660 (-708 *3))) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) (-3467 (*1 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) (-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-660 (-708 *3))) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) (-3467 (*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-708 *4))) (-5 *3 (-937)) (-4 *4 (-1069)) (-5 *1 (-1049 *4)))) (-3466 (*1 *2 *2 *3) (-12 (-5 *2 (-708 *4)) (-5 *3 (-937)) (-4 *4 (-1069)) (-5 *1 (-1049 *4)))) (-3465 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-708 (-964 *4))) (-5 *1 (-1049 *4)) (-4 *4 (-1069)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *2 (-660 (-708 *4))) (-5 *3 (-937)) (|has| *4 (-6 (-4426 "*"))) (-4 *4 (-1069)) (-5 *1 (-1049 *4)))) (-3464 (*1 *2 *2 *3) (-12 (-5 *2 (-708 *4)) (-5 *3 (-937)) (|has| *4 (-6 (-4426 "*"))) (-4 *4 (-1069)) (-5 *1 (-1049 *4))))) +((-3472 (((-708 |#1|) (-660 (-708 |#1|)) (-1287 |#1|)) 69 (|has| |#1| (-319)) ELT)) (-3837 (((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-1287 (-1287 |#1|))) 109 (|has| |#1| (-376)) ELT) (((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-1287 |#1|)) 116 (|has| |#1| (-376)) ELT)) (-3476 (((-1287 |#1|) (-660 (-1287 |#1|)) (-558)) 135 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3475 (((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-937)) 123 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-114)) 122 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|))) 121 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT) (((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-114) (-558) (-558)) 120 (-12 (|has| |#1| (-376)) (|has| |#1| (-381))) ELT)) (-3474 (((-114) (-660 (-708 |#1|))) 102 (|has| |#1| (-376)) ELT) (((-114) (-660 (-708 |#1|)) (-558)) 105 (|has| |#1| (-376)) ELT)) (-3471 (((-1287 (-1287 |#1|)) (-660 (-708 |#1|)) (-1287 |#1|)) 66 (|has| |#1| (-319)) ELT)) (-3470 (((-708 |#1|) (-660 (-708 |#1|)) (-708 |#1|)) 46 T ELT)) (-3469 (((-708 |#1|) (-1287 (-1287 |#1|))) 39 T ELT)) (-3473 (((-708 |#1|) (-660 (-708 |#1|)) (-660 (-708 |#1|)) (-558)) 93 (|has| |#1| (-376)) ELT) (((-708 |#1|) (-660 (-708 |#1|)) (-660 (-708 |#1|))) 92 (|has| |#1| (-376)) ELT) (((-708 |#1|) (-660 (-708 |#1|)) (-660 (-708 |#1|)) (-114) (-558)) 100 (|has| |#1| (-376)) ELT))) +(((-1050 |#1|) (-10 -7 (-15 -3469 ((-708 |#1|) (-1287 (-1287 |#1|)))) (-15 -3470 ((-708 |#1|) (-660 (-708 |#1|)) (-708 |#1|))) (IF (|has| |#1| (-319)) (PROGN (-15 -3471 ((-1287 (-1287 |#1|)) (-660 (-708 |#1|)) (-1287 |#1|))) (-15 -3472 ((-708 |#1|) (-660 (-708 |#1|)) (-1287 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3473 ((-708 |#1|) (-660 (-708 |#1|)) (-660 (-708 |#1|)) (-114) (-558))) (-15 -3473 ((-708 |#1|) (-660 (-708 |#1|)) (-660 (-708 |#1|)))) (-15 -3473 ((-708 |#1|) (-660 (-708 |#1|)) (-660 (-708 |#1|)) (-558))) (-15 -3474 ((-114) (-660 (-708 |#1|)) (-558))) (-15 -3474 ((-114) (-660 (-708 |#1|)))) (-15 -3837 ((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-1287 |#1|))) (-15 -3837 ((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-1287 (-1287 |#1|))))) |%noBranch|) (IF (|has| |#1| (-381)) (IF (|has| |#1| (-376)) (PROGN (-15 -3475 ((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-114) (-558) (-558))) (-15 -3475 ((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)))) (-15 -3475 ((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-114))) (-15 -3475 ((-660 (-660 (-708 |#1|))) (-660 (-708 |#1|)) (-937))) (-15 -3476 ((-1287 |#1|) (-660 (-1287 |#1|)) (-558)))) |%noBranch|) |%noBranch|)) (-1069)) (T -1050)) +((-3476 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1287 *5))) (-5 *4 (-558)) (-5 *2 (-1287 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1069)))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1069)) (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-660 (-708 *5))))) (-3475 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1069)) (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-660 (-708 *5))))) (-3475 (*1 *2 *3) (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1069)) (-5 *2 (-660 (-660 (-708 *4)))) (-5 *1 (-1050 *4)) (-5 *3 (-660 (-708 *4))))) (-3475 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-558)) (-4 *6 (-376)) (-4 *6 (-381)) (-4 *6 (-1069)) (-5 *2 (-660 (-660 (-708 *6)))) (-5 *1 (-1050 *6)) (-5 *3 (-660 (-708 *6))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-376)) (-4 *5 (-1069)) (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-660 (-708 *5))))) (-3837 (*1 *2 *3 *4) (-12 (-5 *4 (-1287 *5)) (-4 *5 (-376)) (-4 *5 (-1069)) (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) (-5 *3 (-660 (-708 *5))))) (-3474 (*1 *2 *3) (-12 (-5 *3 (-660 (-708 *4))) (-4 *4 (-376)) (-4 *4 (-1069)) (-5 *2 (-114)) (-5 *1 (-1050 *4)))) (-3474 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-708 *5))) (-5 *4 (-558)) (-4 *5 (-376)) (-4 *5 (-1069)) (-5 *2 (-114)) (-5 *1 (-1050 *5)))) (-3473 (*1 *2 *3 *3 *4) (-12 (-5 *3 (-660 (-708 *5))) (-5 *4 (-558)) (-5 *2 (-708 *5)) (-5 *1 (-1050 *5)) (-4 *5 (-376)) (-4 *5 (-1069)))) (-3473 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-708 *4))) (-5 *2 (-708 *4)) (-5 *1 (-1050 *4)) (-4 *4 (-376)) (-4 *4 (-1069)))) (-3473 (*1 *2 *3 *3 *4 *5) (-12 (-5 *3 (-660 (-708 *6))) (-5 *4 (-114)) (-5 *5 (-558)) (-5 *2 (-708 *6)) (-5 *1 (-1050 *6)) (-4 *6 (-376)) (-4 *6 (-1069)))) (-3472 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-708 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-319)) (-4 *5 (-1069)) (-5 *2 (-708 *5)) (-5 *1 (-1050 *5)))) (-3471 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-708 *5))) (-4 *5 (-319)) (-4 *5 (-1069)) (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1287 *5)))) (-3470 (*1 *2 *3 *2) (-12 (-5 *3 (-660 (-708 *4))) (-5 *2 (-708 *4)) (-4 *4 (-1069)) (-5 *1 (-1050 *4)))) (-3469 (*1 *2 *3) (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1069)) (-5 *2 (-708 *4)) (-5 *1 (-1050 *4))))) +((-3477 ((|#1| (-937) |#1|) 18 T ELT))) +(((-1051 |#1|) (-10 -7 (-15 -3477 (|#1| (-937) |#1|))) (-13 (-1121) (-10 -8 (-15 -4268 ($ $ $))))) (T -1051)) +((-3477 (*1 *2 *3 *2) (-12 (-5 *3 (-937)) (-5 *1 (-1051 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 -4268 ($ $ $)))))))) +((-3478 ((|#1| |#1| (-937)) 18 T ELT))) +(((-1052 |#1|) (-10 -7 (-15 -3478 (|#1| |#1| (-937)))) (-13 (-1121) (-10 -8 (-15 * ($ $ $))))) (T -1052)) +((-3478 (*1 *2 *2 *3) (-12 (-5 *3 (-937)) (-5 *1 (-1052 *2)) (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) +((-4375 ((|#1| (-323)) 11 T ELT) (((-1293) |#1|) 9 T ELT))) +(((-1053 |#1|) (-10 -7 (-15 -4375 ((-1293) |#1|)) (-15 -4375 (|#1| (-323)))) (-1237)) (T -1053)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1053 *2)) (-4 *2 (-1237)))) (-4375 (*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1053 *3)) (-4 *3 (-1237))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-4271 (($ |#4|) 25 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3479 ((|#4| $) 27 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 46 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ |#4|) 26 T ELT)) (-3527 (((-790)) 43 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 21 T CONST)) (-3064 (($) 23 T CONST)) (-3453 (((-114) $ $) 40 T ELT)) (-4266 (($ $) 31 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 29 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 36 T ELT) (($ $ $) 33 T ELT) (($ |#1| $) 38 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1054 |#1| |#2| |#3| |#4| |#5|) (-13 (-175) (-38 |#1|) (-10 -8 (-15 -4271 ($ |#4|)) (-15 -4375 ($ |#4|)) (-15 -3479 (|#4| $)))) (-376) (-814) (-860) (-968 |#1| |#2| |#3|) (-660 |#4|)) (T -1054)) +((-4271 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-660 *2)))) (-4375 (*1 *1 *2) (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-660 *2)))) (-3479 (*1 *2 *1) (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-14 *6 (-660 *2))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-2412 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4425)) ELT)) (-3481 (((-114) (-114)) 43 T ELT)) (-3480 (((-114) (-114)) 42 T ELT)) (-4217 (((-51) $ (-1197) (-51)) NIL T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 (-51) #1="failed") (-1197) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 (-51) #1#) (-1197) $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 (((-51) $ (-1197) (-51)) NIL (|has| $ (-6 -4425)) ELT)) (-3514 (((-51) $ (-1197)) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 (((-1197) $) NIL (|has| (-1197) (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT)) (-2415 (((-1197) $) NIL (|has| (-1197) (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-51) (-1121)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT)) (-2883 (((-660 (-1197)) $) 37 T ELT)) (-2446 (((-114) (-1197) $) NIL T ELT)) (-1388 (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL T ELT)) (-2417 (((-660 (-1197)) $) NIL T ELT)) (-2418 (((-114) (-1197) $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-51) (-1121)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT)) (-4230 (((-51) $) NIL (|has| (-1197) (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) #1#) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL T ELT)) (-2413 (($ $ (-51)) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-660 (-51)) (-660 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-660 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT)) (-2419 (((-660 (-51)) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 (((-51) $ (-1197)) 39 T ELT) (((-51) $ (-1197) (-51)) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (((-790) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT) (((-790) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-4375 (((-876) $) 41 (-3956 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-629 (-876))) (|has| (-51) (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1055) (-13 (-1214 (-1197) (-51)) (-10 -7 (-15 -3481 ((-114) (-114))) (-15 -3480 ((-114) (-114))) (-6 -4424)))) (T -1055)) +((-3481 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1055)))) (-3480 (*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1055))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3623 (((-1155) $) 9 T ELT)) (-4375 (((-876) $) 15 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1056) (-13 (-1103) (-10 -8 (-15 -3623 ((-1155) $))))) (T -1056)) +((-3623 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1056))))) +((-3573 ((|#2| $) 10 T ELT))) +(((-1057 |#1| |#2|) (-10 -7 (-15 -3573 (|#2| |#1|))) (-1058 |#2|) (-1237)) (T -1057)) +NIL +((-3574 (((-3 |#1| "failed") $) 9 T ELT)) (-3573 ((|#1| $) 8 T ELT)) (-4375 (($ |#1|) 6 T ELT))) +(((-1058 |#1|) (-142) (-1237)) (T -1058)) +((-3574 (*1 *2 *1) (|partial| -12 (-4 *1 (-1058 *2)) (-4 *2 (-1237)))) (-3573 (*1 *2 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-1237))))) +(-13 (-632 |t#1|) (-10 -8 (-15 -3574 ((-3 |t#1| "failed") $)) (-15 -3573 (|t#1| $)))) +(((-632 |#1|) . T)) +((-3482 (((-660 (-660 (-305 (-419 (-964 |#2|))))) (-660 (-964 |#2|)) (-660 (-1197))) 38 T ELT))) +(((-1059 |#1| |#2|) (-10 -7 (-15 -3482 ((-660 (-660 (-305 (-419 (-964 |#2|))))) (-660 (-964 |#2|)) (-660 (-1197))))) (-569) (-13 (-569) (-1058 |#1|))) (T -1059)) +((-3482 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *6))) (-5 *4 (-660 (-1197))) (-4 *6 (-13 (-569) (-1058 *5))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *6)))))) (-5 *1 (-1059 *5 *6))))) +((-3483 (((-660 (-1197)) (-419 (-964 |#1|))) 17 T ELT)) (-3485 (((-419 (-1191 (-419 (-964 |#1|)))) (-419 (-964 |#1|)) (-1197)) 24 T ELT)) (-3486 (((-419 (-964 |#1|)) (-419 (-1191 (-419 (-964 |#1|)))) (-1197)) 26 T ELT)) (-3484 (((-3 (-1197) "failed") (-419 (-964 |#1|))) 20 T ELT)) (-4197 (((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-660 (-305 (-419 (-964 |#1|))))) 32 T ELT) (((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|)))) 33 T ELT) (((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-660 (-1197)) (-660 (-419 (-964 |#1|)))) 28 T ELT) (((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-1197) (-419 (-964 |#1|))) 29 T ELT)) (-4375 (((-419 (-964 |#1|)) |#1|) 11 T ELT))) +(((-1060 |#1|) (-10 -7 (-15 -3483 ((-660 (-1197)) (-419 (-964 |#1|)))) (-15 -3484 ((-3 (-1197) "failed") (-419 (-964 |#1|)))) (-15 -3485 ((-419 (-1191 (-419 (-964 |#1|)))) (-419 (-964 |#1|)) (-1197))) (-15 -3486 ((-419 (-964 |#1|)) (-419 (-1191 (-419 (-964 |#1|)))) (-1197))) (-15 -4197 ((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-1197) (-419 (-964 |#1|)))) (-15 -4197 ((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-660 (-1197)) (-660 (-419 (-964 |#1|))))) (-15 -4197 ((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-305 (-419 (-964 |#1|))))) (-15 -4197 ((-419 (-964 |#1|)) (-419 (-964 |#1|)) (-660 (-305 (-419 (-964 |#1|)))))) (-15 -4375 ((-419 (-964 |#1|)) |#1|))) (-569)) (T -1060)) +((-4375 (*1 *2 *3) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-569)))) (-4197 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-305 (-419 (-964 *4))))) (-5 *2 (-419 (-964 *4))) (-4 *4 (-569)) (-5 *1 (-1060 *4)))) (-4197 (*1 *2 *2 *3) (-12 (-5 *3 (-305 (-419 (-964 *4)))) (-5 *2 (-419 (-964 *4))) (-4 *4 (-569)) (-5 *1 (-1060 *4)))) (-4197 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-660 (-1197))) (-5 *4 (-660 (-419 (-964 *5)))) (-5 *2 (-419 (-964 *5))) (-4 *5 (-569)) (-5 *1 (-1060 *5)))) (-4197 (*1 *2 *2 *3 *2) (-12 (-5 *2 (-419 (-964 *4))) (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-1060 *4)))) (-3486 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-1191 (-419 (-964 *5))))) (-5 *4 (-1197)) (-5 *2 (-419 (-964 *5))) (-5 *1 (-1060 *5)) (-4 *5 (-569)))) (-3485 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-569)) (-5 *2 (-419 (-1191 (-419 (-964 *5))))) (-5 *1 (-1060 *5)) (-5 *3 (-419 (-964 *5))))) (-3484 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-5 *2 (-1197)) (-5 *1 (-1060 *4)))) (-3483 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-1197))) (-5 *1 (-1060 *4))))) +((-3487 (((-391)) 17 T ELT)) (-3502 (((-1 (-391)) (-391) (-391)) 22 T ELT)) (-3495 (((-1 (-391)) (-790)) 48 T ELT)) (-3488 (((-391)) 37 T ELT)) (-3491 (((-1 (-391)) (-391) (-391)) 38 T ELT)) (-3489 (((-391)) 29 T ELT)) (-3492 (((-1 (-391)) (-391)) 30 T ELT)) (-3490 (((-391) (-790)) 43 T ELT)) (-3493 (((-1 (-391)) (-790)) 44 T ELT)) (-3494 (((-1 (-391)) (-790) (-790)) 47 T ELT)) (-3803 (((-1 (-391)) (-790) (-790)) 45 T ELT))) +(((-1061) (-10 -7 (-15 -3487 ((-391))) (-15 -3488 ((-391))) (-15 -3489 ((-391))) (-15 -3490 ((-391) (-790))) (-15 -3502 ((-1 (-391)) (-391) (-391))) (-15 -3491 ((-1 (-391)) (-391) (-391))) (-15 -3492 ((-1 (-391)) (-391))) (-15 -3493 ((-1 (-391)) (-790))) (-15 -3803 ((-1 (-391)) (-790) (-790))) (-15 -3494 ((-1 (-391)) (-790) (-790))) (-15 -3495 ((-1 (-391)) (-790))))) (T -1061)) +((-3495 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061)))) (-3494 (*1 *2 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061)))) (-3803 (*1 *2 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061)))) (-3493 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061)))) (-3492 (*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1061)) (-5 *3 (-391)))) (-3491 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1061)) (-5 *3 (-391)))) (-3502 (*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1061)) (-5 *3 (-391)))) (-3490 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-391)) (-5 *1 (-1061)))) (-3489 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1061)))) (-3488 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1061)))) (-3487 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1061))))) +((-4161 (((-417 |#1|) |#1|) 33 T ELT))) +(((-1062 |#1|) (-10 -7 (-15 -4161 ((-417 |#1|) |#1|))) (-1263 (-419 (-964 (-558))))) (T -1062)) +((-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1062 *3)) (-4 *3 (-1263 (-419 (-964 (-558)))))))) +((-3496 (((-419 (-417 (-964 |#1|))) (-419 (-964 |#1|))) 14 T ELT))) +(((-1063 |#1|) (-10 -7 (-15 -3496 ((-419 (-417 (-964 |#1|))) (-419 (-964 |#1|))))) (-319)) (T -1063)) +((-3496 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-964 *4)))) (-5 *1 (-1063 *4))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4153 (($) 22 T CONST)) (-3500 ((|#1| $) 28 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3499 ((|#1| $) 27 T ELT)) (-3497 ((|#1|) 25 T CONST)) (-4375 (((-876) $) 13 T ELT)) (-3498 ((|#1| $) 26 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT))) +(((-1064 |#1|) (-142) (-23)) (T -1064)) +((-3500 (*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))) (-3498 (*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23)))) (-3497 (*1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(-13 (-23) (-10 -8 (-15 -3500 (|t#1| $)) (-15 -3499 (|t#1| $)) (-15 -3498 (|t#1| $)) (-15 -3497 (|t#1|) -4381))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3501 (($) 30 T CONST)) (-4153 (($) 22 T CONST)) (-3500 ((|#1| $) 28 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3499 ((|#1| $) 27 T ELT)) (-3497 ((|#1|) 25 T CONST)) (-4375 (((-876) $) 13 T ELT)) (-3498 ((|#1| $) 26 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT))) (((-1065 |#1|) (-142) (-23)) (T -1065)) -((-3501 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-3500 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-3499 (*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23)))) (-3498 (*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(-13 (-23) (-10 -8 (-15 -3501 (|t#1| $)) (-15 -3500 (|t#1| $)) (-15 -3499 (|t#1| $)) (-15 -3498 (|t#1|) -4382))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3502 (($) 30 T CONST)) (-4154 (($) 22 T CONST)) (-3501 ((|#1| $) 28 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3500 ((|#1| $) 27 T ELT)) (-3498 ((|#1|) 25 T CONST)) (-4376 (((-877) $) 13 T ELT)) (-3499 ((|#1| $) 26 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT))) -(((-1066 |#1|) (-142) (-23)) (T -1066)) -((-3502 (*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(-13 (-1065 |t#1|) (-10 -8 (-15 -3502 ($) -4382))) -(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-1065 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 (-800 |#1| (-878 |#2|)))))) (-661 (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-4112 (((-661 $) (-661 (-800 |#1| (-878 |#2|)))) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) (-114)) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) (-114) (-114)) NIL T ELT)) (-3484 (((-661 (-878 |#2|)) $) NIL T ELT)) (-3309 (((-114) $) NIL T ELT)) (-3300 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4118 (((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-4205 (((-661 (-2 (|:| |val| (-800 |#1| (-878 |#2|))) (|:| -1743 $))) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ (-878 |#2|)) NIL T ELT)) (-4140 (($ (-1 (-114) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 (-800 |#1| (-878 |#2|)) #1="failed") $ (-878 |#2|)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3305 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4119 (((-661 (-800 |#1| (-878 |#2|))) (-661 (-800 |#1| (-878 |#2|))) $ (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) (-1 (-114) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-3301 (((-661 (-800 |#1| (-878 |#2|))) (-661 (-800 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-661 (-800 |#1| (-878 |#2|))) (-661 (-800 |#1| (-878 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ #1#) (-661 (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-3574 (($ (-661 (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-4229 (((-3 $ #1#) $) NIL T ELT)) (-4115 (((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT)) (-3826 (($ (-800 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-800 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-800 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4124 (((-114) (-800 |#1| (-878 |#2|)) $ (-1 (-114) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-4113 (((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-4272 (((-800 |#1| (-878 |#2|)) (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) $ (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT) (((-800 |#1| (-878 |#2|)) (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) $ (-800 |#1| (-878 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-800 |#1| (-878 |#2|)) (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $ (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) (-1 (-114) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-4126 (((-2 (|:| -4291 (-661 (-800 |#1| (-878 |#2|)))) (|:| -1905 (-661 (-800 |#1| (-878 |#2|))))) $) NIL T ELT)) (-3615 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3613 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3616 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3290 (((-661 (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3598 (((-878 |#2|) $) NIL T ELT)) (-3007 (((-661 (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-800 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT)) (-2160 (($ (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) $) NIL T ELT)) (-3315 (((-661 (-878 |#2|)) $) NIL T ELT)) (-3314 (((-114) (-878 |#2|) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3609 (((-3 (-800 |#1| (-878 |#2|)) (-661 $)) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3608 (((-661 (-2 (|:| |val| (-800 |#1| (-878 |#2|))) (|:| -1743 $))) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-4228 (((-3 (-800 |#1| (-878 |#2|)) #1#) $) NIL T ELT)) (-3610 (((-661 $) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3612 (((-3 (-114) (-661 $)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3656 (((-661 $) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) (-661 $)) NIL T ELT) (((-661 $) (-800 |#1| (-878 |#2|)) (-661 $)) NIL T ELT)) (-3860 (($ (-800 |#1| (-878 |#2|)) $) NIL T ELT) (($ (-661 (-800 |#1| (-878 |#2|))) $) NIL T ELT)) (-4127 (((-661 (-800 |#1| (-878 |#2|))) $) NIL T ELT)) (-4121 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 (((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-4129 (((-114) $ $) NIL T ELT)) (-3304 (((-2 (|:| |num| (-800 |#1| (-878 |#2|))) (|:| |den| |#1|)) (-800 |#1| (-878 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 (((-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-3 (-800 |#1| (-878 |#2|)) #1#) $) NIL T ELT)) (-1468 (((-3 (-800 |#1| (-878 |#2|)) #1#) (-1 (-114) (-800 |#1| (-878 |#2|))) $) NIL T ELT)) (-4109 (((-3 $ #1#) $ (-800 |#1| (-878 |#2|))) NIL T ELT)) (-4199 (($ $ (-800 |#1| (-878 |#2|))) NIL T ELT) (((-661 $) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-661 $) (-800 |#1| (-878 |#2|)) (-661 $)) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) (-661 $)) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-800 |#1| (-878 |#2|))) (-661 (-800 |#1| (-878 |#2|)))) NIL (-12 (|has| (-800 |#1| (-878 |#2|)) (-321 (-800 |#1| (-878 |#2|)))) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT) (($ $ (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|))) NIL (-12 (|has| (-800 |#1| (-878 |#2|)) (-321 (-800 |#1| (-878 |#2|)))) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT) (($ $ (-305 (-800 |#1| (-878 |#2|)))) NIL (-12 (|has| (-800 |#1| (-878 |#2|)) (-321 (-800 |#1| (-878 |#2|)))) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT) (($ $ (-661 (-305 (-800 |#1| (-878 |#2|))))) NIL (-12 (|has| (-800 |#1| (-878 |#2|)) (-321 (-800 |#1| (-878 |#2|)))) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4378 (((-791) $) NIL T ELT)) (-2157 (((-791) (-800 |#1| (-878 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-800 |#1| (-878 |#2|)) (-1122))) ELT) (((-791) (-1 (-114) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-800 |#1| (-878 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-3311 (($ $ (-878 |#2|)) NIL T ELT)) (-3313 (($ $ (-878 |#2|)) NIL T ELT)) (-4114 (($ $) NIL T ELT)) (-3312 (($ $ (-878 |#2|)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (((-661 (-800 |#1| (-878 |#2|))) $) NIL T ELT)) (-4108 (((-791) $) NIL (|has| (-878 |#2|) (-381)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 (-800 |#1| (-878 |#2|))))) #1#) (-661 (-800 |#1| (-878 |#2|))) (-1 (-114) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 (-800 |#1| (-878 |#2|))))) #1#) (-661 (-800 |#1| (-878 |#2|))) (-1 (-114) (-800 |#1| (-878 |#2|))) (-1 (-114) (-800 |#1| (-878 |#2|)) (-800 |#1| (-878 |#2|)))) NIL T ELT)) (-4120 (((-114) $ (-1 (-114) (-800 |#1| (-878 |#2|)) (-661 (-800 |#1| (-878 |#2|))))) NIL T ELT)) (-3607 (((-661 $) (-800 |#1| (-878 |#2|)) $) NIL T ELT) (((-661 $) (-800 |#1| (-878 |#2|)) (-661 $)) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) $) NIL T ELT) (((-661 $) (-661 (-800 |#1| (-878 |#2|))) (-661 $)) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-800 |#1| (-878 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 (-878 |#2|)) $) NIL T ELT)) (-3614 (((-114) (-800 |#1| (-878 |#2|)) $) NIL T ELT)) (-4363 (((-114) (-878 |#2|) $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1067 |#1| |#2|) (-13 (-1092 |#1| (-543 (-878 |#2|)) (-878 |#2|) (-800 |#1| (-878 |#2|))) (-10 -8 (-15 -4112 ((-661 $) (-661 (-800 |#1| (-878 |#2|))) (-114) (-114))))) (-464) (-661 (-1198))) (T -1067)) -((-4112 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-1067 *5 *6))))) -((-3503 (((-1 (-558)) (-1110 (-558))) 32 T ELT)) (-3507 (((-558) (-558) (-558) (-558) (-558)) 29 T ELT)) (-3505 (((-1 (-558)) |RationalNumber|) NIL T ELT)) (-3506 (((-1 (-558)) |RationalNumber|) NIL T ELT)) (-3504 (((-1 (-558)) (-558) |RationalNumber|) NIL T ELT))) -(((-1068) (-10 -7 (-15 -3503 ((-1 (-558)) (-1110 (-558)))) (-15 -3504 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -3505 ((-1 (-558)) |RationalNumber|)) (-15 -3506 ((-1 (-558)) |RationalNumber|)) (-15 -3507 ((-558) (-558) (-558) (-558) (-558))))) (T -1068)) -((-3507 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1068)))) (-3506 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1068)))) (-3505 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1068)))) (-3504 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1068)) (-5 *3 (-558)))) (-3503 (*1 *2 *3) (-12 (-5 *3 (-1110 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1068))))) -((-4376 (((-877) $) NIL T ELT) (($ (-558)) 10 T ELT))) -(((-1069 |#1|) (-10 -7 (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-1070)) (T -1069)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1070) (-142)) (T -1070)) -((-3528 (*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-791))))) -(-13 (-1078) (-746) (-668 $) (-633 (-558)) (-10 -7 (-15 -3528 ((-791)) -4382) (-6 -4422))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-633 (-558)) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-746) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3508 (((-419 (-965 |#2|)) (-661 |#2|) (-661 |#2|) (-791) (-791)) 55 T ELT))) -(((-1071 |#1| |#2|) (-10 -7 (-15 -3508 ((-419 (-965 |#2|)) (-661 |#2|) (-661 |#2|) (-791) (-791)))) (-1198) (-376)) (T -1071)) -((-3508 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-791)) (-4 *6 (-376)) (-5 *2 (-419 (-965 *6))) (-5 *1 (-1071 *5 *6)) (-14 *5 (-1198))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) -(((-1072 |#1|) (-142) (-1133)) (T -1072)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133))))) -(-13 (-1122) (-10 -8 (-15 * ($ $ |t#1|)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-3523 (((-114) $) 38 T ELT)) (-3525 (((-114) $) 17 T ELT)) (-3517 (((-791) $) 13 T ELT)) (-3516 (((-791) $) 14 T ELT)) (-3524 (((-114) $) 30 T ELT)) (-3522 (((-114) $) 40 T ELT))) -(((-1073 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3516 ((-791) |#1|)) (-15 -3517 ((-791) |#1|)) (-15 -3522 ((-114) |#1|)) (-15 -3523 ((-114) |#1|)) (-15 -3524 ((-114) |#1|)) (-15 -3525 ((-114) |#1|))) (-1074 |#2| |#3| |#4| |#5| |#6|) (-791) (-791) (-1070) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1073)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3523 (((-114) $) 61 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3525 (((-114) $) 63 T ELT)) (-4154 (($) 22 T CONST)) (-3512 (($ $) 44 (|has| |#3| (-319)) ELT)) (-3514 ((|#4| $ (-558)) 49 T ELT)) (-3511 (((-791) $) 43 (|has| |#3| (-569)) ELT)) (-3515 ((|#3| $ (-558) (-558)) 51 T ELT)) (-3290 (((-661 |#3|) $) 75 (|has| $ (-6 -4425)) ELT)) (-3510 (((-791) $) 42 (|has| |#3| (-569)) ELT)) (-3509 (((-661 |#5|) $) 41 (|has| |#3| (-569)) ELT)) (-3517 (((-791) $) 55 T ELT)) (-3516 (((-791) $) 54 T ELT)) (-3521 (((-558) $) 59 T ELT)) (-3519 (((-558) $) 57 T ELT)) (-3007 (((-661 |#3|) $) 76 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#3| $) 78 (-12 (|has| |#3| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3520 (((-558) $) 58 T ELT)) (-3518 (((-558) $) 56 T ELT)) (-3526 (($ (-661 (-661 |#3|))) 64 T ELT)) (-2160 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-4022 (((-661 (-661 |#3|)) $) 53 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) 73 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#3|) (-661 |#3|)) 82 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-305 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-661 (-305 |#3|))) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT)) (-1329 (((-114) $ $) 65 T ELT)) (-3823 (((-114) $) 68 T ELT)) (-3993 (($) 67 T ELT)) (-4230 ((|#3| $ (-558) (-558)) 52 T ELT) ((|#3| $ (-558) (-558) |#3|) 50 T ELT)) (-3524 (((-114) $) 62 T ELT)) (-2157 (((-791) |#3| $) 77 (-12 (|has| |#3| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#3|) $) 74 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 66 T ELT)) (-3513 ((|#5| $ (-558)) 48 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2159 (((-114) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) 60 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#3|) 45 (|has| |#3| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4387 (((-791) $) 69 (|has| $ (-6 -4425)) ELT))) -(((-1074 |#1| |#2| |#3| |#4| |#5|) (-142) (-791) (-791) (-1070) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1074)) -((-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3526 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3525 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-791)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-791)))) (-4022 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-661 (-661 *5))))) (-4230 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1070)))) (-3515 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1070)))) (-4230 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3514 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-4388 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3886 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-569)))) (-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-3512 (*1 *1 *1) (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-3511 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-661 *7))))) -(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4425) (IF (|has| |t#3| (-175)) (-6 (-737 |t#3|)) |%noBranch|) (-15 -3526 ($ (-661 (-661 |t#3|)))) (-15 -3525 ((-114) $)) (-15 -3524 ((-114) $)) (-15 -3523 ((-114) $)) (-15 -3522 ((-114) $)) (-15 -3521 ((-558) $)) (-15 -3520 ((-558) $)) (-15 -3519 ((-558) $)) (-15 -3518 ((-558) $)) (-15 -3517 ((-791) $)) (-15 -3516 ((-791) $)) (-15 -4022 ((-661 (-661 |t#3|)) $)) (-15 -4230 (|t#3| $ (-558) (-558))) (-15 -3515 (|t#3| $ (-558) (-558))) (-15 -4230 (|t#3| $ (-558) (-558) |t#3|)) (-15 -3514 (|t#4| $ (-558))) (-15 -3513 (|t#5| $ (-558))) (-15 -4388 ($ (-1 |t#3| |t#3|) $)) (-15 -4388 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3886 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -4379 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -3512 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -3511 ((-791) $)) (-15 -3510 ((-791) $)) (-15 -3509 ((-661 |t#5|) $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-630 (-877)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ((-666 (-558)) . T) ((-666 |#3|) . T) ((-668 |#3|) . T) ((-660 |#3|) |has| |#3| (-175)) ((-737 |#3|) |has| |#3| (-175)) ((-1072 |#3|) . T) ((-1077 |#3|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3525 (((-114) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3512 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3514 (((-246 |#2| |#3|) $ (-558)) 36 T ELT)) (-3527 (($ (-709 |#3|)) 45 T ELT)) (-3511 (((-791) $) 49 (|has| |#3| (-569)) ELT)) (-3515 ((|#3| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3510 (((-791) $) 51 (|has| |#3| (-569)) ELT)) (-3509 (((-661 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)) ELT)) (-3517 (((-791) $) NIL T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3521 (((-558) $) NIL T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3526 (($ (-661 (-661 |#3|))) 31 T ELT)) (-2160 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-4022 (((-661 (-661 |#3|)) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#3|) (-661 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-661 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#3| $ (-558) (-558)) NIL T ELT) ((|#3| $ (-558) (-558) |#3|) NIL T ELT)) (-4341 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-3524 (((-114) $) NIL T ELT)) (-2157 (((-791) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT) (((-791) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) 66 (|has| |#3| (-631 (-547))) ELT)) (-3513 (((-246 |#1| |#3|) $ (-558)) 40 T ELT)) (-4376 (((-877) $) 19 T ELT) (((-709 |#3|) $) 42 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-3059 (($) 16 T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1075 |#1| |#2| |#3|) (-13 (-1074 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-630 (-709 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1296 |#3|)) |%noBranch|) (IF (|has| |#3| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|) (-15 -3527 ($ (-709 |#3|))))) (-791) (-791) (-1070)) (T -1075)) -((-3527 (*1 *1 *2) (-12 (-5 *2 (-709 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791))))) -((-4272 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4388 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) -(((-1076 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4388 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4272 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-791) (-791) (-1070) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1074 |#1| |#2| |#3| |#4| |#5|) (-1070) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1074 |#1| |#2| |#7| |#8| |#9|)) (T -1076)) -((-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) (-14 *5 (-791)) (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) (-14 *5 (-791)) (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1074 *5 *6 *10 *11 *12)) (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) -(((-1077 |#1|) (-142) (-1078)) (T -1077)) -NIL -(-13 (-21) (-1072 |t#1|)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-1072 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1078) (-142)) (T -1078)) -NIL -(-13 (-21) (-1133)) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4261 (((-1198) $) 11 T ELT)) (-4166 ((|#1| $) 12 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-3644 (($ (-1198) |#1|) 10 T ELT)) (-4376 (((-877) $) 22 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3454 (((-114) $ $) 17 (|has| |#1| (-1122)) ELT))) -(((-1079 |#1| |#2|) (-13 (-1238) (-10 -8 (-15 -3644 ($ (-1198) |#1|)) (-15 -4261 ((-1198) $)) (-15 -4166 (|#1| $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1115 |#2|) (-1238)) (T -1079)) -((-3644 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-4 *4 (-1238)) (-5 *1 (-1079 *3 *4)) (-4 *3 (-1115 *4)))) (-4261 (*1 *2 *1) (-12 (-4 *4 (-1238)) (-5 *2 (-1198)) (-5 *1 (-1079 *3 *4)) (-4 *3 (-1115 *4)))) (-4166 (*1 *2 *1) (-12 (-4 *2 (-1115 *3)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1238))))) -((-4201 (($ $) 17 T ELT)) (-3529 (($ $) 25 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 54 T ELT)) (-3534 (($ $) 27 T ELT)) (-3530 (($ $) 12 T ELT)) (-3532 (($ $) 40 T ELT)) (-4402 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-905 (-391)) $) 36 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 31 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) 31 T ELT)) (-3528 (((-791)) 9 T ELT)) (-3533 (($ $) 44 T ELT))) -(((-1080 |#1|) (-10 -7 (-15 -3529 (|#1| |#1|)) (-15 -4201 (|#1| |#1|)) (-15 -3530 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -3534 (|#1| |#1|)) (-15 -3197 ((-903 (-391) |#1|) |#1| (-905 (-391)) (-903 (-391) |#1|))) (-15 -4402 ((-905 (-391)) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4376 (|#1| (-558))) (-15 -4402 ((-229) |#1|)) (-15 -4402 ((-391) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4376 (|#1| |#1|)) (-15 -3528 ((-791))) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-1081)) (T -1080)) -((-3528 (*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3531 (((-558) $) 105 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-4201 (($ $) 103 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-3438 (($ $) 113 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4053 (((-558) $) 130 T ELT)) (-4154 (($) 22 T CONST)) (-3529 (($ $) 102 T ELT)) (-3575 (((-3 (-558) #1="failed") $) 118 T ELT) (((-3 (-419 (-558)) #1#) $) 115 T ELT)) (-3574 (((-558) $) 119 T ELT) (((-419 (-558)) $) 116 T ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-4153 (((-114) $) 86 T ELT)) (-3604 (((-114) $) 128 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 109 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 112 T ELT)) (-3534 (($ $) 108 T ELT)) (-3605 (((-114) $) 129 T ELT)) (-1785 (((-3 (-661 $) #2="failed") (-661 $) $) 65 T ELT)) (-2930 (($ $ $) 122 T ELT)) (-3258 (($ $ $) 123 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-3530 (($ $) 104 T ELT)) (-3532 (($ $) 106 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-4402 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-905 (-391)) $) 110 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-558)) 117 T ELT) (($ (-419 (-558))) 114 T ELT)) (-3528 (((-791)) 37 T CONST)) (-3533 (($ $) 107 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3803 (($ $) 131 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-2965 (((-114) $ $) 124 T ELT)) (-2966 (((-114) $ $) 126 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 125 T ELT)) (-3086 (((-114) $ $) 127 T ELT)) (-4379 (($ $ $) 80 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 111 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) -(((-1081) (-142)) (T -1081)) -((-3534 (*1 *1 *1) (-4 *1 (-1081))) (-3533 (*1 *1 *1) (-4 *1 (-1081))) (-3532 (*1 *1 *1) (-4 *1 (-1081))) (-3531 (*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-558)))) (-3530 (*1 *1 *1) (-4 *1 (-1081))) (-4201 (*1 *1 *1) (-4 *1 (-1081))) (-3529 (*1 *1 *1) (-4 *1 (-1081)))) -(-13 (-376) (-860) (-1041) (-1059 (-558)) (-1059 (-419 (-558))) (-1023) (-631 (-905 (-391))) (-901 (-391)) (-149) (-10 -8 (-15 -3534 ($ $)) (-15 -3533 ($ $)) (-15 -3532 ($ $)) (-15 -3531 ((-558) $)) (-15 -3530 ($ $)) (-15 -4201 ($ $)) (-15 -3529 ($ $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-631 (-229)) . T) ((-631 (-391)) . T) ((-631 (-905 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 $) . T) ((-746) . T) ((-812) . T) ((-814) . T) ((-816) . T) ((-819) . T) ((-860) . T) ((-861) . T) ((-864) . T) ((-901 (-391)) . T) ((-940) . T) ((-1023) . T) ((-1041) . T) ((-1059 (-419 (-558))) . T) ((-1059 (-558)) . T) ((-1072 (-419 (-558))) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) |#2| $) 26 T ELT)) (-3538 ((|#1| $) 10 T ELT)) (-4053 (((-558) |#2| $) 119 T ELT)) (-3601 (((-3 $ #1="failed") |#2| (-938)) 76 T ELT)) (-3539 ((|#1| $) 31 T ELT)) (-3600 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3536 (($ $) 28 T ELT)) (-3887 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3604 (((-114) |#2| $) NIL T ELT)) (-3605 (((-114) |#2| $) NIL T ELT)) (-3535 (((-114) |#2| $) 27 T ELT)) (-3537 ((|#1| $) 120 T ELT)) (-3540 ((|#1| $) 30 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3603 ((|#2| $) 104 T ELT)) (-4376 (((-877) $) 95 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4200 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3602 (((-661 $) |#2|) 78 T ELT)) (-3454 (((-114) $ $) 99 T ELT))) -(((-1082 |#1| |#2|) (-13 (-1089 |#1| |#2|) (-10 -8 (-15 -3540 (|#1| $)) (-15 -3539 (|#1| $)) (-15 -3538 (|#1| $)) (-15 -3537 (|#1| $)) (-15 -3536 ($ $)) (-15 -3535 ((-114) |#2| $)) (-15 -3600 (|#1| |#2| $ |#1|)))) (-13 (-860) (-376)) (-1264 |#1|)) (T -1082)) -((-3600 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3540 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3539 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3538 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3537 (*1 *2 *1) (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3536 (*1 *1 *1) (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) (-3535 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-860) (-376))) (-5 *2 (-114)) (-5 *1 (-1082 *4 *3)) (-4 *3 (-1264 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-2257 (($ $ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2252 (($ $ $ $) NIL T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-4053 (((-558) $) NIL T ELT)) (-2830 (($ $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3541 (($ (-1198)) 10 T ELT) (($ (-558)) 7 T ELT)) (-3575 (((-3 (-558) #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL T ELT)) (-2963 (($ $ $) NIL T ELT)) (-2493 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-709 (-558)) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3424 (((-114) $) NIL T ELT)) (-3423 (((-419 (-558)) $) NIL T ELT)) (-3395 (($) NIL T ELT) (($ $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-2258 (($ $ $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1483 (($ $ $) NIL T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3074 (((-114) $) NIL T ELT)) (-3865 (((-711 $) $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2251 (($ $ $ $) NIL T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-2254 (($ $) NIL T ELT)) (-4263 (($ $) NIL T ELT)) (-2494 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2249 (($ $ $) NIL T ELT)) (-3866 (($) NIL T CONST)) (-2256 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-1481 (($ $) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3075 (((-114) $) NIL T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-4188 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2255 (($ $) NIL T ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-558) $) 16 T ELT) (((-547) $) NIL T ELT) (((-905 (-558)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1198)) 9 T ELT)) (-4376 (((-877) $) 23 T ELT) (($ (-558)) 6 T ELT) (($ $) NIL T ELT) (($ (-558)) 6 T ELT)) (-3528 (((-791)) NIL T CONST)) (-2259 (((-114) $ $) NIL T ELT)) (-3504 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (($) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-2253 (($ $ $ $) NIL T ELT)) (-3803 (($ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-4267 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT))) -(((-1083) (-13 (-557) (-635 (-1198)) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3541 ($ (-1198))) (-15 -3541 ($ (-558)))))) (T -1083)) -((-3541 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1083)))) (-3541 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1083))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-2413 (((-1294) $ (-1198) (-1198)) NIL (|has| $ (-6 -4426)) ELT)) (-3543 (($) 9 T ELT)) (-4218 (((-51) $ (-1198) (-51)) NIL T ELT)) (-3551 (($ $) 32 T ELT)) (-3554 (($ $) 30 T ELT)) (-3555 (($ $) 29 T ELT)) (-3553 (($ $) 31 T ELT)) (-3550 (($ $) 35 T ELT)) (-3549 (($ $) 36 T ELT)) (-3556 (($ $) 28 T ELT)) (-3552 (($ $) 33 T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) 27 (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 (-51) #1="failed") (-1198) $) 43 T ELT)) (-4154 (($) NIL T CONST)) (-3557 (($) 7 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) 53 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 (-51) #1#) (-1198) $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT)) (-3542 (((-3 (-1180) #1#) $ (-1180) (-558)) 72 T ELT)) (-1719 (((-51) $ (-1198) (-51)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-51) $ (-1198)) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 (((-1198) $) NIL (|has| (-1198) (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) 38 (|has| $ (-6 -4425)) ELT) (((-661 (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT)) (-2416 (((-1198) $) NIL (|has| (-1198) (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-51) (-1122)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT)) (-2884 (((-661 (-1198)) $) NIL T ELT)) (-2447 (((-114) (-1198) $) NIL T ELT)) (-1389 (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) 46 T ELT)) (-2418 (((-661 (-1198)) $) NIL T ELT)) (-2419 (((-114) (-1198) $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-51) (-1122)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT)) (-3546 (((-391) $ (-1198)) 52 T ELT)) (-3545 (((-661 (-1180)) $ (-1180)) 74 T ELT)) (-4231 (((-51) $) NIL (|has| (-1198) (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) #1#) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL T ELT)) (-2414 (($ $ (-51)) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL (-12 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-321 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (($ $ (-661 (-51)) (-661 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT) (($ $ (-661 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT)) (-2420 (((-661 (-51)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 (((-51) $ (-1198)) NIL T ELT) (((-51) $ (-1198) (-51)) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-3544 (($ $ (-1198)) 54 T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-1122))) ELT) (((-791) (-51) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-51) (-1122))) ELT) (((-791) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) 40 T ELT)) (-4232 (($ $ $) 41 T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-630 (-877))) (|has| (-51) (-630 (-877)))) ELT)) (-3548 (($ $ (-1198) (-391)) 50 T ELT)) (-3547 (($ $ (-1198) (-391)) 51 T ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 (-1198)) (|:| -2286 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-51) (-102)) (|has| (-2 (|:| -4290 (-1198)) (|:| -2286 (-51))) (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1084) (-13 (-1215 (-1198) (-51)) (-10 -8 (-15 -4232 ($ $ $)) (-15 -3557 ($)) (-15 -3556 ($ $)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $)) (-15 -3549 ($ $)) (-15 -3548 ($ $ (-1198) (-391))) (-15 -3547 ($ $ (-1198) (-391))) (-15 -3546 ((-391) $ (-1198))) (-15 -3545 ((-661 (-1180)) $ (-1180))) (-15 -3544 ($ $ (-1198))) (-15 -3543 ($)) (-15 -3542 ((-3 (-1180) "failed") $ (-1180) (-558))) (-6 -4425)))) (T -1084)) -((-4232 (*1 *1 *1 *1) (-5 *1 (-1084))) (-3557 (*1 *1) (-5 *1 (-1084))) (-3556 (*1 *1 *1) (-5 *1 (-1084))) (-3555 (*1 *1 *1) (-5 *1 (-1084))) (-3554 (*1 *1 *1) (-5 *1 (-1084))) (-3553 (*1 *1 *1) (-5 *1 (-1084))) (-3552 (*1 *1 *1) (-5 *1 (-1084))) (-3551 (*1 *1 *1) (-5 *1 (-1084))) (-3550 (*1 *1 *1) (-5 *1 (-1084))) (-3549 (*1 *1 *1) (-5 *1 (-1084))) (-3548 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-391)) (-5 *1 (-1084)))) (-3547 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-391)) (-5 *1 (-1084)))) (-3546 (*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-391)) (-5 *1 (-1084)))) (-3545 (*1 *2 *1 *3) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1084)) (-5 *3 (-1180)))) (-3544 (*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1084)))) (-3543 (*1 *1) (-5 *1 (-1084))) (-3542 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1180)) (-5 *3 (-558)) (-5 *1 (-1084))))) -((-4227 (($ $) 46 T ELT)) (-3584 (((-114) $ $) 82 T ELT)) (-3575 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-965 (-419 (-558)))) 247 T ELT) (((-3 $ #1#) (-965 (-558))) 246 T ELT) (((-3 $ #1#) (-965 |#2|)) 249 T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-965 (-419 (-558)))) 235 T ELT) (($ (-965 (-558))) 231 T ELT) (($ (-965 |#2|)) 255 T ELT)) (-4389 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-4124 (((-114) $ $) 131 T ELT) (((-114) $ (-661 $)) 135 T ELT)) (-3590 (((-114) $) 60 T ELT)) (-4182 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 125 T ELT)) (-3561 (($ $) 160 T ELT)) (-3572 (($ $) 156 T ELT)) (-3573 (($ $) 155 T ELT)) (-3583 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3582 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4125 (((-114) $ $) 143 T ELT) (((-114) $ (-661 $)) 144 T ELT)) (-3598 ((|#4| $) 32 T ELT)) (-3577 (($ $ $) 128 T ELT)) (-3591 (((-114) $) 59 T ELT)) (-3597 (((-791) $) 35 T ELT)) (-3558 (($ $) 174 T ELT)) (-3559 (($ $) 171 T ELT)) (-3586 (((-661 $) $) 72 T ELT)) (-3589 (($ $) 62 T ELT)) (-3560 (($ $) 167 T ELT)) (-3587 (((-661 $) $) 69 T ELT)) (-3588 (($ $) 64 T ELT)) (-3592 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3576 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3901 (-791))) $ $) 130 T ELT)) (-3578 (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $) 126 T ELT) (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $ |#4|) 127 T ELT)) (-3579 (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $) 121 T ELT) (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $ |#4|) 123 T ELT)) (-3581 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3580 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3594 (((-661 $) $) 54 T ELT)) (-4121 (((-114) $ $) 140 T ELT) (((-114) $ (-661 $)) 141 T ELT)) (-4116 (($ $ $) 116 T ELT)) (-3866 (($ $) 37 T ELT)) (-4129 (((-114) $ $) 80 T ELT)) (-4122 (((-114) $ $) 136 T ELT) (((-114) $ (-661 $)) 138 T ELT)) (-4117 (($ $ $) 112 T ELT)) (-3596 (($ $) 41 T ELT)) (-3562 ((|#2| |#2| $) 164 T ELT) (($ (-661 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3570 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3571 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3595 (($ $) 49 T ELT)) (-3593 (($ $) 55 T ELT)) (-4402 (((-905 (-391)) $) NIL T ELT) (((-905 (-558)) $) NIL T ELT) (((-547) $) NIL T ELT) (($ (-965 (-419 (-558)))) 237 T ELT) (($ (-965 (-558))) 233 T ELT) (($ (-965 |#2|)) 248 T ELT) (((-1180) $) 278 T ELT) (((-965 |#2|) $) 184 T ELT)) (-4376 (((-877) $) 29 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-965 |#2|) $) 185 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-3585 (((-3 (-114) #1#) $ $) 79 T ELT))) -(((-1085 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4376 (|#1| |#1|)) (-15 -3562 (|#1| |#1| |#1|)) (-15 -3562 (|#1| (-661 |#1|))) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4376 ((-965 |#2|) |#1|)) (-15 -4402 ((-965 |#2|) |#1|)) (-15 -4402 ((-1180) |#1|)) (-15 -3558 (|#1| |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3561 (|#1| |#1|)) (-15 -3562 (|#2| |#2| |#1|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3571 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1| |#2|)) (-15 -3572 (|#1| |#1|)) (-15 -3573 (|#1| |#1|)) (-15 -4402 (|#1| (-965 |#2|))) (-15 -3574 (|#1| (-965 |#2|))) (-15 -3575 ((-3 |#1| #1="failed") (-965 |#2|))) (-15 -4402 (|#1| (-965 (-558)))) (-15 -3574 (|#1| (-965 (-558)))) (-15 -3575 ((-3 |#1| #1#) (-965 (-558)))) (-15 -4402 (|#1| (-965 (-419 (-558))))) (-15 -3574 (|#1| (-965 (-419 (-558))))) (-15 -3575 ((-3 |#1| #1#) (-965 (-419 (-558))))) (-15 -4116 (|#1| |#1| |#1|)) (-15 -4117 (|#1| |#1| |#1|)) (-15 -3576 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3901 (-791))) |#1| |#1|)) (-15 -3577 (|#1| |#1| |#1|)) (-15 -4182 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3578 ((-2 (|:| -4384 |#1|) (|:| |gap| (-791)) (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3578 ((-2 (|:| -4384 |#1|) (|:| |gap| (-791)) (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3579 ((-2 (|:| -4384 |#1|) (|:| |gap| (-791)) (|:| -3303 |#1|)) |#1| |#1| |#4|)) (-15 -3579 ((-2 (|:| -4384 |#1|) (|:| |gap| (-791)) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1| |#4|)) (-15 -3581 (|#1| |#1| |#1| |#4|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1| |#4|)) (-15 -3583 (|#1| |#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -3583 (|#1| |#1| |#1|)) (-15 -4125 ((-114) |#1| (-661 |#1|))) (-15 -4125 ((-114) |#1| |#1|)) (-15 -4121 ((-114) |#1| (-661 |#1|))) (-15 -4121 ((-114) |#1| |#1|)) (-15 -4122 ((-114) |#1| (-661 |#1|))) (-15 -4122 ((-114) |#1| |#1|)) (-15 -4124 ((-114) |#1| (-661 |#1|))) (-15 -4124 ((-114) |#1| |#1|)) (-15 -3584 ((-114) |#1| |#1|)) (-15 -4129 ((-114) |#1| |#1|)) (-15 -3585 ((-3 (-114) #1#) |#1| |#1|)) (-15 -3586 ((-661 |#1|) |#1|)) (-15 -3587 ((-661 |#1|) |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -3589 (|#1| |#1|)) (-15 -3590 ((-114) |#1|)) (-15 -3591 ((-114) |#1|)) (-15 -4389 (|#1| |#1| |#4|)) (-15 -3592 (|#1| |#1| |#4|)) (-15 -3593 (|#1| |#1|)) (-15 -3594 ((-661 |#1|) |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -3596 (|#1| |#1|)) (-15 -3866 (|#1| |#1|)) (-15 -3597 ((-791) |#1|)) (-15 -3598 (|#4| |#1|)) (-15 -4402 ((-547) |#1|)) (-15 -4402 ((-905 (-558)) |#1|)) (-15 -4402 ((-905 (-391)) |#1|)) (-15 -4376 (|#1| |#4|)) (-15 -3575 ((-3 |#4| #1#) |#1|)) (-15 -3574 (|#4| |#1|)) (-15 -3592 (|#2| |#1|)) (-15 -4389 (|#1| |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-1086 |#2| |#3| |#4|) (-1070) (-815) (-861)) (T -1085)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 |#3|) $) 120 T ELT)) (-3486 (((-1192 $) $ |#3|) 135 T ELT) (((-1192 |#1|) $) 134 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) 122 T ELT) (((-791) $ (-661 |#3|)) 121 T ELT)) (-4227 (($ $) 290 T ELT)) (-3584 (((-114) $ $) 276 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4185 (($ $ $) 235 (|has| |#1| (-569)) ELT)) (-3566 (((-661 $) $ $) 230 (|has| |#1| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 110 (|has| |#1| (-929)) ELT)) (-4205 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 113 (|has| |#1| (-929)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1059 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-965 (-419 (-558)))) 250 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198)))) ELT) (((-3 $ "failed") (-965 (-558))) 247 (-3957 (-12 (-2959 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198))))) ELT) (((-3 $ "failed") (-965 |#1|)) 244 (-3957 (-12 (-2959 (|has| |#1| (-38 (-419 (-558))))) (-2959 (|has| |#1| (-38 (-558)))) (|has| |#3| (-631 (-1198)))) (-12 (-2959 (|has| |#1| (-557))) (-2959 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1198)))) (-12 (-2959 (|has| |#1| (-1012 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198))))) ELT)) (-3574 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1059 (-558))) ELT) ((|#3| $) 151 T ELT) (($ (-965 (-419 (-558)))) 249 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198)))) ELT) (($ (-965 (-558))) 246 (-3957 (-12 (-2959 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198))))) ELT) (($ (-965 |#1|)) 243 (-3957 (-12 (-2959 (|has| |#1| (-38 (-419 (-558))))) (-2959 (|has| |#1| (-38 (-558)))) (|has| |#3| (-631 (-1198)))) (-12 (-2959 (|has| |#1| (-557))) (-2959 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1198)))) (-12 (-2959 (|has| |#1| (-1012 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198))))) ELT)) (-4186 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT) (($ $ $) 231 (|has| |#1| (-569)) ELT)) (-4389 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-4124 (((-114) $ $) 275 T ELT) (((-114) $ (-661 $)) 274 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3590 (((-114) $) 283 T ELT)) (-4182 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 255 T ELT)) (-3561 (($ $) 224 (|has| |#1| (-464)) ELT)) (-3923 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) 119 T ELT)) (-4153 (((-114) $) 106 (|has| |#1| (-929)) ELT)) (-3572 (($ $) 240 (|has| |#1| (-569)) ELT)) (-3573 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3583 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3582 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1804 (($ $ |#1| |#2| $) 186 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 94 (-12 (|has| |#3| (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 93 (-12 (|has| |#3| (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-2641 (((-114) $) 40 T ELT)) (-2649 (((-791) $) 183 T ELT)) (-4125 (((-114) $ $) 269 T ELT) (((-114) $ (-661 $)) 268 T ELT)) (-3563 (($ $ $ $ $) 226 (|has| |#1| (-569)) ELT)) (-3598 ((|#3| $) 294 T ELT)) (-3487 (($ (-1192 |#1|) |#3|) 127 T ELT) (($ (-1192 $) |#3|) 126 T ELT)) (-3222 (((-661 $) $) 136 T ELT)) (-4367 (((-114) $) 166 T ELT)) (-3294 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-791)) 129 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 128 T ELT)) (-3577 (($ $ $) 254 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#3|) 130 T ELT)) (-3591 (((-114) $) 284 T ELT)) (-3221 ((|#2| $) 184 T ELT) (((-791) $ |#3|) 132 T ELT) (((-661 (-791)) $ (-661 |#3|)) 131 T ELT)) (-3597 (((-791) $) 293 T ELT)) (-1805 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3485 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3558 (($ $) 221 (|has| |#1| (-464)) ELT)) (-3559 (($ $) 222 (|has| |#1| (-464)) ELT)) (-3586 (((-661 $) $) 279 T ELT)) (-3589 (($ $) 282 T ELT)) (-3560 (($ $) 223 (|has| |#1| (-464)) ELT)) (-3587 (((-661 $) $) 280 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 142 T ELT) (((-709 |#1|) (-1288 $)) 141 T ELT)) (-3588 (($ $) 281 T ELT)) (-3295 (($ $) 163 T ELT)) (-3592 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-2102 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3576 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3901 (-791))) $ $) 253 T ELT)) (-3578 (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $) 257 T ELT) (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $ |#3|) 256 T ELT)) (-3579 (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $) 259 T ELT) (((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $ |#3|) 258 T ELT)) (-3581 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3580 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3608 (($ $ $) 229 (|has| |#1| (-569)) ELT)) (-3594 (((-661 $) $) 288 T ELT)) (-3224 (((-3 (-661 $) #3#) $) 124 T ELT)) (-3223 (((-3 (-661 $) #3#) $) 125 T ELT)) (-3225 (((-3 (-2 (|:| |var| |#3|) (|:| -2632 (-791))) #3#) $) 123 T ELT)) (-4121 (((-114) $ $) 271 T ELT) (((-114) $ (-661 $)) 270 T ELT)) (-4116 (($ $ $) 251 T ELT)) (-3866 (($ $) 292 T ELT)) (-4129 (((-114) $ $) 277 T ELT)) (-4122 (((-114) $ $) 273 T ELT) (((-114) $ (-661 $)) 272 T ELT)) (-4117 (($ $ $) 252 T ELT)) (-3596 (($ $) 291 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3567 (((-2 (|:| -3562 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-569)) ELT)) (-3568 (((-2 (|:| -3562 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-569)) ELT)) (-2005 (((-114) $) 180 T ELT)) (-2004 ((|#1| $) 181 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 105 (|has| |#1| (-464)) ELT)) (-3562 ((|#1| |#1| $) 225 (|has| |#1| (-464)) ELT) (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 112 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 111 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) 109 (|has| |#1| (-929)) ELT)) (-3569 (((-2 (|:| -3562 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-569)) ELT)) (-3886 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3570 (($ $ |#1|) 238 (|has| |#1| (-569)) ELT) (($ $ $) 236 (|has| |#1| (-569)) ELT)) (-3571 (($ $ |#1|) 239 (|has| |#1| (-569)) ELT) (($ $ $) 237 (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-661 |#3|) (-661 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-661 |#3|) (-661 $)) 152 T ELT)) (-4187 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 |#3|) (-661 (-791))) 49 T ELT) (($ $ |#3| (-791)) 48 T ELT) (($ $ (-661 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4378 ((|#2| $) 164 T ELT) (((-791) $ |#3|) 140 T ELT) (((-661 (-791)) $ (-661 |#3|)) 139 T ELT)) (-3595 (($ $) 289 T ELT)) (-3593 (($ $) 287 T ELT)) (-4402 (((-905 (-391)) $) 92 (-12 (|has| |#3| (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) 91 (-12 (|has| |#3| (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT) (($ (-965 (-419 (-558)))) 248 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198)))) ELT) (($ (-965 (-558))) 245 (-3957 (-12 (-2959 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-631 (-1198)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-631 (-1198))))) ELT) (($ (-965 |#1|)) 242 (|has| |#3| (-631 (-1198))) ELT) (((-1180) $) 220 (-12 (|has| |#1| (-1059 (-558))) (|has| |#3| (-631 (-1198)))) ELT) (((-965 |#1|) $) 219 (|has| |#3| (-631 (-1198))) ELT)) (-3218 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 114 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-965 |#1|) $) 218 (|has| |#3| (-631 (-1198))) ELT) (($ (-419 (-558))) 88 (-3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) 182 T ELT)) (-4107 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-791)) 138 T ELT) (($ $ (-661 |#3|) (-661 (-791))) 137 T ELT)) (-3103 (((-711 $) $) 89 (-3957 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 37 T CONST)) (-1803 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3585 (((-3 (-114) "failed") $ $) 278 T ELT)) (-3065 (($) 39 T CONST)) (-3564 (($ $ $ $ (-791)) 227 (|has| |#1| (-569)) ELT)) (-3565 (($ $ $ (-791)) 228 (|has| |#1| (-569)) ELT)) (-3070 (($ $ (-661 |#3|) (-661 (-791))) 52 T ELT) (($ $ |#3| (-791)) 51 T ELT) (($ $ (-661 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1086 |#1| |#2| |#3|) (-142) (-1070) (-815) (-861)) (T -1086)) -((-3598 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3597 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-791)))) (-3866 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3596 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3594 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3593 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3592 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-4389 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3591 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-3589 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3588 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3587 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3586 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3585 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-4129 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-3584 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) (-4122 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-4122 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) (-4125 (*1 *2 *1 *1) (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)))) (-4125 (*1 *2 *1 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) (-3583 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3583 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3582 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3580 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3581 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3580 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) (-3579 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -3303 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3579 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -3303 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-3578 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3578 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1086 *4 *5 *3)))) (-4182 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3577 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3576 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3901 (-791)))) (-4 *1 (-1086 *3 *4 *5)))) (-4117 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) (-3575 (*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-419 (-558)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)))) (-3574 (*1 *1 *2) (-12 (-5 *2 (-965 (-419 (-558)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-965 (-419 (-558)))) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)))) (-3575 (*1 *1 *2) (|partial| -3957 (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))))) (-3574 (*1 *1 *2) (-3957 (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))))) (-4402 (*1 *1 *2) (-3957 (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))))) (-3575 (*1 *1 *2) (|partial| -3957 (-12 (-5 *2 (-965 *3)) (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-2959 (-4 *3 (-38 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 *3)) (-12 (-2959 (-4 *3 (-557))) (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 *3)) (-12 (-2959 (-4 *3 (-1012 (-558)))) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))))) (-3574 (*1 *1 *2) (-3957 (-12 (-5 *2 (-965 *3)) (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-2959 (-4 *3 (-38 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 *3)) (-12 (-2959 (-4 *3 (-557))) (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) (-12 (-5 *2 (-965 *3)) (-12 (-2959 (-4 *3 (-1012 (-558)))) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *5 (-631 (-1198))) (-4 *4 (-815)) (-4 *5 (-861)))) (-3573 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3572 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3571 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3570 (*1 *1 *1 *2) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3571 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-4185 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3569 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3562 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3568 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3562 *1) (|:| |coef1| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-3567 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-2 (|:| -3562 *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5)))) (-4186 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3566 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1086 *3 *4 *5)))) (-3608 (*1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3565 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *3 (-569)))) (-3564 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *3 (-569)))) (-3563 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-569)))) (-3562 (*1 *2 *2 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3561 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3559 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464)))) (-3558 (*1 *1 *1) (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-464))))) -(-13 (-969 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3598 (|t#3| $)) (-15 -3597 ((-791) $)) (-15 -3866 ($ $)) (-15 -3596 ($ $)) (-15 -4227 ($ $)) (-15 -3595 ($ $)) (-15 -3594 ((-661 $) $)) (-15 -3593 ($ $)) (-15 -3592 ($ $ |t#3|)) (-15 -4389 ($ $ |t#3|)) (-15 -3591 ((-114) $)) (-15 -3590 ((-114) $)) (-15 -3589 ($ $)) (-15 -3588 ($ $)) (-15 -3587 ((-661 $) $)) (-15 -3586 ((-661 $) $)) (-15 -3585 ((-3 (-114) "failed") $ $)) (-15 -4129 ((-114) $ $)) (-15 -3584 ((-114) $ $)) (-15 -4124 ((-114) $ $)) (-15 -4124 ((-114) $ (-661 $))) (-15 -4122 ((-114) $ $)) (-15 -4122 ((-114) $ (-661 $))) (-15 -4121 ((-114) $ $)) (-15 -4121 ((-114) $ (-661 $))) (-15 -4125 ((-114) $ $)) (-15 -4125 ((-114) $ (-661 $))) (-15 -3583 ($ $ $)) (-15 -3582 ($ $ $)) (-15 -3583 ($ $ $ |t#3|)) (-15 -3582 ($ $ $ |t#3|)) (-15 -3581 ($ $ $)) (-15 -3580 ($ $ $)) (-15 -3581 ($ $ $ |t#3|)) (-15 -3580 ($ $ $ |t#3|)) (-15 -3579 ((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $)) (-15 -3579 ((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -3303 $)) $ $ |t#3|)) (-15 -3578 ((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -3578 ((-2 (|:| -4384 $) (|:| |gap| (-791)) (|:| -2184 $) (|:| -3303 $)) $ $ |t#3|)) (-15 -4182 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -3577 ($ $ $)) (-15 -3576 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3901 (-791))) $ $)) (-15 -4117 ($ $ $)) (-15 -4116 ($ $ $)) (IF (|has| |t#3| (-631 (-1198))) (PROGN (-6 (-630 (-965 |t#1|))) (-6 (-631 (-965 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -3575 ((-3 $ "failed") (-965 (-419 (-558))))) (-15 -3574 ($ (-965 (-419 (-558))))) (-15 -4402 ($ (-965 (-419 (-558))))) (-15 -3575 ((-3 $ "failed") (-965 (-558)))) (-15 -3574 ($ (-965 (-558)))) (-15 -4402 ($ (-965 (-558)))) (IF (|has| |t#1| (-1012 (-558))) |%noBranch| (PROGN (-15 -3575 ((-3 $ "failed") (-965 |t#1|))) (-15 -3574 ($ (-965 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) (IF (|has| |t#1| (-38 (-419 (-558)))) |%noBranch| (PROGN (-15 -3575 ((-3 $ "failed") (-965 (-558)))) (-15 -3574 ($ (-965 (-558)))) (-15 -4402 ($ (-965 (-558)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -3575 ((-3 $ "failed") (-965 |t#1|))) (-15 -3574 ($ (-965 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-558)))) |%noBranch| (PROGN (-15 -3575 ((-3 $ "failed") (-965 |t#1|))) (-15 -3574 ($ (-965 |t#1|)))))) (-15 -4402 ($ (-965 |t#1|))) (IF (|has| |t#1| (-1059 (-558))) (-6 (-631 (-1180))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3573 ($ $)) (-15 -3572 ($ $)) (-15 -3571 ($ $ |t#1|)) (-15 -3570 ($ $ |t#1|)) (-15 -3571 ($ $ $)) (-15 -3570 ($ $ $)) (-15 -4185 ($ $ $)) (-15 -3569 ((-2 (|:| -3562 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3568 ((-2 (|:| -3562 $) (|:| |coef1| $)) $ $)) (-15 -3567 ((-2 (|:| -3562 $) (|:| |coef2| $)) $ $)) (-15 -4186 ($ $ $)) (-15 -3566 ((-661 $) $ $)) (-15 -3608 ($ $ $)) (-15 -3565 ($ $ $ (-791))) (-15 -3564 ($ $ $ $ (-791))) (-15 -3563 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3562 (|t#1| |t#1| $)) (-15 -3561 ($ $)) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -3558 ($ $))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 |#3|) . T) ((-633 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-630 (-877)) . T) ((-630 (-965 |#1|)) |has| |#3| (-631 (-1198))) ((-175) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| |#3| (-631 (-547)))) ((-631 (-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#3| (-631 (-905 (-391))))) ((-631 (-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#3| (-631 (-905 (-558))))) ((-631 (-965 |#1|)) |has| |#3| (-631 (-1198))) ((-631 (-1180)) -12 (|has| |#1| (-1059 (-558))) (|has| |#3| (-631 (-1198)))) ((-302) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3957 (|has| |#1| (-929)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-746) . T) ((-911 $ |#3|) . T) ((-917 |#3|) . T) ((-919 |#3|) . T) ((-901 (-391)) -12 (|has| |#1| (-901 (-391))) (|has| |#3| (-901 (-391)))) ((-901 (-558)) -12 (|has| |#1| (-901 (-558))) (|has| |#3| (-901 (-558)))) ((-969 |#1| |#2| |#3|) . T) ((-929) |has| |#1| (-929)) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 |#1|) . T) ((-1059 |#3|) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) |has| |#1| (-929))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3599 (((-661 (-1156)) $) 18 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 27 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-1156) $) 20 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1087) (-13 (-1104) (-10 -8 (-15 -3599 ((-661 (-1156)) $)) (-15 -3651 ((-1156) $))))) (T -1087)) -((-3599 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-1087)))) (-3651 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087))))) -((-3606 (((-114) |#3| $) 15 T ELT)) (-3601 (((-3 $ #1="failed") |#3| (-938)) 29 T ELT)) (-3887 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3604 (((-114) |#3| $) 19 T ELT)) (-3605 (((-114) |#3| $) 17 T ELT))) -(((-1088 |#1| |#2| |#3|) (-10 -7 (-15 -3601 ((-3 |#1| #1="failed") |#3| (-938))) (-15 -3887 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3604 ((-114) |#3| |#1|)) (-15 -3605 ((-114) |#3| |#1|)) (-15 -3606 ((-114) |#3| |#1|))) (-1089 |#2| |#3|) (-13 (-860) (-376)) (-1264 |#2|)) (T -1088)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) |#2| $) 25 T ELT)) (-4053 (((-558) |#2| $) 26 T ELT)) (-3601 (((-3 $ "failed") |#2| (-938)) 19 T ELT)) (-3600 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3887 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3604 (((-114) |#2| $) 23 T ELT)) (-3605 (((-114) |#2| $) 24 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3603 ((|#2| $) 21 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4200 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3602 (((-661 $) |#2|) 20 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-1089 |#1| |#2|) (-142) (-13 (-860) (-376)) (-1264 |t#1|)) (T -1089)) -((-4053 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) (-5 *2 (-558)))) (-3606 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) (-5 *2 (-114)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) (-5 *2 (-114)))) (-3604 (*1 *2 *3 *1) (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) (-5 *2 (-114)))) (-3887 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-376))) (-4 *2 (-1264 *3)))) (-3603 (*1 *2 *1) (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-376))) (-4 *2 (-1264 *3)))) (-3602 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) (-5 *2 (-661 *1)) (-4 *1 (-1089 *4 *3)))) (-3601 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-376))) (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4)))) (-4200 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-376))) (-4 *3 (-1264 *2)))) (-3600 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-376))) (-4 *3 (-1264 *2))))) -(-13 (-1122) (-10 -8 (-15 -4053 ((-558) |t#2| $)) (-15 -3606 ((-114) |t#2| $)) (-15 -3605 ((-114) |t#2| $)) (-15 -3604 ((-114) |t#2| $)) (-15 -3887 ((-3 |t#2| "failed") |t#2| $)) (-15 -3603 (|t#2| $)) (-15 -3602 ((-661 $) |t#2|)) (-15 -3601 ((-3 $ "failed") |t#2| (-938))) (-15 -4200 (|t#1| |t#2| $ |t#1|)) (-15 -3600 (|t#1| |t#2| $ |t#1|)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-3856 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) (-791)) 114 T ELT)) (-3853 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791)) 63 T ELT)) (-3857 (((-1294) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-791)) 99 T ELT)) (-3851 (((-791) (-661 |#4|) (-661 |#5|)) 30 T ELT)) (-3854 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791)) 65 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791) (-114)) 67 T ELT)) (-3855 (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114)) 87 T ELT)) (-4402 (((-1180) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) 92 T ELT)) (-3852 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-3850 (((-791) (-661 |#4|) (-661 |#5|)) 21 T ELT))) -(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3850 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3851 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3852 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-114))) (-15 -3853 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791))) (-15 -3853 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|)) (-15 -3854 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791) (-114))) (-15 -3854 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791))) (-15 -3854 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|)) (-15 -3855 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3855 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3856 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) (-791))) (-15 -4402 ((-1180) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)))) (-15 -3857 ((-1294) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-791)))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1090)) -((-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *4 (-791)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-1294)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1180)) (-5 *1 (-1090 *4 *5 *6 *7 *8)))) (-3856 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-661 *11)) (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1743 *11)))))) (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1743 *11)))) (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-861)) (-5 *1 (-1090 *7 *8 *9 *10 *11)))) (-3855 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3855 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3854 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3854 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) (-3853 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3853 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-791)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-791)) (-5 *1 (-1090 *5 *6 *7 *8 *9))))) -((-3615 (((-114) |#5| $) 26 T ELT)) (-3613 (((-114) |#5| $) 29 T ELT)) (-3616 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-3656 (((-661 $) |#5| $) NIL T ELT) (((-661 $) (-661 |#5|) $) 94 T ELT) (((-661 $) (-661 |#5|) (-661 $)) 92 T ELT) (((-661 $) |#5| (-661 $)) 95 T ELT)) (-4199 (($ $ |#5|) NIL T ELT) (((-661 $) |#5| $) NIL T ELT) (((-661 $) |#5| (-661 $)) 73 T ELT) (((-661 $) (-661 |#5|) $) 75 T ELT) (((-661 $) (-661 |#5|) (-661 $)) 77 T ELT)) (-3607 (((-661 $) |#5| $) NIL T ELT) (((-661 $) |#5| (-661 $)) 64 T ELT) (((-661 $) (-661 |#5|) $) 69 T ELT) (((-661 $) (-661 |#5|) (-661 $)) 71 T ELT)) (-3614 (((-114) |#5| $) 32 T ELT))) -(((-1091 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4199 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -4199 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -4199 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -4199 ((-661 |#1|) |#5| |#1|)) (-15 -3607 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -3607 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -3607 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -3607 ((-661 |#1|) |#5| |#1|)) (-15 -3656 ((-661 |#1|) |#5| (-661 |#1|))) (-15 -3656 ((-661 |#1|) (-661 |#5|) (-661 |#1|))) (-15 -3656 ((-661 |#1|) (-661 |#5|) |#1|)) (-15 -3656 ((-661 |#1|) |#5| |#1|)) (-15 -3613 ((-114) |#5| |#1|)) (-15 -3616 ((-114) |#1|)) (-15 -3614 ((-114) |#5| |#1|)) (-15 -3615 ((-114) |#5| |#1|)) (-15 -3616 ((-114) |#5| |#1|)) (-15 -4199 (|#1| |#1| |#5|))) (-1092 |#2| |#3| |#4| |#5|) (-464) (-815) (-861) (-1086 |#2| |#3| |#4|)) (T -1091)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4112 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3484 (((-661 |#3|) $) 37 T ELT)) (-3309 (((-114) $) 30 T ELT)) (-3300 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4118 ((|#4| |#4| $) 97 T ELT)) (-4205 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| $) 133 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4140 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4154 (($) 46 T CONST)) (-3305 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3574 (($ (-661 |#4|)) 39 T ELT)) (-4229 (((-3 $ #1#) $) 87 T ELT)) (-4115 ((|#4| |#4| $) 94 T ELT)) (-1467 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4113 ((|#4| |#4| $) 92 T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) 110 T ELT)) (-3615 (((-114) |#4| $) 143 T ELT)) (-3613 (((-114) |#4| $) 140 T ELT)) (-3616 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3290 (((-661 |#4|) $) 53 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3315 (((-661 |#3|) $) 36 T ELT)) (-3314 (((-114) |#3| $) 35 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3609 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3608 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| |#4| $) 134 T ELT)) (-4228 (((-3 |#4| #1#) $) 88 T ELT)) (-3610 (((-661 $) |#4| $) 136 T ELT)) (-3612 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3656 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3860 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4127 (((-661 |#4|) $) 112 T ELT)) (-4121 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4116 ((|#4| |#4| $) 95 T ELT)) (-4129 (((-114) $ $) 115 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4117 ((|#4| |#4| $) 96 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4231 (((-3 |#4| #1#) $) 89 T ELT)) (-1468 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4199 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) 42 T ELT)) (-3823 (((-114) $) 45 T ELT)) (-3993 (($) 44 T ELT)) (-4378 (((-791) $) 111 T ELT)) (-2157 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 43 T ELT)) (-4402 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 61 T ELT)) (-3311 (($ $ |#3|) 32 T ELT)) (-3313 (($ $ |#3|) 34 T ELT)) (-4114 (($ $) 93 T ELT)) (-3312 (($ $ |#3|) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4108 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3607 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) 86 T ELT)) (-3614 (((-114) |#4| $) 142 T ELT)) (-4363 (((-114) |#3| $) 85 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 47 (|has| $ (-6 -4425)) ELT))) -(((-1092 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1092)) -((-3616 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-3615 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-3614 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-3616 (*1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 (-114) (-661 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3611 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3611 (*1 *2 *3 *1) (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-3610 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3609 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-3 *3 (-661 *1))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3608 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-4205 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *1)))) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3656 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3656 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3656 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3607 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-3607 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-3607 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-3607 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-3860 (*1 *1 *2 *1) (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-3860 (*1 *1 *2 *1) (-12 (-5 *2 (-661 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) (-4199 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) (-4199 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) (-4199 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) (-4199 (*1 *2 *3 *2) (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) (-4112 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *5 *6 *7 *8))))) -(-13 (-1233 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3616 ((-114) |t#4| $)) (-15 -3615 ((-114) |t#4| $)) (-15 -3614 ((-114) |t#4| $)) (-15 -3616 ((-114) $)) (-15 -3613 ((-114) |t#4| $)) (-15 -3612 ((-3 (-114) (-661 $)) |t#4| $)) (-15 -3611 ((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |t#4| $)) (-15 -3611 ((-114) |t#4| $)) (-15 -3610 ((-661 $) |t#4| $)) (-15 -3609 ((-3 |t#4| (-661 $)) |t#4| |t#4| $)) (-15 -3608 ((-661 (-2 (|:| |val| |t#4|) (|:| -1743 $))) |t#4| |t#4| $)) (-15 -4205 ((-661 (-2 (|:| |val| |t#4|) (|:| -1743 $))) |t#4| $)) (-15 -3656 ((-661 $) |t#4| $)) (-15 -3656 ((-661 $) (-661 |t#4|) $)) (-15 -3656 ((-661 $) (-661 |t#4|) (-661 $))) (-15 -3656 ((-661 $) |t#4| (-661 $))) (-15 -3607 ((-661 $) |t#4| $)) (-15 -3607 ((-661 $) |t#4| (-661 $))) (-15 -3607 ((-661 $) (-661 |t#4|) $)) (-15 -3607 ((-661 $) (-661 |t#4|) (-661 $))) (-15 -3860 ($ |t#4| $)) (-15 -3860 ($ (-661 |t#4|) $)) (-15 -4199 ((-661 $) |t#4| $)) (-15 -4199 ((-661 $) |t#4| (-661 $))) (-15 -4199 ((-661 $) (-661 |t#4|) $)) (-15 -4199 ((-661 $) (-661 |t#4|) (-661 $))) (-15 -4112 ((-661 $) (-661 |t#4|) (-114))))) -(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-877)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1233 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-3623 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#5|) 86 T ELT)) (-3620 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3622 (((-661 |#5|) |#4| |#5|) 74 T ELT)) (-3621 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3705 (((-1294)) 36 T ELT)) (-3703 (((-1294)) 25 T ELT)) (-3704 (((-1294) (-1180) (-1180) (-1180)) 32 T ELT)) (-3702 (((-1294) (-1180) (-1180) (-1180)) 21 T ELT)) (-3617 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3618 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#3| (-114)) 117 T ELT) (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3619 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|) 112 T ELT))) -(((-1093 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3702 ((-1294) (-1180) (-1180) (-1180))) (-15 -3703 ((-1294))) (-15 -3704 ((-1294) (-1180) (-1180) (-1180))) (-15 -3705 ((-1294))) (-15 -3617 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#4| |#4| |#5|)) (-15 -3618 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3618 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#3| (-114))) (-15 -3619 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|)) (-15 -3620 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|)) (-15 -3621 ((-114) |#4| |#5|)) (-15 -3621 ((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|)) (-15 -3622 ((-661 |#5|) |#4| |#5|)) (-15 -3623 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#5|))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1093)) -((-3623 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3622 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3618 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *5 (-114)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *4 (-861)) (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1743 *9)))) (-5 *1 (-1093 *6 *7 *4 *8 *9)))) (-3618 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3617 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3705 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3704 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3703 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3736 (((-1239) $) 13 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3624 (((-1156) $) 10 T ELT)) (-4376 (((-877) $) 20 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1094) (-13 (-1104) (-10 -8 (-15 -3624 ((-1156) $)) (-15 -3736 ((-1239) $))))) (T -1094)) -((-3624 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-1094))))) -((-3684 (((-114) $ $) 7 T ELT))) -(((-1095) (-13 (-1238) (-10 -8 (-15 -3684 ((-114) $ $))))) (T -1095)) -((-3684 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1095))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3627 (($ $ (-661 (-1198)) (-1 (-114) (-661 |#3|))) 34 T ELT)) (-3628 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-661 (-1198))) 21 T ELT)) (-3948 ((|#3| $) 13 T ELT)) (-3575 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3574 (((-305 |#3|) $) NIL T ELT)) (-3625 (((-661 (-1198)) $) 16 T ELT)) (-3626 (((-905 |#1|) $) 11 T ELT)) (-3949 ((|#3| $) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-938)) 41 T ELT)) (-4376 (((-877) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 38 T ELT))) -(((-1096 |#1| |#2| |#3|) (-13 (-1122) (-298 |#3| |#3|) (-1059 (-305 |#3|)) (-10 -8 (-15 -3628 ($ |#3| |#3|)) (-15 -3628 ($ |#3| |#3| (-661 (-1198)))) (-15 -3627 ($ $ (-661 (-1198)) (-1 (-114) (-661 |#3|)))) (-15 -3626 ((-905 |#1|) $)) (-15 -3949 (|#3| $)) (-15 -3948 (|#3| $)) (-15 -4230 (|#3| $ |#3| (-938))) (-15 -3625 ((-661 (-1198)) $)))) (-1122) (-13 (-1070) (-901 |#1|) (-631 (-905 |#1|))) (-13 (-433 |#2|) (-901 |#1|) (-631 (-905 |#1|)))) (T -1096)) -((-3628 (*1 *1 *2 *2) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) (-5 *1 (-1096 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))))) (-3628 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-4 *4 (-1122)) (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))))) (-3627 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-1 (-114) (-661 *6))) (-4 *6 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))) (-4 *4 (-1122)) (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1096 *4 *5 *6)))) (-3626 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 *2))) (-5 *2 (-905 *3)) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-901 *3) (-631 *2))))) (-3949 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))) (-5 *1 (-1096 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))))) (-3948 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))) (-5 *1 (-1096 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))))) (-4230 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1122)) (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))))) (-3625 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) (-5 *2 (-661 (-1198))) (-5 *1 (-1096 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-901 *3) (-631 (-905 *3))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3970 (((-1198) $) 8 T ELT)) (-3660 (((-1180) $) 17 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 11 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 14 T ELT))) -(((-1097 |#1|) (-13 (-1122) (-10 -8 (-15 -3970 ((-1198) $)))) (-1198)) (T -1097)) -((-3970 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1097 *3)) (-14 *3 *2)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3630 (($ (-661 (-1096 |#1| |#2| |#3|))) 14 T ELT)) (-3629 (((-661 (-1096 |#1| |#2| |#3|)) $) 21 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-938)) 27 T ELT)) (-4376 (((-877) $) 17 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 20 T ELT))) -(((-1098 |#1| |#2| |#3|) (-13 (-1122) (-298 |#3| |#3|) (-10 -8 (-15 -3630 ($ (-661 (-1096 |#1| |#2| |#3|)))) (-15 -3629 ((-661 (-1096 |#1| |#2| |#3|)) $)) (-15 -4230 (|#3| $ |#3| (-938))))) (-1122) (-13 (-1070) (-901 |#1|) (-631 (-905 |#1|))) (-13 (-433 |#2|) (-901 |#1|) (-631 (-905 |#1|)))) (T -1098)) -((-3630 (*1 *1 *2) (-12 (-5 *2 (-661 (-1096 *3 *4 *5))) (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) (-4 *5 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))) (-5 *1 (-1098 *3 *4 *5)))) (-3629 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) (-5 *2 (-661 (-1096 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))))) (-4230 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-938)) (-4 *4 (-1122)) (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1098 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4))))))) -((-3631 (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114) (-114)) 88 T ELT) (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|))) 92 T ELT) (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114)) 90 T ELT))) -(((-1099 |#1| |#2|) (-10 -7 (-15 -3631 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114))) (-15 -3631 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)))) (-15 -3631 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-661 (-1198))) (T -1099)) -((-3631 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))))) (-3631 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *4)) (|:| -3642 (-661 (-965 *4)))))) (-5 *1 (-1099 *4 *5)) (-5 *3 (-661 (-965 *4))) (-14 *5 (-661 (-1198))))) (-3631 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) (-5 *1 (-1099 *5 *6)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 136 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-1990 (((-709 |#1|) (-1288 $)) NIL T ELT) (((-709 |#1|)) 121 T ELT)) (-3750 ((|#1| $) 125 T ELT)) (-1878 (((-1210 (-938) (-791)) (-558)) NIL (|has| |#1| (-363)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3538 (((-791)) 43 (|has| |#1| (-381)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-2000 (($ (-1288 |#1|) (-1288 $)) NIL T ELT) (($ (-1288 |#1|)) 46 T ELT)) (-1876 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1989 (((-709 |#1|) $ (-1288 $)) NIL T ELT) (((-709 |#1|) $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 113 T ELT) (((-709 |#1|) (-709 $)) 108 T ELT)) (-4272 (($ |#2|) 65 T ELT) (((-3 $ #1#) (-419 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3511 (((-938)) 84 T ELT)) (-3395 (($) 47 (|has| |#1| (-381)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-3234 (($) NIL (|has| |#1| (-363)) ELT)) (-1883 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1974 (($ $ (-791)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4202 (((-938) $) NIL (|has| |#1| (-363)) ELT) (((-845 (-938)) $) NIL (|has| |#1| (-363)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3534 ((|#1| $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-363)) ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-2224 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-2220 (((-938) $) 145 (|has| |#1| (-381)) ELT)) (-3480 ((|#2| $) 62 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3866 (($) NIL (|has| |#1| (-363)) CONST)) (-2631 (($ (-938)) 135 (|has| |#1| (-381)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2640 (($) 127 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1879 (((-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558))))) NIL (|has| |#1| (-363)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 ((|#1| (-1288 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1975 (((-791) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-791) #1#) $ $) NIL (|has| |#1| (-363)) ELT)) (-4188 (($ $ (-791)) NIL (-3957 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-3957 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL (|has| |#1| (-376)) ELT)) (-2639 (((-709 |#1|) (-1288 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3603 ((|#2|) 81 T ELT)) (-1877 (($) NIL (|has| |#1| (-363)) ELT)) (-3642 (((-1288 |#1|) $ (-1288 $)) 96 T ELT) (((-709 |#1|) (-1288 $) (-1288 $)) NIL T ELT) (((-1288 |#1|) $) 75 T ELT) (((-709 |#1|) (-1288 $)) 92 T ELT)) (-4402 (((-1288 |#1|) $) NIL T ELT) (($ (-1288 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (|has| |#1| (-363)) ELT)) (-4376 (((-877) $) 61 T ELT) (($ (-558)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-376)) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-3103 (($ $) NIL (|has| |#1| (-363)) ELT) (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-2838 ((|#2| $) 89 T ELT)) (-3528 (((-791)) 83 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2222 (((-1288 $)) 88 T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3059 (($) 32 T CONST)) (-3065 (($) 19 T CONST)) (-3070 (($ $ (-791)) NIL (-3957 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-3957 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-919 (-1198)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL (|has| |#1| (-376)) ELT)) (-3454 (((-114) $ $) 67 T ELT)) (-4379 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 69 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT))) -(((-1100 |#1| |#2| |#3|) (-744 |#1| |#2|) (-175) (-1264 |#1|) |#2|) (T -1100)) -NIL -((-4162 (((-417 |#3|) |#3|) 18 T ELT))) -(((-1101 |#1| |#2| |#3|) (-10 -7 (-15 -4162 ((-417 |#3|) |#3|))) (-1264 (-419 (-558))) (-13 (-376) (-149) (-744 (-419 (-558)) |#1|)) (-1264 |#2|)) (T -1101)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-558)))) (-4 *5 (-13 (-376) (-149) (-744 (-419 (-558)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1264 *5))))) -((-4162 (((-417 |#3|) |#3|) 19 T ELT))) -(((-1102 |#1| |#2| |#3|) (-10 -7 (-15 -4162 ((-417 |#3|) |#3|))) (-1264 (-419 (-965 (-558)))) (-13 (-376) (-149) (-744 (-419 (-965 (-558))) |#1|)) (-1264 |#2|)) (T -1102)) -((-4162 (*1 *2 *3) (-12 (-4 *4 (-1264 (-419 (-965 (-558))))) (-4 *5 (-13 (-376) (-149) (-744 (-419 (-965 (-558))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2930 (($ $ $) 16 T ELT)) (-3258 (($ $ $) 17 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3632 (($) 6 T ELT)) (-4402 (((-1198) $) 20 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 15 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 9 T ELT))) -(((-1103) (-13 (-861) (-631 (-1198)) (-10 -8 (-15 -3632 ($))))) (T -1103)) -((-3632 (*1 *1) (-5 *1 (-1103)))) -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-1203)) 20 T ELT) (((-1203) $) 19 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-1104) (-142)) (T -1104)) +((-3501 (*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(-13 (-1064 |t#1|) (-10 -8 (-15 -3501 ($) -4381))) +(((-23) . T) ((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-1064 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 (-799 |#1| (-877 |#2|)))))) (-660 (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-4111 (((-660 $) (-660 (-799 |#1| (-877 |#2|)))) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) (-114)) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) (-114) (-114)) NIL T ELT)) (-3483 (((-660 (-877 |#2|)) $) NIL T ELT)) (-3308 (((-114) $) NIL T ELT)) (-3299 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 (((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-4204 (((-660 (-2 (|:| |val| (-799 |#1| (-877 |#2|))) (|:| -1742 $))) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ (-877 |#2|)) NIL T ELT)) (-4139 (($ (-1 (-114) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 (-799 |#1| (-877 |#2|)) #1="failed") $ (-877 |#2|)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3304 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4118 (((-660 (-799 |#1| (-877 |#2|))) (-660 (-799 |#1| (-877 |#2|))) $ (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) (-1 (-114) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-3300 (((-660 (-799 |#1| (-877 |#2|))) (-660 (-799 |#1| (-877 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3301 (((-660 (-799 |#1| (-877 |#2|))) (-660 (-799 |#1| (-877 |#2|))) $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ #1#) (-660 (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-3573 (($ (-660 (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-4228 (((-3 $ #1#) $) NIL T ELT)) (-4114 (((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT)) (-3825 (($ (-799 |#1| (-877 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| (-799 |#1| (-877 |#2|))) (|:| |den| |#1|)) (-799 |#1| (-877 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) (-799 |#1| (-877 |#2|)) $ (-1 (-114) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-4112 (((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-4271 (((-799 |#1| (-877 |#2|)) (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) $ (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT) (((-799 |#1| (-877 |#2|)) (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) $ (-799 |#1| (-877 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-799 |#1| (-877 |#2|)) (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $ (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) (-1 (-114) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-4125 (((-2 (|:| -4290 (-660 (-799 |#1| (-877 |#2|)))) (|:| -1904 (-660 (-799 |#1| (-877 |#2|))))) $) NIL T ELT)) (-3614 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3612 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3615 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3289 (((-660 (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-3597 (((-877 |#2|) $) NIL T ELT)) (-3006 (((-660 (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-799 |#1| (-877 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT)) (-2159 (($ (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) $) NIL T ELT)) (-3314 (((-660 (-877 |#2|)) $) NIL T ELT)) (-3313 (((-114) (-877 |#2|) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3608 (((-3 (-799 |#1| (-877 |#2|)) (-660 $)) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3607 (((-660 (-2 (|:| |val| (-799 |#1| (-877 |#2|))) (|:| -1742 $))) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-4227 (((-3 (-799 |#1| (-877 |#2|)) #1#) $) NIL T ELT)) (-3609 (((-660 $) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3611 (((-3 (-114) (-660 $)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3655 (((-660 $) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) $) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) (-660 $)) NIL T ELT) (((-660 $) (-799 |#1| (-877 |#2|)) (-660 $)) NIL T ELT)) (-3859 (($ (-799 |#1| (-877 |#2|)) $) NIL T ELT) (($ (-660 (-799 |#1| (-877 |#2|))) $) NIL T ELT)) (-4126 (((-660 (-799 |#1| (-877 |#2|))) $) NIL T ELT)) (-4120 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 (((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-4128 (((-114) $ $) NIL T ELT)) (-3303 (((-2 (|:| |num| (-799 |#1| (-877 |#2|))) (|:| |den| |#1|)) (-799 |#1| (-877 |#2|)) $) NIL (|has| |#1| (-569)) ELT)) (-4121 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 (((-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-3 (-799 |#1| (-877 |#2|)) #1#) $) NIL T ELT)) (-1467 (((-3 (-799 |#1| (-877 |#2|)) #1#) (-1 (-114) (-799 |#1| (-877 |#2|))) $) NIL T ELT)) (-4108 (((-3 $ #1#) $ (-799 |#1| (-877 |#2|))) NIL T ELT)) (-4198 (($ $ (-799 |#1| (-877 |#2|))) NIL T ELT) (((-660 $) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-660 $) (-799 |#1| (-877 |#2|)) (-660 $)) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) $) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) (-660 $)) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-799 |#1| (-877 |#2|))) (-660 (-799 |#1| (-877 |#2|)))) NIL (-12 (|has| (-799 |#1| (-877 |#2|)) (-321 (-799 |#1| (-877 |#2|)))) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT) (($ $ (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|))) NIL (-12 (|has| (-799 |#1| (-877 |#2|)) (-321 (-799 |#1| (-877 |#2|)))) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT) (($ $ (-305 (-799 |#1| (-877 |#2|)))) NIL (-12 (|has| (-799 |#1| (-877 |#2|)) (-321 (-799 |#1| (-877 |#2|)))) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT) (($ $ (-660 (-305 (-799 |#1| (-877 |#2|))))) NIL (-12 (|has| (-799 |#1| (-877 |#2|)) (-321 (-799 |#1| (-877 |#2|)))) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4377 (((-790) $) NIL T ELT)) (-2156 (((-790) (-799 |#1| (-877 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-799 |#1| (-877 |#2|)) (-1121))) ELT) (((-790) (-1 (-114) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-799 |#1| (-877 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-3310 (($ $ (-877 |#2|)) NIL T ELT)) (-3312 (($ $ (-877 |#2|)) NIL T ELT)) (-4113 (($ $) NIL T ELT)) (-3311 (($ $ (-877 |#2|)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (((-660 (-799 |#1| (-877 |#2|))) $) NIL T ELT)) (-4107 (((-790) $) NIL (|has| (-877 |#2|) (-381)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 (-799 |#1| (-877 |#2|))))) #1#) (-660 (-799 |#1| (-877 |#2|))) (-1 (-114) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)))) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 (-799 |#1| (-877 |#2|))))) #1#) (-660 (-799 |#1| (-877 |#2|))) (-1 (-114) (-799 |#1| (-877 |#2|))) (-1 (-114) (-799 |#1| (-877 |#2|)) (-799 |#1| (-877 |#2|)))) NIL T ELT)) (-4119 (((-114) $ (-1 (-114) (-799 |#1| (-877 |#2|)) (-660 (-799 |#1| (-877 |#2|))))) NIL T ELT)) (-3606 (((-660 $) (-799 |#1| (-877 |#2|)) $) NIL T ELT) (((-660 $) (-799 |#1| (-877 |#2|)) (-660 $)) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) $) NIL T ELT) (((-660 $) (-660 (-799 |#1| (-877 |#2|))) (-660 $)) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-799 |#1| (-877 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 (-877 |#2|)) $) NIL T ELT)) (-3613 (((-114) (-799 |#1| (-877 |#2|)) $) NIL T ELT)) (-4362 (((-114) (-877 |#2|) $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1066 |#1| |#2|) (-13 (-1091 |#1| (-543 (-877 |#2|)) (-877 |#2|) (-799 |#1| (-877 |#2|))) (-10 -8 (-15 -4111 ((-660 $) (-660 (-799 |#1| (-877 |#2|))) (-114) (-114))))) (-464) (-660 (-1197))) (T -1066)) +((-4111 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-1066 *5 *6))))) +((-3502 (((-1 (-558)) (-1109 (-558))) 32 T ELT)) (-3506 (((-558) (-558) (-558) (-558) (-558)) 29 T ELT)) (-3504 (((-1 (-558)) |RationalNumber|) NIL T ELT)) (-3505 (((-1 (-558)) |RationalNumber|) NIL T ELT)) (-3503 (((-1 (-558)) (-558) |RationalNumber|) NIL T ELT))) +(((-1067) (-10 -7 (-15 -3502 ((-1 (-558)) (-1109 (-558)))) (-15 -3503 ((-1 (-558)) (-558) |RationalNumber|)) (-15 -3504 ((-1 (-558)) |RationalNumber|)) (-15 -3505 ((-1 (-558)) |RationalNumber|)) (-15 -3506 ((-558) (-558) (-558) (-558) (-558))))) (T -1067)) +((-3506 (*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1067)))) (-3505 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1067)))) (-3504 (*1 *2 *3) (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1067)))) (-3503 (*1 *2 *3 *4) (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1067)) (-5 *3 (-558)))) (-3502 (*1 *2 *3) (-12 (-5 *3 (-1109 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1067))))) +((-4375 (((-876) $) NIL T ELT) (($ (-558)) 10 T ELT))) +(((-1068 |#1|) (-10 -7 (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-1069)) (T -1068)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1069) (-142)) (T -1069)) +((-3527 (*1 *2) (-12 (-4 *1 (-1069)) (-5 *2 (-790))))) +(-13 (-1077) (-745) (-667 $) (-632 (-558)) (-10 -7 (-15 -3527 ((-790)) -4381) (-6 -4421))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-632 (-558)) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-745) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3507 (((-419 (-964 |#2|)) (-660 |#2|) (-660 |#2|) (-790) (-790)) 55 T ELT))) +(((-1070 |#1| |#2|) (-10 -7 (-15 -3507 ((-419 (-964 |#2|)) (-660 |#2|) (-660 |#2|) (-790) (-790)))) (-1197) (-376)) (T -1070)) +((-3507 (*1 *2 *3 *3 *4 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-790)) (-4 *6 (-376)) (-5 *2 (-419 (-964 *6))) (-5 *1 (-1070 *5 *6)) (-14 *5 (-1197))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (* (($ $ |#1|) 17 T ELT))) +(((-1071 |#1|) (-142) (-1132)) (T -1071)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1132))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ |t#1|)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-3522 (((-114) $) 38 T ELT)) (-3524 (((-114) $) 17 T ELT)) (-3516 (((-790) $) 13 T ELT)) (-3515 (((-790) $) 14 T ELT)) (-3523 (((-114) $) 30 T ELT)) (-3521 (((-114) $) 40 T ELT))) +(((-1072 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -3515 ((-790) |#1|)) (-15 -3516 ((-790) |#1|)) (-15 -3521 ((-114) |#1|)) (-15 -3522 ((-114) |#1|)) (-15 -3523 ((-114) |#1|)) (-15 -3524 ((-114) |#1|))) (-1073 |#2| |#3| |#4| |#5| |#6|) (-790) (-790) (-1069) (-245 |#3| |#4|) (-245 |#2| |#4|)) (T -1072)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3522 (((-114) $) 61 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3524 (((-114) $) 63 T ELT)) (-4153 (($) 22 T CONST)) (-3511 (($ $) 44 (|has| |#3| (-319)) ELT)) (-3513 ((|#4| $ (-558)) 49 T ELT)) (-3510 (((-790) $) 43 (|has| |#3| (-569)) ELT)) (-3514 ((|#3| $ (-558) (-558)) 51 T ELT)) (-3289 (((-660 |#3|) $) 75 (|has| $ (-6 -4424)) ELT)) (-3509 (((-790) $) 42 (|has| |#3| (-569)) ELT)) (-3508 (((-660 |#5|) $) 41 (|has| |#3| (-569)) ELT)) (-3516 (((-790) $) 55 T ELT)) (-3515 (((-790) $) 54 T ELT)) (-3520 (((-558) $) 59 T ELT)) (-3518 (((-558) $) 57 T ELT)) (-3006 (((-660 |#3|) $) 76 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#3| $) 78 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3519 (((-558) $) 58 T ELT)) (-3517 (((-558) $) 56 T ELT)) (-3525 (($ (-660 (-660 |#3|))) 64 T ELT)) (-2159 (($ (-1 |#3| |#3|) $) 71 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#3| |#3|) $) 70 T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 47 T ELT)) (-4021 (((-660 (-660 |#3|)) $) 53 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ |#3|) 46 (|has| |#3| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) 73 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#3|) (-660 |#3|)) 82 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ |#3| |#3|) 81 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-305 |#3|)) 80 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-660 (-305 |#3|))) 79 (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT)) (-1328 (((-114) $ $) 65 T ELT)) (-3822 (((-114) $) 68 T ELT)) (-3992 (($) 67 T ELT)) (-4229 ((|#3| $ (-558) (-558)) 52 T ELT) ((|#3| $ (-558) (-558) |#3|) 50 T ELT)) (-3523 (((-114) $) 62 T ELT)) (-2156 (((-790) |#3| $) 77 (-12 (|has| |#3| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#3|) $) 74 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 66 T ELT)) (-3512 ((|#5| $ (-558)) 48 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) 72 (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) 60 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#3|) 45 (|has| |#3| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#3| $) 32 T ELT) (($ $ |#3|) 36 T ELT)) (-4386 (((-790) $) 69 (|has| $ (-6 -4424)) ELT))) +(((-1073 |#1| |#2| |#3| |#4| |#5|) (-142) (-790) (-790) (-1069) (-245 |t#2| |t#3|) (-245 |t#1| |t#3|)) (T -1073)) +((-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3525 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *5))) (-4 *5 (-1069)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3524 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3523 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3522 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3521 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114)))) (-3520 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3519 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3518 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3517 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558)))) (-3516 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-790)))) (-3515 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-790)))) (-4021 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-660 (-660 *5))))) (-4229 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1069)))) (-3514 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)) (-4 *2 (-1069)))) (-4229 (*1 *2 *1 *3 *3 *2) (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *2 (-1069)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) (-3513 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *6 *2 *7)) (-4 *6 (-1069)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6)))) (-3512 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *6 *7 *2)) (-4 *6 (-1069)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6)))) (-4387 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) (-3885 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-569)))) (-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) (-3511 (*1 *1 *1) (-12 (-4 *1 (-1073 *2 *3 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319)))) (-3510 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-790)))) (-3509 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-790)))) (-3508 (*1 *2 *1) (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-660 *7))))) +(-13 (-111 |t#3| |t#3|) (-501 |t#3|) (-10 -8 (-6 -4424) (IF (|has| |t#3| (-175)) (-6 (-736 |t#3|)) |%noBranch|) (-15 -3525 ($ (-660 (-660 |t#3|)))) (-15 -3524 ((-114) $)) (-15 -3523 ((-114) $)) (-15 -3522 ((-114) $)) (-15 -3521 ((-114) $)) (-15 -3520 ((-558) $)) (-15 -3519 ((-558) $)) (-15 -3518 ((-558) $)) (-15 -3517 ((-558) $)) (-15 -3516 ((-790) $)) (-15 -3515 ((-790) $)) (-15 -4021 ((-660 (-660 |t#3|)) $)) (-15 -4229 (|t#3| $ (-558) (-558))) (-15 -3514 (|t#3| $ (-558) (-558))) (-15 -4229 (|t#3| $ (-558) (-558) |t#3|)) (-15 -3513 (|t#4| $ (-558))) (-15 -3512 (|t#5| $ (-558))) (-15 -4387 ($ (-1 |t#3| |t#3|) $)) (-15 -4387 ($ (-1 |t#3| |t#3| |t#3|) $ $)) (IF (|has| |t#3| (-569)) (-15 -3885 ((-3 $ "failed") $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-376)) (-15 -4378 ($ $ |t#3|)) |%noBranch|) (IF (|has| |t#3| (-319)) (-15 -3511 ($ $)) |%noBranch|) (IF (|has| |t#3| (-569)) (PROGN (-15 -3510 ((-790) $)) (-15 -3509 ((-790) $)) (-15 -3508 ((-660 |t#5|) $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-102) . T) ((-111 |#3| |#3|) . T) ((-133) . T) ((-629 (-876)) . T) ((-321 |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ((-501 |#3|) . T) ((-526 |#3| |#3|) -12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ((-665 (-558)) . T) ((-665 |#3|) . T) ((-667 |#3|) . T) ((-659 |#3|) |has| |#3| (-175)) ((-736 |#3|) |has| |#3| (-175)) ((-1071 |#3|) . T) ((-1076 |#3|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3524 (((-114) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3511 (($ $) 47 (|has| |#3| (-319)) ELT)) (-3513 (((-246 |#2| |#3|) $ (-558)) 36 T ELT)) (-3526 (($ (-708 |#3|)) 45 T ELT)) (-3510 (((-790) $) 49 (|has| |#3| (-569)) ELT)) (-3514 ((|#3| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3509 (((-790) $) 51 (|has| |#3| (-569)) ELT)) (-3508 (((-660 (-246 |#1| |#3|)) $) 55 (|has| |#3| (-569)) ELT)) (-3516 (((-790) $) NIL T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-3519 (((-558) $) NIL T ELT)) (-3517 (((-558) $) NIL T ELT)) (-3525 (($ (-660 (-660 |#3|))) 31 T ELT)) (-2159 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) NIL T ELT)) (-4021 (((-660 (-660 |#3|)) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#3|) NIL (|has| |#3| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#3| $ (-558) (-558)) NIL T ELT) ((|#3| $ (-558) (-558) |#3|) NIL T ELT)) (-4340 (((-136)) 59 (|has| |#3| (-376)) ELT)) (-3523 (((-114) $) NIL T ELT)) (-2156 (((-790) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT) (((-790) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) 66 (|has| |#3| (-630 (-547))) ELT)) (-3512 (((-246 |#1| |#3|) $ (-558)) 40 T ELT)) (-4375 (((-876) $) 19 T ELT) (((-708 |#3|) $) 42 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) NIL T ELT)) (-3058 (($) 16 T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#3| $) NIL T ELT) (($ $ |#3|) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1074 |#1| |#2| |#3|) (-13 (-1073 |#1| |#2| |#3| (-246 |#2| |#3|) (-246 |#1| |#3|)) (-629 (-708 |#3|)) (-10 -8 (IF (|has| |#3| (-376)) (-6 (-1295 |#3|)) |%noBranch|) (IF (|has| |#3| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|) (-15 -3526 ($ (-708 |#3|))))) (-790) (-790) (-1069)) (T -1074)) +((-3526 (*1 *1 *2) (-12 (-5 *2 (-708 *5)) (-4 *5 (-1069)) (-5 *1 (-1074 *3 *4 *5)) (-14 *3 (-790)) (-14 *4 (-790))))) +((-4271 ((|#7| (-1 |#7| |#3| |#7|) |#6| |#7|) 36 T ELT)) (-4387 ((|#10| (-1 |#7| |#3|) |#6|) 34 T ELT))) +(((-1075 |#1| |#2| |#3| |#4| |#5| |#6| |#7| |#8| |#9| |#10|) (-10 -7 (-15 -4387 (|#10| (-1 |#7| |#3|) |#6|)) (-15 -4271 (|#7| (-1 |#7| |#3| |#7|) |#6| |#7|))) (-790) (-790) (-1069) (-245 |#2| |#3|) (-245 |#1| |#3|) (-1073 |#1| |#2| |#3| |#4| |#5|) (-1069) (-245 |#2| |#7|) (-245 |#1| |#7|) (-1073 |#1| |#2| |#7| |#8| |#9|)) (T -1075)) +((-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1069)) (-4 *2 (-1069)) (-14 *5 (-790)) (-14 *6 (-790)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *12 (-1073 *5 *6 *2 *10 *11)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1069)) (-4 *10 (-1069)) (-14 *5 (-790)) (-14 *6 (-790)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *2 (-1073 *5 *6 *10 *11 *12)) (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ |#1|) 32 T ELT))) +(((-1076 |#1|) (-142) (-1077)) (T -1076)) +NIL +(-13 (-21) (-1071 |t#1|)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-1071 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1077) (-142)) (T -1077)) +NIL +(-13 (-21) (-1132)) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4260 (((-1197) $) 11 T ELT)) (-4165 ((|#1| $) 12 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-3643 (($ (-1197) |#1|) 10 T ELT)) (-4375 (((-876) $) 22 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3453 (((-114) $ $) 17 (|has| |#1| (-1121)) ELT))) +(((-1078 |#1| |#2|) (-13 (-1237) (-10 -8 (-15 -3643 ($ (-1197) |#1|)) (-15 -4260 ((-1197) $)) (-15 -4165 (|#1| $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1114 |#2|) (-1237)) (T -1078)) +((-3643 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-4 *4 (-1237)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-4260 (*1 *2 *1) (-12 (-4 *4 (-1237)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) (-4 *3 (-1114 *4)))) (-4165 (*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1237))))) +((-4200 (($ $) 17 T ELT)) (-3528 (($ $) 25 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 54 T ELT)) (-3533 (($ $) 27 T ELT)) (-3529 (($ $) 12 T ELT)) (-3531 (($ $) 40 T ELT)) (-4401 (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (((-904 (-391)) $) 36 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) 31 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) 31 T ELT)) (-3527 (((-790)) 9 T ELT)) (-3532 (($ $) 44 T ELT))) +(((-1079 |#1|) (-10 -7 (-15 -3528 (|#1| |#1|)) (-15 -4200 (|#1| |#1|)) (-15 -3529 (|#1| |#1|)) (-15 -3531 (|#1| |#1|)) (-15 -3532 (|#1| |#1|)) (-15 -3533 (|#1| |#1|)) (-15 -3196 ((-902 (-391) |#1|) |#1| (-904 (-391)) (-902 (-391) |#1|))) (-15 -4401 ((-904 (-391)) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4375 (|#1| (-558))) (-15 -4401 ((-229) |#1|)) (-15 -4401 ((-391) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4375 (|#1| |#1|)) (-15 -3527 ((-790))) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-1080)) (T -1079)) +((-3527 (*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1079 *3)) (-4 *3 (-1080))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3530 (((-558) $) 105 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-4200 (($ $) 103 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-3437 (($ $) 113 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4052 (((-558) $) 130 T ELT)) (-4153 (($) 22 T CONST)) (-3528 (($ $) 102 T ELT)) (-3574 (((-3 (-558) #1="failed") $) 118 T ELT) (((-3 (-419 (-558)) #1#) $) 115 T ELT)) (-3573 (((-558) $) 119 T ELT) (((-419 (-558)) $) 116 T ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-4152 (((-114) $) 86 T ELT)) (-3603 (((-114) $) 128 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 109 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 112 T ELT)) (-3533 (($ $) 108 T ELT)) (-3604 (((-114) $) 129 T ELT)) (-1784 (((-3 (-660 $) #2="failed") (-660 $) $) 65 T ELT)) (-2929 (($ $ $) 122 T ELT)) (-3257 (($ $ $) 123 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-3529 (($ $) 104 T ELT)) (-3531 (($ $) 106 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #2#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-4401 (((-391) $) 121 T ELT) (((-229) $) 120 T ELT) (((-904 (-391)) $) 110 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ (-558)) 117 T ELT) (($ (-419 (-558))) 114 T ELT)) (-3527 (((-790)) 37 T CONST)) (-3532 (($ $) 107 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3802 (($ $) 131 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-2964 (((-114) $ $) 124 T ELT)) (-2965 (((-114) $ $) 126 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 125 T ELT)) (-3085 (((-114) $ $) 127 T ELT)) (-4378 (($ $ $) 80 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT) (($ $ (-419 (-558))) 111 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT))) +(((-1080) (-142)) (T -1080)) +((-3533 (*1 *1 *1) (-4 *1 (-1080))) (-3532 (*1 *1 *1) (-4 *1 (-1080))) (-3531 (*1 *1 *1) (-4 *1 (-1080))) (-3530 (*1 *2 *1) (-12 (-4 *1 (-1080)) (-5 *2 (-558)))) (-3529 (*1 *1 *1) (-4 *1 (-1080))) (-4200 (*1 *1 *1) (-4 *1 (-1080))) (-3528 (*1 *1 *1) (-4 *1 (-1080)))) +(-13 (-376) (-859) (-1040) (-1058 (-558)) (-1058 (-419 (-558))) (-1022) (-630 (-904 (-391))) (-900 (-391)) (-149) (-10 -8 (-15 -3533 ($ $)) (-15 -3532 ($ $)) (-15 -3531 ($ $)) (-15 -3530 ((-558) $)) (-15 -3529 ($ $)) (-15 -4200 ($ $)) (-15 -3528 ($ $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 $ $) . T) ((-133) . T) ((-149) . T) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-630 (-229)) . T) ((-630 (-391)) . T) ((-630 (-904 (-391))) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 $) . T) ((-745) . T) ((-811) . T) ((-813) . T) ((-815) . T) ((-818) . T) ((-859) . T) ((-860) . T) ((-863) . T) ((-900 (-391)) . T) ((-939) . T) ((-1022) . T) ((-1040) . T) ((-1058 (-419 (-558))) . T) ((-1058 (-558)) . T) ((-1071 (-419 (-558))) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) |#2| $) 26 T ELT)) (-3537 ((|#1| $) 10 T ELT)) (-4052 (((-558) |#2| $) 119 T ELT)) (-3600 (((-3 $ #1="failed") |#2| (-937)) 76 T ELT)) (-3538 ((|#1| $) 31 T ELT)) (-3599 ((|#1| |#2| $ |#1|) 40 T ELT)) (-3535 (($ $) 28 T ELT)) (-3886 (((-3 |#2| #1#) |#2| $) 113 T ELT)) (-3603 (((-114) |#2| $) NIL T ELT)) (-3604 (((-114) |#2| $) NIL T ELT)) (-3534 (((-114) |#2| $) 27 T ELT)) (-3536 ((|#1| $) 120 T ELT)) (-3539 ((|#1| $) 30 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3602 ((|#2| $) 104 T ELT)) (-4375 (((-876) $) 95 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4199 ((|#1| |#2| $ |#1|) 41 T ELT)) (-3601 (((-660 $) |#2|) 78 T ELT)) (-3453 (((-114) $ $) 99 T ELT))) +(((-1081 |#1| |#2|) (-13 (-1088 |#1| |#2|) (-10 -8 (-15 -3539 (|#1| $)) (-15 -3538 (|#1| $)) (-15 -3537 (|#1| $)) (-15 -3536 (|#1| $)) (-15 -3535 ($ $)) (-15 -3534 ((-114) |#2| $)) (-15 -3599 (|#1| |#2| $ |#1|)))) (-13 (-859) (-376)) (-1263 |#1|)) (T -1081)) +((-3599 (*1 *2 *3 *1 *2) (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-3539 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-3538 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-3537 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-3536 (*1 *2 *1) (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-3535 (*1 *1 *1) (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) (-3534 (*1 *2 *3 *1) (-12 (-4 *4 (-13 (-859) (-376))) (-5 *2 (-114)) (-5 *1 (-1081 *4 *3)) (-4 *3 (-1263 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2251 (($ $ $ $) NIL T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-4052 (((-558) $) NIL T ELT)) (-2829 (($ $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3540 (($ (-1197)) 10 T ELT) (($ (-558)) 7 T ELT)) (-3574 (((-3 (-558) #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL T ELT)) (-2962 (($ $ $) NIL T ELT)) (-2492 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-708 (-558)) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3423 (((-114) $) NIL T ELT)) (-3422 (((-419 (-558)) $) NIL T ELT)) (-3394 (($) NIL T ELT) (($ $) NIL T ELT)) (-2961 (($ $ $) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2249 (($ $ $ $) NIL T ELT)) (-2257 (($ $ $) NIL T ELT)) (-3603 (((-114) $) NIL T ELT)) (-1482 (($ $ $) NIL T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3073 (((-114) $) NIL T ELT)) (-3864 (((-710 $) $) NIL T ELT)) (-3604 (((-114) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-2253 (($ $) NIL T ELT)) (-4262 (($ $) NIL T ELT)) (-2493 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2248 (($ $ $) NIL T ELT)) (-3865 (($) NIL T CONST)) (-2255 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-1480 (($ $) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-3074 (((-114) $) NIL T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-4187 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2254 (($ $) NIL T ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-558) $) 16 T ELT) (((-547) $) NIL T ELT) (((-904 (-558)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT) (($ (-1197)) 9 T ELT)) (-4375 (((-876) $) 23 T ELT) (($ (-558)) 6 T ELT) (($ $) NIL T ELT) (($ (-558)) 6 T ELT)) (-3527 (((-790)) NIL T CONST)) (-2258 (((-114) $ $) NIL T ELT)) (-3503 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (($) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-2252 (($ $ $ $) NIL T ELT)) (-3802 (($ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-4266 (($ $) 22 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-558) $) NIL T ELT))) +(((-1082) (-13 (-557) (-634 (-1197)) (-10 -8 (-6 -4411) (-6 -4416) (-6 -4412) (-15 -3540 ($ (-1197))) (-15 -3540 ($ (-558)))))) (T -1082)) +((-3540 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1082)))) (-3540 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1082))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-2412 (((-1293) $ (-1197) (-1197)) NIL (|has| $ (-6 -4425)) ELT)) (-3542 (($) 9 T ELT)) (-4217 (((-51) $ (-1197) (-51)) NIL T ELT)) (-3550 (($ $) 32 T ELT)) (-3553 (($ $) 30 T ELT)) (-3554 (($ $) 29 T ELT)) (-3552 (($ $) 31 T ELT)) (-3549 (($ $) 35 T ELT)) (-3548 (($ $) 36 T ELT)) (-3555 (($ $) 28 T ELT)) (-3551 (($ $) 33 T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) 27 (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 (-51) #1="failed") (-1197) $) 43 T ELT)) (-4153 (($) NIL T CONST)) (-3556 (($) 7 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) 53 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 (-51) #1#) (-1197) $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT)) (-3541 (((-3 (-1179) #1#) $ (-1179) (-558)) 72 T ELT)) (-1718 (((-51) $ (-1197) (-51)) NIL (|has| $ (-6 -4425)) ELT)) (-3514 (((-51) $ (-1197)) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 (((-1197) $) NIL (|has| (-1197) (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) 38 (|has| $ (-6 -4424)) ELT) (((-660 (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT)) (-2415 (((-1197) $) NIL (|has| (-1197) (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-51) (-51)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL T ELT) (($ (-1 (-51) (-51)) $) NIL T ELT) (($ (-1 (-51) (-51) (-51)) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-51) (-1121)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT)) (-2883 (((-660 (-1197)) $) NIL T ELT)) (-2446 (((-114) (-1197) $) NIL T ELT)) (-1388 (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) 46 T ELT)) (-2417 (((-660 (-1197)) $) NIL T ELT)) (-2418 (((-114) (-1197) $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-51) (-1121)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT)) (-3545 (((-391) $ (-1197)) 52 T ELT)) (-3544 (((-660 (-1179)) $ (-1179)) 74 T ELT)) (-4230 (((-51) $) NIL (|has| (-1197) (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) #1#) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL T ELT)) (-2413 (($ $ (-51)) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL (-12 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-321 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (($ $ (-660 (-51)) (-660 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-51) (-51)) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-305 (-51))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT) (($ $ (-660 (-305 (-51)))) NIL (-12 (|has| (-51) (-321 (-51))) (|has| (-51) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT)) (-2419 (((-660 (-51)) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 (((-51) $ (-1197)) NIL T ELT) (((-51) $ (-1197) (-51)) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-3543 (($ $ (-1197)) 54 T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-1121))) ELT) (((-790) (-51) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-51) (-1121))) ELT) (((-790) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) 40 T ELT)) (-4231 (($ $ $) 41 T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-629 (-876))) (|has| (-51) (-629 (-876)))) ELT)) (-3547 (($ $ (-1197) (-391)) 50 T ELT)) (-3546 (($ $ (-1197) (-391)) 51 T ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 (-1197)) (|:| -2285 (-51)))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) (-51)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-51) (-102)) (|has| (-2 (|:| -4289 (-1197)) (|:| -2285 (-51))) (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1083) (-13 (-1214 (-1197) (-51)) (-10 -8 (-15 -4231 ($ $ $)) (-15 -3556 ($)) (-15 -3555 ($ $)) (-15 -3554 ($ $)) (-15 -3553 ($ $)) (-15 -3552 ($ $)) (-15 -3551 ($ $)) (-15 -3550 ($ $)) (-15 -3549 ($ $)) (-15 -3548 ($ $)) (-15 -3547 ($ $ (-1197) (-391))) (-15 -3546 ($ $ (-1197) (-391))) (-15 -3545 ((-391) $ (-1197))) (-15 -3544 ((-660 (-1179)) $ (-1179))) (-15 -3543 ($ $ (-1197))) (-15 -3542 ($)) (-15 -3541 ((-3 (-1179) "failed") $ (-1179) (-558))) (-6 -4424)))) (T -1083)) +((-4231 (*1 *1 *1 *1) (-5 *1 (-1083))) (-3556 (*1 *1) (-5 *1 (-1083))) (-3555 (*1 *1 *1) (-5 *1 (-1083))) (-3554 (*1 *1 *1) (-5 *1 (-1083))) (-3553 (*1 *1 *1) (-5 *1 (-1083))) (-3552 (*1 *1 *1) (-5 *1 (-1083))) (-3551 (*1 *1 *1) (-5 *1 (-1083))) (-3550 (*1 *1 *1) (-5 *1 (-1083))) (-3549 (*1 *1 *1) (-5 *1 (-1083))) (-3548 (*1 *1 *1) (-5 *1 (-1083))) (-3547 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-391)) (-5 *1 (-1083)))) (-3546 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-391)) (-5 *1 (-1083)))) (-3545 (*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-391)) (-5 *1 (-1083)))) (-3544 (*1 *2 *1 *3) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1083)) (-5 *3 (-1179)))) (-3543 (*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083)))) (-3542 (*1 *1) (-5 *1 (-1083))) (-3541 (*1 *2 *1 *2 *3) (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-558)) (-5 *1 (-1083))))) +((-4226 (($ $) 46 T ELT)) (-3583 (((-114) $ $) 82 T ELT)) (-3574 (((-3 |#2| #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 |#4| #1#) $) NIL T ELT) (((-3 $ #1#) (-964 (-419 (-558)))) 247 T ELT) (((-3 $ #1#) (-964 (-558))) 246 T ELT) (((-3 $ #1#) (-964 |#2|)) 249 T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) ((|#4| $) NIL T ELT) (($ (-964 (-419 (-558)))) 235 T ELT) (($ (-964 (-558))) 231 T ELT) (($ (-964 |#2|)) 255 T ELT)) (-4388 (($ $) NIL T ELT) (($ $ |#4|) 44 T ELT)) (-4123 (((-114) $ $) 131 T ELT) (((-114) $ (-660 $)) 135 T ELT)) (-3589 (((-114) $) 60 T ELT)) (-4181 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 125 T ELT)) (-3560 (($ $) 160 T ELT)) (-3571 (($ $) 156 T ELT)) (-3572 (($ $) 155 T ELT)) (-3582 (($ $ $) 87 T ELT) (($ $ $ |#4|) 92 T ELT)) (-3581 (($ $ $) 90 T ELT) (($ $ $ |#4|) 94 T ELT)) (-4124 (((-114) $ $) 143 T ELT) (((-114) $ (-660 $)) 144 T ELT)) (-3597 ((|#4| $) 32 T ELT)) (-3576 (($ $ $) 128 T ELT)) (-3590 (((-114) $) 59 T ELT)) (-3596 (((-790) $) 35 T ELT)) (-3557 (($ $) 174 T ELT)) (-3558 (($ $) 171 T ELT)) (-3585 (((-660 $) $) 72 T ELT)) (-3588 (($ $) 62 T ELT)) (-3559 (($ $) 167 T ELT)) (-3586 (((-660 $) $) 69 T ELT)) (-3587 (($ $) 64 T ELT)) (-3591 ((|#2| $) NIL T ELT) (($ $ |#4|) 39 T ELT)) (-3575 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3900 (-790))) $ $) 130 T ELT)) (-3577 (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $) 126 T ELT) (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $ |#4|) 127 T ELT)) (-3578 (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $) 121 T ELT) (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $ |#4|) 123 T ELT)) (-3580 (($ $ $) 97 T ELT) (($ $ $ |#4|) 106 T ELT)) (-3579 (($ $ $) 98 T ELT) (($ $ $ |#4|) 107 T ELT)) (-3593 (((-660 $) $) 54 T ELT)) (-4120 (((-114) $ $) 140 T ELT) (((-114) $ (-660 $)) 141 T ELT)) (-4115 (($ $ $) 116 T ELT)) (-3865 (($ $) 37 T ELT)) (-4128 (((-114) $ $) 80 T ELT)) (-4121 (((-114) $ $) 136 T ELT) (((-114) $ (-660 $)) 138 T ELT)) (-4116 (($ $ $) 112 T ELT)) (-3595 (($ $) 41 T ELT)) (-3561 ((|#2| |#2| $) 164 T ELT) (($ (-660 $)) NIL T ELT) (($ $ $) NIL T ELT)) (-3569 (($ $ |#2|) NIL T ELT) (($ $ $) 153 T ELT)) (-3570 (($ $ |#2|) 148 T ELT) (($ $ $) 151 T ELT)) (-3594 (($ $) 49 T ELT)) (-3592 (($ $) 55 T ELT)) (-4401 (((-904 (-391)) $) NIL T ELT) (((-904 (-558)) $) NIL T ELT) (((-547) $) NIL T ELT) (($ (-964 (-419 (-558)))) 237 T ELT) (($ (-964 (-558))) 233 T ELT) (($ (-964 |#2|)) 248 T ELT) (((-1179) $) 278 T ELT) (((-964 |#2|) $) 184 T ELT)) (-4375 (((-876) $) 29 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ |#4|) NIL T ELT) (((-964 |#2|) $) 185 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT)) (-3584 (((-3 (-114) #1#) $ $) 79 T ELT))) +(((-1084 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4375 (|#1| |#1|)) (-15 -3561 (|#1| |#1| |#1|)) (-15 -3561 (|#1| (-660 |#1|))) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4375 ((-964 |#2|) |#1|)) (-15 -4401 ((-964 |#2|) |#1|)) (-15 -4401 ((-1179) |#1|)) (-15 -3557 (|#1| |#1|)) (-15 -3558 (|#1| |#1|)) (-15 -3559 (|#1| |#1|)) (-15 -3560 (|#1| |#1|)) (-15 -3561 (|#2| |#2| |#1|)) (-15 -3569 (|#1| |#1| |#1|)) (-15 -3570 (|#1| |#1| |#1|)) (-15 -3569 (|#1| |#1| |#2|)) (-15 -3570 (|#1| |#1| |#2|)) (-15 -3571 (|#1| |#1|)) (-15 -3572 (|#1| |#1|)) (-15 -4401 (|#1| (-964 |#2|))) (-15 -3573 (|#1| (-964 |#2|))) (-15 -3574 ((-3 |#1| #1="failed") (-964 |#2|))) (-15 -4401 (|#1| (-964 (-558)))) (-15 -3573 (|#1| (-964 (-558)))) (-15 -3574 ((-3 |#1| #1#) (-964 (-558)))) (-15 -4401 (|#1| (-964 (-419 (-558))))) (-15 -3573 (|#1| (-964 (-419 (-558))))) (-15 -3574 ((-3 |#1| #1#) (-964 (-419 (-558))))) (-15 -4115 (|#1| |#1| |#1|)) (-15 -4116 (|#1| |#1| |#1|)) (-15 -3575 ((-2 (|:| |polnum| |#1|) (|:| |polden| |#1|) (|:| -3900 (-790))) |#1| |#1|)) (-15 -3576 (|#1| |#1| |#1|)) (-15 -4181 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -3577 ((-2 (|:| -4383 |#1|) (|:| |gap| (-790)) (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1| |#4|)) (-15 -3577 ((-2 (|:| -4383 |#1|) (|:| |gap| (-790)) (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -3578 ((-2 (|:| -4383 |#1|) (|:| |gap| (-790)) (|:| -3302 |#1|)) |#1| |#1| |#4|)) (-15 -3578 ((-2 (|:| -4383 |#1|) (|:| |gap| (-790)) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -3579 (|#1| |#1| |#1| |#4|)) (-15 -3580 (|#1| |#1| |#1| |#4|)) (-15 -3579 (|#1| |#1| |#1|)) (-15 -3580 (|#1| |#1| |#1|)) (-15 -3581 (|#1| |#1| |#1| |#4|)) (-15 -3582 (|#1| |#1| |#1| |#4|)) (-15 -3581 (|#1| |#1| |#1|)) (-15 -3582 (|#1| |#1| |#1|)) (-15 -4124 ((-114) |#1| (-660 |#1|))) (-15 -4124 ((-114) |#1| |#1|)) (-15 -4120 ((-114) |#1| (-660 |#1|))) (-15 -4120 ((-114) |#1| |#1|)) (-15 -4121 ((-114) |#1| (-660 |#1|))) (-15 -4121 ((-114) |#1| |#1|)) (-15 -4123 ((-114) |#1| (-660 |#1|))) (-15 -4123 ((-114) |#1| |#1|)) (-15 -3583 ((-114) |#1| |#1|)) (-15 -4128 ((-114) |#1| |#1|)) (-15 -3584 ((-3 (-114) #1#) |#1| |#1|)) (-15 -3585 ((-660 |#1|) |#1|)) (-15 -3586 ((-660 |#1|) |#1|)) (-15 -3587 (|#1| |#1|)) (-15 -3588 (|#1| |#1|)) (-15 -3589 ((-114) |#1|)) (-15 -3590 ((-114) |#1|)) (-15 -4388 (|#1| |#1| |#4|)) (-15 -3591 (|#1| |#1| |#4|)) (-15 -3592 (|#1| |#1|)) (-15 -3593 ((-660 |#1|) |#1|)) (-15 -3594 (|#1| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -3595 (|#1| |#1|)) (-15 -3865 (|#1| |#1|)) (-15 -3596 ((-790) |#1|)) (-15 -3597 (|#4| |#1|)) (-15 -4401 ((-547) |#1|)) (-15 -4401 ((-904 (-558)) |#1|)) (-15 -4401 ((-904 (-391)) |#1|)) (-15 -4375 (|#1| |#4|)) (-15 -3574 ((-3 |#4| #1#) |#1|)) (-15 -3573 (|#4| |#1|)) (-15 -3591 (|#2| |#1|)) (-15 -4388 (|#1| |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-1085 |#2| |#3| |#4|) (-1069) (-814) (-860)) (T -1084)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 |#3|) $) 120 T ELT)) (-3485 (((-1191 $) $ |#3|) 135 T ELT) (((-1191 |#1|) $) 134 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) 122 T ELT) (((-790) $ (-660 |#3|)) 121 T ELT)) (-4226 (($ $) 290 T ELT)) (-3583 (((-114) $ $) 276 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4184 (($ $ $) 235 (|has| |#1| (-569)) ELT)) (-3565 (((-660 $) $ $) 230 (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 110 (|has| |#1| (-928)) ELT)) (-4204 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 113 (|has| |#1| (-928)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1058 (-558))) ELT) (((-3 |#3| #2#) $) 150 T ELT) (((-3 $ "failed") (-964 (-419 (-558)))) 250 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197)))) ELT) (((-3 $ "failed") (-964 (-558))) 247 (-3956 (-12 (-2958 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-630 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197))))) ELT) (((-3 $ "failed") (-964 |#1|)) 244 (-3956 (-12 (-2958 (|has| |#1| (-38 (-419 (-558))))) (-2958 (|has| |#1| (-38 (-558)))) (|has| |#3| (-630 (-1197)))) (-12 (-2958 (|has| |#1| (-557))) (-2958 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-630 (-1197)))) (-12 (-2958 (|has| |#1| (-1011 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197))))) ELT)) (-3573 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1058 (-558))) ELT) ((|#3| $) 151 T ELT) (($ (-964 (-419 (-558)))) 249 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197)))) ELT) (($ (-964 (-558))) 246 (-3956 (-12 (-2958 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-630 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197))))) ELT) (($ (-964 |#1|)) 243 (-3956 (-12 (-2958 (|has| |#1| (-38 (-419 (-558))))) (-2958 (|has| |#1| (-38 (-558)))) (|has| |#3| (-630 (-1197)))) (-12 (-2958 (|has| |#1| (-557))) (-2958 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-630 (-1197)))) (-12 (-2958 (|has| |#1| (-1011 (-558)))) (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197))))) ELT)) (-4185 (($ $ $ |#3|) 118 (|has| |#1| (-175)) ELT) (($ $ $) 231 (|has| |#1| (-569)) ELT)) (-4388 (($ $) 168 T ELT) (($ $ |#3|) 285 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 146 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 145 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 144 T ELT) (((-708 |#1|) (-708 $)) 143 T ELT)) (-4123 (((-114) $ $) 275 T ELT) (((-114) $ (-660 $)) 274 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3589 (((-114) $) 283 T ELT)) (-4181 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 255 T ELT)) (-3560 (($ $) 224 (|has| |#1| (-464)) ELT)) (-3922 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ |#3|) 115 (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) 119 T ELT)) (-4152 (((-114) $) 106 (|has| |#1| (-928)) ELT)) (-3571 (($ $) 240 (|has| |#1| (-569)) ELT)) (-3572 (($ $) 241 (|has| |#1| (-569)) ELT)) (-3582 (($ $ $) 267 T ELT) (($ $ $ |#3|) 265 T ELT)) (-3581 (($ $ $) 266 T ELT) (($ $ $ |#3|) 264 T ELT)) (-1803 (($ $ |#1| |#2| $) 186 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 94 (-12 (|has| |#3| (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 93 (-12 (|has| |#3| (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-2640 (((-114) $) 40 T ELT)) (-2648 (((-790) $) 183 T ELT)) (-4124 (((-114) $ $) 269 T ELT) (((-114) $ (-660 $)) 268 T ELT)) (-3562 (($ $ $ $ $) 226 (|has| |#1| (-569)) ELT)) (-3597 ((|#3| $) 294 T ELT)) (-3486 (($ (-1191 |#1|) |#3|) 127 T ELT) (($ (-1191 $) |#3|) 126 T ELT)) (-3221 (((-660 $) $) 136 T ELT)) (-4366 (((-114) $) 166 T ELT)) (-3293 (($ |#1| |#2|) 167 T ELT) (($ $ |#3| (-790)) 129 T ELT) (($ $ (-660 |#3|) (-660 (-790))) 128 T ELT)) (-3576 (($ $ $) 254 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#3|) 130 T ELT)) (-3590 (((-114) $) 284 T ELT)) (-3220 ((|#2| $) 184 T ELT) (((-790) $ |#3|) 132 T ELT) (((-660 (-790)) $ (-660 |#3|)) 131 T ELT)) (-3596 (((-790) $) 293 T ELT)) (-1804 (($ (-1 |#2| |#2|) $) 185 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-3484 (((-3 |#3| #3="failed") $) 133 T ELT)) (-3557 (($ $) 221 (|has| |#1| (-464)) ELT)) (-3558 (($ $) 222 (|has| |#1| (-464)) ELT)) (-3585 (((-660 $) $) 279 T ELT)) (-3588 (($ $) 282 T ELT)) (-3559 (($ $) 223 (|has| |#1| (-464)) ELT)) (-3586 (((-660 $) $) 280 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 148 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 147 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 142 T ELT) (((-708 |#1|) (-1287 $)) 141 T ELT)) (-3587 (($ $) 281 T ELT)) (-3294 (($ $) 163 T ELT)) (-3591 ((|#1| $) 162 T ELT) (($ $ |#3|) 286 T ELT)) (-2101 (($ (-660 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3575 (((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3900 (-790))) $ $) 253 T ELT)) (-3577 (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $) 257 T ELT) (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $ |#3|) 256 T ELT)) (-3578 (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $) 259 T ELT) (((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $ |#3|) 258 T ELT)) (-3580 (($ $ $) 263 T ELT) (($ $ $ |#3|) 261 T ELT)) (-3579 (($ $ $) 262 T ELT) (($ $ $ |#3|) 260 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3607 (($ $ $) 229 (|has| |#1| (-569)) ELT)) (-3593 (((-660 $) $) 288 T ELT)) (-3223 (((-3 (-660 $) #3#) $) 124 T ELT)) (-3222 (((-3 (-660 $) #3#) $) 125 T ELT)) (-3224 (((-3 (-2 (|:| |var| |#3|) (|:| -2631 (-790))) #3#) $) 123 T ELT)) (-4120 (((-114) $ $) 271 T ELT) (((-114) $ (-660 $)) 270 T ELT)) (-4115 (($ $ $) 251 T ELT)) (-3865 (($ $) 292 T ELT)) (-4128 (((-114) $ $) 277 T ELT)) (-4121 (((-114) $ $) 273 T ELT) (((-114) $ (-660 $)) 272 T ELT)) (-4116 (($ $ $) 252 T ELT)) (-3595 (($ $) 291 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3566 (((-2 (|:| -3561 $) (|:| |coef2| $)) $ $) 232 (|has| |#1| (-569)) ELT)) (-3567 (((-2 (|:| -3561 $) (|:| |coef1| $)) $ $) 233 (|has| |#1| (-569)) ELT)) (-2004 (((-114) $) 180 T ELT)) (-2003 ((|#1| $) 181 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 105 (|has| |#1| (-464)) ELT)) (-3561 ((|#1| |#1| $) 225 (|has| |#1| (-464)) ELT) (($ (-660 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 112 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 111 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) 109 (|has| |#1| (-928)) ELT)) (-3568 (((-2 (|:| -3561 $) (|:| |coef1| $) (|:| |coef2| $)) $ $) 234 (|has| |#1| (-569)) ELT)) (-3885 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3569 (($ $ |#1|) 238 (|has| |#1| (-569)) ELT) (($ $ $) 236 (|has| |#1| (-569)) ELT)) (-3570 (($ $ |#1|) 239 (|has| |#1| (-569)) ELT) (($ $ $) 237 (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-660 $) (-660 $)) 156 T ELT) (($ $ |#3| |#1|) 155 T ELT) (($ $ (-660 |#3|) (-660 |#1|)) 154 T ELT) (($ $ |#3| $) 153 T ELT) (($ $ (-660 |#3|) (-660 $)) 152 T ELT)) (-4186 (($ $ |#3|) 117 (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 |#3|) (-660 (-790))) 49 T ELT) (($ $ |#3| (-790)) 48 T ELT) (($ $ (-660 |#3|)) 47 T ELT) (($ $ |#3|) 45 T ELT)) (-4377 ((|#2| $) 164 T ELT) (((-790) $ |#3|) 140 T ELT) (((-660 (-790)) $ (-660 |#3|)) 139 T ELT)) (-3594 (($ $) 289 T ELT)) (-3592 (($ $) 287 T ELT)) (-4401 (((-904 (-391)) $) 92 (-12 (|has| |#3| (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) 91 (-12 (|has| |#3| (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) 90 (-12 (|has| |#3| (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT) (($ (-964 (-419 (-558)))) 248 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197)))) ELT) (($ (-964 (-558))) 245 (-3956 (-12 (-2958 (|has| |#1| (-38 (-419 (-558))))) (|has| |#1| (-38 (-558))) (|has| |#3| (-630 (-1197)))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#3| (-630 (-1197))))) ELT) (($ (-964 |#1|)) 242 (|has| |#3| (-630 (-1197))) ELT) (((-1179) $) 220 (-12 (|has| |#1| (-1058 (-558))) (|has| |#3| (-630 (-1197)))) ELT) (((-964 |#1|) $) 219 (|has| |#3| (-630 (-1197))) ELT)) (-3217 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ |#3|) 116 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 114 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ |#3|) 149 T ELT) (((-964 |#1|) $) 218 (|has| |#3| (-630 (-1197))) ELT) (($ (-419 (-558))) 88 (-3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) 182 T ELT)) (-4106 ((|#1| $ |#2|) 169 T ELT) (($ $ |#3| (-790)) 138 T ELT) (($ $ (-660 |#3|) (-660 (-790))) 137 T ELT)) (-3102 (((-710 $) $) 89 (-3956 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 37 T CONST)) (-1802 (($ $ $ (-790)) 187 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3584 (((-3 (-114) "failed") $ $) 278 T ELT)) (-3064 (($) 39 T CONST)) (-3563 (($ $ $ $ (-790)) 227 (|has| |#1| (-569)) ELT)) (-3564 (($ $ $ (-790)) 228 (|has| |#1| (-569)) ELT)) (-3069 (($ $ (-660 |#3|) (-660 (-790))) 52 T ELT) (($ $ |#3| (-790)) 51 T ELT) (($ $ (-660 |#3|)) 50 T ELT) (($ $ |#3|) 46 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1085 |#1| |#2| |#3|) (-142) (-1069) (-814) (-860)) (T -1085)) +((-3597 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3596 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-790)))) (-3865 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3595 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-4226 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3594 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3593 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-3592 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3591 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-4388 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3590 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-3589 (*1 *2 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-3588 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3587 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3586 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-3585 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-3584 (*1 *2 *1 *1) (|partial| -12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-4128 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-3583 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-4123 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-4123 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) (-4121 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-4121 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) (-4120 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-4120 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) (-4124 (*1 *2 *1 *1) (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) (-4124 (*1 *2 *1 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) (-3582 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3581 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3582 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3581 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3580 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3579 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3580 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3579 (*1 *1 *1 *1 *2) (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) (-3578 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -3302 *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3578 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -3302 *1))) (-4 *1 (-1085 *4 *5 *3)))) (-3577 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3577 (*1 *2 *1 *1 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1085 *4 *5 *3)))) (-4181 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3576 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3575 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3900 (-790)))) (-4 *1 (-1085 *3 *4 *5)))) (-4116 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-4115 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) (-3574 (*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-419 (-558)))) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)))) (-3573 (*1 *1 *2) (-12 (-5 *2 (-964 (-419 (-558)))) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-964 (-419 (-558)))) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)))) (-3574 (*1 *1 *2) (|partial| -3956 (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))))) (-3573 (*1 *1 *2) (-3956 (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))))) (-4401 (*1 *1 *2) (-3956 (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))))) (-3574 (*1 *1 *2) (|partial| -3956 (-12 (-5 *2 (-964 *3)) (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-2958 (-4 *3 (-38 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 *3)) (-12 (-2958 (-4 *3 (-557))) (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 *3)) (-12 (-2958 (-4 *3 (-1011 (-558)))) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))))) (-3573 (*1 *1 *2) (-3956 (-12 (-5 *2 (-964 *3)) (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-2958 (-4 *3 (-38 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 *3)) (-12 (-2958 (-4 *3 (-557))) (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) (-12 (-5 *2 (-964 *3)) (-12 (-2958 (-4 *3 (-1011 (-558)))) (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-964 *3)) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *5 (-630 (-1197))) (-4 *4 (-814)) (-4 *5 (-860)))) (-3572 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3571 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3570 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3569 (*1 *1 *1 *2) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3570 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3569 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-4184 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3568 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -3561 *1) (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3567 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -3561 *1) (|:| |coef1| *1))) (-4 *1 (-1085 *3 *4 *5)))) (-3566 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-2 (|:| -3561 *1) (|:| |coef2| *1))) (-4 *1 (-1085 *3 *4 *5)))) (-4185 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3565 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1085 *3 *4 *5)))) (-3607 (*1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3564 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *3 (-569)))) (-3563 (*1 *1 *1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *3 (-569)))) (-3562 (*1 *1 *1 *1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) (-3561 (*1 *2 *2 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) (-3560 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) (-3559 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) (-3558 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) (-3557 (*1 *1 *1) (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464))))) +(-13 (-968 |t#1| |t#2| |t#3|) (-10 -8 (-15 -3597 (|t#3| $)) (-15 -3596 ((-790) $)) (-15 -3865 ($ $)) (-15 -3595 ($ $)) (-15 -4226 ($ $)) (-15 -3594 ($ $)) (-15 -3593 ((-660 $) $)) (-15 -3592 ($ $)) (-15 -3591 ($ $ |t#3|)) (-15 -4388 ($ $ |t#3|)) (-15 -3590 ((-114) $)) (-15 -3589 ((-114) $)) (-15 -3588 ($ $)) (-15 -3587 ($ $)) (-15 -3586 ((-660 $) $)) (-15 -3585 ((-660 $) $)) (-15 -3584 ((-3 (-114) "failed") $ $)) (-15 -4128 ((-114) $ $)) (-15 -3583 ((-114) $ $)) (-15 -4123 ((-114) $ $)) (-15 -4123 ((-114) $ (-660 $))) (-15 -4121 ((-114) $ $)) (-15 -4121 ((-114) $ (-660 $))) (-15 -4120 ((-114) $ $)) (-15 -4120 ((-114) $ (-660 $))) (-15 -4124 ((-114) $ $)) (-15 -4124 ((-114) $ (-660 $))) (-15 -3582 ($ $ $)) (-15 -3581 ($ $ $)) (-15 -3582 ($ $ $ |t#3|)) (-15 -3581 ($ $ $ |t#3|)) (-15 -3580 ($ $ $)) (-15 -3579 ($ $ $)) (-15 -3580 ($ $ $ |t#3|)) (-15 -3579 ($ $ $ |t#3|)) (-15 -3578 ((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $)) (-15 -3578 ((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -3302 $)) $ $ |t#3|)) (-15 -3577 ((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -3577 ((-2 (|:| -4383 $) (|:| |gap| (-790)) (|:| -2183 $) (|:| -3302 $)) $ $ |t#3|)) (-15 -4181 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -3576 ($ $ $)) (-15 -3575 ((-2 (|:| |polnum| $) (|:| |polden| $) (|:| -3900 (-790))) $ $)) (-15 -4116 ($ $ $)) (-15 -4115 ($ $ $)) (IF (|has| |t#3| (-630 (-1197))) (PROGN (-6 (-629 (-964 |t#1|))) (-6 (-630 (-964 |t#1|))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -3574 ((-3 $ "failed") (-964 (-419 (-558))))) (-15 -3573 ($ (-964 (-419 (-558))))) (-15 -4401 ($ (-964 (-419 (-558))))) (-15 -3574 ((-3 $ "failed") (-964 (-558)))) (-15 -3573 ($ (-964 (-558)))) (-15 -4401 ($ (-964 (-558)))) (IF (|has| |t#1| (-1011 (-558))) |%noBranch| (PROGN (-15 -3574 ((-3 $ "failed") (-964 |t#1|))) (-15 -3573 ($ (-964 |t#1|)))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) (IF (|has| |t#1| (-38 (-419 (-558)))) |%noBranch| (PROGN (-15 -3574 ((-3 $ "failed") (-964 (-558)))) (-15 -3573 ($ (-964 (-558)))) (-15 -4401 ($ (-964 (-558)))) (IF (|has| |t#1| (-557)) |%noBranch| (PROGN (-15 -3574 ((-3 $ "failed") (-964 |t#1|))) (-15 -3573 ($ (-964 |t#1|))))))) |%noBranch|) (IF (|has| |t#1| (-38 (-558))) |%noBranch| (IF (|has| |t#1| (-38 (-419 (-558)))) |%noBranch| (PROGN (-15 -3574 ((-3 $ "failed") (-964 |t#1|))) (-15 -3573 ($ (-964 |t#1|)))))) (-15 -4401 ($ (-964 |t#1|))) (IF (|has| |t#1| (-1058 (-558))) (-6 (-630 (-1179))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-15 -3572 ($ $)) (-15 -3571 ($ $)) (-15 -3570 ($ $ |t#1|)) (-15 -3569 ($ $ |t#1|)) (-15 -3570 ($ $ $)) (-15 -3569 ($ $ $)) (-15 -4184 ($ $ $)) (-15 -3568 ((-2 (|:| -3561 $) (|:| |coef1| $) (|:| |coef2| $)) $ $)) (-15 -3567 ((-2 (|:| -3561 $) (|:| |coef1| $)) $ $)) (-15 -3566 ((-2 (|:| -3561 $) (|:| |coef2| $)) $ $)) (-15 -4185 ($ $ $)) (-15 -3565 ((-660 $) $ $)) (-15 -3607 ($ $ $)) (-15 -3564 ($ $ $ (-790))) (-15 -3563 ($ $ $ $ (-790))) (-15 -3562 ($ $ $ $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (PROGN (-15 -3561 (|t#1| |t#1| $)) (-15 -3560 ($ $)) (-15 -3559 ($ $)) (-15 -3558 ($ $)) (-15 -3557 ($ $))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 |#3|) . T) ((-632 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-629 (-876)) . T) ((-629 (-964 |#1|)) |has| |#3| (-630 (-1197))) ((-175) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-630 (-547)) -12 (|has| |#1| (-630 (-547))) (|has| |#3| (-630 (-547)))) ((-630 (-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#3| (-630 (-904 (-391))))) ((-630 (-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#3| (-630 (-904 (-558))))) ((-630 (-964 |#1|)) |has| |#3| (-630 (-1197))) ((-630 (-1179)) -12 (|has| |#1| (-1058 (-558))) (|has| |#3| (-630 (-1197)))) ((-302) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-321 $) . T) ((-338 |#1| |#2|) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3956 (|has| |#1| (-928)) (|has| |#1| (-464))) ((-526 |#3| |#1|) . T) ((-526 |#3| $) . T) ((-526 $ $) . T) ((-569) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464))) ((-745) . T) ((-910 $ |#3|) . T) ((-916 |#3|) . T) ((-918 |#3|) . T) ((-900 (-391)) -12 (|has| |#1| (-900 (-391))) (|has| |#3| (-900 (-391)))) ((-900 (-558)) -12 (|has| |#1| (-900 (-558))) (|has| |#3| (-900 (-558)))) ((-968 |#1| |#2| |#3|) . T) ((-928) |has| |#1| (-928)) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 |#1|) . T) ((-1058 |#3|) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) |has| |#1| (-928))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3598 (((-660 (-1155)) $) 18 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 27 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-1155) $) 20 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1086) (-13 (-1103) (-10 -8 (-15 -3598 ((-660 (-1155)) $)) (-15 -3650 ((-1155) $))))) (T -1086)) +((-3598 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-1086)))) (-3650 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1086))))) +((-3605 (((-114) |#3| $) 15 T ELT)) (-3600 (((-3 $ #1="failed") |#3| (-937)) 29 T ELT)) (-3886 (((-3 |#3| #1#) |#3| $) 45 T ELT)) (-3603 (((-114) |#3| $) 19 T ELT)) (-3604 (((-114) |#3| $) 17 T ELT))) +(((-1087 |#1| |#2| |#3|) (-10 -7 (-15 -3600 ((-3 |#1| #1="failed") |#3| (-937))) (-15 -3886 ((-3 |#3| #1#) |#3| |#1|)) (-15 -3603 ((-114) |#3| |#1|)) (-15 -3604 ((-114) |#3| |#1|)) (-15 -3605 ((-114) |#3| |#1|))) (-1088 |#2| |#3|) (-13 (-859) (-376)) (-1263 |#2|)) (T -1087)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) |#2| $) 25 T ELT)) (-4052 (((-558) |#2| $) 26 T ELT)) (-3600 (((-3 $ "failed") |#2| (-937)) 19 T ELT)) (-3599 ((|#1| |#2| $ |#1|) 17 T ELT)) (-3886 (((-3 |#2| "failed") |#2| $) 22 T ELT)) (-3603 (((-114) |#2| $) 23 T ELT)) (-3604 (((-114) |#2| $) 24 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3602 ((|#2| $) 21 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-4199 ((|#1| |#2| $ |#1|) 18 T ELT)) (-3601 (((-660 $) |#2|) 20 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-1088 |#1| |#2|) (-142) (-13 (-859) (-376)) (-1263 |t#1|)) (T -1088)) +((-4052 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-558)))) (-3605 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-114)))) (-3604 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-114)))) (-3603 (*1 *2 *3 *1) (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-114)))) (-3886 (*1 *2 *2 *1) (|partial| -12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-859) (-376))) (-4 *2 (-1263 *3)))) (-3602 (*1 *2 *1) (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-859) (-376))) (-4 *2 (-1263 *3)))) (-3601 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-660 *1)) (-4 *1 (-1088 *4 *3)))) (-3600 (*1 *1 *2 *3) (|partial| -12 (-5 *3 (-937)) (-4 *4 (-13 (-859) (-376))) (-4 *1 (-1088 *4 *2)) (-4 *2 (-1263 *4)))) (-4199 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-859) (-376))) (-4 *3 (-1263 *2)))) (-3599 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-859) (-376))) (-4 *3 (-1263 *2))))) +(-13 (-1121) (-10 -8 (-15 -4052 ((-558) |t#2| $)) (-15 -3605 ((-114) |t#2| $)) (-15 -3604 ((-114) |t#2| $)) (-15 -3603 ((-114) |t#2| $)) (-15 -3886 ((-3 |t#2| "failed") |t#2| $)) (-15 -3602 (|t#2| $)) (-15 -3601 ((-660 $) |t#2|)) (-15 -3600 ((-3 $ "failed") |t#2| (-937))) (-15 -4199 (|t#1| |t#2| $ |t#1|)) (-15 -3599 (|t#1| |t#2| $ |t#1|)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-3855 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) (-790)) 114 T ELT)) (-3852 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790)) 63 T ELT)) (-3856 (((-1293) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-790)) 99 T ELT)) (-3850 (((-790) (-660 |#4|) (-660 |#5|)) 30 T ELT)) (-3853 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|) 66 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790)) 65 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790) (-114)) 67 T ELT)) (-3854 (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114) (-114) (-114) (-114)) 86 T ELT) (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114)) 87 T ELT)) (-4401 (((-1179) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) 92 T ELT)) (-3851 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-114)) 62 T ELT)) (-3849 (((-790) (-660 |#4|) (-660 |#5|)) 21 T ELT))) +(((-1089 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3849 ((-790) (-660 |#4|) (-660 |#5|))) (-15 -3850 ((-790) (-660 |#4|) (-660 |#5|))) (-15 -3851 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-114))) (-15 -3852 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790))) (-15 -3852 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|)) (-15 -3853 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790) (-114))) (-15 -3853 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790))) (-15 -3853 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|)) (-15 -3854 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114))) (-15 -3854 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3855 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) (-790))) (-15 -4401 ((-1179) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)))) (-15 -3856 ((-1293) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-790)))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1089)) +((-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *4 (-790)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-1293)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1179)) (-5 *1 (-1089 *4 *5 *6 *7 *8)))) (-3855 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-660 *11)) (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -1742 *11)))))) (-5 *6 (-790)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -1742 *11)))) (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1085 *7 *8 *9)) (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-814)) (-4 *9 (-860)) (-5 *1 (-1089 *7 *8 *9 *10 *11)))) (-3854 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-3853 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3853 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3853 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-790)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-814)) (-4 *9 (-860)) (-4 *3 (-1085 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1089 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) (-3852 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3851 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-790)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-790)) (-5 *1 (-1089 *5 *6 *7 *8 *9))))) +((-3614 (((-114) |#5| $) 26 T ELT)) (-3612 (((-114) |#5| $) 29 T ELT)) (-3615 (((-114) |#5| $) 18 T ELT) (((-114) $) 52 T ELT)) (-3655 (((-660 $) |#5| $) NIL T ELT) (((-660 $) (-660 |#5|) $) 94 T ELT) (((-660 $) (-660 |#5|) (-660 $)) 92 T ELT) (((-660 $) |#5| (-660 $)) 95 T ELT)) (-4198 (($ $ |#5|) NIL T ELT) (((-660 $) |#5| $) NIL T ELT) (((-660 $) |#5| (-660 $)) 73 T ELT) (((-660 $) (-660 |#5|) $) 75 T ELT) (((-660 $) (-660 |#5|) (-660 $)) 77 T ELT)) (-3606 (((-660 $) |#5| $) NIL T ELT) (((-660 $) |#5| (-660 $)) 64 T ELT) (((-660 $) (-660 |#5|) $) 69 T ELT) (((-660 $) (-660 |#5|) (-660 $)) 71 T ELT)) (-3613 (((-114) |#5| $) 32 T ELT))) +(((-1090 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4198 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -4198 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -4198 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -4198 ((-660 |#1|) |#5| |#1|)) (-15 -3606 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3606 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3606 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3606 ((-660 |#1|) |#5| |#1|)) (-15 -3655 ((-660 |#1|) |#5| (-660 |#1|))) (-15 -3655 ((-660 |#1|) (-660 |#5|) (-660 |#1|))) (-15 -3655 ((-660 |#1|) (-660 |#5|) |#1|)) (-15 -3655 ((-660 |#1|) |#5| |#1|)) (-15 -3612 ((-114) |#5| |#1|)) (-15 -3615 ((-114) |#1|)) (-15 -3613 ((-114) |#5| |#1|)) (-15 -3614 ((-114) |#5| |#1|)) (-15 -3615 ((-114) |#5| |#1|)) (-15 -4198 (|#1| |#1| |#5|))) (-1091 |#2| |#3| |#4| |#5|) (-464) (-814) (-860) (-1085 |#2| |#3| |#4|)) (T -1090)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) 90 T ELT)) (-4111 (((-660 $) (-660 |#4|)) 91 T ELT) (((-660 $) (-660 |#4|) (-114)) 118 T ELT)) (-3483 (((-660 |#3|) $) 37 T ELT)) (-3308 (((-114) $) 30 T ELT)) (-3299 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4117 ((|#4| |#4| $) 97 T ELT)) (-4204 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| $) 133 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4139 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4153 (($) 46 T CONST)) (-3304 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") (-660 |#4|)) 40 T ELT)) (-3573 (($ (-660 |#4|)) 39 T ELT)) (-4228 (((-3 $ #1#) $) 87 T ELT)) (-4114 ((|#4| |#4| $) 94 T ELT)) (-1466 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4112 ((|#4| |#4| $) 92 T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) 110 T ELT)) (-3614 (((-114) |#4| $) 143 T ELT)) (-3612 (((-114) |#4| $) 140 T ELT)) (-3615 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3289 (((-660 |#4|) $) 53 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3314 (((-660 |#3|) $) 36 T ELT)) (-3313 (((-114) |#3| $) 35 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3608 (((-3 |#4| (-660 $)) |#4| |#4| $) 135 T ELT)) (-3607 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| |#4| $) 134 T ELT)) (-4227 (((-3 |#4| #1#) $) 88 T ELT)) (-3609 (((-660 $) |#4| $) 136 T ELT)) (-3611 (((-3 (-114) (-660 $)) |#4| $) 139 T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3655 (((-660 $) |#4| $) 132 T ELT) (((-660 $) (-660 |#4|) $) 131 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 130 T ELT) (((-660 $) |#4| (-660 $)) 129 T ELT)) (-3859 (($ |#4| $) 124 T ELT) (($ (-660 |#4|) $) 123 T ELT)) (-4126 (((-660 |#4|) $) 112 T ELT)) (-4120 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4115 ((|#4| |#4| $) 95 T ELT)) (-4128 (((-114) $ $) 115 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4116 ((|#4| |#4| $) 96 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4230 (((-3 |#4| #1#) $) 89 T ELT)) (-1467 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4198 (($ $ |#4|) 82 T ELT) (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) 42 T ELT)) (-3822 (((-114) $) 45 T ELT)) (-3992 (($) 44 T ELT)) (-4377 (((-790) $) 111 T ELT)) (-2156 (((-790) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 43 T ELT)) (-4401 (((-547) $) 70 (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 61 T ELT)) (-3310 (($ $ |#3|) 32 T ELT)) (-3312 (($ $ |#3|) 34 T ELT)) (-4113 (($ $) 93 T ELT)) (-3311 (($ $ |#3|) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (((-660 |#4|) $) 41 T ELT)) (-4107 (((-790) $) 81 (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) 103 T ELT)) (-3606 (((-660 $) |#4| $) 128 T ELT) (((-660 $) |#4| (-660 $)) 127 T ELT) (((-660 $) (-660 |#4|) $) 126 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 125 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) 86 T ELT)) (-3613 (((-114) |#4| $) 142 T ELT)) (-4362 (((-114) |#3| $) 85 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 47 (|has| $ (-6 -4424)) ELT))) +(((-1091 |#1| |#2| |#3| |#4|) (-142) (-464) (-814) (-860) (-1085 |t#1| |t#2| |t#3|)) (T -1091)) +((-3615 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-3614 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-3613 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-3615 (*1 *2 *1) (-12 (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-3612 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-3611 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-3 (-114) (-660 *1))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3610 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *1)))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3610 (*1 *2 *3 *1) (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-3609 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3608 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-3 *3 (-660 *1))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3607 (*1 *2 *3 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *1)))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-4204 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *1)))) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3655 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3655 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) (-3655 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)))) (-3655 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)))) (-3606 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-3606 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)))) (-3606 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) (-3606 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)))) (-3859 (*1 *1 *2 *1) (-12 (-4 *1 (-1091 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-3859 (*1 *1 *2 *1) (-12 (-5 *2 (-660 *6)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)))) (-4198 (*1 *2 *3 *1) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) (-4198 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)))) (-4198 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) (-4198 (*1 *2 *3 *2) (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)))) (-4111 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *5 *6 *7 *8))))) +(-13 (-1232 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-15 -3615 ((-114) |t#4| $)) (-15 -3614 ((-114) |t#4| $)) (-15 -3613 ((-114) |t#4| $)) (-15 -3615 ((-114) $)) (-15 -3612 ((-114) |t#4| $)) (-15 -3611 ((-3 (-114) (-660 $)) |t#4| $)) (-15 -3610 ((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |t#4| $)) (-15 -3610 ((-114) |t#4| $)) (-15 -3609 ((-660 $) |t#4| $)) (-15 -3608 ((-3 |t#4| (-660 $)) |t#4| |t#4| $)) (-15 -3607 ((-660 (-2 (|:| |val| |t#4|) (|:| -1742 $))) |t#4| |t#4| $)) (-15 -4204 ((-660 (-2 (|:| |val| |t#4|) (|:| -1742 $))) |t#4| $)) (-15 -3655 ((-660 $) |t#4| $)) (-15 -3655 ((-660 $) (-660 |t#4|) $)) (-15 -3655 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -3655 ((-660 $) |t#4| (-660 $))) (-15 -3606 ((-660 $) |t#4| $)) (-15 -3606 ((-660 $) |t#4| (-660 $))) (-15 -3606 ((-660 $) (-660 |t#4|) $)) (-15 -3606 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -3859 ($ |t#4| $)) (-15 -3859 ($ (-660 |t#4|) $)) (-15 -4198 ((-660 $) |t#4| $)) (-15 -4198 ((-660 $) |t#4| (-660 $))) (-15 -4198 ((-660 $) (-660 |t#4|) $)) (-15 -4198 ((-660 $) (-660 |t#4|) (-660 $))) (-15 -4111 ((-660 $) (-660 |t#4|) (-114))))) +(((-34) . T) ((-102) . T) ((-629 (-660 |#4|)) . T) ((-629 (-876)) . T) ((-153 |#4|) . T) ((-630 (-547)) |has| |#4| (-630 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) +((-3622 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#5|) 86 T ELT)) (-3619 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|) 125 T ELT)) (-3621 (((-660 |#5|) |#4| |#5|) 74 T ELT)) (-3620 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3704 (((-1293)) 36 T ELT)) (-3702 (((-1293)) 25 T ELT)) (-3703 (((-1293) (-1179) (-1179) (-1179)) 32 T ELT)) (-3701 (((-1293) (-1179) (-1179) (-1179)) 21 T ELT)) (-3616 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#4| |#4| |#5|) 106 T ELT)) (-3617 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#3| (-114)) 117 T ELT) (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3618 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|) 112 T ELT))) +(((-1092 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3701 ((-1293) (-1179) (-1179) (-1179))) (-15 -3702 ((-1293))) (-15 -3703 ((-1293) (-1179) (-1179) (-1179))) (-15 -3704 ((-1293))) (-15 -3616 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#4| |#4| |#5|)) (-15 -3617 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3617 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#3| (-114))) (-15 -3618 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|)) (-15 -3619 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|)) (-15 -3620 ((-114) |#4| |#5|)) (-15 -3620 ((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|)) (-15 -3621 ((-660 |#5|) |#4| |#5|)) (-15 -3622 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#5|))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1092)) +((-3622 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3621 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3620 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3619 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3618 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3617 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *5 (-114)) (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *4 (-860)) (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -1742 *9)))) (-5 *1 (-1092 *6 *7 *4 *8 *9)))) (-3617 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1092 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3616 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3704 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3703 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1092 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3702 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3701 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1092 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3735 (((-1238) $) 13 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3623 (((-1155) $) 10 T ELT)) (-4375 (((-876) $) 20 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1093) (-13 (-1103) (-10 -8 (-15 -3623 ((-1155) $)) (-15 -3735 ((-1238) $))))) (T -1093)) +((-3623 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1093)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-1093))))) +((-3683 (((-114) $ $) 7 T ELT))) +(((-1094) (-13 (-1237) (-10 -8 (-15 -3683 ((-114) $ $))))) (T -1094)) +((-3683 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1094))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3626 (($ $ (-660 (-1197)) (-1 (-114) (-660 |#3|))) 34 T ELT)) (-3627 (($ |#3| |#3|) 23 T ELT) (($ |#3| |#3| (-660 (-1197))) 21 T ELT)) (-3947 ((|#3| $) 13 T ELT)) (-3574 (((-3 (-305 |#3|) "failed") $) 60 T ELT)) (-3573 (((-305 |#3|) $) NIL T ELT)) (-3624 (((-660 (-1197)) $) 16 T ELT)) (-3625 (((-904 |#1|) $) 11 T ELT)) (-3948 ((|#3| $) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 ((|#3| $ |#3|) 28 T ELT) ((|#3| $ |#3| (-937)) 41 T ELT)) (-4375 (((-876) $) 89 T ELT) (($ (-305 |#3|)) 22 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 38 T ELT))) +(((-1095 |#1| |#2| |#3|) (-13 (-1121) (-298 |#3| |#3|) (-1058 (-305 |#3|)) (-10 -8 (-15 -3627 ($ |#3| |#3|)) (-15 -3627 ($ |#3| |#3| (-660 (-1197)))) (-15 -3626 ($ $ (-660 (-1197)) (-1 (-114) (-660 |#3|)))) (-15 -3625 ((-904 |#1|) $)) (-15 -3948 (|#3| $)) (-15 -3947 (|#3| $)) (-15 -4229 (|#3| $ |#3| (-937))) (-15 -3624 ((-660 (-1197)) $)))) (-1121) (-13 (-1069) (-900 |#1|) (-630 (-904 |#1|))) (-13 (-433 |#2|) (-900 |#1|) (-630 (-904 |#1|)))) (T -1095)) +((-3627 (*1 *1 *2 *2) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *2 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))))) (-3627 (*1 *1 *2 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-4 *4 (-1121)) (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))))) (-3626 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-1 (-114) (-660 *6))) (-4 *6 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))) (-4 *4 (-1121)) (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1095 *4 *5 *6)))) (-3625 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 *2))) (-5 *2 (-904 *3)) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-900 *3) (-630 *2))))) (-3948 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))))) (-3947 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))) (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))))) (-4229 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-1121)) (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1095 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))))) (-3624 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) (-5 *2 (-660 (-1197))) (-5 *1 (-1095 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-900 *3) (-630 (-904 *3))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3969 (((-1197) $) 8 T ELT)) (-3659 (((-1179) $) 17 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 11 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 14 T ELT))) +(((-1096 |#1|) (-13 (-1121) (-10 -8 (-15 -3969 ((-1197) $)))) (-1197)) (T -1096)) +((-3969 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3629 (($ (-660 (-1095 |#1| |#2| |#3|))) 14 T ELT)) (-3628 (((-660 (-1095 |#1| |#2| |#3|)) $) 21 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 ((|#3| $ |#3|) 24 T ELT) ((|#3| $ |#3| (-937)) 27 T ELT)) (-4375 (((-876) $) 17 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 20 T ELT))) +(((-1097 |#1| |#2| |#3|) (-13 (-1121) (-298 |#3| |#3|) (-10 -8 (-15 -3629 ($ (-660 (-1095 |#1| |#2| |#3|)))) (-15 -3628 ((-660 (-1095 |#1| |#2| |#3|)) $)) (-15 -4229 (|#3| $ |#3| (-937))))) (-1121) (-13 (-1069) (-900 |#1|) (-630 (-904 |#1|))) (-13 (-433 |#2|) (-900 |#1|) (-630 (-904 |#1|)))) (T -1097)) +((-3629 (*1 *1 *2) (-12 (-5 *2 (-660 (-1095 *3 *4 *5))) (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) (-4 *5 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))) (-5 *1 (-1097 *3 *4 *5)))) (-3628 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) (-5 *2 (-660 (-1095 *3 *4 *5))) (-5 *1 (-1097 *3 *4 *5)) (-4 *5 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))))) (-4229 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-937)) (-4 *4 (-1121)) (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1097 *4 *5 *2)) (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4))))))) +((-3630 (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114) (-114)) 88 T ELT) (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|))) 92 T ELT) (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114)) 90 T ELT))) +(((-1098 |#1| |#2|) (-10 -7 (-15 -3630 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114))) (-15 -3630 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)))) (-15 -3630 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114) (-114)))) (-13 (-319) (-149)) (-660 (-1197))) (T -1098)) +((-3630 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) (-5 *1 (-1098 *5 *6)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))))) (-3630 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *4)) (|:| -3641 (-660 (-964 *4)))))) (-5 *1 (-1098 *4 *5)) (-5 *3 (-660 (-964 *4))) (-14 *5 (-660 (-1197))))) (-3630 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) (-5 *1 (-1098 *5 *6)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 136 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-376)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-376)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-1989 (((-708 |#1|) (-1287 $)) NIL T ELT) (((-708 |#1|)) 121 T ELT)) (-3749 ((|#1| $) 125 T ELT)) (-1877 (((-1209 (-937) (-790)) (-558)) NIL (|has| |#1| (-363)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3537 (((-790)) 43 (|has| |#1| (-381)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-1999 (($ (-1287 |#1|) (-1287 $)) NIL T ELT) (($ (-1287 |#1|)) 46 T ELT)) (-1875 (((-3 "prime" "polynomial" "normal" "cyclic")) NIL (|has| |#1| (-363)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1988 (((-708 |#1|) $ (-1287 $)) NIL T ELT) (((-708 |#1|) $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 113 T ELT) (((-708 |#1|) (-708 $)) 108 T ELT)) (-4271 (($ |#2|) 65 T ELT) (((-3 $ #1#) (-419 |#2|)) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3510 (((-937)) 84 T ELT)) (-3394 (($) 47 (|has| |#1| (-381)) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-3233 (($) NIL (|has| |#1| (-363)) ELT)) (-1882 (((-114) $) NIL (|has| |#1| (-363)) ELT)) (-1973 (($ $ (-790)) NIL (|has| |#1| (-363)) ELT) (($ $) NIL (|has| |#1| (-363)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-4201 (((-937) $) NIL (|has| |#1| (-363)) ELT) (((-844 (-937)) $) NIL (|has| |#1| (-363)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3533 ((|#1| $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-363)) ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-2223 ((|#2| $) 91 (|has| |#1| (-376)) ELT)) (-2219 (((-937) $) 145 (|has| |#1| (-381)) ELT)) (-3479 ((|#2| $) 62 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3865 (($) NIL (|has| |#1| (-363)) CONST)) (-2630 (($ (-937)) 135 (|has| |#1| (-381)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2639 (($) 127 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-1878 (((-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558))))) NIL (|has| |#1| (-363)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4186 ((|#1| (-1287 $)) NIL T ELT) ((|#1|) 117 T ELT)) (-1974 (((-790) $) NIL (|has| |#1| (-363)) ELT) (((-3 (-790) #1#) $ $) NIL (|has| |#1| (-363)) ELT)) (-4187 (($ $ (-790)) NIL (-3956 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-3956 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL (|has| |#1| (-376)) ELT)) (-2638 (((-708 |#1|) (-1287 $) (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT)) (-3602 ((|#2|) 81 T ELT)) (-1876 (($) NIL (|has| |#1| (-363)) ELT)) (-3641 (((-1287 |#1|) $ (-1287 $)) 96 T ELT) (((-708 |#1|) (-1287 $) (-1287 $)) NIL T ELT) (((-1287 |#1|) $) 75 T ELT) (((-708 |#1|) (-1287 $)) 92 T ELT)) (-4401 (((-1287 |#1|) $) NIL T ELT) (($ (-1287 |#1|)) NIL T ELT) ((|#2| $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (|has| |#1| (-363)) ELT)) (-4375 (((-876) $) 61 T ELT) (($ (-558)) 56 T ELT) (($ |#1|) 58 T ELT) (($ $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-376)) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-3102 (($ $) NIL (|has| |#1| (-363)) ELT) (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-2837 ((|#2| $) 89 T ELT)) (-3527 (((-790)) 83 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2221 (((-1287 $)) 88 T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3058 (($) 32 T CONST)) (-3064 (($) 19 T CONST)) (-3069 (($ $ (-790)) NIL (-3956 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $) NIL (-3956 (-12 (|has| |#1| (-239)) (|has| |#1| (-376))) (|has| |#1| (-363))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#1| (-376)) (|has| |#1| (-918 (-1197)))) ELT) (($ $ (-1 |#1| |#1|)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL (|has| |#1| (-376)) ELT)) (-3453 (((-114) $ $) 67 T ELT)) (-4378 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) 71 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 69 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 54 T ELT) (($ $ $) 73 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 51 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-376)) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-376)) ELT))) +(((-1099 |#1| |#2| |#3|) (-743 |#1| |#2|) (-175) (-1263 |#1|) |#2|) (T -1099)) +NIL +((-4161 (((-417 |#3|) |#3|) 18 T ELT))) +(((-1100 |#1| |#2| |#3|) (-10 -7 (-15 -4161 ((-417 |#3|) |#3|))) (-1263 (-419 (-558))) (-13 (-376) (-149) (-743 (-419 (-558)) |#1|)) (-1263 |#2|)) (T -1100)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-558)))) (-4 *5 (-13 (-376) (-149) (-743 (-419 (-558)) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1263 *5))))) +((-4161 (((-417 |#3|) |#3|) 19 T ELT))) +(((-1101 |#1| |#2| |#3|) (-10 -7 (-15 -4161 ((-417 |#3|) |#3|))) (-1263 (-419 (-964 (-558)))) (-13 (-376) (-149) (-743 (-419 (-964 (-558))) |#1|)) (-1263 |#2|)) (T -1101)) +((-4161 (*1 *2 *3) (-12 (-4 *4 (-1263 (-419 (-964 (-558))))) (-4 *5 (-13 (-376) (-149) (-743 (-419 (-964 (-558))) *4))) (-5 *2 (-417 *3)) (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1263 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2929 (($ $ $) 16 T ELT)) (-3257 (($ $ $) 17 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3631 (($) 6 T ELT)) (-4401 (((-1197) $) 20 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 15 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 9 T ELT))) +(((-1102) (-13 (-860) (-630 (-1197)) (-10 -8 (-15 -3631 ($))))) (T -1102)) +((-3631 (*1 *1) (-5 *1 (-1102)))) +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-1202)) 20 T ELT) (((-1202) $) 19 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-1103) (-142)) (T -1103)) NIL (-13 (-93)) -(((-93) . T) ((-102) . T) ((-633 (-1203)) . T) ((-630 (-877)) . T) ((-630 (-1203)) . T) ((-502 (-1203)) . T) ((-1122) . T) ((-1238) . T)) -((-3635 ((|#1| |#1| (-1 (-558) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-3633 (((-1294)) 21 T ELT)) (-3634 (((-661 |#1|)) 13 T ELT))) -(((-1105 |#1|) (-10 -7 (-15 -3633 ((-1294))) (-15 -3634 ((-661 |#1|))) (-15 -3635 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3635 (|#1| |#1| (-1 (-558) |#1| |#1|)))) (-134)) (T -1105)) -((-3635 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1105 *2)))) (-3635 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1105 *2)))) (-3634 (*1 *2) (-12 (-5 *2 (-661 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-134)))) (-3633 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1105 *3)) (-4 *3 (-134))))) -((-3638 (($ (-109) $) 20 T ELT)) (-3639 (((-711 (-109)) (-518) $) 19 T ELT)) (-3993 (($) 7 T ELT)) (-3637 (($) 21 T ELT)) (-3636 (($) 22 T ELT)) (-3640 (((-661 (-178)) $) 10 T ELT)) (-4376 (((-877) $) 25 T ELT))) -(((-1106) (-13 (-630 (-877)) (-10 -8 (-15 -3993 ($)) (-15 -3640 ((-661 (-178)) $)) (-15 -3639 ((-711 (-109)) (-518) $)) (-15 -3638 ($ (-109) $)) (-15 -3637 ($)) (-15 -3636 ($))))) (T -1106)) -((-3993 (*1 *1) (-5 *1 (-1106))) (-3640 (*1 *2 *1) (-12 (-5 *2 (-661 (-178))) (-5 *1 (-1106)))) (-3639 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-1106)))) (-3638 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106)))) (-3637 (*1 *1) (-5 *1 (-1106))) (-3636 (*1 *1) (-5 *1 (-1106)))) -((-3641 (((-1288 (-709 |#1|)) (-661 (-709 |#1|))) 45 T ELT) (((-1288 (-709 (-965 |#1|))) (-661 (-1198)) (-709 (-965 |#1|))) 75 T ELT) (((-1288 (-709 (-419 (-965 |#1|)))) (-661 (-1198)) (-709 (-419 (-965 |#1|)))) 92 T ELT)) (-3642 (((-1288 |#1|) (-709 |#1|) (-661 (-709 |#1|))) 39 T ELT))) -(((-1107 |#1|) (-10 -7 (-15 -3641 ((-1288 (-709 (-419 (-965 |#1|)))) (-661 (-1198)) (-709 (-419 (-965 |#1|))))) (-15 -3641 ((-1288 (-709 (-965 |#1|))) (-661 (-1198)) (-709 (-965 |#1|)))) (-15 -3641 ((-1288 (-709 |#1|)) (-661 (-709 |#1|)))) (-15 -3642 ((-1288 |#1|) (-709 |#1|) (-661 (-709 |#1|))))) (-376)) (T -1107)) -((-3642 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-709 *5))) (-5 *3 (-709 *5)) (-4 *5 (-376)) (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5)))) (-3641 (*1 *2 *3) (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-5 *2 (-1288 (-709 *4))) (-5 *1 (-1107 *4)))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1198))) (-4 *5 (-376)) (-5 *2 (-1288 (-709 (-965 *5)))) (-5 *1 (-1107 *5)) (-5 *4 (-709 (-965 *5))))) (-3641 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-1198))) (-4 *5 (-376)) (-5 *2 (-1288 (-709 (-419 (-965 *5))))) (-5 *1 (-1107 *5)) (-5 *4 (-709 (-419 (-965 *5))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1620 (((-661 (-791)) $) NIL T ELT) (((-661 (-791)) $ (-1198)) NIL T ELT)) (-1654 (((-791) $) NIL T ELT) (((-791) $ (-1198)) NIL T ELT)) (-3484 (((-661 (-1109 (-1198))) $) NIL T ELT)) (-3486 (((-1192 $) $ (-1109 (-1198))) NIL T ELT) (((-1192 |#1|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1109 (-1198)))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-1616 (($ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1109 (-1198)) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL T ELT) (((-3 (-1146 |#1| (-1198)) #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-1109 (-1198)) $) NIL T ELT) (((-1198) $) NIL T ELT) (((-1146 |#1| (-1198)) $) NIL T ELT)) (-4186 (($ $ $ (-1109 (-1198))) NIL (|has| |#1| (-175)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1109 (-1198))) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-543 (-1109 (-1198))) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1109 (-1198)) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1109 (-1198)) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-4202 (((-791) $ (-1198)) NIL T ELT) (((-791) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3487 (($ (-1192 |#1|) (-1109 (-1198))) NIL T ELT) (($ (-1192 $) (-1109 (-1198))) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-543 (-1109 (-1198)))) NIL T ELT) (($ $ (-1109 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-1109 (-1198))) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1109 (-1198))) NIL T ELT)) (-3221 (((-543 (-1109 (-1198))) $) NIL T ELT) (((-791) $ (-1109 (-1198))) NIL T ELT) (((-661 (-791)) $ (-661 (-1109 (-1198)))) NIL T ELT)) (-1805 (($ (-1 (-543 (-1109 (-1198))) (-543 (-1109 (-1198)))) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1655 (((-1 $ (-791)) (-1198)) NIL T ELT) (((-1 $ (-791)) $) NIL (|has| |#1| (-240)) ELT)) (-3485 (((-3 (-1109 (-1198)) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-1618 (((-1109 (-1198)) $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1619 (((-114) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1109 (-1198))) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-1617 (($ $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1109 (-1198)) |#1|) NIL T ELT) (($ $ (-661 (-1109 (-1198))) (-661 |#1|)) NIL T ELT) (($ $ (-1109 (-1198)) $) NIL T ELT) (($ $ (-661 (-1109 (-1198))) (-661 $)) NIL T ELT) (($ $ (-1198) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1198)) (-661 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-661 (-1198)) (-661 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4187 (($ $ (-1109 (-1198))) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-1109 (-1198))) (-661 (-791))) NIL T ELT) (($ $ (-1109 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-1109 (-1198)))) NIL T ELT) (($ $ (-1109 (-1198))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-1621 (((-661 (-1198)) $) NIL T ELT)) (-4378 (((-543 (-1109 (-1198))) $) NIL T ELT) (((-791) $ (-1109 (-1198))) NIL T ELT) (((-661 (-791)) $ (-661 (-1109 (-1198)))) NIL T ELT) (((-791) $ (-1198)) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-1109 (-1198)) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1109 (-1198)) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1109 (-1198)) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1109 (-1198))) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1109 (-1198))) NIL T ELT) (($ (-1198)) NIL T ELT) (($ (-1146 |#1| (-1198))) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-543 (-1109 (-1198)))) NIL T ELT) (($ $ (-1109 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-1109 (-1198))) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-1109 (-1198))) (-661 (-791))) NIL T ELT) (($ $ (-1109 (-1198)) (-791)) NIL T ELT) (($ $ (-661 (-1109 (-1198)))) NIL T ELT) (($ $ (-1109 (-1198))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-791)) NIL (|has| |#1| (-239)) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1108 |#1|) (-13 (-262 |#1| (-1198) (-1109 (-1198)) (-543 (-1109 (-1198)))) (-1059 (-1146 |#1| (-1198)))) (-1070)) (T -1108)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-1654 (((-791) $) NIL T ELT)) (-4261 ((|#1| $) 10 T ELT)) (-3575 (((-3 |#1| "failed") $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT)) (-4202 (((-791) $) 11 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-1655 (($ |#1| (-791)) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4188 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3070 (($ $ (-791)) NIL T ELT) (($ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 16 T ELT))) -(((-1109 |#1|) (-277 |#1|) (-861)) (T -1109)) -NIL -((-2967 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4166 (($ |#1| |#1|) 16 T ELT)) (-4388 (((-661 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)) ELT)) (-3647 ((|#1| $) 12 T ELT)) (-3649 ((|#1| $) 11 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3645 (((-558) $) 15 T ELT)) (-3646 ((|#1| $) 14 T ELT)) (-3648 ((|#1| $) 13 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4393 (((-661 |#1|) $) 42 (|has| |#1| (-860)) ELT) (((-661 |#1|) (-661 $)) 41 (|has| |#1| (-860)) ELT)) (-4402 (($ |#1|) 29 T ELT)) (-4376 (((-877) $) 28 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4167 (($ |#1| |#1|) 10 T ELT)) (-3650 (($ $ (-558)) 17 T ELT)) (-3454 (((-114) $ $) 22 (|has| |#1| (-1122)) ELT))) -(((-1110 |#1|) (-13 (-1115 |#1|) (-10 -7 (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-661 |#1|))) |%noBranch|))) (-1238)) (T -1110)) -NIL -((-4388 (((-661 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 27 (|has| |#1| (-860)) ELT) (((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|)) 14 T ELT))) -(((-1111 |#1| |#2|) (-10 -7 (-15 -4388 ((-1110 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) (IF (|has| |#1| (-860)) (-15 -4388 ((-661 |#2|) (-1 |#2| |#1|) (-1110 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1111)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-661 *6)) (-5 *1 (-1111 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1110 *6)) (-5 *1 (-1111 *5 *6))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 16 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3643 (((-661 (-1156)) $) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1112) (-13 (-1104) (-10 -8 (-15 -3643 ((-661 (-1156)) $))))) (T -1112)) -((-3643 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-1112))))) -((-2967 (((-114) $ $) NIL (|has| (-1110 |#1|) (-1122)) ELT)) (-4261 (((-1198) $) NIL T ELT)) (-4166 (((-1110 |#1|) $) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| (-1110 |#1|) (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| (-1110 |#1|) (-1122)) ELT)) (-3644 (($ (-1198) (-1110 |#1|)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| (-1110 |#1|) (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| (-1110 |#1|) (-1122)) ELT)) (-3454 (((-114) $ $) NIL (|has| (-1110 |#1|) (-1122)) ELT))) -(((-1113 |#1|) (-13 (-1238) (-10 -8 (-15 -3644 ($ (-1198) (-1110 |#1|))) (-15 -4261 ((-1198) $)) (-15 -4166 ((-1110 |#1|) $)) (IF (|has| (-1110 |#1|) (-1122)) (-6 (-1122)) |%noBranch|))) (-1238)) (T -1113)) -((-3644 (*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1110 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4)))) (-4261 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) (-4166 (*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238))))) -((-4388 (((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)) 19 T ELT))) -(((-1114 |#1| |#2|) (-10 -7 (-15 -4388 ((-1113 |#2|) (-1 |#2| |#1|) (-1113 |#1|)))) (-1238) (-1238)) (T -1114)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1113 *6)) (-5 *1 (-1114 *5 *6))))) -((-4166 (($ |#1| |#1|) 8 T ELT)) (-3647 ((|#1| $) 11 T ELT)) (-3649 ((|#1| $) 13 T ELT)) (-3645 (((-558) $) 9 T ELT)) (-3646 ((|#1| $) 10 T ELT)) (-3648 ((|#1| $) 12 T ELT)) (-4402 (($ |#1|) 6 T ELT)) (-4167 (($ |#1| |#1|) 15 T ELT)) (-3650 (($ $ (-558)) 14 T ELT))) -(((-1115 |#1|) (-142) (-1238)) (T -1115)) -((-4167 (*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) (-3650 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1115 *3)) (-4 *3 (-1238)))) (-3649 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1238)) (-5 *2 (-558)))) (-4166 (*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238))))) -(-13 (-635 |t#1|) (-10 -8 (-15 -4167 ($ |t#1| |t#1|)) (-15 -3650 ($ $ (-558))) (-15 -3649 (|t#1| $)) (-15 -3648 (|t#1| $)) (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $)) (-15 -3645 ((-558) $)) (-15 -4166 ($ |t#1| |t#1|)))) -(((-635 |#1|) . T)) -((-4166 (($ |#1| |#1|) 8 T ELT)) (-4388 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3647 ((|#1| $) 11 T ELT)) (-3649 ((|#1| $) 13 T ELT)) (-3645 (((-558) $) 9 T ELT)) (-3646 ((|#1| $) 10 T ELT)) (-3648 ((|#1| $) 12 T ELT)) (-4393 ((|#2| (-661 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4402 (($ |#1|) 6 T ELT)) (-4167 (($ |#1| |#1|) 15 T ELT)) (-3650 (($ $ (-558)) 14 T ELT))) -(((-1116 |#1| |#2|) (-142) (-860) (-1171 |t#1|)) (T -1116)) -((-4393 (*1 *2 *3) (-12 (-5 *3 (-661 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1171 *4)))) (-4393 (*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1171 *3)))) (-4388 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1171 *4))))) -(-13 (-1115 |t#1|) (-10 -8 (-15 -4393 (|t#2| (-661 $))) (-15 -4393 (|t#2| $)) (-15 -4388 (|t#2| (-1 |t#1| |t#1|) $)))) -(((-635 |#1|) . T) ((-1115 |#1|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4228 (((-1156) $) 12 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 18 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-3651 (((-661 (-1156)) $) 10 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1117) (-13 (-1104) (-10 -8 (-15 -3651 ((-661 (-1156)) $)) (-15 -4228 ((-1156) $))))) (T -1117)) -((-3651 (*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-1117)))) (-4228 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2010 (($) NIL (|has| |#1| (-381)) ELT)) (-3652 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3654 (($ $ $) 80 T ELT)) (-3653 (((-114) $ $) 82 T ELT)) (-3538 (((-791)) NIL (|has| |#1| (-381)) ELT)) (-3657 (($ (-661 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1713 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3825 (($ |#1| $) 74 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4425)) ELT)) (-3395 (($) NIL (|has| |#1| (-381)) ELT)) (-3290 (((-661 |#1|) $) 19 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) NIL T ELT)) (-2930 ((|#1| $) 55 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3258 ((|#1| $) 53 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2220 (((-938) $) NIL (|has| |#1| (-381)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3656 (($ $ $) 78 T ELT)) (-1389 ((|#1| $) 25 T ELT)) (-4037 (($ |#1| $) 69 T ELT)) (-2631 (($ (-938)) NIL (|has| |#1| (-381)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-1390 ((|#1| $) 27 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 21 T ELT)) (-3993 (($) 11 T ELT)) (-3655 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1598 (($) NIL T ELT) (($ (-661 |#1|)) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 16 T ELT)) (-4402 (((-547) $) 50 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 62 T ELT)) (-2011 (($ $) NIL (|has| |#1| (-381)) ELT)) (-4376 (((-877) $) NIL T ELT)) (-2012 (((-791) $) NIL T ELT)) (-3658 (($ (-661 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-1391 (($ (-661 |#1|)) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 52 T ELT)) (-4387 (((-791) $) 10 (|has| $ (-6 -4425)) ELT))) -(((-1118 |#1|) (-438 |#1|) (-1122)) (T -1118)) -NIL -((-3652 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3654 (($ $ $) 10 T ELT)) (-3655 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) -(((-1119 |#1| |#2|) (-10 -7 (-15 -3652 (|#1| |#2| |#1|)) (-15 -3652 (|#1| |#1| |#2|)) (-15 -3652 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#1|)) (-15 -3655 (|#1| |#1| |#2|)) (-15 -3655 (|#1| |#1| |#1|))) (-1120 |#2|) (-1122)) (T -1119)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3652 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3654 (($ $ $) 24 T ELT)) (-3653 (((-114) $ $) 23 T ELT)) (-3657 (($) 29 T ELT) (($ (-661 |#1|)) 28 T ELT)) (-4140 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 37 T CONST)) (-1467 (($ $) 60 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 59 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3290 (((-661 |#1|) $) 44 (|has| $ (-6 -4425)) ELT)) (-3659 (((-114) $ $) 32 T ELT)) (-3007 (((-661 |#1|) $) 45 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3656 (($ $ $) 27 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#1|) (-661 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 33 T ELT)) (-3823 (((-114) $) 36 T ELT)) (-3993 (($) 35 T ELT)) (-3655 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2157 (((-791) |#1| $) 46 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 34 T ELT)) (-4402 (((-547) $) 61 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 52 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-3658 (($) 31 T ELT) (($ (-661 |#1|)) 30 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 38 (|has| $ (-6 -4425)) ELT))) -(((-1120 |#1|) (-142) (-1122)) (T -1120)) -((-3659 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-114)))) (-3658 (*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3658 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) (-3657 (*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) (-3656 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3655 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3653 (*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-114)))) (-3652 (*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3652 (*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) (-3652 (*1 *1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(-13 (-1122) (-153 |t#1|) (-10 -8 (-6 -4415) (-15 -3659 ((-114) $ $)) (-15 -3658 ($)) (-15 -3658 ($ (-661 |t#1|))) (-15 -3657 ($)) (-15 -3657 ($ (-661 |t#1|))) (-15 -3656 ($ $ $)) (-15 -3655 ($ $ $)) (-15 -3655 ($ $ |t#1|)) (-15 -3654 ($ $ $)) (-15 -3653 ((-114) $ $)) (-15 -3652 ($ $ $)) (-15 -3652 ($ $ |t#1|)) (-15 -3652 ($ |t#1| $)))) -(((-34) . T) ((-102) . T) ((-630 (-877)) . T) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) . T) ((-1238) . T)) -((-3660 (((-1180) $) 10 T ELT)) (-3661 (((-1141) $) 8 T ELT))) -(((-1121 |#1|) (-10 -7 (-15 -3660 ((-1180) |#1|)) (-15 -3661 ((-1141) |#1|))) (-1122)) (T -1121)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-1122) (-142)) (T -1122)) -((-3661 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1141)))) (-3660 (*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1180))))) -(-13 (-102) (-630 (-877)) (-10 -8 (-15 -3661 ((-1141) $)) (-15 -3660 ((-1180) $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) 36 T ELT)) (-3665 (($ (-661 (-938))) 70 T ELT)) (-3667 (((-3 $ #1="failed") $ (-938) (-938)) 81 T ELT)) (-3395 (($) 40 T ELT)) (-3663 (((-114) (-938) $) 42 T ELT)) (-2220 (((-938) $) 64 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 39 T ELT)) (-3668 (((-3 $ #1#) $ (-938)) 77 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3664 (((-1288 $)) 47 T ELT)) (-3666 (((-661 (-938)) $) 27 T ELT)) (-3662 (((-791) $ (-938) (-938)) 78 T ELT)) (-4376 (((-877) $) 32 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 24 T ELT))) -(((-1123 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3668 ((-3 $ #1="failed") $ (-938))) (-15 -3667 ((-3 $ #1#) $ (-938) (-938))) (-15 -3666 ((-661 (-938)) $)) (-15 -3665 ($ (-661 (-938)))) (-15 -3664 ((-1288 $))) (-15 -3663 ((-114) (-938) $)) (-15 -3662 ((-791) $ (-938) (-938))))) (-938) (-938)) (T -1123)) -((-3668 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3667 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3666 (*1 *2 *1) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3665 (*1 *1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3664 (*1 *2) (-12 (-5 *2 (-1288 (-1123 *3 *4))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) (-3663 (*1 *2 *3 *1) (-12 (-5 *3 (-938)) (-5 *2 (-114)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3662 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-791)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3678 (((-114) $) NIL T ELT)) (-3674 (((-1198) $) NIL T ELT)) (-3679 (((-114) $) NIL T ELT)) (-3963 (((-1180) $) NIL T ELT)) (-3681 (((-114) $) NIL T ELT)) (-3683 (((-114) $) NIL T ELT)) (-3680 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3677 (((-114) $) NIL T ELT)) (-3673 (((-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3676 (((-114) $) NIL T ELT)) (-3672 (((-229) $) NIL T ELT)) (-3671 (((-877) $) NIL T ELT)) (-3684 (((-114) $ $) NIL T ELT)) (-4230 (($ $ (-558)) NIL T ELT) (($ $ (-661 (-558))) NIL T ELT)) (-3675 (((-661 $) $) NIL T ELT)) (-4402 (($ (-1180)) NIL T ELT) (($ (-1198)) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-877)) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-3669 (($ $) NIL T ELT)) (-3670 (($ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3682 (((-114) $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4387 (((-558) $) NIL T ELT))) -(((-1124) (-1125 (-1180) (-1198) (-558) (-229) (-877))) (T -1124)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3678 (((-114) $) 36 T ELT)) (-3674 ((|#2| $) 31 T ELT)) (-3679 (((-114) $) 37 T ELT)) (-3963 ((|#1| $) 32 T ELT)) (-3681 (((-114) $) 39 T ELT)) (-3683 (((-114) $) 41 T ELT)) (-3680 (((-114) $) 38 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3677 (((-114) $) 35 T ELT)) (-3673 ((|#3| $) 30 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3676 (((-114) $) 34 T ELT)) (-3672 ((|#4| $) 29 T ELT)) (-3671 ((|#5| $) 28 T ELT)) (-3684 (((-114) $ $) 42 T ELT)) (-4230 (($ $ (-558)) 44 T ELT) (($ $ (-661 (-558))) 43 T ELT)) (-3675 (((-661 $) $) 33 T ELT)) (-4402 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-661 $)) 45 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-3669 (($ $) 26 T ELT)) (-3670 (($ $) 27 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3682 (((-114) $) 40 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-558) $) 25 T ELT))) -(((-1125 |#1| |#2| |#3| |#4| |#5|) (-142) (-1122) (-1122) (-1122) (-1122) (-1122)) (T -1125)) -((-3684 (*1 *2 *1 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3683 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114)))) (-3675 (*1 *2 *1) (-12 (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-661 *1)) (-4 *1 (-1125 *3 *4 *5 *6 *7)))) (-3963 (*1 *2 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3674 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *2 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *2 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *2 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *2)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) (-3670 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-3669 (*1 *1 *1) (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)))) (-4387 (*1 *2 *1) (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-558))))) -(-13 (-1122) (-635 |t#1|) (-635 |t#2|) (-635 |t#3|) (-635 |t#4|) (-635 |t#4|) (-635 |t#5|) (-635 (-661 $)) (-298 (-558) $) (-298 (-661 (-558)) $) (-10 -8 (-15 -3684 ((-114) $ $)) (-15 -3683 ((-114) $)) (-15 -3682 ((-114) $)) (-15 -3681 ((-114) $)) (-15 -3680 ((-114) $)) (-15 -3679 ((-114) $)) (-15 -3678 ((-114) $)) (-15 -3677 ((-114) $)) (-15 -3676 ((-114) $)) (-15 -3675 ((-661 $) $)) (-15 -3963 (|t#1| $)) (-15 -3674 (|t#2| $)) (-15 -3673 (|t#3| $)) (-15 -3672 (|t#4| $)) (-15 -3671 (|t#5| $)) (-15 -3670 ($ $)) (-15 -3669 ($ $)) (-15 -4387 ((-558) $)))) -(((-102) . T) ((-630 (-877)) . T) ((-635 (-661 $)) . T) ((-635 |#1|) . T) ((-635 |#2|) . T) ((-635 |#3|) . T) ((-635 |#4|) . T) ((-635 |#5|) . T) ((-298 (-558) $) . T) ((-298 (-661 (-558)) $) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3678 (((-114) $) 45 T ELT)) (-3674 ((|#2| $) 48 T ELT)) (-3679 (((-114) $) 20 T ELT)) (-3963 ((|#1| $) 21 T ELT)) (-3681 (((-114) $) 42 T ELT)) (-3683 (((-114) $) 14 T ELT)) (-3680 (((-114) $) 44 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3677 (((-114) $) 46 T ELT)) (-3673 ((|#3| $) 50 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3676 (((-114) $) 47 T ELT)) (-3672 ((|#4| $) 49 T ELT)) (-3671 ((|#5| $) 51 T ELT)) (-3684 (((-114) $ $) 41 T ELT)) (-4230 (($ $ (-558)) 62 T ELT) (($ $ (-661 (-558))) 64 T ELT)) (-3675 (((-661 $) $) 27 T ELT)) (-4402 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-661 $)) 52 T ELT)) (-4376 (((-877) $) 28 T ELT)) (-3669 (($ $) 26 T ELT)) (-3670 (($ $) 58 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3682 (((-114) $) 23 T ELT)) (-3454 (((-114) $ $) 40 T ELT)) (-4387 (((-558) $) 60 T ELT))) -(((-1126 |#1| |#2| |#3| |#4| |#5|) (-1125 |#1| |#2| |#3| |#4| |#5|) (-1122) (-1122) (-1122) (-1122) (-1122)) (T -1126)) -NIL -((-3800 (((-1294) $) 22 T ELT)) (-3685 (($ (-1198) (-446) |#2|) 11 T ELT)) (-4376 (((-877) $) 16 T ELT))) -(((-1127 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -3685 ($ (-1198) (-446) |#2|)))) (-1122) (-433 |#1|)) (T -1127)) -((-3685 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1198)) (-5 *3 (-446)) (-4 *5 (-1122)) (-5 *1 (-1127 *5 *4)) (-4 *4 (-433 *5))))) -((-3688 (((-114) |#5| |#5|) 44 T ELT)) (-3691 (((-114) |#5| |#5|) 59 T ELT)) (-3696 (((-114) |#5| (-661 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3692 (((-114) (-661 |#4|) (-661 |#4|)) 65 T ELT)) (-3698 (((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) 70 T ELT)) (-3687 (((-1294)) 32 T ELT)) (-3686 (((-1294) (-1180) (-1180) (-1180)) 28 T ELT)) (-3697 (((-661 |#5|) (-661 |#5|)) 101 T ELT)) (-3699 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)))) 93 T ELT)) (-3700 (((-661 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114)) 123 T ELT)) (-3690 (((-114) |#5| |#5|) 53 T ELT)) (-3695 (((-3 (-114) #1="failed") |#5| |#5|) 78 T ELT)) (-3693 (((-114) (-661 |#4|) (-661 |#4|)) 64 T ELT)) (-3694 (((-114) (-661 |#4|) (-661 |#4|)) 66 T ELT)) (-4129 (((-114) (-661 |#4|) (-661 |#4|)) 67 T ELT)) (-3701 (((-3 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|))) #1#) (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-3689 (((-661 |#5|) (-661 |#5|)) 49 T ELT))) -(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3686 ((-1294) (-1180) (-1180) (-1180))) (-15 -3687 ((-1294))) (-15 -3688 ((-114) |#5| |#5|)) (-15 -3689 ((-661 |#5|) (-661 |#5|))) (-15 -3690 ((-114) |#5| |#5|)) (-15 -3691 ((-114) |#5| |#5|)) (-15 -3692 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3693 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3694 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -4129 ((-114) (-661 |#4|) (-661 |#4|))) (-15 -3695 ((-3 (-114) #1="failed") |#5| |#5|)) (-15 -3696 ((-114) |#5| |#5|)) (-15 -3696 ((-114) |#5| (-661 |#5|))) (-15 -3697 ((-661 |#5|) (-661 |#5|))) (-15 -3698 ((-114) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)))) (-15 -3699 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) (-15 -3700 ((-661 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|)))) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3701 ((-3 (-2 (|:| -3684 (-661 |#4|)) (|:| -1743 |#5|) (|:| |ineq| (-661 |#4|))) #1#) (-661 |#4|) |#5| (-661 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1128)) -((-3701 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *4) (|:| |ineq| (-661 *9)))) (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) (-4 *4 (-1092 *6 *7 *8 *9)))) (-3700 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1092 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *10) (|:| |ineq| (-661 *9))))) (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9)))) (-3699 (*1 *2 *2) (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1743 *7)))) (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3698 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)))) (-3697 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3696 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1128 *5 *6 *7 *8 *3)))) (-3696 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-4129 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3689 (*1 *2 *2) (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *1 (-1128 *3 *4 *5 *6 *7)))) (-3688 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) (-3687 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3686 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -((-3716 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#5|) 106 T ELT)) (-3706 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3709 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3711 (((-661 |#5|) |#4| |#5|) 122 T ELT)) (-3713 (((-661 |#5|) |#4| |#5|) 129 T ELT)) (-3715 (((-661 |#5|) |#4| |#5|) 130 T ELT)) (-3710 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|) 107 T ELT)) (-3712 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|) 128 T ELT)) (-3714 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3707 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#3| (-114)) 91 T ELT) (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3708 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3705 (((-1294)) 36 T ELT)) (-3703 (((-1294)) 25 T ELT)) (-3704 (((-1294) (-1180) (-1180) (-1180)) 32 T ELT)) (-3702 (((-1294) (-1180) (-1180) (-1180)) 21 T ELT))) -(((-1129 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3702 ((-1294) (-1180) (-1180) (-1180))) (-15 -3703 ((-1294))) (-15 -3704 ((-1294) (-1180) (-1180) (-1180))) (-15 -3705 ((-1294))) (-15 -3706 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#4| |#4| |#5|)) (-15 -3707 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3707 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) |#3| (-114))) (-15 -3708 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|)) (-15 -3709 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#4| |#5|)) (-15 -3714 ((-114) |#4| |#5|)) (-15 -3710 ((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|)) (-15 -3711 ((-661 |#5|) |#4| |#5|)) (-15 -3712 ((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|)) (-15 -3713 ((-661 |#5|) |#4| |#5|)) (-15 -3714 ((-661 (-2 (|:| |val| (-114)) (|:| -1743 |#5|))) |#4| |#5|)) (-15 -3715 ((-661 |#5|) |#4| |#5|)) (-15 -3716 ((-661 (-2 (|:| |val| |#4|) (|:| -1743 |#5|))) |#4| |#5|))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1092 |#1| |#2| |#3| |#4|)) (T -1129)) -((-3716 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3715 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3710 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3709 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3708 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *5 (-114)) (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *4 (-861)) (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1743 *9)))) (-5 *1 (-1129 *6 *7 *4 *8 *9)))) (-3707 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) (-3706 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) (-3705 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3704 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7)))) (-3703 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-1294)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) (-3702 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) (-4 *8 (-1092 *4 *5 *6 *7))))) -((-2967 (((-114) $ $) 7 T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4112 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3484 (((-661 |#3|) $) 37 T ELT)) (-3309 (((-114) $) 30 T ELT)) (-3300 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4118 ((|#4| |#4| $) 97 T ELT)) (-4205 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| $) 133 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4140 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4154 (($) 46 T CONST)) (-3305 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3574 (($ (-661 |#4|)) 39 T ELT)) (-4229 (((-3 $ #1#) $) 87 T ELT)) (-4115 ((|#4| |#4| $) 94 T ELT)) (-1467 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4113 ((|#4| |#4| $) 92 T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) 110 T ELT)) (-3615 (((-114) |#4| $) 143 T ELT)) (-3613 (((-114) |#4| $) 140 T ELT)) (-3616 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3290 (((-661 |#4|) $) 53 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3315 (((-661 |#3|) $) 36 T ELT)) (-3314 (((-114) |#3| $) 35 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3609 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3608 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| |#4| $) 134 T ELT)) (-4228 (((-3 |#4| #1#) $) 88 T ELT)) (-3610 (((-661 $) |#4| $) 136 T ELT)) (-3612 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3656 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3860 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4127 (((-661 |#4|) $) 112 T ELT)) (-4121 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4116 ((|#4| |#4| $) 95 T ELT)) (-4129 (((-114) $ $) 115 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4117 ((|#4| |#4| $) 96 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4231 (((-3 |#4| #1#) $) 89 T ELT)) (-1468 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4199 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) 42 T ELT)) (-3823 (((-114) $) 45 T ELT)) (-3993 (($) 44 T ELT)) (-4378 (((-791) $) 111 T ELT)) (-2157 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 43 T ELT)) (-4402 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 61 T ELT)) (-3311 (($ $ |#3|) 32 T ELT)) (-3313 (($ $ |#3|) 34 T ELT)) (-4114 (($ $) 93 T ELT)) (-3312 (($ $ |#3|) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4108 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3607 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) 86 T ELT)) (-3614 (((-114) |#4| $) 142 T ELT)) (-4363 (((-114) |#3| $) 85 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 47 (|has| $ (-6 -4425)) ELT))) -(((-1130 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1130)) -NIL -(-13 (-1092 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-877)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1233 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-3727 (((-661 (-558)) (-558) (-558) (-558)) 40 T ELT)) (-3726 (((-661 (-558)) (-558) (-558) (-558)) 30 T ELT)) (-3725 (((-661 (-558)) (-558) (-558) (-558)) 35 T ELT)) (-3724 (((-558) (-558) (-558)) 22 T ELT)) (-3723 (((-1288 (-558)) (-661 (-558)) (-1288 (-558)) (-558)) 79 T ELT) (((-1288 (-558)) (-1288 (-558)) (-1288 (-558)) (-558)) 74 T ELT)) (-3722 (((-661 (-558)) (-661 (-938)) (-661 (-558)) (-114)) 56 T ELT)) (-3721 (((-709 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558))) 78 T ELT)) (-3720 (((-709 (-558)) (-661 (-938)) (-661 (-558))) 61 T ELT)) (-3719 (((-661 (-709 (-558))) (-661 (-938))) 67 T ELT)) (-3718 (((-661 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558))) 82 T ELT)) (-3717 (((-709 (-558)) (-661 (-558)) (-661 (-558)) (-661 (-558))) 92 T ELT))) -(((-1131) (-10 -7 (-15 -3717 ((-709 (-558)) (-661 (-558)) (-661 (-558)) (-661 (-558)))) (-15 -3718 ((-661 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558)))) (-15 -3719 ((-661 (-709 (-558))) (-661 (-938)))) (-15 -3720 ((-709 (-558)) (-661 (-938)) (-661 (-558)))) (-15 -3721 ((-709 (-558)) (-661 (-558)) (-661 (-558)) (-709 (-558)))) (-15 -3722 ((-661 (-558)) (-661 (-938)) (-661 (-558)) (-114))) (-15 -3723 ((-1288 (-558)) (-1288 (-558)) (-1288 (-558)) (-558))) (-15 -3723 ((-1288 (-558)) (-661 (-558)) (-1288 (-558)) (-558))) (-15 -3724 ((-558) (-558) (-558))) (-15 -3725 ((-661 (-558)) (-558) (-558) (-558))) (-15 -3726 ((-661 (-558)) (-558) (-558) (-558))) (-15 -3727 ((-661 (-558)) (-558) (-558) (-558))))) (T -1131)) -((-3727 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1131)) (-5 *3 (-558)))) (-3726 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1131)) (-5 *3 (-558)))) (-3725 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1131)) (-5 *3 (-558)))) (-3724 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1131)))) (-3723 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1288 (-558))) (-5 *3 (-661 (-558))) (-5 *4 (-558)) (-5 *1 (-1131)))) (-3723 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1288 (-558))) (-5 *3 (-558)) (-5 *1 (-1131)))) (-3722 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-661 (-558))) (-5 *3 (-661 (-938))) (-5 *4 (-114)) (-5 *1 (-1131)))) (-3721 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-709 (-558))) (-5 *3 (-661 (-558))) (-5 *1 (-1131)))) (-3720 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-938))) (-5 *4 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1131)))) (-3719 (*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-1131)))) (-3718 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *3 (-709 (-558))) (-5 *1 (-1131)))) (-3717 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1131))))) -((** (($ $ (-938)) 10 T ELT))) -(((-1132 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-938)))) (-1133)) (T -1132)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (** (($ $ (-938)) 17 T ELT)) (* (($ $ $) 18 T ELT))) -(((-1133) (-142)) (T -1133)) -((* (*1 *1 *1 *1) (-4 *1 (-1133))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-938))))) -(-13 (-1122) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-938))))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3606 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-4137 (($ (-938)) NIL (|has| |#3| (-1070)) ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-2873 (($ $ $) NIL (|has| |#3| (-815)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3538 (((-791)) NIL (|has| |#3| (-381)) ELT)) (-4218 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1122)) ELT)) (-3574 (((-558) $) NIL (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122))) ELT) ((|#3| $) NIL (|has| |#3| (-1122)) ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-709 $) (-1288 $)) NIL (|has| |#3| (-1070)) ELT) (((-709 |#3|) (-709 $)) NIL (|has| |#3| (-1070)) ELT)) (-3887 (((-3 $ #1#) $) NIL (|has| |#3| (-1070)) ELT)) (-3395 (($) NIL (|has| |#3| (-381)) ELT)) (-1719 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#3| $ (-558)) 12 T ELT)) (-3604 (((-114) $) NIL (|has| |#3| (-815)) ELT)) (-3290 (((-661 |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL (|has| |#3| (-1070)) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#3| (-861)) ELT)) (-3007 (((-661 |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#3| (-861)) ELT)) (-2160 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2220 (((-938) $) NIL (|has| |#3| (-381)) ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#3| (-658 (-558))) (|has| |#3| (-1070))) ELT) (((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-1288 $) $) NIL (|has| |#3| (-1070)) ELT) (((-709 |#3|) (-1288 $)) NIL (|has| |#3| (-1070)) ELT)) (-3660 (((-1180) $) NIL (|has| |#3| (-1122)) ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-2631 (($ (-938)) NIL (|has| |#3| (-381)) ELT)) (-3661 (((-1141) $) NIL (|has| |#3| (-1122)) ELT)) (-4231 ((|#3| $) NIL (|has| (-558) (-861)) ELT)) (-2414 (($ $ |#3|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT) (($ $ (-661 |#3|) (-661 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-2420 (((-661 |#3|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#3| $ (-558) |#3|) NIL T ELT) ((|#3| $ (-558)) NIL T ELT)) (-4266 ((|#3| $ $) NIL (|has| |#3| (-1070)) ELT)) (-1600 (($ (-1288 |#3|)) NIL T ELT)) (-4341 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4188 (($ $ (-791)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1070))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#3| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#3| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4376 (((-1288 |#3|) $) NIL T ELT) (($ (-558)) NIL (-3957 (-12 (|has| |#3| (-1059 (-558))) (|has| |#3| (-1122))) (|has| |#3| (-1070))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#3| (-1059 (-419 (-558)))) (|has| |#3| (-1122))) ELT) (($ |#3|) NIL (|has| |#3| (-1122)) ELT) (((-877) $) NIL (|has| |#3| (-630 (-877))) ELT)) (-3528 (((-791)) NIL (|has| |#3| (-1070)) CONST)) (-1378 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3059 (($) NIL (|has| |#3| (-23)) CONST)) (-3065 (($) NIL (|has| |#3| (-1070)) CONST)) (-3070 (($ $ (-791)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1070))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1070))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-1198)) NIL (-12 (|has| |#3| (-919 (-1198))) (|has| |#3| (-1070))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-1 |#3| |#3|) (-791)) NIL (|has| |#3| (-1070)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#3| (-861)) ELT)) (-3086 (((-114) $ $) 24 (|has| |#3| (-861)) ELT)) (-4379 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4267 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-4269 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-791)) NIL (|has| |#3| (-1070)) ELT) (($ $ (-938)) NIL (|has| |#3| (-1070)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1070)) ELT) (($ $ |#3|) NIL (|has| |#3| (-746)) ELT) (($ |#3| $) NIL (|has| |#3| (-746)) ELT) (($ (-558) $) NIL (|has| |#3| (-21)) ELT) (($ (-791) $) NIL (|has| |#3| (-23)) ELT) (($ (-938) $) NIL (|has| |#3| (-25)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1134 |#1| |#2| |#3|) (-245 |#1| |#3|) (-791) (-791) (-815)) (T -1134)) -NIL -((-3728 (((-661 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 50 T ELT)) (-3734 (((-558) (-1257 |#2| |#1|)) 96 (|has| |#1| (-464)) ELT)) (-3732 (((-558) (-1257 |#2| |#1|)) 79 T ELT)) (-3729 (((-661 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 58 T ELT)) (-3733 (((-558) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 95 (|has| |#1| (-464)) ELT)) (-3730 (((-661 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 61 T ELT)) (-3731 (((-558) (-1257 |#2| |#1|) (-1257 |#2| |#1|)) 78 T ELT))) -(((-1135 |#1| |#2|) (-10 -7 (-15 -3728 ((-661 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3729 ((-661 (-1257 |#2| |#1|)) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3730 ((-661 |#1|) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3731 ((-558) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3732 ((-558) (-1257 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3733 ((-558) (-1257 |#2| |#1|) (-1257 |#2| |#1|))) (-15 -3734 ((-558) (-1257 |#2| |#1|)))) |%noBranch|)) (-842) (-1198)) (T -1135)) -((-3734 (*1 *2 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-558)) (-5 *1 (-1135 *4 *5)))) (-3733 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-558)) (-5 *1 (-1135 *4 *5)))) (-3732 (*1 *2 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-558)) (-5 *1 (-1135 *4 *5)))) (-3731 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-558)) (-5 *1 (-1135 *4 *5)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-661 *4)) (-5 *1 (-1135 *4 *5)))) (-3729 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-661 (-1257 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1257 *5 *4)))) (-3728 (*1 *2 *3 *3) (-12 (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-661 (-1257 *5 *4))) (-5 *1 (-1135 *4 *5)) (-5 *3 (-1257 *5 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3736 (((-1203) $) 12 T ELT)) (-3735 (((-661 (-1203)) $) 14 T ELT)) (-3737 (($ (-661 (-1203)) (-1203)) 10 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 29 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 17 T ELT))) -(((-1136) (-13 (-1122) (-10 -8 (-15 -3737 ($ (-661 (-1203)) (-1203))) (-15 -3736 ((-1203) $)) (-15 -3735 ((-661 (-1203)) $))))) (T -1136)) -((-3737 (*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1203))) (-5 *3 (-1203)) (-5 *1 (-1136)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-1136)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-1136))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3738 (($ (-518) (-1136)) 13 T ELT)) (-3737 (((-1136) $) 19 T ELT)) (-3970 (((-518) $) 16 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 26 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1137) (-13 (-1104) (-10 -8 (-15 -3738 ($ (-518) (-1136))) (-15 -3970 ((-518) $)) (-15 -3737 ((-1136) $))))) (T -1137)) -((-3738 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-1137)))) (-3970 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1137)))) (-3737 (*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1137))))) -((-4053 (((-3 (-558) #1="failed") |#2| (-1198) |#2| (-1180)) 19 T ELT) (((-3 (-558) #1#) |#2| (-1198) (-855 |#2|)) 17 T ELT) (((-3 (-558) #1#) |#2|) 60 T ELT))) -(((-1138 |#1| |#2|) (-10 -7 (-15 -4053 ((-3 (-558) #1="failed") |#2|)) (-15 -4053 ((-3 (-558) #1#) |#2| (-1198) (-855 |#2|))) (-15 -4053 ((-3 (-558) #1#) |#2| (-1198) |#2| (-1180)))) (-13 (-569) (-1059 (-558)) (-658 (-558)) (-464)) (-13 (-27) (-1224) (-433 |#1|))) (T -1138)) -((-4053 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-1180)) (-4 *6 (-13 (-569) (-1059 *2) (-658 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1138 *6 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))))) (-4053 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-855 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) (-4 *6 (-13 (-569) (-1059 *2) (-658 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1138 *6 *3)))) (-4053 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1059 *2) (-658 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1138 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4)))))) -((-4053 (((-3 (-558) #1="failed") (-419 (-965 |#1|)) (-1198) (-419 (-965 |#1|)) (-1180)) 38 T ELT) (((-3 (-558) #1#) (-419 (-965 |#1|)) (-1198) (-855 (-419 (-965 |#1|)))) 33 T ELT) (((-3 (-558) #1#) (-419 (-965 |#1|))) 14 T ELT))) -(((-1139 |#1|) (-10 -7 (-15 -4053 ((-3 (-558) #1="failed") (-419 (-965 |#1|)))) (-15 -4053 ((-3 (-558) #1#) (-419 (-965 |#1|)) (-1198) (-855 (-419 (-965 |#1|))))) (-15 -4053 ((-3 (-558) #1#) (-419 (-965 |#1|)) (-1198) (-419 (-965 |#1|)) (-1180)))) (-464)) (T -1139)) -((-4053 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-965 *6))) (-5 *4 (-1198)) (-5 *5 (-1180)) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1139 *6)))) (-4053 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-855 (-419 (-965 *6)))) (-5 *3 (-419 (-965 *6))) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1139 *6)))) (-4053 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-464)) (-5 *2 (-558)) (-5 *1 (-1139 *4))))) -((-4079 (((-326 (-558)) (-48)) 12 T ELT))) -(((-1140) (-10 -7 (-15 -4079 ((-326 (-558)) (-48))))) (T -1140)) -((-4079 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-558))) (-5 *1 (-1140))))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) 22 T ELT)) (-3606 (((-114) $) 52 T ELT)) (-3742 (($ $ $) 31 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 79 T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-2257 (($ $ $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2252 (($ $ $ $) 62 T ELT)) (-4205 (($ $) NIL T ELT)) (-4401 (((-417 $) $) NIL T ELT)) (-1788 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) 64 T ELT)) (-4053 (((-558) $) NIL T ELT)) (-2830 (($ $ $) 59 T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL T ELT)) (-2963 (($ $ $) 45 T ELT)) (-2493 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 73 T ELT) (((-709 (-558)) (-709 $)) 8 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3425 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3424 (((-114) $) NIL T ELT)) (-3423 (((-419 (-558)) $) NIL T ELT)) (-3395 (($) 77 T ELT) (($ $) 76 T ELT)) (-2962 (($ $ $) 44 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL T ELT)) (-4153 (((-114) $) NIL T ELT)) (-2250 (($ $ $ $) NIL T ELT)) (-2258 (($ $ $) 74 T ELT)) (-3604 (((-114) $) 80 T ELT)) (-1483 (($ $ $) NIL T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL T ELT)) (-2960 (($ $ $) 30 T ELT)) (-2641 (((-114) $) 53 T ELT)) (-3074 (((-114) $) 50 T ELT)) (-2959 (($ $) 23 T ELT)) (-3865 (((-711 $) $) NIL T ELT)) (-3605 (((-114) $) 63 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL T ELT)) (-2251 (($ $ $ $) 60 T ELT)) (-2930 (($ $ $) 55 T ELT) (($) 19 T CONST)) (-3258 (($ $ $) 54 T ELT) (($) 18 T CONST)) (-2254 (($ $) NIL T ELT)) (-2220 (((-938) $) 69 T ELT)) (-4263 (($ $) 58 T ELT)) (-2494 (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL T ELT) (((-709 (-558)) (-1288 $)) NIL T ELT)) (-2102 (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2249 (($ $ $) NIL T ELT)) (-3866 (($) NIL T CONST)) (-2631 (($ (-938)) 68 T ELT)) (-2256 (($ $) 36 T ELT)) (-3661 (((-1141) $) 57 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL T ELT)) (-3562 (($ $ $) 48 T ELT) (($ (-661 $)) NIL T ELT)) (-1481 (($ $) NIL T ELT)) (-4162 (((-417 $) $) NIL T ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL T ELT)) (-3075 (((-114) $) 51 T ELT)) (-1787 (((-791) $) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 47 T ELT)) (-4188 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2255 (($ $) 37 T ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-558) $) 12 T ELT) (((-547) $) NIL T ELT) (((-905 (-558)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-4376 (((-877) $) 11 T ELT) (($ (-558)) 75 T ELT) (($ $) NIL T ELT) (($ (-558)) 75 T ELT)) (-3528 (((-791)) NIL T CONST)) (-2259 (((-114) $ $) NIL T ELT)) (-3504 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3095 (($) 17 T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-2961 (($ $ $) 28 T ELT)) (-2253 (($ $ $ $) 61 T ELT)) (-3803 (($ $) 49 T ELT)) (-2524 (($ $ $) 25 T ELT)) (-3059 (($) 15 T CONST)) (-3739 (($ $ $) 29 T ELT)) (-3065 (($) 16 T CONST)) (-3741 (($ $) 26 T ELT)) (-3070 (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-3740 (($ $ $) 27 T ELT)) (-2965 (((-114) $ $) 35 T ELT)) (-2966 (((-114) $ $) 33 T ELT)) (-3454 (((-114) $ $) 21 T ELT)) (-3085 (((-114) $ $) 34 T ELT)) (-3086 (((-114) $ $) 32 T ELT)) (-2525 (($ $ $) 24 T ELT)) (-4267 (($ $) 38 T ELT) (($ $ $) 40 T ELT)) (-4269 (($ $ $) 39 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 43 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 14 T ELT) (($ $ $) 41 T ELT) (($ (-558) $) 14 T ELT))) -(((-1141) (-13 (-557) (-857) (-113) (-10 -8 (-6 -4412) (-6 -4417) (-6 -4413) (-15 -3742 ($ $ $)) (-15 -3741 ($ $)) (-15 -3740 ($ $ $)) (-15 -3739 ($ $ $))))) (T -1141)) -((-3742 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3741 (*1 *1 *1) (-5 *1 (-1141))) (-3740 (*1 *1 *1 *1) (-5 *1 (-1141))) (-3739 (*1 *1 *1 *1) (-5 *1 (-1141)))) +(((-93) . T) ((-102) . T) ((-632 (-1202)) . T) ((-629 (-876)) . T) ((-629 (-1202)) . T) ((-502 (-1202)) . T) ((-1121) . T) ((-1237) . T)) +((-3634 ((|#1| |#1| (-1 (-558) |#1| |#1|)) 41 T ELT) ((|#1| |#1| (-1 (-114) |#1|)) 33 T ELT)) (-3632 (((-1293)) 21 T ELT)) (-3633 (((-660 |#1|)) 13 T ELT))) +(((-1104 |#1|) (-10 -7 (-15 -3632 ((-1293))) (-15 -3633 ((-660 |#1|))) (-15 -3634 (|#1| |#1| (-1 (-114) |#1|))) (-15 -3634 (|#1| |#1| (-1 (-558) |#1| |#1|)))) (-134)) (T -1104)) +((-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1104 *2)))) (-3634 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1104 *2)))) (-3633 (*1 *2) (-12 (-5 *2 (-660 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-134)))) (-3632 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1104 *3)) (-4 *3 (-134))))) +((-3637 (($ (-109) $) 20 T ELT)) (-3638 (((-710 (-109)) (-518) $) 19 T ELT)) (-3992 (($) 7 T ELT)) (-3636 (($) 21 T ELT)) (-3635 (($) 22 T ELT)) (-3639 (((-660 (-178)) $) 10 T ELT)) (-4375 (((-876) $) 25 T ELT))) +(((-1105) (-13 (-629 (-876)) (-10 -8 (-15 -3992 ($)) (-15 -3639 ((-660 (-178)) $)) (-15 -3638 ((-710 (-109)) (-518) $)) (-15 -3637 ($ (-109) $)) (-15 -3636 ($)) (-15 -3635 ($))))) (T -1105)) +((-3992 (*1 *1) (-5 *1 (-1105))) (-3639 (*1 *2 *1) (-12 (-5 *2 (-660 (-178))) (-5 *1 (-1105)))) (-3638 (*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-109))) (-5 *1 (-1105)))) (-3637 (*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1105)))) (-3636 (*1 *1) (-5 *1 (-1105))) (-3635 (*1 *1) (-5 *1 (-1105)))) +((-3640 (((-1287 (-708 |#1|)) (-660 (-708 |#1|))) 45 T ELT) (((-1287 (-708 (-964 |#1|))) (-660 (-1197)) (-708 (-964 |#1|))) 75 T ELT) (((-1287 (-708 (-419 (-964 |#1|)))) (-660 (-1197)) (-708 (-419 (-964 |#1|)))) 92 T ELT)) (-3641 (((-1287 |#1|) (-708 |#1|) (-660 (-708 |#1|))) 39 T ELT))) +(((-1106 |#1|) (-10 -7 (-15 -3640 ((-1287 (-708 (-419 (-964 |#1|)))) (-660 (-1197)) (-708 (-419 (-964 |#1|))))) (-15 -3640 ((-1287 (-708 (-964 |#1|))) (-660 (-1197)) (-708 (-964 |#1|)))) (-15 -3640 ((-1287 (-708 |#1|)) (-660 (-708 |#1|)))) (-15 -3641 ((-1287 |#1|) (-708 |#1|) (-660 (-708 |#1|))))) (-376)) (T -1106)) +((-3641 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-708 *5))) (-5 *3 (-708 *5)) (-4 *5 (-376)) (-5 *2 (-1287 *5)) (-5 *1 (-1106 *5)))) (-3640 (*1 *2 *3) (-12 (-5 *3 (-660 (-708 *4))) (-4 *4 (-376)) (-5 *2 (-1287 (-708 *4))) (-5 *1 (-1106 *4)))) (-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1197))) (-4 *5 (-376)) (-5 *2 (-1287 (-708 (-964 *5)))) (-5 *1 (-1106 *5)) (-5 *4 (-708 (-964 *5))))) (-3640 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-1197))) (-4 *5 (-376)) (-5 *2 (-1287 (-708 (-419 (-964 *5))))) (-5 *1 (-1106 *5)) (-5 *4 (-708 (-419 (-964 *5))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1619 (((-660 (-790)) $) NIL T ELT) (((-660 (-790)) $ (-1197)) NIL T ELT)) (-1653 (((-790) $) NIL T ELT) (((-790) $ (-1197)) NIL T ELT)) (-3483 (((-660 (-1108 (-1197))) $) NIL T ELT)) (-3485 (((-1191 $) $ (-1108 (-1197))) NIL T ELT) (((-1191 |#1|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1108 (-1197)))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-1615 (($ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1108 (-1197)) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL T ELT) (((-3 (-1145 |#1| (-1197)) #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-1108 (-1197)) $) NIL T ELT) (((-1197) $) NIL T ELT) (((-1145 |#1| (-1197)) $) NIL T ELT)) (-4185 (($ $ $ (-1108 (-1197))) NIL (|has| |#1| (-175)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1108 (-1197))) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-543 (-1108 (-1197))) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1108 (-1197)) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1108 (-1197)) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-4201 (((-790) $ (-1197)) NIL T ELT) (((-790) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3486 (($ (-1191 |#1|) (-1108 (-1197))) NIL T ELT) (($ (-1191 $) (-1108 (-1197))) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-543 (-1108 (-1197)))) NIL T ELT) (($ $ (-1108 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-1108 (-1197))) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1108 (-1197))) NIL T ELT)) (-3220 (((-543 (-1108 (-1197))) $) NIL T ELT) (((-790) $ (-1108 (-1197))) NIL T ELT) (((-660 (-790)) $ (-660 (-1108 (-1197)))) NIL T ELT)) (-1804 (($ (-1 (-543 (-1108 (-1197))) (-543 (-1108 (-1197)))) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1654 (((-1 $ (-790)) (-1197)) NIL T ELT) (((-1 $ (-790)) $) NIL (|has| |#1| (-240)) ELT)) (-3484 (((-3 (-1108 (-1197)) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-1617 (((-1108 (-1197)) $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1618 (((-114) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1108 (-1197))) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-1616 (($ $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1108 (-1197)) |#1|) NIL T ELT) (($ $ (-660 (-1108 (-1197))) (-660 |#1|)) NIL T ELT) (($ $ (-1108 (-1197)) $) NIL T ELT) (($ $ (-660 (-1108 (-1197))) (-660 $)) NIL T ELT) (($ $ (-1197) $) NIL (|has| |#1| (-240)) ELT) (($ $ (-660 (-1197)) (-660 $)) NIL (|has| |#1| (-240)) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-240)) ELT) (($ $ (-660 (-1197)) (-660 |#1|)) NIL (|has| |#1| (-240)) ELT)) (-4186 (($ $ (-1108 (-1197))) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-1108 (-1197))) (-660 (-790))) NIL T ELT) (($ $ (-1108 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-1108 (-1197)))) NIL T ELT) (($ $ (-1108 (-1197))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-1620 (((-660 (-1197)) $) NIL T ELT)) (-4377 (((-543 (-1108 (-1197))) $) NIL T ELT) (((-790) $ (-1108 (-1197))) NIL T ELT) (((-660 (-790)) $ (-660 (-1108 (-1197)))) NIL T ELT) (((-790) $ (-1197)) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-1108 (-1197)) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1108 (-1197)) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1108 (-1197)) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT) (($ $ (-1108 (-1197))) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-1108 (-1197))) NIL T ELT) (($ (-1197)) NIL T ELT) (($ (-1145 |#1| (-1197))) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-543 (-1108 (-1197)))) NIL T ELT) (($ $ (-1108 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-1108 (-1197))) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-1108 (-1197))) (-660 (-790))) NIL T ELT) (($ $ (-1108 (-1197)) (-790)) NIL T ELT) (($ $ (-660 (-1108 (-1197)))) NIL T ELT) (($ $ (-1108 (-1197))) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $) NIL (|has| |#1| (-239)) ELT) (($ $ (-790)) NIL (|has| |#1| (-239)) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1107 |#1|) (-13 (-262 |#1| (-1197) (-1108 (-1197)) (-543 (-1108 (-1197)))) (-1058 (-1145 |#1| (-1197)))) (-1069)) (T -1107)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-1653 (((-790) $) NIL T ELT)) (-4260 ((|#1| $) 10 T ELT)) (-3574 (((-3 |#1| "failed") $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT)) (-4201 (((-790) $) 11 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-1654 (($ |#1| (-790)) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4187 (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ |#1|) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3069 (($ $ (-790)) NIL T ELT) (($ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 16 T ELT))) +(((-1108 |#1|) (-277 |#1|) (-860)) (T -1108)) +NIL +((-2966 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4165 (($ |#1| |#1|) 16 T ELT)) (-4387 (((-660 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-859)) ELT)) (-3646 ((|#1| $) 12 T ELT)) (-3648 ((|#1| $) 11 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3644 (((-558) $) 15 T ELT)) (-3645 ((|#1| $) 14 T ELT)) (-3647 ((|#1| $) 13 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4392 (((-660 |#1|) $) 42 (|has| |#1| (-859)) ELT) (((-660 |#1|) (-660 $)) 41 (|has| |#1| (-859)) ELT)) (-4401 (($ |#1|) 29 T ELT)) (-4375 (((-876) $) 28 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4166 (($ |#1| |#1|) 10 T ELT)) (-3649 (($ $ (-558)) 17 T ELT)) (-3453 (((-114) $ $) 22 (|has| |#1| (-1121)) ELT))) +(((-1109 |#1|) (-13 (-1114 |#1|) (-10 -7 (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1115 |#1| (-660 |#1|))) |%noBranch|))) (-1237)) (T -1109)) +NIL +((-4387 (((-660 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 27 (|has| |#1| (-859)) ELT) (((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|)) 14 T ELT))) +(((-1110 |#1| |#2|) (-10 -7 (-15 -4387 ((-1109 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) (IF (|has| |#1| (-859)) (-15 -4387 ((-660 |#2|) (-1 |#2| |#1|) (-1109 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1110)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-859)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-660 *6)) (-5 *1 (-1110 *5 *6)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1109 *6)) (-5 *1 (-1110 *5 *6))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 16 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3642 (((-660 (-1155)) $) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1111) (-13 (-1103) (-10 -8 (-15 -3642 ((-660 (-1155)) $))))) (T -1111)) +((-3642 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-1111))))) +((-2966 (((-114) $ $) NIL (|has| (-1109 |#1|) (-1121)) ELT)) (-4260 (((-1197) $) NIL T ELT)) (-4165 (((-1109 |#1|) $) NIL T ELT)) (-3659 (((-1179) $) NIL (|has| (-1109 |#1|) (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| (-1109 |#1|) (-1121)) ELT)) (-3643 (($ (-1197) (-1109 |#1|)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| (-1109 |#1|) (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| (-1109 |#1|) (-1121)) ELT)) (-3453 (((-114) $ $) NIL (|has| (-1109 |#1|) (-1121)) ELT))) +(((-1112 |#1|) (-13 (-1237) (-10 -8 (-15 -3643 ($ (-1197) (-1109 |#1|))) (-15 -4260 ((-1197) $)) (-15 -4165 ((-1109 |#1|) $)) (IF (|has| (-1109 |#1|) (-1121)) (-6 (-1121)) |%noBranch|))) (-1237)) (T -1112)) +((-3643 (*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1109 *4)) (-4 *4 (-1237)) (-5 *1 (-1112 *4)))) (-4260 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1112 *3)) (-4 *3 (-1237)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-1109 *3)) (-5 *1 (-1112 *3)) (-4 *3 (-1237))))) +((-4387 (((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)) 19 T ELT))) +(((-1113 |#1| |#2|) (-10 -7 (-15 -4387 ((-1112 |#2|) (-1 |#2| |#1|) (-1112 |#1|)))) (-1237) (-1237)) (T -1113)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1112 *6)) (-5 *1 (-1113 *5 *6))))) +((-4165 (($ |#1| |#1|) 8 T ELT)) (-3646 ((|#1| $) 11 T ELT)) (-3648 ((|#1| $) 13 T ELT)) (-3644 (((-558) $) 9 T ELT)) (-3645 ((|#1| $) 10 T ELT)) (-3647 ((|#1| $) 12 T ELT)) (-4401 (($ |#1|) 6 T ELT)) (-4166 (($ |#1| |#1|) 15 T ELT)) (-3649 (($ $ (-558)) 14 T ELT))) +(((-1114 |#1|) (-142) (-1237)) (T -1114)) +((-4166 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) (-3649 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1114 *3)) (-4 *3 (-1237)))) (-3648 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) (-3647 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) (-3646 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) (-3645 (*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) (-3644 (*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1237)) (-5 *2 (-558)))) (-4165 (*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237))))) +(-13 (-634 |t#1|) (-10 -8 (-15 -4166 ($ |t#1| |t#1|)) (-15 -3649 ($ $ (-558))) (-15 -3648 (|t#1| $)) (-15 -3647 (|t#1| $)) (-15 -3646 (|t#1| $)) (-15 -3645 (|t#1| $)) (-15 -3644 ((-558) $)) (-15 -4165 ($ |t#1| |t#1|)))) +(((-634 |#1|) . T)) +((-4165 (($ |#1| |#1|) 8 T ELT)) (-4387 ((|#2| (-1 |#1| |#1|) $) 17 T ELT)) (-3646 ((|#1| $) 11 T ELT)) (-3648 ((|#1| $) 13 T ELT)) (-3644 (((-558) $) 9 T ELT)) (-3645 ((|#1| $) 10 T ELT)) (-3647 ((|#1| $) 12 T ELT)) (-4392 ((|#2| (-660 $)) 19 T ELT) ((|#2| $) 18 T ELT)) (-4401 (($ |#1|) 6 T ELT)) (-4166 (($ |#1| |#1|) 15 T ELT)) (-3649 (($ $ (-558)) 14 T ELT))) +(((-1115 |#1| |#2|) (-142) (-859) (-1170 |t#1|)) (T -1115)) +((-4392 (*1 *2 *3) (-12 (-5 *3 (-660 *1)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1170 *4)))) (-4392 (*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1170 *3)))) (-4387 (*1 *2 *3 *1) (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-859)) (-4 *2 (-1170 *4))))) +(-13 (-1114 |t#1|) (-10 -8 (-15 -4392 (|t#2| (-660 $))) (-15 -4392 (|t#2| $)) (-15 -4387 (|t#2| (-1 |t#1| |t#1|) $)))) +(((-634 |#1|) . T) ((-1114 |#1|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4227 (((-1155) $) 12 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 18 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-3650 (((-660 (-1155)) $) 10 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1116) (-13 (-1103) (-10 -8 (-15 -3650 ((-660 (-1155)) $)) (-15 -4227 ((-1155) $))))) (T -1116)) +((-3650 (*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-1116)))) (-4227 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1116))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2009 (($) NIL (|has| |#1| (-381)) ELT)) (-3651 (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ $ $) 83 T ELT)) (-3653 (($ $ $) 80 T ELT)) (-3652 (((-114) $ $) 82 T ELT)) (-3537 (((-790)) NIL (|has| |#1| (-381)) ELT)) (-3656 (($ (-660 |#1|)) NIL T ELT) (($) 13 T ELT)) (-1712 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3824 (($ |#1| $) 74 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 43 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 41 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 39 (|has| $ (-6 -4424)) ELT)) (-3394 (($) NIL (|has| |#1| (-381)) ELT)) (-3289 (((-660 |#1|) $) 19 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) NIL T ELT)) (-2929 ((|#1| $) 55 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 73 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3257 ((|#1| $) 53 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 34 T ELT)) (-2219 (((-937) $) NIL (|has| |#1| (-381)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3655 (($ $ $) 78 T ELT)) (-1388 ((|#1| $) 25 T ELT)) (-4036 (($ |#1| $) 69 T ELT)) (-2630 (($ (-937)) NIL (|has| |#1| (-381)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 31 T ELT)) (-1389 ((|#1| $) 27 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 21 T ELT)) (-3992 (($) 11 T ELT)) (-3654 (($ $ |#1|) NIL T ELT) (($ $ $) 79 T ELT)) (-1597 (($) NIL T ELT) (($ (-660 |#1|)) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 16 T ELT)) (-4401 (((-547) $) 50 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 62 T ELT)) (-2010 (($ $) NIL (|has| |#1| (-381)) ELT)) (-4375 (((-876) $) NIL T ELT)) (-2011 (((-790) $) NIL T ELT)) (-3657 (($ (-660 |#1|)) NIL T ELT) (($) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-1390 (($ (-660 |#1|)) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 52 T ELT)) (-4386 (((-790) $) 10 (|has| $ (-6 -4424)) ELT))) +(((-1117 |#1|) (-438 |#1|) (-1121)) (T -1117)) +NIL +((-3651 (($ $ $) NIL T ELT) (($ $ |#2|) 13 T ELT) (($ |#2| $) 14 T ELT)) (-3653 (($ $ $) 10 T ELT)) (-3654 (($ $ $) NIL T ELT) (($ $ |#2|) 15 T ELT))) +(((-1118 |#1| |#2|) (-10 -7 (-15 -3651 (|#1| |#2| |#1|)) (-15 -3651 (|#1| |#1| |#2|)) (-15 -3651 (|#1| |#1| |#1|)) (-15 -3653 (|#1| |#1| |#1|)) (-15 -3654 (|#1| |#1| |#2|)) (-15 -3654 (|#1| |#1| |#1|))) (-1119 |#2|) (-1121)) (T -1118)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3651 (($ $ $) 22 T ELT) (($ $ |#1|) 21 T ELT) (($ |#1| $) 20 T ELT)) (-3653 (($ $ $) 24 T ELT)) (-3652 (((-114) $ $) 23 T ELT)) (-3656 (($) 29 T ELT) (($ (-660 |#1|)) 28 T ELT)) (-4139 (($ (-1 (-114) |#1|) $) 57 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 37 T CONST)) (-1466 (($ $) 60 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 59 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 56 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 58 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 55 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3289 (((-660 |#1|) $) 44 (|has| $ (-6 -4424)) ELT)) (-3658 (((-114) $ $) 32 T ELT)) (-3006 (((-660 |#1|) $) 45 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 47 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 40 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 39 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3655 (($ $ $) 27 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 53 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 42 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#1|) (-660 |#1|)) 51 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 50 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 49 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 (-305 |#1|))) 48 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 33 T ELT)) (-3822 (((-114) $) 36 T ELT)) (-3992 (($) 35 T ELT)) (-3654 (($ $ $) 26 T ELT) (($ $ |#1|) 25 T ELT)) (-2156 (((-790) |#1| $) 46 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#1|) $) 43 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 34 T ELT)) (-4401 (((-547) $) 61 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 52 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-3657 (($) 31 T ELT) (($ (-660 |#1|)) 30 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 41 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 38 (|has| $ (-6 -4424)) ELT))) +(((-1119 |#1|) (-142) (-1121)) (T -1119)) +((-3658 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-114)))) (-3657 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3657 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-3656 (*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3656 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) (-3655 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3654 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3654 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3653 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3652 (*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-114)))) (-3651 (*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3651 (*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) (-3651 (*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(-13 (-1121) (-153 |t#1|) (-10 -8 (-6 -4414) (-15 -3658 ((-114) $ $)) (-15 -3657 ($)) (-15 -3657 ($ (-660 |t#1|))) (-15 -3656 ($)) (-15 -3656 ($ (-660 |t#1|))) (-15 -3655 ($ $ $)) (-15 -3654 ($ $ $)) (-15 -3654 ($ $ |t#1|)) (-15 -3653 ($ $ $)) (-15 -3652 ((-114) $ $)) (-15 -3651 ($ $ $)) (-15 -3651 ($ $ |t#1|)) (-15 -3651 ($ |t#1| $)))) +(((-34) . T) ((-102) . T) ((-629 (-876)) . T) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) . T) ((-1237) . T)) +((-3659 (((-1179) $) 10 T ELT)) (-3660 (((-1140) $) 8 T ELT))) +(((-1120 |#1|) (-10 -7 (-15 -3659 ((-1179) |#1|)) (-15 -3660 ((-1140) |#1|))) (-1121)) (T -1120)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-1121) (-142)) (T -1121)) +((-3660 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1140)))) (-3659 (*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) +(-13 (-102) (-629 (-876)) (-10 -8 (-15 -3660 ((-1140) $)) (-15 -3659 ((-1179) $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) 36 T ELT)) (-3664 (($ (-660 (-937))) 70 T ELT)) (-3666 (((-3 $ #1="failed") $ (-937) (-937)) 81 T ELT)) (-3394 (($) 40 T ELT)) (-3662 (((-114) (-937) $) 42 T ELT)) (-2219 (((-937) $) 64 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 39 T ELT)) (-3667 (((-3 $ #1#) $ (-937)) 77 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3663 (((-1287 $)) 47 T ELT)) (-3665 (((-660 (-937)) $) 27 T ELT)) (-3661 (((-790) $ (-937) (-937)) 78 T ELT)) (-4375 (((-876) $) 32 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 24 T ELT))) +(((-1122 |#1| |#2|) (-13 (-381) (-10 -8 (-15 -3667 ((-3 $ #1="failed") $ (-937))) (-15 -3666 ((-3 $ #1#) $ (-937) (-937))) (-15 -3665 ((-660 (-937)) $)) (-15 -3664 ($ (-660 (-937)))) (-15 -3663 ((-1287 $))) (-15 -3662 ((-114) (-937) $)) (-15 -3661 ((-790) $ (-937) (-937))))) (-937) (-937)) (T -1122)) +((-3667 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3666 (*1 *1 *1 *2 *2) (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2))) (-3665 (*1 *2 *1) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3664 (*1 *1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3663 (*1 *2) (-12 (-5 *2 (-1287 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) (-3662 (*1 *2 *3 *1) (-12 (-5 *3 (-937)) (-5 *2 (-114)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3))) (-3661 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-790)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3677 (((-114) $) NIL T ELT)) (-3673 (((-1197) $) NIL T ELT)) (-3678 (((-114) $) NIL T ELT)) (-3962 (((-1179) $) NIL T ELT)) (-3680 (((-114) $) NIL T ELT)) (-3682 (((-114) $) NIL T ELT)) (-3679 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3676 (((-114) $) NIL T ELT)) (-3672 (((-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3675 (((-114) $) NIL T ELT)) (-3671 (((-229) $) NIL T ELT)) (-3670 (((-876) $) NIL T ELT)) (-3683 (((-114) $ $) NIL T ELT)) (-4229 (($ $ (-558)) NIL T ELT) (($ $ (-660 (-558))) NIL T ELT)) (-3674 (((-660 $) $) NIL T ELT)) (-4401 (($ (-1179)) NIL T ELT) (($ (-1197)) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-229)) NIL T ELT) (($ (-876)) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-3668 (($ $) NIL T ELT)) (-3669 (($ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3681 (((-114) $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4386 (((-558) $) NIL T ELT))) +(((-1123) (-1124 (-1179) (-1197) (-558) (-229) (-876))) (T -1123)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3677 (((-114) $) 36 T ELT)) (-3673 ((|#2| $) 31 T ELT)) (-3678 (((-114) $) 37 T ELT)) (-3962 ((|#1| $) 32 T ELT)) (-3680 (((-114) $) 39 T ELT)) (-3682 (((-114) $) 41 T ELT)) (-3679 (((-114) $) 38 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3676 (((-114) $) 35 T ELT)) (-3672 ((|#3| $) 30 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3675 (((-114) $) 34 T ELT)) (-3671 ((|#4| $) 29 T ELT)) (-3670 ((|#5| $) 28 T ELT)) (-3683 (((-114) $ $) 42 T ELT)) (-4229 (($ $ (-558)) 44 T ELT) (($ $ (-660 (-558))) 43 T ELT)) (-3674 (((-660 $) $) 33 T ELT)) (-4401 (($ |#1|) 50 T ELT) (($ |#2|) 49 T ELT) (($ |#3|) 48 T ELT) (($ |#4|) 47 T ELT) (($ |#5|) 46 T ELT) (($ (-660 $)) 45 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-3668 (($ $) 26 T ELT)) (-3669 (($ $) 27 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3681 (((-114) $) 40 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-558) $) 25 T ELT))) +(((-1124 |#1| |#2| |#3| |#4| |#5|) (-142) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1124)) +((-3683 (*1 *2 *1 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3682 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3681 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3680 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3679 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3678 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3677 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3676 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3675 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114)))) (-3674 (*1 *2 *1) (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7)))) (-3962 (*1 *2 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3673 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3672 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3671 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3670 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) (-3669 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-3668 (*1 *1 *1) (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)))) (-4386 (*1 *2 *1) (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-558))))) +(-13 (-1121) (-634 |t#1|) (-634 |t#2|) (-634 |t#3|) (-634 |t#4|) (-634 |t#4|) (-634 |t#5|) (-634 (-660 $)) (-298 (-558) $) (-298 (-660 (-558)) $) (-10 -8 (-15 -3683 ((-114) $ $)) (-15 -3682 ((-114) $)) (-15 -3681 ((-114) $)) (-15 -3680 ((-114) $)) (-15 -3679 ((-114) $)) (-15 -3678 ((-114) $)) (-15 -3677 ((-114) $)) (-15 -3676 ((-114) $)) (-15 -3675 ((-114) $)) (-15 -3674 ((-660 $) $)) (-15 -3962 (|t#1| $)) (-15 -3673 (|t#2| $)) (-15 -3672 (|t#3| $)) (-15 -3671 (|t#4| $)) (-15 -3670 (|t#5| $)) (-15 -3669 ($ $)) (-15 -3668 ($ $)) (-15 -4386 ((-558) $)))) +(((-102) . T) ((-629 (-876)) . T) ((-634 (-660 $)) . T) ((-634 |#1|) . T) ((-634 |#2|) . T) ((-634 |#3|) . T) ((-634 |#4|) . T) ((-634 |#5|) . T) ((-298 (-558) $) . T) ((-298 (-660 (-558)) $) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3677 (((-114) $) 45 T ELT)) (-3673 ((|#2| $) 48 T ELT)) (-3678 (((-114) $) 20 T ELT)) (-3962 ((|#1| $) 21 T ELT)) (-3680 (((-114) $) 42 T ELT)) (-3682 (((-114) $) 14 T ELT)) (-3679 (((-114) $) 44 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3676 (((-114) $) 46 T ELT)) (-3672 ((|#3| $) 50 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3675 (((-114) $) 47 T ELT)) (-3671 ((|#4| $) 49 T ELT)) (-3670 ((|#5| $) 51 T ELT)) (-3683 (((-114) $ $) 41 T ELT)) (-4229 (($ $ (-558)) 62 T ELT) (($ $ (-660 (-558))) 64 T ELT)) (-3674 (((-660 $) $) 27 T ELT)) (-4401 (($ |#1|) 53 T ELT) (($ |#2|) 54 T ELT) (($ |#3|) 55 T ELT) (($ |#4|) 56 T ELT) (($ |#5|) 57 T ELT) (($ (-660 $)) 52 T ELT)) (-4375 (((-876) $) 28 T ELT)) (-3668 (($ $) 26 T ELT)) (-3669 (($ $) 58 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3681 (((-114) $) 23 T ELT)) (-3453 (((-114) $ $) 40 T ELT)) (-4386 (((-558) $) 60 T ELT))) +(((-1125 |#1| |#2| |#3| |#4| |#5|) (-1124 |#1| |#2| |#3| |#4| |#5|) (-1121) (-1121) (-1121) (-1121) (-1121)) (T -1125)) +NIL +((-3799 (((-1293) $) 22 T ELT)) (-3684 (($ (-1197) (-446) |#2|) 11 T ELT)) (-4375 (((-876) $) 16 T ELT))) +(((-1126 |#1| |#2|) (-13 (-408) (-10 -8 (-15 -3684 ($ (-1197) (-446) |#2|)))) (-1121) (-433 |#1|)) (T -1126)) +((-3684 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1126 *5 *4)) (-4 *4 (-433 *5))))) +((-3687 (((-114) |#5| |#5|) 44 T ELT)) (-3690 (((-114) |#5| |#5|) 59 T ELT)) (-3695 (((-114) |#5| (-660 |#5|)) 82 T ELT) (((-114) |#5| |#5|) 68 T ELT)) (-3691 (((-114) (-660 |#4|) (-660 |#4|)) 65 T ELT)) (-3697 (((-114) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) 70 T ELT)) (-3686 (((-1293)) 32 T ELT)) (-3685 (((-1293) (-1179) (-1179) (-1179)) 28 T ELT)) (-3696 (((-660 |#5|) (-660 |#5|)) 101 T ELT)) (-3698 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)))) 93 T ELT)) (-3699 (((-660 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-114) (-114)) 123 T ELT)) (-3689 (((-114) |#5| |#5|) 53 T ELT)) (-3694 (((-3 (-114) #1="failed") |#5| |#5|) 78 T ELT)) (-3692 (((-114) (-660 |#4|) (-660 |#4|)) 64 T ELT)) (-3693 (((-114) (-660 |#4|) (-660 |#4|)) 66 T ELT)) (-4128 (((-114) (-660 |#4|) (-660 |#4|)) 67 T ELT)) (-3700 (((-3 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|))) #1#) (-660 |#4|) |#5| (-660 |#4|) (-114) (-114) (-114) (-114) (-114)) 118 T ELT)) (-3688 (((-660 |#5|) (-660 |#5|)) 49 T ELT))) +(((-1127 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3685 ((-1293) (-1179) (-1179) (-1179))) (-15 -3686 ((-1293))) (-15 -3687 ((-114) |#5| |#5|)) (-15 -3688 ((-660 |#5|) (-660 |#5|))) (-15 -3689 ((-114) |#5| |#5|)) (-15 -3690 ((-114) |#5| |#5|)) (-15 -3691 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3692 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3693 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -4128 ((-114) (-660 |#4|) (-660 |#4|))) (-15 -3694 ((-3 (-114) #1="failed") |#5| |#5|)) (-15 -3695 ((-114) |#5| |#5|)) (-15 -3695 ((-114) |#5| (-660 |#5|))) (-15 -3696 ((-660 |#5|) (-660 |#5|))) (-15 -3697 ((-114) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)))) (-15 -3698 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) (-15 -3699 ((-660 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|)))) (-660 |#4|) (-660 |#5|) (-114) (-114))) (-15 -3700 ((-3 (-2 (|:| -3683 (-660 |#4|)) (|:| -1742 |#5|) (|:| |ineq| (-660 |#4|))) #1#) (-660 |#4|) |#5| (-660 |#4|) (-114) (-114) (-114) (-114) (-114)))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1127)) +((-3700 (*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *4) (|:| |ineq| (-660 *9)))) (-5 *1 (-1127 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) (-4 *4 (-1091 *6 *7 *8 *9)))) (-3699 (*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-660 *10)) (-5 *5 (-114)) (-4 *10 (-1091 *6 *7 *8 *9)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *10) (|:| |ineq| (-660 *9))))) (-5 *1 (-1127 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) (-3698 (*1 *2 *2) (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -1742 *7)))) (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1127 *3 *4 *5 *6 *7)))) (-3697 (*1 *2 *3 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)))) (-3696 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1127 *3 *4 *5 *6 *7)))) (-3695 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1127 *5 *6 *7 *8 *3)))) (-3695 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3694 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-4128 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3693 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3692 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3691 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3690 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3689 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3688 (*1 *2 *2) (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *1 (-1127 *3 *4 *5 *6 *7)))) (-3687 (*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) (-3686 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3685 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) +((-3715 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#5|) 106 T ELT)) (-3705 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#4| |#4| |#5|) 79 T ELT)) (-3708 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|) 100 T ELT)) (-3710 (((-660 |#5|) |#4| |#5|) 122 T ELT)) (-3712 (((-660 |#5|) |#4| |#5|) 129 T ELT)) (-3714 (((-660 |#5|) |#4| |#5|) 130 T ELT)) (-3709 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|) 107 T ELT)) (-3711 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|) 128 T ELT)) (-3713 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|) 47 T ELT) (((-114) |#4| |#5|) 55 T ELT)) (-3706 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#3| (-114)) 91 T ELT) (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5| (-114) (-114)) 52 T ELT)) (-3707 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|) 86 T ELT)) (-3704 (((-1293)) 36 T ELT)) (-3702 (((-1293)) 25 T ELT)) (-3703 (((-1293) (-1179) (-1179) (-1179)) 32 T ELT)) (-3701 (((-1293) (-1179) (-1179) (-1179)) 21 T ELT))) +(((-1128 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3701 ((-1293) (-1179) (-1179) (-1179))) (-15 -3702 ((-1293))) (-15 -3703 ((-1293) (-1179) (-1179) (-1179))) (-15 -3704 ((-1293))) (-15 -3705 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#4| |#4| |#5|)) (-15 -3706 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5| (-114) (-114))) (-15 -3706 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) |#3| (-114))) (-15 -3707 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|)) (-15 -3708 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#4| |#5|)) (-15 -3713 ((-114) |#4| |#5|)) (-15 -3709 ((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|)) (-15 -3710 ((-660 |#5|) |#4| |#5|)) (-15 -3711 ((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|)) (-15 -3712 ((-660 |#5|) |#4| |#5|)) (-15 -3713 ((-660 (-2 (|:| |val| (-114)) (|:| -1742 |#5|))) |#4| |#5|)) (-15 -3714 ((-660 |#5|) |#4| |#5|)) (-15 -3715 ((-660 (-2 (|:| |val| |#4|) (|:| -1742 |#5|))) |#4| |#5|))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1091 |#1| |#2| |#3| |#4|)) (T -1128)) +((-3715 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3714 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3712 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3711 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3710 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3709 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3713 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3708 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3707 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3706 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *5 (-114)) (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *4 (-860)) (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -1742 *9)))) (-5 *1 (-1128 *6 *7 *4 *8 *9)))) (-3706 (*1 *2 *3 *3 *4 *5 *5) (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1128 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) (-3705 (*1 *2 *3 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) (-3704 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3703 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7)))) (-3702 (*1 *2) (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) (-3701 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) (-4 *8 (-1091 *4 *5 *6 *7))))) +((-2966 (((-114) $ $) 7 T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) 90 T ELT)) (-4111 (((-660 $) (-660 |#4|)) 91 T ELT) (((-660 $) (-660 |#4|) (-114)) 118 T ELT)) (-3483 (((-660 |#3|) $) 37 T ELT)) (-3308 (((-114) $) 30 T ELT)) (-3299 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4117 ((|#4| |#4| $) 97 T ELT)) (-4204 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| $) 133 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4139 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4153 (($) 46 T CONST)) (-3304 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") (-660 |#4|)) 40 T ELT)) (-3573 (($ (-660 |#4|)) 39 T ELT)) (-4228 (((-3 $ #1#) $) 87 T ELT)) (-4114 ((|#4| |#4| $) 94 T ELT)) (-1466 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4112 ((|#4| |#4| $) 92 T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) 110 T ELT)) (-3614 (((-114) |#4| $) 143 T ELT)) (-3612 (((-114) |#4| $) 140 T ELT)) (-3615 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3289 (((-660 |#4|) $) 53 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3314 (((-660 |#3|) $) 36 T ELT)) (-3313 (((-114) |#3| $) 35 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3608 (((-3 |#4| (-660 $)) |#4| |#4| $) 135 T ELT)) (-3607 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| |#4| $) 134 T ELT)) (-4227 (((-3 |#4| #1#) $) 88 T ELT)) (-3609 (((-660 $) |#4| $) 136 T ELT)) (-3611 (((-3 (-114) (-660 $)) |#4| $) 139 T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3655 (((-660 $) |#4| $) 132 T ELT) (((-660 $) (-660 |#4|) $) 131 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 130 T ELT) (((-660 $) |#4| (-660 $)) 129 T ELT)) (-3859 (($ |#4| $) 124 T ELT) (($ (-660 |#4|) $) 123 T ELT)) (-4126 (((-660 |#4|) $) 112 T ELT)) (-4120 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4115 ((|#4| |#4| $) 95 T ELT)) (-4128 (((-114) $ $) 115 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4116 ((|#4| |#4| $) 96 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4230 (((-3 |#4| #1#) $) 89 T ELT)) (-1467 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4198 (($ $ |#4|) 82 T ELT) (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) 42 T ELT)) (-3822 (((-114) $) 45 T ELT)) (-3992 (($) 44 T ELT)) (-4377 (((-790) $) 111 T ELT)) (-2156 (((-790) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 43 T ELT)) (-4401 (((-547) $) 70 (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 61 T ELT)) (-3310 (($ $ |#3|) 32 T ELT)) (-3312 (($ $ |#3|) 34 T ELT)) (-4113 (($ $) 93 T ELT)) (-3311 (($ $ |#3|) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (((-660 |#4|) $) 41 T ELT)) (-4107 (((-790) $) 81 (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) 103 T ELT)) (-3606 (((-660 $) |#4| $) 128 T ELT) (((-660 $) |#4| (-660 $)) 127 T ELT) (((-660 $) (-660 |#4|) $) 126 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 125 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) 86 T ELT)) (-3613 (((-114) |#4| $) 142 T ELT)) (-4362 (((-114) |#3| $) 85 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 47 (|has| $ (-6 -4424)) ELT))) +(((-1129 |#1| |#2| |#3| |#4|) (-142) (-464) (-814) (-860) (-1085 |t#1| |t#2| |t#3|)) (T -1129)) +NIL +(-13 (-1091 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-629 (-660 |#4|)) . T) ((-629 (-876)) . T) ((-153 |#4|) . T) ((-630 (-547)) |has| |#4| (-630 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) +((-3726 (((-660 (-558)) (-558) (-558) (-558)) 40 T ELT)) (-3725 (((-660 (-558)) (-558) (-558) (-558)) 30 T ELT)) (-3724 (((-660 (-558)) (-558) (-558) (-558)) 35 T ELT)) (-3723 (((-558) (-558) (-558)) 22 T ELT)) (-3722 (((-1287 (-558)) (-660 (-558)) (-1287 (-558)) (-558)) 79 T ELT) (((-1287 (-558)) (-1287 (-558)) (-1287 (-558)) (-558)) 74 T ELT)) (-3721 (((-660 (-558)) (-660 (-937)) (-660 (-558)) (-114)) 56 T ELT)) (-3720 (((-708 (-558)) (-660 (-558)) (-660 (-558)) (-708 (-558))) 78 T ELT)) (-3719 (((-708 (-558)) (-660 (-937)) (-660 (-558))) 61 T ELT)) (-3718 (((-660 (-708 (-558))) (-660 (-937))) 67 T ELT)) (-3717 (((-660 (-558)) (-660 (-558)) (-660 (-558)) (-708 (-558))) 82 T ELT)) (-3716 (((-708 (-558)) (-660 (-558)) (-660 (-558)) (-660 (-558))) 92 T ELT))) +(((-1130) (-10 -7 (-15 -3716 ((-708 (-558)) (-660 (-558)) (-660 (-558)) (-660 (-558)))) (-15 -3717 ((-660 (-558)) (-660 (-558)) (-660 (-558)) (-708 (-558)))) (-15 -3718 ((-660 (-708 (-558))) (-660 (-937)))) (-15 -3719 ((-708 (-558)) (-660 (-937)) (-660 (-558)))) (-15 -3720 ((-708 (-558)) (-660 (-558)) (-660 (-558)) (-708 (-558)))) (-15 -3721 ((-660 (-558)) (-660 (-937)) (-660 (-558)) (-114))) (-15 -3722 ((-1287 (-558)) (-1287 (-558)) (-1287 (-558)) (-558))) (-15 -3722 ((-1287 (-558)) (-660 (-558)) (-1287 (-558)) (-558))) (-15 -3723 ((-558) (-558) (-558))) (-15 -3724 ((-660 (-558)) (-558) (-558) (-558))) (-15 -3725 ((-660 (-558)) (-558) (-558) (-558))) (-15 -3726 ((-660 (-558)) (-558) (-558) (-558))))) (T -1130)) +((-3726 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1130)) (-5 *3 (-558)))) (-3725 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1130)) (-5 *3 (-558)))) (-3724 (*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1130)) (-5 *3 (-558)))) (-3723 (*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1130)))) (-3722 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-1287 (-558))) (-5 *3 (-660 (-558))) (-5 *4 (-558)) (-5 *1 (-1130)))) (-3722 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-1287 (-558))) (-5 *3 (-558)) (-5 *1 (-1130)))) (-3721 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-660 (-558))) (-5 *3 (-660 (-937))) (-5 *4 (-114)) (-5 *1 (-1130)))) (-3720 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-708 (-558))) (-5 *3 (-660 (-558))) (-5 *1 (-1130)))) (-3719 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-937))) (-5 *4 (-660 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-1130)))) (-3718 (*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-1130)))) (-3717 (*1 *2 *2 *2 *3) (-12 (-5 *2 (-660 (-558))) (-5 *3 (-708 (-558))) (-5 *1 (-1130)))) (-3716 (*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-1130))))) +((** (($ $ (-937)) 10 T ELT))) +(((-1131 |#1|) (-10 -7 (-15 ** (|#1| |#1| (-937)))) (-1132)) (T -1131)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (** (($ $ (-937)) 17 T ELT)) (* (($ $ $) 18 T ELT))) +(((-1132) (-142)) (T -1132)) +((* (*1 *1 *1 *1) (-4 *1 (-1132))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1132)) (-5 *2 (-937))))) +(-13 (-1121) (-10 -8 (-15 * ($ $ $)) (-15 ** ($ $ (-937))))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3605 (((-114) $) NIL (|has| |#3| (-23)) ELT)) (-4136 (($ (-937)) NIL (|has| |#3| (-1069)) ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-2872 (($ $ $) NIL (|has| |#3| (-814)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL (|has| |#3| (-133)) ELT)) (-3537 (((-790)) NIL (|has| |#3| (-381)) ELT)) (-4217 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121))) ELT) (((-3 |#3| #1#) $) NIL (|has| |#3| (-1121)) ELT)) (-3573 (((-558) $) NIL (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121))) ELT) ((|#3| $) NIL (|has| |#3| (-1121)) ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-708 $) (-1287 $)) NIL (|has| |#3| (-1069)) ELT) (((-708 |#3|) (-708 $)) NIL (|has| |#3| (-1069)) ELT)) (-3886 (((-3 $ #1#) $) NIL (|has| |#3| (-1069)) ELT)) (-3394 (($) NIL (|has| |#3| (-381)) ELT)) (-1718 ((|#3| $ (-558) |#3|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#3| $ (-558)) 12 T ELT)) (-3603 (((-114) $) NIL (|has| |#3| (-814)) ELT)) (-3289 (((-660 |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL (|has| |#3| (-1069)) ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#3| (-860)) ELT)) (-3006 (((-660 |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#3| (-860)) ELT)) (-2159 (($ (-1 |#3| |#3|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#3| |#3|) $) NIL T ELT)) (-2219 (((-937) $) NIL (|has| |#3| (-381)) ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#3| (-657 (-558))) (|has| |#3| (-1069))) ELT) (((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-1287 $) $) NIL (|has| |#3| (-1069)) ELT) (((-708 |#3|) (-1287 $)) NIL (|has| |#3| (-1069)) ELT)) (-3659 (((-1179) $) NIL (|has| |#3| (-1121)) ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-2630 (($ (-937)) NIL (|has| |#3| (-381)) ELT)) (-3660 (((-1140) $) NIL (|has| |#3| (-1121)) ELT)) (-4230 ((|#3| $) NIL (|has| (-558) (-860)) ELT)) (-2413 (($ $ |#3|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#3|))) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-305 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ |#3| |#3|) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT) (($ $ (-660 |#3|) (-660 |#3|)) NIL (-12 (|has| |#3| (-321 |#3|)) (|has| |#3| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-2419 (((-660 |#3|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#3| $ (-558) |#3|) NIL T ELT) ((|#3| $ (-558)) NIL T ELT)) (-4265 ((|#3| $ $) NIL (|has| |#3| (-1069)) ELT)) (-1599 (($ (-1287 |#3|)) NIL T ELT)) (-4340 (((-136)) NIL (|has| |#3| (-376)) ELT)) (-4187 (($ $ (-790)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1069))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-1 |#3| |#3|) (-790)) NIL (|has| |#3| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#3| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#3| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4375 (((-1287 |#3|) $) NIL T ELT) (($ (-558)) NIL (-3956 (-12 (|has| |#3| (-1058 (-558))) (|has| |#3| (-1121))) (|has| |#3| (-1069))) ELT) (($ (-419 (-558))) NIL (-12 (|has| |#3| (-1058 (-419 (-558)))) (|has| |#3| (-1121))) ELT) (($ |#3|) NIL (|has| |#3| (-1121)) ELT) (((-876) $) NIL (|has| |#3| (-629 (-876))) ELT)) (-3527 (((-790)) NIL (|has| |#3| (-1069)) CONST)) (-1377 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#3|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3058 (($) NIL (|has| |#3| (-23)) CONST)) (-3064 (($) NIL (|has| |#3| (-1069)) CONST)) (-3069 (($ $ (-790)) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1069))) ELT) (($ $) NIL (-12 (|has| |#3| (-239)) (|has| |#3| (-1069))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-1197)) NIL (-12 (|has| |#3| (-918 (-1197))) (|has| |#3| (-1069))) ELT) (($ $ (-1 |#3| |#3|)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-1 |#3| |#3|) (-790)) NIL (|has| |#3| (-1069)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#3| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#3| (-860)) ELT)) (-3085 (((-114) $ $) 24 (|has| |#3| (-860)) ELT)) (-4378 (($ $ |#3|) NIL (|has| |#3| (-376)) ELT)) (-4266 (($ $ $) NIL (|has| |#3| (-21)) ELT) (($ $) NIL (|has| |#3| (-21)) ELT)) (-4268 (($ $ $) NIL (|has| |#3| (-25)) ELT)) (** (($ $ (-790)) NIL (|has| |#3| (-1069)) ELT) (($ $ (-937)) NIL (|has| |#3| (-1069)) ELT)) (* (($ $ $) NIL (|has| |#3| (-1069)) ELT) (($ $ |#3|) NIL (|has| |#3| (-745)) ELT) (($ |#3| $) NIL (|has| |#3| (-745)) ELT) (($ (-558) $) NIL (|has| |#3| (-21)) ELT) (($ (-790) $) NIL (|has| |#3| (-23)) ELT) (($ (-937) $) NIL (|has| |#3| (-25)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1133 |#1| |#2| |#3|) (-245 |#1| |#3|) (-790) (-790) (-814)) (T -1133)) +NIL +((-3727 (((-660 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 50 T ELT)) (-3733 (((-558) (-1256 |#2| |#1|)) 96 (|has| |#1| (-464)) ELT)) (-3731 (((-558) (-1256 |#2| |#1|)) 79 T ELT)) (-3728 (((-660 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 58 T ELT)) (-3732 (((-558) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 95 (|has| |#1| (-464)) ELT)) (-3729 (((-660 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 61 T ELT)) (-3730 (((-558) (-1256 |#2| |#1|) (-1256 |#2| |#1|)) 78 T ELT))) +(((-1134 |#1| |#2|) (-10 -7 (-15 -3727 ((-660 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3728 ((-660 (-1256 |#2| |#1|)) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3729 ((-660 |#1|) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3730 ((-558) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3731 ((-558) (-1256 |#2| |#1|))) (IF (|has| |#1| (-464)) (PROGN (-15 -3732 ((-558) (-1256 |#2| |#1|) (-1256 |#2| |#1|))) (-15 -3733 ((-558) (-1256 |#2| |#1|)))) |%noBranch|)) (-841) (-1197)) (T -1134)) +((-3733 (*1 *2 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-464)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-558)) (-5 *1 (-1134 *4 *5)))) (-3732 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-464)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-558)) (-5 *1 (-1134 *4 *5)))) (-3731 (*1 *2 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-558)) (-5 *1 (-1134 *4 *5)))) (-3730 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-558)) (-5 *1 (-1134 *4 *5)))) (-3729 (*1 *2 *3 *3) (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-660 *4)) (-5 *1 (-1134 *4 *5)))) (-3728 (*1 *2 *3 *3) (-12 (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-660 (-1256 *5 *4))) (-5 *1 (-1134 *4 *5)) (-5 *3 (-1256 *5 *4)))) (-3727 (*1 *2 *3 *3) (-12 (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-660 (-1256 *5 *4))) (-5 *1 (-1134 *4 *5)) (-5 *3 (-1256 *5 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3735 (((-1202) $) 12 T ELT)) (-3734 (((-660 (-1202)) $) 14 T ELT)) (-3736 (($ (-660 (-1202)) (-1202)) 10 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 29 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 17 T ELT))) +(((-1135) (-13 (-1121) (-10 -8 (-15 -3736 ($ (-660 (-1202)) (-1202))) (-15 -3735 ((-1202) $)) (-15 -3734 ((-660 (-1202)) $))))) (T -1135)) +((-3736 (*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1135)))) (-3735 (*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1135)))) (-3734 (*1 *2 *1) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-1135))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3737 (($ (-518) (-1135)) 13 T ELT)) (-3736 (((-1135) $) 19 T ELT)) (-3969 (((-518) $) 16 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 26 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1136) (-13 (-1103) (-10 -8 (-15 -3737 ($ (-518) (-1135))) (-15 -3969 ((-518) $)) (-15 -3736 ((-1135) $))))) (T -1136)) +((-3737 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1135)) (-5 *1 (-1136)))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) (-3736 (*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1136))))) +((-4052 (((-3 (-558) #1="failed") |#2| (-1197) |#2| (-1179)) 19 T ELT) (((-3 (-558) #1#) |#2| (-1197) (-854 |#2|)) 17 T ELT) (((-3 (-558) #1#) |#2|) 60 T ELT))) +(((-1137 |#1| |#2|) (-10 -7 (-15 -4052 ((-3 (-558) #1="failed") |#2|)) (-15 -4052 ((-3 (-558) #1#) |#2| (-1197) (-854 |#2|))) (-15 -4052 ((-3 (-558) #1#) |#2| (-1197) |#2| (-1179)))) (-13 (-569) (-1058 (-558)) (-657 (-558)) (-464)) (-13 (-27) (-1223) (-433 |#1|))) (T -1137)) +((-4052 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-13 (-569) (-1058 *2) (-657 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))))) (-4052 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-854 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) (-4 *6 (-13 (-569) (-1058 *2) (-657 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1137 *6 *3)))) (-4052 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-1058 *2) (-657 *2) (-464))) (-5 *2 (-558)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4)))))) +((-4052 (((-3 (-558) #1="failed") (-419 (-964 |#1|)) (-1197) (-419 (-964 |#1|)) (-1179)) 38 T ELT) (((-3 (-558) #1#) (-419 (-964 |#1|)) (-1197) (-854 (-419 (-964 |#1|)))) 33 T ELT) (((-3 (-558) #1#) (-419 (-964 |#1|))) 14 T ELT))) +(((-1138 |#1|) (-10 -7 (-15 -4052 ((-3 (-558) #1="failed") (-419 (-964 |#1|)))) (-15 -4052 ((-3 (-558) #1#) (-419 (-964 |#1|)) (-1197) (-854 (-419 (-964 |#1|))))) (-15 -4052 ((-3 (-558) #1#) (-419 (-964 |#1|)) (-1197) (-419 (-964 |#1|)) (-1179)))) (-464)) (T -1138)) +((-4052 (*1 *2 *3 *4 *3 *5) (|partial| -12 (-5 *3 (-419 (-964 *6))) (-5 *4 (-1197)) (-5 *5 (-1179)) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1138 *6)))) (-4052 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-854 (-419 (-964 *6)))) (-5 *3 (-419 (-964 *6))) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1138 *6)))) (-4052 (*1 *2 *3) (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-464)) (-5 *2 (-558)) (-5 *1 (-1138 *4))))) +((-4078 (((-326 (-558)) (-48)) 12 T ELT))) +(((-1139) (-10 -7 (-15 -4078 ((-326 (-558)) (-48))))) (T -1139)) +((-4078 (*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-558))) (-5 *1 (-1139))))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) 22 T ELT)) (-3605 (((-114) $) 52 T ELT)) (-3741 (($ $ $) 31 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 79 T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-2256 (($ $ $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-2251 (($ $ $ $) 62 T ELT)) (-4204 (($ $) NIL T ELT)) (-4400 (((-417 $) $) NIL T ELT)) (-1787 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) 64 T ELT)) (-4052 (((-558) $) NIL T ELT)) (-2829 (($ $ $) 59 T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL T ELT)) (-2962 (($ $ $) 45 T ELT)) (-2492 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 73 T ELT) (((-708 (-558)) (-708 $)) 8 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3424 (((-3 (-419 (-558)) #1#) $) NIL T ELT)) (-3423 (((-114) $) NIL T ELT)) (-3422 (((-419 (-558)) $) NIL T ELT)) (-3394 (($) 77 T ELT) (($ $) 76 T ELT)) (-2961 (($ $ $) 44 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL T ELT)) (-4152 (((-114) $) NIL T ELT)) (-2249 (($ $ $ $) NIL T ELT)) (-2257 (($ $ $) 74 T ELT)) (-3603 (((-114) $) 80 T ELT)) (-1482 (($ $ $) NIL T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL T ELT)) (-2959 (($ $ $) 30 T ELT)) (-2640 (((-114) $) 53 T ELT)) (-3073 (((-114) $) 50 T ELT)) (-2958 (($ $) 23 T ELT)) (-3864 (((-710 $) $) NIL T ELT)) (-3604 (((-114) $) 63 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL T ELT)) (-2250 (($ $ $ $) 60 T ELT)) (-2929 (($ $ $) 55 T ELT) (($) 19 T CONST)) (-3257 (($ $ $) 54 T ELT) (($) 18 T CONST)) (-2253 (($ $) NIL T ELT)) (-2219 (((-937) $) 69 T ELT)) (-4262 (($ $) 58 T ELT)) (-2493 (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL T ELT) (((-708 (-558)) (-1287 $)) NIL T ELT)) (-2101 (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2248 (($ $ $) NIL T ELT)) (-3865 (($) NIL T CONST)) (-2630 (($ (-937)) 68 T ELT)) (-2255 (($ $) 36 T ELT)) (-3660 (((-1140) $) 57 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL T ELT)) (-3561 (($ $ $) 48 T ELT) (($ (-660 $)) NIL T ELT)) (-1480 (($ $) NIL T ELT)) (-4161 (((-417 $) $) NIL T ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL T ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL T ELT)) (-3074 (((-114) $) 51 T ELT)) (-1786 (((-790) $) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 47 T ELT)) (-4187 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2254 (($ $) 37 T ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-558) $) 12 T ELT) (((-547) $) NIL T ELT) (((-904 (-558)) $) NIL T ELT) (((-391) $) NIL T ELT) (((-229) $) NIL T ELT)) (-4375 (((-876) $) 11 T ELT) (($ (-558)) 75 T ELT) (($ $) NIL T ELT) (($ (-558)) 75 T ELT)) (-3527 (((-790)) NIL T CONST)) (-2258 (((-114) $ $) NIL T ELT)) (-3503 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3094 (($) 17 T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-2960 (($ $ $) 28 T ELT)) (-2252 (($ $ $ $) 61 T ELT)) (-3802 (($ $) 49 T ELT)) (-2523 (($ $ $) 25 T ELT)) (-3058 (($) 15 T CONST)) (-3738 (($ $ $) 29 T ELT)) (-3064 (($) 16 T CONST)) (-3740 (($ $) 26 T ELT)) (-3069 (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-3739 (($ $ $) 27 T ELT)) (-2964 (((-114) $ $) 35 T ELT)) (-2965 (((-114) $ $) 33 T ELT)) (-3453 (((-114) $ $) 21 T ELT)) (-3084 (((-114) $ $) 34 T ELT)) (-3085 (((-114) $ $) 32 T ELT)) (-2524 (($ $ $) 24 T ELT)) (-4266 (($ $) 38 T ELT) (($ $ $) 40 T ELT)) (-4268 (($ $ $) 39 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 43 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 14 T ELT) (($ $ $) 41 T ELT) (($ (-558) $) 14 T ELT))) +(((-1140) (-13 (-557) (-856) (-113) (-10 -8 (-6 -4411) (-6 -4416) (-6 -4412) (-15 -3741 ($ $ $)) (-15 -3740 ($ $)) (-15 -3739 ($ $ $)) (-15 -3738 ($ $ $))))) (T -1140)) +((-3741 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3740 (*1 *1 *1) (-5 *1 (-1140))) (-3739 (*1 *1 *1 *1) (-5 *1 (-1140))) (-3738 (*1 *1 *1 *1) (-5 *1 (-1140)))) ((-558) (|%ismall?| |#1|)) -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3744 ((|#1| $) 48 T ELT)) (-4154 (($) 7 T CONST)) (-3746 ((|#1| |#1| $) 50 T ELT)) (-3745 ((|#1| $) 49 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 43 T ELT)) (-4037 (($ |#1| $) 44 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-1390 ((|#1| $) 45 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-3743 (((-791) $) 47 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) 46 T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1142 |#1|) (-142) (-1238)) (T -1142)) -((-3746 (*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-3745 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-791))))) -(-13 (-107 |t#1|) (-10 -8 (-6 -4425) (-15 -3746 (|t#1| |t#1| $)) (-15 -3745 (|t#1| $)) (-15 -3744 (|t#1| $)) (-15 -3743 ((-791) $)))) -(((-34) . T) ((-107 |#1|) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-3750 ((|#3| $) 87 T ELT)) (-3575 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3574 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL T ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL T ELT) (((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-709 $) (-1288 $)) 84 T ELT) (((-709 |#3|) (-709 $)) 76 T ELT)) (-4188 (($ $ (-1 |#3| |#3|) (-791)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-3749 ((|#3| $) 89 T ELT)) (-3751 ((|#4| $) 43 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 24 T ELT) (($ $ (-558)) 95 T ELT))) -(((-1143 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3749 (|#3| |#1|)) (-15 -3750 (|#3| |#1|)) (-15 -3751 (|#4| |#1|)) (-15 -2493 ((-709 |#3|) (-709 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 |#3|)) (|:| |vec| (-1288 |#3|))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 |#1|) (-1288 |#1|))) (-15 -2493 ((-709 (-558)) (-709 |#1|))) (-15 -4376 (|#1| |#3|)) (-15 -3575 ((-3 |#3| #1="failed") |#1|)) (-15 -3574 (|#3| |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -4188 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4188 (|#1| |#1| (-1 |#3| |#3|) (-791))) (-15 -4376 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-938))) (-15 -4376 ((-877) |#1|))) (-1144 |#2| |#3| |#4| |#5|) (-791) (-1070) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1143)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3750 ((|#2| $) 87 T ELT)) (-3523 (((-114) $) 128 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3525 (((-114) $) 126 T ELT)) (-3753 (($ |#2|) 90 T ELT)) (-4154 (($) 22 T CONST)) (-3512 (($ $) 145 (|has| |#2| (-319)) ELT)) (-3514 ((|#3| $ (-558)) 140 T ELT)) (-3575 (((-3 (-558) #1="failed") $) 106 (|has| |#2| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3574 (((-558) $) 105 (|has| |#2| (-1059 (-558))) ELT) (((-419 (-558)) $) 102 (|has| |#2| (-1059 (-419 (-558)))) ELT) ((|#2| $) 101 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 96 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 95 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) 94 T ELT) (((-709 |#2|) (-709 $)) 93 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3511 (((-791) $) 146 (|has| |#2| (-569)) ELT)) (-3515 ((|#2| $ (-558) (-558)) 138 T ELT)) (-3290 (((-661 |#2|) $) 114 (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-3510 (((-791) $) 147 (|has| |#2| (-569)) ELT)) (-3509 (((-661 |#4|) $) 148 (|has| |#2| (-569)) ELT)) (-3517 (((-791) $) 134 T ELT)) (-3516 (((-791) $) 135 T ELT)) (-3747 ((|#2| $) 82 (|has| |#2| (-6 (-4427 #2="*"))) ELT)) (-3521 (((-558) $) 130 T ELT)) (-3519 (((-558) $) 132 T ELT)) (-3007 (((-661 |#2|) $) 113 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) 111 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3520 (((-558) $) 131 T ELT)) (-3518 (((-558) $) 133 T ELT)) (-3526 (($ (-661 (-661 |#2|))) 125 T ELT)) (-2160 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-4022 (((-661 (-661 |#2|)) $) 136 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 98 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 97 (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 92 T ELT) (((-709 |#2|) (-1288 $)) 91 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-4018 (((-3 $ "failed") $) 81 (|has| |#2| (-376)) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3886 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 116 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) 110 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) 109 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 107 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) 124 T ELT)) (-3823 (((-114) $) 121 T ELT)) (-3993 (($) 122 T ELT)) (-4230 ((|#2| $ (-558) (-558) |#2|) 139 T ELT) ((|#2| $ (-558) (-558)) 137 T ELT)) (-4188 (($ $ (-1 |#2| |#2|) (-791)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-239)) ELT) (($ $ (-791)) 50 (|has| |#2| (-239)) ELT) (($ $ (-1198)) 60 (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 58 (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 57 (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 56 (|has| |#2| (-919 (-1198))) ELT)) (-3749 ((|#2| $) 86 T ELT)) (-3752 (($ (-661 |#2|)) 89 T ELT)) (-3524 (((-114) $) 127 T ELT)) (-3751 ((|#3| $) 88 T ELT)) (-3748 ((|#2| $) 83 (|has| |#2| (-6 (-4427 #2#))) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) 115 (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) 112 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 123 T ELT)) (-3513 ((|#4| $ (-558)) 141 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 104 (|has| |#2| (-1059 (-419 (-558)))) ELT) (($ |#2|) 99 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) 117 (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) 129 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 |#2| |#2|) (-791)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-239)) ELT) (($ $ (-791)) 49 (|has| |#2| (-239)) ELT) (($ $ (-1198)) 59 (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 55 (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 54 (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 53 (|has| |#2| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#2|) 144 (|has| |#2| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 80 (|has| |#2| (-376)) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4387 (((-791) $) 120 (|has| $ (-6 -4425)) ELT))) -(((-1144 |#1| |#2| |#3| |#4|) (-142) (-791) (-1070) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1144)) -((-3753 (*1 *1 *2) (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3752 (*1 *1 *2) (-12 (-5 *2 (-661 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-3751 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1070)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1070)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4427 #1="*"))) (-4 *2 (-1070)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4427 #1#))) (-4 *2 (-1070)))) (-4018 (*1 *1 *1) (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376))))) -(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1074 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-737 |t#2|)) |%noBranch|) (-15 -3753 ($ |t#2|)) (-15 -3752 ($ (-661 |t#2|))) (-15 -3751 (|t#3| $)) (-15 -3750 (|t#2| $)) (-15 -3749 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4427 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3748 (|t#2| $)) (-15 -3747 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -4018 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4427 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-633 (-419 (-558))) |has| |#2| (-1059 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#2|) . T) ((-630 (-877)) . T) ((-236 $) -3957 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -3957 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-390 |#2|) . T) ((-424 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-668 (-558)) |has| |#2| (-658 (-558))) ((-668 |#2|) . T) ((-668 $) . T) ((-660 |#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-6 (-4427 #1#)))) ((-658 (-558)) |has| |#2| (-658 (-558))) ((-658 |#2|) . T) ((-737 |#2|) -3957 (|has| |#2| (-175)) (|has| |#2| (-6 (-4427 #1#)))) ((-746) . T) ((-911 $ (-1198)) -3957 (|has| |#2| (-919 (-1198))) (|has| |#2| (-917 (-1198)))) ((-917 (-1198)) |has| |#2| (-917 (-1198))) ((-919 (-1198)) -3957 (|has| |#2| (-919 (-1198))) (|has| |#2| (-917 (-1198)))) ((-1074 |#1| |#1| |#2| |#3| |#4|) . T) ((-1059 (-419 (-558))) |has| |#2| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#2| (-1059 (-558))) ((-1059 |#2|) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-3756 ((|#4| |#4|) 81 T ELT)) (-3754 ((|#4| |#4|) 76 T ELT)) (-3758 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2222 (-661 |#3|))) |#4| |#3|) 91 T ELT)) (-3757 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3755 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) -(((-1145 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3754 (|#4| |#4|)) (-15 -3755 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3756 (|#4| |#4|)) (-15 -3757 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3758 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2222 (-661 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -1145)) -((-3758 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2222 (-661 *4)))) (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) (-3757 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3756 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-3755 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) (-3754 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 18 T ELT)) (-3484 (((-661 |#2|) $) 174 T ELT)) (-3486 (((-1192 $) $ |#2|) 60 T ELT) (((-1192 |#1|) $) 49 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 118 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 120 (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 |#2|)) 214 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3574 ((|#1| $) 165 T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) ((|#2| $) NIL T ELT)) (-4186 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4389 (($ $) 218 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) 90 T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-543 |#2|) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| |#1| (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| |#1| (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-2641 (((-114) $) 20 T ELT)) (-2649 (((-791) $) 30 T ELT)) (-3487 (($ (-1192 |#1|) |#2|) 54 T ELT) (($ (-1192 $) |#2|) 71 T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) 38 T ELT)) (-3294 (($ |#1| (-543 |#2|)) 78 T ELT) (($ $ |#2| (-791)) 58 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ |#2|) NIL T ELT)) (-3221 (((-543 |#2|) $) 205 T ELT) (((-791) $ |#2|) 206 T ELT) (((-661 (-791)) $ (-661 |#2|)) 207 T ELT)) (-1805 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3485 (((-3 |#2| #1#) $) 177 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) 217 T ELT)) (-3592 ((|#1| $) 43 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| |#2|) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) 39 T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 148 (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) 153 (|has| |#1| (-464)) ELT) (($ $ $) 138 (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-929)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-569)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-661 |#2|) (-661 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-661 |#2|) (-661 $)) 194 T ELT)) (-4187 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4378 (((-543 |#2|) $) 201 T ELT) (((-791) $ |#2|) 196 T ELT) (((-661 (-791)) $ (-661 |#2|)) 199 T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| |#1| (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| |#1| (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3218 ((|#1| $) 134 (|has| |#1| (-464)) ELT) (($ $ |#2|) 137 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4376 (((-877) $) 159 T ELT) (($ (-558)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-4247 (((-661 |#1|) $) 162 T ELT)) (-4107 ((|#1| $ (-543 |#2|)) 80 T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 87 T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) 123 (|has| |#1| (-569)) ELT)) (-3059 (($) 12 T CONST)) (-3065 (($) 14 T CONST)) (-3070 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3454 (((-114) $ $) 106 T ELT)) (-4379 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-4269 (($ $ $) 55 T ELT)) (** (($ $ (-938)) 110 T ELT) (($ $ (-791)) 109 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1146 |#1| |#2|) (-969 |#1| (-543 |#2|) |#2|) (-1070) (-861)) (T -1146)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 |#2|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3912 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 128 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 124 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3914 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4244 (((-965 |#1|) $ (-791)) NIL T ELT) (((-965 |#1|) $ (-791) (-791)) NIL T ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-791) $ |#2|) NIL T ELT) (((-791) $ |#2| (-791)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ $ (-661 |#2|) (-661 (-543 |#2|))) NIL T ELT) (($ $ |#2| (-543 |#2|)) NIL T ELT) (($ |#1| (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) 63 T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4372 (($ $) 122 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4242 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4106 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 (($ $ (-791)) 16 T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4373 (($ $) 120 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (($ $ |#2| $) 106 T ELT) (($ $ (-661 |#2|) (-661 $)) 99 T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT)) (-4188 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4378 (((-543 |#2|) $) NIL T ELT)) (-3759 (((-1 (-1176 |#3|) |#3|) (-661 |#2|) (-661 (-1176 |#3|))) 87 T ELT)) (-3915 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 130 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 126 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 18 T ELT)) (-4376 (((-877) $) 198 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-4107 ((|#1| $ (-543 |#2|)) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) ((|#3| $ (-791)) 43 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 136 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3921 (($ $) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 138 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 52 T CONST)) (-3065 (($) 62 T CONST)) (-3070 (($ $ (-661 |#2|) (-661 (-791))) NIL T ELT) (($ $ |#2| (-791)) NIL T ELT) (($ $ (-661 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 66 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-558))) 117 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 115 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) -(((-1147 |#1| |#2| |#3|) (-13 (-760 |#1| |#2|) (-10 -8 (-15 -4107 (|#3| $ (-791))) (-15 -4376 ($ |#2|)) (-15 -4376 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3759 ((-1 (-1176 |#3|) |#3|) (-661 |#2|) (-661 (-1176 |#3|)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $ |#2| |#1|)) (-15 -4106 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1070) (-861) (-969 |#1| (-543 |#2|) |#2|)) (T -1147)) -((-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *2 (-969 *4 (-543 *5) *5)) (-5 *1 (-1147 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-861)))) (-4376 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) (-4376 (*1 *1 *2) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-969 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) (-4 *2 (-969 *3 (-543 *4) *4)))) (-3759 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1176 *7))) (-4 *6 (-861)) (-4 *7 (-969 *5 (-543 *6) *6)) (-4 *5 (-1070)) (-5 *2 (-1 (-1176 *7) *7)) (-5 *1 (-1147 *5 *6 *7)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) (-4106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) (-4 *5 (-969 *4 (-543 *3) *3))))) -((-2967 (((-114) $ $) 7 T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4112 (((-661 $) (-661 |#4|)) 91 T ELT) (((-661 $) (-661 |#4|) (-114)) 118 T ELT)) (-3484 (((-661 |#3|) $) 37 T ELT)) (-3309 (((-114) $) 30 T ELT)) (-3300 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4118 ((|#4| |#4| $) 97 T ELT)) (-4205 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| $) 133 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4140 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4154 (($) 46 T CONST)) (-3305 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3574 (($ (-661 |#4|)) 39 T ELT)) (-4229 (((-3 $ #1#) $) 87 T ELT)) (-4115 ((|#4| |#4| $) 94 T ELT)) (-1467 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4113 ((|#4| |#4| $) 92 T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) 110 T ELT)) (-3615 (((-114) |#4| $) 143 T ELT)) (-3613 (((-114) |#4| $) 140 T ELT)) (-3616 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3290 (((-661 |#4|) $) 53 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3315 (((-661 |#3|) $) 36 T ELT)) (-3314 (((-114) |#3| $) 35 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3609 (((-3 |#4| (-661 $)) |#4| |#4| $) 135 T ELT)) (-3608 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| |#4| $) 134 T ELT)) (-4228 (((-3 |#4| #1#) $) 88 T ELT)) (-3610 (((-661 $) |#4| $) 136 T ELT)) (-3612 (((-3 (-114) (-661 $)) |#4| $) 139 T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3656 (((-661 $) |#4| $) 132 T ELT) (((-661 $) (-661 |#4|) $) 131 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 130 T ELT) (((-661 $) |#4| (-661 $)) 129 T ELT)) (-3860 (($ |#4| $) 124 T ELT) (($ (-661 |#4|) $) 123 T ELT)) (-4127 (((-661 |#4|) $) 112 T ELT)) (-4121 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4116 ((|#4| |#4| $) 95 T ELT)) (-4129 (((-114) $ $) 115 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4117 ((|#4| |#4| $) 96 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4231 (((-3 |#4| #1#) $) 89 T ELT)) (-1468 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4199 (($ $ |#4|) 82 T ELT) (((-661 $) |#4| $) 122 T ELT) (((-661 $) |#4| (-661 $)) 121 T ELT) (((-661 $) (-661 |#4|) $) 120 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) 42 T ELT)) (-3823 (((-114) $) 45 T ELT)) (-3993 (($) 44 T ELT)) (-4378 (((-791) $) 111 T ELT)) (-2157 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 43 T ELT)) (-4402 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 61 T ELT)) (-3311 (($ $ |#3|) 32 T ELT)) (-3313 (($ $ |#3|) 34 T ELT)) (-4114 (($ $) 93 T ELT)) (-3312 (($ $ |#3|) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4108 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-3607 (((-661 $) |#4| $) 128 T ELT) (((-661 $) |#4| (-661 $)) 127 T ELT) (((-661 $) (-661 |#4|) $) 126 T ELT) (((-661 $) (-661 |#4|) (-661 $)) 125 T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) 86 T ELT)) (-3614 (((-114) |#4| $) 142 T ELT)) (-4363 (((-114) |#3| $) 85 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 47 (|has| $ (-6 -4425)) ELT))) -(((-1148 |#1| |#2| |#3| |#4|) (-142) (-464) (-815) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1148)) -NIL -(-13 (-1130 |t#1| |t#2| |t#3| |t#4|) (-804 |t#1| |t#2| |t#3| |t#4|)) -(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-877)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-804 |#1| |#2| |#3| |#4|) . T) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1092 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1130 |#1| |#2| |#3| |#4|) . T) ((-1233 |#1| |#2| |#3| |#4|) . T) ((-1238) . T)) -((-4001 (((-661 |#2|) |#1|) 15 T ELT)) (-3765 (((-661 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-661 |#2|) |#1|) 61 T ELT)) (-3763 (((-661 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-661 |#2|) |#1|) 59 T ELT)) (-3760 ((|#2| |#1|) 54 T ELT)) (-3761 (((-2 (|:| |solns| (-661 |#2|)) (|:| |maps| (-661 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3762 (((-661 |#2|) |#2| |#2|) 42 T ELT) (((-661 |#2|) |#1|) 58 T ELT)) (-3764 (((-661 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-661 |#2|) |#1|) 60 T ELT)) (-3769 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3767 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3766 ((|#2| |#2| |#2|) 50 T ELT)) (-3768 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) -(((-1149 |#1| |#2|) (-10 -7 (-15 -4001 ((-661 |#2|) |#1|)) (-15 -3760 (|#2| |#1|)) (-15 -3761 ((-2 (|:| |solns| (-661 |#2|)) (|:| |maps| (-661 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3762 ((-661 |#2|) |#1|)) (-15 -3763 ((-661 |#2|) |#1|)) (-15 -3764 ((-661 |#2|) |#1|)) (-15 -3765 ((-661 |#2|) |#1|)) (-15 -3762 ((-661 |#2|) |#2| |#2|)) (-15 -3763 ((-661 |#2|) |#2| |#2| |#2|)) (-15 -3764 ((-661 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3765 ((-661 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3766 (|#2| |#2| |#2|)) (-15 -3767 (|#2| |#2| |#2| |#2|)) (-15 -3768 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3769 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1264 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (T -1149)) -((-3769 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3768 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3767 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3766 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-3765 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3764 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3763 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3762 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3)))) (-3765 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) (-3761 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-2 (|:| |solns| (-661 *5)) (|:| |maps| (-661 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5)))) (-3760 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2)))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4))))) -((-3770 (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-965 |#1|))))) 118 T ELT) (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-965 |#1|)))) (-661 (-1198))) 117 T ELT) (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-965 |#1|)))) 115 T ELT) (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-965 |#1|))) (-661 (-1198))) 113 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-419 (-965 |#1|)))) 97 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-419 (-965 |#1|))) (-1198)) 98 T ELT) (((-661 (-305 (-326 |#1|))) (-419 (-965 |#1|))) 92 T ELT) (((-661 (-305 (-326 |#1|))) (-419 (-965 |#1|)) (-1198)) 82 T ELT)) (-3771 (((-661 (-661 (-326 |#1|))) (-661 (-419 (-965 |#1|))) (-661 (-1198))) 111 T ELT) (((-661 (-326 |#1|)) (-419 (-965 |#1|)) (-1198)) 54 T ELT)) (-3772 (((-1187 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-419 (-965 |#1|)) (-1198)) 122 T ELT) (((-1187 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-305 (-419 (-965 |#1|))) (-1198)) 121 T ELT))) -(((-1150 |#1|) (-10 -7 (-15 -3770 ((-661 (-305 (-326 |#1|))) (-419 (-965 |#1|)) (-1198))) (-15 -3770 ((-661 (-305 (-326 |#1|))) (-419 (-965 |#1|)))) (-15 -3770 ((-661 (-305 (-326 |#1|))) (-305 (-419 (-965 |#1|))) (-1198))) (-15 -3770 ((-661 (-305 (-326 |#1|))) (-305 (-419 (-965 |#1|))))) (-15 -3770 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-965 |#1|))) (-661 (-1198)))) (-15 -3770 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-419 (-965 |#1|))))) (-15 -3770 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-965 |#1|)))) (-661 (-1198)))) (-15 -3770 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-419 (-965 |#1|)))))) (-15 -3771 ((-661 (-326 |#1|)) (-419 (-965 |#1|)) (-1198))) (-15 -3771 ((-661 (-661 (-326 |#1|))) (-661 (-419 (-965 |#1|))) (-661 (-1198)))) (-15 -3772 ((-1187 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-305 (-419 (-965 |#1|))) (-1198))) (-15 -3772 ((-1187 (-661 (-326 |#1|)) (-661 (-305 (-326 |#1|)))) (-419 (-965 |#1|)) (-1198)))) (-13 (-319) (-149))) (T -1150)) -((-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1187 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3772 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-965 *5)))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1187 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-326 *5)))) (-5 *1 (-1150 *5)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-326 *5))) (-5 *1 (-1150 *5)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-661 (-305 (-419 (-965 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1150 *4)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-305 (-419 (-965 *5))))) (-5 *4 (-661 (-1198))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-661 (-419 (-965 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1150 *4)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1150 *5)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-305 (-419 (-965 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1150 *4)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-965 *5)))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1150 *5)))) (-3770 (*1 *2 *3) (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1150 *4)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1150 *5))))) -((-3774 (((-419 (-1192 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-558)) 36 T ELT)) (-3773 (((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|)))) 48 T ELT))) -(((-1151 |#1|) (-10 -7 (-15 -3773 ((-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))) (-419 (-1192 (-326 |#1|))))) (-15 -3774 ((-419 (-1192 (-326 |#1|))) (-1288 (-326 |#1|)) (-419 (-1192 (-326 |#1|))) (-558)))) (-569)) (T -1151)) -((-3774 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) (-5 *4 (-558)) (-4 *5 (-569)) (-5 *1 (-1151 *5)))) (-3773 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-569)) (-5 *1 (-1151 *3))))) -((-4001 (((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-326 |#1|))) (-661 (-1198))) 244 T ELT) (((-661 (-305 (-326 |#1|))) (-326 |#1|) (-1198)) 23 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1198)) 29 T ELT) (((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-661 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT))) -(((-1152 |#1|) (-10 -7 (-15 -4001 ((-661 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -4001 ((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -4001 ((-661 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1198))) (-15 -4001 ((-661 (-305 (-326 |#1|))) (-326 |#1|) (-1198))) (-15 -4001 ((-661 (-661 (-305 (-326 |#1|)))) (-661 (-305 (-326 |#1|))) (-661 (-1198))))) (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (T -1152)) -((-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1198))) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1152 *5)) (-5 *3 (-661 (-305 (-326 *5)))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-326 *5)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-305 (-326 *5))))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-305 (-326 *4))))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-326 *4))))) -((-3776 ((|#2| |#2|) 28 (|has| |#1| (-861)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-3775 ((|#2| |#2|) 27 (|has| |#1| (-861)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT))) -(((-1153 |#1| |#2|) (-10 -7 (-15 -3775 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3776 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-861)) (PROGN (-15 -3775 (|#2| |#2|)) (-15 -3776 (|#2| |#2|))) |%noBranch|)) (-1238) (-13 (-616 (-558) |#1|) (-10 -7 (-6 -4425) (-6 -4426)))) (T -1153)) -((-3776 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3775 (*1 *2 *2) (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3776 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) (-3775 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4425) (-6 -4426))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4318 (((-1186 3 |#1|) $) 141 T ELT)) (-3786 (((-114) $) 101 T ELT)) (-3787 (($ $ (-661 (-962 |#1|))) 44 T ELT) (($ $ (-661 (-661 |#1|))) 104 T ELT) (($ (-661 (-962 |#1|))) 103 T ELT) (((-661 (-962 |#1|)) $) 102 T ELT)) (-3792 (((-114) $) 72 T ELT)) (-4136 (($ $ (-962 |#1|)) 76 T ELT) (($ $ (-661 |#1|)) 81 T ELT) (($ $ (-791)) 83 T ELT) (($ (-962 |#1|)) 77 T ELT) (((-962 |#1|) $) 75 T ELT)) (-3778 (((-2 (|:| -4280 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791))) $) 139 T ELT)) (-3796 (((-791) $) 53 T ELT)) (-3797 (((-791) $) 52 T ELT)) (-4317 (($ $ (-791) (-962 |#1|)) 67 T ELT)) (-3784 (((-114) $) 111 T ELT)) (-3785 (($ $ (-661 (-661 (-962 |#1|))) (-661 (-174)) (-174)) 118 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-661 (-174)) (-174)) 120 T ELT) (($ $ (-661 (-661 (-962 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-114) (-114)) 127 T ELT) (($ (-661 (-661 (-962 |#1|)))) 116 T ELT) (($ (-661 (-661 (-962 |#1|))) (-114) (-114)) 117 T ELT) (((-661 (-661 (-962 |#1|))) $) 114 T ELT)) (-3938 (($ (-661 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3779 (((-661 (-174)) $) 133 T ELT)) (-3783 (((-661 (-962 |#1|)) $) 130 T ELT)) (-3780 (((-661 (-661 (-174))) $) 132 T ELT)) (-3781 (((-661 (-661 (-661 (-962 |#1|)))) $) NIL T ELT)) (-3782 (((-661 (-661 (-661 (-791)))) $) 131 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3793 (((-791) $ (-661 (-962 |#1|))) 65 T ELT)) (-3790 (((-114) $) 84 T ELT)) (-3791 (($ $ (-661 (-962 |#1|))) 86 T ELT) (($ $ (-661 (-661 |#1|))) 92 T ELT) (($ (-661 (-962 |#1|))) 87 T ELT) (((-661 (-962 |#1|)) $) 85 T ELT)) (-3798 (($) 48 T ELT) (($ (-1186 3 |#1|)) 49 T ELT)) (-3820 (($ $) 63 T ELT)) (-3794 (((-661 $) $) 62 T ELT)) (-4184 (($ (-661 $)) 59 T ELT)) (-3795 (((-661 $) $) 61 T ELT)) (-4376 (((-877) $) 146 T ELT)) (-3788 (((-114) $) 94 T ELT)) (-3789 (($ $ (-661 (-962 |#1|))) 96 T ELT) (($ $ (-661 (-661 |#1|))) 99 T ELT) (($ (-661 (-962 |#1|))) 97 T ELT) (((-661 (-962 |#1|)) $) 95 T ELT)) (-3777 (($ $) 140 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1154 |#1|) (-1155 |#1|) (-1070)) (T -1154)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-4318 (((-1186 3 |#1|) $) 17 T ELT)) (-3786 (((-114) $) 33 T ELT)) (-3787 (($ $ (-661 (-962 |#1|))) 37 T ELT) (($ $ (-661 (-661 |#1|))) 36 T ELT) (($ (-661 (-962 |#1|))) 35 T ELT) (((-661 (-962 |#1|)) $) 34 T ELT)) (-3792 (((-114) $) 48 T ELT)) (-4136 (($ $ (-962 |#1|)) 53 T ELT) (($ $ (-661 |#1|)) 52 T ELT) (($ $ (-791)) 51 T ELT) (($ (-962 |#1|)) 50 T ELT) (((-962 |#1|) $) 49 T ELT)) (-3778 (((-2 (|:| -4280 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791))) $) 19 T ELT)) (-3796 (((-791) $) 62 T ELT)) (-3797 (((-791) $) 63 T ELT)) (-4317 (($ $ (-791) (-962 |#1|)) 54 T ELT)) (-3784 (((-114) $) 25 T ELT)) (-3785 (($ $ (-661 (-661 (-962 |#1|))) (-661 (-174)) (-174)) 32 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-661 (-174)) (-174)) 31 T ELT) (($ $ (-661 (-661 (-962 |#1|))) (-114) (-114)) 30 T ELT) (($ $ (-661 (-661 (-661 |#1|))) (-114) (-114)) 29 T ELT) (($ (-661 (-661 (-962 |#1|)))) 28 T ELT) (($ (-661 (-661 (-962 |#1|))) (-114) (-114)) 27 T ELT) (((-661 (-661 (-962 |#1|))) $) 26 T ELT)) (-3938 (($ (-661 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3779 (((-661 (-174)) $) 20 T ELT)) (-3783 (((-661 (-962 |#1|)) $) 24 T ELT)) (-3780 (((-661 (-661 (-174))) $) 21 T ELT)) (-3781 (((-661 (-661 (-661 (-962 |#1|)))) $) 22 T ELT)) (-3782 (((-661 (-661 (-661 (-791)))) $) 23 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3793 (((-791) $ (-661 (-962 |#1|))) 55 T ELT)) (-3790 (((-114) $) 43 T ELT)) (-3791 (($ $ (-661 (-962 |#1|))) 47 T ELT) (($ $ (-661 (-661 |#1|))) 46 T ELT) (($ (-661 (-962 |#1|))) 45 T ELT) (((-661 (-962 |#1|)) $) 44 T ELT)) (-3798 (($) 65 T ELT) (($ (-1186 3 |#1|)) 64 T ELT)) (-3820 (($ $) 56 T ELT)) (-3794 (((-661 $) $) 57 T ELT)) (-4184 (($ (-661 $)) 59 T ELT)) (-3795 (((-661 $) $) 58 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-3788 (((-114) $) 38 T ELT)) (-3789 (($ $ (-661 (-962 |#1|))) 42 T ELT) (($ $ (-661 (-661 |#1|))) 41 T ELT) (($ (-661 (-962 |#1|))) 40 T ELT) (((-661 (-962 |#1|)) $) 39 T ELT)) (-3777 (($ $) 18 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-1155 |#1|) (-142) (-1070)) (T -1155)) -((-4376 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-877)))) (-3798 (*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3798 (*1 *1 *2) (-12 (-5 *2 (-1186 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3797 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3938 (*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-4184 (*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3795 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-661 *1)) (-4 *1 (-1155 *3)))) (-3794 (*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-661 *1)) (-4 *1 (-1155 *3)))) (-3820 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-3793 (*1 *2 *1 *3) (-12 (-5 *3 (-661 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) (-5 *2 (-791)))) (-4317 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-4136 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-4136 (*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-4136 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) (-3792 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3791 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3791 (*1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114)))) (-3789 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3789 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3789 (*1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3787 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) (-3787 (*1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114)))) (-3785 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-661 (-962 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-3785 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) (-3785 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-661 (-962 *4)))) (-5 *3 (-114)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3785 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-114)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) (-3785 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-962 *3)))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) (-3785 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-661 (-661 (-962 *4)))) (-5 *3 (-114)) (-4 *4 (-1070)) (-4 *1 (-1155 *4)))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-962 *3)))))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114)))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-661 (-791))))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-661 (-962 *3))))))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-174)))))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-174))))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -4280 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791)))))) (-3777 (*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) (-4318 (*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1186 3 *3))))) -(-13 (-1122) (-10 -8 (-15 -3798 ($)) (-15 -3798 ($ (-1186 3 |t#1|))) (-15 -3797 ((-791) $)) (-15 -3796 ((-791) $)) (-15 -3938 ($ (-661 $))) (-15 -3938 ($ $ $)) (-15 -4184 ($ (-661 $))) (-15 -3795 ((-661 $) $)) (-15 -3794 ((-661 $) $)) (-15 -3820 ($ $)) (-15 -3793 ((-791) $ (-661 (-962 |t#1|)))) (-15 -4317 ($ $ (-791) (-962 |t#1|))) (-15 -4136 ($ $ (-962 |t#1|))) (-15 -4136 ($ $ (-661 |t#1|))) (-15 -4136 ($ $ (-791))) (-15 -4136 ($ (-962 |t#1|))) (-15 -4136 ((-962 |t#1|) $)) (-15 -3792 ((-114) $)) (-15 -3791 ($ $ (-661 (-962 |t#1|)))) (-15 -3791 ($ $ (-661 (-661 |t#1|)))) (-15 -3791 ($ (-661 (-962 |t#1|)))) (-15 -3791 ((-661 (-962 |t#1|)) $)) (-15 -3790 ((-114) $)) (-15 -3789 ($ $ (-661 (-962 |t#1|)))) (-15 -3789 ($ $ (-661 (-661 |t#1|)))) (-15 -3789 ($ (-661 (-962 |t#1|)))) (-15 -3789 ((-661 (-962 |t#1|)) $)) (-15 -3788 ((-114) $)) (-15 -3787 ($ $ (-661 (-962 |t#1|)))) (-15 -3787 ($ $ (-661 (-661 |t#1|)))) (-15 -3787 ($ (-661 (-962 |t#1|)))) (-15 -3787 ((-661 (-962 |t#1|)) $)) (-15 -3786 ((-114) $)) (-15 -3785 ($ $ (-661 (-661 (-962 |t#1|))) (-661 (-174)) (-174))) (-15 -3785 ($ $ (-661 (-661 (-661 |t#1|))) (-661 (-174)) (-174))) (-15 -3785 ($ $ (-661 (-661 (-962 |t#1|))) (-114) (-114))) (-15 -3785 ($ $ (-661 (-661 (-661 |t#1|))) (-114) (-114))) (-15 -3785 ($ (-661 (-661 (-962 |t#1|))))) (-15 -3785 ($ (-661 (-661 (-962 |t#1|))) (-114) (-114))) (-15 -3785 ((-661 (-661 (-962 |t#1|))) $)) (-15 -3784 ((-114) $)) (-15 -3783 ((-661 (-962 |t#1|)) $)) (-15 -3782 ((-661 (-661 (-661 (-791)))) $)) (-15 -3781 ((-661 (-661 (-661 (-962 |t#1|)))) $)) (-15 -3780 ((-661 (-661 (-174))) $)) (-15 -3779 ((-661 (-174)) $)) (-15 -3778 ((-2 (|:| -4280 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) (|:| |constructs| (-791))) $)) (-15 -3777 ($ $)) (-15 -4318 ((-1186 3 |t#1|) $)) (-15 -4376 ((-877) $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 184 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) 7 T ELT)) (-3994 (((-114) $ (|[\|\|]| (-536))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-696))) 27 T ELT) (((-114) $ (|[\|\|]| (-1299))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-617))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1137))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-701))) 55 T ELT) (((-114) $ (|[\|\|]| (-529))) 59 T ELT) (((-114) $ (|[\|\|]| (-1087))) 63 T ELT) (((-114) $ (|[\|\|]| (-1300))) 67 T ELT) (((-114) $ (|[\|\|]| (-537))) 71 T ELT) (((-114) $ (|[\|\|]| (-1174))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-691))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1057))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-991))) 99 T ELT) (((-114) $ (|[\|\|]| (-1094))) 103 T ELT) (((-114) $ (|[\|\|]| (-1112))) 107 T ELT) (((-114) $ (|[\|\|]| (-1117))) 111 T ELT) (((-114) $ (|[\|\|]| (-643))) 115 T ELT) (((-114) $ (|[\|\|]| (-1188))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-490))) 131 T ELT) (((-114) $ (|[\|\|]| (-604))) 135 T ELT) (((-114) $ (|[\|\|]| (-518))) 139 T ELT) (((-114) $ (|[\|\|]| (-1180))) 143 T ELT) (((-114) $ (|[\|\|]| (-558))) 147 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4000 (((-536) $) 20 T ELT) (((-222) $) 24 T ELT) (((-696) $) 28 T ELT) (((-1299) $) 32 T ELT) (((-140) $) 36 T ELT) (((-617) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1137) $) 48 T ELT) (((-96) $) 52 T ELT) (((-701) $) 56 T ELT) (((-529) $) 60 T ELT) (((-1087) $) 64 T ELT) (((-1300) $) 68 T ELT) (((-537) $) 72 T ELT) (((-1174) $) 76 T ELT) (((-156) $) 80 T ELT) (((-691) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1057) $) 92 T ELT) (((-183) $) 96 T ELT) (((-991) $) 100 T ELT) (((-1094) $) 104 T ELT) (((-1112) $) 108 T ELT) (((-1117) $) 112 T ELT) (((-643) $) 116 T ELT) (((-1188) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-490) $) 132 T ELT) (((-604) $) 136 T ELT) (((-518) $) 140 T ELT) (((-1180) $) 144 T ELT) (((-558) $) 148 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1156) (-1158)) (T -1156)) -NIL -((-3799 (((-661 (-1203)) (-1180)) 9 T ELT))) -(((-1157) (-10 -7 (-15 -3799 ((-661 (-1203)) (-1180))))) (T -1157)) -((-3799 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-661 (-1203))) (-5 *1 (-1157))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-1203)) 20 T ELT) (((-1203) $) 19 T ELT)) (-3994 (((-114) $ (|[\|\|]| (-536))) 88 T ELT) (((-114) $ (|[\|\|]| (-222))) 86 T ELT) (((-114) $ (|[\|\|]| (-696))) 84 T ELT) (((-114) $ (|[\|\|]| (-1299))) 82 T ELT) (((-114) $ (|[\|\|]| (-140))) 80 T ELT) (((-114) $ (|[\|\|]| (-617))) 78 T ELT) (((-114) $ (|[\|\|]| (-135))) 76 T ELT) (((-114) $ (|[\|\|]| (-1137))) 74 T ELT) (((-114) $ (|[\|\|]| (-96))) 72 T ELT) (((-114) $ (|[\|\|]| (-701))) 70 T ELT) (((-114) $ (|[\|\|]| (-529))) 68 T ELT) (((-114) $ (|[\|\|]| (-1087))) 66 T ELT) (((-114) $ (|[\|\|]| (-1300))) 64 T ELT) (((-114) $ (|[\|\|]| (-537))) 62 T ELT) (((-114) $ (|[\|\|]| (-1174))) 60 T ELT) (((-114) $ (|[\|\|]| (-156))) 58 T ELT) (((-114) $ (|[\|\|]| (-691))) 56 T ELT) (((-114) $ (|[\|\|]| (-324))) 54 T ELT) (((-114) $ (|[\|\|]| (-1057))) 52 T ELT) (((-114) $ (|[\|\|]| (-183))) 50 T ELT) (((-114) $ (|[\|\|]| (-991))) 48 T ELT) (((-114) $ (|[\|\|]| (-1094))) 46 T ELT) (((-114) $ (|[\|\|]| (-1112))) 44 T ELT) (((-114) $ (|[\|\|]| (-1117))) 42 T ELT) (((-114) $ (|[\|\|]| (-643))) 40 T ELT) (((-114) $ (|[\|\|]| (-1188))) 38 T ELT) (((-114) $ (|[\|\|]| (-158))) 36 T ELT) (((-114) $ (|[\|\|]| (-139))) 34 T ELT) (((-114) $ (|[\|\|]| (-490))) 32 T ELT) (((-114) $ (|[\|\|]| (-604))) 30 T ELT) (((-114) $ (|[\|\|]| (-518))) 28 T ELT) (((-114) $ (|[\|\|]| (-1180))) 26 T ELT) (((-114) $ (|[\|\|]| (-558))) 24 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4000 (((-536) $) 87 T ELT) (((-222) $) 85 T ELT) (((-696) $) 83 T ELT) (((-1299) $) 81 T ELT) (((-140) $) 79 T ELT) (((-617) $) 77 T ELT) (((-135) $) 75 T ELT) (((-1137) $) 73 T ELT) (((-96) $) 71 T ELT) (((-701) $) 69 T ELT) (((-529) $) 67 T ELT) (((-1087) $) 65 T ELT) (((-1300) $) 63 T ELT) (((-537) $) 61 T ELT) (((-1174) $) 59 T ELT) (((-156) $) 57 T ELT) (((-691) $) 55 T ELT) (((-324) $) 53 T ELT) (((-1057) $) 51 T ELT) (((-183) $) 49 T ELT) (((-991) $) 47 T ELT) (((-1094) $) 45 T ELT) (((-1112) $) 43 T ELT) (((-1117) $) 41 T ELT) (((-643) $) 39 T ELT) (((-1188) $) 37 T ELT) (((-158) $) 35 T ELT) (((-139) $) 33 T ELT) (((-490) $) 31 T ELT) (((-604) $) 29 T ELT) (((-518) $) 27 T ELT) (((-1180) $) 25 T ELT) (((-558) $) 23 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-1158) (-142)) (T -1158)) -((-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-222)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-696))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-696)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-140)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-617)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-135)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1137)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-701))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-701)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1300))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1300)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1174)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-156)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-691)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-324)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-183)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1112)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-643))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-643)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1188)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-158)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1180)))) (-3994 (*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)))) (-4000 (*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-558))))) -(-13 (-1104) (-1284) (-10 -8 (-15 -3994 ((-114) $ (|[\|\|]| (-536)))) (-15 -4000 ((-536) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-222)))) (-15 -4000 ((-222) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-696)))) (-15 -4000 ((-696) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1299)))) (-15 -4000 ((-1299) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-140)))) (-15 -4000 ((-140) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-617)))) (-15 -4000 ((-617) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-135)))) (-15 -4000 ((-135) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1137)))) (-15 -4000 ((-1137) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-96)))) (-15 -4000 ((-96) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-701)))) (-15 -4000 ((-701) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-529)))) (-15 -4000 ((-529) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1087)))) (-15 -4000 ((-1087) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1300)))) (-15 -4000 ((-1300) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-537)))) (-15 -4000 ((-537) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1174)))) (-15 -4000 ((-1174) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-156)))) (-15 -4000 ((-156) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-691)))) (-15 -4000 ((-691) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-324)))) (-15 -4000 ((-324) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1057)))) (-15 -4000 ((-1057) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-183)))) (-15 -4000 ((-183) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-991)))) (-15 -4000 ((-991) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1094)))) (-15 -4000 ((-1094) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1112)))) (-15 -4000 ((-1112) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1117)))) (-15 -4000 ((-1117) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-643)))) (-15 -4000 ((-643) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1188)))) (-15 -4000 ((-1188) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-158)))) (-15 -4000 ((-158) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-139)))) (-15 -4000 ((-139) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-490)))) (-15 -4000 ((-490) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-604)))) (-15 -4000 ((-604) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-518)))) (-15 -4000 ((-518) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-1180)))) (-15 -4000 ((-1180) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-558)))) (-15 -4000 ((-558) $)))) -(((-93) . T) ((-102) . T) ((-633 (-1203)) . T) ((-630 (-877)) . T) ((-630 (-1203)) . T) ((-502 (-1203)) . T) ((-1122) . T) ((-1104) . T) ((-1238) . T) ((-1284) . T)) -((-3802 (((-1294) (-661 (-877))) 22 T ELT) (((-1294) (-877)) 21 T ELT)) (-3801 (((-1294) (-661 (-877))) 20 T ELT) (((-1294) (-877)) 19 T ELT)) (-3800 (((-1294) (-661 (-877))) 18 T ELT) (((-1294) (-877)) 10 T ELT) (((-1294) (-1180) (-877)) 16 T ELT))) -(((-1159) (-10 -7 (-15 -3800 ((-1294) (-1180) (-877))) (-15 -3800 ((-1294) (-877))) (-15 -3801 ((-1294) (-877))) (-15 -3802 ((-1294) (-877))) (-15 -3800 ((-1294) (-661 (-877)))) (-15 -3801 ((-1294) (-661 (-877)))) (-15 -3802 ((-1294) (-661 (-877)))))) (T -1159)) -((-3802 (*1 *2 *3) (-12 (-5 *3 (-661 (-877))) (-5 *2 (-1294)) (-5 *1 (-1159)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-661 (-877))) (-5 *2 (-1294)) (-5 *1 (-1159)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-661 (-877))) (-5 *2 (-1294)) (-5 *1 (-1159)))) (-3802 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) (-3800 (*1 *2 *3 *4) (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159))))) -((-3806 (($ $ $) 10 T ELT)) (-3805 (($ $) 9 T ELT)) (-3809 (($ $ $) 13 T ELT)) (-3811 (($ $ $) 15 T ELT)) (-3808 (($ $ $) 12 T ELT)) (-3810 (($ $ $) 14 T ELT)) (-3813 (($ $) 17 T ELT)) (-3812 (($ $) 16 T ELT)) (-3803 (($ $) 6 T ELT)) (-3807 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3804 (($ $ $) 8 T ELT))) -(((-1160) (-142)) (T -1160)) -((-3813 (*1 *1 *1) (-4 *1 (-1160))) (-3812 (*1 *1 *1) (-4 *1 (-1160))) (-3811 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3810 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3809 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3808 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3807 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3806 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3805 (*1 *1 *1) (-4 *1 (-1160))) (-3804 (*1 *1 *1 *1) (-4 *1 (-1160))) (-3807 (*1 *1 *1) (-4 *1 (-1160))) (-3803 (*1 *1 *1) (-4 *1 (-1160)))) -(-13 (-10 -8 (-15 -3803 ($ $)) (-15 -3807 ($ $)) (-15 -3804 ($ $ $)) (-15 -3805 ($ $)) (-15 -3806 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -3809 ($ $ $)) (-15 -3810 ($ $ $)) (-15 -3811 ($ $ $)) (-15 -3812 ($ $)) (-15 -3813 ($ $)))) -((-2967 (((-114) $ $) 44 T ELT)) (-3822 ((|#1| $) 17 T ELT)) (-3814 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3821 (((-114) $) 19 T ELT)) (-3819 (($ $ |#1|) 30 T ELT)) (-3817 (($ $ (-114)) 32 T ELT)) (-3816 (($ $) 33 T ELT)) (-3818 (($ $ |#2|) 31 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3815 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3823 (((-114) $) 16 T ELT)) (-3993 (($) 13 T ELT)) (-3820 (($ $) 29 T ELT)) (-3950 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1743 |#2|))) 23 T ELT) (((-661 $) (-661 (-2 (|:| |val| |#1|) (|:| -1743 |#2|)))) 26 T ELT) (((-661 $) |#1| (-661 |#2|)) 28 T ELT)) (-4352 ((|#2| $) 18 T ELT)) (-4376 (((-877) $) 53 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 42 T ELT))) -(((-1161 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3993 ($)) (-15 -3823 ((-114) $)) (-15 -3822 (|#1| $)) (-15 -4352 (|#2| $)) (-15 -3821 ((-114) $)) (-15 -3950 ($ |#1| |#2| (-114))) (-15 -3950 ($ |#1| |#2|)) (-15 -3950 ($ (-2 (|:| |val| |#1|) (|:| -1743 |#2|)))) (-15 -3950 ((-661 $) (-661 (-2 (|:| |val| |#1|) (|:| -1743 |#2|))))) (-15 -3950 ((-661 $) |#1| (-661 |#2|))) (-15 -3820 ($ $)) (-15 -3819 ($ $ |#1|)) (-15 -3818 ($ $ |#2|)) (-15 -3817 ($ $ (-114))) (-15 -3816 ($ $)) (-15 -3815 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3814 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1122) (-34)) (-13 (-1122) (-34))) (T -1161)) -((-3993 (*1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3823 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3822 (*1 *2 *1) (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *3 (-13 (-1122) (-34))))) (-4352 (*1 *2 *1) (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1122) (-34))))) (-3821 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3950 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3950 (*1 *1 *2 *3) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1743 *4))) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1161 *3 *4)))) (-3950 (*1 *2 *3) (-12 (-5 *3 (-661 (-2 (|:| |val| *4) (|:| -1743 *5)))) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-661 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) (-3950 (*1 *2 *3 *4) (-12 (-5 *4 (-661 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-661 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) (-4 *3 (-13 (-1122) (-34))))) (-3820 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3819 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3818 (*1 *1 *1 *2) (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1122) (-34))) (-4 *2 (-13 (-1122) (-34))))) (-3817 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3816 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3815 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-114)) (-5 *1 (-1161 *5 *6)))) (-3814 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-114)) (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1122) (-34)))))) -((-2967 (((-114) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)) ELT)) (-3822 (((-1161 |#1| |#2|) $) 27 T ELT)) (-3831 (($ $) 91 T ELT)) (-3827 (((-114) (-1161 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-3824 (($ $ $ (-661 (-1161 |#1| |#2|))) 108 T ELT) (($ $ $ (-661 (-1161 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3426 (((-1161 |#1| |#2|) $ (-1161 |#1| |#2|)) 46 (|has| $ (-6 -4426)) ELT)) (-4218 (((-1161 |#1| |#2|) $ #1="value" (-1161 |#1| |#2|)) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 44 (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3829 (((-661 (-2 (|:| |val| |#1|) (|:| -1743 |#2|))) $) 95 T ELT)) (-3825 (($ (-1161 |#1| |#2|) $) 42 T ELT)) (-3826 (($ (-1161 |#1| |#2|) $) 34 T ELT)) (-3290 (((-661 (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3828 (((-114) (-1161 |#1| |#2|) $) 97 T ELT)) (-3428 (((-114) $ $) NIL (|has| (-1161 |#1| |#2|) (-1122)) ELT)) (-3007 (((-661 (-1161 |#1| |#2|)) $) 58 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-1161 |#1| |#2|) (-1122))) ELT)) (-2160 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 50 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-1161 |#1| |#2|) (-1161 |#1| |#2|)) $) 49 T ELT)) (-3431 (((-661 (-1161 |#1| |#2|)) $) 56 T ELT)) (-3947 (((-114) $) 45 T ELT)) (-3660 (((-1180) $) NIL (|has| (-1161 |#1| |#2|) (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| (-1161 |#1| |#2|) (-1122)) ELT)) (-3832 (((-3 $ "failed") $) 89 T ELT)) (-2158 (((-114) (-1 (-114) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-1161 |#1| |#2|)))) NIL (-12 (|has| (-1161 |#1| |#2|) (-321 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1122))) ELT) (($ $ (-305 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-321 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1122))) ELT) (($ $ (-1161 |#1| |#2|) (-1161 |#1| |#2|)) NIL (-12 (|has| (-1161 |#1| |#2|) (-321 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1122))) ELT) (($ $ (-661 (-1161 |#1| |#2|)) (-661 (-1161 |#1| |#2|))) NIL (-12 (|has| (-1161 |#1| |#2|) (-321 (-1161 |#1| |#2|))) (|has| (-1161 |#1| |#2|) (-1122))) ELT)) (-1329 (((-114) $ $) 53 T ELT)) (-3823 (((-114) $) 24 T ELT)) (-3993 (($) 26 T ELT)) (-4230 (((-1161 |#1| |#2|) $ #1#) NIL T ELT)) (-3430 (((-558) $ $) NIL T ELT)) (-4063 (((-114) $) 47 T ELT)) (-2157 (((-791) (-1 (-114) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-1161 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-1161 |#1| |#2|) (-1122))) ELT)) (-3820 (($ $) 52 T ELT)) (-3950 (($ (-1161 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-661 $)) 13 T ELT) (($ |#1| |#2| (-661 (-1161 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-661 |#2|)) 18 T ELT)) (-3830 (((-661 |#2|) $) 96 T ELT)) (-4376 (((-877) $) 87 (|has| (-1161 |#1| |#2|) (-630 (-877))) ELT)) (-3942 (((-661 $) $) 31 T ELT)) (-3429 (((-114) $ $) NIL (|has| (-1161 |#1| |#2|) (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| (-1161 |#1| |#2|) (-102)) ELT)) (-2159 (((-114) (-1 (-114) (-1161 |#1| |#2|)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 70 (|has| (-1161 |#1| |#2|) (-102)) ELT)) (-4387 (((-791) $) 64 (|has| $ (-6 -4425)) ELT))) -(((-1162 |#1| |#2|) (-13 (-1031 (-1161 |#1| |#2|)) (-10 -8 (-6 -4426) (-6 -4425) (-15 -3832 ((-3 $ "failed") $)) (-15 -3831 ($ $)) (-15 -3950 ($ (-1161 |#1| |#2|))) (-15 -3950 ($ |#1| |#2| (-661 $))) (-15 -3950 ($ |#1| |#2| (-661 (-1161 |#1| |#2|)))) (-15 -3950 ($ |#1| |#2| |#1| (-661 |#2|))) (-15 -3830 ((-661 |#2|) $)) (-15 -3829 ((-661 (-2 (|:| |val| |#1|) (|:| -1743 |#2|))) $)) (-15 -3828 ((-114) (-1161 |#1| |#2|) $)) (-15 -3827 ((-114) (-1161 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3826 ($ (-1161 |#1| |#2|) $)) (-15 -3825 ($ (-1161 |#1| |#2|) $)) (-15 -3824 ($ $ $ (-661 (-1161 |#1| |#2|)))) (-15 -3824 ($ $ $ (-661 (-1161 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1122) (-34)) (-13 (-1122) (-34))) (T -1162)) -((-3832 (*1 *1 *1) (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3831 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3950 (*1 *1 *2) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) (-3950 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-661 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) (-3950 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-661 (-1161 *2 *3))) (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)))) (-3950 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-661 *3)) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))))) (-3830 (*1 *2 *1) (-12 (-5 *2 (-661 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))))) (-3828 (*1 *2 *3 *1) (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-114)) (-5 *1 (-1162 *4 *5)))) (-3827 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-114)) (-5 *1 (-1162 *5 *6)))) (-3826 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) (-3824 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-661 (-1161 *3 *4))) (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) (-3824 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1161 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) (-5 *1 (-1162 *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3834 (($ $) NIL T ELT)) (-3750 ((|#2| $) NIL T ELT)) (-3523 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3833 (($ (-709 |#2|)) 56 T ELT)) (-3525 (((-114) $) NIL T ELT)) (-3753 (($ |#2|) 14 T ELT)) (-4154 (($) NIL T CONST)) (-3512 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3514 (((-246 |#1| |#2|) $ (-558)) 42 T ELT)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) 83 T ELT)) (-3511 (((-791) $) 71 (|has| |#2| (-569)) ELT)) (-3515 ((|#2| $ (-558) (-558)) NIL T ELT)) (-3290 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-3510 (((-791) $) 73 (|has| |#2| (-569)) ELT)) (-3509 (((-661 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)) ELT)) (-3517 (((-791) $) NIL T ELT)) (-4044 (($ |#2|) 25 T ELT)) (-3516 (((-791) $) NIL T ELT)) (-3747 ((|#2| $) 67 (|has| |#2| (-6 (-4427 #2="*"))) ELT)) (-3521 (((-558) $) NIL T ELT)) (-3519 (((-558) $) NIL T ELT)) (-3007 (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3526 (($ (-661 (-661 |#2|))) 37 T ELT)) (-2160 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4022 (((-661 (-661 |#2|)) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4018 (((-3 $ #1#) $) 80 (|has| |#2| (-376)) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) ((|#2| $ (-558) (-558)) NIL T ELT)) (-4188 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-3749 ((|#2| $) NIL T ELT)) (-3752 (($ (-661 |#2|)) 50 T ELT)) (-3524 (((-114) $) NIL T ELT)) (-3751 (((-246 |#1| |#2|) $) NIL T ELT)) (-3748 ((|#2| $) 65 (|has| |#2| (-6 (-4427 #2#))) ELT)) (-2157 (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) 90 (|has| |#2| (-631 (-547))) ELT)) (-3513 (((-246 |#1| |#2|) $ (-558)) 44 T ELT)) (-4376 (((-877) $) 47 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (((-709 |#2|) $) 52 T ELT)) (-3528 (((-791)) 23 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3522 (((-114) $) NIL T ELT)) (-3059 (($) 16 T CONST)) (-3065 (($) 21 T CONST)) (-3070 (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-791)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 63 T ELT) (($ $ (-558)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1163 |#1| |#2|) (-13 (-1144 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-630 (-709 |#2|)) (-10 -8 (-15 -4044 ($ |#2|)) (-15 -3834 ($ $)) (-15 -3833 ($ (-709 |#2|))) (IF (|has| |#2| (-6 (-4427 #1="*"))) (-6 -4414) |%noBranch|) (IF (|has| |#2| (-6 (-4427 #1#))) (IF (|has| |#2| (-6 -4422)) (-6 -4422) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-631 (-547))) (-6 (-631 (-547))) |%noBranch|))) (-791) (-1070)) (T -1163)) -((-4044 (*1 *1 *2) (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-791)) (-4 *2 (-1070)))) (-3834 (*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-791)) (-4 *3 (-1070)))) (-3833 (*1 *1 *2) (-12 (-5 *2 (-709 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) (-14 *3 (-791))))) -((-3847 (($ $) 19 T ELT)) (-3837 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3845 (((-114) $ $) 24 T ELT)) (-3849 (($ $) 17 T ELT)) (-4230 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) (($ $ $) 31 T ELT)) (-4376 (($ (-146)) 29 T ELT) (((-877) $) NIL T ELT))) -(((-1164 |#1|) (-10 -7 (-15 -4376 ((-877) |#1|)) (-15 -4230 (|#1| |#1| |#1|)) (-15 -3837 (|#1| |#1| (-143))) (-15 -3837 (|#1| |#1| (-146))) (-15 -4376 (|#1| (-146))) (-15 -3845 ((-114) |#1| |#1|)) (-15 -3847 (|#1| |#1|)) (-15 -3849 (|#1| |#1|)) (-15 -4230 (|#1| |#1| (-1255 (-558)))) (-15 -4230 ((-146) |#1| (-558))) (-15 -4230 ((-146) |#1| (-558) (-146)))) (-1165)) (T -1164)) -NIL -((-2967 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-3846 (($ $) 129 T ELT)) (-3847 (($ $) 130 T ELT)) (-3837 (($ $ (-146)) 117 T ELT) (($ $ (-143)) 116 T ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-3844 (((-114) $ $) 127 T ELT)) (-3843 (((-114) $ $ (-558)) 126 T ELT)) (-3838 (((-661 $) $ (-146)) 119 T ELT) (((-661 $) $ (-143)) 118 T ELT)) (-1935 (((-114) (-1 (-114) (-146) (-146)) $) 107 T ELT) (((-114) $) 101 (|has| (-146) (-861)) ELT)) (-1933 (($ (-1 (-114) (-146) (-146)) $) 98 (|has| $ (-6 -4426)) ELT) (($ $) 97 (-12 (|has| (-146) (-861)) (|has| $ (-6 -4426))) ELT)) (-3310 (($ (-1 (-114) (-146) (-146)) $) 108 T ELT) (($ $) 102 (|has| (-146) (-861)) ELT)) (-4218 (((-146) $ (-558) (-146)) 56 (|has| $ (-6 -4426)) ELT) (((-146) $ (-1255 (-558)) (-146)) 64 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) (-146)) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-3835 (($ $ (-146)) 113 T ELT) (($ $ (-143)) 112 T ELT)) (-2510 (($ $) 99 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 109 T ELT)) (-3840 (($ $ (-1255 (-558)) $) 123 T ELT)) (-1467 (($ $) 84 (-12 (|has| (-146) (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ (-146) $) 83 (-12 (|has| (-146) (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) (-146)) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 82 (-12 (|has| (-146) (-1122)) (|has| $ (-6 -4425))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 79 (|has| $ (-6 -4425)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 (((-146) $ (-558) (-146)) 57 (|has| $ (-6 -4426)) ELT)) (-3515 (((-146) $ (-558)) 55 T ELT)) (-3845 (((-114) $ $) 128 T ELT)) (-3839 (((-558) (-1 (-114) (-146)) $) 106 T ELT) (((-558) (-146) $) 105 (|has| (-146) (-1122)) ELT) (((-558) (-146) $ (-558)) 104 (|has| (-146) (-1122)) ELT) (((-558) $ $ (-558)) 122 T ELT) (((-558) (-143) $ (-558)) 121 T ELT)) (-3290 (((-661 (-146)) $) 30 (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) (-146)) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 91 (|has| (-146) (-861)) ELT)) (-3938 (($ (-1 (-114) (-146) (-146)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-146) (-861)) ELT)) (-3007 (((-661 (-146)) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-146) $) 27 (-12 (|has| (-146) (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 92 (|has| (-146) (-861)) ELT)) (-3841 (((-114) $ $ (-146)) 124 T ELT)) (-3842 (((-791) $ $ (-146)) 125 T ELT)) (-2160 (($ (-1 (-146) (-146)) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-146) (-146)) $) 35 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 69 T ELT)) (-3848 (($ $) 131 T ELT)) (-3849 (($ $) 132 T ELT)) (-3836 (($ $ (-146)) 115 T ELT) (($ $ (-143)) 114 T ELT)) (-3660 (((-1180) $) 22 (|has| (-146) (-1122)) ELT)) (-2517 (($ (-146) $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| (-146) (-1122)) ELT)) (-4231 (((-146) $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 77 T ELT)) (-2414 (($ $ (-146)) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-146)))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-305 (-146))) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-146) (-146)) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-661 (-146)) (-661 (-146))) 23 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) (-146) $) 49 (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-2420 (((-661 (-146)) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 (((-146) $ (-558) (-146)) 54 T ELT) (((-146) $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT) (($ $ $) 111 T ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-2157 (((-791) (-1 (-114) (-146)) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) (-146) $) 28 (-12 (|has| (-146) (-1122)) (|has| $ (-6 -4425))) ELT)) (-1934 (($ $ $ (-558)) 100 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| (-146) (-631 (-547))) ELT)) (-3950 (($ (-661 (-146))) 76 T ELT)) (-4232 (($ $ (-146)) 73 T ELT) (($ (-146) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (($ (-146)) 120 T ELT) (((-877) $) 17 (|has| (-146) (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-2159 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 93 (|has| (-146) (-861)) ELT)) (-2966 (((-114) $ $) 95 (|has| (-146) (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| (-146) (-102)) ELT)) (-3085 (((-114) $ $) 94 (|has| (-146) (-861)) ELT)) (-3086 (((-114) $ $) 96 (|has| (-146) (-861)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1165) (-142)) (T -1165)) -((-3849 (*1 *1 *1) (-4 *1 (-1165))) (-3848 (*1 *1 *1) (-4 *1 (-1165))) (-3847 (*1 *1 *1) (-4 *1 (-1165))) (-3846 (*1 *1 *1) (-4 *1 (-1165))) (-3845 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-114)))) (-3844 (*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-114)))) (-3843 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-558)) (-5 *2 (-114)))) (-3842 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-146)) (-5 *2 (-791)))) (-3841 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-146)) (-5 *2 (-114)))) (-3840 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-558))))) (-3839 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-558)))) (-3839 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-558)) (-5 *3 (-143)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1165)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-661 *1)) (-4 *1 (-1165)))) (-3838 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-661 *1)) (-4 *1 (-1165)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-146)))) (-3837 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-143)))) (-3836 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-146)))) (-3836 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-143)))) (-3835 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-146)))) (-3835 (*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-143)))) (-4230 (*1 *1 *1 *1) (-4 *1 (-1165)))) -(-13 (-19 (-146)) (-10 -8 (-15 -3849 ($ $)) (-15 -3848 ($ $)) (-15 -3847 ($ $)) (-15 -3846 ($ $)) (-15 -3845 ((-114) $ $)) (-15 -3844 ((-114) $ $)) (-15 -3843 ((-114) $ $ (-558))) (-15 -3842 ((-791) $ $ (-146))) (-15 -3841 ((-114) $ $ (-146))) (-15 -3840 ($ $ (-1255 (-558)) $)) (-15 -3839 ((-558) $ $ (-558))) (-15 -3839 ((-558) (-143) $ (-558))) (-15 -4376 ($ (-146))) (-15 -3838 ((-661 $) $ (-146))) (-15 -3838 ((-661 $) $ (-143))) (-15 -3837 ($ $ (-146))) (-15 -3837 ($ $ (-143))) (-15 -3836 ($ $ (-146))) (-15 -3836 ($ $ (-143))) (-15 -3835 ($ $ (-146))) (-15 -3835 ($ $ (-143))) (-15 -4230 ($ $ $)))) -(((-34) . T) ((-102) -3957 (|has| (-146) (-1122)) (|has| (-146) (-861)) (|has| (-146) (-102))) ((-630 (-877)) -3957 (|has| (-146) (-1122)) (|has| (-146) (-861)) (|has| (-146) (-630 (-877)))) ((-153 (-146)) . T) ((-631 (-547)) |has| (-146) (-631 (-547))) ((-298 (-558) (-146)) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) (-146)) . T) ((-321 (-146)) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ((-385 (-146)) . T) ((-501 (-146)) . T) ((-616 (-558) (-146)) . T) ((-526 (-146) (-146)) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ((-671 (-146)) . T) ((-19 (-146)) . T) ((-861) |has| (-146) (-861)) ((-864) |has| (-146) (-861)) ((-1122) -3957 (|has| (-146) (-1122)) (|has| (-146) (-861))) ((-1238) . T)) -((-3856 (((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) (-791)) 112 T ELT)) (-3853 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791)) 61 T ELT)) (-3857 (((-1294) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-791)) 97 T ELT)) (-3851 (((-791) (-661 |#4|) (-661 |#5|)) 30 T ELT)) (-3854 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791)) 63 T ELT) (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791) (-114)) 65 T ELT)) (-3855 (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114)) 85 T ELT)) (-4402 (((-1180) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) 90 T ELT)) (-3852 (((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|) 60 T ELT)) (-3850 (((-791) (-661 |#4|) (-661 |#5|)) 21 T ELT))) -(((-1166 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3850 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3851 ((-791) (-661 |#4|) (-661 |#5|))) (-15 -3852 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|)) (-15 -3853 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791))) (-15 -3853 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|)) (-15 -3854 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791) (-114))) (-15 -3854 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5| (-791))) (-15 -3854 ((-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) |#4| |#5|)) (-15 -3855 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114))) (-15 -3855 ((-661 |#5|) (-661 |#4|) (-661 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3856 ((-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-661 |#4|) (-661 |#5|) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-2 (|:| |done| (-661 |#5|)) (|:| |todo| (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))))) (-791))) (-15 -4402 ((-1180) (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|)))) (-15 -3857 ((-1294) (-661 (-2 (|:| |val| (-661 |#4|)) (|:| -1743 |#5|))) (-791)))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|) (-1130 |#1| |#2| |#3| |#4|)) (T -1166)) -((-3857 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *4 (-791)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-1294)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1180)) (-5 *1 (-1166 *4 *5 *6 *7 *8)))) (-3856 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-661 *11)) (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1743 *11)))))) (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1743 *11)))) (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1086 *7 *8 *9)) (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-861)) (-5 *1 (-1166 *7 *8 *9 *10 *11)))) (-3855 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3855 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3854 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-3854 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) (-3853 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3853 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) (-3852 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-661 *4)) (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-791)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-791)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4112 (((-661 $) (-661 |#4|)) 121 T ELT) (((-661 $) (-661 |#4|) (-114)) 122 T ELT) (((-661 $) (-661 |#4|) (-114) (-114)) 120 T ELT) (((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114)) 123 T ELT)) (-3484 (((-661 |#3|) $) NIL T ELT)) (-3309 (((-114) $) NIL T ELT)) (-3300 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4118 ((|#4| |#4| $) NIL T ELT)) (-4205 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| $) 94 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4140 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-4154 (($) NIL T CONST)) (-3305 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ #1#) (-661 |#4|)) NIL T ELT)) (-3574 (($ (-661 |#4|)) NIL T ELT)) (-4229 (((-3 $ #1#) $) 45 T ELT)) (-4115 ((|#4| |#4| $) 76 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-3826 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4113 ((|#4| |#4| $) NIL T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) NIL T ELT)) (-3615 (((-114) |#4| $) NIL T ELT)) (-3613 (((-114) |#4| $) NIL T ELT)) (-3616 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3858 (((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114)) 136 T ELT)) (-3290 (((-661 |#4|) $) 18 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 19 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3315 (((-661 |#3|) $) NIL T ELT)) (-3314 (((-114) |#3| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3609 (((-3 |#4| (-661 $)) |#4| |#4| $) NIL T ELT)) (-3608 (((-661 (-2 (|:| |val| |#4|) (|:| -1743 $))) |#4| |#4| $) 114 T ELT)) (-4228 (((-3 |#4| #1#) $) 42 T ELT)) (-3610 (((-661 $) |#4| $) 99 T ELT)) (-3612 (((-3 (-114) (-661 $)) |#4| $) NIL T ELT)) (-3611 (((-661 (-2 (|:| |val| (-114)) (|:| -1743 $))) |#4| $) 109 T ELT) (((-114) |#4| $) 65 T ELT)) (-3656 (((-661 $) |#4| $) 118 T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 119 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT)) (-3859 (((-661 $) (-661 |#4|) (-114) (-114) (-114)) 131 T ELT)) (-3860 (($ |#4| $) 85 T ELT) (($ (-661 |#4|) $) 86 T ELT) (((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 84 T ELT)) (-4127 (((-661 |#4|) $) NIL T ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-4129 (((-114) $ $) NIL T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-3 |#4| #1#) $) 40 T ELT)) (-1468 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4109 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4199 (($ $ |#4|) NIL T ELT) (((-661 $) |#4| $) 101 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) 96 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 17 T ELT)) (-3993 (($) 14 T ELT)) (-4378 (((-791) $) NIL T ELT)) (-2157 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 13 T ELT)) (-4402 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 22 T ELT)) (-3311 (($ $ |#3|) 52 T ELT)) (-3313 (($ $ |#3|) 54 T ELT)) (-4114 (($ $) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-4376 (((-877) $) 35 T ELT) (((-661 |#4|) $) 46 T ELT)) (-4108 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-3607 (((-661 $) |#4| $) 66 T ELT) (((-661 $) |#4| (-661 $)) NIL T ELT) (((-661 $) (-661 |#4|) $) NIL T ELT) (((-661 $) (-661 |#4|) (-661 $)) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) NIL T ELT)) (-3614 (((-114) |#4| $) NIL T ELT)) (-4363 (((-114) |#3| $) 72 T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1167 |#1| |#2| |#3| |#4|) (-13 (-1130 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3860 ((-661 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4112 ((-661 $) (-661 |#4|) (-114) (-114))) (-15 -4112 ((-661 $) (-661 |#4|) (-114) (-114) (-114) (-114))) (-15 -3859 ((-661 $) (-661 |#4|) (-114) (-114) (-114))) (-15 -3858 ((-2 (|:| |val| (-661 |#4|)) (|:| |towers| (-661 $))) (-661 |#4|) (-114) (-114))))) (-464) (-815) (-861) (-1086 |#1| |#2| |#3|)) (T -1167)) -((-3860 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) (-4 *3 (-1086 *5 *6 *7)))) (-4112 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-4112 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3859 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *8))) (-5 *1 (-1167 *5 *6 *7 *8)))) (-3858 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1167 *5 *6 *7 *8))))) (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-661 *8))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 31 T ELT)) (-2641 (((-114) $) 29 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 28 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-791)) 30 T ELT) (($ $ (-938)) 27 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ $ $) 26 T ELT))) -(((-1168) (-142)) (T -1168)) -NIL -(-13 (-23) (-746)) -(((-23) . T) ((-25) . T) ((-102) . T) ((-630 (-877)) . T) ((-746) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3744 ((|#1| $) 37 T ELT)) (-3861 (($ (-661 |#1|)) 45 T ELT)) (-4154 (($) NIL T CONST)) (-3746 ((|#1| |#1| $) 40 T ELT)) (-3745 ((|#1| $) 35 T ELT)) (-3290 (((-661 |#1|) $) 18 (|has| $ (-6 -4425)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-1389 ((|#1| $) 38 T ELT)) (-4037 (($ |#1| $) 41 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-1390 ((|#1| $) 36 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 32 T ELT)) (-3993 (($) 43 T ELT)) (-3743 (((-791) $) 30 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 27 T ELT)) (-4376 (((-877) $) 14 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1391 (($ (-661 |#1|)) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 31 (|has| $ (-6 -4425)) ELT))) -(((-1169 |#1|) (-13 (-1142 |#1|) (-10 -8 (-15 -3861 ($ (-661 |#1|))))) (-1238)) (T -1169)) -((-3861 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-1169 *3))))) -((-4218 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1255 (-558)) |#2|) 53 T ELT) ((|#2| $ (-558) |#2|) 50 T ELT)) (-3863 (((-114) $) 12 T ELT)) (-2160 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4231 ((|#2| $) NIL T ELT) (($ $ (-791)) 17 T ELT)) (-2414 (($ $ |#2|) 49 T ELT)) (-3864 (((-114) $) 11 T ELT)) (-4230 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1255 (-558))) 36 T ELT) ((|#2| $ (-558)) 25 T ELT) ((|#2| $ (-558) |#2|) NIL T ELT)) (-4221 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-4232 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-661 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) -(((-1170 |#1| |#2|) (-10 -7 (-15 -3863 ((-114) |#1|)) (-15 -3864 ((-114) |#1|)) (-15 -4218 (|#2| |#1| (-558) |#2|)) (-15 -4230 (|#2| |#1| (-558) |#2|)) (-15 -4230 (|#2| |#1| (-558))) (-15 -2414 (|#1| |#1| |#2|)) (-15 -4230 (|#1| |#1| (-1255 (-558)))) (-15 -4232 (|#1| |#1| |#2|)) (-15 -4232 (|#1| (-661 |#1|))) (-15 -4218 (|#2| |#1| (-1255 (-558)) |#2|)) (-15 -4218 (|#2| |#1| #1="last" |#2|)) (-15 -4218 (|#1| |#1| #2="rest" |#1|)) (-15 -4218 (|#2| |#1| #3="first" |#2|)) (-15 -4221 (|#1| |#1| |#2|)) (-15 -4221 (|#1| |#1| |#1|)) (-15 -4230 (|#2| |#1| #1#)) (-15 -4230 (|#1| |#1| #2#)) (-15 -4231 (|#1| |#1| (-791))) (-15 -4230 (|#2| |#1| #3#)) (-15 -4231 (|#2| |#1|)) (-15 -4232 (|#1| |#2| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -4218 (|#2| |#1| #4="value" |#2|)) (-15 -4230 (|#2| |#1| #4#)) (-15 -2160 (|#1| (-1 |#2| |#2|) |#1|))) (-1171 |#2|) (-1238)) (T -1170)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-4225 ((|#1| $) 71 T ELT)) (-4227 (($ $) 73 T ELT)) (-2413 (((-1294) $ (-558) (-558)) 107 (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) 58 (|has| $ (-6 -4426)) ELT)) (-3862 (((-114) $ (-791)) 90 T ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 62 (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) 60 (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 127 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4425)) ELT)) (-4226 ((|#1| $) 72 T ELT)) (-4154 (($) 7 T CONST)) (-4229 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-1467 (($ $) 109 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4425)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1719 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 97 T ELT)) (-3863 (((-114) $) 93 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-4044 (($ (-791) |#1|) 119 T ELT)) (-4149 (((-114) $ (-791)) 91 T ELT)) (-2415 (((-558) $) 105 (|has| (-558) (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 104 (|has| (-558) (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4146 (((-114) $ (-791)) 92 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-2517 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2418 (((-661 (-558)) $) 102 T ELT)) (-2419 (((-114) (-558) $) 101 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2414 (($ $ |#1|) 106 (|has| $ (-6 -4426)) ELT)) (-3864 (((-114) $) 94 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 100 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1255 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-2518 (($ $ (-1255 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-4222 (($ $) 68 T ELT)) (-4220 (($ $) 65 (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) 69 T ELT)) (-4224 (($ $) 70 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 108 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 117 T ELT)) (-4221 (($ $ $) 67 (|has| $ (-6 -4426)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4426)) ELT)) (-4232 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-661 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1171 |#1|) (-142) (-1238)) (T -1171)) -((-3864 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-3863 (*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) (-4146 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1171 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) (-4149 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1171 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) (-3862 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1171 *4)) (-4 *4 (-1238)) (-5 *2 (-114))))) -(-13 (-1277 |t#1|) (-671 |t#1|) (-10 -8 (-15 -3864 ((-114) $)) (-15 -3863 ((-114) $)) (-15 -4146 ((-114) $ (-791))) (-15 -4149 ((-114) $ (-791))) (-15 -3862 ((-114) $ (-791))))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-1031 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1238) . T) ((-1277 |#1|) . T)) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-2884 (((-661 |#1|) $) NIL T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #1#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1172 |#1| |#2| |#3|) (-1215 |#1| |#2|) (-1122) (-1122) |#2|) (T -1172)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3865 (((-711 $) $) 17 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3866 (($) 18 T CONST)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3454 (((-114) $ $) 8 T ELT))) -(((-1173) (-142)) (T -1173)) -((-3866 (*1 *1) (-4 *1 (-1173))) (-3865 (*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-1173))))) -(-13 (-1122) (-10 -8 (-15 -3866 ($) -4382) (-15 -3865 ((-711 $) $)))) -(((-102) . T) ((-630 (-877)) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3868 (((-711 (-1156)) $) 27 T ELT)) (-3867 (((-1156) $) 15 T ELT)) (-3869 (((-1156) $) 17 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3870 (((-518) $) 13 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 37 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1174) (-13 (-1104) (-10 -8 (-15 -3870 ((-518) $)) (-15 -3869 ((-1156) $)) (-15 -3868 ((-711 (-1156)) $)) (-15 -3867 ((-1156) $))))) (T -1174)) -((-3870 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1174)))) (-3869 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1174)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-711 (-1156))) (-5 *1 (-1174)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1174))))) -((-3873 (((-1176 |#1|) (-1176 |#1|)) 17 T ELT)) (-3871 (((-1176 |#1|) (-1176 |#1|)) 13 T ELT)) (-3874 (((-1176 |#1|) (-1176 |#1|) (-558) (-558)) 20 T ELT)) (-3872 (((-1176 |#1|) (-1176 |#1|)) 15 T ELT))) -(((-1175 |#1|) (-10 -7 (-15 -3871 ((-1176 |#1|) (-1176 |#1|))) (-15 -3872 ((-1176 |#1|) (-1176 |#1|))) (-15 -3873 ((-1176 |#1|) (-1176 |#1|))) (-15 -3874 ((-1176 |#1|) (-1176 |#1|) (-558) (-558)))) (-13 (-569) (-149))) (T -1175)) -((-3874 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1175 *4)))) (-3873 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1175 *3)))) (-3872 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1175 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1175 *3))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) NIL T ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4227 (($ $) 62 T ELT)) (-2413 (((-1294) $ (-558) (-558)) 95 (|has| $ (-6 -4426)) ELT)) (-4215 (($ $ (-558)) 124 (|has| $ (-6 -4426)) ELT)) (-3862 (((-114) $ (-791)) NIL T ELT)) (-3879 (((-877) $) 51 (|has| |#1| (-1122)) ELT)) (-3878 (((-114)) 50 (|has| |#1| (-1122)) ELT)) (-3426 ((|#1| $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 111 (|has| $ (-6 -4426)) ELT) (($ $ (-558) $) 138 T ELT)) (-4216 ((|#1| $ |#1|) 121 (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) 116 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4426)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4426)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 108 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-558) |#1|) 74 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-4226 ((|#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-2536 (($ $) 11 T ELT)) (-4229 (($ $) 35 T ELT) (($ $ (-791)) 107 T ELT)) (-3884 (((-114) (-661 |#1|) $) 130 (|has| |#1| (-1122)) ELT)) (-3885 (($ (-661 |#1|)) 126 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) 76 T ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3863 (((-114) $) NIL T ELT)) (-3290 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3880 (((-1294) (-558) $) 136 (|has| |#1| (-1122)) ELT)) (-2535 (((-791) $) 133 T ELT)) (-3432 (((-661 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-4149 (((-114) $ (-791)) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-4146 (((-114) $ (-791)) NIL T ELT)) (-3431 (((-661 |#1|) $) NIL T ELT)) (-3947 (((-114) $) NIL T ELT)) (-2538 (($ $) 109 T ELT)) (-2539 (((-114) $) 10 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) NIL T ELT) (($ $ (-791)) NIL T ELT)) (-2517 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) 92 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-3877 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2537 ((|#1| $) 7 T ELT)) (-4231 ((|#1| $) 34 T ELT) (($ $ (-791)) 60 T ELT)) (-3883 (((-2 (|:| |cycle?| (-114)) (|:| -2994 (-791)) (|:| |period| (-791))) (-791) $) 29 T ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3876 (($ (-1 (-114) |#1|) $) 142 T ELT)) (-3875 (($ (-1 (-114) |#1|) $) 143 T ELT)) (-2414 (($ $ |#1|) 87 (|has| $ (-6 -4426)) ELT)) (-4199 (($ $ (-558)) 40 T ELT)) (-3864 (((-114) $) 90 T ELT)) (-2540 (((-114) $) 9 T ELT)) (-2541 (((-114) $) 132 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 25 T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) 14 T ELT)) (-3993 (($) 55 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) ((|#1| $ (-558)) 72 T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3430 (((-558) $ $) 59 T ELT)) (-2518 (($ $ (-1255 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-3882 (($ (-1 $)) 58 T ELT)) (-4063 (((-114) $) 88 T ELT)) (-4222 (($ $) 89 T ELT)) (-4220 (($ $) 112 (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) NIL T ELT)) (-4224 (($ $) NIL T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 54 T ELT)) (-4402 (((-547) $) NIL (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 70 T ELT)) (-3881 (($ |#1| $) 110 T ELT)) (-4221 (($ $ $) 114 (|has| $ (-6 -4426)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4426)) ELT)) (-4232 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-661 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3292 (($ $) 61 T ELT)) (-4376 (($ (-661 |#1|)) 125 T ELT) (((-877) $) 52 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) NIL T ELT)) (-3429 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 128 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1176 |#1|) (-13 (-694 |#1|) (-633 (-661 |#1|)) (-10 -8 (-6 -4426) (-15 -3885 ($ (-661 |#1|))) (IF (|has| |#1| (-1122)) (-15 -3884 ((-114) (-661 |#1|) $)) |%noBranch|) (-15 -3883 ((-2 (|:| |cycle?| (-114)) (|:| -2994 (-791)) (|:| |period| (-791))) (-791) $)) (-15 -3882 ($ (-1 $))) (-15 -3881 ($ |#1| $)) (IF (|has| |#1| (-1122)) (PROGN (-15 -3880 ((-1294) (-558) $)) (-15 -3879 ((-877) $)) (-15 -3878 ((-114)))) |%noBranch|) (-15 -4217 ($ $ (-558) $)) (-15 -3877 ($ (-1 |#1|))) (-15 -3877 ($ (-1 |#1| |#1|) |#1|)) (-15 -3876 ($ (-1 (-114) |#1|) $)) (-15 -3875 ($ (-1 (-114) |#1|) $)))) (-1238)) (T -1176)) -((-3885 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3)))) (-3884 (*1 *2 *3 *1) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1122)) (-4 *4 (-1238)) (-5 *2 (-114)) (-5 *1 (-1176 *4)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2994 (-791)) (|:| |period| (-791)))) (-5 *1 (-1176 *4)) (-4 *4 (-1238)) (-5 *3 (-791)))) (-3882 (*1 *1 *2) (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1238)))) (-3881 (*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1238)))) (-3880 (*1 *2 *3 *1) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1176 *4)) (-4 *4 (-1122)) (-4 *4 (-1238)))) (-3879 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1176 *3)) (-4 *3 (-1122)) (-4 *3 (-1238)))) (-3878 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1176 *3)) (-4 *3 (-1122)) (-4 *3 (-1238)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1176 *3)) (-4 *3 (-1238)))) (-3877 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3)))) (-3877 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3)))) (-3876 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3)))) (-3875 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3))))) -((-4232 (((-1176 |#1|) (-1176 (-1176 |#1|))) 15 T ELT))) -(((-1177 |#1|) (-10 -7 (-15 -4232 ((-1176 |#1|) (-1176 (-1176 |#1|))))) (-1238)) (T -1177)) -((-4232 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1177 *4)) (-4 *4 (-1238))))) -((-4271 (((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 25 T ELT)) (-4272 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)) 26 T ELT)) (-4388 (((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|)) 16 T ELT))) -(((-1178 |#1| |#2|) (-10 -7 (-15 -4388 ((-1176 |#2|) (-1 |#2| |#1|) (-1176 |#1|))) (-15 -4271 ((-1176 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|))) (-15 -4272 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1176 |#1|)))) (-1238) (-1238)) (T -1178)) -((-4272 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1178 *5 *2)))) (-4271 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1238)) (-4 *3 (-1238)) (-5 *2 (-1176 *3)) (-5 *1 (-1178 *6 *3)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1176 *6)) (-5 *1 (-1178 *5 *6))))) -((-4388 (((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)) 21 T ELT))) -(((-1179 |#1| |#2| |#3|) (-10 -7 (-15 -4388 ((-1176 |#3|) (-1 |#3| |#1| |#2|) (-1176 |#1|) (-1176 |#2|)))) (-1238) (-1238) (-1238)) (T -1179)) -((-4388 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7)) (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1176 *8)) (-5 *1 (-1179 *6 *7 *8))))) -((-2967 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3846 (($ $) NIL T ELT)) (-3847 (($ $) NIL T ELT)) (-3837 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3844 (((-114) $ $) NIL T ELT)) (-3843 (((-114) $ $ (-558)) NIL T ELT)) (-3963 (($ (-558)) 8 T ELT) (($ (-229)) 10 T ELT) (($ (-518)) 12 T ELT)) (-3838 (((-661 $) $ (-146)) NIL T ELT) (((-661 $) $ (-143)) NIL T ELT)) (-1935 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-861)) ELT)) (-1933 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| (-146) (-861))) ELT)) (-3310 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-861)) ELT)) (-4218 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4426)) ELT) (((-146) $ (-1255 (-558)) (-146)) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-3835 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-3840 (($ $ (-1255 (-558)) $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-3826 (($ (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4425)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4426)) ELT)) (-3515 (((-146) $ (-558)) NIL T ELT)) (-3845 (((-114) $ $) NIL T ELT)) (-3839 (((-558) (-1 (-114) (-146)) $) NIL T ELT) (((-558) (-146) $) NIL (|has| (-146) (-1122)) ELT) (((-558) (-146) $ (-558)) NIL (|has| (-146) (-1122)) ELT) (((-558) $ $ (-558)) NIL T ELT) (((-558) (-143) $ (-558)) NIL T ELT)) (-3290 (((-661 (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4044 (($ (-791) (-146)) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| (-146) (-861)) ELT)) (-3938 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-861)) ELT)) (-3007 (((-661 (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-2416 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| (-146) (-861)) ELT)) (-3841 (((-114) $ $ (-146)) NIL T ELT)) (-3842 (((-791) $ $ (-146)) NIL T ELT)) (-2160 (($ (-1 (-146) (-146)) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3848 (($ $) NIL T ELT)) (-3849 (($ $) NIL T ELT)) (-3836 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-3660 (((-1180) $) NIL (|has| (-146) (-1122)) ELT)) (-2517 (($ (-146) $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| (-146) (-1122)) ELT)) (-4231 (((-146) $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2414 (($ $ (-146)) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT) (($ $ (-661 (-146)) (-661 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-2420 (((-661 (-146)) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT) (($ $ $) NIL T ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-146) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-146) (-631 (-547))) ELT)) (-3950 (($ (-661 (-146))) NIL T ELT)) (-4232 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (($ (-146)) NIL T ELT) (((-877) $) NIL (|has| (-146) (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2159 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| (-146) (-861)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1180) (-13 (-1165) (-10 -8 (-15 -3963 ($ (-558))) (-15 -3963 ($ (-229))) (-15 -3963 ($ (-518)))))) (T -1180)) -((-3963 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1180)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1180)))) (-3963 (*1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-1180))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT)) (-2413 (((-1294) $ (-1180) (-1180)) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ (-1180) |#1|) NIL T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#1| #1="failed") (-1180) $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#1| #1#) (-1180) $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-1180) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-1180)) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 (((-1180) $) NIL (|has| (-1180) (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-1180) $) NIL (|has| (-1180) (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122)) (|has| |#1| (-1122))) ELT)) (-2884 (((-661 (-1180)) $) NIL T ELT)) (-2447 (((-114) (-1180) $) NIL T ELT)) (-1389 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL T ELT)) (-2418 (((-661 (-1180)) $) NIL T ELT)) (-2419 (((-114) (-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122)) (|has| |#1| (-1122))) ELT)) (-4231 ((|#1| $) NIL (|has| (-1180) (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) #1#) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL (-12 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-321 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-1180)) NIL T ELT) ((|#1| $ (-1180) |#1|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-1122))) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-630 (-877))) (|has| |#1| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 (-1180)) (|:| -2286 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1181 |#1|) (-13 (-1215 (-1180) |#1|) (-10 -7 (-6 -4425))) (-1122)) (T -1181)) -NIL -((-4235 (((-1176 |#1|) (-1176 |#1|)) 83 T ELT)) (-3887 (((-3 (-1176 |#1|) #1="failed") (-1176 |#1|)) 39 T ELT)) (-3898 (((-1176 |#1|) (-419 (-558)) (-1176 |#1|)) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3901 (((-1176 |#1|) |#1| (-1176 |#1|)) 137 (|has| |#1| (-376)) ELT)) (-4238 (((-1176 |#1|) (-1176 |#1|)) 97 T ELT)) (-3889 (((-1176 (-558)) (-558)) 63 T ELT)) (-3897 (((-1176 |#1|) (-1176 (-1176 |#1|))) 117 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4234 (((-1176 |#1|) (-558) (-558) (-1176 |#1|)) 103 T ELT)) (-4368 (((-1176 |#1|) |#1| (-558)) 51 T ELT)) (-3891 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 66 T ELT)) (-3899 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 135 (|has| |#1| (-376)) ELT)) (-3896 (((-1176 |#1|) |#1| (-1 (-1176 |#1|))) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3900 (((-1176 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1176 |#1|))) 136 (|has| |#1| (-376)) ELT)) (-4239 (((-1176 |#1|) (-1176 |#1|)) 96 T ELT)) (-4240 (((-1176 |#1|) (-1176 |#1|)) 82 T ELT)) (-4233 (((-1176 |#1|) (-558) (-558) (-1176 |#1|)) 104 T ELT)) (-4242 (((-1176 |#1|) |#1| (-1176 |#1|)) 113 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3888 (((-1176 (-558)) (-558)) 62 T ELT)) (-3890 (((-1176 |#1|) |#1|) 65 T ELT)) (-4236 (((-1176 |#1|) (-1176 |#1|) (-558) (-558)) 100 T ELT)) (-3893 (((-1176 |#1|) (-1 |#1| (-558)) (-1176 |#1|)) 72 T ELT)) (-3886 (((-3 (-1176 |#1|) #1#) (-1176 |#1|) (-1176 |#1|)) 37 T ELT)) (-4237 (((-1176 |#1|) (-1176 |#1|)) 98 T ELT)) (-4198 (((-1176 |#1|) (-1176 |#1|) |#1|) 77 T ELT)) (-3892 (((-1176 |#1|) (-1176 |#1|)) 68 T ELT)) (-3894 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 78 T ELT)) (-4376 (((-1176 |#1|) |#1|) 73 T ELT)) (-3895 (((-1176 |#1|) (-1176 (-1176 |#1|))) 88 T ELT)) (-4379 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 38 T ELT)) (-4267 (((-1176 |#1|) (-1176 |#1|)) 21 T ELT) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 23 T ELT)) (-4269 (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 17 T ELT)) (* (((-1176 |#1|) (-1176 |#1|) |#1|) 29 T ELT) (((-1176 |#1|) |#1| (-1176 |#1|)) 26 T ELT) (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 27 T ELT))) -(((-1182 |#1|) (-10 -7 (-15 -4269 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4267 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4267 ((-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 * ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 * ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -3886 ((-3 (-1176 |#1|) #1="failed") (-1176 |#1|) (-1176 |#1|))) (-15 -4379 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3887 ((-3 (-1176 |#1|) #1#) (-1176 |#1|))) (-15 -4368 ((-1176 |#1|) |#1| (-558))) (-15 -3888 ((-1176 (-558)) (-558))) (-15 -3889 ((-1176 (-558)) (-558))) (-15 -3890 ((-1176 |#1|) |#1|)) (-15 -3891 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3892 ((-1176 |#1|) (-1176 |#1|))) (-15 -3893 ((-1176 |#1|) (-1 |#1| (-558)) (-1176 |#1|))) (-15 -4376 ((-1176 |#1|) |#1|)) (-15 -4198 ((-1176 |#1|) (-1176 |#1|) |#1|)) (-15 -3894 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4240 ((-1176 |#1|) (-1176 |#1|))) (-15 -4235 ((-1176 |#1|) (-1176 |#1|))) (-15 -3895 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -4239 ((-1176 |#1|) (-1176 |#1|))) (-15 -4238 ((-1176 |#1|) (-1176 |#1|))) (-15 -4237 ((-1176 |#1|) (-1176 |#1|))) (-15 -4236 ((-1176 |#1|) (-1176 |#1|) (-558) (-558))) (-15 -4234 ((-1176 |#1|) (-558) (-558) (-1176 |#1|))) (-15 -4233 ((-1176 |#1|) (-558) (-558) (-1176 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ((-1176 |#1|) |#1| (-1176 |#1|))) (-15 -3896 ((-1176 |#1|) |#1| (-1 (-1176 |#1|)))) (-15 -3897 ((-1176 |#1|) (-1176 (-1176 |#1|)))) (-15 -3898 ((-1176 |#1|) (-419 (-558)) (-1176 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3899 ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3900 ((-1176 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1176 |#1|)))) (-15 -3901 ((-1176 |#1|) |#1| (-1176 |#1|)))) |%noBranch|)) (-1070)) (T -1182)) -((-3901 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3900 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-376)) (-4 *4 (-1070)) (-5 *2 (-1176 *4)) (-5 *1 (-1182 *4)))) (-3899 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3898 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) (-5 *3 (-419 (-558))) (-5 *1 (-1182 *4)))) (-3897 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1070)))) (-3896 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)))) (-4242 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4233 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) (-4234 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) (-4236 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3895 (*1 *2 *3) (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1182 *4)) (-4 *4 (-1070)))) (-4235 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4240 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3894 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4198 (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4376 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1070)))) (-3893 (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) (-3892 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3891 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3890 (*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1070)))) (-3889 (*1 *2 *3) (-12 (-5 *2 (-1176 (-558))) (-5 *1 (-1182 *4)) (-4 *4 (-1070)) (-5 *3 (-558)))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-1176 (-558))) (-5 *1 (-1182 *4)) (-4 *4 (-1070)) (-5 *3 (-558)))) (-4368 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1070)))) (-3887 (*1 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4379 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-3886 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4267 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4267 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) -((-3912 (((-1176 |#1|) (-1176 |#1|)) 102 T ELT)) (-4069 (((-1176 |#1|) (-1176 |#1|)) 61 T ELT)) (-3903 (((-2 (|:| -3910 (-1176 |#1|)) (|:| -3911 (-1176 |#1|))) (-1176 |#1|)) 98 T ELT)) (-3910 (((-1176 |#1|) (-1176 |#1|)) 99 T ELT)) (-3902 (((-2 (|:| -4068 (-1176 |#1|)) (|:| -4064 (-1176 |#1|))) (-1176 |#1|)) 54 T ELT)) (-4068 (((-1176 |#1|) (-1176 |#1|)) 55 T ELT)) (-3914 (((-1176 |#1|) (-1176 |#1|)) 104 T ELT)) (-4067 (((-1176 |#1|) (-1176 |#1|)) 68 T ELT)) (-4372 (((-1176 |#1|) (-1176 |#1|)) 40 T ELT)) (-4373 (((-1176 |#1|) (-1176 |#1|)) 37 T ELT)) (-3915 (((-1176 |#1|) (-1176 |#1|)) 105 T ELT)) (-4066 (((-1176 |#1|) (-1176 |#1|)) 69 T ELT)) (-3913 (((-1176 |#1|) (-1176 |#1|)) 103 T ELT)) (-4065 (((-1176 |#1|) (-1176 |#1|)) 64 T ELT)) (-3911 (((-1176 |#1|) (-1176 |#1|)) 100 T ELT)) (-4064 (((-1176 |#1|) (-1176 |#1|)) 56 T ELT)) (-3918 (((-1176 |#1|) (-1176 |#1|)) 113 T ELT)) (-3906 (((-1176 |#1|) (-1176 |#1|)) 88 T ELT)) (-3916 (((-1176 |#1|) (-1176 |#1|)) 107 T ELT)) (-3904 (((-1176 |#1|) (-1176 |#1|)) 84 T ELT)) (-3920 (((-1176 |#1|) (-1176 |#1|)) 117 T ELT)) (-3908 (((-1176 |#1|) (-1176 |#1|)) 92 T ELT)) (-3921 (((-1176 |#1|) (-1176 |#1|)) 119 T ELT)) (-3909 (((-1176 |#1|) (-1176 |#1|)) 94 T ELT)) (-3919 (((-1176 |#1|) (-1176 |#1|)) 115 T ELT)) (-3907 (((-1176 |#1|) (-1176 |#1|)) 90 T ELT)) (-3917 (((-1176 |#1|) (-1176 |#1|)) 109 T ELT)) (-3905 (((-1176 |#1|) (-1176 |#1|)) 86 T ELT)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 41 T ELT))) -(((-1183 |#1|) (-10 -7 (-15 -4373 ((-1176 |#1|) (-1176 |#1|))) (-15 -4372 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -3902 ((-2 (|:| -4068 (-1176 |#1|)) (|:| -4064 (-1176 |#1|))) (-1176 |#1|))) (-15 -4068 ((-1176 |#1|) (-1176 |#1|))) (-15 -4064 ((-1176 |#1|) (-1176 |#1|))) (-15 -4069 ((-1176 |#1|) (-1176 |#1|))) (-15 -4065 ((-1176 |#1|) (-1176 |#1|))) (-15 -4067 ((-1176 |#1|) (-1176 |#1|))) (-15 -4066 ((-1176 |#1|) (-1176 |#1|))) (-15 -3904 ((-1176 |#1|) (-1176 |#1|))) (-15 -3905 ((-1176 |#1|) (-1176 |#1|))) (-15 -3906 ((-1176 |#1|) (-1176 |#1|))) (-15 -3907 ((-1176 |#1|) (-1176 |#1|))) (-15 -3908 ((-1176 |#1|) (-1176 |#1|))) (-15 -3909 ((-1176 |#1|) (-1176 |#1|))) (-15 -3903 ((-2 (|:| -3910 (-1176 |#1|)) (|:| -3911 (-1176 |#1|))) (-1176 |#1|))) (-15 -3910 ((-1176 |#1|) (-1176 |#1|))) (-15 -3911 ((-1176 |#1|) (-1176 |#1|))) (-15 -3912 ((-1176 |#1|) (-1176 |#1|))) (-15 -3913 ((-1176 |#1|) (-1176 |#1|))) (-15 -3914 ((-1176 |#1|) (-1176 |#1|))) (-15 -3915 ((-1176 |#1|) (-1176 |#1|))) (-15 -3916 ((-1176 |#1|) (-1176 |#1|))) (-15 -3917 ((-1176 |#1|) (-1176 |#1|))) (-15 -3918 ((-1176 |#1|) (-1176 |#1|))) (-15 -3919 ((-1176 |#1|) (-1176 |#1|))) (-15 -3920 ((-1176 |#1|) (-1176 |#1|))) (-15 -3921 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-558)))) (T -1183)) -((-3921 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3903 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-2 (|:| -3910 (-1176 *4)) (|:| -3911 (-1176 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1176 *4)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-2 (|:| -4068 (-1176 *4)) (|:| -4064 (-1176 *4)))) (-5 *1 (-1183 *4)) (-5 *3 (-1176 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) -((-3912 (((-1176 |#1|) (-1176 |#1|)) 60 T ELT)) (-4069 (((-1176 |#1|) (-1176 |#1|)) 42 T ELT)) (-3910 (((-1176 |#1|) (-1176 |#1|)) 56 T ELT)) (-4068 (((-1176 |#1|) (-1176 |#1|)) 38 T ELT)) (-3914 (((-1176 |#1|) (-1176 |#1|)) 63 T ELT)) (-4067 (((-1176 |#1|) (-1176 |#1|)) 45 T ELT)) (-4372 (((-1176 |#1|) (-1176 |#1|)) 34 T ELT)) (-4373 (((-1176 |#1|) (-1176 |#1|)) 29 T ELT)) (-3915 (((-1176 |#1|) (-1176 |#1|)) 64 T ELT)) (-4066 (((-1176 |#1|) (-1176 |#1|)) 46 T ELT)) (-3913 (((-1176 |#1|) (-1176 |#1|)) 61 T ELT)) (-4065 (((-1176 |#1|) (-1176 |#1|)) 43 T ELT)) (-3911 (((-1176 |#1|) (-1176 |#1|)) 58 T ELT)) (-4064 (((-1176 |#1|) (-1176 |#1|)) 40 T ELT)) (-3918 (((-1176 |#1|) (-1176 |#1|)) 68 T ELT)) (-3906 (((-1176 |#1|) (-1176 |#1|)) 50 T ELT)) (-3916 (((-1176 |#1|) (-1176 |#1|)) 66 T ELT)) (-3904 (((-1176 |#1|) (-1176 |#1|)) 48 T ELT)) (-3920 (((-1176 |#1|) (-1176 |#1|)) 71 T ELT)) (-3908 (((-1176 |#1|) (-1176 |#1|)) 53 T ELT)) (-3921 (((-1176 |#1|) (-1176 |#1|)) 72 T ELT)) (-3909 (((-1176 |#1|) (-1176 |#1|)) 54 T ELT)) (-3919 (((-1176 |#1|) (-1176 |#1|)) 70 T ELT)) (-3907 (((-1176 |#1|) (-1176 |#1|)) 52 T ELT)) (-3917 (((-1176 |#1|) (-1176 |#1|)) 69 T ELT)) (-3905 (((-1176 |#1|) (-1176 |#1|)) 51 T ELT)) (** (((-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) 36 T ELT))) -(((-1184 |#1|) (-10 -7 (-15 -4373 ((-1176 |#1|) (-1176 |#1|))) (-15 -4372 ((-1176 |#1|) (-1176 |#1|))) (-15 ** ((-1176 |#1|) (-1176 |#1|) (-1176 |#1|))) (-15 -4068 ((-1176 |#1|) (-1176 |#1|))) (-15 -4064 ((-1176 |#1|) (-1176 |#1|))) (-15 -4069 ((-1176 |#1|) (-1176 |#1|))) (-15 -4065 ((-1176 |#1|) (-1176 |#1|))) (-15 -4067 ((-1176 |#1|) (-1176 |#1|))) (-15 -4066 ((-1176 |#1|) (-1176 |#1|))) (-15 -3904 ((-1176 |#1|) (-1176 |#1|))) (-15 -3905 ((-1176 |#1|) (-1176 |#1|))) (-15 -3906 ((-1176 |#1|) (-1176 |#1|))) (-15 -3907 ((-1176 |#1|) (-1176 |#1|))) (-15 -3908 ((-1176 |#1|) (-1176 |#1|))) (-15 -3909 ((-1176 |#1|) (-1176 |#1|))) (-15 -3910 ((-1176 |#1|) (-1176 |#1|))) (-15 -3911 ((-1176 |#1|) (-1176 |#1|))) (-15 -3912 ((-1176 |#1|) (-1176 |#1|))) (-15 -3913 ((-1176 |#1|) (-1176 |#1|))) (-15 -3914 ((-1176 |#1|) (-1176 |#1|))) (-15 -3915 ((-1176 |#1|) (-1176 |#1|))) (-15 -3916 ((-1176 |#1|) (-1176 |#1|))) (-15 -3917 ((-1176 |#1|) (-1176 |#1|))) (-15 -3918 ((-1176 |#1|) (-1176 |#1|))) (-15 -3919 ((-1176 |#1|) (-1176 |#1|))) (-15 -3920 ((-1176 |#1|) (-1176 |#1|))) (-15 -3921 ((-1176 |#1|) (-1176 |#1|)))) (-38 (-419 (-558)))) (T -1184)) -((-3921 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3920 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4069 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) (-4373 (*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) -((-3922 (((-977 |#2|) |#2| |#2|) 51 T ELT)) (-3923 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT))) -(((-1185 |#1| |#2|) (-10 -7 (-15 -3922 ((-977 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -3923 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1264 |#1|)) (T -1185)) -((-3923 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-1185 *3 *2)) (-4 *2 (-1264 *3)))) (-3922 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-977 *3)) (-5 *1 (-1185 *4 *3)) (-4 *3 (-1264 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3931 (($ $ (-661 (-791))) 79 T ELT)) (-4318 (($) 33 T ELT)) (-3940 (($ $) 51 T ELT)) (-4181 (((-661 $) $) 60 T ELT)) (-3946 (((-114) $) 19 T ELT)) (-3924 (((-661 (-962 |#2|)) $) 86 T ELT)) (-3925 (($ $) 80 T ELT)) (-3941 (((-791) $) 47 T ELT)) (-4044 (($) 32 T ELT)) (-3934 (($ $ (-661 (-791)) (-962 |#2|)) 72 T ELT) (($ $ (-661 (-791)) (-791)) 73 T ELT) (($ $ (-791) (-962 |#2|)) 75 T ELT)) (-3938 (($ $ $) 57 T ELT) (($ (-661 $)) 59 T ELT)) (-3926 (((-791) $) 87 T ELT)) (-3947 (((-114) $) 15 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3945 (((-114) $) 22 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3927 (((-174) $) 85 T ELT)) (-3930 (((-962 |#2|) $) 81 T ELT)) (-3929 (((-791) $) 82 T ELT)) (-3928 (((-114) $) 84 T ELT)) (-3932 (($ $ (-661 (-791)) (-174)) 78 T ELT)) (-3939 (($ $) 52 T ELT)) (-4376 (((-877) $) 99 T ELT)) (-3933 (($ $ (-661 (-791)) (-114)) 77 T ELT)) (-3942 (((-661 $) $) 11 T ELT)) (-3943 (($ $ (-791)) 46 T ELT)) (-3944 (($ $) 43 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3935 (($ $ $ (-962 |#2|) (-791)) 68 T ELT)) (-3936 (($ $ (-962 |#2|)) 67 T ELT)) (-3937 (($ $ (-661 (-791)) (-962 |#2|)) 66 T ELT) (($ $ (-661 (-791)) (-791)) 70 T ELT) (((-791) $ (-962 |#2|)) 71 T ELT)) (-3454 (((-114) $ $) 92 T ELT))) -(((-1186 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3947 ((-114) $)) (-15 -3946 ((-114) $)) (-15 -3945 ((-114) $)) (-15 -4044 ($)) (-15 -4318 ($)) (-15 -3944 ($ $)) (-15 -3943 ($ $ (-791))) (-15 -3942 ((-661 $) $)) (-15 -3941 ((-791) $)) (-15 -3940 ($ $)) (-15 -3939 ($ $)) (-15 -3938 ($ $ $)) (-15 -3938 ($ (-661 $))) (-15 -4181 ((-661 $) $)) (-15 -3937 ($ $ (-661 (-791)) (-962 |#2|))) (-15 -3936 ($ $ (-962 |#2|))) (-15 -3935 ($ $ $ (-962 |#2|) (-791))) (-15 -3934 ($ $ (-661 (-791)) (-962 |#2|))) (-15 -3937 ($ $ (-661 (-791)) (-791))) (-15 -3934 ($ $ (-661 (-791)) (-791))) (-15 -3937 ((-791) $ (-962 |#2|))) (-15 -3934 ($ $ (-791) (-962 |#2|))) (-15 -3933 ($ $ (-661 (-791)) (-114))) (-15 -3932 ($ $ (-661 (-791)) (-174))) (-15 -3931 ($ $ (-661 (-791)))) (-15 -3930 ((-962 |#2|) $)) (-15 -3929 ((-791) $)) (-15 -3928 ((-114) $)) (-15 -3927 ((-174) $)) (-15 -3926 ((-791) $)) (-15 -3925 ($ $)) (-15 -3924 ((-661 (-962 |#2|)) $)))) (-938) (-1070)) (T -1186)) -((-3947 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3946 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-4044 (*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-4318 (*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-3944 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-3943 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3942 (*1 *2 *1) (-12 (-5 *2 (-661 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3940 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-3938 (*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-3938 (*1 *1 *2) (-12 (-5 *2 (-661 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-4181 (*1 *2 *1) (-12 (-5 *2 (-661 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)))) (-3936 (*1 *1 *1 *2) (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)))) (-3935 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-962 *5)) (-5 *3 (-791)) (-4 *5 (-1070)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)))) (-3934 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)))) (-3937 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1070)))) (-3934 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1070)))) (-3937 (*1 *2 *1 *3) (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-791)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)))) (-3934 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)))) (-3933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-114)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1070)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-791))) (-5 *3 (-174)) (-5 *1 (-1186 *4 *5)) (-14 *4 (-938)) (-4 *5 (-1070)))) (-3931 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3930 (*1 *2 *1) (-12 (-5 *2 (-962 *4)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070)))) (-3925 (*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) (-3924 (*1 *2 *1) (-12 (-5 *2 (-661 (-962 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3948 ((|#2| $) 11 T ELT)) (-3949 ((|#1| $) 10 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3950 (($ |#1| |#2|) 9 T ELT)) (-4376 (((-877) $) 16 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1187 |#1| |#2|) (-13 (-1122) (-10 -8 (-15 -3950 ($ |#1| |#2|)) (-15 -3949 (|#1| $)) (-15 -3948 (|#2| $)))) (-1122) (-1122)) (T -1187)) -((-3950 (*1 *1 *2 *3) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-3949 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-1122)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3951 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 15 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1188) (-13 (-1104) (-10 -8 (-15 -3951 ((-1156) $))))) (T -1188)) -((-3951 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1188))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 11 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2273 (($ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2271 (((-114) $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-4201 (($ $ (-558)) NIL T ELT) (($ $ (-558) (-558)) 75 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL T ELT)) (-4161 (((-1196 |#1| |#2| |#3|) $) 42 T ELT)) (-4158 (((-3 (-1196 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-4159 (((-1196 |#1| |#2| |#3|) $) 33 T ELT)) (-3912 (($ $) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 92 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 88 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4053 (((-558) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL T ELT)) (-3914 (($ $) 120 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 96 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-1196 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1198) #1#) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-1198))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT)) (-3574 (((-1196 |#1| |#2| |#3|) $) 140 T ELT) (((-1198) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-1198))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-558) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT)) (-4160 (($ $) 37 T ELT) (($ (-558) $) 38 T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-1196 |#1| |#2| |#3|)) (-709 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-1196 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1196 |#1| |#2| |#3|)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3887 (((-3 $ #1#) $) 54 T ELT)) (-4157 (((-419 (-965 |#1|)) $ (-558)) 74 (|has| |#1| (-569)) ELT) (((-419 (-965 |#1|)) $ (-558) (-558)) 76 (|has| |#1| (-569)) ELT)) (-3395 (($) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3604 (((-114) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3293 (((-114) $) 28 T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-901 (-391))) (|has| |#1| (-376))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-901 (-558))) (|has| |#1| (-376))) ELT)) (-4202 (((-558) $) NIL T ELT) (((-558) $ (-558)) 26 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3399 (((-1196 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (((-711 $) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-376))) ELT)) (-3605 (((-114) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4207 (($ $ (-938)) NIL T ELT)) (-4245 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-558)) 19 T ELT) (($ $ (-1103) (-558)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-558))) NIL T ELT)) (-2930 (($ $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-3258 (($ $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) 81 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2494 (((-709 (-1196 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-1196 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1196 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-1288 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4209 (($ (-558) (-1196 |#1| |#2| |#3|)) 36 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4242 (($ $) 79 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 80 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3866 (($) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-376))) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3530 (($ $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3532 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-558)) 158 T ELT)) (-3886 (((-3 $ #1#) $ $) 55 (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) 82 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1198) (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1198)) (-661 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-526 (-1198) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-305 (-1196 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-321 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-321 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-321 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1196 |#1| |#2| |#3|)) (-661 (-1196 |#1| |#2| |#3|))) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-321 (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-558)) NIL T ELT) (($ $ $) 61 (|has| (-558) (-1133)) ELT) (($ $ (-1196 |#1| |#2| |#3|)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-298 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1285 |#2|)) 57 T ELT) (($ $) 56 (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3396 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3398 (((-1196 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-4378 (((-558) $) 43 T ELT)) (-3915 (($ $) 122 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 98 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 118 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 94 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 114 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 90 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4402 (((-547) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-631 (-547))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-376))) ELT) (((-905 (-391)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-631 (-905 (-391)))) (|has| |#1| (-376))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-631 (-905 (-558)))) (|has| |#1| (-376))) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) 162 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1196 |#1| |#2| |#3|)) 30 T ELT) (($ (-1285 |#2|)) 25 T ELT) (($ (-1198)) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-1198))) (|has| |#1| (-376))) ELT) (($ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT) (($ (-419 (-558))) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4107 ((|#1| $ (-558)) 77 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 12 T ELT)) (-3533 (((-1196 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) 128 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 104 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3916 (($ $) 124 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 100 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 108 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 110 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 130 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 106 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 126 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 102 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3803 (($ $) NIL (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3059 (($) 21 T CONST)) (-3065 (($) 16 T CONST)) (-3070 (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1285 |#2|)) NIL T ELT) (($ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-2965 (((-114) $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-2966 (((-114) $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-3086 (((-114) $ $) NIL (-3957 (-12 (|has| (-1196 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1196 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1196 |#1| |#2| |#3|) (-1196 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 23 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 60 T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 137 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1196 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1196 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1189 |#1| |#2| |#3|) (-13 (-1252 |#1| (-1196 |#1| |#2| |#3|)) (-911 $ (-1285 |#2|)) (-10 -8 (-15 -4376 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -1189)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-3952 ((|#2| |#2| (-1113 |#2|)) 26 T ELT) ((|#2| |#2| (-1198)) 28 T ELT))) -(((-1190 |#1| |#2|) (-10 -7 (-15 -3952 (|#2| |#2| (-1198))) (-15 -3952 (|#2| |#2| (-1113 |#2|)))) (-13 (-569) (-1059 (-558)) (-658 (-558))) (-13 (-433 |#1|) (-162) (-27) (-1224))) (T -1190)) -((-3952 (*1 *2 *2 *3) (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1224))) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1190 *4 *2)))) (-3952 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1190 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1224)))))) -((-3952 (((-3 (-419 (-965 |#1|)) (-326 |#1|)) (-419 (-965 |#1|)) (-1113 (-419 (-965 |#1|)))) 31 T ELT) (((-419 (-965 |#1|)) (-965 |#1|) (-1113 (-965 |#1|))) 44 T ELT) (((-3 (-419 (-965 |#1|)) (-326 |#1|)) (-419 (-965 |#1|)) (-1198)) 33 T ELT) (((-419 (-965 |#1|)) (-965 |#1|) (-1198)) 36 T ELT))) -(((-1191 |#1|) (-10 -7 (-15 -3952 ((-419 (-965 |#1|)) (-965 |#1|) (-1198))) (-15 -3952 ((-3 (-419 (-965 |#1|)) (-326 |#1|)) (-419 (-965 |#1|)) (-1198))) (-15 -3952 ((-419 (-965 |#1|)) (-965 |#1|) (-1113 (-965 |#1|)))) (-15 -3952 ((-3 (-419 (-965 |#1|)) (-326 |#1|)) (-419 (-965 |#1|)) (-1113 (-419 (-965 |#1|)))))) (-13 (-569) (-1059 (-558)))) (T -1191)) -((-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-419 (-965 *5)))) (-5 *3 (-419 (-965 *5))) (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1191 *5)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1113 (-965 *5))) (-5 *3 (-965 *5)) (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-419 *3)) (-5 *1 (-1191 *5)))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-3 (-419 (-965 *5)) (-326 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-419 (-965 *5))))) (-3952 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-419 (-965 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-965 *5))))) -((-2967 (((-114) $ $) 172 T ELT)) (-3606 (((-114) $) 43 T ELT)) (-4197 (((-1288 |#1|) $ (-791)) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4195 (($ (-1192 |#1|)) NIL T ELT)) (-3486 (((-1192 $) $ (-1103)) 82 T ELT) (((-1192 |#1|) $) 71 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) 165 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1103))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4185 (($ $ $) 159 (|has| |#1| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 96 (|has| |#1| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) 116 (|has| |#1| (-929)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4191 (($ $ (-791)) 61 T ELT)) (-4190 (($ $ (-791)) 63 T ELT)) (-4181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1103) #1#) $) NIL T ELT)) (-3574 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-1103) $) NIL T ELT)) (-4186 (($ $ $ (-1103)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 161 (|has| |#1| (-175)) ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) 80 T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#1|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4189 (($ $ $) 132 T ELT)) (-4183 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4182 (((-2 (|:| -4384 |#1|) (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-3923 (($ $) 166 (|has| |#1| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-791) $) 69 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1103) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1103) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-3953 (((-877) $ (-877)) 149 T ELT)) (-4202 (((-791) $ $) NIL (|has| |#1| (-569)) ELT)) (-2641 (((-114) $) 48 T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| |#1| (-1173)) ELT)) (-3487 (($ (-1192 |#1|) (-1103)) 73 T ELT) (($ (-1192 $) (-1103)) 90 T ELT)) (-4207 (($ $ (-791)) 51 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) 88 T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1103)) NIL T ELT) (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 154 T ELT)) (-3221 (((-791) $) NIL T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-1805 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4196 (((-1192 |#1|) $) NIL T ELT)) (-3485 (((-3 (-1103) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) NIL T ELT) (((-709 |#1|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) 76 T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4192 (((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791)) 60 T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1103)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-4242 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3866 (($) NIL (|has| |#1| (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) 50 T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 104 (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 168 (|has| |#1| (-464)) ELT)) (-4168 (($ $ (-791) |#1| $) 124 T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 102 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 101 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) 109 (|has| |#1| (-929)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ #1#) $ |#1|) 164 (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 125 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1103) |#1|) NIL T ELT) (($ $ (-661 (-1103)) (-661 |#1|)) NIL T ELT) (($ $ (-1103) $) NIL T ELT) (($ $ (-661 (-1103)) (-661 $)) NIL T ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4194 (((-3 $ #1#) $ (-791)) 54 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1103)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 157 (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-4378 (((-791) $) 78 T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1103) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) 163 (|has| |#1| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4184 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4376 (((-877) $) 150 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1103)) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) 41 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) 17 T CONST)) (-3065 (($) 19 T CONST)) (-3070 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#1| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) 121 T ELT)) (-4379 (($ $ |#1|) 174 (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 91 T ELT)) (** (($ $ (-938)) 14 T ELT) (($ $ (-791)) 12 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) -(((-1192 |#1|) (-13 (-1264 |#1|) (-10 -8 (-15 -3953 ((-877) $ (-877))) (-15 -4168 ($ $ (-791) |#1| $)))) (-1070)) (T -1192)) -((-3953 (*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1192 *3)) (-4 *3 (-1070)))) (-4168 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1192 *3)) (-4 *3 (-1070))))) -((-4388 (((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)) 13 T ELT))) -(((-1193 |#1| |#2|) (-10 -7 (-15 -4388 ((-1192 |#2|) (-1 |#2| |#1|) (-1192 |#1|)))) (-1070) (-1070)) (T -1193)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-5 *2 (-1192 *6)) (-5 *1 (-1193 *5 *6))))) -((-4401 (((-417 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 51 T ELT)) (-4162 (((-417 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))) 52 T ELT))) -(((-1194 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4162 ((-417 (-1192 (-419 |#4|))) (-1192 (-419 |#4|)))) (-15 -4401 ((-417 (-1192 (-419 |#4|))) (-1192 (-419 |#4|))))) (-815) (-861) (-464) (-969 |#3| |#1| |#2|)) (T -1194)) -((-4401 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-417 (-1192 (-419 *7)))) (-5 *1 (-1194 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7))))) (-4162 (*1 *2 *3) (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-417 (-1192 (-419 *7)))) (-5 *1 (-1194 *4 *5 *6 *7)) (-5 *3 (-1192 (-419 *7)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 11 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-1189 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1196 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3574 (((-1189 |#1| |#2| |#3|) $) NIL T ELT) (((-1196 |#1| |#2| |#3|) $) NIL T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4211 (((-419 (-558)) $) 59 T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4212 (($ (-419 (-558)) (-1189 |#1| |#2| |#3|)) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-419 (-558))) 20 T ELT) (($ $ (-1103) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4210 (((-1189 |#1| |#2| |#3|) $) 41 T ELT)) (-4208 (((-3 (-1189 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-4209 (((-1189 |#1| |#2| |#3|) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4242 (($ $) 39 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 40 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1285 |#2|)) 38 T ELT)) (-4378 (((-419 (-558)) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) 62 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1189 |#1| |#2| |#3|)) 30 T ELT) (($ (-1196 |#1| |#2| |#3|)) 31 T ELT) (($ (-1285 |#2|)) 26 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 22 T CONST)) (-3065 (($) 16 T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1285 |#2|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 24 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1195 |#1| |#2| |#3|) (-13 (-1273 |#1| (-1189 |#1| |#2| |#3|)) (-911 $ (-1285 |#2|)) (-1059 (-1196 |#1| |#2| |#3|)) (-633 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -1195)) -((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 129 T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 119 T ELT)) (-4241 (((-1257 |#2| |#1|) $ (-791)) 69 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-791)) 85 T ELT) (($ $ (-791) (-791)) 82 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-791)) (|:| |c| |#1|))) $) 105 T ELT)) (-3912 (($ $) 173 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-791)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1176 |#1|)) 113 T ELT)) (-3914 (($ $) 177 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 25 T ELT)) (-4246 (($ $) 28 T ELT)) (-4244 (((-965 |#1|) $ (-791)) 81 T ELT) (((-965 |#1|) $ (-791) (-791)) 83 T ELT)) (-3293 (((-114) $) 124 T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-791) $) 126 T ELT) (((-791) $ (-791)) 128 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) NIL T ELT)) (-4245 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) 13 T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4372 (($ $) 135 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4242 (($ $) 133 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4199 (($ $ (-791)) 15 T ELT)) (-3886 (((-3 $ #1#) $ $) 26 (|has| |#1| (-569)) ELT)) (-4373 (($ $) 137 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-791)))) ELT)) (-4230 ((|#1| $ (-791)) 122 T ELT) (($ $ $) 132 (|has| (-791) (-1133)) ELT)) (-4188 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1285 |#2|)) 31 T ELT)) (-4378 (((-791) $) NIL T ELT)) (-3915 (($ $) 179 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) 206 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1257 |#2| |#1|)) 55 T ELT) (($ (-1285 |#2|)) 36 T ELT)) (-4247 (((-1176 |#1|) $) 101 T ELT)) (-4107 ((|#1| $ (-791)) 121 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 58 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) 185 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) 181 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 189 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-791)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 191 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 187 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 183 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 17 T CONST)) (-3065 (($) 20 T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1285 |#2|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-4269 (($ $ $) 35 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1196 |#1| |#2| |#3|) (-13 (-1281 |#1|) (-911 $ (-1285 |#2|)) (-10 -8 (-15 -4376 ($ (-1257 |#2| |#1|))) (-15 -4241 ((-1257 |#2| |#1|) $ (-791))) (-15 -4376 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -1196)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-1196 *3 *4 *5)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1196 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1198)) (-14 *6 *4))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-4376 (((-877) $) 33 T ELT) (($ (-1198)) 35 T ELT)) (-3957 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-3954 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3961 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-3959 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-3960 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-3958 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-3956 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) -(((-1197) (-13 (-630 (-877)) (-10 -8 (-15 -4376 ($ (-1198))) (-15 -3961 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3960 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3958 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3956 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3954 ($ (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3954 ($ $))))) (T -1197)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1197)))) (-3961 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3960 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3958 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3957 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3956 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3954 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) (-5 *1 (-1197)))) (-3954 (*1 *1 *1) (-5 *1 (-1197)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3965 (($ $ (-661 (-877))) 48 T ELT)) (-3966 (($ $ (-661 (-877))) 46 T ELT)) (-3963 (((-1180) $) 88 T ELT)) (-3968 (((-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) (|:| |args| (-661 (-877)))) $) 95 T ELT)) (-3969 (((-114) $) 86 T ELT)) (-3967 (($ $ (-661 (-661 (-877)))) 45 T ELT) (($ $ (-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) (|:| |args| (-661 (-877))))) 85 T ELT)) (-4154 (($) 151 T CONST)) (-3575 (((-3 (-518) "failed") $) 155 T ELT)) (-3574 (((-518) $) NIL T ELT)) (-3971 (((-1294)) 123 T ELT)) (-3197 (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 55 T ELT) (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 62 T ELT)) (-4044 (($) 109 T ELT) (($ $) 118 T ELT)) (-3970 (($ $) 87 T ELT)) (-2930 (($ $ $) NIL T ELT)) (-3258 (($ $ $) NIL T ELT)) (-3962 (((-661 $) $) 124 T ELT)) (-3660 (((-1180) $) 101 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4230 (($ $ (-661 (-877))) 47 T ELT)) (-4402 (((-547) $) 33 T ELT) (((-1198) $) 34 T ELT) (((-905 (-558)) $) 66 T ELT) (((-905 (-391)) $) 64 T ELT)) (-4376 (((-877) $) 41 T ELT) (($ (-1180)) 35 T ELT) (($ (-518)) 153 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3964 (($ $ (-661 (-877))) 49 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 37 T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) 38 T ELT))) -(((-1198) (-13 (-861) (-631 (-547)) (-631 (-1198)) (-633 (-1180)) (-1059 (-518)) (-631 (-905 (-558))) (-631 (-905 (-391))) (-901 (-558)) (-901 (-391)) (-10 -8 (-15 -4044 ($)) (-15 -4044 ($ $)) (-15 -3971 ((-1294))) (-15 -3970 ($ $)) (-15 -3969 ((-114) $)) (-15 -3968 ((-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) (|:| |args| (-661 (-877)))) $)) (-15 -3967 ($ $ (-661 (-661 (-877))))) (-15 -3967 ($ $ (-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) (|:| |args| (-661 (-877)))))) (-15 -3966 ($ $ (-661 (-877)))) (-15 -3965 ($ $ (-661 (-877)))) (-15 -3964 ($ $ (-661 (-877)))) (-15 -4230 ($ $ (-661 (-877)))) (-15 -3963 ((-1180) $)) (-15 -3962 ((-661 $) $)) (-15 -4154 ($) -4382)))) (T -1198)) -((-4044 (*1 *1) (-5 *1 (-1198))) (-4044 (*1 *1 *1) (-5 *1 (-1198))) (-3971 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1198)))) (-3970 (*1 *1 *1) (-5 *1 (-1198))) (-3969 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1198)))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) (|:| |args| (-661 (-877))))) (-5 *1 (-1198)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 (-877)))) (-5 *1 (-1198)))) (-3967 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) (|:| |args| (-661 (-877))))) (-5 *1 (-1198)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198)))) (-3965 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198)))) (-3963 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1198)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1198)))) (-4154 (*1 *1) (-5 *1 (-1198)))) -((-3972 (((-1288 |#1|) |#1| (-938)) 18 T ELT) (((-1288 |#1|) (-661 |#1|)) 25 T ELT))) -(((-1199 |#1|) (-10 -7 (-15 -3972 ((-1288 |#1|) (-661 |#1|))) (-15 -3972 ((-1288 |#1|) |#1| (-938)))) (-1070)) (T -1199)) -((-3972 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1288 *3)) (-5 *1 (-1199 *3)) (-4 *3 (-1070)))) (-3972 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) (-5 *1 (-1199 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3574 (((-558) $) NIL (|has| |#1| (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1059 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-3923 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1804 (($ $ |#1| (-992) $) NIL T ELT)) (-2641 (((-114) $) 17 T ELT)) (-2649 (((-791) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-992)) NIL T ELT)) (-3221 (((-992) $) NIL T ELT)) (-1805 (($ (-1 (-992) (-992)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#1| $) NIL T ELT)) (-4168 (($ $ (-992) |#1| $) NIL (-12 (|has| (-992) (-133)) (|has| |#1| (-569))) ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4378 (((-992) $) NIL T ELT)) (-3218 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1059 (-419 (-558))))) ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-992)) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3059 (($) 10 T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 21 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1200 |#1|) (-13 (-338 |#1| (-992)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-992) (-133)) (-15 -4168 ($ $ (-992) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1070)) (T -1200)) -((-4168 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-992)) (-4 *2 (-133)) (-5 *1 (-1200 *3)) (-4 *3 (-569)) (-4 *3 (-1070))))) -((-3973 (((-1202) (-1198) $) 25 T ELT)) (-3983 (($) 29 T ELT)) (-3975 (((-3 (|:| |fst| (-446)) (|:| -4340 #1="void")) (-1198) $) 22 T ELT)) (-3977 (((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -4340 #1#)) $) 41 T ELT) (((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) 42 T ELT) (((-1294) (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) 43 T ELT)) (-3985 (((-1294) (-1198)) 58 T ELT)) (-3976 (((-1294) (-1198) $) 55 T ELT) (((-1294) (-1198)) 56 T ELT) (((-1294)) 57 T ELT)) (-3981 (((-1294) (-1198)) 37 T ELT)) (-3979 (((-1198)) 36 T ELT)) (-3993 (($) 34 T ELT)) (-3992 (((-448) (-1198) (-448) (-1198) $) 45 T ELT) (((-448) (-661 (-1198)) (-448) (-1198) $) 49 T ELT) (((-448) (-1198) (-448)) 46 T ELT) (((-448) (-1198) (-448) (-1198)) 50 T ELT)) (-3980 (((-1198)) 35 T ELT)) (-4376 (((-877) $) 28 T ELT)) (-3982 (((-1294)) 30 T ELT) (((-1294) (-1198)) 33 T ELT)) (-3974 (((-661 (-1198)) (-1198) $) 24 T ELT)) (-3978 (((-1294) (-1198) (-661 (-1198)) $) 38 T ELT) (((-1294) (-1198) (-661 (-1198))) 39 T ELT) (((-1294) (-661 (-1198))) 40 T ELT))) -(((-1201) (-13 (-630 (-877)) (-10 -8 (-15 -3983 ($)) (-15 -3982 ((-1294))) (-15 -3982 ((-1294) (-1198))) (-15 -3992 ((-448) (-1198) (-448) (-1198) $)) (-15 -3992 ((-448) (-661 (-1198)) (-448) (-1198) $)) (-15 -3992 ((-448) (-1198) (-448))) (-15 -3992 ((-448) (-1198) (-448) (-1198))) (-15 -3981 ((-1294) (-1198))) (-15 -3980 ((-1198))) (-15 -3979 ((-1198))) (-15 -3978 ((-1294) (-1198) (-661 (-1198)) $)) (-15 -3978 ((-1294) (-1198) (-661 (-1198)))) (-15 -3978 ((-1294) (-661 (-1198)))) (-15 -3977 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -4340 #1="void")) $)) (-15 -3977 ((-1294) (-1198) (-3 (|:| |fst| (-446)) (|:| -4340 #1#)))) (-15 -3977 ((-1294) (-3 (|:| |fst| (-446)) (|:| -4340 #1#)))) (-15 -3976 ((-1294) (-1198) $)) (-15 -3976 ((-1294) (-1198))) (-15 -3976 ((-1294))) (-15 -3985 ((-1294) (-1198))) (-15 -3993 ($)) (-15 -3975 ((-3 (|:| |fst| (-446)) (|:| -4340 #1#)) (-1198) $)) (-15 -3974 ((-661 (-1198)) (-1198) $)) (-15 -3973 ((-1202) (-1198) $))))) (T -1201)) -((-3983 (*1 *1) (-5 *1 (-1201))) (-3982 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3982 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3992 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-3992 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1198))) (-5 *4 (-1198)) (-5 *1 (-1201)))) (-3992 (*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-3992 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1201)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3980 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201)))) (-3979 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201)))) (-3978 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3978 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3978 (*1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3977 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1="void"))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3977 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3976 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3976 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3985 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) (-3993 (*1 *1) (-5 *1 (-1201))) (-3975 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-5 *1 (-1201)))) (-3974 (*1 *2 *3 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1201)) (-5 *3 (-1198)))) (-3973 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1202)) (-5 *1 (-1201))))) -((-3987 (((-661 (-661 (-3 (|:| -3970 (-1198)) (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558))))))))) $) 66 T ELT)) (-3989 (((-661 (-3 (|:| -3970 (-1198)) (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558)))))))) (-446) $) 47 T ELT)) (-3984 (($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-448))))) 17 T ELT)) (-3985 (((-1294) $) 73 T ELT)) (-3990 (((-661 (-1198)) $) 22 T ELT)) (-3986 (((-1124) $) 60 T ELT)) (-3991 (((-448) (-1198) $) 27 T ELT)) (-3988 (((-661 (-1198)) $) 30 T ELT)) (-3993 (($) 19 T ELT)) (-3992 (((-448) (-661 (-1198)) (-448) $) 25 T ELT) (((-448) (-1198) (-448) $) 24 T ELT)) (-4376 (((-877) $) 9 T ELT) (((-1210 (-1198) (-448)) $) 13 T ELT))) -(((-1202) (-13 (-630 (-877)) (-10 -8 (-15 -4376 ((-1210 (-1198) (-448)) $)) (-15 -3993 ($)) (-15 -3992 ((-448) (-661 (-1198)) (-448) $)) (-15 -3992 ((-448) (-1198) (-448) $)) (-15 -3991 ((-448) (-1198) $)) (-15 -3990 ((-661 (-1198)) $)) (-15 -3989 ((-661 (-3 (|:| -3970 (-1198)) (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558)))))))) (-446) $)) (-15 -3988 ((-661 (-1198)) $)) (-15 -3987 ((-661 (-661 (-3 (|:| -3970 (-1198)) (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558))))))))) $)) (-15 -3986 ((-1124) $)) (-15 -3985 ((-1294) $)) (-15 -3984 ($ (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-448))))))))) (T -1202)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-1210 (-1198) (-448))) (-5 *1 (-1202)))) (-3993 (*1 *1) (-5 *1 (-1202))) (-3992 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1198))) (-5 *1 (-1202)))) (-3992 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1202)))) (-3991 (*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-448)) (-5 *1 (-1202)))) (-3990 (*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1202)))) (-3989 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-661 (-3 (|:| -3970 (-1198)) (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558))))))))) (-5 *1 (-1202)))) (-3988 (*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1202)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-3 (|:| -3970 (-1198)) (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558)))))))))) (-5 *1 (-1202)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1202)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1202)))) (-3984 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-448))))) (-5 *1 (-1202))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3575 (((-3 (-558) #1="failed") $) 29 T ELT) (((-3 (-229) #1#) $) 35 T ELT) (((-3 (-518) #1#) $) 43 T ELT) (((-3 (-1180) #1#) $) 47 T ELT)) (-3574 (((-558) $) 30 T ELT) (((-229) $) 36 T ELT) (((-518) $) 40 T ELT) (((-1180) $) 48 T ELT)) (-3998 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3997 (((-3 (-558) (-229) (-518) (-1180) $) $) 56 T ELT)) (-3996 (((-661 $) $) 58 T ELT)) (-4402 (((-1124) $) 24 T ELT) (($ (-1124)) 25 T ELT)) (-3995 (((-114) $) 57 T ELT)) (-4376 (((-877) $) 23 T ELT) (($ (-558)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-518)) 38 T ELT) (($ (-1180)) 44 T ELT) (((-547) $) 60 T ELT) (((-558) $) 31 T ELT) (((-229) $) 37 T ELT) (((-518) $) 41 T ELT) (((-1180) $) 49 T ELT)) (-3994 (((-114) $ (|[\|\|]| (-558))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-518))) 19 T ELT) (((-114) $ (|[\|\|]| (-1180))) 16 T ELT)) (-3999 (($ (-518) (-661 $)) 51 T ELT) (($ $ (-661 $)) 52 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4000 (((-558) $) 27 T ELT) (((-229) $) 33 T ELT) (((-518) $) 39 T ELT) (((-1180) $) 45 T ELT)) (-3454 (((-114) $ $) 7 T ELT))) -(((-1203) (-13 (-1284) (-1122) (-1059 (-558)) (-1059 (-229)) (-1059 (-518)) (-1059 (-1180)) (-630 (-547)) (-10 -8 (-15 -4402 ((-1124) $)) (-15 -4402 ($ (-1124))) (-15 -4376 ((-558) $)) (-15 -4000 ((-558) $)) (-15 -4376 ((-229) $)) (-15 -4000 ((-229) $)) (-15 -4376 ((-518) $)) (-15 -4000 ((-518) $)) (-15 -4376 ((-1180) $)) (-15 -4000 ((-1180) $)) (-15 -3999 ($ (-518) (-661 $))) (-15 -3999 ($ $ (-661 $))) (-15 -3998 ((-114) $)) (-15 -3997 ((-3 (-558) (-229) (-518) (-1180) $) $)) (-15 -3996 ((-661 $) $)) (-15 -3995 ((-114) $)) (-15 -3994 ((-114) $ (|[\|\|]| (-558)))) (-15 -3994 ((-114) $ (|[\|\|]| (-229)))) (-15 -3994 ((-114) $ (|[\|\|]| (-518)))) (-15 -3994 ((-114) $ (|[\|\|]| (-1180))))))) (T -1203)) -((-4402 (*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1203)))) (-4402 (*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1203)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1203)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1203)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1203)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1203)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) (-4000 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) (-3999 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-1203))) (-5 *1 (-1203)))) (-3999 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-1203)))) (-3998 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1203)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-3 (-558) (-229) (-518) (-1180) (-1203))) (-5 *1 (-1203)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-1203)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1203)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)) (-5 *1 (-1203)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1203)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1203)))) (-3994 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-114)) (-5 *1 (-1203))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3538 (((-791)) 21 T ELT)) (-4154 (($) 10 T CONST)) (-3395 (($) 25 T ELT)) (-2930 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3258 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2220 (((-938) $) 23 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) 22 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT))) -(((-1204 |#1|) (-13 (-857) (-10 -8 (-15 -4154 ($) -4382))) (-938)) (T -1204)) -((-4154 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-938))))) +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3743 ((|#1| $) 48 T ELT)) (-4153 (($) 7 T CONST)) (-3745 ((|#1| |#1| $) 50 T ELT)) (-3744 ((|#1| $) 49 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 43 T ELT)) (-4036 (($ |#1| $) 44 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-1389 ((|#1| $) 45 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-3742 (((-790) $) 47 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) 46 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1141 |#1|) (-142) (-1237)) (T -1141)) +((-3745 (*1 *2 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237)))) (-3744 (*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237)))) (-3743 (*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237)))) (-3742 (*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1237)) (-5 *2 (-790))))) +(-13 (-107 |t#1|) (-10 -8 (-6 -4424) (-15 -3745 (|t#1| |t#1| $)) (-15 -3744 (|t#1| $)) (-15 -3743 (|t#1| $)) (-15 -3742 ((-790) $)))) +(((-34) . T) ((-107 |#1|) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-3749 ((|#3| $) 87 T ELT)) (-3574 (((-3 (-558) #1="failed") $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 |#3| #1#) $) 50 T ELT)) (-3573 (((-558) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) ((|#3| $) 47 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL T ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL T ELT) (((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-708 $) (-1287 $)) 84 T ELT) (((-708 |#3|) (-708 $)) 76 T ELT)) (-4187 (($ $ (-1 |#3| |#3|) (-790)) NIL T ELT) (($ $ (-1 |#3| |#3|)) 28 T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-3748 ((|#3| $) 89 T ELT)) (-3750 ((|#4| $) 43 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ |#3|) 25 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 24 T ELT) (($ $ (-558)) 95 T ELT))) +(((-1142 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 ** (|#1| |#1| (-558))) (-15 -3748 (|#3| |#1|)) (-15 -3749 (|#3| |#1|)) (-15 -3750 (|#4| |#1|)) (-15 -2492 ((-708 |#3|) (-708 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 |#3|)) (|:| |vec| (-1287 |#3|))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 |#1|) (-1287 |#1|))) (-15 -2492 ((-708 (-558)) (-708 |#1|))) (-15 -4375 (|#1| |#3|)) (-15 -3574 ((-3 |#3| #1="failed") |#1|)) (-15 -3573 (|#3| |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -4187 (|#1| |#1| (-1 |#3| |#3|))) (-15 -4187 (|#1| |#1| (-1 |#3| |#3|) (-790))) (-15 -4375 (|#1| (-558))) (-15 ** (|#1| |#1| (-790))) (-15 ** (|#1| |#1| (-937))) (-15 -4375 ((-876) |#1|))) (-1143 |#2| |#3| |#4| |#5|) (-790) (-1069) (-245 |#2| |#3|) (-245 |#2| |#3|)) (T -1142)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3749 ((|#2| $) 87 T ELT)) (-3522 (((-114) $) 128 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3524 (((-114) $) 126 T ELT)) (-3752 (($ |#2|) 90 T ELT)) (-4153 (($) 22 T CONST)) (-3511 (($ $) 145 (|has| |#2| (-319)) ELT)) (-3513 ((|#3| $ (-558)) 140 T ELT)) (-3574 (((-3 (-558) #1="failed") $) 106 (|has| |#2| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) 103 (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) 100 T ELT)) (-3573 (((-558) $) 105 (|has| |#2| (-1058 (-558))) ELT) (((-419 (-558)) $) 102 (|has| |#2| (-1058 (-419 (-558)))) ELT) ((|#2| $) 101 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 96 (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 95 (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) 94 T ELT) (((-708 |#2|) (-708 $)) 93 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3510 (((-790) $) 146 (|has| |#2| (-569)) ELT)) (-3514 ((|#2| $ (-558) (-558)) 138 T ELT)) (-3289 (((-660 |#2|) $) 114 (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-3509 (((-790) $) 147 (|has| |#2| (-569)) ELT)) (-3508 (((-660 |#4|) $) 148 (|has| |#2| (-569)) ELT)) (-3516 (((-790) $) 134 T ELT)) (-3515 (((-790) $) 135 T ELT)) (-3746 ((|#2| $) 82 (|has| |#2| (-6 (-4426 #2="*"))) ELT)) (-3520 (((-558) $) 130 T ELT)) (-3518 (((-558) $) 132 T ELT)) (-3006 (((-660 |#2|) $) 113 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) 111 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3519 (((-558) $) 131 T ELT)) (-3517 (((-558) $) 133 T ELT)) (-3525 (($ (-660 (-660 |#2|))) 125 T ELT)) (-2159 (($ (-1 |#2| |#2|) $) 118 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2| |#2|) $ $) 142 T ELT) (($ (-1 |#2| |#2|) $) 119 T ELT)) (-4021 (((-660 (-660 |#2|)) $) 136 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 98 (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 97 (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 92 T ELT) (((-708 |#2|) (-1287 $)) 91 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-4017 (((-3 $ "failed") $) 81 (|has| |#2| (-376)) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3885 (((-3 $ "failed") $ |#2|) 143 (|has| |#2| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) 116 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) 110 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) 109 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) 108 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 107 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) 124 T ELT)) (-3822 (((-114) $) 121 T ELT)) (-3992 (($) 122 T ELT)) (-4229 ((|#2| $ (-558) (-558) |#2|) 139 T ELT) ((|#2| $ (-558) (-558)) 137 T ELT)) (-4187 (($ $ (-1 |#2| |#2|) (-790)) 62 T ELT) (($ $ (-1 |#2| |#2|)) 61 T ELT) (($ $) 52 (|has| |#2| (-239)) ELT) (($ $ (-790)) 50 (|has| |#2| (-239)) ELT) (($ $ (-1197)) 60 (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 58 (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 57 (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 56 (|has| |#2| (-918 (-1197))) ELT)) (-3748 ((|#2| $) 86 T ELT)) (-3751 (($ (-660 |#2|)) 89 T ELT)) (-3523 (((-114) $) 127 T ELT)) (-3750 ((|#3| $) 88 T ELT)) (-3747 ((|#2| $) 83 (|has| |#2| (-6 (-4426 #2#))) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) 115 (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) 112 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 123 T ELT)) (-3512 ((|#4| $ (-558)) 141 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 104 (|has| |#2| (-1058 (-419 (-558)))) ELT) (($ |#2|) 99 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) 117 (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) 129 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 |#2| |#2|) (-790)) 64 T ELT) (($ $ (-1 |#2| |#2|)) 63 T ELT) (($ $) 51 (|has| |#2| (-239)) ELT) (($ $ (-790)) 49 (|has| |#2| (-239)) ELT) (($ $ (-1197)) 59 (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 55 (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 54 (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 53 (|has| |#2| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#2|) 144 (|has| |#2| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 80 (|has| |#2| (-376)) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#2|) 150 T ELT) (($ |#2| $) 149 T ELT) ((|#4| $ |#4|) 85 T ELT) ((|#3| |#3| $) 84 T ELT)) (-4386 (((-790) $) 120 (|has| $ (-6 -4424)) ELT))) +(((-1143 |#1| |#2| |#3| |#4|) (-142) (-790) (-1069) (-245 |t#1| |t#2|) (-245 |t#1| |t#2|)) (T -1143)) +((-3752 (*1 *1 *2) (-12 (-4 *2 (-1069)) (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)))) (-3751 (*1 *1 *2) (-12 (-5 *2 (-660 *4)) (-4 *4 (-1069)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)))) (-3750 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (-3749 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1069)))) (-3748 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (-4 *2 (-1069)))) (* (*1 *2 *1 *2) (-12 (-4 *1 (-1143 *3 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) (* (*1 *2 *2 *1) (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) (-3747 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4426 #1="*"))) (-4 *2 (-1069)))) (-3746 (*1 *2 *1) (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) (|has| *2 (-6 (-4426 #1#))) (-4 *2 (-1069)))) (-4017 (*1 *1 *1) (|partial| -12 (-4 *1 (-1143 *2 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) (** (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376))))) +(-13 (-234 |t#2|) (-111 |t#2| |t#2|) (-1073 |t#1| |t#1| |t#2| |t#3| |t#4|) (-424 |t#2|) (-390 |t#2|) (-10 -8 (IF (|has| |t#2| (-175)) (-6 (-736 |t#2|)) |%noBranch|) (-15 -3752 ($ |t#2|)) (-15 -3751 ($ (-660 |t#2|))) (-15 -3750 (|t#3| $)) (-15 -3749 (|t#2| $)) (-15 -3748 (|t#2| $)) (-15 * (|t#4| $ |t#4|)) (-15 * (|t#3| |t#3| $)) (IF (|has| |t#2| (-6 (-4426 "*"))) (PROGN (-6 (-38 |t#2|)) (-15 -3747 (|t#2| $)) (-15 -3746 (|t#2| $))) |%noBranch|) (IF (|has| |t#2| (-376)) (PROGN (-15 -4017 ((-3 $ "failed") $)) (-15 ** ($ $ (-558)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-34) . T) ((-38 |#2|) |has| |#2| (-6 (-4426 #1="*"))) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-632 (-419 (-558))) |has| |#2| (-1058 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#2|) . T) ((-629 (-876)) . T) ((-236 $) -3956 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-234 |#2|) . T) ((-240) |has| |#2| (-240)) ((-239) -3956 (|has| |#2| (-239)) (|has| |#2| (-240))) ((-274 |#2|) . T) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-390 |#2|) . T) ((-424 |#2|) . T) ((-501 |#2|) . T) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-665 (-558)) . T) ((-665 |#2|) . T) ((-665 $) . T) ((-667 (-558)) |has| |#2| (-657 (-558))) ((-667 |#2|) . T) ((-667 $) . T) ((-659 |#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-6 (-4426 #1#)))) ((-657 (-558)) |has| |#2| (-657 (-558))) ((-657 |#2|) . T) ((-736 |#2|) -3956 (|has| |#2| (-175)) (|has| |#2| (-6 (-4426 #1#)))) ((-745) . T) ((-910 $ (-1197)) -3956 (|has| |#2| (-918 (-1197))) (|has| |#2| (-916 (-1197)))) ((-916 (-1197)) |has| |#2| (-916 (-1197))) ((-918 (-1197)) -3956 (|has| |#2| (-918 (-1197))) (|has| |#2| (-916 (-1197)))) ((-1073 |#1| |#1| |#2| |#3| |#4|) . T) ((-1058 (-419 (-558))) |has| |#2| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#2| (-1058 (-558))) ((-1058 |#2|) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-3755 ((|#4| |#4|) 81 T ELT)) (-3753 ((|#4| |#4|) 76 T ELT)) (-3757 (((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2221 (-660 |#3|))) |#4| |#3|) 91 T ELT)) (-3756 (((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|) 80 T ELT)) (-3754 (((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|) 78 T ELT))) +(((-1144 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -3753 (|#4| |#4|)) (-15 -3754 ((-2 (|:| |Hermite| |#4|) (|:| |eqMat| |#4|)) |#4|)) (-15 -3755 (|#4| |#4|)) (-15 -3756 ((-2 (|:| |Smith| |#4|) (|:| |leftEqMat| |#4|) (|:| |rightEqMat| |#4|)) |#4|)) (-15 -3757 ((-2 (|:| |particular| (-3 |#3| "failed")) (|:| -2221 (-660 |#3|))) |#4| |#3|))) (-319) (-385 |#1|) (-385 |#1|) (-705 |#1| |#2| |#3|)) (T -1144)) +((-3757 (*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2221 (-660 *4)))) (-5 *1 (-1144 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4)))) (-3756 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3755 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-3754 (*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) (-3753 (*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 18 T ELT)) (-3483 (((-660 |#2|) $) 174 T ELT)) (-3485 (((-1191 $) $ |#2|) 60 T ELT) (((-1191 |#1|) $) 49 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 116 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 118 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 120 (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 |#2|)) 214 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) 167 T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3573 ((|#1| $) 165 T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) ((|#2| $) NIL T ELT)) (-4185 (($ $ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4388 (($ $) 218 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) 90 T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT) (($ $ |#2|) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-543 |#2|) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| |#1| (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| |#1| (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-2640 (((-114) $) 20 T ELT)) (-2648 (((-790) $) 30 T ELT)) (-3486 (($ (-1191 |#1|) |#2|) 54 T ELT) (($ (-1191 $) |#2|) 71 T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) 38 T ELT)) (-3293 (($ |#1| (-543 |#2|)) 78 T ELT) (($ $ |#2| (-790)) 58 T ELT) (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ |#2|) NIL T ELT)) (-3220 (((-543 |#2|) $) 205 T ELT) (((-790) $ |#2|) 206 T ELT) (((-660 (-790)) $ (-660 |#2|)) 207 T ELT)) (-1804 (($ (-1 (-543 |#2|) (-543 |#2|)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 128 T ELT)) (-3484 (((-3 |#2| #1#) $) 177 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) 217 T ELT)) (-3591 ((|#1| $) 43 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| |#2|) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) 39 T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 148 (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) 153 (|has| |#1| (-464)) ELT) (($ $ $) 138 (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-928)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 126 (|has| |#1| (-569)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ |#2| |#1|) 180 T ELT) (($ $ (-660 |#2|) (-660 |#1|)) 195 T ELT) (($ $ |#2| $) 179 T ELT) (($ $ (-660 |#2|) (-660 $)) 194 T ELT)) (-4186 (($ $ |#2|) NIL (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) 216 T ELT)) (-4377 (((-543 |#2|) $) 201 T ELT) (((-790) $ |#2|) 196 T ELT) (((-660 (-790)) $ (-660 |#2|)) 199 T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| |#1| (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| |#1| (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT)) (-3217 ((|#1| $) 134 (|has| |#1| (-464)) ELT) (($ $ |#2|) 137 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4375 (((-876) $) 159 T ELT) (($ (-558)) 84 T ELT) (($ |#1|) 85 T ELT) (($ |#2|) 33 T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-4246 (((-660 |#1|) $) 162 T ELT)) (-4106 ((|#1| $ (-543 |#2|)) 80 T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 87 T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) 123 (|has| |#1| (-569)) ELT)) (-3058 (($) 12 T CONST)) (-3064 (($) 14 T CONST)) (-3069 (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3453 (((-114) $ $) 106 T ELT)) (-4378 (($ $ |#1|) 132 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 93 T ELT) (($ $ $) 104 T ELT)) (-4268 (($ $ $) 55 T ELT)) (** (($ $ (-937)) 110 T ELT) (($ $ (-790)) 109 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 96 T ELT) (($ $ $) 72 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 99 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1145 |#1| |#2|) (-968 |#1| (-543 |#2|) |#2|) (-1069) (-860)) (T -1145)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 |#2|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3911 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 128 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 124 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4243 (((-964 |#1|) $ (-790)) NIL T ELT) (((-964 |#1|) $ (-790) (-790)) NIL T ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-790) $ |#2|) NIL T ELT) (((-790) $ |#2| (-790)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ $ (-660 |#2|) (-660 (-543 |#2|))) NIL T ELT) (($ $ |#2| (-543 |#2|)) NIL T ELT) (($ |#1| (-543 |#2|)) NIL T ELT) (($ $ |#2| (-790)) 63 T ELT) (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4371 (($ $) 122 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4241 (($ $ |#2|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ |#2| |#1|) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4105 (($ (-1 $) |#2| |#1|) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (($ $ (-790)) 16 T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4372 (($ $) 120 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (($ $ |#2| $) 106 T ELT) (($ $ (-660 |#2|) (-660 $)) 99 T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT)) (-4187 (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) 109 T ELT)) (-4377 (((-543 |#2|) $) NIL T ELT)) (-3758 (((-1 (-1175 |#3|) |#3|) (-660 |#2|) (-660 (-1175 |#3|))) 87 T ELT)) (-3914 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 130 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 126 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 18 T ELT)) (-4375 (((-876) $) 198 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 45 (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#2|) 70 T ELT) (($ |#3|) 68 T ELT)) (-4106 ((|#1| $ (-543 |#2|)) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) ((|#3| $ (-790)) 43 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 136 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 138 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 52 T CONST)) (-3064 (($) 62 T CONST)) (-3069 (($ $ (-660 |#2|) (-660 (-790))) NIL T ELT) (($ $ |#2| (-790)) NIL T ELT) (($ $ (-660 |#2|)) NIL T ELT) (($ $ |#2|) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) 200 (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 66 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 77 T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 65 T ELT) (($ $ (-419 (-558))) 117 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 115 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 48 T ELT) (($ $ |#1|) 49 T ELT) (($ |#3| $) 47 T ELT))) +(((-1146 |#1| |#2| |#3|) (-13 (-759 |#1| |#2|) (-10 -8 (-15 -4106 (|#3| $ (-790))) (-15 -4375 ($ |#2|)) (-15 -4375 ($ |#3|)) (-15 * ($ |#3| $)) (-15 -3758 ((-1 (-1175 |#3|) |#3|) (-660 |#2|) (-660 (-1175 |#3|)))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $ |#2| |#1|)) (-15 -4105 ($ (-1 $) |#2| |#1|))) |%noBranch|))) (-1069) (-860) (-968 |#1| (-543 |#2|) |#2|)) (T -1146)) +((-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *2 (-968 *4 (-543 *5) *5)) (-5 *1 (-1146 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-860)))) (-4375 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *2 (-860)) (-5 *1 (-1146 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-4375 (*1 *1 *2) (-12 (-4 *3 (-1069)) (-4 *4 (-860)) (-5 *1 (-1146 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (* (*1 *1 *2 *1) (-12 (-4 *3 (-1069)) (-4 *4 (-860)) (-5 *1 (-1146 *3 *4 *2)) (-4 *2 (-968 *3 (-543 *4) *4)))) (-3758 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1175 *7))) (-4 *6 (-860)) (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1069)) (-5 *2 (-1 (-1175 *7) *7)) (-5 *1 (-1146 *5 *6 *7)))) (-4241 (*1 *1 *1 *2 *3) (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-4 *2 (-860)) (-5 *1 (-1146 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) (-4105 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1146 *4 *3 *5))) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1069)) (-4 *3 (-860)) (-5 *1 (-1146 *4 *3 *5)) (-4 *5 (-968 *4 (-543 *3) *3))))) +((-2966 (((-114) $ $) 7 T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) 90 T ELT)) (-4111 (((-660 $) (-660 |#4|)) 91 T ELT) (((-660 $) (-660 |#4|) (-114)) 118 T ELT)) (-3483 (((-660 |#3|) $) 37 T ELT)) (-3308 (((-114) $) 30 T ELT)) (-3299 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4117 ((|#4| |#4| $) 97 T ELT)) (-4204 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| $) 133 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4139 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) 84 T ELT)) (-4153 (($) 46 T CONST)) (-3304 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") (-660 |#4|)) 40 T ELT)) (-3573 (($ (-660 |#4|)) 39 T ELT)) (-4228 (((-3 $ #1#) $) 87 T ELT)) (-4114 ((|#4| |#4| $) 94 T ELT)) (-1466 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4112 ((|#4| |#4| $) 92 T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) 110 T ELT)) (-3614 (((-114) |#4| $) 143 T ELT)) (-3612 (((-114) |#4| $) 140 T ELT)) (-3615 (((-114) |#4| $) 144 T ELT) (((-114) $) 141 T ELT)) (-3289 (((-660 |#4|) $) 53 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3314 (((-660 |#3|) $) 36 T ELT)) (-3313 (((-114) |#3| $) 35 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3608 (((-3 |#4| (-660 $)) |#4| |#4| $) 135 T ELT)) (-3607 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| |#4| $) 134 T ELT)) (-4227 (((-3 |#4| #1#) $) 88 T ELT)) (-3609 (((-660 $) |#4| $) 136 T ELT)) (-3611 (((-3 (-114) (-660 $)) |#4| $) 139 T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |#4| $) 138 T ELT) (((-114) |#4| $) 137 T ELT)) (-3655 (((-660 $) |#4| $) 132 T ELT) (((-660 $) (-660 |#4|) $) 131 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 130 T ELT) (((-660 $) |#4| (-660 $)) 129 T ELT)) (-3859 (($ |#4| $) 124 T ELT) (($ (-660 |#4|) $) 123 T ELT)) (-4126 (((-660 |#4|) $) 112 T ELT)) (-4120 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4115 ((|#4| |#4| $) 95 T ELT)) (-4128 (((-114) $ $) 115 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4116 ((|#4| |#4| $) 96 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4230 (((-3 |#4| #1#) $) 89 T ELT)) (-1467 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 83 T ELT)) (-4198 (($ $ |#4|) 82 T ELT) (((-660 $) |#4| $) 122 T ELT) (((-660 $) |#4| (-660 $)) 121 T ELT) (((-660 $) (-660 |#4|) $) 120 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) 42 T ELT)) (-3822 (((-114) $) 45 T ELT)) (-3992 (($) 44 T ELT)) (-4377 (((-790) $) 111 T ELT)) (-2156 (((-790) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 43 T ELT)) (-4401 (((-547) $) 70 (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 61 T ELT)) (-3310 (($ $ |#3|) 32 T ELT)) (-3312 (($ $ |#3|) 34 T ELT)) (-4113 (($ $) 93 T ELT)) (-3311 (($ $ |#3|) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (((-660 |#4|) $) 41 T ELT)) (-4107 (((-790) $) 81 (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) 103 T ELT)) (-3606 (((-660 $) |#4| $) 128 T ELT) (((-660 $) |#4| (-660 $)) 127 T ELT) (((-660 $) (-660 |#4|) $) 126 T ELT) (((-660 $) (-660 |#4|) (-660 $)) 125 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) 86 T ELT)) (-3613 (((-114) |#4| $) 142 T ELT)) (-4362 (((-114) |#3| $) 85 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 47 (|has| $ (-6 -4424)) ELT))) +(((-1147 |#1| |#2| |#3| |#4|) (-142) (-464) (-814) (-860) (-1085 |t#1| |t#2| |t#3|)) (T -1147)) +NIL +(-13 (-1129 |t#1| |t#2| |t#3| |t#4|) (-803 |t#1| |t#2| |t#3| |t#4|)) +(((-34) . T) ((-102) . T) ((-629 (-660 |#4|)) . T) ((-629 (-876)) . T) ((-153 |#4|) . T) ((-630 (-547)) |has| |#4| (-630 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-803 |#1| |#2| |#3| |#4|) . T) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1091 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1129 |#1| |#2| |#3| |#4|) . T) ((-1232 |#1| |#2| |#3| |#4|) . T) ((-1237) . T)) +((-4000 (((-660 |#2|) |#1|) 15 T ELT)) (-3764 (((-660 |#2|) |#2| |#2| |#2| |#2| |#2|) 47 T ELT) (((-660 |#2|) |#1|) 61 T ELT)) (-3762 (((-660 |#2|) |#2| |#2| |#2|) 45 T ELT) (((-660 |#2|) |#1|) 59 T ELT)) (-3759 ((|#2| |#1|) 54 T ELT)) (-3760 (((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|)) 20 T ELT)) (-3761 (((-660 |#2|) |#2| |#2|) 42 T ELT) (((-660 |#2|) |#1|) 58 T ELT)) (-3763 (((-660 |#2|) |#2| |#2| |#2| |#2|) 46 T ELT) (((-660 |#2|) |#1|) 60 T ELT)) (-3768 ((|#2| |#2| |#2| |#2| |#2| |#2|) 53 T ELT)) (-3766 ((|#2| |#2| |#2| |#2|) 51 T ELT)) (-3765 ((|#2| |#2| |#2|) 50 T ELT)) (-3767 ((|#2| |#2| |#2| |#2| |#2|) 52 T ELT))) +(((-1148 |#1| |#2|) (-10 -7 (-15 -4000 ((-660 |#2|) |#1|)) (-15 -3759 (|#2| |#1|)) (-15 -3760 ((-2 (|:| |solns| (-660 |#2|)) (|:| |maps| (-660 (-2 (|:| |arg| |#2|) (|:| |res| |#2|))))) |#1| (-1 |#2| |#2|))) (-15 -3761 ((-660 |#2|) |#1|)) (-15 -3762 ((-660 |#2|) |#1|)) (-15 -3763 ((-660 |#2|) |#1|)) (-15 -3764 ((-660 |#2|) |#1|)) (-15 -3761 ((-660 |#2|) |#2| |#2|)) (-15 -3762 ((-660 |#2|) |#2| |#2| |#2|)) (-15 -3763 ((-660 |#2|) |#2| |#2| |#2| |#2|)) (-15 -3764 ((-660 |#2|) |#2| |#2| |#2| |#2| |#2|)) (-15 -3765 (|#2| |#2| |#2|)) (-15 -3766 (|#2| |#2| |#2| |#2|)) (-15 -3767 (|#2| |#2| |#2| |#2| |#2|)) (-15 -3768 (|#2| |#2| |#2| |#2| |#2| |#2|))) (-1263 |#2|) (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (T -1148)) +((-3768 (*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3767 (*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3766 (*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3765 (*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-3764 (*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-3763 (*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-3762 (*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-3761 (*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3)))) (-3764 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-3763 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-3762 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-3761 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) (-3760 (*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-2 (|:| |solns| (-660 *5)) (|:| |maps| (-660 (-2 (|:| |arg| *5) (|:| |res| *5)))))) (-5 *1 (-1148 *3 *5)) (-4 *3 (-1263 *5)))) (-3759 (*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2)))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4))))) +((-3769 (((-660 (-660 (-305 (-326 |#1|)))) (-660 (-305 (-419 (-964 |#1|))))) 118 T ELT) (((-660 (-660 (-305 (-326 |#1|)))) (-660 (-305 (-419 (-964 |#1|)))) (-660 (-1197))) 117 T ELT) (((-660 (-660 (-305 (-326 |#1|)))) (-660 (-419 (-964 |#1|)))) 115 T ELT) (((-660 (-660 (-305 (-326 |#1|)))) (-660 (-419 (-964 |#1|))) (-660 (-1197))) 113 T ELT) (((-660 (-305 (-326 |#1|))) (-305 (-419 (-964 |#1|)))) 97 T ELT) (((-660 (-305 (-326 |#1|))) (-305 (-419 (-964 |#1|))) (-1197)) 98 T ELT) (((-660 (-305 (-326 |#1|))) (-419 (-964 |#1|))) 92 T ELT) (((-660 (-305 (-326 |#1|))) (-419 (-964 |#1|)) (-1197)) 82 T ELT)) (-3770 (((-660 (-660 (-326 |#1|))) (-660 (-419 (-964 |#1|))) (-660 (-1197))) 111 T ELT) (((-660 (-326 |#1|)) (-419 (-964 |#1|)) (-1197)) 54 T ELT)) (-3771 (((-1186 (-660 (-326 |#1|)) (-660 (-305 (-326 |#1|)))) (-419 (-964 |#1|)) (-1197)) 122 T ELT) (((-1186 (-660 (-326 |#1|)) (-660 (-305 (-326 |#1|)))) (-305 (-419 (-964 |#1|))) (-1197)) 121 T ELT))) +(((-1149 |#1|) (-10 -7 (-15 -3769 ((-660 (-305 (-326 |#1|))) (-419 (-964 |#1|)) (-1197))) (-15 -3769 ((-660 (-305 (-326 |#1|))) (-419 (-964 |#1|)))) (-15 -3769 ((-660 (-305 (-326 |#1|))) (-305 (-419 (-964 |#1|))) (-1197))) (-15 -3769 ((-660 (-305 (-326 |#1|))) (-305 (-419 (-964 |#1|))))) (-15 -3769 ((-660 (-660 (-305 (-326 |#1|)))) (-660 (-419 (-964 |#1|))) (-660 (-1197)))) (-15 -3769 ((-660 (-660 (-305 (-326 |#1|)))) (-660 (-419 (-964 |#1|))))) (-15 -3769 ((-660 (-660 (-305 (-326 |#1|)))) (-660 (-305 (-419 (-964 |#1|)))) (-660 (-1197)))) (-15 -3769 ((-660 (-660 (-305 (-326 |#1|)))) (-660 (-305 (-419 (-964 |#1|)))))) (-15 -3770 ((-660 (-326 |#1|)) (-419 (-964 |#1|)) (-1197))) (-15 -3770 ((-660 (-660 (-326 |#1|))) (-660 (-419 (-964 |#1|))) (-660 (-1197)))) (-15 -3771 ((-1186 (-660 (-326 |#1|)) (-660 (-305 (-326 |#1|)))) (-305 (-419 (-964 |#1|))) (-1197))) (-15 -3771 ((-1186 (-660 (-326 |#1|)) (-660 (-305 (-326 |#1|)))) (-419 (-964 |#1|)) (-1197)))) (-13 (-319) (-149))) (T -1149)) +((-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1186 (-660 (-326 *5)) (-660 (-305 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3771 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-964 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-1186 (-660 (-326 *5)) (-660 (-305 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-326 *5)))) (-5 *1 (-1149 *5)))) (-3770 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-326 *5))) (-5 *1 (-1149 *5)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-660 (-305 (-419 (-964 *4))))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *4))))) (-5 *1 (-1149 *4)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-305 (-419 (-964 *5))))) (-5 *4 (-660 (-1197))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-660 (-419 (-964 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *4))))) (-5 *1 (-1149 *4)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *5))))) (-5 *1 (-1149 *5)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-305 (-419 (-964 *4)))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1149 *4)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-305 (-419 (-964 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1149 *5)))) (-3769 (*1 *2 *3) (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-13 (-319) (-149))) (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1149 *4)))) (-3769 (*1 *2 *3 *4) (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1149 *5))))) +((-3773 (((-419 (-1191 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-558)) 36 T ELT)) (-3772 (((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|)))) 48 T ELT))) +(((-1150 |#1|) (-10 -7 (-15 -3772 ((-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))) (-419 (-1191 (-326 |#1|))))) (-15 -3773 ((-419 (-1191 (-326 |#1|))) (-1287 (-326 |#1|)) (-419 (-1191 (-326 |#1|))) (-558)))) (-569)) (T -1150)) +((-3773 (*1 *2 *3 *2 *4) (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) (-5 *4 (-558)) (-4 *5 (-569)) (-5 *1 (-1150 *5)))) (-3772 (*1 *2 *2 *2 *2) (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-569)) (-5 *1 (-1150 *3))))) +((-4000 (((-660 (-660 (-305 (-326 |#1|)))) (-660 (-305 (-326 |#1|))) (-660 (-1197))) 244 T ELT) (((-660 (-305 (-326 |#1|))) (-326 |#1|) (-1197)) 23 T ELT) (((-660 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1197)) 29 T ELT) (((-660 (-305 (-326 |#1|))) (-305 (-326 |#1|))) 28 T ELT) (((-660 (-305 (-326 |#1|))) (-326 |#1|)) 24 T ELT))) +(((-1151 |#1|) (-10 -7 (-15 -4000 ((-660 (-305 (-326 |#1|))) (-326 |#1|))) (-15 -4000 ((-660 (-305 (-326 |#1|))) (-305 (-326 |#1|)))) (-15 -4000 ((-660 (-305 (-326 |#1|))) (-305 (-326 |#1|)) (-1197))) (-15 -4000 ((-660 (-305 (-326 |#1|))) (-326 |#1|) (-1197))) (-15 -4000 ((-660 (-660 (-305 (-326 |#1|)))) (-660 (-305 (-326 |#1|))) (-660 (-1197))))) (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (T -1151)) +((-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1197))) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *5))))) (-5 *1 (-1151 *5)) (-5 *3 (-660 (-305 (-326 *5)))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1151 *5)) (-5 *3 (-326 *5)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1151 *5)) (-5 *3 (-305 (-326 *5))))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-305 (-326 *4))))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-326 *4))))) +((-3775 ((|#2| |#2|) 28 (|has| |#1| (-860)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 25 T ELT)) (-3774 ((|#2| |#2|) 27 (|has| |#1| (-860)) ELT) ((|#2| |#2| (-1 (-114) |#1| |#1|)) 22 T ELT))) +(((-1152 |#1| |#2|) (-10 -7 (-15 -3774 (|#2| |#2| (-1 (-114) |#1| |#1|))) (-15 -3775 (|#2| |#2| (-1 (-114) |#1| |#1|))) (IF (|has| |#1| (-860)) (PROGN (-15 -3774 (|#2| |#2|)) (-15 -3775 (|#2| |#2|))) |%noBranch|)) (-1237) (-13 (-615 (-558) |#1|) (-10 -7 (-6 -4424) (-6 -4425)))) (T -1152)) +((-3775 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-13 (-615 (-558) *3) (-10 -7 (-6 -4424) (-6 -4425)))))) (-3774 (*1 *2 *2) (-12 (-4 *3 (-860)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) (-4 *2 (-13 (-615 (-558) *3) (-10 -7 (-6 -4424) (-6 -4425)))))) (-3775 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-13 (-615 (-558) *4) (-10 -7 (-6 -4424) (-6 -4425)))))) (-3774 (*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) (-4 *2 (-13 (-615 (-558) *4) (-10 -7 (-6 -4424) (-6 -4425))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4317 (((-1185 3 |#1|) $) 141 T ELT)) (-3785 (((-114) $) 101 T ELT)) (-3786 (($ $ (-660 (-961 |#1|))) 44 T ELT) (($ $ (-660 (-660 |#1|))) 104 T ELT) (($ (-660 (-961 |#1|))) 103 T ELT) (((-660 (-961 |#1|)) $) 102 T ELT)) (-3791 (((-114) $) 72 T ELT)) (-4135 (($ $ (-961 |#1|)) 76 T ELT) (($ $ (-660 |#1|)) 81 T ELT) (($ $ (-790)) 83 T ELT) (($ (-961 |#1|)) 77 T ELT) (((-961 |#1|) $) 75 T ELT)) (-3777 (((-2 (|:| -4279 (-790)) (|:| |curves| (-790)) (|:| |polygons| (-790)) (|:| |constructs| (-790))) $) 139 T ELT)) (-3795 (((-790) $) 53 T ELT)) (-3796 (((-790) $) 52 T ELT)) (-4316 (($ $ (-790) (-961 |#1|)) 67 T ELT)) (-3783 (((-114) $) 111 T ELT)) (-3784 (($ $ (-660 (-660 (-961 |#1|))) (-660 (-174)) (-174)) 118 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-660 (-174)) (-174)) 120 T ELT) (($ $ (-660 (-660 (-961 |#1|))) (-114) (-114)) 115 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-114) (-114)) 127 T ELT) (($ (-660 (-660 (-961 |#1|)))) 116 T ELT) (($ (-660 (-660 (-961 |#1|))) (-114) (-114)) 117 T ELT) (((-660 (-660 (-961 |#1|))) $) 114 T ELT)) (-3937 (($ (-660 $)) 56 T ELT) (($ $ $) 57 T ELT)) (-3778 (((-660 (-174)) $) 133 T ELT)) (-3782 (((-660 (-961 |#1|)) $) 130 T ELT)) (-3779 (((-660 (-660 (-174))) $) 132 T ELT)) (-3780 (((-660 (-660 (-660 (-961 |#1|)))) $) NIL T ELT)) (-3781 (((-660 (-660 (-660 (-790)))) $) 131 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3792 (((-790) $ (-660 (-961 |#1|))) 65 T ELT)) (-3789 (((-114) $) 84 T ELT)) (-3790 (($ $ (-660 (-961 |#1|))) 86 T ELT) (($ $ (-660 (-660 |#1|))) 92 T ELT) (($ (-660 (-961 |#1|))) 87 T ELT) (((-660 (-961 |#1|)) $) 85 T ELT)) (-3797 (($) 48 T ELT) (($ (-1185 3 |#1|)) 49 T ELT)) (-3819 (($ $) 63 T ELT)) (-3793 (((-660 $) $) 62 T ELT)) (-4183 (($ (-660 $)) 59 T ELT)) (-3794 (((-660 $) $) 61 T ELT)) (-4375 (((-876) $) 146 T ELT)) (-3787 (((-114) $) 94 T ELT)) (-3788 (($ $ (-660 (-961 |#1|))) 96 T ELT) (($ $ (-660 (-660 |#1|))) 99 T ELT) (($ (-660 (-961 |#1|))) 97 T ELT) (((-660 (-961 |#1|)) $) 95 T ELT)) (-3776 (($ $) 140 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1153 |#1|) (-1154 |#1|) (-1069)) (T -1153)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-4317 (((-1185 3 |#1|) $) 17 T ELT)) (-3785 (((-114) $) 33 T ELT)) (-3786 (($ $ (-660 (-961 |#1|))) 37 T ELT) (($ $ (-660 (-660 |#1|))) 36 T ELT) (($ (-660 (-961 |#1|))) 35 T ELT) (((-660 (-961 |#1|)) $) 34 T ELT)) (-3791 (((-114) $) 48 T ELT)) (-4135 (($ $ (-961 |#1|)) 53 T ELT) (($ $ (-660 |#1|)) 52 T ELT) (($ $ (-790)) 51 T ELT) (($ (-961 |#1|)) 50 T ELT) (((-961 |#1|) $) 49 T ELT)) (-3777 (((-2 (|:| -4279 (-790)) (|:| |curves| (-790)) (|:| |polygons| (-790)) (|:| |constructs| (-790))) $) 19 T ELT)) (-3795 (((-790) $) 62 T ELT)) (-3796 (((-790) $) 63 T ELT)) (-4316 (($ $ (-790) (-961 |#1|)) 54 T ELT)) (-3783 (((-114) $) 25 T ELT)) (-3784 (($ $ (-660 (-660 (-961 |#1|))) (-660 (-174)) (-174)) 32 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-660 (-174)) (-174)) 31 T ELT) (($ $ (-660 (-660 (-961 |#1|))) (-114) (-114)) 30 T ELT) (($ $ (-660 (-660 (-660 |#1|))) (-114) (-114)) 29 T ELT) (($ (-660 (-660 (-961 |#1|)))) 28 T ELT) (($ (-660 (-660 (-961 |#1|))) (-114) (-114)) 27 T ELT) (((-660 (-660 (-961 |#1|))) $) 26 T ELT)) (-3937 (($ (-660 $)) 61 T ELT) (($ $ $) 60 T ELT)) (-3778 (((-660 (-174)) $) 20 T ELT)) (-3782 (((-660 (-961 |#1|)) $) 24 T ELT)) (-3779 (((-660 (-660 (-174))) $) 21 T ELT)) (-3780 (((-660 (-660 (-660 (-961 |#1|)))) $) 22 T ELT)) (-3781 (((-660 (-660 (-660 (-790)))) $) 23 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3792 (((-790) $ (-660 (-961 |#1|))) 55 T ELT)) (-3789 (((-114) $) 43 T ELT)) (-3790 (($ $ (-660 (-961 |#1|))) 47 T ELT) (($ $ (-660 (-660 |#1|))) 46 T ELT) (($ (-660 (-961 |#1|))) 45 T ELT) (((-660 (-961 |#1|)) $) 44 T ELT)) (-3797 (($) 65 T ELT) (($ (-1185 3 |#1|)) 64 T ELT)) (-3819 (($ $) 56 T ELT)) (-3793 (((-660 $) $) 57 T ELT)) (-4183 (($ (-660 $)) 59 T ELT)) (-3794 (((-660 $) $) 58 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-3787 (((-114) $) 38 T ELT)) (-3788 (($ $ (-660 (-961 |#1|))) 42 T ELT) (($ $ (-660 (-660 |#1|))) 41 T ELT) (($ (-660 (-961 |#1|))) 40 T ELT) (((-660 (-961 |#1|)) $) 39 T ELT)) (-3776 (($ $) 18 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-1154 |#1|) (-142) (-1069)) (T -1154)) +((-4375 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-876)))) (-3797 (*1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-3797 (*1 *1 *2) (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3796 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) (-3795 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3937 (*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-4183 (*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3794 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-660 *1)) (-4 *1 (-1154 *3)))) (-3793 (*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-660 *1)) (-4 *1 (-1154 *3)))) (-3819 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-3792 (*1 *2 *1 *3) (-12 (-5 *3 (-660 (-961 *4))) (-4 *1 (-1154 *4)) (-4 *4 (-1069)) (-5 *2 (-790)))) (-4316 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-961 *4)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-4135 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-4135 (*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-4135 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-961 *3)))) (-3791 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114)))) (-3790 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3790 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3790 (*1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3790 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) (-3789 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114)))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3788 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3788 (*1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3788 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) (-3787 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3786 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) (-3786 (*1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3786 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) (-3785 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114)))) (-3784 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-660 (-961 *5)))) (-5 *3 (-660 (-174))) (-5 *4 (-174)) (-4 *1 (-1154 *5)) (-4 *5 (-1069)))) (-3784 (*1 *1 *1 *2 *3 *4) (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-660 (-174))) (-5 *4 (-174)) (-4 *1 (-1154 *5)) (-4 *5 (-1069)))) (-3784 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-961 *4)))) (-5 *3 (-114)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) (-3784 (*1 *1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-114)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) (-3784 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-961 *3)))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) (-3784 (*1 *1 *2 *3 *3) (-12 (-5 *2 (-660 (-660 (-961 *4)))) (-5 *3 (-114)) (-4 *4 (-1069)) (-4 *1 (-1154 *4)))) (-3784 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-961 *3)))))) (-3783 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114)))) (-3782 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) (-3781 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-660 (-790))))))) (-3780 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-660 (-961 *3))))))) (-3779 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-174)))))) (-3778 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-174))))) (-3777 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4279 (-790)) (|:| |curves| (-790)) (|:| |polygons| (-790)) (|:| |constructs| (-790)))))) (-3776 (*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) (-4317 (*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-1185 3 *3))))) +(-13 (-1121) (-10 -8 (-15 -3797 ($)) (-15 -3797 ($ (-1185 3 |t#1|))) (-15 -3796 ((-790) $)) (-15 -3795 ((-790) $)) (-15 -3937 ($ (-660 $))) (-15 -3937 ($ $ $)) (-15 -4183 ($ (-660 $))) (-15 -3794 ((-660 $) $)) (-15 -3793 ((-660 $) $)) (-15 -3819 ($ $)) (-15 -3792 ((-790) $ (-660 (-961 |t#1|)))) (-15 -4316 ($ $ (-790) (-961 |t#1|))) (-15 -4135 ($ $ (-961 |t#1|))) (-15 -4135 ($ $ (-660 |t#1|))) (-15 -4135 ($ $ (-790))) (-15 -4135 ($ (-961 |t#1|))) (-15 -4135 ((-961 |t#1|) $)) (-15 -3791 ((-114) $)) (-15 -3790 ($ $ (-660 (-961 |t#1|)))) (-15 -3790 ($ $ (-660 (-660 |t#1|)))) (-15 -3790 ($ (-660 (-961 |t#1|)))) (-15 -3790 ((-660 (-961 |t#1|)) $)) (-15 -3789 ((-114) $)) (-15 -3788 ($ $ (-660 (-961 |t#1|)))) (-15 -3788 ($ $ (-660 (-660 |t#1|)))) (-15 -3788 ($ (-660 (-961 |t#1|)))) (-15 -3788 ((-660 (-961 |t#1|)) $)) (-15 -3787 ((-114) $)) (-15 -3786 ($ $ (-660 (-961 |t#1|)))) (-15 -3786 ($ $ (-660 (-660 |t#1|)))) (-15 -3786 ($ (-660 (-961 |t#1|)))) (-15 -3786 ((-660 (-961 |t#1|)) $)) (-15 -3785 ((-114) $)) (-15 -3784 ($ $ (-660 (-660 (-961 |t#1|))) (-660 (-174)) (-174))) (-15 -3784 ($ $ (-660 (-660 (-660 |t#1|))) (-660 (-174)) (-174))) (-15 -3784 ($ $ (-660 (-660 (-961 |t#1|))) (-114) (-114))) (-15 -3784 ($ $ (-660 (-660 (-660 |t#1|))) (-114) (-114))) (-15 -3784 ($ (-660 (-660 (-961 |t#1|))))) (-15 -3784 ($ (-660 (-660 (-961 |t#1|))) (-114) (-114))) (-15 -3784 ((-660 (-660 (-961 |t#1|))) $)) (-15 -3783 ((-114) $)) (-15 -3782 ((-660 (-961 |t#1|)) $)) (-15 -3781 ((-660 (-660 (-660 (-790)))) $)) (-15 -3780 ((-660 (-660 (-660 (-961 |t#1|)))) $)) (-15 -3779 ((-660 (-660 (-174))) $)) (-15 -3778 ((-660 (-174)) $)) (-15 -3777 ((-2 (|:| -4279 (-790)) (|:| |curves| (-790)) (|:| |polygons| (-790)) (|:| |constructs| (-790))) $)) (-15 -3776 ($ $)) (-15 -4317 ((-1185 3 |t#1|) $)) (-15 -4375 ((-876) $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 184 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) 7 T ELT)) (-3993 (((-114) $ (|[\|\|]| (-536))) 19 T ELT) (((-114) $ (|[\|\|]| (-222))) 23 T ELT) (((-114) $ (|[\|\|]| (-695))) 27 T ELT) (((-114) $ (|[\|\|]| (-1298))) 31 T ELT) (((-114) $ (|[\|\|]| (-140))) 35 T ELT) (((-114) $ (|[\|\|]| (-616))) 39 T ELT) (((-114) $ (|[\|\|]| (-135))) 43 T ELT) (((-114) $ (|[\|\|]| (-1136))) 47 T ELT) (((-114) $ (|[\|\|]| (-96))) 51 T ELT) (((-114) $ (|[\|\|]| (-700))) 55 T ELT) (((-114) $ (|[\|\|]| (-529))) 59 T ELT) (((-114) $ (|[\|\|]| (-1086))) 63 T ELT) (((-114) $ (|[\|\|]| (-1299))) 67 T ELT) (((-114) $ (|[\|\|]| (-537))) 71 T ELT) (((-114) $ (|[\|\|]| (-1173))) 75 T ELT) (((-114) $ (|[\|\|]| (-156))) 79 T ELT) (((-114) $ (|[\|\|]| (-690))) 83 T ELT) (((-114) $ (|[\|\|]| (-324))) 87 T ELT) (((-114) $ (|[\|\|]| (-1056))) 91 T ELT) (((-114) $ (|[\|\|]| (-183))) 95 T ELT) (((-114) $ (|[\|\|]| (-990))) 99 T ELT) (((-114) $ (|[\|\|]| (-1093))) 103 T ELT) (((-114) $ (|[\|\|]| (-1111))) 107 T ELT) (((-114) $ (|[\|\|]| (-1116))) 111 T ELT) (((-114) $ (|[\|\|]| (-642))) 115 T ELT) (((-114) $ (|[\|\|]| (-1187))) 119 T ELT) (((-114) $ (|[\|\|]| (-158))) 123 T ELT) (((-114) $ (|[\|\|]| (-139))) 127 T ELT) (((-114) $ (|[\|\|]| (-490))) 131 T ELT) (((-114) $ (|[\|\|]| (-604))) 135 T ELT) (((-114) $ (|[\|\|]| (-518))) 139 T ELT) (((-114) $ (|[\|\|]| (-1179))) 143 T ELT) (((-114) $ (|[\|\|]| (-558))) 147 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3999 (((-536) $) 20 T ELT) (((-222) $) 24 T ELT) (((-695) $) 28 T ELT) (((-1298) $) 32 T ELT) (((-140) $) 36 T ELT) (((-616) $) 40 T ELT) (((-135) $) 44 T ELT) (((-1136) $) 48 T ELT) (((-96) $) 52 T ELT) (((-700) $) 56 T ELT) (((-529) $) 60 T ELT) (((-1086) $) 64 T ELT) (((-1299) $) 68 T ELT) (((-537) $) 72 T ELT) (((-1173) $) 76 T ELT) (((-156) $) 80 T ELT) (((-690) $) 84 T ELT) (((-324) $) 88 T ELT) (((-1056) $) 92 T ELT) (((-183) $) 96 T ELT) (((-990) $) 100 T ELT) (((-1093) $) 104 T ELT) (((-1111) $) 108 T ELT) (((-1116) $) 112 T ELT) (((-642) $) 116 T ELT) (((-1187) $) 120 T ELT) (((-158) $) 124 T ELT) (((-139) $) 128 T ELT) (((-490) $) 132 T ELT) (((-604) $) 136 T ELT) (((-518) $) 140 T ELT) (((-1179) $) 144 T ELT) (((-558) $) 148 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1155) (-1157)) (T -1155)) +NIL +((-3798 (((-660 (-1202)) (-1179)) 9 T ELT))) +(((-1156) (-10 -7 (-15 -3798 ((-660 (-1202)) (-1179))))) (T -1156)) +((-3798 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-660 (-1202))) (-5 *1 (-1156))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-1202)) 20 T ELT) (((-1202) $) 19 T ELT)) (-3993 (((-114) $ (|[\|\|]| (-536))) 88 T ELT) (((-114) $ (|[\|\|]| (-222))) 86 T ELT) (((-114) $ (|[\|\|]| (-695))) 84 T ELT) (((-114) $ (|[\|\|]| (-1298))) 82 T ELT) (((-114) $ (|[\|\|]| (-140))) 80 T ELT) (((-114) $ (|[\|\|]| (-616))) 78 T ELT) (((-114) $ (|[\|\|]| (-135))) 76 T ELT) (((-114) $ (|[\|\|]| (-1136))) 74 T ELT) (((-114) $ (|[\|\|]| (-96))) 72 T ELT) (((-114) $ (|[\|\|]| (-700))) 70 T ELT) (((-114) $ (|[\|\|]| (-529))) 68 T ELT) (((-114) $ (|[\|\|]| (-1086))) 66 T ELT) (((-114) $ (|[\|\|]| (-1299))) 64 T ELT) (((-114) $ (|[\|\|]| (-537))) 62 T ELT) (((-114) $ (|[\|\|]| (-1173))) 60 T ELT) (((-114) $ (|[\|\|]| (-156))) 58 T ELT) (((-114) $ (|[\|\|]| (-690))) 56 T ELT) (((-114) $ (|[\|\|]| (-324))) 54 T ELT) (((-114) $ (|[\|\|]| (-1056))) 52 T ELT) (((-114) $ (|[\|\|]| (-183))) 50 T ELT) (((-114) $ (|[\|\|]| (-990))) 48 T ELT) (((-114) $ (|[\|\|]| (-1093))) 46 T ELT) (((-114) $ (|[\|\|]| (-1111))) 44 T ELT) (((-114) $ (|[\|\|]| (-1116))) 42 T ELT) (((-114) $ (|[\|\|]| (-642))) 40 T ELT) (((-114) $ (|[\|\|]| (-1187))) 38 T ELT) (((-114) $ (|[\|\|]| (-158))) 36 T ELT) (((-114) $ (|[\|\|]| (-139))) 34 T ELT) (((-114) $ (|[\|\|]| (-490))) 32 T ELT) (((-114) $ (|[\|\|]| (-604))) 30 T ELT) (((-114) $ (|[\|\|]| (-518))) 28 T ELT) (((-114) $ (|[\|\|]| (-1179))) 26 T ELT) (((-114) $ (|[\|\|]| (-558))) 24 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3999 (((-536) $) 87 T ELT) (((-222) $) 85 T ELT) (((-695) $) 83 T ELT) (((-1298) $) 81 T ELT) (((-140) $) 79 T ELT) (((-616) $) 77 T ELT) (((-135) $) 75 T ELT) (((-1136) $) 73 T ELT) (((-96) $) 71 T ELT) (((-700) $) 69 T ELT) (((-529) $) 67 T ELT) (((-1086) $) 65 T ELT) (((-1299) $) 63 T ELT) (((-537) $) 61 T ELT) (((-1173) $) 59 T ELT) (((-156) $) 57 T ELT) (((-690) $) 55 T ELT) (((-324) $) 53 T ELT) (((-1056) $) 51 T ELT) (((-183) $) 49 T ELT) (((-990) $) 47 T ELT) (((-1093) $) 45 T ELT) (((-1111) $) 43 T ELT) (((-1116) $) 41 T ELT) (((-642) $) 39 T ELT) (((-1187) $) 37 T ELT) (((-158) $) 35 T ELT) (((-139) $) 33 T ELT) (((-490) $) 31 T ELT) (((-604) $) 29 T ELT) (((-518) $) 27 T ELT) (((-1179) $) 25 T ELT) (((-558) $) 23 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-1157) (-142)) (T -1157)) +((-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-536)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-222)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-695))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-695)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1298)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-140)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-616)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-135)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1136)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-96)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-700))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-700)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-529)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1086)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1299)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-537)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1173)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-156)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-690))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-690)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-324)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1056)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-183)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-990))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-990)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1093)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1111)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1116))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1116)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-642))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-642)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1187)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-158)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-139)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-490)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-604)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-518)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1179)))) (-3993 (*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)))) (-3999 (*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-558))))) +(-13 (-1103) (-1283) (-10 -8 (-15 -3993 ((-114) $ (|[\|\|]| (-536)))) (-15 -3999 ((-536) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-222)))) (-15 -3999 ((-222) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-695)))) (-15 -3999 ((-695) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1298)))) (-15 -3999 ((-1298) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-140)))) (-15 -3999 ((-140) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-616)))) (-15 -3999 ((-616) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-135)))) (-15 -3999 ((-135) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1136)))) (-15 -3999 ((-1136) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-96)))) (-15 -3999 ((-96) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-700)))) (-15 -3999 ((-700) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-529)))) (-15 -3999 ((-529) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1086)))) (-15 -3999 ((-1086) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1299)))) (-15 -3999 ((-1299) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-537)))) (-15 -3999 ((-537) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1173)))) (-15 -3999 ((-1173) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-156)))) (-15 -3999 ((-156) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-690)))) (-15 -3999 ((-690) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-324)))) (-15 -3999 ((-324) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1056)))) (-15 -3999 ((-1056) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-183)))) (-15 -3999 ((-183) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-990)))) (-15 -3999 ((-990) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1093)))) (-15 -3999 ((-1093) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1111)))) (-15 -3999 ((-1111) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1116)))) (-15 -3999 ((-1116) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-642)))) (-15 -3999 ((-642) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1187)))) (-15 -3999 ((-1187) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-158)))) (-15 -3999 ((-158) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-139)))) (-15 -3999 ((-139) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-490)))) (-15 -3999 ((-490) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-604)))) (-15 -3999 ((-604) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-518)))) (-15 -3999 ((-518) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-1179)))) (-15 -3999 ((-1179) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-558)))) (-15 -3999 ((-558) $)))) +(((-93) . T) ((-102) . T) ((-632 (-1202)) . T) ((-629 (-876)) . T) ((-629 (-1202)) . T) ((-502 (-1202)) . T) ((-1121) . T) ((-1103) . T) ((-1237) . T) ((-1283) . T)) +((-3801 (((-1293) (-660 (-876))) 22 T ELT) (((-1293) (-876)) 21 T ELT)) (-3800 (((-1293) (-660 (-876))) 20 T ELT) (((-1293) (-876)) 19 T ELT)) (-3799 (((-1293) (-660 (-876))) 18 T ELT) (((-1293) (-876)) 10 T ELT) (((-1293) (-1179) (-876)) 16 T ELT))) +(((-1158) (-10 -7 (-15 -3799 ((-1293) (-1179) (-876))) (-15 -3799 ((-1293) (-876))) (-15 -3800 ((-1293) (-876))) (-15 -3801 ((-1293) (-876))) (-15 -3799 ((-1293) (-660 (-876)))) (-15 -3800 ((-1293) (-660 (-876)))) (-15 -3801 ((-1293) (-660 (-876)))))) (T -1158)) +((-3801 (*1 *2 *3) (-12 (-5 *3 (-660 (-876))) (-5 *2 (-1293)) (-5 *1 (-1158)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-660 (-876))) (-5 *2 (-1293)) (-5 *1 (-1158)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-660 (-876))) (-5 *2 (-1293)) (-5 *1 (-1158)))) (-3801 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) (-3800 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) (-3799 (*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) (-3799 (*1 *2 *3 *4) (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158))))) +((-3805 (($ $ $) 10 T ELT)) (-3804 (($ $) 9 T ELT)) (-3808 (($ $ $) 13 T ELT)) (-3810 (($ $ $) 15 T ELT)) (-3807 (($ $ $) 12 T ELT)) (-3809 (($ $ $) 14 T ELT)) (-3812 (($ $) 17 T ELT)) (-3811 (($ $) 16 T ELT)) (-3802 (($ $) 6 T ELT)) (-3806 (($ $ $) 11 T ELT) (($ $) 7 T ELT)) (-3803 (($ $ $) 8 T ELT))) +(((-1159) (-142)) (T -1159)) +((-3812 (*1 *1 *1) (-4 *1 (-1159))) (-3811 (*1 *1 *1) (-4 *1 (-1159))) (-3810 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3809 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3808 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3807 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3806 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3805 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3804 (*1 *1 *1) (-4 *1 (-1159))) (-3803 (*1 *1 *1 *1) (-4 *1 (-1159))) (-3806 (*1 *1 *1) (-4 *1 (-1159))) (-3802 (*1 *1 *1) (-4 *1 (-1159)))) +(-13 (-10 -8 (-15 -3802 ($ $)) (-15 -3806 ($ $)) (-15 -3803 ($ $ $)) (-15 -3804 ($ $)) (-15 -3805 ($ $ $)) (-15 -3806 ($ $ $)) (-15 -3807 ($ $ $)) (-15 -3808 ($ $ $)) (-15 -3809 ($ $ $)) (-15 -3810 ($ $ $)) (-15 -3811 ($ $)) (-15 -3812 ($ $)))) +((-2966 (((-114) $ $) 44 T ELT)) (-3821 ((|#1| $) 17 T ELT)) (-3813 (((-114) $ $ (-1 (-114) |#2| |#2|)) 39 T ELT)) (-3820 (((-114) $) 19 T ELT)) (-3818 (($ $ |#1|) 30 T ELT)) (-3816 (($ $ (-114)) 32 T ELT)) (-3815 (($ $) 33 T ELT)) (-3817 (($ $ |#2|) 31 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3814 (((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|)) 38 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3822 (((-114) $) 16 T ELT)) (-3992 (($) 13 T ELT)) (-3819 (($ $) 29 T ELT)) (-3949 (($ |#1| |#2| (-114)) 20 T ELT) (($ |#1| |#2|) 21 T ELT) (($ (-2 (|:| |val| |#1|) (|:| -1742 |#2|))) 23 T ELT) (((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -1742 |#2|)))) 26 T ELT) (((-660 $) |#1| (-660 |#2|)) 28 T ELT)) (-4351 ((|#2| $) 18 T ELT)) (-4375 (((-876) $) 53 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 42 T ELT))) +(((-1160 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3992 ($)) (-15 -3822 ((-114) $)) (-15 -3821 (|#1| $)) (-15 -4351 (|#2| $)) (-15 -3820 ((-114) $)) (-15 -3949 ($ |#1| |#2| (-114))) (-15 -3949 ($ |#1| |#2|)) (-15 -3949 ($ (-2 (|:| |val| |#1|) (|:| -1742 |#2|)))) (-15 -3949 ((-660 $) (-660 (-2 (|:| |val| |#1|) (|:| -1742 |#2|))))) (-15 -3949 ((-660 $) |#1| (-660 |#2|))) (-15 -3819 ($ $)) (-15 -3818 ($ $ |#1|)) (-15 -3817 ($ $ |#2|)) (-15 -3816 ($ $ (-114))) (-15 -3815 ($ $)) (-15 -3814 ((-114) $ $ (-1 (-114) |#1| |#1|) (-1 (-114) |#2| |#2|))) (-15 -3813 ((-114) $ $ (-1 (-114) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1160)) +((-3992 (*1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3822 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3821 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1160 *2 *3)) (-4 *3 (-13 (-1121) (-34))))) (-4351 (*1 *2 *1) (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1160 *3 *2)) (-4 *3 (-13 (-1121) (-34))))) (-3820 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3949 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3949 (*1 *1 *2 *3) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1742 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1160 *3 *4)))) (-3949 (*1 *2 *3) (-12 (-5 *3 (-660 (-2 (|:| |val| *4) (|:| -1742 *5)))) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-660 (-1160 *4 *5))) (-5 *1 (-1160 *4 *5)))) (-3949 (*1 *2 *3 *4) (-12 (-5 *4 (-660 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-660 (-1160 *3 *5))) (-5 *1 (-1160 *3 *5)) (-4 *3 (-13 (-1121) (-34))))) (-3819 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3818 (*1 *1 *1 *2) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3817 (*1 *1 *1 *2) (-12 (-5 *1 (-1160 *3 *2)) (-4 *3 (-13 (-1121) (-34))) (-4 *2 (-13 (-1121) (-34))))) (-3816 (*1 *1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3815 (*1 *1 *1) (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3814 (*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-114)) (-5 *1 (-1160 *5 *6)))) (-3813 (*1 *2 *1 *1 *3) (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-114)) (-5 *1 (-1160 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) +((-2966 (((-114) $ $) NIL (|has| (-1160 |#1| |#2|) (-102)) ELT)) (-3821 (((-1160 |#1| |#2|) $) 27 T ELT)) (-3830 (($ $) 91 T ELT)) (-3826 (((-114) (-1160 |#1| |#2|) $ (-1 (-114) |#2| |#2|)) 100 T ELT)) (-3823 (($ $ $ (-660 (-1160 |#1| |#2|))) 108 T ELT) (($ $ $ (-660 (-1160 |#1| |#2|)) (-1 (-114) |#2| |#2|)) 109 T ELT)) (-3425 (((-1160 |#1| |#2|) $ (-1160 |#1| |#2|)) 46 (|has| $ (-6 -4425)) ELT)) (-4217 (((-1160 |#1| |#2|) $ #1="value" (-1160 |#1| |#2|)) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 44 (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3828 (((-660 (-2 (|:| |val| |#1|) (|:| -1742 |#2|))) $) 95 T ELT)) (-3824 (($ (-1160 |#1| |#2|) $) 42 T ELT)) (-3825 (($ (-1160 |#1| |#2|) $) 34 T ELT)) (-3289 (((-660 (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3827 (((-114) (-1160 |#1| |#2|) $) 97 T ELT)) (-3427 (((-114) $ $) NIL (|has| (-1160 |#1| |#2|) (-1121)) ELT)) (-3006 (((-660 (-1160 |#1| |#2|)) $) 58 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-1160 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-1160 |#1| |#2|) (-1121))) ELT)) (-2159 (($ (-1 (-1160 |#1| |#2|) (-1160 |#1| |#2|)) $) 50 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-1160 |#1| |#2|) (-1160 |#1| |#2|)) $) 49 T ELT)) (-3430 (((-660 (-1160 |#1| |#2|)) $) 56 T ELT)) (-3946 (((-114) $) 45 T ELT)) (-3659 (((-1179) $) NIL (|has| (-1160 |#1| |#2|) (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| (-1160 |#1| |#2|) (-1121)) ELT)) (-3831 (((-3 $ "failed") $) 89 T ELT)) (-2157 (((-114) (-1 (-114) (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-1160 |#1| |#2|)))) NIL (-12 (|has| (-1160 |#1| |#2|) (-321 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1121))) ELT) (($ $ (-305 (-1160 |#1| |#2|))) NIL (-12 (|has| (-1160 |#1| |#2|) (-321 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1121))) ELT) (($ $ (-1160 |#1| |#2|) (-1160 |#1| |#2|)) NIL (-12 (|has| (-1160 |#1| |#2|) (-321 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1121))) ELT) (($ $ (-660 (-1160 |#1| |#2|)) (-660 (-1160 |#1| |#2|))) NIL (-12 (|has| (-1160 |#1| |#2|) (-321 (-1160 |#1| |#2|))) (|has| (-1160 |#1| |#2|) (-1121))) ELT)) (-1328 (((-114) $ $) 53 T ELT)) (-3822 (((-114) $) 24 T ELT)) (-3992 (($) 26 T ELT)) (-4229 (((-1160 |#1| |#2|) $ #1#) NIL T ELT)) (-3429 (((-558) $ $) NIL T ELT)) (-4062 (((-114) $) 47 T ELT)) (-2156 (((-790) (-1 (-114) (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-1160 |#1| |#2|) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-1160 |#1| |#2|) (-1121))) ELT)) (-3819 (($ $) 52 T ELT)) (-3949 (($ (-1160 |#1| |#2|)) 10 T ELT) (($ |#1| |#2| (-660 $)) 13 T ELT) (($ |#1| |#2| (-660 (-1160 |#1| |#2|))) 15 T ELT) (($ |#1| |#2| |#1| (-660 |#2|)) 18 T ELT)) (-3829 (((-660 |#2|) $) 96 T ELT)) (-4375 (((-876) $) 87 (|has| (-1160 |#1| |#2|) (-629 (-876))) ELT)) (-3941 (((-660 $) $) 31 T ELT)) (-3428 (((-114) $ $) NIL (|has| (-1160 |#1| |#2|) (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| (-1160 |#1| |#2|) (-102)) ELT)) (-2158 (((-114) (-1 (-114) (-1160 |#1| |#2|)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 70 (|has| (-1160 |#1| |#2|) (-102)) ELT)) (-4386 (((-790) $) 64 (|has| $ (-6 -4424)) ELT))) +(((-1161 |#1| |#2|) (-13 (-1030 (-1160 |#1| |#2|)) (-10 -8 (-6 -4425) (-6 -4424) (-15 -3831 ((-3 $ "failed") $)) (-15 -3830 ($ $)) (-15 -3949 ($ (-1160 |#1| |#2|))) (-15 -3949 ($ |#1| |#2| (-660 $))) (-15 -3949 ($ |#1| |#2| (-660 (-1160 |#1| |#2|)))) (-15 -3949 ($ |#1| |#2| |#1| (-660 |#2|))) (-15 -3829 ((-660 |#2|) $)) (-15 -3828 ((-660 (-2 (|:| |val| |#1|) (|:| -1742 |#2|))) $)) (-15 -3827 ((-114) (-1160 |#1| |#2|) $)) (-15 -3826 ((-114) (-1160 |#1| |#2|) $ (-1 (-114) |#2| |#2|))) (-15 -3825 ($ (-1160 |#1| |#2|) $)) (-15 -3824 ($ (-1160 |#1| |#2|) $)) (-15 -3823 ($ $ $ (-660 (-1160 |#1| |#2|)))) (-15 -3823 ($ $ $ (-660 (-1160 |#1| |#2|)) (-1 (-114) |#2| |#2|))))) (-13 (-1121) (-34)) (-13 (-1121) (-34))) (T -1161)) +((-3831 (*1 *1 *1) (|partial| -12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3830 (*1 *1 *1) (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3949 (*1 *1 *2) (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3949 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-660 (-1161 *2 *3))) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) (-3949 (*1 *1 *2 *3 *4) (-12 (-5 *4 (-660 (-1160 *2 *3))) (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)))) (-3949 (*1 *1 *2 *3 *2 *4) (-12 (-5 *4 (-660 *3)) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))))) (-3829 (*1 *2 *1) (-12 (-5 *2 (-660 *4)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3828 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))))) (-3827 (*1 *2 *3 *1) (-12 (-5 *3 (-1160 *4 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-114)) (-5 *1 (-1161 *4 *5)))) (-3826 (*1 *2 *3 *1 *4) (-12 (-5 *3 (-1160 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-114)) (-5 *1 (-1161 *5 *6)))) (-3825 (*1 *1 *2 *1) (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3824 (*1 *1 *2 *1) (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3823 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-660 (-1160 *3 *4))) (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) (-3823 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1160 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) (-5 *1 (-1161 *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3833 (($ $) NIL T ELT)) (-3749 ((|#2| $) NIL T ELT)) (-3522 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3832 (($ (-708 |#2|)) 56 T ELT)) (-3524 (((-114) $) NIL T ELT)) (-3752 (($ |#2|) 14 T ELT)) (-4153 (($) NIL T CONST)) (-3511 (($ $) 69 (|has| |#2| (-319)) ELT)) (-3513 (((-246 |#1| |#2|) $ (-558)) 42 T ELT)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 |#2| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) ((|#2| $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) 83 T ELT)) (-3510 (((-790) $) 71 (|has| |#2| (-569)) ELT)) (-3514 ((|#2| $ (-558) (-558)) NIL T ELT)) (-3289 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-3509 (((-790) $) 73 (|has| |#2| (-569)) ELT)) (-3508 (((-660 (-246 |#1| |#2|)) $) 77 (|has| |#2| (-569)) ELT)) (-3516 (((-790) $) NIL T ELT)) (-4043 (($ |#2|) 25 T ELT)) (-3515 (((-790) $) NIL T ELT)) (-3746 ((|#2| $) 67 (|has| |#2| (-6 (-4426 #2="*"))) ELT)) (-3520 (((-558) $) NIL T ELT)) (-3518 (((-558) $) NIL T ELT)) (-3006 (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3519 (((-558) $) NIL T ELT)) (-3517 (((-558) $) NIL T ELT)) (-3525 (($ (-660 (-660 |#2|))) 37 T ELT)) (-2159 (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4021 (((-660 (-660 |#2|)) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4017 (((-3 $ #1#) $) 80 (|has| |#2| (-376)) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT)) (-2157 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ (-558) (-558) |#2|) NIL T ELT) ((|#2| $ (-558) (-558)) NIL T ELT)) (-4187 (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-3748 ((|#2| $) NIL T ELT)) (-3751 (($ (-660 |#2|)) 50 T ELT)) (-3523 (((-114) $) NIL T ELT)) (-3750 (((-246 |#1| |#2|) $) NIL T ELT)) (-3747 ((|#2| $) 65 (|has| |#2| (-6 (-4426 #2#))) ELT)) (-2156 (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) 90 (|has| |#2| (-630 (-547))) ELT)) (-3512 (((-246 |#1| |#2|) $ (-558)) 44 T ELT)) (-4375 (((-876) $) 47 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (($ |#2|) NIL T ELT) (((-708 |#2|) $) 52 T ELT)) (-3527 (((-790)) 23 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3521 (((-114) $) NIL T ELT)) (-3058 (($) 16 T CONST)) (-3064 (($) 21 T CONST)) (-3069 (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $) NIL (|has| |#2| (-239)) ELT) (($ $ (-790)) NIL (|has| |#2| (-239)) ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 63 T ELT) (($ $ (-558)) 82 (|has| |#2| (-376)) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#2|) NIL T ELT) (($ |#2| $) NIL T ELT) (((-246 |#1| |#2|) $ (-246 |#1| |#2|)) 59 T ELT) (((-246 |#1| |#2|) (-246 |#1| |#2|) $) 61 T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1162 |#1| |#2|) (-13 (-1143 |#1| |#2| (-246 |#1| |#2|) (-246 |#1| |#2|)) (-629 (-708 |#2|)) (-10 -8 (-15 -4043 ($ |#2|)) (-15 -3833 ($ $)) (-15 -3832 ($ (-708 |#2|))) (IF (|has| |#2| (-6 (-4426 #1="*"))) (-6 -4413) |%noBranch|) (IF (|has| |#2| (-6 (-4426 #1#))) (IF (|has| |#2| (-6 -4421)) (-6 -4421) |%noBranch|) |%noBranch|) (IF (|has| |#2| (-630 (-547))) (-6 (-630 (-547))) |%noBranch|))) (-790) (-1069)) (T -1162)) +((-4043 (*1 *1 *2) (-12 (-5 *1 (-1162 *3 *2)) (-14 *3 (-790)) (-4 *2 (-1069)))) (-3833 (*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-14 *2 (-790)) (-4 *3 (-1069)))) (-3832 (*1 *1 *2) (-12 (-5 *2 (-708 *4)) (-4 *4 (-1069)) (-5 *1 (-1162 *3 *4)) (-14 *3 (-790))))) +((-3846 (($ $) 19 T ELT)) (-3836 (($ $ (-146)) 10 T ELT) (($ $ (-143)) 14 T ELT)) (-3844 (((-114) $ $) 24 T ELT)) (-3848 (($ $) 17 T ELT)) (-4229 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT) (($ $ $) 31 T ELT)) (-4375 (($ (-146)) 29 T ELT) (((-876) $) NIL T ELT))) +(((-1163 |#1|) (-10 -7 (-15 -4375 ((-876) |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -3836 (|#1| |#1| (-143))) (-15 -3836 (|#1| |#1| (-146))) (-15 -4375 (|#1| (-146))) (-15 -3844 ((-114) |#1| |#1|)) (-15 -3846 (|#1| |#1|)) (-15 -3848 (|#1| |#1|)) (-15 -4229 (|#1| |#1| (-1254 (-558)))) (-15 -4229 ((-146) |#1| (-558))) (-15 -4229 ((-146) |#1| (-558) (-146)))) (-1164)) (T -1163)) +NIL +((-2966 (((-114) $ $) 19 (|has| (-146) (-102)) ELT)) (-3845 (($ $) 129 T ELT)) (-3846 (($ $) 130 T ELT)) (-3836 (($ $ (-146)) 117 T ELT) (($ $ (-143)) 116 T ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-3843 (((-114) $ $) 127 T ELT)) (-3842 (((-114) $ $ (-558)) 126 T ELT)) (-3837 (((-660 $) $ (-146)) 119 T ELT) (((-660 $) $ (-143)) 118 T ELT)) (-1934 (((-114) (-1 (-114) (-146) (-146)) $) 107 T ELT) (((-114) $) 101 (|has| (-146) (-860)) ELT)) (-1932 (($ (-1 (-114) (-146) (-146)) $) 98 (|has| $ (-6 -4425)) ELT) (($ $) 97 (-12 (|has| (-146) (-860)) (|has| $ (-6 -4425))) ELT)) (-3309 (($ (-1 (-114) (-146) (-146)) $) 108 T ELT) (($ $) 102 (|has| (-146) (-860)) ELT)) (-4217 (((-146) $ (-558) (-146)) 56 (|has| $ (-6 -4425)) ELT) (((-146) $ (-1254 (-558)) (-146)) 64 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) (-146)) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-3834 (($ $ (-146)) 113 T ELT) (($ $ (-143)) 112 T ELT)) (-2509 (($ $) 99 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 109 T ELT)) (-3839 (($ $ (-1254 (-558)) $) 123 T ELT)) (-1466 (($ $) 84 (-12 (|has| (-146) (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ (-146) $) 83 (-12 (|has| (-146) (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) (-146)) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) 82 (-12 (|has| (-146) (-1121)) (|has| $ (-6 -4424))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) 79 (|has| $ (-6 -4424)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 (((-146) $ (-558) (-146)) 57 (|has| $ (-6 -4425)) ELT)) (-3514 (((-146) $ (-558)) 55 T ELT)) (-3844 (((-114) $ $) 128 T ELT)) (-3838 (((-558) (-1 (-114) (-146)) $) 106 T ELT) (((-558) (-146) $) 105 (|has| (-146) (-1121)) ELT) (((-558) (-146) $ (-558)) 104 (|has| (-146) (-1121)) ELT) (((-558) $ $ (-558)) 122 T ELT) (((-558) (-143) $ (-558)) 121 T ELT)) (-3289 (((-660 (-146)) $) 30 (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) (-146)) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 91 (|has| (-146) (-860)) ELT)) (-3937 (($ (-1 (-114) (-146) (-146)) $ $) 110 T ELT) (($ $ $) 103 (|has| (-146) (-860)) ELT)) (-3006 (((-660 (-146)) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-146) $) 27 (-12 (|has| (-146) (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 92 (|has| (-146) (-860)) ELT)) (-3840 (((-114) $ $ (-146)) 124 T ELT)) (-3841 (((-790) $ $ (-146)) 125 T ELT)) (-2159 (($ (-1 (-146) (-146)) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-146) (-146)) $) 35 T ELT) (($ (-1 (-146) (-146) (-146)) $ $) 69 T ELT)) (-3847 (($ $) 131 T ELT)) (-3848 (($ $) 132 T ELT)) (-3835 (($ $ (-146)) 115 T ELT) (($ $ (-143)) 114 T ELT)) (-3659 (((-1179) $) 22 (|has| (-146) (-1121)) ELT)) (-2516 (($ (-146) $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| (-146) (-1121)) ELT)) (-4230 (((-146) $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 (-146) "failed") (-1 (-114) (-146)) $) 77 T ELT)) (-2413 (($ $ (-146)) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) (-146)) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-146)))) 26 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-305 (-146))) 25 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-146) (-146)) 24 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-660 (-146)) (-660 (-146))) 23 (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) (-146) $) 49 (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-2419 (((-660 (-146)) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 (((-146) $ (-558) (-146)) 54 T ELT) (((-146) $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT) (($ $ $) 111 T ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-2156 (((-790) (-1 (-114) (-146)) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) (-146) $) 28 (-12 (|has| (-146) (-1121)) (|has| $ (-6 -4424))) ELT)) (-1933 (($ $ $ (-558)) 100 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| (-146) (-630 (-547))) ELT)) (-3949 (($ (-660 (-146))) 76 T ELT)) (-4231 (($ $ (-146)) 73 T ELT) (($ (-146) $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (($ (-146)) 120 T ELT) (((-876) $) 17 (|has| (-146) (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| (-146) (-102)) ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) 33 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 93 (|has| (-146) (-860)) ELT)) (-2965 (((-114) $ $) 95 (|has| (-146) (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| (-146) (-102)) ELT)) (-3084 (((-114) $ $) 94 (|has| (-146) (-860)) ELT)) (-3085 (((-114) $ $) 96 (|has| (-146) (-860)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1164) (-142)) (T -1164)) +((-3848 (*1 *1 *1) (-4 *1 (-1164))) (-3847 (*1 *1 *1) (-4 *1 (-1164))) (-3846 (*1 *1 *1) (-4 *1 (-1164))) (-3845 (*1 *1 *1) (-4 *1 (-1164))) (-3844 (*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-114)))) (-3843 (*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-114)))) (-3842 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-558)) (-5 *2 (-114)))) (-3841 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-146)) (-5 *2 (-790)))) (-3840 (*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-146)) (-5 *2 (-114)))) (-3839 (*1 *1 *1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-1254 (-558))))) (-3838 (*1 *2 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-558)))) (-3838 (*1 *2 *3 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-558)) (-5 *3 (-143)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1164)))) (-3837 (*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-660 *1)) (-4 *1 (-1164)))) (-3837 (*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-660 *1)) (-4 *1 (-1164)))) (-3836 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-146)))) (-3836 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-143)))) (-3835 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-146)))) (-3835 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-143)))) (-3834 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-146)))) (-3834 (*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-143)))) (-4229 (*1 *1 *1 *1) (-4 *1 (-1164)))) +(-13 (-19 (-146)) (-10 -8 (-15 -3848 ($ $)) (-15 -3847 ($ $)) (-15 -3846 ($ $)) (-15 -3845 ($ $)) (-15 -3844 ((-114) $ $)) (-15 -3843 ((-114) $ $)) (-15 -3842 ((-114) $ $ (-558))) (-15 -3841 ((-790) $ $ (-146))) (-15 -3840 ((-114) $ $ (-146))) (-15 -3839 ($ $ (-1254 (-558)) $)) (-15 -3838 ((-558) $ $ (-558))) (-15 -3838 ((-558) (-143) $ (-558))) (-15 -4375 ($ (-146))) (-15 -3837 ((-660 $) $ (-146))) (-15 -3837 ((-660 $) $ (-143))) (-15 -3836 ($ $ (-146))) (-15 -3836 ($ $ (-143))) (-15 -3835 ($ $ (-146))) (-15 -3835 ($ $ (-143))) (-15 -3834 ($ $ (-146))) (-15 -3834 ($ $ (-143))) (-15 -4229 ($ $ $)))) +(((-34) . T) ((-102) -3956 (|has| (-146) (-1121)) (|has| (-146) (-860)) (|has| (-146) (-102))) ((-629 (-876)) -3956 (|has| (-146) (-1121)) (|has| (-146) (-860)) (|has| (-146) (-629 (-876)))) ((-153 (-146)) . T) ((-630 (-547)) |has| (-146) (-630 (-547))) ((-298 (-558) (-146)) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) (-146)) . T) ((-321 (-146)) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ((-385 (-146)) . T) ((-501 (-146)) . T) ((-615 (-558) (-146)) . T) ((-526 (-146) (-146)) -12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ((-670 (-146)) . T) ((-19 (-146)) . T) ((-860) |has| (-146) (-860)) ((-863) |has| (-146) (-860)) ((-1121) -3956 (|has| (-146) (-1121)) (|has| (-146) (-860))) ((-1237) . T)) +((-3855 (((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) (-790)) 112 T ELT)) (-3852 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|) 62 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790)) 61 T ELT)) (-3856 (((-1293) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-790)) 97 T ELT)) (-3850 (((-790) (-660 |#4|) (-660 |#5|)) 30 T ELT)) (-3853 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|) 64 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790)) 63 T ELT) (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790) (-114)) 65 T ELT)) (-3854 (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114) (-114) (-114) (-114)) 84 T ELT) (((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114)) 85 T ELT)) (-4401 (((-1179) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) 90 T ELT)) (-3851 (((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|) 60 T ELT)) (-3849 (((-790) (-660 |#4|) (-660 |#5|)) 21 T ELT))) +(((-1165 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -3849 ((-790) (-660 |#4|) (-660 |#5|))) (-15 -3850 ((-790) (-660 |#4|) (-660 |#5|))) (-15 -3851 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|)) (-15 -3852 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790))) (-15 -3852 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|)) (-15 -3853 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790) (-114))) (-15 -3853 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5| (-790))) (-15 -3853 ((-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) |#4| |#5|)) (-15 -3854 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114))) (-15 -3854 ((-660 |#5|) (-660 |#4|) (-660 |#5|) (-114) (-114) (-114) (-114) (-114))) (-15 -3855 ((-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-660 |#4|) (-660 |#5|) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-2 (|:| |done| (-660 |#5|)) (|:| |todo| (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))))) (-790))) (-15 -4401 ((-1179) (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|)))) (-15 -3856 ((-1293) (-660 (-2 (|:| |val| (-660 |#4|)) (|:| -1742 |#5|))) (-790)))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|) (-1129 |#1| |#2| |#3| |#4|)) (T -1165)) +((-3856 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *4 (-790)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-1293)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1129 *4 *5 *6 *7)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1179)) (-5 *1 (-1165 *4 *5 *6 *7 *8)))) (-3855 (*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 (-2 (|:| |done| (-660 *11)) (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -1742 *11)))))) (-5 *6 (-790)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -1742 *11)))) (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1085 *7 *8 *9)) (-4 *11 (-1129 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-814)) (-4 *9 (-860)) (-5 *1 (-1165 *7 *8 *9 *10 *11)))) (-3854 (*1 *2 *3 *2 *4 *4 *4 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-3854 (*1 *2 *3 *2 *4 *4) (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-3853 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3)))) (-3853 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) (-3853 (*1 *2 *3 *4 *5 *6) (-12 (-5 *5 (-790)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-814)) (-4 *9 (-860)) (-4 *3 (-1085 *7 *8 *9)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1165 *7 *8 *9 *3 *4)) (-4 *4 (-1129 *7 *8 *9 *3)))) (-3852 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3)))) (-3852 (*1 *2 *3 *4 *5) (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) (-3851 (*1 *2 *3 *4) (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |done| (-660 *4)) (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3)))) (-3850 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-790)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) (-3849 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-790)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-4111 (((-660 $) (-660 |#4|)) 121 T ELT) (((-660 $) (-660 |#4|) (-114)) 122 T ELT) (((-660 $) (-660 |#4|) (-114) (-114)) 120 T ELT) (((-660 $) (-660 |#4|) (-114) (-114) (-114) (-114)) 123 T ELT)) (-3483 (((-660 |#3|) $) NIL T ELT)) (-3308 (((-114) $) NIL T ELT)) (-3299 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-4204 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| $) 94 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4139 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) 73 T ELT)) (-4153 (($) NIL T CONST)) (-3304 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ #1#) (-660 |#4|)) NIL T ELT)) (-3573 (($ (-660 |#4|)) NIL T ELT)) (-4228 (((-3 $ #1#) $) 45 T ELT)) (-4114 ((|#4| |#4| $) 76 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-3825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 88 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4112 ((|#4| |#4| $) NIL T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) NIL T ELT)) (-3614 (((-114) |#4| $) NIL T ELT)) (-3612 (((-114) |#4| $) NIL T ELT)) (-3615 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3857 (((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-114) (-114)) 136 T ELT)) (-3289 (((-660 |#4|) $) 18 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 19 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 27 (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 25 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 23 T ELT)) (-3314 (((-660 |#3|) $) NIL T ELT)) (-3313 (((-114) |#3| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3608 (((-3 |#4| (-660 $)) |#4| |#4| $) NIL T ELT)) (-3607 (((-660 (-2 (|:| |val| |#4|) (|:| -1742 $))) |#4| |#4| $) 114 T ELT)) (-4227 (((-3 |#4| #1#) $) 42 T ELT)) (-3609 (((-660 $) |#4| $) 99 T ELT)) (-3611 (((-3 (-114) (-660 $)) |#4| $) NIL T ELT)) (-3610 (((-660 (-2 (|:| |val| (-114)) (|:| -1742 $))) |#4| $) 109 T ELT) (((-114) |#4| $) 65 T ELT)) (-3655 (((-660 $) |#4| $) 118 T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 119 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT)) (-3858 (((-660 $) (-660 |#4|) (-114) (-114) (-114)) 131 T ELT)) (-3859 (($ |#4| $) 85 T ELT) (($ (-660 |#4|) $) 86 T ELT) (((-660 $) |#4| $ (-114) (-114) (-114) (-114) (-114)) 84 T ELT)) (-4126 (((-660 |#4|) $) NIL T ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) NIL T ELT)) (-4128 (((-114) $ $) NIL T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-3 |#4| #1#) $) 40 T ELT)) (-1467 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4108 (((-3 $ #1#) $ |#4|) 59 T ELT)) (-4198 (($ $ |#4|) NIL T ELT) (((-660 $) |#4| $) 101 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) 96 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 17 T ELT)) (-3992 (($) 14 T ELT)) (-4377 (((-790) $) NIL T ELT)) (-2156 (((-790) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (((-790) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 13 T ELT)) (-4401 (((-547) $) NIL (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 22 T ELT)) (-3310 (($ $ |#3|) 52 T ELT)) (-3312 (($ $ |#3|) 54 T ELT)) (-4113 (($ $) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-4375 (((-876) $) 35 T ELT) (((-660 |#4|) $) 46 T ELT)) (-4107 (((-790) $) NIL (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) NIL T ELT)) (-3606 (((-660 $) |#4| $) 66 T ELT) (((-660 $) |#4| (-660 $)) NIL T ELT) (((-660 $) (-660 |#4|) $) NIL T ELT) (((-660 $) (-660 |#4|) (-660 $)) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) NIL T ELT)) (-3613 (((-114) |#4| $) NIL T ELT)) (-4362 (((-114) |#3| $) 72 T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1166 |#1| |#2| |#3| |#4|) (-13 (-1129 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -3859 ((-660 $) |#4| $ (-114) (-114) (-114) (-114) (-114))) (-15 -4111 ((-660 $) (-660 |#4|) (-114) (-114))) (-15 -4111 ((-660 $) (-660 |#4|) (-114) (-114) (-114) (-114))) (-15 -3858 ((-660 $) (-660 |#4|) (-114) (-114) (-114))) (-15 -3857 ((-2 (|:| |val| (-660 |#4|)) (|:| |towers| (-660 $))) (-660 |#4|) (-114) (-114))))) (-464) (-814) (-860) (-1085 |#1| |#2| |#3|)) (T -1166)) +((-3859 (*1 *2 *3 *1 *4 *4 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *3))) (-5 *1 (-1166 *5 *6 *7 *3)) (-4 *3 (-1085 *5 *6 *7)))) (-4111 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) (-4111 (*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) (-3858 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *8))) (-5 *1 (-1166 *5 *6 *7 *8)))) (-3857 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1166 *5 *6 *7 *8))))) (-5 *1 (-1166 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 31 T ELT)) (-2640 (((-114) $) 29 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 28 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-790)) 30 T ELT) (($ $ (-937)) 27 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ $ $) 26 T ELT))) +(((-1167) (-142)) (T -1167)) +NIL +(-13 (-23) (-745)) +(((-23) . T) ((-25) . T) ((-102) . T) ((-629 (-876)) . T) ((-745) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3743 ((|#1| $) 37 T ELT)) (-3860 (($ (-660 |#1|)) 45 T ELT)) (-4153 (($) NIL T CONST)) (-3745 ((|#1| |#1| $) 40 T ELT)) (-3744 ((|#1| $) 35 T ELT)) (-3289 (((-660 |#1|) $) 18 (|has| $ (-6 -4424)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 25 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 22 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-1388 ((|#1| $) 38 T ELT)) (-4036 (($ |#1| $) 41 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-1389 ((|#1| $) 36 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 32 T ELT)) (-3992 (($) 43 T ELT)) (-3742 (((-790) $) 30 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 27 T ELT)) (-4375 (((-876) $) 14 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-1390 (($ (-660 |#1|)) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 17 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 31 (|has| $ (-6 -4424)) ELT))) +(((-1168 |#1|) (-13 (-1141 |#1|) (-10 -8 (-15 -3860 ($ (-660 |#1|))))) (-1237)) (T -1168)) +((-3860 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-1168 *3))))) +((-4217 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) NIL T ELT) (($ $ #3="rest" $) NIL T ELT) ((|#2| $ #4="last" |#2|) NIL T ELT) ((|#2| $ (-1254 (-558)) |#2|) 53 T ELT) ((|#2| $ (-558) |#2|) 50 T ELT)) (-3862 (((-114) $) 12 T ELT)) (-2159 (($ (-1 |#2| |#2|) $) 48 T ELT)) (-4230 ((|#2| $) NIL T ELT) (($ $ (-790)) 17 T ELT)) (-2413 (($ $ |#2|) 49 T ELT)) (-3863 (((-114) $) 11 T ELT)) (-4229 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#2| $ #4#) NIL T ELT) (($ $ (-1254 (-558))) 36 T ELT) ((|#2| $ (-558)) 25 T ELT) ((|#2| $ (-558) |#2|) NIL T ELT)) (-4220 (($ $ $) 56 T ELT) (($ $ |#2|) NIL T ELT)) (-4231 (($ $ $) 38 T ELT) (($ |#2| $) NIL T ELT) (($ (-660 $)) 45 T ELT) (($ $ |#2|) NIL T ELT))) +(((-1169 |#1| |#2|) (-10 -7 (-15 -3862 ((-114) |#1|)) (-15 -3863 ((-114) |#1|)) (-15 -4217 (|#2| |#1| (-558) |#2|)) (-15 -4229 (|#2| |#1| (-558) |#2|)) (-15 -4229 (|#2| |#1| (-558))) (-15 -2413 (|#1| |#1| |#2|)) (-15 -4229 (|#1| |#1| (-1254 (-558)))) (-15 -4231 (|#1| |#1| |#2|)) (-15 -4231 (|#1| (-660 |#1|))) (-15 -4217 (|#2| |#1| (-1254 (-558)) |#2|)) (-15 -4217 (|#2| |#1| #1="last" |#2|)) (-15 -4217 (|#1| |#1| #2="rest" |#1|)) (-15 -4217 (|#2| |#1| #3="first" |#2|)) (-15 -4220 (|#1| |#1| |#2|)) (-15 -4220 (|#1| |#1| |#1|)) (-15 -4229 (|#2| |#1| #1#)) (-15 -4229 (|#1| |#1| #2#)) (-15 -4230 (|#1| |#1| (-790))) (-15 -4229 (|#2| |#1| #3#)) (-15 -4230 (|#2| |#1|)) (-15 -4231 (|#1| |#2| |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -4217 (|#2| |#1| #4="value" |#2|)) (-15 -4229 (|#2| |#1| #4#)) (-15 -2159 (|#1| (-1 |#2| |#2|) |#1|))) (-1170 |#2|) (-1237)) (T -1169)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-4224 ((|#1| $) 71 T ELT)) (-4226 (($ $) 73 T ELT)) (-2412 (((-1293) $ (-558) (-558)) 107 (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) 58 (|has| $ (-6 -4425)) ELT)) (-3861 (((-114) $ (-790)) 90 T ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 62 (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) 60 (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) 63 (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) 61 (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) 59 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 127 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) 96 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 112 (|has| $ (-6 -4424)) ELT)) (-4225 ((|#1| $) 72 T ELT)) (-4153 (($) 7 T CONST)) (-4228 (($ $) 79 T ELT) (($ $ (-790)) 77 T ELT)) (-1466 (($ $) 109 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ (-1 (-114) |#1|) $) 113 (|has| $ (-6 -4424)) ELT) (($ |#1| $) 110 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) 115 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 114 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 111 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1718 ((|#1| $ (-558) |#1|) 95 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 97 T ELT)) (-3862 (((-114) $) 93 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-4043 (($ (-790) |#1|) 119 T ELT)) (-4148 (((-114) $ (-790)) 91 T ELT)) (-2414 (((-558) $) 105 (|has| (-558) (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 104 (|has| (-558) (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 122 T ELT)) (-4145 (((-114) $ (-790)) 92 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) 76 T ELT) (($ $ (-790)) 74 T ELT)) (-2516 (($ $ $ (-558)) 126 T ELT) (($ |#1| $ (-558)) 125 T ELT)) (-2417 (((-660 (-558)) $) 102 T ELT)) (-2418 (((-114) (-558) $) 101 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 82 T ELT) (($ $ (-790)) 80 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 116 T ELT)) (-2413 (($ $ |#1|) 106 (|has| $ (-6 -4425)) ELT)) (-3863 (((-114) $) 94 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 103 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 100 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT) ((|#1| $ #2#) 81 T ELT) (($ $ #3#) 78 T ELT) ((|#1| $ #4#) 75 T ELT) (($ $ (-1254 (-558))) 118 T ELT) ((|#1| $ (-558)) 99 T ELT) ((|#1| $ (-558) |#1|) 98 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-2517 (($ $ (-1254 (-558))) 124 T ELT) (($ $ (-558)) 123 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-4221 (($ $) 68 T ELT)) (-4219 (($ $) 65 (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) 69 T ELT)) (-4223 (($ $) 70 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 108 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 117 T ELT)) (-4220 (($ $ $) 67 (|has| $ (-6 -4425)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4425)) ELT)) (-4231 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT) (($ (-660 $)) 121 T ELT) (($ $ |#1|) 120 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1170 |#1|) (-142) (-1237)) (T -1170)) +((-3863 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-3862 (*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) (-4145 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-1170 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) (-4148 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-1170 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) (-3861 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-1170 *4)) (-4 *4 (-1237)) (-5 *2 (-114))))) +(-13 (-1276 |t#1|) (-670 |t#1|) (-10 -8 (-15 -3863 ((-114) $)) (-15 -3862 ((-114) $)) (-15 -4145 ((-114) $ (-790))) (-15 -4148 ((-114) $ (-790))) (-15 -3861 ((-114) $ (-790))))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-1030 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1237) . T) ((-1276 |#1|) . T)) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-2883 (((-660 |#1|) $) NIL T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #1#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1171 |#1| |#2| |#3|) (-1214 |#1| |#2|) (-1121) (-1121) |#2|) (T -1171)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3864 (((-710 $) $) 17 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3865 (($) 18 T CONST)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3453 (((-114) $ $) 8 T ELT))) +(((-1172) (-142)) (T -1172)) +((-3865 (*1 *1) (-4 *1 (-1172))) (-3864 (*1 *2 *1) (-12 (-5 *2 (-710 *1)) (-4 *1 (-1172))))) +(-13 (-1121) (-10 -8 (-15 -3865 ($) -4381) (-15 -3864 ((-710 $) $)))) +(((-102) . T) ((-629 (-876)) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3867 (((-710 (-1155)) $) 27 T ELT)) (-3866 (((-1155) $) 15 T ELT)) (-3868 (((-1155) $) 17 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3869 (((-518) $) 13 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 37 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1173) (-13 (-1103) (-10 -8 (-15 -3869 ((-518) $)) (-15 -3868 ((-1155) $)) (-15 -3867 ((-710 (-1155)) $)) (-15 -3866 ((-1155) $))))) (T -1173)) +((-3869 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1173)))) (-3868 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173)))) (-3867 (*1 *2 *1) (-12 (-5 *2 (-710 (-1155))) (-5 *1 (-1173)))) (-3866 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173))))) +((-3872 (((-1175 |#1|) (-1175 |#1|)) 17 T ELT)) (-3870 (((-1175 |#1|) (-1175 |#1|)) 13 T ELT)) (-3873 (((-1175 |#1|) (-1175 |#1|) (-558) (-558)) 20 T ELT)) (-3871 (((-1175 |#1|) (-1175 |#1|)) 15 T ELT))) +(((-1174 |#1|) (-10 -7 (-15 -3870 ((-1175 |#1|) (-1175 |#1|))) (-15 -3871 ((-1175 |#1|) (-1175 |#1|))) (-15 -3872 ((-1175 |#1|) (-1175 |#1|))) (-15 -3873 ((-1175 |#1|) (-1175 |#1|) (-558) (-558)))) (-13 (-569) (-149))) (T -1174)) +((-3873 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1174 *4)))) (-3872 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1174 *3)))) (-3871 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1174 *3)))) (-3870 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1174 *3))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) NIL T ELT)) (-4224 ((|#1| $) NIL T ELT)) (-4226 (($ $) 62 T ELT)) (-2412 (((-1293) $ (-558) (-558)) 95 (|has| $ (-6 -4425)) ELT)) (-4214 (($ $ (-558)) 124 (|has| $ (-6 -4425)) ELT)) (-3861 (((-114) $ (-790)) NIL T ELT)) (-3878 (((-876) $) 51 (|has| |#1| (-1121)) ELT)) (-3877 (((-114)) 50 (|has| |#1| (-1121)) ELT)) (-3425 ((|#1| $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 111 (|has| $ (-6 -4425)) ELT) (($ $ (-558) $) 138 T ELT)) (-4215 ((|#1| $ |#1|) 121 (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) 116 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ #2="first" |#1|) 118 (|has| $ (-6 -4425)) ELT) (($ $ #3="rest" $) 120 (|has| $ (-6 -4425)) ELT) ((|#1| $ #4="last" |#1|) 123 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 108 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-558) |#1|) 74 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 77 T ELT)) (-4225 ((|#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-2535 (($ $) 11 T ELT)) (-4228 (($ $) 35 T ELT) (($ $ (-790)) 107 T ELT)) (-3883 (((-114) (-660 |#1|) $) 130 (|has| |#1| (-1121)) ELT)) (-3884 (($ (-660 |#1|)) 126 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) 76 T ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3862 (((-114) $) NIL T ELT)) (-3289 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3879 (((-1293) (-558) $) 136 (|has| |#1| (-1121)) ELT)) (-2534 (((-790) $) 133 T ELT)) (-3431 (((-660 $) $) NIL T ELT)) (-3427 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-4148 (((-114) $ (-790)) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 91 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 82 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 86 T ELT)) (-4145 (((-114) $ (-790)) NIL T ELT)) (-3430 (((-660 |#1|) $) NIL T ELT)) (-3946 (((-114) $) NIL T ELT)) (-2537 (($ $) 109 T ELT)) (-2538 (((-114) $) 10 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) NIL T ELT) (($ $ (-790)) NIL T ELT)) (-2516 (($ $ $ (-558)) NIL T ELT) (($ |#1| $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) 92 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-3876 (($ (-1 |#1|)) 140 T ELT) (($ (-1 |#1| |#1|) |#1|) 141 T ELT)) (-2536 ((|#1| $) 7 T ELT)) (-4230 ((|#1| $) 34 T ELT) (($ $ (-790)) 60 T ELT)) (-3882 (((-2 (|:| |cycle?| (-114)) (|:| -2993 (-790)) (|:| |period| (-790))) (-790) $) 29 T ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-3875 (($ (-1 (-114) |#1|) $) 142 T ELT)) (-3874 (($ (-1 (-114) |#1|) $) 143 T ELT)) (-2413 (($ $ |#1|) 87 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-558)) 40 T ELT)) (-3863 (((-114) $) 90 T ELT)) (-2539 (((-114) $) 9 T ELT)) (-2540 (((-114) $) 132 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 25 T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) 14 T ELT)) (-3992 (($) 55 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT) ((|#1| $ #2#) NIL T ELT) (($ $ #3#) NIL T ELT) ((|#1| $ #4#) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT) ((|#1| $ (-558)) 72 T ELT) ((|#1| $ (-558) |#1|) NIL T ELT)) (-3429 (((-558) $ $) 59 T ELT)) (-2517 (($ $ (-1254 (-558))) NIL T ELT) (($ $ (-558)) NIL T ELT)) (-3881 (($ (-1 $)) 58 T ELT)) (-4062 (((-114) $) 88 T ELT)) (-4221 (($ $) 89 T ELT)) (-4219 (($ $) 112 (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) NIL T ELT)) (-4223 (($ $) NIL T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 54 T ELT)) (-4401 (((-547) $) NIL (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 70 T ELT)) (-3880 (($ |#1| $) 110 T ELT)) (-4220 (($ $ $) 114 (|has| $ (-6 -4425)) ELT) (($ $ |#1|) 115 (|has| $ (-6 -4425)) ELT)) (-4231 (($ $ $) 97 T ELT) (($ |#1| $) 56 T ELT) (($ (-660 $)) 102 T ELT) (($ $ |#1|) 96 T ELT)) (-3291 (($ $) 61 T ELT)) (-4375 (($ (-660 |#1|)) 125 T ELT) (((-876) $) 52 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) NIL T ELT)) (-3428 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 128 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1175 |#1|) (-13 (-693 |#1|) (-632 (-660 |#1|)) (-10 -8 (-6 -4425) (-15 -3884 ($ (-660 |#1|))) (IF (|has| |#1| (-1121)) (-15 -3883 ((-114) (-660 |#1|) $)) |%noBranch|) (-15 -3882 ((-2 (|:| |cycle?| (-114)) (|:| -2993 (-790)) (|:| |period| (-790))) (-790) $)) (-15 -3881 ($ (-1 $))) (-15 -3880 ($ |#1| $)) (IF (|has| |#1| (-1121)) (PROGN (-15 -3879 ((-1293) (-558) $)) (-15 -3878 ((-876) $)) (-15 -3877 ((-114)))) |%noBranch|) (-15 -4216 ($ $ (-558) $)) (-15 -3876 ($ (-1 |#1|))) (-15 -3876 ($ (-1 |#1| |#1|) |#1|)) (-15 -3875 ($ (-1 (-114) |#1|) $)) (-15 -3874 ($ (-1 (-114) |#1|) $)))) (-1237)) (T -1175)) +((-3884 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3)))) (-3883 (*1 *2 *3 *1) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1121)) (-4 *4 (-1237)) (-5 *2 (-114)) (-5 *1 (-1175 *4)))) (-3882 (*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2993 (-790)) (|:| |period| (-790)))) (-5 *1 (-1175 *4)) (-4 *4 (-1237)) (-5 *3 (-790)))) (-3881 (*1 *1 *2) (-12 (-5 *2 (-1 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1237)))) (-3880 (*1 *1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1237)))) (-3879 (*1 *2 *3 *1) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1175 *4)) (-4 *4 (-1121)) (-4 *4 (-1237)))) (-3878 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1175 *3)) (-4 *3 (-1121)) (-4 *3 (-1237)))) (-3877 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1175 *3)) (-4 *3 (-1121)) (-4 *3 (-1237)))) (-4216 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1175 *3)) (-4 *3 (-1237)))) (-3876 (*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3)))) (-3876 (*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3)))) (-3875 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3)))) (-3874 (*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3))))) +((-4231 (((-1175 |#1|) (-1175 (-1175 |#1|))) 15 T ELT))) +(((-1176 |#1|) (-10 -7 (-15 -4231 ((-1175 |#1|) (-1175 (-1175 |#1|))))) (-1237)) (T -1176)) +((-4231 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1176 *4)) (-4 *4 (-1237))))) +((-4270 (((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)) 25 T ELT)) (-4271 ((|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)) 26 T ELT)) (-4387 (((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|)) 16 T ELT))) +(((-1177 |#1| |#2|) (-10 -7 (-15 -4387 ((-1175 |#2|) (-1 |#2| |#1|) (-1175 |#1|))) (-15 -4270 ((-1175 |#2|) |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|))) (-15 -4271 (|#2| |#2| (-1 |#2| |#1| |#2|) (-1175 |#1|)))) (-1237) (-1237)) (T -1177)) +((-4271 (*1 *2 *2 *3 *4) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1175 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1177 *5 *2)))) (-4270 (*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1175 *6)) (-4 *6 (-1237)) (-4 *3 (-1237)) (-5 *2 (-1175 *3)) (-5 *1 (-1177 *6 *3)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1175 *6)) (-5 *1 (-1177 *5 *6))))) +((-4387 (((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)) 21 T ELT))) +(((-1178 |#1| |#2| |#3|) (-10 -7 (-15 -4387 ((-1175 |#3|) (-1 |#3| |#1| |#2|) (-1175 |#1|) (-1175 |#2|)))) (-1237) (-1237) (-1237)) (T -1178)) +((-4387 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-1175 *7)) (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1175 *8)) (-5 *1 (-1178 *6 *7 *8))))) +((-2966 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-3845 (($ $) 42 T ELT)) (-3846 (($ $) NIL T ELT)) (-3836 (($ $ (-146)) NIL T ELT) (($ $ (-143)) NIL T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3843 (((-114) $ $) 68 T ELT)) (-3842 (((-114) $ $ (-558)) 63 T ELT)) (-3962 (($ (-558)) 7 T ELT) (($ (-229)) 9 T ELT) (($ (-518)) 11 T ELT)) (-3837 (((-660 $) $ (-146)) 77 T ELT) (((-660 $) $ (-143)) 78 T ELT)) (-1934 (((-114) (-1 (-114) (-146) (-146)) $) NIL T ELT) (((-114) $) NIL (|has| (-146) (-860)) ELT)) (-1932 (($ (-1 (-114) (-146) (-146)) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-146) (-860))) ELT)) (-3309 (($ (-1 (-114) (-146) (-146)) $) NIL T ELT) (($ $) NIL (|has| (-146) (-860)) ELT)) (-4217 (((-146) $ (-558) (-146)) 60 (|has| $ (-6 -4425)) ELT) (((-146) $ (-1254 (-558)) (-146)) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-3834 (($ $ (-146)) 81 T ELT) (($ $ (-143)) 82 T ELT)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-3839 (($ $ (-1254 (-558)) $) 58 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-3825 (($ (-146) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT) (($ (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-146) (-1 (-146) (-146) (-146)) $ (-146) (-146)) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT) (((-146) (-1 (-146) (-146) (-146)) $ (-146)) NIL (|has| $ (-6 -4424)) ELT) (((-146) (-1 (-146) (-146) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 (((-146) $ (-558) (-146)) NIL (|has| $ (-6 -4425)) ELT)) (-3514 (((-146) $ (-558)) NIL T ELT)) (-3844 (((-114) $ $) 92 T ELT)) (-3838 (((-558) (-1 (-114) (-146)) $) NIL T ELT) (((-558) (-146) $) NIL (|has| (-146) (-1121)) ELT) (((-558) (-146) $ (-558)) 65 (|has| (-146) (-1121)) ELT) (((-558) $ $ (-558)) 64 T ELT) (((-558) (-143) $ (-558)) 67 T ELT)) (-3289 (((-660 (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4043 (($ (-790) (-146)) 14 T ELT)) (-2414 (((-558) $) 36 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| (-146) (-860)) ELT)) (-3937 (($ (-1 (-114) (-146) (-146)) $ $) NIL T ELT) (($ $ $) NIL (|has| (-146) (-860)) ELT)) (-3006 (((-660 (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-2415 (((-558) $) 51 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| (-146) (-860)) ELT)) (-3840 (((-114) $ $ (-146)) 93 T ELT)) (-3841 (((-790) $ $ (-146)) 89 T ELT)) (-2159 (($ (-1 (-146) (-146)) $) 41 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-146) (-146)) $) NIL T ELT) (($ (-1 (-146) (-146) (-146)) $ $) NIL T ELT)) (-3847 (($ $) 45 T ELT)) (-3848 (($ $) NIL T ELT)) (-3835 (($ $ (-146)) 79 T ELT) (($ $ (-143)) 80 T ELT)) (-3659 (((-1179) $) 47 (|has| (-146) (-1121)) ELT)) (-2516 (($ (-146) $ (-558)) NIL T ELT) (($ $ $ (-558)) 31 T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) 88 (|has| (-146) (-1121)) ELT)) (-4230 (((-146) $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 (-146) "failed") (-1 (-114) (-146)) $) NIL T ELT)) (-2413 (($ $ (-146)) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-146)))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-305 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-146) (-146)) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT) (($ $ (-660 (-146)) (-660 (-146))) NIL (-12 (|has| (-146) (-321 (-146))) (|has| (-146) (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) (-146) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-2419 (((-660 (-146)) $) NIL T ELT)) (-3822 (((-114) $) 19 T ELT)) (-3992 (($) 16 T ELT)) (-4229 (((-146) $ (-558) (-146)) NIL T ELT) (((-146) $ (-558)) 70 T ELT) (($ $ (-1254 (-558))) 29 T ELT) (($ $ $) NIL T ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-146) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-146) (-1121))) ELT)) (-1933 (($ $ $ (-558)) 84 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 24 T ELT)) (-4401 (((-547) $) NIL (|has| (-146) (-630 (-547))) ELT)) (-3949 (($ (-660 (-146))) NIL T ELT)) (-4231 (($ $ (-146)) NIL T ELT) (($ (-146) $) NIL T ELT) (($ $ $) 23 T ELT) (($ (-660 $)) 85 T ELT)) (-4375 (($ (-146)) NIL T ELT) (((-876) $) 35 (|has| (-146) (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| (-146) (-102)) ELT)) (-2158 (((-114) (-1 (-114) (-146)) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| (-146) (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| (-146) (-860)) ELT)) (-3453 (((-114) $ $) 21 (|has| (-146) (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| (-146) (-860)) ELT)) (-3085 (((-114) $ $) 22 (|has| (-146) (-860)) ELT)) (-4386 (((-790) $) 20 (|has| $ (-6 -4424)) ELT))) +(((-1179) (-13 (-1164) (-10 -8 (-15 -3962 ($ (-558))) (-15 -3962 ($ (-229))) (-15 -3962 ($ -518))))) (T -1179)) +((-3962 (*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1179)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1179)))) (-3962 (*1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-1179))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT)) (-2412 (((-1293) $ (-1179) (-1179)) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ (-1179) |#1|) NIL T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#1| #1="failed") (-1179) $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#1| #1#) (-1179) $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-1179) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-1179)) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 (((-1179) $) NIL (|has| (-1179) (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-1179) $) NIL (|has| (-1179) (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL T ELT) (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121)) (|has| |#1| (-1121))) ELT)) (-2883 (((-660 (-1179)) $) NIL T ELT)) (-2446 (((-114) (-1179) $) NIL T ELT)) (-1388 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL T ELT)) (-2417 (((-660 (-1179)) $) NIL T ELT)) (-2418 (((-114) (-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121)) (|has| |#1| (-1121))) ELT)) (-4230 ((|#1| $) NIL (|has| (-1179) (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) #1#) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL (-12 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-321 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-1179)) NIL T ELT) ((|#1| $ (-1179) |#1|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-1121))) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-629 (-876))) (|has| |#1| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 (-1179)) (|:| -2285 |#1|)) (-102)) (|has| |#1| (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1180 |#1|) (-13 (-1214 (-1179) |#1|) (-10 -7 (-6 -4424))) (-1121)) (T -1180)) +NIL +((-4234 (((-1175 |#1|) (-1175 |#1|)) 83 T ELT)) (-3886 (((-3 (-1175 |#1|) #1="failed") (-1175 |#1|)) 39 T ELT)) (-3897 (((-1175 |#1|) (-419 (-558)) (-1175 |#1|)) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3900 (((-1175 |#1|) |#1| (-1175 |#1|)) 137 (|has| |#1| (-376)) ELT)) (-4237 (((-1175 |#1|) (-1175 |#1|)) 97 T ELT)) (-3888 (((-1175 (-558)) (-558)) 63 T ELT)) (-3896 (((-1175 |#1|) (-1175 (-1175 |#1|))) 117 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4233 (((-1175 |#1|) (-558) (-558) (-1175 |#1|)) 103 T ELT)) (-4367 (((-1175 |#1|) |#1| (-558)) 51 T ELT)) (-3890 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 66 T ELT)) (-3898 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 135 (|has| |#1| (-376)) ELT)) (-3895 (((-1175 |#1|) |#1| (-1 (-1175 |#1|))) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3899 (((-1175 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1175 |#1|))) 136 (|has| |#1| (-376)) ELT)) (-4238 (((-1175 |#1|) (-1175 |#1|)) 96 T ELT)) (-4239 (((-1175 |#1|) (-1175 |#1|)) 82 T ELT)) (-4232 (((-1175 |#1|) (-558) (-558) (-1175 |#1|)) 104 T ELT)) (-4241 (((-1175 |#1|) |#1| (-1175 |#1|)) 113 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3887 (((-1175 (-558)) (-558)) 62 T ELT)) (-3889 (((-1175 |#1|) |#1|) 65 T ELT)) (-4235 (((-1175 |#1|) (-1175 |#1|) (-558) (-558)) 100 T ELT)) (-3892 (((-1175 |#1|) (-1 |#1| (-558)) (-1175 |#1|)) 72 T ELT)) (-3885 (((-3 (-1175 |#1|) #1#) (-1175 |#1|) (-1175 |#1|)) 37 T ELT)) (-4236 (((-1175 |#1|) (-1175 |#1|)) 98 T ELT)) (-4197 (((-1175 |#1|) (-1175 |#1|) |#1|) 77 T ELT)) (-3891 (((-1175 |#1|) (-1175 |#1|)) 68 T ELT)) (-3893 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 78 T ELT)) (-4375 (((-1175 |#1|) |#1|) 73 T ELT)) (-3894 (((-1175 |#1|) (-1175 (-1175 |#1|))) 88 T ELT)) (-4378 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 38 T ELT)) (-4266 (((-1175 |#1|) (-1175 |#1|)) 21 T ELT) (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 23 T ELT)) (-4268 (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 17 T ELT)) (* (((-1175 |#1|) (-1175 |#1|) |#1|) 29 T ELT) (((-1175 |#1|) |#1| (-1175 |#1|)) 26 T ELT) (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 27 T ELT))) +(((-1181 |#1|) (-10 -7 (-15 -4268 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4266 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4266 ((-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 * ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 * ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -3885 ((-3 (-1175 |#1|) #1="failed") (-1175 |#1|) (-1175 |#1|))) (-15 -4378 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3886 ((-3 (-1175 |#1|) #1#) (-1175 |#1|))) (-15 -4367 ((-1175 |#1|) |#1| (-558))) (-15 -3887 ((-1175 (-558)) (-558))) (-15 -3888 ((-1175 (-558)) (-558))) (-15 -3889 ((-1175 |#1|) |#1|)) (-15 -3890 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3891 ((-1175 |#1|) (-1175 |#1|))) (-15 -3892 ((-1175 |#1|) (-1 |#1| (-558)) (-1175 |#1|))) (-15 -4375 ((-1175 |#1|) |#1|)) (-15 -4197 ((-1175 |#1|) (-1175 |#1|) |#1|)) (-15 -3893 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4239 ((-1175 |#1|) (-1175 |#1|))) (-15 -4234 ((-1175 |#1|) (-1175 |#1|))) (-15 -3894 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -4238 ((-1175 |#1|) (-1175 |#1|))) (-15 -4237 ((-1175 |#1|) (-1175 |#1|))) (-15 -4236 ((-1175 |#1|) (-1175 |#1|))) (-15 -4235 ((-1175 |#1|) (-1175 |#1|) (-558) (-558))) (-15 -4233 ((-1175 |#1|) (-558) (-558) (-1175 |#1|))) (-15 -4232 ((-1175 |#1|) (-558) (-558) (-1175 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ((-1175 |#1|) |#1| (-1175 |#1|))) (-15 -3895 ((-1175 |#1|) |#1| (-1 (-1175 |#1|)))) (-15 -3896 ((-1175 |#1|) (-1175 (-1175 |#1|)))) (-15 -3897 ((-1175 |#1|) (-419 (-558)) (-1175 |#1|)))) |%noBranch|) (IF (|has| |#1| (-376)) (PROGN (-15 -3898 ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3899 ((-1175 |#1|) (-1 |#1| (-558)) |#1| (-1 (-1175 |#1|)))) (-15 -3900 ((-1175 |#1|) |#1| (-1175 |#1|)))) |%noBranch|)) (-1069)) (T -1181)) +((-3900 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3899 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1175 *4))) (-4 *4 (-376)) (-4 *4 (-1069)) (-5 *2 (-1175 *4)) (-5 *1 (-1181 *4)))) (-3898 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3897 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1069)) (-5 *3 (-419 (-558))) (-5 *1 (-1181 *4)))) (-3896 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1069)))) (-3895 (*1 *2 *3 *4) (-12 (-5 *4 (-1 (-1175 *3))) (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)))) (-4241 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4232 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) (-4233 (*1 *2 *3 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) (-4235 (*1 *2 *2 *3 *3) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) (-4236 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4237 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4238 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3894 (*1 *2 *3) (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1181 *4)) (-4 *4 (-1069)))) (-4234 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4239 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3893 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4197 (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4375 (*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1069)))) (-3892 (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) (-3891 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3890 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3889 (*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1069)))) (-3888 (*1 *2 *3) (-12 (-5 *2 (-1175 (-558))) (-5 *1 (-1181 *4)) (-4 *4 (-1069)) (-5 *3 (-558)))) (-3887 (*1 *2 *3) (-12 (-5 *2 (-1175 (-558))) (-5 *1 (-1181 *4)) (-4 *4 (-1069)) (-5 *3 (-558)))) (-4367 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1069)))) (-3886 (*1 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4378 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-3885 (*1 *2 *2 *2) (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (* (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4266 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4266 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) (-4268 (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) +((-3911 (((-1175 |#1|) (-1175 |#1|)) 102 T ELT)) (-4068 (((-1175 |#1|) (-1175 |#1|)) 61 T ELT)) (-3902 (((-2 (|:| -3909 (-1175 |#1|)) (|:| -3910 (-1175 |#1|))) (-1175 |#1|)) 98 T ELT)) (-3909 (((-1175 |#1|) (-1175 |#1|)) 99 T ELT)) (-3901 (((-2 (|:| -4067 (-1175 |#1|)) (|:| -4063 (-1175 |#1|))) (-1175 |#1|)) 54 T ELT)) (-4067 (((-1175 |#1|) (-1175 |#1|)) 55 T ELT)) (-3913 (((-1175 |#1|) (-1175 |#1|)) 104 T ELT)) (-4066 (((-1175 |#1|) (-1175 |#1|)) 68 T ELT)) (-4371 (((-1175 |#1|) (-1175 |#1|)) 40 T ELT)) (-4372 (((-1175 |#1|) (-1175 |#1|)) 37 T ELT)) (-3914 (((-1175 |#1|) (-1175 |#1|)) 105 T ELT)) (-4065 (((-1175 |#1|) (-1175 |#1|)) 69 T ELT)) (-3912 (((-1175 |#1|) (-1175 |#1|)) 103 T ELT)) (-4064 (((-1175 |#1|) (-1175 |#1|)) 64 T ELT)) (-3910 (((-1175 |#1|) (-1175 |#1|)) 100 T ELT)) (-4063 (((-1175 |#1|) (-1175 |#1|)) 56 T ELT)) (-3917 (((-1175 |#1|) (-1175 |#1|)) 113 T ELT)) (-3905 (((-1175 |#1|) (-1175 |#1|)) 88 T ELT)) (-3915 (((-1175 |#1|) (-1175 |#1|)) 107 T ELT)) (-3903 (((-1175 |#1|) (-1175 |#1|)) 84 T ELT)) (-3919 (((-1175 |#1|) (-1175 |#1|)) 117 T ELT)) (-3907 (((-1175 |#1|) (-1175 |#1|)) 92 T ELT)) (-3920 (((-1175 |#1|) (-1175 |#1|)) 119 T ELT)) (-3908 (((-1175 |#1|) (-1175 |#1|)) 94 T ELT)) (-3918 (((-1175 |#1|) (-1175 |#1|)) 115 T ELT)) (-3906 (((-1175 |#1|) (-1175 |#1|)) 90 T ELT)) (-3916 (((-1175 |#1|) (-1175 |#1|)) 109 T ELT)) (-3904 (((-1175 |#1|) (-1175 |#1|)) 86 T ELT)) (** (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 41 T ELT))) +(((-1182 |#1|) (-10 -7 (-15 -4372 ((-1175 |#1|) (-1175 |#1|))) (-15 -4371 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -3901 ((-2 (|:| -4067 (-1175 |#1|)) (|:| -4063 (-1175 |#1|))) (-1175 |#1|))) (-15 -4067 ((-1175 |#1|) (-1175 |#1|))) (-15 -4063 ((-1175 |#1|) (-1175 |#1|))) (-15 -4068 ((-1175 |#1|) (-1175 |#1|))) (-15 -4064 ((-1175 |#1|) (-1175 |#1|))) (-15 -4066 ((-1175 |#1|) (-1175 |#1|))) (-15 -4065 ((-1175 |#1|) (-1175 |#1|))) (-15 -3903 ((-1175 |#1|) (-1175 |#1|))) (-15 -3904 ((-1175 |#1|) (-1175 |#1|))) (-15 -3905 ((-1175 |#1|) (-1175 |#1|))) (-15 -3906 ((-1175 |#1|) (-1175 |#1|))) (-15 -3907 ((-1175 |#1|) (-1175 |#1|))) (-15 -3908 ((-1175 |#1|) (-1175 |#1|))) (-15 -3902 ((-2 (|:| -3909 (-1175 |#1|)) (|:| -3910 (-1175 |#1|))) (-1175 |#1|))) (-15 -3909 ((-1175 |#1|) (-1175 |#1|))) (-15 -3910 ((-1175 |#1|) (-1175 |#1|))) (-15 -3911 ((-1175 |#1|) (-1175 |#1|))) (-15 -3912 ((-1175 |#1|) (-1175 |#1|))) (-15 -3913 ((-1175 |#1|) (-1175 |#1|))) (-15 -3914 ((-1175 |#1|) (-1175 |#1|))) (-15 -3915 ((-1175 |#1|) (-1175 |#1|))) (-15 -3916 ((-1175 |#1|) (-1175 |#1|))) (-15 -3917 ((-1175 |#1|) (-1175 |#1|))) (-15 -3918 ((-1175 |#1|) (-1175 |#1|))) (-15 -3919 ((-1175 |#1|) (-1175 |#1|))) (-15 -3920 ((-1175 |#1|) (-1175 |#1|)))) (-38 (-419 (-558)))) (T -1182)) +((-3920 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3902 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-2 (|:| -3909 (-1175 *4)) (|:| -3910 (-1175 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1175 *4)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-3901 (*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-2 (|:| -4067 (-1175 *4)) (|:| -4063 (-1175 *4)))) (-5 *1 (-1182 *4)) (-5 *3 (-1175 *4)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3))))) +((-3911 (((-1175 |#1|) (-1175 |#1|)) 60 T ELT)) (-4068 (((-1175 |#1|) (-1175 |#1|)) 42 T ELT)) (-3909 (((-1175 |#1|) (-1175 |#1|)) 56 T ELT)) (-4067 (((-1175 |#1|) (-1175 |#1|)) 38 T ELT)) (-3913 (((-1175 |#1|) (-1175 |#1|)) 63 T ELT)) (-4066 (((-1175 |#1|) (-1175 |#1|)) 45 T ELT)) (-4371 (((-1175 |#1|) (-1175 |#1|)) 34 T ELT)) (-4372 (((-1175 |#1|) (-1175 |#1|)) 29 T ELT)) (-3914 (((-1175 |#1|) (-1175 |#1|)) 64 T ELT)) (-4065 (((-1175 |#1|) (-1175 |#1|)) 46 T ELT)) (-3912 (((-1175 |#1|) (-1175 |#1|)) 61 T ELT)) (-4064 (((-1175 |#1|) (-1175 |#1|)) 43 T ELT)) (-3910 (((-1175 |#1|) (-1175 |#1|)) 58 T ELT)) (-4063 (((-1175 |#1|) (-1175 |#1|)) 40 T ELT)) (-3917 (((-1175 |#1|) (-1175 |#1|)) 68 T ELT)) (-3905 (((-1175 |#1|) (-1175 |#1|)) 50 T ELT)) (-3915 (((-1175 |#1|) (-1175 |#1|)) 66 T ELT)) (-3903 (((-1175 |#1|) (-1175 |#1|)) 48 T ELT)) (-3919 (((-1175 |#1|) (-1175 |#1|)) 71 T ELT)) (-3907 (((-1175 |#1|) (-1175 |#1|)) 53 T ELT)) (-3920 (((-1175 |#1|) (-1175 |#1|)) 72 T ELT)) (-3908 (((-1175 |#1|) (-1175 |#1|)) 54 T ELT)) (-3918 (((-1175 |#1|) (-1175 |#1|)) 70 T ELT)) (-3906 (((-1175 |#1|) (-1175 |#1|)) 52 T ELT)) (-3916 (((-1175 |#1|) (-1175 |#1|)) 69 T ELT)) (-3904 (((-1175 |#1|) (-1175 |#1|)) 51 T ELT)) (** (((-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) 36 T ELT))) +(((-1183 |#1|) (-10 -7 (-15 -4372 ((-1175 |#1|) (-1175 |#1|))) (-15 -4371 ((-1175 |#1|) (-1175 |#1|))) (-15 ** ((-1175 |#1|) (-1175 |#1|) (-1175 |#1|))) (-15 -4067 ((-1175 |#1|) (-1175 |#1|))) (-15 -4063 ((-1175 |#1|) (-1175 |#1|))) (-15 -4068 ((-1175 |#1|) (-1175 |#1|))) (-15 -4064 ((-1175 |#1|) (-1175 |#1|))) (-15 -4066 ((-1175 |#1|) (-1175 |#1|))) (-15 -4065 ((-1175 |#1|) (-1175 |#1|))) (-15 -3903 ((-1175 |#1|) (-1175 |#1|))) (-15 -3904 ((-1175 |#1|) (-1175 |#1|))) (-15 -3905 ((-1175 |#1|) (-1175 |#1|))) (-15 -3906 ((-1175 |#1|) (-1175 |#1|))) (-15 -3907 ((-1175 |#1|) (-1175 |#1|))) (-15 -3908 ((-1175 |#1|) (-1175 |#1|))) (-15 -3909 ((-1175 |#1|) (-1175 |#1|))) (-15 -3910 ((-1175 |#1|) (-1175 |#1|))) (-15 -3911 ((-1175 |#1|) (-1175 |#1|))) (-15 -3912 ((-1175 |#1|) (-1175 |#1|))) (-15 -3913 ((-1175 |#1|) (-1175 |#1|))) (-15 -3914 ((-1175 |#1|) (-1175 |#1|))) (-15 -3915 ((-1175 |#1|) (-1175 |#1|))) (-15 -3916 ((-1175 |#1|) (-1175 |#1|))) (-15 -3917 ((-1175 |#1|) (-1175 |#1|))) (-15 -3918 ((-1175 |#1|) (-1175 |#1|))) (-15 -3919 ((-1175 |#1|) (-1175 |#1|))) (-15 -3920 ((-1175 |#1|) (-1175 |#1|)))) (-38 (-419 (-558)))) (T -1183)) +((-3920 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3919 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3918 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3917 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3916 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3915 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3914 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3913 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3912 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3911 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3910 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3909 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3908 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3907 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3906 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3905 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3904 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-3903 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4065 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4066 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4064 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4068 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4063 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4067 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (** (*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4371 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) (-4372 (*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) +((-3921 (((-976 |#2|) |#2| |#2|) 51 T ELT)) (-3922 ((|#2| |#2| |#1|) 19 (|has| |#1| (-319)) ELT))) +(((-1184 |#1| |#2|) (-10 -7 (-15 -3921 ((-976 |#2|) |#2| |#2|)) (IF (|has| |#1| (-319)) (-15 -3922 (|#2| |#2| |#1|)) |%noBranch|)) (-569) (-1263 |#1|)) (T -1184)) +((-3922 (*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-1184 *3 *2)) (-4 *2 (-1263 *3)))) (-3921 (*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-976 *3)) (-5 *1 (-1184 *4 *3)) (-4 *3 (-1263 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3930 (($ $ (-660 (-790))) 79 T ELT)) (-4317 (($) 33 T ELT)) (-3939 (($ $) 51 T ELT)) (-4180 (((-660 $) $) 60 T ELT)) (-3945 (((-114) $) 19 T ELT)) (-3923 (((-660 (-961 |#2|)) $) 86 T ELT)) (-3924 (($ $) 80 T ELT)) (-3940 (((-790) $) 47 T ELT)) (-4043 (($) 32 T ELT)) (-3933 (($ $ (-660 (-790)) (-961 |#2|)) 72 T ELT) (($ $ (-660 (-790)) (-790)) 73 T ELT) (($ $ (-790) (-961 |#2|)) 75 T ELT)) (-3937 (($ $ $) 57 T ELT) (($ (-660 $)) 59 T ELT)) (-3925 (((-790) $) 87 T ELT)) (-3946 (((-114) $) 15 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3944 (((-114) $) 22 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3926 (((-174) $) 85 T ELT)) (-3929 (((-961 |#2|) $) 81 T ELT)) (-3928 (((-790) $) 82 T ELT)) (-3927 (((-114) $) 84 T ELT)) (-3931 (($ $ (-660 (-790)) (-174)) 78 T ELT)) (-3938 (($ $) 52 T ELT)) (-4375 (((-876) $) 99 T ELT)) (-3932 (($ $ (-660 (-790)) (-114)) 77 T ELT)) (-3941 (((-660 $) $) 11 T ELT)) (-3942 (($ $ (-790)) 46 T ELT)) (-3943 (($ $) 43 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3934 (($ $ $ (-961 |#2|) (-790)) 68 T ELT)) (-3935 (($ $ (-961 |#2|)) 67 T ELT)) (-3936 (($ $ (-660 (-790)) (-961 |#2|)) 66 T ELT) (($ $ (-660 (-790)) (-790)) 70 T ELT) (((-790) $ (-961 |#2|)) 71 T ELT)) (-3453 (((-114) $ $) 92 T ELT))) +(((-1185 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3946 ((-114) $)) (-15 -3945 ((-114) $)) (-15 -3944 ((-114) $)) (-15 -4043 ($)) (-15 -4317 ($)) (-15 -3943 ($ $)) (-15 -3942 ($ $ (-790))) (-15 -3941 ((-660 $) $)) (-15 -3940 ((-790) $)) (-15 -3939 ($ $)) (-15 -3938 ($ $)) (-15 -3937 ($ $ $)) (-15 -3937 ($ (-660 $))) (-15 -4180 ((-660 $) $)) (-15 -3936 ($ $ (-660 (-790)) (-961 |#2|))) (-15 -3935 ($ $ (-961 |#2|))) (-15 -3934 ($ $ $ (-961 |#2|) (-790))) (-15 -3933 ($ $ (-660 (-790)) (-961 |#2|))) (-15 -3936 ($ $ (-660 (-790)) (-790))) (-15 -3933 ($ $ (-660 (-790)) (-790))) (-15 -3936 ((-790) $ (-961 |#2|))) (-15 -3933 ($ $ (-790) (-961 |#2|))) (-15 -3932 ($ $ (-660 (-790)) (-114))) (-15 -3931 ($ $ (-660 (-790)) (-174))) (-15 -3930 ($ $ (-660 (-790)))) (-15 -3929 ((-961 |#2|) $)) (-15 -3928 ((-790) $)) (-15 -3927 ((-114) $)) (-15 -3926 ((-174) $)) (-15 -3925 ((-790) $)) (-15 -3924 ($ $)) (-15 -3923 ((-660 (-961 |#2|)) $)))) (-937) (-1069)) (T -1185)) +((-3946 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3945 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3944 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-4043 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-4317 (*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-3943 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-3942 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3941 (*1 *2 *1) (-12 (-5 *2 (-660 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3940 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3939 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-3938 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-3937 (*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-3937 (*1 *1 *2) (-12 (-5 *2 (-660 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-4180 (*1 *2 *1) (-12 (-5 *2 (-660 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3936 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-790))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)))) (-3935 (*1 *1 *1 *2) (-12 (-5 *2 (-961 *4)) (-4 *4 (-1069)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)))) (-3934 (*1 *1 *1 *1 *2 *3) (-12 (-5 *2 (-961 *5)) (-5 *3 (-790)) (-4 *5 (-1069)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)))) (-3933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-790))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)))) (-3936 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-790))) (-5 *3 (-790)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1069)))) (-3933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-790))) (-5 *3 (-790)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1069)))) (-3936 (*1 *2 *1 *3) (-12 (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *2 (-790)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)))) (-3933 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)))) (-3932 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-790))) (-5 *3 (-114)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1069)))) (-3931 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-790))) (-5 *3 (-174)) (-5 *1 (-1185 *4 *5)) (-14 *4 (-937)) (-4 *5 (-1069)))) (-3930 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-790))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3929 (*1 *2 *1) (-12 (-5 *2 (-961 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3928 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3927 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3926 (*1 *2 *1) (-12 (-5 *2 (-174)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3925 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069)))) (-3924 (*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) (-3923 (*1 *2 *1) (-12 (-5 *2 (-660 (-961 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3947 ((|#2| $) 11 T ELT)) (-3948 ((|#1| $) 10 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3949 (($ |#1| |#2|) 9 T ELT)) (-4375 (((-876) $) 16 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1186 |#1| |#2|) (-13 (-1121) (-10 -8 (-15 -3949 ($ |#1| |#2|)) (-15 -3948 (|#1| $)) (-15 -3947 (|#2| $)))) (-1121) (-1121)) (T -1186)) +((-3949 (*1 *1 *2 *3) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-3948 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121)))) (-3947 (*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3950 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 15 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1187) (-13 (-1103) (-10 -8 (-15 -3950 ((-1155) $))))) (T -1187)) +((-3950 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1187))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 11 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2272 (($ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2270 (((-114) $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-4200 (($ $ (-558)) NIL T ELT) (($ $ (-558) (-558)) 75 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL T ELT)) (-4160 (((-1195 |#1| |#2| |#3|) $) 42 T ELT)) (-4157 (((-3 (-1195 |#1| |#2| |#3|) #1="failed") $) 32 T ELT)) (-4158 (((-1195 |#1| |#2| |#3|) $) 33 T ELT)) (-3911 (($ $) 116 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 92 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) 112 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 88 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4052 (((-558) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL T ELT)) (-3913 (($ $) 120 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 96 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-1195 |#1| |#2| |#3|) #1#) $) 34 T ELT) (((-3 (-1197) #1#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-1197))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT)) (-3573 (((-1195 |#1| |#2| |#3|) $) 140 T ELT) (((-1197) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-1197))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-558) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT)) (-4159 (($ $) 37 T ELT) (($ (-558) $) 38 T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-1195 |#1| |#2| |#3|)) (-708 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1195 |#1| |#2| |#3|)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT) (((-708 (-558)) (-708 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT)) (-3886 (((-3 $ #1#) $) 54 T ELT)) (-4156 (((-419 (-964 |#1|)) $ (-558)) 74 (|has| |#1| (-569)) ELT) (((-419 (-964 |#1|)) $ (-558) (-558)) 76 (|has| |#1| (-569)) ELT)) (-3394 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3603 (((-114) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-3292 (((-114) $) 28 T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-900 (-391))) (|has| |#1| (-376))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-900 (-558))) (|has| |#1| (-376))) ELT)) (-4201 (((-558) $) NIL T ELT) (((-558) $ (-558)) 26 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3398 (((-1195 |#1| |#2| |#3|) $) 44 (|has| |#1| (-376)) ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3864 (((-710 $) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-376))) ELT)) (-3604 (((-114) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-4206 (($ $ (-937)) NIL T ELT)) (-4244 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-558)) 19 T ELT) (($ $ (-1102) (-558)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-558))) NIL T ELT)) (-2929 (($ $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-3257 (($ $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 81 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2493 (((-708 (-1195 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-1195 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1195 |#1| |#2| |#3|)))) (-1287 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT) (((-708 (-558)) (-1287 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4208 (($ (-558) (-1195 |#1| |#2| |#3|)) 36 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4241 (($ $) 79 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 80 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (($) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-376))) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3529 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3531 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-558)) 158 T ELT)) (-3885 (((-3 $ #1#) $ $) 55 (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) 82 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1197) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1197)) (-660 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-526 (-1197) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-305 (-1195 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-321 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-321 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-321 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1195 |#1| |#2| |#3|)) (-660 (-1195 |#1| |#2| |#3|))) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-321 (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-558)) NIL T ELT) (($ $ $) 61 (|has| (-558) (-1132)) ELT) (($ $ (-1195 |#1| |#2| |#3|)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-298 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-790)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1284 |#2|)) 57 T ELT) (($ $) 56 (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3395 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3397 (((-1195 |#1| |#2| |#3|) $) 46 (|has| |#1| (-376)) ELT)) (-4377 (((-558) $) 43 T ELT)) (-3914 (($ $) 122 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 98 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 118 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 94 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 114 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 90 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4401 (((-547) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-630 (-547))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-376))) ELT) (((-904 (-391)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-630 (-904 (-391)))) (|has| |#1| (-376))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-630 (-904 (-558)))) (|has| |#1| (-376))) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) 162 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1195 |#1| |#2| |#3|)) 30 T ELT) (($ (-1284 |#2|)) 25 T ELT) (($ (-1197)) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-1197))) (|has| |#1| (-376))) ELT) (($ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT) (($ (-419 (-558))) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4106 ((|#1| $ (-558)) 77 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 12 T ELT)) (-3532 (((-1195 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) 128 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 104 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3915 (($ $) 124 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 100 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 132 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 108 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 110 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 130 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 106 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 126 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 102 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3802 (($ $) NIL (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-3058 (($) 21 T CONST)) (-3064 (($) 16 T CONST)) (-3069 (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) (-790)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1284 |#2|)) NIL T ELT) (($ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-2964 (((-114) $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-2965 (((-114) $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-3085 (((-114) $ $) NIL (-3956 (-12 (|has| (-1195 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1195 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 49 (|has| |#1| (-376)) ELT) (($ (-1195 |#1| |#2| |#3|) (-1195 |#1| |#2| |#3|)) 50 (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 23 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 60 T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) 83 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 137 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 35 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1195 |#1| |#2| |#3|)) 48 (|has| |#1| (-376)) ELT) (($ (-1195 |#1| |#2| |#3|) $) 47 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1188 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1195 |#1| |#2| |#3|)) (-910 $ (-1284 |#2|)) (-10 -8 (-15 -4375 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -1188)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-3951 ((|#2| |#2| (-1112 |#2|)) 26 T ELT) ((|#2| |#2| (-1197)) 28 T ELT))) +(((-1189 |#1| |#2|) (-10 -7 (-15 -3951 (|#2| |#2| (-1197))) (-15 -3951 (|#2| |#2| (-1112 |#2|)))) (-13 (-569) (-1058 (-558)) (-657 (-558))) (-13 (-433 |#1|) (-162) (-27) (-1223))) (T -1189)) +((-3951 (*1 *2 *2 *3) (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1223))) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1189 *4 *2)))) (-3951 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1223)))))) +((-3951 (((-3 (-419 (-964 |#1|)) (-326 |#1|)) (-419 (-964 |#1|)) (-1112 (-419 (-964 |#1|)))) 31 T ELT) (((-419 (-964 |#1|)) (-964 |#1|) (-1112 (-964 |#1|))) 44 T ELT) (((-3 (-419 (-964 |#1|)) (-326 |#1|)) (-419 (-964 |#1|)) (-1197)) 33 T ELT) (((-419 (-964 |#1|)) (-964 |#1|) (-1197)) 36 T ELT))) +(((-1190 |#1|) (-10 -7 (-15 -3951 ((-419 (-964 |#1|)) (-964 |#1|) (-1197))) (-15 -3951 ((-3 (-419 (-964 |#1|)) (-326 |#1|)) (-419 (-964 |#1|)) (-1197))) (-15 -3951 ((-419 (-964 |#1|)) (-964 |#1|) (-1112 (-964 |#1|)))) (-15 -3951 ((-3 (-419 (-964 |#1|)) (-326 |#1|)) (-419 (-964 |#1|)) (-1112 (-419 (-964 |#1|)))))) (-13 (-569) (-1058 (-558)))) (T -1190)) +((-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-419 (-964 *5)))) (-5 *3 (-419 (-964 *5))) (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-3 *3 (-326 *5))) (-5 *1 (-1190 *5)))) (-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-1112 (-964 *5))) (-5 *3 (-964 *5)) (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-419 *3)) (-5 *1 (-1190 *5)))) (-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-3 (-419 (-964 *5)) (-326 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-419 (-964 *5))))) (-3951 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-419 (-964 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-964 *5))))) +((-2966 (((-114) $ $) 172 T ELT)) (-3605 (((-114) $) 43 T ELT)) (-4196 (((-1287 |#1|) $ (-790)) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4194 (($ (-1191 |#1|)) NIL T ELT)) (-3485 (((-1191 $) $ (-1102)) 82 T ELT) (((-1191 |#1|) $) 71 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) 165 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1102))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4184 (($ $ $) 159 (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 96 (|has| |#1| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) 116 (|has| |#1| (-928)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-4190 (($ $ (-790)) 61 T ELT)) (-4189 (($ $ (-790)) 63 T ELT)) (-4180 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#1| (-464)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#1| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1102) #1#) $) NIL T ELT)) (-3573 ((|#1| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-1102) $) NIL T ELT)) (-4185 (($ $ $ (-1102)) NIL (|has| |#1| (-175)) ELT) ((|#1| $ $) 161 (|has| |#1| (-175)) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) 80 T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#1|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ $) 132 T ELT)) (-4182 (($ $ $) NIL (|has| |#1| (-569)) ELT)) (-4181 (((-2 (|:| -4383 |#1|) (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-3922 (($ $) 166 (|has| |#1| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-790) $) 69 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1102) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1102) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-3952 (((-876) $ (-876)) 149 T ELT)) (-4201 (((-790) $ $) NIL (|has| |#1| (-569)) ELT)) (-2640 (((-114) $) 48 T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| |#1| (-1172)) ELT)) (-3486 (($ (-1191 |#1|) (-1102)) 73 T ELT) (($ (-1191 $) (-1102)) 90 T ELT)) (-4206 (($ $ (-790)) 51 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) 88 T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1102)) NIL T ELT) (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 154 T ELT)) (-3220 (((-790) $) NIL T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-1804 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4195 (((-1191 |#1|) $) NIL T ELT)) (-3484 (((-3 (-1102) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) NIL T ELT) (((-708 |#1|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) 76 T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) NIL (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4191 (((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790)) 60 T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1102)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-4241 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (($) NIL (|has| |#1| (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) 50 T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 104 (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-464)) ELT) (($ $ $) 168 (|has| |#1| (-464)) ELT)) (-4167 (($ $ (-790) |#1| $) 124 T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 102 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 101 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) 109 (|has| |#1| (-928)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ #1#) $ |#1|) 164 (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ $) 125 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1102) |#1|) NIL T ELT) (($ $ (-660 (-1102)) (-660 |#1|)) NIL T ELT) (($ $ (-1102) $) NIL T ELT) (($ $ (-660 (-1102)) (-660 $)) NIL T ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ |#1|) 151 T ELT) (($ $ $) 152 T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) NIL (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#1| (-569)) ELT)) (-4193 (((-3 $ #1#) $ (-790)) 54 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 173 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1102)) NIL (|has| |#1| (-175)) ELT) ((|#1| $) 157 (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|) $) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-4377 (((-790) $) 78 T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1102) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) 163 (|has| |#1| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4183 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#1| (-569)) ELT)) (-4375 (((-876) $) 150 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) 77 T ELT) (($ (-1102)) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) 41 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) 17 T CONST)) (-3064 (($) 19 T CONST)) (-3069 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#1| |#1|)) NIL T ELT) (($ $ (-1 |#1| |#1|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#1| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) 121 T ELT)) (-4378 (($ $ |#1|) 174 (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 91 T ELT)) (** (($ $ (-937)) 14 T ELT) (($ $ (-790)) 12 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 39 T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 130 T ELT) (($ $ |#1|) NIL T ELT))) +(((-1191 |#1|) (-13 (-1263 |#1|) (-10 -8 (-15 -3952 ((-876) $ (-876))) (-15 -4167 ($ $ (-790) |#1| $)))) (-1069)) (T -1191)) +((-3952 (*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1191 *3)) (-4 *3 (-1069)))) (-4167 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1191 *3)) (-4 *3 (-1069))))) +((-4387 (((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)) 13 T ELT))) +(((-1192 |#1| |#2|) (-10 -7 (-15 -4387 ((-1191 |#2|) (-1 |#2| |#1|) (-1191 |#1|)))) (-1069) (-1069)) (T -1192)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-5 *2 (-1191 *6)) (-5 *1 (-1192 *5 *6))))) +((-4400 (((-417 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 51 T ELT)) (-4161 (((-417 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))) 52 T ELT))) +(((-1193 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4161 ((-417 (-1191 (-419 |#4|))) (-1191 (-419 |#4|)))) (-15 -4400 ((-417 (-1191 (-419 |#4|))) (-1191 (-419 |#4|))))) (-814) (-860) (-464) (-968 |#3| |#1| |#2|)) (T -1193)) +((-4400 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-417 (-1191 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7))))) (-4161 (*1 *2 *3) (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-417 (-1191 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) (-5 *3 (-1191 (-419 *7)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 11 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-1188 |#1| |#2| |#3|) #1#) $) 33 T ELT) (((-3 (-1195 |#1| |#2| |#3|) #1#) $) 36 T ELT)) (-3573 (((-1188 |#1| |#2| |#3|) $) NIL T ELT) (((-1195 |#1| |#2| |#3|) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4210 (((-419 (-558)) $) 59 T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (($ (-419 (-558)) (-1188 |#1| |#2| |#3|)) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-419 (-558))) 20 T ELT) (($ $ (-1102) (-419 (-558))) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4209 (((-1188 |#1| |#2| |#3|) $) 41 T ELT)) (-4207 (((-3 (-1188 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-4208 (((-1188 |#1| |#2| |#3|) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4241 (($ $) 39 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1284 |#2|)) 38 T ELT)) (-4377 (((-419 (-558)) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) 62 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1188 |#1| |#2| |#3|)) 30 T ELT) (($ (-1195 |#1| |#2| |#3|)) 31 T ELT) (($ (-1284 |#2|)) 26 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 22 T CONST)) (-3064 (($) 16 T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1284 |#2|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 24 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1194 |#1| |#2| |#3|) (-13 (-1272 |#1| (-1188 |#1| |#2| |#3|)) (-910 $ (-1284 |#2|)) (-1058 (-1195 |#1| |#2| |#3|)) (-632 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -1194)) +((-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 129 T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 119 T ELT)) (-4240 (((-1256 |#2| |#1|) $ (-790)) 69 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-790)) 85 T ELT) (($ $ (-790) (-790)) 82 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-790)) (|:| |c| |#1|))) $) 105 T ELT)) (-3911 (($ $) 173 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-790)) (|:| |c| |#1|)))) 118 T ELT) (($ (-1175 |#1|)) 113 T ELT)) (-3913 (($ $) 177 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 25 T ELT)) (-4245 (($ $) 28 T ELT)) (-4243 (((-964 |#1|) $ (-790)) 81 T ELT) (((-964 |#1|) $ (-790) (-790)) 83 T ELT)) (-3292 (((-114) $) 124 T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-790) $) 126 T ELT) (((-790) $ (-790)) 128 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) NIL T ELT)) (-4244 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) 13 T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4371 (($ $) 135 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4241 (($ $) 133 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 134 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4198 (($ $ (-790)) 15 T ELT)) (-3885 (((-3 $ #1#) $ $) 26 (|has| |#1| (-569)) ELT)) (-4372 (($ $) 137 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-790)))) ELT)) (-4229 ((|#1| $ (-790)) 122 T ELT) (($ $ $) 132 (|has| (-790) (-1132)) ELT)) (-4187 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $) 29 (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-1284 |#2|)) 31 T ELT)) (-4377 (((-790) $) NIL T ELT)) (-3914 (($ $) 179 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 175 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) 206 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 130 (|has| |#1| (-175)) ELT) (($ (-1256 |#2| |#1|)) 55 T ELT) (($ (-1284 |#2|)) 36 T ELT)) (-4246 (((-1175 |#1|) $) 101 T ELT)) (-4106 ((|#1| $ (-790)) 121 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 58 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) 185 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) 181 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 189 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-790)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-790)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 191 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 187 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 183 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 17 T CONST)) (-3064 (($) 20 T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-1284 |#2|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) 198 T ELT)) (-4268 (($ $ $) 35 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ |#1|) 203 (|has| |#1| (-376)) ELT) (($ $ $) 138 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 136 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1195 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-910 $ (-1284 |#2|)) (-10 -8 (-15 -4375 ($ (-1256 |#2| |#1|))) (-15 -4240 ((-1256 |#2| |#1|) $ (-790))) (-15 -4375 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -1195)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1195 *3 *4 *5)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) (-4 *4 (-1069)) (-14 *5 (-1197)) (-14 *6 *4))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-4375 (((-876) $) 33 T ELT) (($ (-1197)) 35 T ELT)) (-3956 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 46 T ELT)) (-3953 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 39 T ELT) (($ $) 40 T ELT)) (-3960 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 41 T ELT)) (-3958 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 43 T ELT)) (-3959 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 42 T ELT)) (-3957 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 44 T ELT)) (-3955 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 47 T ELT)) (-12 (($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $))) 45 T ELT))) +(((-1196) (-13 (-629 (-876)) (-10 -8 (-15 -4375 ($ (-1197))) (-15 -3960 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3959 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3958 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3957 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3956 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3955 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -12 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)) (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3953 ($ (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| $)))) (-15 -3953 ($ $))))) (T -1196)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) (-3960 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3959 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3958 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3957 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3956 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3955 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-12 (*1 *1 *2 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3953 (*1 *1 *2) (-12 (-5 *2 (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) (-5 *1 (-1196)))) (-3953 (*1 *1 *1) (-5 *1 (-1196)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3964 (($ $ (-660 (-876))) 48 T ELT)) (-3965 (($ $ (-660 (-876))) 46 T ELT)) (-3962 (((-1179) $) 88 T ELT)) (-3967 (((-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) (|:| |args| (-660 (-876)))) $) 95 T ELT)) (-3968 (((-114) $) 86 T ELT)) (-3966 (($ $ (-660 (-660 (-876)))) 45 T ELT) (($ $ (-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) (|:| |args| (-660 (-876))))) 85 T ELT)) (-4153 (($) 151 T CONST)) (-3574 (((-3 (-518) "failed") $) 155 T ELT)) (-3573 (((-518) $) NIL T ELT)) (-3970 (((-1293)) 123 T ELT)) (-3196 (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 55 T ELT) (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 62 T ELT)) (-4043 (($) 109 T ELT) (($ $) 118 T ELT)) (-3969 (($ $) 87 T ELT)) (-2929 (($ $ $) NIL T ELT)) (-3257 (($ $ $) NIL T ELT)) (-3961 (((-660 $) $) 124 T ELT)) (-3659 (((-1179) $) 101 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4229 (($ $ (-660 (-876))) 47 T ELT)) (-4401 (((-547) $) 33 T ELT) (((-1197) $) 34 T ELT) (((-904 (-558)) $) 66 T ELT) (((-904 (-391)) $) 64 T ELT)) (-4375 (((-876) $) 41 T ELT) (($ (-1179)) 35 T ELT) (($ (-518)) 153 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3963 (($ $ (-660 (-876))) 49 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 37 T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) 38 T ELT))) +(((-1197) (-13 (-860) (-630 (-547)) (-630 (-1197)) (-632 (-1179)) (-1058 (-518)) (-630 (-904 (-558))) (-630 (-904 (-391))) (-900 (-558)) (-900 (-391)) (-10 -8 (-15 -4043 ($)) (-15 -4043 ($ $)) (-15 -3970 ((-1293))) (-15 -3969 ($ $)) (-15 -3968 ((-114) $)) (-15 -3967 ((-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) (|:| |args| (-660 (-876)))) $)) (-15 -3966 ($ $ (-660 (-660 (-876))))) (-15 -3966 ($ $ (-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) (|:| |args| (-660 (-876)))))) (-15 -3965 ($ $ (-660 (-876)))) (-15 -3964 ($ $ (-660 (-876)))) (-15 -3963 ($ $ (-660 (-876)))) (-15 -4229 ($ $ (-660 (-876)))) (-15 -3962 ((-1179) $)) (-15 -3961 ((-660 $) $)) (-15 -4153 ($) -4381)))) (T -1197)) +((-4043 (*1 *1) (-5 *1 (-1197))) (-4043 (*1 *1 *1) (-5 *1 (-1197))) (-3970 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197)))) (-3969 (*1 *1 *1) (-5 *1 (-1197))) (-3968 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1197)))) (-3967 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) (|:| |args| (-660 (-876))))) (-5 *1 (-1197)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 (-876)))) (-5 *1 (-1197)))) (-3966 (*1 *1 *1 *2) (-12 (-5 *2 (-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) (|:| |args| (-660 (-876))))) (-5 *1 (-1197)))) (-3965 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197)))) (-3964 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197)))) (-3963 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197)))) (-3962 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197)))) (-3961 (*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1197)))) (-4153 (*1 *1) (-5 *1 (-1197)))) +((-3971 (((-1287 |#1|) |#1| (-937)) 18 T ELT) (((-1287 |#1|) (-660 |#1|)) 25 T ELT))) +(((-1198 |#1|) (-10 -7 (-15 -3971 ((-1287 |#1|) (-660 |#1|))) (-15 -3971 ((-1287 |#1|) |#1| (-937)))) (-1069)) (T -1198)) +((-3971 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-1287 *3)) (-5 *1 (-1198 *3)) (-4 *3 (-1069)))) (-3971 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4)) (-5 *1 (-1198 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 |#1| #1#) $) NIL T ELT)) (-3573 (((-558) $) NIL (|has| |#1| (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| |#1| (-1058 (-419 (-558)))) ELT) ((|#1| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-3922 (($ $) NIL (|has| |#1| (-464)) ELT)) (-1803 (($ $ |#1| (-991) $) NIL T ELT)) (-2640 (((-114) $) 17 T ELT)) (-2648 (((-790) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-991)) NIL T ELT)) (-3220 (((-991) $) NIL T ELT)) (-1804 (($ (-1 (-991) (-991)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#1| $) NIL T ELT)) (-4167 (($ $ (-991) |#1| $) NIL (-12 (|has| (-991) (-133)) (|has| |#1| (-569))) ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT) (((-3 $ #1#) $ |#1|) NIL (|has| |#1| (-569)) ELT)) (-4377 (((-991) $) NIL T ELT)) (-3217 ((|#1| $) NIL (|has| |#1| (-464)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-1058 (-419 (-558))))) ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-991)) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3058 (($) 10 T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 21 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 22 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 16 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1199 |#1|) (-13 (-338 |#1| (-991)) (-10 -8 (IF (|has| |#1| (-569)) (IF (|has| (-991) (-133)) (-15 -4167 ($ $ (-991) |#1| $)) |%noBranch|) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|))) (-1069)) (T -1199)) +((-4167 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-991)) (-4 *2 (-133)) (-5 *1 (-1199 *3)) (-4 *3 (-569)) (-4 *3 (-1069))))) +((-3972 (((-1201) (-1197) $) 25 T ELT)) (-3982 (($) 29 T ELT)) (-3974 (((-3 (|:| |fst| (-446)) (|:| -4339 #1="void")) (-1197) $) 22 T ELT)) (-3976 (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -4339 #1#)) $) 41 T ELT) (((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) 42 T ELT) (((-1293) (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) 43 T ELT)) (-3984 (((-1293) (-1197)) 58 T ELT)) (-3975 (((-1293) (-1197) $) 55 T ELT) (((-1293) (-1197)) 56 T ELT) (((-1293)) 57 T ELT)) (-3980 (((-1293) (-1197)) 37 T ELT)) (-3978 (((-1197)) 36 T ELT)) (-3992 (($) 34 T ELT)) (-3991 (((-448) (-1197) (-448) (-1197) $) 45 T ELT) (((-448) (-660 (-1197)) (-448) (-1197) $) 49 T ELT) (((-448) (-1197) (-448)) 46 T ELT) (((-448) (-1197) (-448) (-1197)) 50 T ELT)) (-3979 (((-1197)) 35 T ELT)) (-4375 (((-876) $) 28 T ELT)) (-3981 (((-1293)) 30 T ELT) (((-1293) (-1197)) 33 T ELT)) (-3973 (((-660 (-1197)) (-1197) $) 24 T ELT)) (-3977 (((-1293) (-1197) (-660 (-1197)) $) 38 T ELT) (((-1293) (-1197) (-660 (-1197))) 39 T ELT) (((-1293) (-660 (-1197))) 40 T ELT))) +(((-1200) (-13 (-629 (-876)) (-10 -8 (-15 -3982 ($)) (-15 -3981 ((-1293))) (-15 -3981 ((-1293) (-1197))) (-15 -3991 ((-448) (-1197) (-448) (-1197) $)) (-15 -3991 ((-448) (-660 (-1197)) (-448) (-1197) $)) (-15 -3991 ((-448) (-1197) (-448))) (-15 -3991 ((-448) (-1197) (-448) (-1197))) (-15 -3980 ((-1293) (-1197))) (-15 -3979 ((-1197))) (-15 -3978 ((-1197))) (-15 -3977 ((-1293) (-1197) (-660 (-1197)) $)) (-15 -3977 ((-1293) (-1197) (-660 (-1197)))) (-15 -3977 ((-1293) (-660 (-1197)))) (-15 -3976 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -4339 #1="void")) $)) (-15 -3976 ((-1293) (-1197) (-3 (|:| |fst| (-446)) (|:| -4339 #1#)))) (-15 -3976 ((-1293) (-3 (|:| |fst| (-446)) (|:| -4339 #1#)))) (-15 -3975 ((-1293) (-1197) $)) (-15 -3975 ((-1293) (-1197))) (-15 -3975 ((-1293))) (-15 -3984 ((-1293) (-1197))) (-15 -3992 ($)) (-15 -3974 ((-3 (|:| |fst| (-446)) (|:| -4339 #1#)) (-1197) $)) (-15 -3973 ((-660 (-1197)) (-1197) $)) (-15 -3972 ((-1201) (-1197) $))))) (T -1200)) +((-3982 (*1 *1) (-5 *1 (-1200))) (-3981 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3981 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3991 (*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3991 (*1 *2 *3 *2 *4 *1) (-12 (-5 *2 (-448)) (-5 *3 (-660 (-1197))) (-5 *4 (-1197)) (-5 *1 (-1200)))) (-3991 (*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3991 (*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1200)))) (-3980 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3979 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-3978 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200)))) (-3977 (*1 *2 *3 *4 *1) (-12 (-5 *4 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3977 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3977 (*1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3976 (*1 *2 *3 *4 *1) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1="void"))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3976 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3976 (*1 *2 *3) (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3975 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3975 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3975 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3984 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) (-3992 (*1 *1) (-5 *1 (-1200))) (-3974 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-5 *1 (-1200)))) (-3973 (*1 *2 *3 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197)))) (-3972 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) +((-3986 (((-660 (-660 (-3 (|:| -3969 (-1197)) (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558))))))))) $) 66 T ELT)) (-3988 (((-660 (-3 (|:| -3969 (-1197)) (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558)))))))) (-446) $) 47 T ELT)) (-3983 (($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-448))))) 17 T ELT)) (-3984 (((-1293) $) 73 T ELT)) (-3989 (((-660 (-1197)) $) 22 T ELT)) (-3985 (((-1123) $) 60 T ELT)) (-3990 (((-448) (-1197) $) 27 T ELT)) (-3987 (((-660 (-1197)) $) 30 T ELT)) (-3992 (($) 19 T ELT)) (-3991 (((-448) (-660 (-1197)) (-448) $) 25 T ELT) (((-448) (-1197) (-448) $) 24 T ELT)) (-4375 (((-876) $) 9 T ELT) (((-1209 (-1197) (-448)) $) 13 T ELT))) +(((-1201) (-13 (-629 (-876)) (-10 -8 (-15 -4375 ((-1209 (-1197) (-448)) $)) (-15 -3992 ($)) (-15 -3991 ((-448) (-660 (-1197)) (-448) $)) (-15 -3991 ((-448) (-1197) (-448) $)) (-15 -3990 ((-448) (-1197) $)) (-15 -3989 ((-660 (-1197)) $)) (-15 -3988 ((-660 (-3 (|:| -3969 (-1197)) (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558)))))))) (-446) $)) (-15 -3987 ((-660 (-1197)) $)) (-15 -3986 ((-660 (-660 (-3 (|:| -3969 (-1197)) (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558))))))))) $)) (-15 -3985 ((-1123) $)) (-15 -3984 ((-1293) $)) (-15 -3983 ($ (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-448))))))))) (T -1201)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-1209 (-1197) (-448))) (-5 *1 (-1201)))) (-3992 (*1 *1) (-5 *1 (-1201))) (-3991 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-660 (-1197))) (-5 *1 (-1201)))) (-3991 (*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1201)))) (-3990 (*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-448)) (-5 *1 (-1201)))) (-3989 (*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1201)))) (-3988 (*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 (-660 (-3 (|:| -3969 (-1197)) (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558))))))))) (-5 *1 (-1201)))) (-3987 (*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1201)))) (-3986 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-3 (|:| -3969 (-1197)) (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558)))))))))) (-5 *1 (-1201)))) (-3985 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1201)))) (-3984 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201)))) (-3983 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-448))))) (-5 *1 (-1201))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3574 (((-3 (-558) #1="failed") $) 29 T ELT) (((-3 (-229) #1#) $) 35 T ELT) (((-3 (-518) #1#) $) 43 T ELT) (((-3 (-1179) #1#) $) 47 T ELT)) (-3573 (((-558) $) 30 T ELT) (((-229) $) 36 T ELT) (((-518) $) 40 T ELT) (((-1179) $) 48 T ELT)) (-3997 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3996 (((-3 (-558) (-229) (-518) (-1179) $) $) 56 T ELT)) (-3995 (((-660 $) $) 58 T ELT)) (-4401 (((-1123) $) 24 T ELT) (($ (-1123)) 25 T ELT)) (-3994 (((-114) $) 57 T ELT)) (-4375 (((-876) $) 23 T ELT) (($ (-558)) 26 T ELT) (($ (-229)) 32 T ELT) (($ (-518)) 38 T ELT) (($ (-1179)) 44 T ELT) (((-547) $) 60 T ELT) (((-558) $) 31 T ELT) (((-229) $) 37 T ELT) (((-518) $) 41 T ELT) (((-1179) $) 49 T ELT)) (-3993 (((-114) $ (|[\|\|]| (-558))) 10 T ELT) (((-114) $ (|[\|\|]| (-229))) 13 T ELT) (((-114) $ (|[\|\|]| (-518))) 19 T ELT) (((-114) $ (|[\|\|]| (-1179))) 16 T ELT)) (-3998 (($ (-518) (-660 $)) 51 T ELT) (($ $ (-660 $)) 52 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3999 (((-558) $) 27 T ELT) (((-229) $) 33 T ELT) (((-518) $) 39 T ELT) (((-1179) $) 45 T ELT)) (-3453 (((-114) $ $) 7 T ELT))) +(((-1202) (-13 (-1283) (-1121) (-1058 (-558)) (-1058 (-229)) (-1058 (-518)) (-1058 (-1179)) (-629 (-547)) (-10 -8 (-15 -4401 ((-1123) $)) (-15 -4401 ($ (-1123))) (-15 -4375 ((-558) $)) (-15 -3999 ((-558) $)) (-15 -4375 ((-229) $)) (-15 -3999 ((-229) $)) (-15 -4375 ((-518) $)) (-15 -3999 ((-518) $)) (-15 -4375 ((-1179) $)) (-15 -3999 ((-1179) $)) (-15 -3998 ($ (-518) (-660 $))) (-15 -3998 ($ $ (-660 $))) (-15 -3997 ((-114) $)) (-15 -3996 ((-3 (-558) (-229) (-518) (-1179) $) $)) (-15 -3995 ((-660 $) $)) (-15 -3994 ((-114) $)) (-15 -3993 ((-114) $ (|[\|\|]| (-558)))) (-15 -3993 ((-114) $ (|[\|\|]| (-229)))) (-15 -3993 ((-114) $ (|[\|\|]| (-518)))) (-15 -3993 ((-114) $ (|[\|\|]| (-1179))))))) (T -1202)) +((-4401 (*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1202)))) (-4401 (*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1202)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1202)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1202)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1202)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1202)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-3999 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) (-3998 (*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-1202))) (-5 *1 (-1202)))) (-3998 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-1202)))) (-3997 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1202)))) (-3996 (*1 *2 *1) (-12 (-5 *2 (-3 (-558) (-229) (-518) (-1179) (-1202))) (-5 *1 (-1202)))) (-3995 (*1 *2 *1) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-1202)))) (-3994 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1202)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)) (-5 *1 (-1202)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1202)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1202)))) (-3993 (*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-114)) (-5 *1 (-1202))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3537 (((-790)) 21 T ELT)) (-4153 (($) 10 T CONST)) (-3394 (($) 25 T ELT)) (-2929 (($ $ $) NIL T ELT) (($) 18 T CONST)) (-3257 (($ $ $) NIL T ELT) (($) 19 T CONST)) (-2219 (((-937) $) 23 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) 22 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT))) +(((-1203 |#1|) (-13 (-856) (-10 -8 (-15 -4153 ($) -4381))) (-937)) (T -1203)) +((-4153 (*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-937))))) ((-558) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) 24 T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) 18 T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-3258 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-4155 (($ $ $) 20 T ELT)) (-4156 (($ $ $) 19 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) 22 T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) 21 T ELT))) -(((-1205 |#1|) (-13 (-857) (-682) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4155 ($ $ $)) (-15 -4154 ($) -4382))) (-938)) (T -1205)) -((-4156 (*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-938)))) (-4155 (*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-938)))) (-4154 (*1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-938))))) -((-791) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 9 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 7 T ELT))) -(((-1206) (-1122)) (T -1206)) -NIL -((-4002 (((-661 (-661 (-965 |#1|))) (-661 (-419 (-965 |#1|))) (-661 (-1198))) 69 T ELT)) (-4001 (((-661 (-305 (-419 (-965 |#1|)))) (-305 (-419 (-965 |#1|)))) 81 T ELT) (((-661 (-305 (-419 (-965 |#1|)))) (-419 (-965 |#1|))) 77 T ELT) (((-661 (-305 (-419 (-965 |#1|)))) (-305 (-419 (-965 |#1|))) (-1198)) 82 T ELT) (((-661 (-305 (-419 (-965 |#1|)))) (-419 (-965 |#1|)) (-1198)) 76 T ELT) (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-305 (-419 (-965 |#1|))))) 107 T ELT) (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-419 (-965 |#1|)))) 106 T ELT) (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-305 (-419 (-965 |#1|)))) (-661 (-1198))) 108 T ELT) (((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-419 (-965 |#1|))) (-661 (-1198))) 105 T ELT))) -(((-1207 |#1|) (-10 -7 (-15 -4001 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-419 (-965 |#1|))) (-661 (-1198)))) (-15 -4001 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-305 (-419 (-965 |#1|)))) (-661 (-1198)))) (-15 -4001 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-419 (-965 |#1|))))) (-15 -4001 ((-661 (-661 (-305 (-419 (-965 |#1|))))) (-661 (-305 (-419 (-965 |#1|)))))) (-15 -4001 ((-661 (-305 (-419 (-965 |#1|)))) (-419 (-965 |#1|)) (-1198))) (-15 -4001 ((-661 (-305 (-419 (-965 |#1|)))) (-305 (-419 (-965 |#1|))) (-1198))) (-15 -4001 ((-661 (-305 (-419 (-965 |#1|)))) (-419 (-965 |#1|)))) (-15 -4001 ((-661 (-305 (-419 (-965 |#1|)))) (-305 (-419 (-965 |#1|))))) (-15 -4002 ((-661 (-661 (-965 |#1|))) (-661 (-419 (-965 |#1|))) (-661 (-1198))))) (-569)) (T -1207)) -((-4002 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-965 *5)))) (-5 *1 (-1207 *5)))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *4))))) (-5 *1 (-1207 *4)) (-5 *3 (-305 (-419 (-965 *4)))))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *4))))) (-5 *1 (-1207 *4)) (-5 *3 (-419 (-965 *4))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *5))))) (-5 *1 (-1207 *5)) (-5 *3 (-305 (-419 (-965 *5)))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-1198)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *5))))) (-5 *1 (-1207 *5)) (-5 *3 (-419 (-965 *5))))) (-4001 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-1207 *4)) (-5 *3 (-661 (-305 (-419 (-965 *4))))))) (-4001 (*1 *2 *3) (-12 (-5 *3 (-661 (-419 (-965 *4)))) (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-1207 *4)))) (-4001 (*1 *2 *3 *4) (-12 (-5 *4 (-661 (-1198))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-1207 *5)) (-5 *3 (-661 (-305 (-419 (-965 *5))))))) (-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-1207 *5))))) -((-4007 (((-1180)) 7 T ELT)) (-4004 (((-1180)) 11 T CONST)) (-4003 (((-1294) (-1180)) 13 T ELT)) (-4006 (((-1180)) 8 T CONST)) (-4005 (((-132)) 10 T CONST))) -(((-1208) (-13 (-1238) (-10 -7 (-15 -4007 ((-1180))) (-15 -4006 ((-1180)) -4382) (-15 -4005 ((-132)) -4382) (-15 -4004 ((-1180)) -4382) (-15 -4003 ((-1294) (-1180)))))) (T -1208)) -((-4007 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-4006 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-4005 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1208)))) (-4004 (*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208)))) (-4003 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1208))))) -((-4011 (((-661 (-661 |#1|)) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|)))) 56 T ELT)) (-4014 (((-661 (-661 (-661 |#1|))) (-661 (-661 |#1|))) 38 T ELT)) (-4015 (((-1211 (-661 |#1|)) (-661 |#1|)) 49 T ELT)) (-4017 (((-661 (-661 |#1|)) (-661 |#1|)) 45 T ELT)) (-4020 (((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 (-661 (-661 |#1|)))) 53 T ELT)) (-4019 (((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 |#1|) (-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|)))) 52 T ELT)) (-4016 (((-661 (-661 |#1|)) (-661 (-661 |#1|))) 43 T ELT)) (-4018 (((-661 |#1|) (-661 |#1|)) 46 T ELT)) (-4010 (((-661 (-661 (-661 |#1|))) (-661 |#1|) (-661 (-661 (-661 |#1|)))) 32 T ELT)) (-4009 (((-661 (-661 (-661 |#1|))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 (-661 |#1|)))) 29 T ELT)) (-4008 (((-2 (|:| |fs| (-114)) (|:| |sd| (-661 |#1|)) (|:| |td| (-661 (-661 |#1|)))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 |#1|))) 24 T ELT)) (-4012 (((-661 (-661 |#1|)) (-661 (-661 (-661 |#1|)))) 58 T ELT)) (-4013 (((-661 (-661 |#1|)) (-1211 (-661 |#1|))) 60 T ELT))) -(((-1209 |#1|) (-10 -7 (-15 -4008 ((-2 (|:| |fs| (-114)) (|:| |sd| (-661 |#1|)) (|:| |td| (-661 (-661 |#1|)))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 |#1|)))) (-15 -4009 ((-661 (-661 (-661 |#1|))) (-1 (-114) |#1| |#1|) (-661 |#1|) (-661 (-661 (-661 |#1|))))) (-15 -4010 ((-661 (-661 (-661 |#1|))) (-661 |#1|) (-661 (-661 (-661 |#1|))))) (-15 -4011 ((-661 (-661 |#1|)) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))))) (-15 -4012 ((-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))))) (-15 -4013 ((-661 (-661 |#1|)) (-1211 (-661 |#1|)))) (-15 -4014 ((-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)))) (-15 -4015 ((-1211 (-661 |#1|)) (-661 |#1|))) (-15 -4016 ((-661 (-661 |#1|)) (-661 (-661 |#1|)))) (-15 -4017 ((-661 (-661 |#1|)) (-661 |#1|))) (-15 -4018 ((-661 |#1|) (-661 |#1|))) (-15 -4019 ((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 |#1|) (-661 (-661 (-661 |#1|))) (-661 (-661 |#1|)) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))) (-661 (-661 (-661 |#1|))))) (-15 -4020 ((-2 (|:| |f1| (-661 |#1|)) (|:| |f2| (-661 (-661 (-661 |#1|)))) (|:| |f3| (-661 (-661 |#1|))) (|:| |f4| (-661 (-661 (-661 |#1|))))) (-661 (-661 (-661 |#1|)))))) (-861)) (T -1209)) -((-4020 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-2 (|:| |f1| (-661 *4)) (|:| |f2| (-661 (-661 (-661 *4)))) (|:| |f3| (-661 (-661 *4))) (|:| |f4| (-661 (-661 (-661 *4)))))) (-5 *1 (-1209 *4)) (-5 *3 (-661 (-661 (-661 *4)))))) (-4019 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-861)) (-5 *3 (-661 *6)) (-5 *5 (-661 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-661 *5)) (|:| |f3| *5) (|:| |f4| (-661 *5)))) (-5 *1 (-1209 *6)) (-5 *4 (-661 *5)))) (-4018 (*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-1209 *3)))) (-4017 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1209 *4)) (-5 *3 (-661 *4)))) (-4016 (*1 *2 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-861)) (-5 *1 (-1209 *3)))) (-4015 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-1211 (-661 *4))) (-5 *1 (-1209 *4)) (-5 *3 (-661 *4)))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-861)) (-5 *2 (-661 (-661 (-661 *4)))) (-5 *1 (-1209 *4)) (-5 *3 (-661 (-661 *4))))) (-4013 (*1 *2 *3) (-12 (-5 *3 (-1211 (-661 *4))) (-4 *4 (-861)) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1209 *4)))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1209 *4)) (-4 *4 (-861)))) (-4011 (*1 *2 *2 *3) (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) (-4 *4 (-861)) (-5 *1 (-1209 *4)))) (-4010 (*1 *2 *3 *2) (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-661 *4)) (-4 *4 (-861)) (-5 *1 (-1209 *4)))) (-4009 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-661 *5)) (-4 *5 (-861)) (-5 *1 (-1209 *5)))) (-4008 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-861)) (-5 *4 (-661 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-661 *4)))) (-5 *1 (-1209 *6)) (-5 *5 (-661 *4))))) -((-2967 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4027 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2413 (((-1294) $ |#1| |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2416 ((|#1| $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-2884 (((-661 |#1|) $) NIL T ELT)) (-2447 (((-114) |#1| $) NIL T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2418 (((-661 |#1|) $) NIL T ELT)) (-2419 (((-114) |#1| $) NIL T ELT)) (-3661 (((-1141) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ELT)) (-4231 ((|#2| $) NIL (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) #1#) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL T ELT)) (-2414 (($ $ |#2|) NIL (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1598 (($) NIL T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) NIL (-12 (|has| $ (-6 -4425)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (((-791) |#2| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT) (((-791) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-4376 (((-877) $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-630 (-877)))) ELT)) (-1378 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) NIL T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) NIL (-3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1210 |#1| |#2|) (-13 (-1215 |#1| |#2|) (-10 -7 (-6 -4425))) (-1122) (-1122)) (T -1210)) -NIL -((-4021 (($ (-661 (-661 |#1|))) 10 T ELT)) (-4022 (((-661 (-661 |#1|)) $) 11 T ELT)) (-4376 (((-877) $) 33 T ELT))) -(((-1211 |#1|) (-10 -8 (-15 -4021 ($ (-661 (-661 |#1|)))) (-15 -4022 ((-661 (-661 |#1|)) $)) (-15 -4376 ((-877) $))) (-1122)) (T -1211)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1211 *3)) (-4 *3 (-1122)))) (-4022 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1122)))) (-4021 (*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-1211 *3))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4023 (($ |#1| (-55)) 10 T ELT)) (-3970 ((|#1| $) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3032 (((-114) $ |#1|) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2917 (((-55) $) 14 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1212 |#1|) (-13 (-849 |#1|) (-10 -8 (-15 -4023 ($ |#1| (-55))))) (-1122)) (T -1212)) -((-4023 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1212 *2)) (-4 *2 (-1122))))) -((-4024 ((|#1| (-661 |#1|)) 46 T ELT)) (-4026 ((|#1| |#1| (-558)) 24 T ELT)) (-4025 (((-1192 |#1|) |#1| (-938)) 20 T ELT))) -(((-1213 |#1|) (-10 -7 (-15 -4024 (|#1| (-661 |#1|))) (-15 -4025 ((-1192 |#1|) |#1| (-938))) (-15 -4026 (|#1| |#1| (-558)))) (-376)) (T -1213)) -((-4026 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1213 *2)) (-4 *2 (-376)))) (-4025 (*1 *2 *3 *4) (-12 (-5 *4 (-938)) (-5 *2 (-1192 *3)) (-5 *1 (-1213 *3)) (-4 *3 (-376)))) (-4024 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-376))))) -((-4027 (($) 10 T ELT) (($ (-661 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)))) 14 T ELT)) (-3825 (($ (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) 39 T ELT) (((-661 |#3|) $) 41 T ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1389 (((-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) $) 60 T ELT)) (-4037 (($ (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) $) 16 T ELT)) (-2418 (((-661 |#2|) $) 19 T ELT)) (-2419 (((-114) |#2| $) 65 T ELT)) (-1468 (((-3 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) #1#) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) 64 T ELT)) (-1390 (((-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) $) 69 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-2420 (((-661 |#3|) $) 43 T ELT)) (-4230 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) NIL T ELT) (((-791) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) $) NIL T ELT) (((-791) |#3| $) NIL T ELT) (((-791) (-1 (-114) |#3|) $) 79 T ELT)) (-4376 (((-877) $) 27 T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-3454 (((-114) $ $) 51 T ELT))) -(((-1214 |#1| |#2| |#3|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -4376 ((-877) |#1|)) (-15 -4388 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4027 (|#1| (-661 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))))) (-15 -4027 (|#1|)) (-15 -4388 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2160 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2159 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2157 ((-791) (-1 (-114) |#3|) |#1|)) (-15 -3290 ((-661 |#3|) |#1|)) (-15 -2157 ((-791) |#3| |#1|)) (-15 -4230 (|#3| |#1| |#2| |#3|)) (-15 -4230 (|#3| |#1| |#2|)) (-15 -2420 ((-661 |#3|) |#1|)) (-15 -2419 ((-114) |#2| |#1|)) (-15 -2418 ((-661 |#2|) |#1|)) (-15 -3825 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3825 (|#1| (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -3825 (|#1| (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) |#1|)) (-15 -1468 ((-3 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) #1#) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -1389 ((-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) |#1|)) (-15 -4037 (|#1| (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) |#1|)) (-15 -1390 ((-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) |#1|)) (-15 -2157 ((-791) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) |#1|)) (-15 -3290 ((-661 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -2157 ((-791) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -2158 ((-114) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -2159 ((-114) (-1 (-114) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -2160 (|#1| (-1 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|)) (-15 -4388 (|#1| (-1 (-2 (|:| -4290 |#2|) (|:| -2286 |#3|)) (-2 (|:| -4290 |#2|) (|:| -2286 |#3|))) |#1|))) (-1215 |#2| |#3|) (-1122) (-1122)) (T -1214)) -NIL -((-2967 (((-114) $ $) 19 (-3957 (|has| |#2| (-102)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ELT)) (-4027 (($) 77 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 76 T ELT)) (-2413 (((-1294) $ |#1| |#1|) 104 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1713 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 49 (|has| $ (-6 -4425)) ELT)) (-4140 (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 59 (|has| $ (-6 -4425)) ELT)) (-2446 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-4154 (($) 7 T CONST)) (-1467 (($ $) 62 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT)) (-3825 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 51 (|has| $ (-6 -4425)) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 50 (|has| $ (-6 -4425)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3826 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 58 (|has| $ (-6 -4425)) ELT)) (-4272 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 60 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 57 (|has| $ (-6 -4425)) ELT) (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 56 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#2| $ |#1|) 93 T ELT)) (-3290 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 30 (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) 84 (|has| $ (-6 -4425)) ELT)) (-2415 ((|#1| $) 101 (|has| |#1| (-861)) ELT)) (-3007 (((-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 29 (|has| $ (-6 -4425)) ELT) (((-661 |#2|) $) 85 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 ((|#1| $) 100 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 34 (|has| $ (-6 -4426)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3660 (((-1180) $) 22 (-3957 (|has| |#2| (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-2884 (((-661 |#1|) $) 67 T ELT)) (-2447 (((-114) |#1| $) 68 T ELT)) (-1389 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 43 T ELT)) (-4037 (($ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 44 T ELT)) (-2418 (((-661 |#1|) $) 98 T ELT)) (-2419 (((-114) |#1| $) 97 T ELT)) (-3661 (((-1141) $) 21 (-3957 (|has| |#2| (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT)) (-4231 ((|#2| $) 102 (|has| |#1| (-861)) ELT)) (-1468 (((-3 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) "failed") (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 55 T ELT)) (-2414 (($ $ |#2|) 103 (|has| $ (-6 -4426)) ELT)) (-1390 (((-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 45 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 32 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))))) 26 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-305 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 25 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) 24 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 23 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT) (($ $ (-661 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4425)) (|has| |#2| (-1122))) ELT)) (-2420 (((-661 |#2|) $) 96 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1598 (($) 53 T ELT) (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 52 T ELT)) (-2157 (((-791) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) |#2| $) 86 (-12 (|has| |#2| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 63 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ELT)) (-3950 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 54 T ELT)) (-4376 (((-877) $) 17 (-3957 (|has| |#2| (-630 (-877))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877)))) ELT)) (-1378 (((-114) $ $) 20 (-3957 (|has| |#2| (-102)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ELT)) (-1391 (($ (-661 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) 46 T ELT)) (-2159 (((-114) (-1 (-114) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) $) 33 (|has| $ (-6 -4425)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (-3957 (|has| |#2| (-102)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102))) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1215 |#1| |#2|) (-142) (-1122) (-1122)) (T -1215)) -((-4218 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) (-4027 (*1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) (-4027 (*1 *1 *2) (-12 (-5 *2 (-661 (-2 (|:| -4290 *3) (|:| -2286 *4)))) (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *1 (-1215 *3 *4)))) (-4388 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(-13 (-627 |t#1| |t#2|) (-616 |t#1| |t#2|) (-10 -8 (-15 -4218 (|t#2| $ |t#1| |t#2|)) (-15 -4027 ($)) (-15 -4027 ($ (-661 (-2 (|:| -4290 |t#1|) (|:| -2286 |t#2|))))) (-15 -4388 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) -(((-34) . T) ((-107 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-102) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-102)) (|has| |#2| (-1122)) (|has| |#2| (-102))) ((-630 (-877)) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-630 (-877))) (|has| |#2| (-1122)) (|has| |#2| (-630 (-877)))) ((-153 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-631 (-547)) |has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-631 (-547))) ((-233 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-242 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) -12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-501 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) . T) ((-501 |#2|) . T) ((-616 |#1| |#2|) . T) ((-526 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-2 (|:| -4290 |#1|) (|:| -2286 |#2|))) -12 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-321 (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)))) (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1122))) ((-627 |#1| |#2|) . T) ((-1122) -3957 (|has| (-2 (|:| -4290 |#1|) (|:| -2286 |#2|)) (-1122)) (|has| |#2| (-1122))) ((-1238) . T)) -((-4033 (((-114)) 29 T ELT)) (-4030 (((-1294) (-1180)) 31 T ELT)) (-4034 (((-114)) 41 T ELT)) (-4031 (((-1294)) 39 T ELT)) (-4029 (((-1294) (-1180) (-1180)) 30 T ELT)) (-4035 (((-114)) 42 T ELT)) (-4037 (((-1294) |#1| |#2|) 53 T ELT)) (-4028 (((-1294)) 26 T ELT)) (-4036 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-4032 (((-1294)) 40 T ELT))) -(((-1216 |#1| |#2|) (-10 -7 (-15 -4028 ((-1294))) (-15 -4029 ((-1294) (-1180) (-1180))) (-15 -4030 ((-1294) (-1180))) (-15 -4031 ((-1294))) (-15 -4032 ((-1294))) (-15 -4033 ((-114))) (-15 -4034 ((-114))) (-15 -4035 ((-114))) (-15 -4036 ((-3 |#2| "failed") |#1|)) (-15 -4037 ((-1294) |#1| |#2|))) (-1122) (-1122)) (T -1216)) -((-4037 (*1 *2 *3 *4) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4036 (*1 *2 *3) (|partial| -12 (-4 *2 (-1122)) (-5 *1 (-1216 *3 *2)) (-4 *3 (-1122)))) (-4035 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4034 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4033 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4032 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4031 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) (-4030 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)))) (-4029 (*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)))) (-4028 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -((-4039 (((-1180) (-1180)) 22 T ELT)) (-4038 (((-51) (-1180)) 25 T ELT))) -(((-1217) (-10 -7 (-15 -4038 ((-51) (-1180))) (-15 -4039 ((-1180) (-1180))))) (T -1217)) -((-4039 (*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1217)))) (-4038 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-51)) (-5 *1 (-1217))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4045 (((-661 (-1180)) $) 39 T ELT)) (-4041 (((-661 (-1180)) $ (-661 (-1180))) 42 T ELT)) (-4040 (((-661 (-1180)) $ (-661 (-1180))) 41 T ELT)) (-4042 (((-661 (-1180)) $ (-661 (-1180))) 43 T ELT)) (-4043 (((-661 (-1180)) $) 38 T ELT)) (-4044 (($) 28 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4046 (((-661 (-1180)) $) 40 T ELT)) (-4047 (((-1294) $ (-558)) 35 T ELT) (((-1294) $) 36 T ELT)) (-4402 (($ (-877) (-558)) 33 T ELT) (($ (-877) (-558) (-877)) NIL T ELT)) (-4376 (((-877) $) 49 T ELT) (($ (-877)) 32 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1218) (-13 (-1122) (-633 (-877)) (-10 -8 (-15 -4402 ($ (-877) (-558))) (-15 -4402 ($ (-877) (-558) (-877))) (-15 -4047 ((-1294) $ (-558))) (-15 -4047 ((-1294) $)) (-15 -4046 ((-661 (-1180)) $)) (-15 -4045 ((-661 (-1180)) $)) (-15 -4044 ($)) (-15 -4043 ((-661 (-1180)) $)) (-15 -4042 ((-661 (-1180)) $ (-661 (-1180)))) (-15 -4041 ((-661 (-1180)) $ (-661 (-1180)))) (-15 -4040 ((-661 (-1180)) $ (-661 (-1180))))))) (T -1218)) -((-4402 (*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-558)) (-5 *1 (-1218)))) (-4402 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-558)) (-5 *1 (-1218)))) (-4047 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1218)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1218)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218)))) (-4044 (*1 *1) (-5 *1 (-1218))) (-4043 (*1 *2 *1) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218)))) (-4042 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218)))) (-4041 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218)))) (-4040 (*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) -((-4376 (((-1218) |#1|) 11 T ELT))) -(((-1219 |#1|) (-10 -7 (-15 -4376 ((-1218) |#1|))) (-1122)) (T -1219)) -((-4376 (*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1219 *3)) (-4 *3 (-1122))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4052 (((-1180) $ (-1180)) 21 T ELT) (((-1180) $) 20 T ELT)) (-1900 (((-1180) $ (-1180)) 19 T ELT)) (-1904 (($ $ (-1180)) NIL T ELT)) (-4050 (((-3 (-1180) #1="failed") $) 11 T ELT)) (-4051 (((-1180) $) 8 T ELT)) (-4049 (((-3 (-1180) #1#) $) 12 T ELT)) (-1901 (((-1180) $) 9 T ELT)) (-1905 (($ (-402)) NIL T ELT) (($ (-402) (-1180)) NIL T ELT)) (-3970 (((-402) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-1902 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4048 (((-114) $) 25 T ELT)) (-4376 (((-877) $) NIL T ELT)) (-1903 (($ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1220) (-13 (-378 (-402) (-1180)) (-10 -8 (-15 -4052 ((-1180) $ (-1180))) (-15 -4052 ((-1180) $)) (-15 -4051 ((-1180) $)) (-15 -4050 ((-3 (-1180) #1="failed") $)) (-15 -4049 ((-3 (-1180) #1#) $)) (-15 -4048 ((-114) $))))) (T -1220)) -((-4052 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-4052 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-4050 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-4049 (*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220)))) (-4048 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1220))))) -((-4053 (((-3 (-558) #1="failed") |#1|) 19 T ELT)) (-4054 (((-3 (-558) #1#) |#1|) 14 T ELT)) (-4055 (((-558) (-1180)) 33 T ELT))) -(((-1221 |#1|) (-10 -7 (-15 -4053 ((-3 (-558) #1="failed") |#1|)) (-15 -4054 ((-3 (-558) #1#) |#1|)) (-15 -4055 ((-558) (-1180)))) (-1070)) (T -1221)) -((-4055 (*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-558)) (-5 *1 (-1221 *4)) (-4 *4 (-1070)))) (-4054 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1221 *3)) (-4 *3 (-1070)))) (-4053 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1221 *3)) (-4 *3 (-1070))))) -((-4056 (((-1154 (-229))) 9 T ELT))) -(((-1222) (-10 -7 (-15 -4056 ((-1154 (-229)))))) (T -1222)) -((-4056 (*1 *2) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-1222))))) -((-4057 (($) 12 T ELT)) (-3918 (($ $) 36 T ELT)) (-3916 (($ $) 34 T ELT)) (-3904 (($ $) 26 T ELT)) (-3920 (($ $) 18 T ELT)) (-3921 (($ $) 16 T ELT)) (-3919 (($ $) 20 T ELT)) (-3907 (($ $) 31 T ELT)) (-3917 (($ $) 35 T ELT)) (-3905 (($ $) 30 T ELT))) -(((-1223 |#1|) (-10 -7 (-15 -4057 (|#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3905 (|#1| |#1|))) (-1224)) (T -1223)) -NIL -((-3912 (($ $) 26 T ELT)) (-4069 (($ $) 11 T ELT)) (-3910 (($ $) 27 T ELT)) (-4068 (($ $) 10 T ELT)) (-3914 (($ $) 28 T ELT)) (-4067 (($ $) 9 T ELT)) (-4057 (($) 16 T ELT)) (-4372 (($ $) 19 T ELT)) (-4373 (($ $) 18 T ELT)) (-3915 (($ $) 29 T ELT)) (-4066 (($ $) 8 T ELT)) (-3913 (($ $) 30 T ELT)) (-4065 (($ $) 7 T ELT)) (-3911 (($ $) 31 T ELT)) (-4064 (($ $) 6 T ELT)) (-3918 (($ $) 20 T ELT)) (-3906 (($ $) 32 T ELT)) (-3916 (($ $) 21 T ELT)) (-3904 (($ $) 33 T ELT)) (-3920 (($ $) 22 T ELT)) (-3908 (($ $) 34 T ELT)) (-3921 (($ $) 23 T ELT)) (-3909 (($ $) 35 T ELT)) (-3919 (($ $) 24 T ELT)) (-3907 (($ $) 36 T ELT)) (-3917 (($ $) 25 T ELT)) (-3905 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) -(((-1224) (-142)) (T -1224)) -((-4057 (*1 *1) (-4 *1 (-1224)))) -(-13 (-1227) (-95) (-505) (-35) (-296) (-10 -8 (-15 -4057 ($)))) -(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-1227) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 19 T ELT)) (-4062 (($ |#1| (-661 $)) 28 T ELT) (($ (-661 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3426 ((|#1| $ |#1|) 14 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 13 (|has| $ (-6 -4426)) ELT)) (-4154 (($) NIL T CONST)) (-3290 (((-661 |#1|) $) 70 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 59 T ELT)) (-3428 (((-114) $ $) 50 (|has| |#1| (-1122)) ELT)) (-3007 (((-661 |#1|) $) 71 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 69 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3431 (((-661 |#1|) $) 55 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 67 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 102 T ELT)) (-3823 (((-114) $) 9 T ELT)) (-3993 (($) 10 T ELT)) (-4230 ((|#1| $ #1#) NIL T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-4058 (((-661 $) $) 84 T ELT)) (-4059 (((-114) $ $) 105 T ELT)) (-4060 (((-661 $) $) 100 T ELT)) (-4061 (($ $) 101 T ELT)) (-4063 (((-114) $) 77 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 17 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3820 (($ $) 83 T ELT)) (-4376 (((-877) $) 86 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 12 T ELT)) (-3429 (((-114) $ $) 39 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 66 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 81 (|has| $ (-6 -4425)) ELT))) -(((-1225 |#1|) (-13 (-1031 |#1|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4062 ($ |#1| (-661 $))) (-15 -4062 ($ (-661 |#1|))) (-15 -4062 ($ |#1|)) (-15 -4063 ((-114) $)) (-15 -4061 ($ $)) (-15 -4060 ((-661 $) $)) (-15 -4059 ((-114) $ $)) (-15 -4058 ((-661 $) $)))) (-1122)) (T -1225)) -((-4063 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-4062 (*1 *1 *2 *3) (-12 (-5 *3 (-661 (-1225 *2))) (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-4062 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-1225 *3)))) (-4062 (*1 *1 *2) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-4061 (*1 *1 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) (-4060 (*1 *2 *1) (-12 (-5 *2 (-661 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-4059 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3)) (-4 *3 (-1122)))) (-4058 (*1 *2 *1) (-12 (-5 *2 (-661 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) -((-4069 (($ $) 15 T ELT)) (-4067 (($ $) 12 T ELT)) (-4066 (($ $) 10 T ELT)) (-4065 (($ $) 17 T ELT))) -(((-1226 |#1|) (-10 -7 (-15 -4065 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4069 (|#1| |#1|))) (-1227)) (T -1226)) -NIL -((-4069 (($ $) 11 T ELT)) (-4068 (($ $) 10 T ELT)) (-4067 (($ $) 9 T ELT)) (-4066 (($ $) 8 T ELT)) (-4065 (($ $) 7 T ELT)) (-4064 (($ $) 6 T ELT))) -(((-1227) (-142)) (T -1227)) -((-4069 (*1 *1 *1) (-4 *1 (-1227))) (-4068 (*1 *1 *1) (-4 *1 (-1227))) (-4067 (*1 *1 *1) (-4 *1 (-1227))) (-4066 (*1 *1 *1) (-4 *1 (-1227))) (-4065 (*1 *1 *1) (-4 *1 (-1227))) (-4064 (*1 *1 *1) (-4 *1 (-1227)))) -(-13 (-10 -8 (-15 -4064 ($ $)) (-15 -4065 ($ $)) (-15 -4066 ($ $)) (-15 -4067 ($ $)) (-15 -4068 ($ $)) (-15 -4069 ($ $)))) -((-4072 ((|#2| |#2|) 95 T ELT)) (-4075 (((-114) |#2|) 29 T ELT)) (-4073 ((|#2| |#2|) 33 T ELT)) (-4074 ((|#2| |#2|) 35 T ELT)) (-4070 ((|#2| |#2| (-1198)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-4076 (((-171 |#2|) |#2|) 31 T ELT)) (-4071 ((|#2| |#2| (-1198)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) -(((-1228 |#1| |#2|) (-10 -7 (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1198))) (-15 -4071 (|#2| |#2|)) (-15 -4071 (|#2| |#2| (-1198))) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 (|#2| |#2|)) (-15 -4075 ((-114) |#2|)) (-15 -4076 ((-171 |#2|) |#2|))) (-13 (-464) (-1059 (-558)) (-658 (-558))) (-13 (-27) (-1224) (-433 |#1|))) (T -1228)) -((-4076 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-171 *3)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) (-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-114)) (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) (-4074 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3))))) (-4071 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3))))) (-4070 (*1 *2 *2 *3) (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *3)))))) -((-4077 ((|#4| |#4| |#1|) 31 T ELT)) (-4078 ((|#4| |#4| |#1|) 32 T ELT))) -(((-1229 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4077 (|#4| |#4| |#1|)) (-15 -4078 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-706 |#1| |#2| |#3|)) (T -1229)) -((-4078 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) (-4077 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) -((-4096 ((|#2| |#2|) 148 T ELT)) (-4098 ((|#2| |#2|) 145 T ELT)) (-4095 ((|#2| |#2|) 136 T ELT)) (-4097 ((|#2| |#2|) 133 T ELT)) (-4094 ((|#2| |#2|) 141 T ELT)) (-4093 ((|#2| |#2|) 129 T ELT)) (-4082 ((|#2| |#2|) 44 T ELT)) (-4081 ((|#2| |#2|) 105 T ELT)) (-4079 ((|#2| |#2|) 88 T ELT)) (-4092 ((|#2| |#2|) 143 T ELT)) (-4091 ((|#2| |#2|) 131 T ELT)) (-4104 ((|#2| |#2|) 153 T ELT)) (-4102 ((|#2| |#2|) 151 T ELT)) (-4103 ((|#2| |#2|) 152 T ELT)) (-4101 ((|#2| |#2|) 150 T ELT)) (-4080 ((|#2| |#2|) 163 T ELT)) (-4105 ((|#2| |#2|) 30 (-12 (|has| |#2| (-631 (-905 |#1|))) (|has| |#2| (-901 |#1|)) (|has| |#1| (-631 (-905 |#1|))) (|has| |#1| (-901 |#1|))) ELT)) (-4083 ((|#2| |#2|) 89 T ELT)) (-4084 ((|#2| |#2|) 154 T ELT)) (-4393 ((|#2| |#2|) 155 T ELT)) (-4090 ((|#2| |#2|) 142 T ELT)) (-4089 ((|#2| |#2|) 130 T ELT)) (-4088 ((|#2| |#2|) 149 T ELT)) (-4100 ((|#2| |#2|) 147 T ELT)) (-4087 ((|#2| |#2|) 137 T ELT)) (-4099 ((|#2| |#2|) 135 T ELT)) (-4086 ((|#2| |#2|) 139 T ELT)) (-4085 ((|#2| |#2|) 127 T ELT))) -(((-1230 |#1| |#2|) (-10 -7 (-15 -4393 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (-15 -4104 (|#2| |#2|)) (IF (|has| |#1| (-901 |#1|)) (IF (|has| |#1| (-631 (-905 |#1|))) (IF (|has| |#2| (-631 (-905 |#1|))) (IF (|has| |#2| (-901 |#1|)) (-15 -4105 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-433 |#1|) (-1224))) (T -1230)) -((-4105 (*1 *2 *2) (-12 (-4 *3 (-631 (-905 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-631 (-905 *3))) (-4 *2 (-901 *3)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4104 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) (-4393 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1198)) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4244 (((-965 |#1|) $ (-791)) 17 T ELT) (((-965 |#1|) $ (-791) (-791)) NIL T ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-791) $ (-1198)) NIL T ELT) (((-791) $ (-1198) (-791)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ $ (-661 (-1198)) (-661 (-543 (-1198)))) NIL T ELT) (($ $ (-1198) (-543 (-1198))) NIL T ELT) (($ |#1| (-543 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4242 (($ $ (-1198)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198) |#1|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4106 (($ (-1 $) (-1198) |#1|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 (($ $ (-791)) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (($ $ (-1198) $) NIL T ELT) (($ $ (-661 (-1198)) (-661 $)) NIL T ELT) (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT)) (-4188 (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT)) (-4378 (((-543 (-1198)) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-1198)) NIL T ELT) (($ (-965 |#1|)) NIL T ELT)) (-4107 ((|#1| $ (-543 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (((-965 |#1|) $ (-791)) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3070 (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) -(((-1231 |#1|) (-13 (-760 |#1| (-1198)) (-10 -8 (-15 -4107 ((-965 |#1|) $ (-791))) (-15 -4376 ($ (-1198))) (-15 -4376 ($ (-965 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $ (-1198) |#1|)) (-15 -4106 ($ (-1 $) (-1198) |#1|))) |%noBranch|))) (-1070)) (T -1231)) -((-4107 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-965 *4)) (-5 *1 (-1231 *4)) (-4 *4 (-1070)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1231 *3)) (-4 *3 (-1070)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1070)) (-5 *1 (-1231 *3)))) (-4242 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)))) (-4106 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1198)) (-5 *1 (-1231 *4)) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1070))))) -((-4123 (((-114) |#5| $) 68 T ELT) (((-114) $) 109 T ELT)) (-4118 ((|#5| |#5| $) 83 T ELT)) (-4140 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-4119 (((-661 |#5|) (-661 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-3575 (((-3 $ #1#) (-661 |#5|)) 134 T ELT)) (-4229 (((-3 $ #1#) $) 119 T ELT)) (-4115 ((|#5| |#5| $) 101 T ELT)) (-4124 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-4113 ((|#5| |#5| $) 105 T ELT)) (-4272 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#5|)) (|:| -1905 (-661 |#5|))) $) 63 T ELT)) (-4125 (((-114) |#5| $) 66 T ELT) (((-114) $) 110 T ELT)) (-3598 ((|#4| $) 115 T ELT)) (-4228 (((-3 |#5| #1#) $) 117 T ELT)) (-4127 (((-661 |#5|) $) 55 T ELT)) (-4121 (((-114) |#5| $) 75 T ELT) (((-114) $) 114 T ELT)) (-4116 ((|#5| |#5| $) 89 T ELT)) (-4129 (((-114) $ $) 29 T ELT)) (-4122 (((-114) |#5| $) 71 T ELT) (((-114) $) 112 T ELT)) (-4117 ((|#5| |#5| $) 86 T ELT)) (-4231 (((-3 |#5| #1#) $) 116 T ELT)) (-4199 (($ $ |#5|) 135 T ELT)) (-4378 (((-791) $) 60 T ELT)) (-3950 (($ (-661 |#5|)) 132 T ELT)) (-3311 (($ $ |#4|) 130 T ELT)) (-3313 (($ $ |#4|) 128 T ELT)) (-4114 (($ $) 127 T ELT)) (-4376 (((-877) $) NIL T ELT) (((-661 |#5|) $) 120 T ELT)) (-4108 (((-791) $) 139 T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#5|))) #1#) (-661 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#5|))) #1#) (-661 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-4120 (((-114) $ (-1 (-114) |#5| (-661 |#5|))) 107 T ELT)) (-4110 (((-661 |#4|) $) 122 T ELT)) (-4363 (((-114) |#4| $) 125 T ELT)) (-3454 (((-114) $ $) 20 T ELT))) -(((-1232 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4108 ((-791) |#1|)) (-15 -4199 (|#1| |#1| |#5|)) (-15 -4140 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -4363 ((-114) |#4| |#1|)) (-15 -4110 ((-661 |#4|) |#1|)) (-15 -4229 ((-3 |#1| #1#) |#1|)) (-15 -4228 ((-3 |#5| #1#) |#1|)) (-15 -4231 ((-3 |#5| #1#) |#1|)) (-15 -4113 (|#5| |#5| |#1|)) (-15 -4114 (|#1| |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 (|#5| |#5| |#1|)) (-15 -4119 ((-661 |#5|) (-661 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4272 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4121 ((-114) |#1|)) (-15 -4122 ((-114) |#1|)) (-15 -4123 ((-114) |#1|)) (-15 -4120 ((-114) |#1| (-1 (-114) |#5| (-661 |#5|)))) (-15 -4121 ((-114) |#5| |#1|)) (-15 -4122 ((-114) |#5| |#1|)) (-15 -4123 ((-114) |#5| |#1|)) (-15 -4124 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4125 ((-114) |#1|)) (-15 -4125 ((-114) |#5| |#1|)) (-15 -4126 ((-2 (|:| -4291 (-661 |#5|)) (|:| -1905 (-661 |#5|))) |#1|)) (-15 -4378 ((-791) |#1|)) (-15 -4127 ((-661 |#5|) |#1|)) (-15 -4128 ((-3 (-2 (|:| |bas| |#1|) (|:| -3744 (-661 |#5|))) #1#) (-661 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4128 ((-3 (-2 (|:| |bas| |#1|) (|:| -3744 (-661 |#5|))) #1#) (-661 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4129 ((-114) |#1| |#1|)) (-15 -3311 (|#1| |#1| |#4|)) (-15 -3313 (|#1| |#1| |#4|)) (-15 -3598 (|#4| |#1|)) (-15 -3575 ((-3 |#1| #1#) (-661 |#5|))) (-15 -4376 ((-661 |#5|) |#1|)) (-15 -3950 (|#1| (-661 |#5|))) (-15 -4272 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4272 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4140 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4272 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4376 ((-877) |#1|)) (-15 -3454 ((-114) |#1| |#1|))) (-1233 |#2| |#3| |#4| |#5|) (-569) (-815) (-861) (-1086 |#2| |#3| |#4|)) (T -1232)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) 90 T ELT)) (-4112 (((-661 $) (-661 |#4|)) 91 T ELT)) (-3484 (((-661 |#3|) $) 37 T ELT)) (-3309 (((-114) $) 30 T ELT)) (-3300 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4118 ((|#4| |#4| $) 97 T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4140 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4425)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-4154 (($) 46 T CONST)) (-3305 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ "failed") (-661 |#4|)) 40 T ELT)) (-3574 (($ (-661 |#4|)) 39 T ELT)) (-4229 (((-3 $ "failed") $) 87 T ELT)) (-4115 ((|#4| |#4| $) 94 T ELT)) (-1467 (($ $) 69 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#4| $) 68 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4113 ((|#4| |#4| $) 92 T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) 110 T ELT)) (-3290 (((-661 |#4|) $) 53 (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3598 ((|#3| $) 38 T ELT)) (-3007 (((-661 |#4|) $) 54 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3315 (((-661 |#3|) $) 36 T ELT)) (-3314 (((-114) |#3| $) 35 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-4228 (((-3 |#4| "failed") $) 88 T ELT)) (-4127 (((-661 |#4|) $) 112 T ELT)) (-4121 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4116 ((|#4| |#4| $) 95 T ELT)) (-4129 (((-114) $ $) 115 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4117 ((|#4| |#4| $) 96 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4231 (((-3 |#4| "failed") $) 89 T ELT)) (-1468 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4109 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-4199 (($ $ |#4|) 82 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) 42 T ELT)) (-3823 (((-114) $) 45 T ELT)) (-3993 (($) 44 T ELT)) (-4378 (((-791) $) 111 T ELT)) (-2157 (((-791) |#4| $) 55 (-12 (|has| |#4| (-1122)) (|has| $ (-6 -4425))) ELT) (((-791) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) 43 T ELT)) (-4402 (((-547) $) 70 (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) 61 T ELT)) (-3311 (($ $ |#3|) 32 T ELT)) (-3313 (($ $ |#3|) 34 T ELT)) (-4114 (($ $) 93 T ELT)) (-3312 (($ $ |#3|) 33 T ELT)) (-4376 (((-877) $) 13 T ELT) (((-661 |#4|) $) 41 T ELT)) (-4108 (((-791) $) 81 (|has| |#3| (-381)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) "failed") (-661 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) "failed") (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) 103 T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) 86 T ELT)) (-4363 (((-114) |#3| $) 85 T ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4387 (((-791) $) 47 (|has| $ (-6 -4425)) ELT))) -(((-1233 |#1| |#2| |#3| |#4|) (-142) (-569) (-815) (-861) (-1086 |t#1| |t#2| |t#3|)) (T -1233)) -((-4129 (*1 *2 *1 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-4128 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3744 (-661 *8)))) (-5 *3 (-661 *8)) (-4 *1 (-1233 *5 *6 *7 *8)))) (-4128 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-861)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3744 (-661 *9)))) (-5 *3 (-661 *9)) (-4 *1 (-1233 *6 *7 *8 *9)))) (-4127 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *6)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-791)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-2 (|:| -4291 (-661 *6)) (|:| -1905 (-661 *6)))))) (-4125 (*1 *2 *3 *1) (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-4124 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1233 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-114)))) (-4123 (*1 *2 *3 *1) (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-4122 (*1 *2 *3 *1) (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-4121 (*1 *2 *3 *1) (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-4120 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-661 *7))) (-4 *1 (-1233 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)))) (-4123 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) (-4272 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1233 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *2 (-1086 *5 *6 *7)))) (-4119 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1233 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)))) (-4118 (*1 *2 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4117 (*1 *2 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4116 (*1 *2 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4115 (*1 *2 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4114 (*1 *1 *1) (-12 (-4 *1 (-1233 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-4113 (*1 *2 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4112 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1233 *4 *5 *6 *7)))) (-4111 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-661 (-2 (|:| -4291 *1) (|:| -1905 (-661 *7))))) (-5 *3 (-661 *7)) (-4 *1 (-1233 *4 *5 *6 *7)))) (-4231 (*1 *2 *1) (|partial| -12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4228 (*1 *2 *1) (|partial| -12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4229 (*1 *1 *1) (|partial| -12 (-4 *1 (-1233 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) (-4110 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *5)))) (-4363 (*1 *2 *3 *1) (-12 (-4 *1 (-1233 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-114)))) (-4140 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1233 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) (-4109 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4199 (*1 *1 *1 *2) (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) (-4108 (*1 *2 *1) (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-791))))) -(-13 (-997 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4425) (-6 -4426) (-15 -4129 ((-114) $ $)) (-15 -4128 ((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |t#4|))) "failed") (-661 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4128 ((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |t#4|))) "failed") (-661 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4127 ((-661 |t#4|) $)) (-15 -4378 ((-791) $)) (-15 -4126 ((-2 (|:| -4291 (-661 |t#4|)) (|:| -1905 (-661 |t#4|))) $)) (-15 -4125 ((-114) |t#4| $)) (-15 -4125 ((-114) $)) (-15 -4124 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -4123 ((-114) |t#4| $)) (-15 -4122 ((-114) |t#4| $)) (-15 -4121 ((-114) |t#4| $)) (-15 -4120 ((-114) $ (-1 (-114) |t#4| (-661 |t#4|)))) (-15 -4123 ((-114) $)) (-15 -4122 ((-114) $)) (-15 -4121 ((-114) $)) (-15 -4272 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4119 ((-661 |t#4|) (-661 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4118 (|t#4| |t#4| $)) (-15 -4117 (|t#4| |t#4| $)) (-15 -4116 (|t#4| |t#4| $)) (-15 -4115 (|t#4| |t#4| $)) (-15 -4114 ($ $)) (-15 -4113 (|t#4| |t#4| $)) (-15 -4112 ((-661 $) (-661 |t#4|))) (-15 -4111 ((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |t#4|)))) (-661 |t#4|))) (-15 -4231 ((-3 |t#4| "failed") $)) (-15 -4228 ((-3 |t#4| "failed") $)) (-15 -4229 ((-3 $ "failed") $)) (-15 -4110 ((-661 |t#3|) $)) (-15 -4363 ((-114) |t#3| $)) (-15 -4140 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4109 ((-3 $ "failed") $ |t#4|)) (-15 -4199 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -4108 ((-791) $)) |%noBranch|))) -(((-34) . T) ((-102) . T) ((-630 (-661 |#4|)) . T) ((-630 (-877)) . T) ((-153 |#4|) . T) ((-631 (-547)) |has| |#4| (-631 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ((-997 |#1| |#2| |#3| |#4|) . T) ((-1122) . T) ((-1238) . T)) -((-4135 (($ |#1| (-661 (-661 (-962 (-229)))) (-114)) 19 T ELT)) (-4134 (((-114) $ (-114)) 18 T ELT)) (-4133 (((-114) $) 17 T ELT)) (-4131 (((-661 (-661 (-962 (-229)))) $) 13 T ELT)) (-4130 ((|#1| $) 8 T ELT)) (-4132 (((-114) $) 15 T ELT))) -(((-1234 |#1|) (-10 -8 (-15 -4130 (|#1| $)) (-15 -4131 ((-661 (-661 (-962 (-229)))) $)) (-15 -4132 ((-114) $)) (-15 -4133 ((-114) $)) (-15 -4134 ((-114) $ (-114))) (-15 -4135 ($ |#1| (-661 (-661 (-962 (-229)))) (-114)))) (-995)) (T -1234)) -((-4135 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-114)) (-5 *1 (-1234 *2)) (-4 *2 (-995)))) (-4134 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-995)))) (-4133 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-995)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-995)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-1234 *3)) (-4 *3 (-995)))) (-4130 (*1 *2 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-995))))) -((-4137 (((-962 (-229)) (-962 (-229))) 31 T ELT)) (-4136 (((-962 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-4139 (((-661 (-962 (-229))) (-962 (-229)) (-962 (-229)) (-962 (-229)) (-229) (-661 (-661 (-229)))) 57 T ELT)) (-4266 (((-229) (-962 (-229)) (-962 (-229))) 27 T ELT)) (-4264 (((-962 (-229)) (-962 (-229)) (-962 (-229))) 28 T ELT)) (-4138 (((-661 (-661 (-229))) (-558)) 45 T ELT)) (-4267 (((-962 (-229)) (-962 (-229)) (-962 (-229))) 26 T ELT)) (-4269 (((-962 (-229)) (-962 (-229)) (-962 (-229))) 24 T ELT)) (* (((-962 (-229)) (-229) (-962 (-229))) 22 T ELT))) -(((-1235) (-10 -7 (-15 -4136 ((-962 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-962 (-229)) (-229) (-962 (-229)))) (-15 -4269 ((-962 (-229)) (-962 (-229)) (-962 (-229)))) (-15 -4267 ((-962 (-229)) (-962 (-229)) (-962 (-229)))) (-15 -4266 ((-229) (-962 (-229)) (-962 (-229)))) (-15 -4264 ((-962 (-229)) (-962 (-229)) (-962 (-229)))) (-15 -4137 ((-962 (-229)) (-962 (-229)))) (-15 -4138 ((-661 (-661 (-229))) (-558))) (-15 -4139 ((-661 (-962 (-229))) (-962 (-229)) (-962 (-229)) (-962 (-229)) (-229) (-661 (-661 (-229))))))) (T -1235)) -((-4139 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-661 (-661 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 (-962 *4))) (-5 *1 (-1235)) (-5 *3 (-962 *4)))) (-4138 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-1235)))) (-4137 (*1 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) (-4264 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) (-4266 (*1 *2 *3 *3) (-12 (-5 *3 (-962 (-229))) (-5 *2 (-229)) (-5 *1 (-1235)))) (-4267 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) (-4269 (*1 *2 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-962 (-229))) (-5 *3 (-229)) (-5 *1 (-1235)))) (-4136 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)) (-5 *3 (-229))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4140 ((|#1| $ (-791)) 18 T ELT)) (-4263 (((-791) $) 13 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4376 (((-977 |#1|) $) 12 T ELT) (($ (-977 |#1|)) 11 T ELT) (((-877) $) 29 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-3454 (((-114) $ $) 22 (|has| |#1| (-1122)) ELT))) -(((-1236 |#1|) (-13 (-502 (-977 |#1|)) (-10 -8 (-15 -4140 (|#1| $ (-791))) (-15 -4263 ((-791) $)) (IF (|has| |#1| (-630 (-877))) (-6 (-630 (-877))) |%noBranch|) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|))) (-1238)) (T -1236)) -((-4140 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-1236 *2)) (-4 *2 (-1238)))) (-4263 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1236 *3)) (-4 *3 (-1238))))) -((-4143 (((-417 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-558)) 92 T ELT)) (-4141 (((-417 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 84 T ELT)) (-4142 (((-417 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|))) 68 T ELT))) -(((-1237 |#1|) (-10 -7 (-15 -4141 ((-417 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -4142 ((-417 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)))) (-15 -4143 ((-417 (-1192 (-1192 |#1|))) (-1192 (-1192 |#1|)) (-558)))) (-363)) (T -1237)) -((-4143 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-363)) (-5 *2 (-417 (-1192 (-1192 *5)))) (-5 *1 (-1237 *5)) (-5 *3 (-1192 (-1192 *5))))) (-4142 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1192 (-1192 *4)))) (-5 *1 (-1237 *4)) (-5 *3 (-1192 (-1192 *4))))) (-4141 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1192 (-1192 *4)))) (-5 *1 (-1237 *4)) (-5 *3 (-1192 (-1192 *4)))))) -NIL -(((-1238) (-142)) (T -1238)) -NIL -(-13 (-10 -7 (-6 -2501))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 9 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1239) (-1104)) (T -1239)) -NIL -((-4147 (((-114)) 18 T ELT)) (-4144 (((-1294) (-661 |#1|) (-661 |#1|)) 22 T ELT) (((-1294) (-661 |#1|)) 23 T ELT)) (-4149 (((-114) |#1| |#1|) 37 (|has| |#1| (-861)) ELT)) (-4146 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-4148 ((|#1| (-661 |#1|)) 38 (|has| |#1| (-861)) ELT) ((|#1| (-661 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-4145 (((-2 (|:| -3647 (-661 |#1|)) (|:| -3646 (-661 |#1|)))) 20 T ELT))) -(((-1240 |#1|) (-10 -7 (-15 -4144 ((-1294) (-661 |#1|))) (-15 -4144 ((-1294) (-661 |#1|) (-661 |#1|))) (-15 -4145 ((-2 (|:| -3647 (-661 |#1|)) (|:| -3646 (-661 |#1|))))) (-15 -4146 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4146 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4148 (|#1| (-661 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4147 ((-114))) (IF (|has| |#1| (-861)) (PROGN (-15 -4148 (|#1| (-661 |#1|))) (-15 -4149 ((-114) |#1| |#1|))) |%noBranch|)) (-1122)) (T -1240)) -((-4149 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1240 *3)) (-4 *3 (-861)) (-4 *3 (-1122)))) (-4148 (*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-861)) (-5 *1 (-1240 *2)))) (-4147 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-4148 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1240 *2)) (-4 *2 (-1122)))) (-4146 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1122)) (-5 *2 (-114)) (-5 *1 (-1240 *3)))) (-4146 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-4145 (*1 *2) (-12 (-5 *2 (-2 (|:| -3647 (-661 *3)) (|:| -3646 (-661 *3)))) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) (-4144 (*1 *2 *3 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4)))) (-4144 (*1 *2 *3) (-12 (-5 *3 (-661 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4))))) -((-4150 (((-1294) (-661 (-1198)) (-661 (-1198))) 14 T ELT) (((-1294) (-661 (-1198))) 12 T ELT)) (-4152 (((-1294)) 16 T ELT)) (-4151 (((-2 (|:| -3646 (-661 (-1198))) (|:| -3647 (-661 (-1198))))) 20 T ELT))) -(((-1241) (-10 -7 (-15 -4150 ((-1294) (-661 (-1198)))) (-15 -4150 ((-1294) (-661 (-1198)) (-661 (-1198)))) (-15 -4151 ((-2 (|:| -3646 (-661 (-1198))) (|:| -3647 (-661 (-1198)))))) (-15 -4152 ((-1294))))) (T -1241)) -((-4152 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1241)))) (-4151 (*1 *2) (-12 (-5 *2 (-2 (|:| -3646 (-661 (-1198))) (|:| -3647 (-661 (-1198))))) (-5 *1 (-1241)))) (-4150 (*1 *2 *3 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241)))) (-4150 (*1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241))))) -((-4205 (($ $) 17 T ELT)) (-4153 (((-114) $) 27 T ELT))) -(((-1242 |#1|) (-10 -7 (-15 -4205 (|#1| |#1|)) (-15 -4153 ((-114) |#1|))) (-1243)) (T -1242)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 63 T ELT)) (-4401 (((-417 $) $) 64 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4153 (((-114) $) 65 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4162 (((-417 $) $) 62 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) -(((-1243) (-142)) (T -1243)) -((-4153 (*1 *2 *1) (-12 (-4 *1 (-1243)) (-5 *2 (-114)))) (-4401 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1243)))) (-4205 (*1 *1 *1) (-4 *1 (-1243))) (-4162 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1243))))) -(-13 (-464) (-10 -8 (-15 -4153 ((-114) $)) (-15 -4401 ((-417 $) $)) (-15 -4205 ($ $)) (-15 -4162 ((-417 $) $)))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-666 (-558)) . T) ((-666 $) . T) ((-668 $) . T) ((-660 $) . T) ((-737 $) . T) ((-746) . T) ((-1072 $) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-4156 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-1244) (-13 (-857) (-682) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4155 ($ $ $)) (-15 -4154 ($) -4382)))) (T -1244)) -((-4156 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4155 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4154 (*1 *1) (-5 *1 (-1244)))) -((-791) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-4156 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-1245) (-13 (-857) (-682) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4155 ($ $ $)) (-15 -4154 ($) -4382)))) (T -1245)) -((-4156 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4155 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4154 (*1 *1) (-5 *1 (-1245)))) -((-791) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-4156 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-1246) (-13 (-857) (-682) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4155 ($ $ $)) (-15 -4154 ($) -4382)))) (T -1246)) -((-4156 (*1 *1 *1 *1) (-5 *1 (-1246))) (-4155 (*1 *1 *1 *1) (-5 *1 (-1246))) (-4154 (*1 *1) (-5 *1 (-1246)))) -((-791) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-2526 (($ $) NIL T ELT)) (-3538 (((-791)) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3395 (($) NIL T ELT)) (-2930 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3258 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2220 (((-938) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2631 (($ (-938)) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-4156 (($ $ $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-2966 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-3086 (((-114) $ $) NIL T ELT)) (-2525 (($ $ $) NIL T ELT))) -(((-1247) (-13 (-857) (-682) (-10 -8 (-15 -4156 ($ $ $)) (-15 -4155 ($ $ $)) (-15 -4154 ($) -4382)))) (T -1247)) -((-4156 (*1 *1 *1 *1) (-5 *1 (-1247))) (-4155 (*1 *1 *1 *1) (-5 *1 (-1247))) (-4154 (*1 *1) (-5 *1 (-1247)))) -((-791) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3531 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 10 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2273 (($ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2271 (((-114) $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-4201 (($ $ (-558)) NIL T ELT) (($ $ (-558) (-558)) NIL T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL T ELT)) (-4161 (((-1278 |#1| |#2| |#3|) $) NIL T ELT)) (-4158 (((-3 (-1278 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-4159 (((-1278 |#1| |#2| |#3|) $) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4053 (((-558) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-1278 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1198) #1#) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-1198))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT)) (-3574 (((-1278 |#1| |#2| |#3|) $) NIL T ELT) (((-1198) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-1198))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-558) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) ELT)) (-4160 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-1278 |#1| |#2| |#3|)) (-709 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-1278 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1278 |#1| |#2| |#3|)))) (-709 $) (-1288 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4157 (((-419 (-965 |#1|)) $ (-558)) NIL (|has| |#1| (-569)) ELT) (((-419 (-965 |#1|)) $ (-558) (-558)) NIL (|has| |#1| (-569)) ELT)) (-3395 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3604 (((-114) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-901 (-391))) (|has| |#1| (-376))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-901 (-558))) (|has| |#1| (-376))) ELT)) (-4202 (((-558) $) NIL T ELT) (((-558) $ (-558)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3399 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (((-711 $) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-376))) ELT)) (-3605 (((-114) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-4207 (($ $ (-938)) NIL T ELT)) (-4245 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-558)) 18 T ELT) (($ $ (-1103) (-558)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-558))) NIL T ELT)) (-2930 (($ $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-3258 (($ $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2494 (((-709 (-1278 |#1| |#2| |#3|)) (-1288 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-1278 |#1| |#2| |#3|))) (|:| |vec| (-1288 (-1278 |#1| |#2| |#3|)))) (-1288 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-1288 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4209 (($ (-558) (-1278 |#1| |#2| |#3|)) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4242 (($ $) 27 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 28 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3866 (($) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1173)) (|has| |#1| (-376))) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3530 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3532 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-558)) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1198) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1198) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1198)) (-661 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-526 (-1198) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-305 (-1278 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-321 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-321 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-321 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1278 |#1| |#2| |#3|)) (-661 (-1278 |#1| |#2| |#3|))) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-321 (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-558)) NIL T ELT) (($ $ $) NIL (|has| (-558) (-1133)) ELT) (($ $ (-1278 |#1| |#2| |#3|)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-298 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1285 |#2|)) 26 T ELT) (($ $) 25 (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3396 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3398 (((-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-4378 (((-558) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4402 (((-547) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-631 (-547))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1041)) (|has| |#1| (-376))) ELT) (((-905 (-391)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-631 (-905 (-391)))) (|has| |#1| (-376))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-631 (-905 (-558)))) (|has| |#1| (-376))) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1278 |#1| |#2| |#3|)) NIL T ELT) (($ (-1285 |#2|)) 24 T ELT) (($ (-1198)) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-1198))) (|has| |#1| (-376))) ELT) (($ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT) (($ (-419 (-558))) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-1059 (-558))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4107 ((|#1| $ (-558)) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 11 T ELT)) (-3533 (((-1278 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-929)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3803 (($ $) NIL (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) ELT)) (-3059 (($) 20 T CONST)) (-3065 (($) 15 T CONST)) (-3070 (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1285 |#2|)) NIL T ELT) (($ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-917 (-1198))) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-2965 (((-114) $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-2966 (((-114) $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-3086 (((-114) $ $) NIL (-3957 (-12 (|has| (-1278 |#1| |#2| |#3|) (-842)) (|has| |#1| (-376))) (-12 (|has| (-1278 |#1| |#2| |#3|) (-861)) (|has| |#1| (-376)))) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1278 |#1| |#2| |#3|) (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 22 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1278 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1278 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1248 |#1| |#2| |#3|) (-13 (-1252 |#1| (-1278 |#1| |#2| |#3|)) (-911 $ (-1285 |#2|)) (-10 -8 (-15 -4376 ($ (-1285 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -1248)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1248 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-4388 (((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)) 23 T ELT))) -(((-1249 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4388 ((-1248 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1248 |#1| |#3| |#5|)))) (-1070) (-1070) (-1198) (-1198) |#1| |#2|) (T -1249)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1248 *6 *8 *10)) (-5 *1 (-1249 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1198))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 (-1103)) $) 92 T ELT)) (-4261 (((-1198) $) 126 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-558)) 121 T ELT) (($ $ (-558) (-558)) 120 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 127 T ELT)) (-3912 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3438 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3910 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 198 T ELT)) (-3914 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) 22 T CONST)) (-2963 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4157 (((-419 (-965 |#1|)) $ (-558)) 196 (|has| |#1| (-569)) ELT) (((-419 (-965 |#1|)) $ (-558) (-558)) 195 (|has| |#1| (-569)) ELT)) (-2962 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) 91 T ELT)) (-4057 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-558) $) 123 T ELT) (((-558) $ (-558)) 122 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) 124 T ELT)) (-4245 (($ (-1 |#1| (-558)) $) 197 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| (-558)) 78 T ELT) (($ $ (-1103) (-558)) 94 T ELT) (($ $ (-661 (-1103)) (-661 (-558))) 93 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4372 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-2102 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4242 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 193 (-3957 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 175 (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-558)) 118 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4373 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT)) (-1787 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-558)) 128 T ELT) (($ $ $) 104 (|has| (-558) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) 116 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198))) 114 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198) (-791)) 113 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 112 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-4378 (((-558) $) 81 T ELT)) (-3915 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-558)) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-4203 ((|#1| $) 125 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-558)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1198)) 115 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198))) 111 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198) (-791)) 110 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 109 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1250 |#1|) (-142) (-1070)) (T -1250)) -((-4248 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1250 *3)))) (-4245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1250 *3)) (-4 *3 (-1070)))) (-4157 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1250 *4)) (-4 *4 (-1070)) (-4 *4 (-569)) (-5 *2 (-419 (-965 *4))))) (-4157 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1250 *4)) (-4 *4 (-1070)) (-4 *4 (-569)) (-5 *2 (-419 (-965 *4))))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558)))))) (-4242 (*1 *1 *1 *2) (-3957 (-12 (-5 *2 (-1198)) (-4 *1 (-1250 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1250 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -3484 ((-661 *2) *3))) (|has| *3 (-15 -4242 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) -(-13 (-1267 |t#1| (-558)) (-10 -8 (-15 -4248 ($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |t#1|))))) (-15 -4245 ($ (-1 |t#1| (-558)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -4157 ((-419 (-965 |t#1|)) $ (-558))) (-15 -4157 ((-419 (-965 |t#1|)) $ (-558) (-558)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $)) (IF (|has| |t#1| (-15 -4242 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -3484 ((-661 (-1198)) |t#1|))) (-15 -4242 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-558))) (-15 -4242 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1224))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-558)) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-558) |#1|) . T) ((-298 $ $) |has| (-558) (-1133)) ((-302) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-737 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-911 $ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-917 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-919 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-994 |#1| (-558) (-1103)) . T) ((-940) |has| |#1| (-376)) ((-1023) |has| |#1| (-38 (-419 (-558)))) ((-1072 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-558)))) ((-1227) |has| |#1| (-38 (-419 (-558)))) ((-1238) . T) ((-1243) |has| |#1| (-376)) ((-1267 |#1| (-558)) . T)) -((-3606 (((-114) $) 12 T ELT)) (-3575 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1198) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT)) (-3574 ((|#3| $) 14 T ELT) (((-1198) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT))) -(((-1251 |#1| |#2| |#3|) (-10 -7 (-15 -3575 ((-3 (-558) #1="failed") |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3575 ((-3 (-1198) #1#) |#1|)) (-15 -3574 ((-1198) |#1|)) (-15 -3575 ((-3 |#3| #1#) |#1|)) (-15 -3574 (|#3| |#1|)) (-15 -3606 ((-114) |#1|))) (-1252 |#2| |#3|) (-1070) (-1281 |#2|)) (T -1251)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3531 ((|#2| $) 263 (-2961 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3484 (((-661 (-1103)) $) 92 T ELT)) (-4261 (((-1198) $) 126 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-558)) 121 T ELT) (($ $ (-558) (-558)) 120 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 127 T ELT)) (-4161 ((|#2| $) 299 T ELT)) (-4158 (((-3 |#2| "failed") $) 295 T ELT)) (-4159 ((|#2| $) 296 T ELT)) (-3912 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 272 (-2961 (|has| |#2| (-929)) (|has| |#1| (-376))) ELT)) (-4205 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3438 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 269 (-2961 (|has| |#2| (-929)) (|has| |#1| (-376))) ELT)) (-1788 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3910 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4053 (((-558) $) 281 (-2961 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 198 T ELT)) (-3914 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-558) #2#) $) 292 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #2#) $) 290 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-1198) #2#) $) 274 (-2961 (|has| |#2| (-1059 (-1198))) (|has| |#1| (-376))) ELT)) (-3574 ((|#2| $) 303 T ELT) (((-558) $) 291 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) 289 (-2961 (|has| |#2| (-1059 (-558))) (|has| |#1| (-376))) ELT) (((-1198) $) 273 (-2961 (|has| |#2| (-1059 (-1198))) (|has| |#1| (-376))) ELT)) (-4160 (($ $) 298 T ELT) (($ (-558) $) 297 T ELT)) (-2963 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4389 (($ $) 77 T ELT)) (-2493 (((-709 |#2|) (-709 $)) 251 (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) 250 (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 249 (-2961 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-709 $)) 248 (-2961 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4157 (((-419 (-965 |#1|)) $ (-558)) 196 (|has| |#1| (-569)) ELT) (((-419 (-965 |#1|)) $ (-558) (-558)) 195 (|has| |#1| (-569)) ELT)) (-3395 (($) 265 (-2961 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-2962 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3604 (((-114) $) 279 (-2961 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3293 (((-114) $) 91 T ELT)) (-4057 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 257 (-2961 (|has| |#2| (-901 (-391))) (|has| |#1| (-376))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 256 (-2961 (|has| |#2| (-901 (-558))) (|has| |#1| (-376))) ELT)) (-4202 (((-558) $) 123 T ELT) (((-558) $ (-558)) 122 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3397 (($ $) 261 (|has| |#1| (-376)) ELT)) (-3399 ((|#2| $) 259 (|has| |#1| (-376)) ELT)) (-3412 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (((-711 $) $) 293 (-2961 (|has| |#2| (-1173)) (|has| |#1| (-376))) ELT)) (-3605 (((-114) $) 280 (-2961 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-4207 (($ $ (-938)) 124 T ELT)) (-4245 (($ (-1 |#1| (-558)) $) 197 T ELT)) (-1785 (((-3 (-661 $) #3="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| (-558)) 78 T ELT) (($ $ (-1103) (-558)) 94 T ELT) (($ $ (-661 (-1103)) (-661 (-558))) 93 T ELT)) (-2930 (($ $ $) 288 (-2961 (|has| |#2| (-861)) (|has| |#1| (-376))) ELT)) (-3258 (($ $ $) 287 (-2961 (|has| |#2| (-861)) (|has| |#1| (-376))) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-376)) ELT)) (-4372 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2494 (((-709 |#2|) (-1288 $)) 253 (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) 252 (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 247 (-2961 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT) (((-709 (-558)) (-1288 $)) 246 (-2961 (|has| |#2| (-658 (-558))) (|has| |#1| (-376))) ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-2102 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4209 (($ (-558) |#2|) 300 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4242 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 193 (-3957 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3866 (($) 294 (-2961 (|has| |#2| (-1173)) (|has| |#1| (-376))) CONST)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 175 (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-3530 (($ $) 264 (-2961 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3532 ((|#2| $) 267 (-2961 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 270 (-2961 (|has| |#2| (-929)) (|has| |#1| (-376))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 271 (-2961 (|has| |#2| (-929)) (|has| |#1| (-376))) ELT)) (-4162 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-558)) 118 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4373 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1198) |#2|) 240 (-2961 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-661 (-1198)) (-661 |#2|)) 239 (-2961 (|has| |#2| (-526 (-1198) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-661 (-305 |#2|))) 238 (-2961 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 237 (-2961 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 236 (-2961 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) 235 (-2961 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1787 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-558)) 128 T ELT) (($ $ $) 104 (|has| (-558) (-1133)) ELT) (($ $ |#2|) 234 (-2961 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1 |#2| |#2|) (-791)) 243 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-376)) ELT) (($ $) 108 (-3957 (-2961 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) 106 (-3957 (-2961 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) 116 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198))) 114 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1198) (-791)) 113 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 112 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3396 (($ $) 262 (|has| |#1| (-376)) ELT)) (-3398 ((|#2| $) 260 (|has| |#1| (-376)) ELT)) (-4378 (((-558) $) 81 T ELT)) (-3915 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4402 (((-229) $) 278 (-2961 (|has| |#2| (-1041)) (|has| |#1| (-376))) ELT) (((-391) $) 277 (-2961 (|has| |#2| (-1041)) (|has| |#1| (-376))) ELT) (((-547) $) 276 (-2961 (|has| |#2| (-631 (-547))) (|has| |#1| (-376))) ELT) (((-905 (-391)) $) 255 (-2961 (|has| |#2| (-631 (-905 (-391)))) (|has| |#1| (-376))) ELT) (((-905 (-558)) $) 254 (-2961 (|has| |#2| (-631 (-905 (-558)))) (|has| |#1| (-376))) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 268 (-2961 (-2961 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#1| (-376))) ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 301 T ELT) (($ (-1198)) 275 (-2961 (|has| |#2| (-1059 (-1198))) (|has| |#1| (-376))) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-558)) 76 T ELT)) (-3103 (((-711 $) $) 65 (-3957 (-2961 (-3957 (|has| |#2| (-147)) (-2961 (|has| $ (-147)) (|has| |#2| (-929)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 37 T CONST)) (-4203 ((|#1| $) 125 T ELT)) (-3533 ((|#2| $) 266 (-2961 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-558)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3803 (($ $) 282 (-2961 (|has| |#2| (-842)) (|has| |#1| (-376))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1 |#2| |#2|) (-791)) 245 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-376)) ELT) (($ $) 107 (-3957 (-2961 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) 105 (-3957 (-2961 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) 115 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198))) 111 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1198) (-791)) 110 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 109 (-3957 (-2961 (|has| |#2| (-919 (-1198))) (|has| |#1| (-376))) (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-2965 (((-114) $ $) 286 (-2961 (|has| |#2| (-861)) (|has| |#1| (-376))) ELT)) (-2966 (((-114) $ $) 284 (-2961 (|has| |#2| (-861)) (|has| |#1| (-376))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-3085 (((-114) $ $) 285 (-2961 (|has| |#2| (-861)) (|has| |#1| (-376))) ELT)) (-3086 (((-114) $ $) 283 (-2961 (|has| |#2| (-861)) (|has| |#1| (-376))) ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-376)) ELT) (($ |#2| $) 232 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1252 |#1| |#2|) (-142) (-1070) (-1281 |t#1|)) (T -1252)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1281 *3)) (-5 *2 (-558)))) (-4209 (*1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *4 (-1070)) (-4 *1 (-1252 *4 *3)) (-4 *3 (-1281 *4)))) (-4161 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1281 *3)))) (-4160 (*1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1281 *2)))) (-4160 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1281 *3)))) (-4159 (*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1281 *3)))) (-4158 (*1 *2 *1) (|partial| -12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1281 *3))))) -(-13 (-1250 |t#1|) (-1059 |t#2|) (-633 |t#2|) (-10 -8 (-15 -4209 ($ (-558) |t#2|)) (-15 -4378 ((-558) $)) (-15 -4161 (|t#2| $)) (-15 -4160 ($ $)) (-15 -4160 ($ (-558) $)) (-15 -4159 (|t#2| $)) (-15 -4158 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1012 |t#2|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-558)) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-633 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 (-1198)) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) ((-633 |#1|) |has| |#1| (-175)) ((-633 |#2|) . T) ((-633 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-631 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1041))) ((-631 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1041))) ((-631 (-547)) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-547)))) ((-631 (-905 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-905 (-391))))) ((-631 (-905 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-631 (-905 (-558))))) ((-236 $) -3957 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -3957 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-239) -3957 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-558) |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-558) (-1133)) ((-302) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-412 |#2|) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-526 (-1198) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1198) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-569) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 |#2|) |has| |#1| (-376)) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ((-668 |#1|) . T) ((-668 |#2|) |has| |#1| (-376)) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 |#2|) |has| |#1| (-376)) ((-660 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-658 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ((-658 |#2|) |has| |#1| (-376)) ((-737 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 |#2|) |has| |#1| (-376)) ((-737 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-812) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-814) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-816) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-819) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-842) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-860) -12 (|has| |#1| (-376)) (|has| |#2| (-842))) ((-861) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-864) -3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) (-12 (|has| |#1| (-376)) (|has| |#2| (-842)))) ((-911 $ (-1198)) -3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1198))))) ((-917 (-1198)) -3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1198))))) ((-919 (-1198)) -3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-917 (-1198))))) ((-901 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-901 (-391)))) ((-901 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-901 (-558)))) ((-899 |#2|) |has| |#1| (-376)) ((-929) -12 (|has| |#1| (-376)) (|has| |#2| (-929))) ((-994 |#1| (-558) (-1103)) . T) ((-940) |has| |#1| (-376)) ((-1012 |#2|) |has| |#1| (-376)) ((-1023) |has| |#1| (-38 (-419 (-558)))) ((-1041) -12 (|has| |#1| (-376)) (|has| |#2| (-1041))) ((-1059 (-419 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) ((-1059 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) ((-1059 (-1198)) -12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) ((-1059 |#2|) . T) ((-1072 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1072 |#1|) . T) ((-1072 |#2|) |has| |#1| (-376)) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1077 |#1|) . T) ((-1077 |#2|) |has| |#1| (-376)) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) -12 (|has| |#1| (-376)) (|has| |#2| (-1173))) ((-1224) |has| |#1| (-38 (-419 (-558)))) ((-1227) |has| |#1| (-38 (-419 (-558)))) ((-1238) . T) ((-1243) |has| |#1| (-376)) ((-1250 |#1|) . T) ((-1267 |#1| (-558)) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 83 T ELT)) (-3531 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 102 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-558)) 111 T ELT) (($ $ (-558) (-558)) 114 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 51 T ELT)) (-4161 ((|#2| $) 11 T ELT)) (-4158 (((-3 |#2| #1="failed") $) 35 T ELT)) (-4159 ((|#2| $) 36 T ELT)) (-3912 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 184 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1#) $ $) NIL T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-929))) ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-929))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 180 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4053 (((-558) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 59 T ELT)) (-3914 (($ $) 212 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 188 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) ELT) (((-3 (-1198) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) ELT)) (-3574 ((|#2| $) 158 T ELT) (((-558) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-558)))) ELT) (((-1198) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) ELT)) (-4160 (($ $) 65 T ELT) (($ (-558) $) 28 T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 |#2|) (-709 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT) (((-709 (-558)) (-709 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT)) (-3887 (((-3 $ #1#) $) 90 T ELT)) (-4157 (((-419 (-965 |#1|)) $ (-558)) 126 (|has| |#1| (-569)) ELT) (((-419 (-965 |#1|)) $ (-558) (-558)) 128 (|has| |#1| (-569)) ELT)) (-3395 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3604 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-3293 (((-114) $) 76 T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-901 (-558)))) ELT)) (-4202 (((-558) $) 107 T ELT) (((-558) $ (-558)) 109 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3397 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3399 ((|#2| $) 167 (|has| |#1| (-376)) ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (((-711 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1173))) ELT)) (-3605 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-4207 (($ $ (-938)) 150 T ELT)) (-4245 (($ (-1 |#1| (-558)) $) 146 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-558)) 20 T ELT) (($ $ (-1103) (-558)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-558))) NIL T ELT)) (-2930 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) ELT)) (-3258 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) 178 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2494 (((-709 |#2|) (-1288 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT) (((-709 (-558)) (-1288 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-658 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4209 (($ (-558) |#2|) 10 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 161 (|has| |#1| (-376)) ELT)) (-4242 (($ $) 230 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 235 (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT)) (-3866 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1173))) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3530 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3532 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-929))) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-929))) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-558)) 140 T ELT)) (-3886 (((-3 $ #1#) $ $) 130 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) 176 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1198) |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1198) |#2|))) ELT) (($ $ (-661 (-1198)) (-661 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1198) |#2|))) ELT) (($ $ (-661 (-305 |#2|))) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-661 |#2|) (-661 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-558)) 105 T ELT) (($ $ $) 92 (|has| (-558) (-1133)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 151 (-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) 155 (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT)) (-3396 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3398 ((|#2| $) 168 (|has| |#1| (-376)) ELT)) (-4378 (((-558) $) 12 T ELT)) (-3915 (($ $) 214 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 190 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 210 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 186 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 182 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4402 (((-229) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1041))) ELT) (((-391) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1041))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-631 (-547)))) ELT) (((-905 (-391)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-631 (-905 (-558))))) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-929))) ELT)) (-3292 (($ $) 138 T ELT)) (-4376 (((-877) $) 268 T ELT) (($ (-558)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1198)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1059 (-1198)))) ELT) (($ (-419 (-558))) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-558)) 87 T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-929))) (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) ELT)) (-3528 (((-791)) 157 T CONST)) (-4203 ((|#1| $) 104 T ELT)) (-3533 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) 220 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 196 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) 216 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 192 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 224 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-558)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 226 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 222 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 218 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3803 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-842))) ELT)) (-3059 (($) 13 T CONST)) (-3065 (($) 18 T CONST)) (-3070 (($ $ (-1 |#2| |#2|) (-791)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-791)) NIL (-3957 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT) (($ $ (-661 (-1198))) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT) (($ $ (-1198) (-791)) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-3957 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-919 (-1198))))) ELT)) (-2965 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) ELT)) (-2966 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) ELT)) (-3454 (((-114) $ $) 74 T ELT)) (-3085 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) ELT)) (-3086 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-861))) ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 165 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-4269 (($ $ $) 78 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 86 T ELT) (($ $ (-558)) 162 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-376)) ELT) (($ |#2| $) 163 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1253 |#1| |#2|) (-1252 |#1| |#2|) (-1070) (-1281 |#1|)) (T -1253)) -NIL -((-4164 (((-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))) |#1| (-114)) 13 T ELT)) (-4163 (((-417 |#1|) |#1|) 26 T ELT)) (-4162 (((-417 |#1|) |#1|) 24 T ELT))) -(((-1254 |#1|) (-10 -7 (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4163 ((-417 |#1|) |#1|)) (-15 -4164 ((-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| |#1|) (|:| -2626 (-558)))))) |#1| (-114)))) (-1264 (-558))) (T -1254)) -((-4164 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) (-5 *1 (-1254 *3)) (-4 *3 (-1264 (-558))))) (-4163 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1264 (-558))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1264 (-558)))))) -((-2967 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4166 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4388 (((-1176 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-860)) ELT)) (-3647 ((|#1| $) 15 T ELT)) (-3649 ((|#1| $) 12 T ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-3645 (((-558) $) 19 T ELT)) (-3646 ((|#1| $) 18 T ELT)) (-3648 ((|#1| $) 13 T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4165 (((-114) $) 17 T ELT)) (-4393 (((-1176 |#1|) $) 41 (|has| |#1| (-860)) ELT) (((-1176 |#1|) (-661 $)) 40 (|has| |#1| (-860)) ELT)) (-4402 (($ |#1|) 26 T ELT)) (-4376 (($ (-1110 |#1|)) 25 T ELT) (((-877) $) 37 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-1122)) ELT)) (-4167 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3650 (($ $ (-558)) 14 T ELT)) (-3454 (((-114) $ $) 30 (|has| |#1| (-1122)) ELT))) -(((-1255 |#1|) (-13 (-1115 |#1|) (-10 -8 (-15 -4167 ($ |#1|)) (-15 -4166 ($ |#1|)) (-15 -4376 ($ (-1110 |#1|))) (-15 -4165 ((-114) $)) (IF (|has| |#1| (-1122)) (-6 (-1122)) |%noBranch|) (IF (|has| |#1| (-860)) (-6 (-1116 |#1| (-1176 |#1|))) |%noBranch|))) (-1238)) (T -1255)) -((-4167 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-4166 (*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238)))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1110 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) (-4165 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) -((-4388 (((-1176 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 23 (|has| |#1| (-860)) ELT) (((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|)) 17 T ELT))) -(((-1256 |#1| |#2|) (-10 -7 (-15 -4388 ((-1255 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) (IF (|has| |#1| (-860)) (-15 -4388 ((-1176 |#2|) (-1 |#2| |#1|) (-1255 |#1|))) |%noBranch|)) (-1238) (-1238)) (T -1256)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1176 *6)) (-5 *1 (-1256 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1255 *6)) (-5 *1 (-1256 *5 *6))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4197 (((-1288 |#2|) $ (-791)) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4195 (($ (-1192 |#2|)) NIL T ELT)) (-3486 (((-1192 $) $ (-1103)) NIL T ELT) (((-1192 |#2|) $) NIL T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1103))) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4185 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4205 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1#) (-661 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-1788 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4191 (($ $ (-791)) NIL T ELT)) (-4190 (($ $ (-791)) NIL T ELT)) (-4181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-3 (-1103) #1#) $) NIL T ELT)) (-3574 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1059 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1059 (-558))) ELT) (((-1103) $) NIL T ELT)) (-4186 (($ $ $ (-1103)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-2963 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-2493 (((-709 (-558)) (-709 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-709 $) (-1288 $)) NIL T ELT) (((-709 |#2|) (-709 $)) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4189 (($ $ $) NIL T ELT)) (-4183 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-4182 (((-2 (|:| -4384 |#2|) (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#2| (-376)) ELT)) (-3923 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#2| (-464)) ELT)) (-3219 (((-661 $) $) NIL T ELT)) (-4153 (((-114) $) NIL (|has| |#2| (-929)) ELT)) (-1804 (($ $ |#2| (-791) $) NIL T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) NIL (-12 (|has| (-1103) (-901 (-391))) (|has| |#2| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) NIL (-12 (|has| (-1103) (-901 (-558))) (|has| |#2| (-901 (-558)))) ELT)) (-4202 (((-791) $ $) NIL (|has| |#2| (-569)) ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3865 (((-711 $) $) NIL (|has| |#2| (-1173)) ELT)) (-3487 (($ (-1192 |#2|) (-1103)) NIL T ELT) (($ (-1192 $) (-1103)) NIL T ELT)) (-4207 (($ $ (-791)) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#2| (-791)) 18 T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1103)) NIL T ELT) (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL T ELT)) (-3221 (((-791) $) NIL T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-1805 (($ (-1 (-791) (-791)) $) NIL T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4196 (((-1192 |#2|) $) NIL T ELT)) (-3485 (((-3 (-1103) #1#) $) NIL T ELT)) (-2494 (((-709 (-558)) (-1288 $)) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) NIL (|has| |#2| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#2|)) (|:| |vec| (-1288 |#2|))) (-1288 $) $) NIL T ELT) (((-709 |#2|) (-1288 $)) NIL T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4192 (((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791)) NIL T ELT)) (-3224 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3223 (((-3 (-661 $) #1#) $) NIL T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1103)) (|:| -2632 (-791))) #1#) $) NIL T ELT)) (-4242 (($ $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT)) (-3866 (($) NIL (|has| |#2| (-1173)) CONST)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 ((|#2| $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#2| (-464)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-4168 (($ $ (-791) |#2| $) NIL T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) NIL (|has| |#2| (-929)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#2| (-929)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3886 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#2| (-376)) ELT)) (-4198 (($ $ (-661 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1103) |#2|) NIL T ELT) (($ $ (-661 (-1103)) (-661 |#2|)) NIL T ELT) (($ $ (-1103) $) NIL T ELT) (($ $ (-661 (-1103)) (-661 $)) NIL T ELT)) (-1787 (((-791) $) NIL (|has| |#2| (-376)) ELT)) (-4230 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-569)) ELT) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-569)) ELT)) (-4194 (((-3 $ #1#) $ (-791)) NIL T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4187 (($ $ (-1103)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-4188 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-4378 (((-791) $) NIL T ELT) (((-791) $ (-1103)) NIL T ELT) (((-661 (-791)) $ (-661 (-1103))) NIL T ELT)) (-4402 (((-905 (-391)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-391)))) (|has| |#2| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) NIL (-12 (|has| (-1103) (-631 (-905 (-558)))) (|has| |#2| (-631 (-905 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1103) (-631 (-547))) (|has| |#2| (-631 (-547)))) ELT)) (-3218 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1103)) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-929))) ELT)) (-4184 (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#2| (-569)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1103)) NIL T ELT) (($ (-1285 |#1|)) 20 T ELT) (($ (-419 (-558))) NIL (-3957 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1059 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-791)) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-3103 (((-711 $) $) NIL (-3957 (-12 (|has| $ (-147)) (|has| |#2| (-929))) (|has| |#2| (-147))) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) 14 T CONST)) (-3070 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1198)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) NIL (|has| |#2| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (|has| |#2| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) -(((-1257 |#1| |#2|) (-13 (-1264 |#2|) (-633 (-1285 |#1|)) (-10 -8 (-15 -4168 ($ $ (-791) |#2| $)))) (-1198) (-1070)) (T -1257)) -((-4168 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1257 *4 *3)) (-14 *4 (-1198)) (-4 *3 (-1070))))) -((-4388 (((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)) 15 T ELT))) -(((-1258 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 ((-1257 |#3| |#4|) (-1 |#4| |#2|) (-1257 |#1| |#2|)))) (-1198) (-1070) (-1198) (-1070)) (T -1258)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1257 *5 *6)) (-14 *5 (-1198)) (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1257 *7 *8)) (-5 *1 (-1258 *5 *6 *7 *8)) (-14 *7 (-1198))))) -((-4171 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-4169 ((|#1| |#3|) 13 T ELT)) (-4170 ((|#3| |#3|) 19 T ELT))) -(((-1259 |#1| |#2| |#3|) (-10 -7 (-15 -4169 (|#1| |#3|)) (-15 -4170 (|#3| |#3|)) (-15 -4171 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1012 |#1|) (-1264 |#2|)) (T -1259)) -((-4171 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1259 *4 *5 *3)) (-4 *3 (-1264 *5)))) (-4170 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1012 *3)) (-5 *1 (-1259 *3 *4 *2)) (-4 *2 (-1264 *4)))) (-4169 (*1 *2 *3) (-12 (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-1259 *2 *4 *3)) (-4 *3 (-1264 *4))))) -((-4173 (((-3 |#2| #1="failed") |#2| (-791) |#1|) 35 T ELT)) (-4172 (((-3 |#2| #1#) |#2| (-791)) 36 T ELT)) (-4175 (((-3 (-2 (|:| -3540 |#2|) (|:| -3539 |#2|)) #1#) |#2|) 50 T ELT)) (-4176 (((-661 |#2|) |#2|) 52 T ELT)) (-4174 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) -(((-1260 |#1| |#2|) (-10 -7 (-15 -4172 ((-3 |#2| #1="failed") |#2| (-791))) (-15 -4173 ((-3 |#2| #1#) |#2| (-791) |#1|)) (-15 -4174 ((-3 |#2| #1#) |#2| |#2|)) (-15 -4175 ((-3 (-2 (|:| -3540 |#2|) (|:| -3539 |#2|)) #1#) |#2|)) (-15 -4176 ((-661 |#2|) |#2|))) (-13 (-569) (-149)) (-1264 |#1|)) (T -1260)) -((-4176 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-661 *3)) (-5 *1 (-1260 *4 *3)) (-4 *3 (-1264 *4)))) (-4175 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| -3540 *3) (|:| -3539 *3))) (-5 *1 (-1260 *4 *3)) (-4 *3 (-1264 *4)))) (-4174 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1260 *3 *2)) (-4 *2 (-1264 *3)))) (-4173 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4)))) (-4172 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4))))) -((-4177 (((-3 (-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|) 30 T ELT))) -(((-1261 |#1| |#2|) (-10 -7 (-15 -4177 ((-3 (-2 (|:| -2184 |#2|) (|:| -3303 |#2|)) "failed") |#2| |#2|))) (-569) (-1264 |#1|)) (T -1261)) -((-4177 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-1261 *4 *3)) (-4 *3 (-1264 *4))))) -((-4178 ((|#2| |#2| |#2|) 22 T ELT)) (-4179 ((|#2| |#2| |#2|) 36 T ELT)) (-4180 ((|#2| |#2| |#2| (-791) (-791)) 44 T ELT))) -(((-1262 |#1| |#2|) (-10 -7 (-15 -4178 (|#2| |#2| |#2|)) (-15 -4179 (|#2| |#2| |#2|)) (-15 -4180 (|#2| |#2| |#2| (-791) (-791)))) (-1070) (-1264 |#1|)) (T -1262)) -((-4180 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *1 (-1262 *4 *2)) (-4 *2 (-1264 *4)))) (-4179 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1264 *3)))) (-4178 (*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1264 *3))))) -((-4197 (((-1288 |#2|) $ (-791)) 129 T ELT)) (-3484 (((-661 (-1103)) $) 16 T ELT)) (-4195 (($ (-1192 |#2|)) 80 T ELT)) (-3220 (((-791) $) NIL T ELT) (((-791) $ (-661 (-1103))) 21 T ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 216 T ELT)) (-4205 (($ $) 206 T ELT)) (-4401 (((-417 $) $) 204 T ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 95 T ELT)) (-4191 (($ $ (-791)) 84 T ELT)) (-4190 (($ $ (-791)) 86 T ELT)) (-4181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3575 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1103) #1#) $) NIL T ELT)) (-3574 ((|#2| $) 130 T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) (((-1103) $) NIL T ELT)) (-4183 (($ $ $) 182 T ELT)) (-4182 (((-2 (|:| -4384 |#2|) (|:| -2184 $) (|:| -3303 $)) $ $) 184 T ELT)) (-4202 (((-791) $ $) 201 T ELT)) (-3865 (((-711 $) $) 149 T ELT)) (-3294 (($ |#2| (-791)) NIL T ELT) (($ $ (-1103) (-791)) 59 T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-3221 (((-791) $) NIL T ELT) (((-791) $ (-1103)) 54 T ELT) (((-661 (-791)) $ (-661 (-1103))) 55 T ELT)) (-4196 (((-1192 |#2|) $) 72 T ELT)) (-3485 (((-3 (-1103) #1#) $) 52 T ELT)) (-4192 (((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791)) 83 T ELT)) (-4242 (($ $) 231 T ELT)) (-3866 (($) 134 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 213 T ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 101 T ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 99 T ELT)) (-4162 (((-417 $) $) 120 T ELT)) (-4198 (($ $ (-661 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-661 $) (-661 $)) NIL T ELT) (($ $ (-1103) |#2|) 39 T ELT) (($ $ (-661 (-1103)) (-661 |#2|)) 36 T ELT) (($ $ (-1103) $) 32 T ELT) (($ $ (-661 (-1103)) (-661 $)) 30 T ELT)) (-1787 (((-791) $) 219 T ELT)) (-4230 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) 176 T ELT) ((|#2| (-419 $) |#2|) 218 T ELT) (((-419 $) $ (-419 $)) 200 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 224 T ELT)) (-4188 (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103))) NIL T ELT) (($ $ (-1103)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-791)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1198)) NIL T ELT) (($ $ (-661 (-1198))) NIL T ELT) (($ $ (-1198) (-791)) NIL T ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL T ELT)) (-4378 (((-791) $) NIL T ELT) (((-791) $ (-1103)) 17 T ELT) (((-661 (-791)) $ (-661 (-1103))) 23 T ELT)) (-3218 ((|#2| $) NIL T ELT) (($ $ (-1103)) 151 T ELT)) (-4184 (((-3 $ #1#) $ $) 192 T ELT) (((-3 (-419 $) #1#) (-419 $) $) 188 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1103)) 64 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT))) -(((-1263 |#1| |#2|) (-10 -7 (-15 -4376 (|#1| |#1|)) (-15 -3109 ((-1192 |#1|) (-1192 |#1|) (-1192 |#1|))) (-15 -4188 (|#1| |#1| (-661 (-1198)) (-661 (-791)))) (-15 -4188 (|#1| |#1| (-1198) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1198)))) (-15 -4188 (|#1| |#1| (-1198))) (-15 -4401 ((-417 |#1|) |#1|)) (-15 -4205 (|#1| |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -3866 (|#1|)) (-15 -3865 ((-711 |#1|) |#1|)) (-15 -4230 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1787 ((-791) |#1|)) (-15 -3280 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4242 (|#1| |#1|)) (-15 -4230 (|#2| (-419 |#1|) |#2|)) (-15 -4181 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4182 ((-2 (|:| -4384 |#2|) (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| |#1|)) (-15 -4183 (|#1| |#1| |#1|)) (-15 -4184 ((-3 (-419 |#1|) #1="failed") (-419 |#1|) |#1|)) (-15 -4184 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4202 ((-791) |#1| |#1|)) (-15 -4230 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4190 (|#1| |#1| (-791))) (-15 -4191 (|#1| |#1| (-791))) (-15 -4192 ((-2 (|:| -2184 |#1|) (|:| -3303 |#1|)) |#1| (-791))) (-15 -4195 (|#1| (-1192 |#2|))) (-15 -4196 ((-1192 |#2|) |#1|)) (-15 -4197 ((-1288 |#2|) |#1| (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|) (-791))) (-15 -4188 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4188 (|#1| |#1| (-791))) (-15 -4188 (|#1| |#1|)) (-15 -4230 (|#1| |#1| |#1|)) (-15 -4230 (|#2| |#1| |#2|)) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -3108 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3107 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3106 ((-417 (-1192 |#1|)) (-1192 |#1|))) (-15 -3105 ((-3 (-661 (-1192 |#1|)) #1#) (-661 (-1192 |#1|)) (-1192 |#1|))) (-15 -3218 (|#1| |#1| (-1103))) (-15 -3484 ((-661 (-1103)) |#1|)) (-15 -3220 ((-791) |#1| (-661 (-1103)))) (-15 -3220 ((-791) |#1|)) (-15 -3294 (|#1| |#1| (-661 (-1103)) (-661 (-791)))) (-15 -3294 (|#1| |#1| (-1103) (-791))) (-15 -3221 ((-661 (-791)) |#1| (-661 (-1103)))) (-15 -3221 ((-791) |#1| (-1103))) (-15 -3485 ((-3 (-1103) #1#) |#1|)) (-15 -4378 ((-661 (-791)) |#1| (-661 (-1103)))) (-15 -4378 ((-791) |#1| (-1103))) (-15 -4376 (|#1| (-1103))) (-15 -3575 ((-3 (-1103) #1#) |#1|)) (-15 -3574 ((-1103) |#1|)) (-15 -4198 (|#1| |#1| (-661 (-1103)) (-661 |#1|))) (-15 -4198 (|#1| |#1| (-1103) |#1|)) (-15 -4198 (|#1| |#1| (-661 (-1103)) (-661 |#2|))) (-15 -4198 (|#1| |#1| (-1103) |#2|)) (-15 -4198 (|#1| |#1| (-661 |#1|) (-661 |#1|))) (-15 -4198 (|#1| |#1| |#1| |#1|)) (-15 -4198 (|#1| |#1| (-305 |#1|))) (-15 -4198 (|#1| |#1| (-661 (-305 |#1|)))) (-15 -4378 ((-791) |#1|)) (-15 -3294 (|#1| |#2| (-791))) (-15 -3575 ((-3 (-558) #1#) |#1|)) (-15 -3574 ((-558) |#1|)) (-15 -3575 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3574 ((-419 (-558)) |#1|)) (-15 -3574 (|#2| |#1|)) (-15 -3575 ((-3 |#2| #1#) |#1|)) (-15 -4376 (|#1| |#2|)) (-15 -3221 ((-791) |#1|)) (-15 -3218 (|#2| |#1|)) (-15 -4188 (|#1| |#1| (-1103))) (-15 -4188 (|#1| |#1| (-661 (-1103)))) (-15 -4188 (|#1| |#1| (-1103) (-791))) (-15 -4188 (|#1| |#1| (-661 (-1103)) (-661 (-791)))) (-15 -4376 (|#1| (-558))) (-15 -4376 ((-877) |#1|))) (-1264 |#2|) (-1070)) (T -1263)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4197 (((-1288 |#1|) $ (-791)) 268 T ELT)) (-3484 (((-661 (-1103)) $) 120 T ELT)) (-4195 (($ (-1192 |#1|)) 266 T ELT)) (-3486 (((-1192 $) $ (-1103)) 135 T ELT) (((-1192 |#1|) $) 134 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3220 (((-791) $) 122 T ELT) (((-791) $ (-661 (-1103))) 121 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4185 (($ $ $) 253 (|has| |#1| (-569)) ELT)) (-3108 (((-417 (-1192 $)) (-1192 $)) 110 (|has| |#1| (-929)) ELT)) (-4205 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4401 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3105 (((-3 (-661 (-1192 $)) #1="failed") (-661 (-1192 $)) (-1192 $)) 113 (|has| |#1| (-929)) ELT)) (-1788 (((-114) $ $) 238 (|has| |#1| (-376)) ELT)) (-4191 (($ $ (-791)) 261 T ELT)) (-4190 (($ $ (-791)) 260 T ELT)) (-4181 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-464)) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1059 (-558))) ELT) (((-3 (-1103) #2#) $) 150 T ELT)) (-3574 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1059 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1059 (-558))) ELT) (((-1103) $) 151 T ELT)) (-4186 (($ $ $ (-1103)) 118 (|has| |#1| (-175)) ELT) ((|#1| $ $) 256 (|has| |#1| (-175)) ELT)) (-2963 (($ $ $) 242 (|has| |#1| (-376)) ELT)) (-4389 (($ $) 168 T ELT)) (-2493 (((-709 (-558)) (-709 $)) 146 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-709 $) (-1288 $)) 145 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-709 $) (-1288 $)) 144 T ELT) (((-709 |#1|) (-709 $)) 143 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 241 (|has| |#1| (-376)) ELT)) (-4189 (($ $ $) 259 T ELT)) (-4183 (($ $ $) 250 (|has| |#1| (-569)) ELT)) (-4182 (((-2 (|:| -4384 |#1|) (|:| -2184 $) (|:| -3303 $)) $ $) 249 (|has| |#1| (-569)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 236 (|has| |#1| (-376)) ELT)) (-3923 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ (-1103)) 115 (|has| |#1| (-464)) ELT)) (-3219 (((-661 $) $) 119 T ELT)) (-4153 (((-114) $) 106 (|has| |#1| (-929)) ELT)) (-1804 (($ $ |#1| (-791) $) 186 T ELT)) (-3197 (((-903 (-391) $) $ (-905 (-391)) (-903 (-391) $)) 94 (-12 (|has| (-1103) (-901 (-391))) (|has| |#1| (-901 (-391)))) ELT) (((-903 (-558) $) $ (-905 (-558)) (-903 (-558) $)) 93 (-12 (|has| (-1103) (-901 (-558))) (|has| |#1| (-901 (-558)))) ELT)) (-4202 (((-791) $ $) 254 (|has| |#1| (-569)) ELT)) (-2641 (((-114) $) 40 T ELT)) (-2649 (((-791) $) 183 T ELT)) (-3865 (((-711 $) $) 234 (|has| |#1| (-1173)) ELT)) (-3487 (($ (-1192 |#1|) (-1103)) 127 T ELT) (($ (-1192 $) (-1103)) 126 T ELT)) (-4207 (($ $ (-791)) 265 T ELT)) (-1785 (((-3 (-661 $) #3="failed") (-661 $) $) 245 (|has| |#1| (-376)) ELT)) (-3222 (((-661 $) $) 136 T ELT)) (-4367 (((-114) $) 166 T ELT)) (-3294 (($ |#1| (-791)) 167 T ELT) (($ $ (-1103) (-791)) 129 T ELT) (($ $ (-661 (-1103)) (-661 (-791))) 128 T ELT)) (-4193 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $ (-1103)) 130 T ELT) (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 263 T ELT)) (-3221 (((-791) $) 184 T ELT) (((-791) $ (-1103)) 132 T ELT) (((-661 (-791)) $ (-661 (-1103))) 131 T ELT)) (-1805 (($ (-1 (-791) (-791)) $) 185 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-4196 (((-1192 |#1|) $) 267 T ELT)) (-3485 (((-3 (-1103) #4="failed") $) 133 T ELT)) (-2494 (((-709 (-558)) (-1288 $)) 148 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 (-558))) (|:| |vec| (-1288 (-558)))) (-1288 $) $) 147 (|has| |#1| (-658 (-558))) ELT) (((-2 (|:| -1783 (-709 |#1|)) (|:| |vec| (-1288 |#1|))) (-1288 $) $) 142 T ELT) (((-709 |#1|) (-1288 $)) 141 T ELT)) (-3295 (($ $) 163 T ELT)) (-3592 ((|#1| $) 162 T ELT)) (-2102 (($ (-661 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-4192 (((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791)) 262 T ELT)) (-3224 (((-3 (-661 $) #4#) $) 124 T ELT)) (-3223 (((-3 (-661 $) #4#) $) 125 T ELT)) (-3225 (((-3 (-2 (|:| |var| (-1103)) (|:| -2632 (-791))) #4#) $) 123 T ELT)) (-4242 (($ $) 246 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3866 (($) 233 (|has| |#1| (-1173)) CONST)) (-3661 (((-1141) $) 12 T ELT)) (-2005 (((-114) $) 180 T ELT)) (-2004 ((|#1| $) 181 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 105 (|has| |#1| (-464)) ELT)) (-3562 (($ (-661 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3106 (((-417 (-1192 $)) (-1192 $)) 112 (|has| |#1| (-929)) ELT)) (-3107 (((-417 (-1192 $)) (-1192 $)) 111 (|has| |#1| (-929)) ELT)) (-4162 (((-417 $) $) 109 (|has| |#1| (-929)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 243 (|has| |#1| (-376)) ELT)) (-3886 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 237 (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-661 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-661 $) (-661 $)) 156 T ELT) (($ $ (-1103) |#1|) 155 T ELT) (($ $ (-661 (-1103)) (-661 |#1|)) 154 T ELT) (($ $ (-1103) $) 153 T ELT) (($ $ (-661 (-1103)) (-661 $)) 152 T ELT)) (-1787 (((-791) $) 239 (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-419 $) (-419 $) (-419 $)) 255 (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) 247 (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) 235 (|has| |#1| (-569)) ELT)) (-4194 (((-3 $ "failed") $ (-791)) 264 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 240 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1103)) 117 (|has| |#1| (-175)) ELT) ((|#1| $) 257 (|has| |#1| (-175)) ELT)) (-4188 (($ $ (-661 (-1103)) (-661 (-791))) 49 T ELT) (($ $ (-1103) (-791)) 48 T ELT) (($ $ (-661 (-1103))) 47 T ELT) (($ $ (-1103)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-791)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1198)) 232 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 230 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 229 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 228 (|has| |#1| (-919 (-1198))) ELT)) (-4378 (((-791) $) 164 T ELT) (((-791) $ (-1103)) 140 T ELT) (((-661 (-791)) $ (-661 (-1103))) 139 T ELT)) (-4402 (((-905 (-391)) $) 92 (-12 (|has| (-1103) (-631 (-905 (-391)))) (|has| |#1| (-631 (-905 (-391))))) ELT) (((-905 (-558)) $) 91 (-12 (|has| (-1103) (-631 (-905 (-558)))) (|has| |#1| (-631 (-905 (-558))))) ELT) (((-547) $) 90 (-12 (|has| (-1103) (-631 (-547))) (|has| |#1| (-631 (-547)))) ELT)) (-3218 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ (-1103)) 116 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-1288 $) #1#) (-709 $)) 114 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) ELT)) (-4184 (((-3 $ "failed") $ $) 252 (|has| |#1| (-569)) ELT) (((-3 (-419 $) "failed") (-419 $) $) 251 (|has| |#1| (-569)) ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1103)) 149 T ELT) (($ (-419 (-558))) 88 (-3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4247 (((-661 |#1|) $) 182 T ELT)) (-4107 ((|#1| $ (-791)) 169 T ELT) (($ $ (-1103) (-791)) 138 T ELT) (($ $ (-661 (-1103)) (-661 (-791))) 137 T ELT)) (-3103 (((-711 $) $) 89 (-3957 (-2961 (|has| $ (-147)) (|has| |#1| (-929))) (|has| |#1| (-147))) ELT)) (-3528 (((-791)) 37 T CONST)) (-1803 (($ $ $ (-791)) 187 (|has| |#1| (-175)) ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-661 (-1103)) (-661 (-791))) 52 T ELT) (($ $ (-1103) (-791)) 51 T ELT) (($ $ (-661 (-1103))) 50 T ELT) (($ $ (-1103)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-791)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-791)) 269 T ELT) (($ $ (-1198)) 231 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198))) 227 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-1198) (-791)) 226 (|has| |#1| (-919 (-1198))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 225 (|has| |#1| (-919 (-1198))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) -(((-1264 |#1|) (-142) (-1070)) (T -1264)) -((-4197 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)))) (-4196 (*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1192 *3)))) (-4195 (*1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4194 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4193 (*1 *2 *1 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1264 *3)))) (-4192 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1264 *4)))) (-4191 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4189 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)))) (-4188 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) (-4187 (*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-175)))) (-4186 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-175)))) (-4230 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-569)))) (-4202 (*1 *2 *1 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-569)) (-5 *2 (-791)))) (-4185 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-569)))) (-4184 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-569)))) (-4184 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-569)))) (-4183 (*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-569)))) (-4182 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| -4384 *3) (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1264 *3)))) (-4181 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1264 *3)))) (-4230 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558))))))) -(-13 (-969 |t#1| (-791) (-1103)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -4197 ((-1288 |t#1|) $ (-791))) (-15 -4196 ((-1192 |t#1|) $)) (-15 -4195 ($ (-1192 |t#1|))) (-15 -4207 ($ $ (-791))) (-15 -4194 ((-3 $ "failed") $ (-791))) (-15 -4193 ((-2 (|:| -2184 $) (|:| -3303 $)) $ $)) (-15 -4192 ((-2 (|:| -2184 $) (|:| -3303 $)) $ (-791))) (-15 -4191 ($ $ (-791))) (-15 -4190 ($ $ (-791))) (-15 -4189 ($ $ $)) (-15 -4188 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1173)) (-6 (-1173)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4187 (|t#1| $)) (-15 -4186 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-298 (-419 $) (-419 $))) (-15 -4230 ((-419 $) (-419 $) (-419 $))) (-15 -4202 ((-791) $ $)) (-15 -4185 ($ $ $)) (-15 -4184 ((-3 $ "failed") $ $)) (-15 -4184 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4183 ($ $ $)) (-15 -4182 ((-2 (|:| -4384 |t#1|) (|:| -2184 $) (|:| -3303 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -4181 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4421) (-15 -4230 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (-15 -4242 ($ $)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-791)) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-1059 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 (-1103)) . T) ((-633 |#1|) . T) ((-633 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-631 (-547)) -12 (|has| |#1| (-631 (-547))) (|has| (-1103) (-631 (-547)))) ((-631 (-905 (-391))) -12 (|has| |#1| (-631 (-905 (-391)))) (|has| (-1103) (-631 (-905 (-391))))) ((-631 (-905 (-558))) -12 (|has| |#1| (-631 (-905 (-558)))) (|has| (-1103) (-631 (-905 (-558))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-419 $) (-419 $)) |has| |#1| (-569)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| (-791)) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3957 (|has| |#1| (-929)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-526 (-1103) |#1|) . T) ((-526 (-1103) $) . T) ((-526 $ $) . T) ((-569) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 (-558)) |has| |#1| (-658 (-558))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-658 (-558)) |has| |#1| (-658 (-558))) ((-658 |#1|) . T) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-746) . T) ((-911 $ (-1103)) . T) ((-911 $ (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-917 (-1103)) . T) ((-917 (-1198)) |has| |#1| (-917 (-1198))) ((-919 (-1103)) . T) ((-919 (-1198)) -3957 (|has| |#1| (-919 (-1198))) (|has| |#1| (-917 (-1198)))) ((-901 (-391)) -12 (|has| |#1| (-901 (-391))) (|has| (-1103) (-901 (-391)))) ((-901 (-558)) -12 (|has| |#1| (-901 (-558))) (|has| (-1103) (-901 (-558)))) ((-969 |#1| (-791) (-1103)) . T) ((-929) |has| |#1| (-929)) ((-940) |has| |#1| (-376)) ((-1059 (-419 (-558))) |has| |#1| (-1059 (-419 (-558)))) ((-1059 (-558)) |has| |#1| (-1059 (-558))) ((-1059 (-1103)) . T) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-929)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1173) |has| |#1| (-1173)) ((-1238) . T) ((-1243) |has| |#1| (-929))) -((-4388 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) -(((-1265 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#4| (-1 |#3| |#1|) |#2|))) (-1070) (-1264 |#1|) (-1070) (-1264 |#3|)) (T -1265)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1264 *6)) (-5 *1 (-1265 *5 *4 *6 *2)) (-4 *4 (-1264 *5))))) -((-3484 (((-661 (-1103)) $) 34 T ELT)) (-4389 (($ $) 31 T ELT)) (-3294 (($ |#2| |#3|) NIL T ELT) (($ $ (-1103) |#3|) 28 T ELT) (($ $ (-661 (-1103)) (-661 |#3|)) 27 T ELT)) (-3295 (($ $) 14 T ELT)) (-3592 ((|#2| $) 12 T ELT)) (-4378 ((|#3| $) 10 T ELT))) -(((-1266 |#1| |#2| |#3|) (-10 -7 (-15 -3484 ((-661 (-1103)) |#1|)) (-15 -3294 (|#1| |#1| (-661 (-1103)) (-661 |#3|))) (-15 -3294 (|#1| |#1| (-1103) |#3|)) (-15 -4389 (|#1| |#1|)) (-15 -3294 (|#1| |#2| |#3|)) (-15 -4378 (|#3| |#1|)) (-15 -3295 (|#1| |#1|)) (-15 -3592 (|#2| |#1|))) (-1267 |#2| |#3|) (-1070) (-814)) (T -1266)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 (-1103)) $) 92 T ELT)) (-4261 (((-1198) $) 126 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4201 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-4204 (((-1176 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-3293 (((-114) $) 91 T ELT)) (-4202 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-4207 (($ $ (-938)) 124 T ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| |#2|) 78 T ELT) (($ $ (-1103) |#2|) 94 T ELT) (($ $ (-661 (-1103)) (-661 |#2|)) 93 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4199 (($ $ |#2|) 118 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-4230 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1133)) ELT)) (-4188 (($ $ (-1198)) 116 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1198))) 114 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1198) (-791)) 113 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 112 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4378 ((|#2| $) 81 T ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4107 ((|#1| $ |#2|) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-4203 ((|#1| $) 125 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-4200 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1198)) 115 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1198))) 111 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1198) (-791)) 110 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 109 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1267 |#1| |#2|) (-142) (-1070) (-814)) (T -1267)) -((-4204 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-1198)))) (-4203 (*1 *2 *1) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-4202 (*1 *2 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-4201 (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-4201 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-4200 (*1 *2 *1 *3) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4376 (*2 (-1198)))) (-4 *2 (-1070)))) (-4199 (*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) (-4198 (*1 *2 *1 *3) (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3))))) -(-13 (-994 |t#1| |t#2| (-1103)) (-298 |t#2| |t#1|) (-10 -8 (-15 -4204 ((-1176 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4261 ((-1198) $)) (-15 -4203 (|t#1| $)) (-15 -4207 ($ $ (-938))) (-15 -4202 (|t#2| $)) (-15 -4202 (|t#2| $ |t#2|)) (-15 -4201 ($ $ |t#2|)) (-15 -4201 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4376 (|t#1| (-1198)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4200 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4199 ($ $ |t#2|)) (IF (|has| |t#2| (-1133)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-917 (-1198))) (-6 (-917 (-1198))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4198 ((-1176 |t#1|) $ |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1133)) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-911 $ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-917 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-919 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-994 |#1| |#2| (-1103)) . T) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-4205 ((|#2| |#2|) 12 T ELT)) (-4401 (((-417 |#2|) |#2|) 14 T ELT)) (-4206 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))) 30 T ELT))) -(((-1268 |#1| |#2|) (-10 -7 (-15 -4401 ((-417 |#2|) |#2|)) (-15 -4205 (|#2| |#2|)) (-15 -4206 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))))) (-569) (-13 (-1264 |#1|) (-569) (-10 -8 (-15 -3562 ($ $ $))))) (T -1268)) -((-4206 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-558)))) (-4 *4 (-13 (-1264 *3) (-569) (-10 -8 (-15 -3562 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1268 *3 *4)))) (-4205 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1268 *3 *2)) (-4 *2 (-13 (-1264 *3) (-569) (-10 -8 (-15 -3562 ($ $ $))))))) (-4401 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-1268 *4 *3)) (-4 *3 (-13 (-1264 *4) (-569) (-10 -8 (-15 -3562 ($ $ $)))))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 11 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-1248 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1278 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3574 (((-1248 |#1| |#2| |#3|) $) NIL T ELT) (((-1278 |#1| |#2| |#3|) $) NIL T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4211 (((-419 (-558)) $) 68 T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4212 (($ (-419 (-558)) (-1248 |#1| |#2| |#3|)) NIL T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-419 (-558))) 30 T ELT) (($ $ (-1103) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4210 (((-1248 |#1| |#2| |#3|) $) 71 T ELT)) (-4208 (((-3 (-1248 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-4209 (((-1248 |#1| |#2| |#3|) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4242 (($ $) 39 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) NIL (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 40 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) NIL T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1285 |#2|)) 38 T ELT)) (-4378 (((-419 (-558)) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) NIL T ELT)) (-4376 (((-877) $) 107 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1248 |#1| |#2| |#3|)) 16 T ELT) (($ (-1278 |#1| |#2| |#3|)) 17 T ELT) (($ (-1285 |#2|)) 36 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 12 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 32 T CONST)) (-3065 (($) 26 T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1285 |#2|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 34 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1269 |#1| |#2| |#3|) (-13 (-1273 |#1| (-1248 |#1| |#2| |#3|)) (-911 $ (-1285 |#2|)) (-1059 (-1278 |#1| |#2| |#3|)) (-633 (-1285 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -1269)) -((-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1269 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-4388 (((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)) 24 T ELT))) -(((-1270 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4388 ((-1269 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1269 |#1| |#3| |#5|)))) (-1070) (-1070) (-1198) (-1198) |#1| |#2|) (T -1270)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5 *7 *9)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1269 *6 *8 *10)) (-5 *1 (-1270 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1198))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 (-1103)) $) 92 T ELT)) (-4261 (((-1198) $) 126 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) 121 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 120 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 127 T ELT)) (-3912 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3438 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3910 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 196 T ELT)) (-3914 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) 22 T CONST)) (-2963 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) 91 T ELT)) (-4057 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) 123 T ELT) (((-419 (-558)) $ (-419 (-558))) 122 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) 124 T ELT) (($ $ (-419 (-558))) 195 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| (-419 (-558))) 78 T ELT) (($ $ (-1103) (-419 (-558))) 94 T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) 93 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4372 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-2102 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4242 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 193 (-3957 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 175 (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) 118 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4373 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) 116 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) 114 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) 113 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 112 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4378 (((-419 (-558)) $) 81 T ELT)) (-3915 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-4203 ((|#1| $) 125 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1198)) 115 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) 111 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) 110 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 109 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1271 |#1|) (-142) (-1070)) (T -1271)) -((-4248 (*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))) (-4 *4 (-1070)) (-4 *1 (-1271 *4)))) (-4207 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1271 *3)) (-4 *3 (-1070)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558)))))) (-4242 (*1 *1 *1 *2) (-3957 (-12 (-5 *2 (-1198)) (-4 *1 (-1271 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1271 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -3484 ((-661 *2) *3))) (|has| *3 (-15 -4242 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) -(-13 (-1267 |t#1| (-419 (-558))) (-10 -8 (-15 -4248 ($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |t#1|))))) (-15 -4207 ($ $ (-419 (-558)))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $)) (IF (|has| |t#1| (-15 -4242 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -3484 ((-661 (-1198)) |t#1|))) (-15 -4242 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-558))) (-15 -4242 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1224))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-419 (-558))) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-419 (-558)) |#1|) . T) ((-298 $ $) |has| (-419 (-558)) (-1133)) ((-302) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-737 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-911 $ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-917 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-919 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-994 |#1| (-419 (-558)) (-1103)) . T) ((-940) |has| |#1| (-376)) ((-1023) |has| |#1| (-38 (-419 (-558)))) ((-1072 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-558)))) ((-1227) |has| |#1| (-38 (-419 (-558)))) ((-1238) . T) ((-1243) |has| |#1| (-376)) ((-1267 |#1| (-419 (-558))) . T)) -((-3606 (((-114) $) 12 T ELT)) (-3575 (((-3 |#3| "failed") $) 17 T ELT)) (-3574 ((|#3| $) 14 T ELT))) -(((-1272 |#1| |#2| |#3|) (-10 -7 (-15 -3575 ((-3 |#3| "failed") |#1|)) (-15 -3574 (|#3| |#1|)) (-15 -3606 ((-114) |#1|))) (-1273 |#2| |#3|) (-1070) (-1250 |#2|)) (T -1272)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 (-1103)) $) 92 T ELT)) (-4261 (((-1198) $) 126 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) 121 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 120 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 127 T ELT)) (-3912 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3438 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3910 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 196 T ELT)) (-3914 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#2| "failed") $) 209 T ELT)) (-3574 ((|#2| $) 210 T ELT)) (-2963 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4211 (((-419 (-558)) $) 206 T ELT)) (-2962 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-4212 (($ (-419 (-558)) |#2|) 207 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 176 (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) 91 T ELT)) (-4057 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) 123 T ELT) (((-419 (-558)) $ (-419 (-558))) 122 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) 124 T ELT) (($ $ (-419 (-558))) 195 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 185 (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| (-419 (-558))) 78 T ELT) (($ $ (-1103) (-419 (-558))) 94 T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) 93 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4372 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-2102 (($ (-661 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4210 ((|#2| $) 205 T ELT)) (-4208 (((-3 |#2| "failed") $) 203 T ELT)) (-4209 ((|#2| $) 204 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4242 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 193 (-3957 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 175 (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) 118 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 177 (|has| |#1| (-376)) ELT)) (-4373 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) 179 (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) 116 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) 114 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) 113 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 112 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4378 (((-419 (-558)) $) 81 T ELT)) (-3915 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 208 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-4203 ((|#1| $) 125 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1198)) 115 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) 111 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) 110 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 109 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1273 |#1| |#2|) (-142) (-1070) (-1250 |t#1|)) (T -1273)) -((-4378 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1250 *3)) (-5 *2 (-419 (-558))))) (-4212 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-4 *4 (-1070)) (-4 *1 (-1273 *4 *3)) (-4 *3 (-1250 *4)))) (-4211 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1250 *3)) (-5 *2 (-419 (-558))))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1250 *3)))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1250 *3)))) (-4208 (*1 *2 *1) (|partial| -12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1250 *3))))) -(-13 (-1271 |t#1|) (-1059 |t#2|) (-633 |t#2|) (-10 -8 (-15 -4212 ($ (-419 (-558)) |t#2|)) (-15 -4211 ((-419 (-558)) $)) (-15 -4210 (|t#2| $)) (-15 -4378 ((-419 (-558)) $)) (-15 -4209 (|t#2| $)) (-15 -4208 ((-3 |t#2| "failed") $)))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-419 (-558))) . T) ((-25) . T) ((-38 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 |#2|) . T) ((-633 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-419 (-558)) |#1|) . T) ((-298 $ $) |has| (-419 (-558)) (-1133)) ((-302) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-666 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-737 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-746) . T) ((-911 $ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-917 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-919 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-994 |#1| (-419 (-558)) (-1103)) . T) ((-940) |has| |#1| (-376)) ((-1023) |has| |#1| (-38 (-419 (-558)))) ((-1059 |#2|) . T) ((-1072 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) -3957 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-558)))) ((-1227) |has| |#1| (-38 (-419 (-558)))) ((-1238) . T) ((-1243) |has| |#1| (-376)) ((-1267 |#1| (-419 (-558))) . T) ((-1271 |#1|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 104 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-419 (-558))) 116 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 118 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 54 T ELT)) (-3912 (($ $) 192 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4205 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4401 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1788 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3910 (($ $) 188 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-791) (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 65 T ELT)) (-3914 (($ $) 196 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT)) (-3574 ((|#2| $) NIL T ELT)) (-2963 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 85 T ELT)) (-4211 (((-419 (-558)) $) 13 T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4212 (($ (-419 (-558)) |#2|) 11 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) NIL (|has| |#1| (-376)) ELT)) (-4153 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3293 (((-114) $) 74 T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-419 (-558)) $) 113 T ELT) (((-419 (-558)) $ (-419 (-558))) 114 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) 130 T ELT) (($ $ (-419 (-558))) 128 T ELT)) (-1785 (((-3 (-661 $) #1#) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-419 (-558))) 33 T ELT) (($ $ (-1103) (-419 (-558))) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-419 (-558)))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4372 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-2102 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4210 ((|#2| $) 12 T ELT)) (-4208 (((-3 |#2| #1#) $) 44 T ELT)) (-4209 ((|#2| $) 45 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-2874 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4242 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 151 (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) NIL (|has| |#1| (-376)) ELT)) (-3562 (($ (-661 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4162 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1786 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4199 (($ $ (-419 (-558))) 122 T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) NIL (|has| |#1| (-376)) ELT)) (-4373 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1787 (((-791) $) NIL (|has| |#1| (-376)) ELT)) (-4230 ((|#1| $ (-419 (-558))) 108 T ELT) (($ $ $) 94 (|has| (-419 (-558)) (-1133)) ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4188 (($ $ (-1198)) 138 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4378 (((-419 (-558)) $) 16 T ELT)) (-3915 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 190 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 120 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-419 (-558))) 139 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4107 ((|#1| $ (-419 (-558))) 107 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 127 T CONST)) (-4203 ((|#1| $) 106 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 180 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 176 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 184 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 210 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 186 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 182 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 178 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 21 T CONST)) (-3065 (($) 17 T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3454 (((-114) $ $) 72 T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-4269 (($ $ $) 76 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 82 T ELT) (($ $ (-558)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1274 |#1| |#2|) (-1273 |#1| |#2|) (-1070) (-1250 |#1|)) (T -1274)) -NIL -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 37 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL T ELT)) (-2273 (($ $) NIL T ELT)) (-2271 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 (-558) #1#) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1059 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1059 (-419 (-558)))) ELT) (((-3 (-1269 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3574 (((-558) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1059 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-1059 (-419 (-558)))) ELT) (((-1269 |#2| |#3| |#4|) $) NIL T ELT)) (-4389 (($ $) 41 T ELT)) (-3887 (((-3 $ #1#) $) 27 T ELT)) (-3923 (($ $) NIL (|has| (-1269 |#2| |#3| |#4|) (-464)) ELT)) (-1804 (($ $ (-1269 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) 11 T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ (-1269 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3221 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1805 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-4388 (($ (-1 (-1269 |#2| |#3| |#4|) (-1269 |#2| |#3| |#4|)) $) NIL T ELT)) (-4214 (((-3 (-855 |#2|) #1#) $) 91 T ELT)) (-3295 (($ $) NIL T ELT)) (-3592 (((-1269 |#2| |#3| |#4|) $) 20 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-2005 (((-114) $) NIL T ELT)) (-2004 (((-1269 |#2| |#3| |#4|) $) NIL T ELT)) (-3886 (((-3 $ #1#) $ (-1269 |#2| |#3| |#4|)) NIL (|has| (-1269 |#2| |#3| |#4|) (-569)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-4213 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) #1#) $) 74 T ELT)) (-4378 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-3218 (((-1269 |#2| |#3| |#4|) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-464)) ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1269 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL (-3957 (|has| (-1269 |#2| |#3| |#4|) (-1059 (-419 (-558)))) (|has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558))))) ELT)) (-4247 (((-661 (-1269 |#2| |#3| |#4|)) $) NIL T ELT)) (-4107 (((-1269 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-3103 (((-711 $) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-1803 (($ $ $ (-791)) NIL (|has| (-1269 |#2| |#3| |#4|) (-175)) ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-2272 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ (-1269 |#2| |#3| |#4|)) NIL (|has| (-1269 |#2| |#3| |#4|) (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1269 |#2| |#3| |#4|)) NIL T ELT) (($ (-1269 |#2| |#3| |#4|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| (-1269 |#2| |#3| |#4|) (-38 (-419 (-558)))) ELT))) -(((-1275 |#1| |#2| |#3| |#4|) (-13 (-338 (-1269 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -4214 ((-3 (-855 |#2|) #1="failed") $)) (-15 -4213 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1180))) #1#) $)))) (-13 (-1059 (-558)) (-658 (-558)) (-464)) (-13 (-27) (-1224) (-433 |#1|)) (-1198) |#2|) (T -1275)) -((-4214 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) (-5 *2 (-855 *4)) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-433 *3))) (-14 *5 (-1198)) (-14 *6 *4))) (-4213 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1269 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))))) (|:| |%type| (-1180)))) (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-433 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) -((-3822 ((|#2| $) 34 T ELT)) (-4225 ((|#2| $) 18 T ELT)) (-4227 (($ $) 44 T ELT)) (-4215 (($ $ (-558)) 79 T ELT)) (-3426 ((|#2| $ |#2|) 76 T ELT)) (-4216 ((|#2| $ |#2|) 72 T ELT)) (-4218 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3427 (($ $ (-661 $)) 75 T ELT)) (-4226 ((|#2| $) 17 T ELT)) (-4229 (($ $) NIL T ELT) (($ $ (-791)) 52 T ELT)) (-3432 (((-661 $) $) 31 T ELT)) (-3428 (((-114) $ $) 63 T ELT)) (-3947 (((-114) $) 33 T ELT)) (-4228 ((|#2| $) 25 T ELT) (($ $ (-791)) 58 T ELT)) (-4230 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-4063 (((-114) $) 23 T ELT)) (-4222 (($ $) 47 T ELT)) (-4220 (($ $) 80 T ELT)) (-4223 (((-791) $) 51 T ELT)) (-4224 (($ $) 50 T ELT)) (-4232 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3942 (((-661 $) $) 32 T ELT)) (-3454 (((-114) $ $) 61 T ELT)) (-4387 (((-791) $) 43 T ELT))) -(((-1276 |#1| |#2|) (-10 -7 (-15 -3454 ((-114) |#1| |#1|)) (-15 -4215 (|#1| |#1| (-558))) (-15 -4218 (|#2| |#1| #1="last" |#2|)) (-15 -4216 (|#2| |#1| |#2|)) (-15 -4218 (|#1| |#1| #2="rest" |#1|)) (-15 -4218 (|#2| |#1| #3="first" |#2|)) (-15 -4220 (|#1| |#1|)) (-15 -4222 (|#1| |#1|)) (-15 -4223 ((-791) |#1|)) (-15 -4224 (|#1| |#1|)) (-15 -4225 (|#2| |#1|)) (-15 -4226 (|#2| |#1|)) (-15 -4227 (|#1| |#1|)) (-15 -4228 (|#1| |#1| (-791))) (-15 -4230 (|#2| |#1| #1#)) (-15 -4228 (|#2| |#1|)) (-15 -4229 (|#1| |#1| (-791))) (-15 -4230 (|#1| |#1| #2#)) (-15 -4229 (|#1| |#1|)) (-15 -4230 (|#2| |#1| #3#)) (-15 -4232 (|#1| |#2| |#1|)) (-15 -4232 (|#1| |#1| |#1|)) (-15 -3426 (|#2| |#1| |#2|)) (-15 -4218 (|#2| |#1| #4="value" |#2|)) (-15 -3427 (|#1| |#1| (-661 |#1|))) (-15 -3428 ((-114) |#1| |#1|)) (-15 -4063 ((-114) |#1|)) (-15 -4230 (|#2| |#1| #4#)) (-15 -3822 (|#2| |#1|)) (-15 -3947 ((-114) |#1|)) (-15 -3432 ((-661 |#1|) |#1|)) (-15 -3942 ((-661 |#1|) |#1|)) (-15 -4387 ((-791) |#1|))) (-1277 |#2|) (-1238)) (T -1276)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3822 ((|#1| $) 52 T ELT)) (-4225 ((|#1| $) 71 T ELT)) (-4227 (($ $) 73 T ELT)) (-4215 (($ $ (-558)) 58 (|has| $ (-6 -4426)) ELT)) (-3426 ((|#1| $ |#1|) 43 (|has| $ (-6 -4426)) ELT)) (-4217 (($ $ $) 62 (|has| $ (-6 -4426)) ELT)) (-4216 ((|#1| $ |#1|) 60 (|has| $ (-6 -4426)) ELT)) (-4219 ((|#1| $ |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4218 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4426)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4426)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4426)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4426)) ELT)) (-3427 (($ $ (-661 $)) 45 (|has| $ (-6 -4426)) ELT)) (-4226 ((|#1| $) 72 T ELT)) (-4154 (($) 7 T CONST)) (-4229 (($ $) 79 T ELT) (($ $ (-791)) 77 T ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-3432 (((-661 $) $) 54 T ELT)) (-3428 (((-114) $ $) 46 (|has| |#1| (-1122)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3431 (((-661 |#1|) $) 49 T ELT)) (-3947 (((-114) $) 53 T ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-4228 ((|#1| $) 76 T ELT) (($ $ (-791)) 74 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 82 T ELT) (($ $ (-791)) 80 T ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3430 (((-558) $ $) 48 T ELT)) (-4063 (((-114) $) 50 T ELT)) (-4222 (($ $) 68 T ELT)) (-4220 (($ $) 65 (|has| $ (-6 -4426)) ELT)) (-4223 (((-791) $) 69 T ELT)) (-4224 (($ $) 70 T ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3820 (($ $) 10 T ELT)) (-4221 (($ $ $) 67 (|has| $ (-6 -4426)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4426)) ELT)) (-4232 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-3942 (((-661 $) $) 55 T ELT)) (-3429 (((-114) $ $) 47 (|has| |#1| (-1122)) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1277 |#1|) (-142) (-1238)) (T -1277)) -((-4232 (*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4232 (*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4231 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4231 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) (-4229 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) (-4228 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4230 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) (-4227 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4226 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4224 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4223 (*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1238)) (-5 *2 (-791)))) (-4222 (*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4221 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4221 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4220 (*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4219 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4218 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4217 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4218 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4426)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) (-4216 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4218 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) (-4215 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4426)) (-4 *1 (-1277 *3)) (-4 *3 (-1238))))) -(-13 (-1031 |t#1|) (-10 -8 (-15 -4232 ($ $ $)) (-15 -4232 ($ |t#1| $)) (-15 -4231 (|t#1| $)) (-15 -4230 (|t#1| $ "first")) (-15 -4231 ($ $ (-791))) (-15 -4229 ($ $)) (-15 -4230 ($ $ "rest")) (-15 -4229 ($ $ (-791))) (-15 -4228 (|t#1| $)) (-15 -4230 (|t#1| $ "last")) (-15 -4228 ($ $ (-791))) (-15 -4227 ($ $)) (-15 -4226 (|t#1| $)) (-15 -4225 (|t#1| $)) (-15 -4224 ($ $)) (-15 -4223 ((-791) $)) (-15 -4222 ($ $)) (IF (|has| $ (-6 -4426)) (PROGN (-15 -4221 ($ $ $)) (-15 -4221 ($ $ |t#1|)) (-15 -4220 ($ $)) (-15 -4219 (|t#1| $ |t#1|)) (-15 -4218 (|t#1| $ "first" |t#1|)) (-15 -4217 ($ $ $)) (-15 -4218 ($ $ "rest" $)) (-15 -4216 (|t#1| $ |t#1|)) (-15 -4218 (|t#1| $ "last" |t#1|)) (-15 -4215 ($ $ (-558)))) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-630 (-877)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-1031 |#1|) . T) ((-1122) |has| |#1| (-1122)) ((-1238) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-3484 (((-661 (-1103)) $) NIL T ELT)) (-4261 (((-1198) $) 90 T ELT)) (-4241 (((-1257 |#2| |#1|) $ (-791)) 73 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2273 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 143 (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-791)) 128 T ELT) (($ $ (-791) (-791)) 131 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-791)) (|:| |c| |#1|))) $) 43 T ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3438 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-791)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1176 |#1|)) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) NIL T CONST)) (-4235 (($ $) 135 T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4246 (($ $) 141 T ELT)) (-4244 (((-965 |#1|) $ (-791)) 63 T ELT) (((-965 |#1|) $ (-791) (-791)) 65 T ELT)) (-3293 (((-114) $) NIL T ELT)) (-4057 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-791) $) NIL T ELT) (((-791) $ (-791)) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4238 (($ $) 118 T ELT)) (-3412 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4234 (($ (-558) (-558) $) 137 T ELT)) (-4207 (($ $ (-938)) 140 T ELT)) (-4245 (($ (-1 |#1| (-558)) $) 112 T ELT)) (-4367 (((-114) $) NIL T ELT)) (-3294 (($ |#1| (-791)) 16 T ELT) (($ $ (-1103) (-791)) NIL T ELT) (($ $ (-661 (-1103)) (-661 (-791))) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4239 (($ $) 116 T ELT)) (-4240 (($ $) 114 T ELT)) (-4233 (($ (-558) (-558) $) 139 T ELT)) (-4242 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 157 (-3957 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))))) ELT) (($ $ (-1285 |#2|)) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4236 (($ $ (-558) (-558)) 122 T ELT)) (-4199 (($ $ (-791)) 124 T ELT)) (-3886 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4373 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4237 (($ $) 120 T ELT)) (-4198 (((-1176 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) ELT)) (-4230 ((|#1| $ (-791)) 96 T ELT) (($ $ $) 133 (|has| (-791) (-1133)) ELT)) (-4188 (($ $ (-1198)) 109 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1285 |#2|)) 104 T ELT)) (-4378 (((-791) $) NIL T ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 126 T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) 26 T ELT) (($ (-419 (-558))) 149 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1257 |#2| |#1|)) 81 T ELT) (($ (-1285 |#2|)) 22 T ELT)) (-4247 (((-1176 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ (-791)) 95 T ELT)) (-3103 (((-711 $) $) NIL (|has| |#1| (-147)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4203 ((|#1| $) 91 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-791)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 18 T CONST)) (-3065 (($) 13 T CONST)) (-3070 (($ $ (-1198)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1198) (-791)) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) NIL (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) NIL (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-1285 |#2|)) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4379 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-4269 (($ $ $) 20 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1278 |#1| |#2| |#3|) (-13 (-1281 |#1|) (-911 $ (-1285 |#2|)) (-10 -8 (-15 -4376 ($ (-1257 |#2| |#1|))) (-15 -4241 ((-1257 |#2| |#1|) $ (-791))) (-15 -4376 ($ (-1285 |#2|))) (-15 -4240 ($ $)) (-15 -4239 ($ $)) (-15 -4238 ($ $)) (-15 -4237 ($ $)) (-15 -4236 ($ $ (-558) (-558))) (-15 -4235 ($ $)) (-15 -4234 ($ (-558) (-558) $)) (-15 -4233 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4242 ($ $ (-1285 |#2|))) |%noBranch|))) (-1070) (-1198) |#1|) (T -1278)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3) (-5 *1 (-1278 *3 *4 *5)))) (-4241 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) (-4 *4 (-1070)) (-14 *5 (-1198)) (-14 *6 *4))) (-4376 (*1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *5 *3))) (-4240 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2))) (-4236 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3))) (-4235 (*1 *1 *1) (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2))) (-4234 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3))) (-4233 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3))) (-4242 (*1 *1 *1 *2) (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3)))) -((-4388 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) -(((-1279 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4388 (|#4| (-1 |#2| |#1|) |#3|))) (-1070) (-1070) (-1281 |#1|) (-1281 |#2|)) (T -1279)) -((-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1281 *6)) (-5 *1 (-1279 *5 *6 *4 *2)) (-4 *4 (-1281 *5))))) -((-3606 (((-114) $) 17 T ELT)) (-3912 (($ $) 105 T ELT)) (-4069 (($ $) 81 T ELT)) (-3910 (($ $) 101 T ELT)) (-4068 (($ $) 77 T ELT)) (-3914 (($ $) 109 T ELT)) (-4067 (($ $) 85 T ELT)) (-4372 (($ $) 75 T ELT)) (-4373 (($ $) 73 T ELT)) (-3915 (($ $) 111 T ELT)) (-4066 (($ $) 87 T ELT)) (-3913 (($ $) 107 T ELT)) (-4065 (($ $) 83 T ELT)) (-3911 (($ $) 103 T ELT)) (-4064 (($ $) 79 T ELT)) (-4376 (((-877) $) 61 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3918 (($ $) 117 T ELT)) (-3906 (($ $) 93 T ELT)) (-3916 (($ $) 113 T ELT)) (-3904 (($ $) 89 T ELT)) (-3920 (($ $) 121 T ELT)) (-3908 (($ $) 97 T ELT)) (-3921 (($ $) 123 T ELT)) (-3909 (($ $) 99 T ELT)) (-3919 (($ $) 119 T ELT)) (-3907 (($ $) 95 T ELT)) (-3917 (($ $) 115 T ELT)) (-3905 (($ $) 91 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-419 (-558))) 71 T ELT))) -(((-1280 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -4069 (|#1| |#1|)) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3921 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 -4373 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4376 (|#1| |#2|)) (-15 -4376 (|#1| |#1|)) (-15 -4376 (|#1| (-419 (-558)))) (-15 -4376 (|#1| (-558))) (-15 ** (|#1| |#1| (-791))) (-15 ** (|#1| |#1| (-938))) (-15 -3606 ((-114) |#1|)) (-15 -4376 ((-877) |#1|))) (-1281 |#2|) (-1070)) (T -1280)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-3484 (((-661 (-1103)) $) 92 T ELT)) (-4261 (((-1198) $) 126 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2273 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2271 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4201 (($ $ (-791)) 121 T ELT) (($ $ (-791) (-791)) 120 T ELT)) (-4204 (((-1176 (-2 (|:| |k| (-791)) (|:| |c| |#1|))) $) 127 T ELT)) (-3912 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4069 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-3438 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4248 (($ (-1176 (-2 (|:| |k| (-791)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1176 |#1|)) 178 T ELT)) (-3914 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4154 (($) 22 T CONST)) (-4389 (($ $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4246 (($ $) 177 T ELT)) (-4244 (((-965 |#1|) $ (-791)) 175 T ELT) (((-965 |#1|) $ (-791) (-791)) 174 T ELT)) (-3293 (((-114) $) 91 T ELT)) (-4057 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4202 (((-791) $) 123 T ELT) (((-791) $ (-791)) 122 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3412 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4207 (($ $ (-938)) 124 T ELT)) (-4245 (($ (-1 |#1| (-558)) $) 176 T ELT)) (-4367 (((-114) $) 79 T ELT)) (-3294 (($ |#1| (-791)) 78 T ELT) (($ $ (-1103) (-791)) 94 T ELT) (($ $ (-661 (-1103)) (-661 (-791))) 93 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4372 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3295 (($ $) 82 T ELT)) (-3592 ((|#1| $) 83 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-4242 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1198)) 171 (-3957 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-979)) (|has| |#1| (-1224)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3484 ((-661 (-1198)) |#1|))) (|has| |#1| (-15 -4242 (|#1| |#1| (-1198)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4199 (($ $ (-791)) 118 T ELT)) (-3886 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4373 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (((-1176 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) ELT)) (-4230 ((|#1| $ (-791)) 128 T ELT) (($ $ $) 104 (|has| (-791) (-1133)) ELT)) (-4188 (($ $ (-1198)) 116 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198))) 114 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1198) (-791)) 113 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 112 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) 106 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT)) (-4378 (((-791) $) 81 T ELT)) (-3915 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3911 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3292 (($ $) 90 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4247 (((-1176 |#1|) $) 179 T ELT)) (-4107 ((|#1| $ (-791)) 76 T ELT)) (-3103 (((-711 $) $) 65 (|has| |#1| (-147)) ELT)) (-3528 (((-791)) 37 T CONST)) (-4203 ((|#1| $) 125 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3918 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2272 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3916 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4200 ((|#1| $ (-791)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-791)))) (|has| |#1| (-15 -4376 (|#1| (-1198))))) ELT)) (-3921 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3917 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3070 (($ $ (-1198)) 115 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198))) 111 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-1198) (-791)) 110 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $ (-661 (-1198)) (-661 (-791))) 109 (-12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT) (($ $ (-791)) 105 (|has| |#1| (-15 * (|#1| (-791) |#1|))) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) -(((-1281 |#1|) (-142) (-1070)) (T -1281)) -((-4248 (*1 *1 *2) (-12 (-5 *2 (-1176 (-2 (|:| |k| (-791)) (|:| |c| *3)))) (-4 *3 (-1070)) (-4 *1 (-1281 *3)))) (-4247 (*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-1070)) (-5 *2 (-1176 *3)))) (-4248 (*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-4 *1 (-1281 *3)))) (-4246 (*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1070)))) (-4245 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1281 *3)) (-4 *3 (-1070)))) (-4244 (*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1281 *4)) (-4 *4 (-1070)) (-5 *2 (-965 *4)))) (-4244 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-4 *1 (-1281 *4)) (-4 *4 (-1070)) (-5 *2 (-965 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) (-4242 (*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558)))))) (-4242 (*1 *1 *1 *2) (-3957 (-12 (-5 *2 (-1198)) (-4 *1 (-1281 *3)) (-4 *3 (-1070)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-979)) (-4 *3 (-1224)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1198)) (-4 *1 (-1281 *3)) (-4 *3 (-1070)) (-12 (|has| *3 (-15 -3484 ((-661 *2) *3))) (|has| *3 (-15 -4242 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) -(-13 (-1267 |t#1| (-791)) (-10 -8 (-15 -4248 ($ (-1176 (-2 (|:| |k| (-791)) (|:| |c| |t#1|))))) (-15 -4247 ((-1176 |t#1|) $)) (-15 -4248 ($ (-1176 |t#1|))) (-15 -4246 ($ $)) (-15 -4245 ($ (-1 |t#1| (-558)) $)) (-15 -4244 ((-965 |t#1|) $ (-791))) (-15 -4244 ((-965 |t#1|) $ (-791) (-791))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4242 ($ $)) (IF (|has| |t#1| (-15 -4242 (|t#1| |t#1| (-1198)))) (IF (|has| |t#1| (-15 -3484 ((-661 (-1198)) |t#1|))) (-15 -4242 ($ $ (-1198))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1224)) (IF (|has| |t#1| (-979)) (IF (|has| |t#1| (-29 (-558))) (-15 -4242 ($ $ (-1198))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1023)) (-6 (-1224))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-47 |#1| (-791)) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-633 (-558)) . T) ((-633 |#1|) |has| |#1| (-175)) ((-633 $) |has| |#1| (-569)) ((-630 (-877)) . T) ((-175) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-791) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-791) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-791) |#1|))) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-791) |#1|) . T) ((-298 $ $) |has| (-791) (-1133)) ((-302) |has| |#1| (-569)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) |has| |#1| (-569)) ((-666 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-660 |#1|) |has| |#1| (-175)) ((-660 $) |has| |#1| (-569)) ((-737 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-737 |#1|) |has| |#1| (-175)) ((-737 $) |has| |#1| (-569)) ((-746) . T) ((-911 $ (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ((-917 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ((-919 (-1198)) -12 (|has| |#1| (-917 (-1198))) (|has| |#1| (-15 * (|#1| (-791) |#1|)))) ((-994 |#1| (-791) (-1103)) . T) ((-1023) |has| |#1| (-38 (-419 (-558)))) ((-1072 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1072 |#1|) . T) ((-1072 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1077 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1077 |#1|) . T) ((-1077 $) -3957 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1224) |has| |#1| (-38 (-419 (-558)))) ((-1227) |has| |#1| (-38 (-419 (-558)))) ((-1238) . T) ((-1267 |#1| (-791)) . T)) -((-4251 (((-1 (-1176 |#1|) (-661 (-1176 |#1|))) (-1 |#2| (-661 |#2|))) 24 T ELT)) (-4250 (((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-4249 (((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-4254 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-4253 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4255 ((|#2| (-1 |#2| (-661 |#2|)) (-661 |#1|)) 60 T ELT)) (-4256 (((-661 |#2|) (-661 |#1|) (-661 (-1 |#2| (-661 |#2|)))) 66 T ELT)) (-4252 ((|#2| |#2| |#2|) 43 T ELT))) -(((-1282 |#1| |#2|) (-10 -7 (-15 -4249 ((-1 (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2|))) (-15 -4250 ((-1 (-1176 |#1|) (-1176 |#1|) (-1176 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4251 ((-1 (-1176 |#1|) (-661 (-1176 |#1|))) (-1 |#2| (-661 |#2|)))) (-15 -4252 (|#2| |#2| |#2|)) (-15 -4253 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4254 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4255 (|#2| (-1 |#2| (-661 |#2|)) (-661 |#1|))) (-15 -4256 ((-661 |#2|) (-661 |#1|) (-661 (-1 |#2| (-661 |#2|)))))) (-38 (-419 (-558))) (-1281 |#1|)) (T -1282)) -((-4256 (*1 *2 *3 *4) (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 (-1 *6 (-661 *6)))) (-4 *5 (-38 (-419 (-558)))) (-4 *6 (-1281 *5)) (-5 *2 (-661 *6)) (-5 *1 (-1282 *5 *6)))) (-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-661 *2))) (-5 *4 (-661 *5)) (-4 *5 (-38 (-419 (-558)))) (-4 *2 (-1281 *5)) (-5 *1 (-1282 *5 *2)))) (-4254 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1281 *4)) (-5 *1 (-1282 *4 *2)) (-4 *4 (-38 (-419 (-558)))))) (-4253 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1281 *4)) (-5 *1 (-1282 *4 *2)) (-4 *4 (-38 (-419 (-558)))))) (-4252 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1282 *3 *2)) (-4 *2 (-1281 *3)))) (-4251 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-661 *5))) (-4 *5 (-1281 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1176 *4) (-661 (-1176 *4)))) (-5 *1 (-1282 *4 *5)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1281 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1282 *4 *5)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1281 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1282 *4 *5))))) -((-4258 ((|#2| |#4| (-791)) 31 T ELT)) (-4257 ((|#4| |#2|) 26 T ELT)) (-4260 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-569)) ELT)) (-4259 (((-1 |#4| (-661 |#4|)) |#3|) 43 T ELT))) -(((-1283 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4257 (|#4| |#2|)) (-15 -4258 (|#2| |#4| (-791))) (-15 -4259 ((-1 |#4| (-661 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4260 (|#4| (-419 |#2|))) |%noBranch|)) (-1070) (-1264 |#1|) (-678 |#2|) (-1281 |#1|)) (T -1283)) -((-4260 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-569)) (-4 *4 (-1070)) (-4 *2 (-1281 *4)) (-5 *1 (-1283 *4 *5 *6 *2)) (-4 *6 (-678 *5)))) (-4259 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-661 *6))) (-5 *1 (-1283 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-1281 *4)))) (-4258 (*1 *2 *3 *4) (-12 (-5 *4 (-791)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) (-5 *1 (-1283 *5 *2 *6 *3)) (-4 *6 (-678 *2)) (-4 *3 (-1281 *5)))) (-4257 (*1 *2 *3) (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1281 *4)) (-5 *1 (-1283 *4 *3 *5 *2)) (-4 *5 (-678 *3))))) -NIL -(((-1284) (-142)) (T -1284)) -NIL -(-13 (-10 -7 (-6 -2501))) -((-2967 (((-114) $ $) NIL T ELT)) (-4261 (((-1198)) 12 T ELT)) (-3660 (((-1180) $) 18 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 11 T ELT) (((-1198) $) 8 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 15 T ELT))) -(((-1285 |#1|) (-13 (-1122) (-630 (-1198)) (-10 -8 (-15 -4376 ((-1198) $)) (-15 -4261 ((-1198))))) (-1198)) (T -1285)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2))) (-4261 (*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2)))) -((-4268 (($ (-791)) 19 T ELT)) (-4265 (((-709 |#2|) $ $) 41 T ELT)) (-4262 ((|#2| $) 51 T ELT)) (-4263 ((|#2| $) 50 T ELT)) (-4266 ((|#2| $ $) 36 T ELT)) (-4264 (($ $ $) 47 T ELT)) (-4267 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-4269 (($ $ $) 15 T ELT)) (* (($ (-558) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) -(((-1286 |#1| |#2|) (-10 -7 (-15 -4262 (|#2| |#1|)) (-15 -4263 (|#2| |#1|)) (-15 -4264 (|#1| |#1| |#1|)) (-15 -4265 ((-709 |#2|) |#1| |#1|)) (-15 -4266 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4267 (|#1| |#1| |#1|)) (-15 -4267 (|#1| |#1|)) (-15 -4268 (|#1| (-791))) (-15 -4269 (|#1| |#1| |#1|))) (-1287 |#2|) (-1238)) (T -1286)) -NIL -((-2967 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4268 (($ (-791)) 121 (|has| |#1| (-23)) ELT)) (-2413 (((-1294) $ (-558) (-558)) 44 (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4426)) ELT) (($ $) 97 (-12 (|has| |#1| (-861)) (|has| $ (-6 -4426))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) 64 (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4425)) ELT)) (-4154 (($) 7 T CONST)) (-2510 (($ $) 99 (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) 109 T ELT)) (-1467 (($ $) 84 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-3826 (($ |#1| $) 83 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) 55 T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) 30 (|has| $ (-6 -4425)) ELT)) (-4265 (((-709 |#1|) $ $) 114 (|has| |#1| (-1070)) ELT)) (-4044 (($ (-791) |#1|) 74 T ELT)) (-2415 (((-558) $) 47 (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) 91 (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-2416 (((-558) $) 48 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) 92 (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4262 ((|#1| $) 111 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))) ELT)) (-4263 ((|#1| $) 112 (-12 (|has| |#1| (-1070)) (|has| |#1| (-1023))) ELT)) (-3660 (((-1180) $) 22 (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2418 (((-661 (-558)) $) 50 T ELT)) (-2419 (((-114) (-558) $) 51 T ELT)) (-3661 (((-1141) $) 21 (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) 46 (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2414 (($ $ |#1|) 45 (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) 11 T ELT)) (-2417 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) 52 T ELT)) (-3823 (((-114) $) 8 T ELT)) (-3993 (($) 9 T ELT)) (-4230 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1255 (-558))) 75 T ELT)) (-4266 ((|#1| $ $) 115 (|has| |#1| (-1070)) ELT)) (-2518 (($ $ (-558)) 68 T ELT) (($ $ (-1255 (-558))) 67 T ELT)) (-4264 (($ $ $) 113 (|has| |#1| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) 28 (-12 (|has| |#1| (-1122)) (|has| $ (-6 -4425))) ELT)) (-1934 (($ $ $ (-558)) 100 (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) 10 T ELT)) (-4402 (((-547) $) 85 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 76 T ELT)) (-4232 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-661 $)) 70 T ELT)) (-4376 (((-877) $) 17 (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) 93 (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) 95 (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) 94 (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) 96 (|has| |#1| (-861)) ELT)) (-4267 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-558) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-746)) ELT) (($ $ |#1|) 116 (|has| |#1| (-746)) ELT)) (-4387 (((-791) $) 6 (|has| $ (-6 -4425)) ELT))) -(((-1287 |#1|) (-142) (-1238)) (T -1287)) -((-4269 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-25)))) (-4268 (*1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1287 *3)) (-4 *3 (-23)) (-4 *3 (-1238)))) (-4267 (*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (-4267 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1287 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-746)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-746)))) (-4266 (*1 *2 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *1 (-1287 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-709 *3)))) (-4264 (*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) (-4263 (*1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070)))) (-4262 (*1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) -(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4269 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4268 ($ (-791))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4267 ($ $)) (-15 -4267 ($ $ $)) (-15 * ($ (-558) $))) |%noBranch|) (IF (|has| |t#1| (-746)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1070)) (PROGN (-15 -4266 (|t#1| $ $)) (-15 -4265 ((-709 |t#1|) $ $)) (-15 -4264 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1023)) (IF (|has| |t#1| (-1070)) (PROGN (-15 -4263 (|t#1| $)) (-15 -4262 (|t#1| $))) |%noBranch|) |%noBranch|))) -(((-34) . T) ((-102) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-102))) ((-630 (-877)) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861)) (|has| |#1| (-630 (-877)))) ((-153 |#1|) . T) ((-631 (-547)) |has| |#1| (-631 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1255 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-616 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ((-671 |#1|) . T) ((-19 |#1|) . T) ((-861) |has| |#1| (-861)) ((-864) |has| |#1| (-861)) ((-1122) -3957 (|has| |#1| (-1122)) (|has| |#1| (-861))) ((-1238) . T)) -((-2967 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4268 (($ (-791)) NIL (|has| |#1| (-23)) ELT)) (-4270 (($ (-661 |#1|)) 11 T ELT)) (-2413 (((-1294) $ (-558) (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-1935 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-861)) ELT)) (-1933 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4426)) (|has| |#1| (-861))) ELT)) (-3310 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-861)) ELT)) (-4218 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT) ((|#1| $ (-1255 (-558)) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-4140 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4154 (($) NIL T CONST)) (-2510 (($ $) NIL (|has| $ (-6 -4426)) ELT)) (-2511 (($ $) NIL T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-3826 (($ |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4272 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-1719 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-3515 ((|#1| $ (-558)) NIL T ELT)) (-3839 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1122)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1122)) ELT)) (-3290 (((-661 |#1|) $) 16 (|has| $ (-6 -4425)) ELT)) (-4265 (((-709 |#1|) $ $) NIL (|has| |#1| (-1070)) ELT)) (-4044 (($ (-791) |#1|) NIL T ELT)) (-2415 (((-558) $) NIL (|has| (-558) (-861)) ELT)) (-2930 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3938 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-3007 (((-661 |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2416 (((-558) $) 12 (|has| (-558) (-861)) ELT)) (-3258 (($ $ $) NIL (|has| |#1| (-861)) ELT)) (-2160 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4262 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))) ELT)) (-4263 ((|#1| $) NIL (-12 (|has| |#1| (-1023)) (|has| |#1| (-1070))) ELT)) (-3660 (((-1180) $) NIL (|has| |#1| (-1122)) ELT)) (-2517 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2418 (((-661 (-558)) $) NIL T ELT)) (-2419 (((-114) (-558) $) NIL T ELT)) (-3661 (((-1141) $) NIL (|has| |#1| (-1122)) ELT)) (-4231 ((|#1| $) NIL (|has| (-558) (-861)) ELT)) (-1468 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2414 (($ $ |#1|) NIL (|has| $ (-6 -4426)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT) (($ $ (-661 |#1|) (-661 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-2417 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-2420 (((-661 |#1|) $) NIL T ELT)) (-3823 (((-114) $) NIL T ELT)) (-3993 (($) NIL T ELT)) (-4230 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4266 ((|#1| $ $) NIL (|has| |#1| (-1070)) ELT)) (-2518 (($ $ (-558)) NIL T ELT) (($ $ (-1255 (-558))) NIL T ELT)) (-4264 (($ $ $) NIL (|has| |#1| (-1070)) ELT)) (-2157 (((-791) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (((-791) |#1| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-1122))) ELT)) (-1934 (($ $ $ (-558)) NIL (|has| $ (-6 -4426)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) 20 (|has| |#1| (-631 (-547))) ELT)) (-3950 (($ (-661 |#1|)) 10 T ELT)) (-4232 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-661 $)) NIL T ELT)) (-4376 (((-877) $) NIL (|has| |#1| (-630 (-877))) ELT)) (-1378 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2159 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-2966 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3454 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-3086 (((-114) $ $) NIL (|has| |#1| (-861)) ELT)) (-4267 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4269 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-746)) ELT) (($ $ |#1|) NIL (|has| |#1| (-746)) ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1288 |#1|) (-13 (-1287 |#1|) (-10 -8 (-15 -4270 ($ (-661 |#1|))))) (-1238)) (T -1288)) -((-4270 (*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) -((-4271 (((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 13 T ELT)) (-4272 ((|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|) 15 T ELT)) (-4388 (((-3 (-1288 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1288 |#1|)) 30 T ELT) (((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|)) 18 T ELT))) -(((-1289 |#1| |#2|) (-10 -7 (-15 -4271 ((-1288 |#2|) (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4272 (|#2| (-1 |#2| |#1| |#2|) (-1288 |#1|) |#2|)) (-15 -4388 ((-1288 |#2|) (-1 |#2| |#1|) (-1288 |#1|))) (-15 -4388 ((-3 (-1288 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1288 |#1|)))) (-1238) (-1238)) (T -1289)) -((-4388 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1289 *5 *6)))) (-4388 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1289 *5 *6)))) (-4272 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) (-5 *1 (-1289 *5 *2)))) (-4271 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-5 *2 (-1288 *5)) (-5 *1 (-1289 *6 *5))))) -((-4273 (((-480) (-661 (-661 (-962 (-229)))) (-661 (-270))) 22 T ELT) (((-480) (-661 (-661 (-962 (-229))))) 21 T ELT) (((-480) (-661 (-661 (-962 (-229)))) (-888) (-888) (-938) (-661 (-270))) 20 T ELT)) (-4274 (((-1291) (-661 (-661 (-962 (-229)))) (-661 (-270))) 30 T ELT) (((-1291) (-661 (-661 (-962 (-229)))) (-888) (-888) (-938) (-661 (-270))) 29 T ELT)) (-4376 (((-1291) (-480)) 46 T ELT))) -(((-1290) (-10 -7 (-15 -4273 ((-480) (-661 (-661 (-962 (-229)))) (-888) (-888) (-938) (-661 (-270)))) (-15 -4273 ((-480) (-661 (-661 (-962 (-229)))))) (-15 -4273 ((-480) (-661 (-661 (-962 (-229)))) (-661 (-270)))) (-15 -4274 ((-1291) (-661 (-661 (-962 (-229)))) (-888) (-888) (-938) (-661 (-270)))) (-15 -4274 ((-1291) (-661 (-661 (-962 (-229)))) (-661 (-270)))) (-15 -4376 ((-1291) (-480))))) (T -1290)) -((-4376 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1291)) (-5 *1 (-1290)))) (-4274 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-1290)))) (-4274 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-888)) (-5 *5 (-938)) (-5 *6 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-1290)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-661 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-4273 (*1 *2 *3) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *2 (-480)) (-5 *1 (-1290)))) (-4273 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-888)) (-5 *5 (-938)) (-5 *6 (-661 (-270))) (-5 *2 (-480)) (-5 *1 (-1290))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4292 (((-1180) $ (-1180)) 107 T ELT) (((-1180) $ (-1180) (-1180)) 105 T ELT) (((-1180) $ (-1180) (-661 (-1180))) 104 T ELT)) (-4288 (($) 69 T ELT)) (-4275 (((-1294) $ (-480) (-938)) 54 T ELT)) (-4281 (((-1294) $ (-938) (-1180)) 89 T ELT) (((-1294) $ (-938) (-888)) 90 T ELT)) (-4303 (((-1294) $ (-938) (-391) (-391)) 57 T ELT)) (-4313 (((-1294) $ (-1180)) 84 T ELT)) (-4276 (((-1294) $ (-938) (-1180)) 94 T ELT)) (-4277 (((-1294) $ (-938) (-391) (-391)) 58 T ELT)) (-4314 (((-1294) $ (-938) (-938)) 55 T ELT)) (-4294 (((-1294) $) 85 T ELT)) (-4279 (((-1294) $ (-938) (-1180)) 93 T ELT)) (-4283 (((-1294) $ (-480) (-938)) 41 T ELT)) (-4280 (((-1294) $ (-938) (-1180)) 92 T ELT)) (-4316 (((-661 (-270)) $) 29 T ELT) (($ $ (-661 (-270))) 30 T ELT)) (-4315 (((-1294) $ (-791) (-791)) 52 T ELT)) (-4287 (($ $) 70 T ELT) (($ (-480) (-661 (-270))) 71 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4290 (((-558) $) 48 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4284 (((-1288 (-3 (-480) "undefined")) $) 47 T ELT)) (-4285 (((-1288 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4280 (-558)) (|:| -4278 (-558)) (|:| |spline| (-558)) (|:| -4309 (-558)) (|:| |axesColor| (-888)) (|:| -4281 (-558)) (|:| |unitsColor| (-888)) (|:| |showing| (-558)))) $) 46 T ELT)) (-4286 (((-1294) $ (-938) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-888) (-558) (-888) (-558)) 83 T ELT)) (-4289 (((-661 (-962 (-229))) $) NIL T ELT)) (-4282 (((-480) $ (-938)) 43 T ELT)) (-4312 (((-1294) $ (-791) (-791) (-938) (-938)) 50 T ELT)) (-4310 (((-1294) $ (-1180)) 95 T ELT)) (-4278 (((-1294) $ (-938) (-1180)) 91 T ELT)) (-4376 (((-877) $) 102 T ELT)) (-4291 (((-1294) $) 96 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4309 (((-1294) $ (-938) (-1180)) 87 T ELT) (((-1294) $ (-938) (-888)) 88 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1291) (-13 (-1122) (-10 -8 (-15 -4289 ((-661 (-962 (-229))) $)) (-15 -4288 ($)) (-15 -4287 ($ $)) (-15 -4316 ((-661 (-270)) $)) (-15 -4316 ($ $ (-661 (-270)))) (-15 -4287 ($ (-480) (-661 (-270)))) (-15 -4286 ((-1294) $ (-938) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-888) (-558) (-888) (-558))) (-15 -4285 ((-1288 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4280 (-558)) (|:| -4278 (-558)) (|:| |spline| (-558)) (|:| -4309 (-558)) (|:| |axesColor| (-888)) (|:| -4281 (-558)) (|:| |unitsColor| (-888)) (|:| |showing| (-558)))) $)) (-15 -4284 ((-1288 (-3 (-480) "undefined")) $)) (-15 -4313 ((-1294) $ (-1180))) (-15 -4283 ((-1294) $ (-480) (-938))) (-15 -4282 ((-480) $ (-938))) (-15 -4309 ((-1294) $ (-938) (-1180))) (-15 -4309 ((-1294) $ (-938) (-888))) (-15 -4281 ((-1294) $ (-938) (-1180))) (-15 -4281 ((-1294) $ (-938) (-888))) (-15 -4280 ((-1294) $ (-938) (-1180))) (-15 -4279 ((-1294) $ (-938) (-1180))) (-15 -4278 ((-1294) $ (-938) (-1180))) (-15 -4310 ((-1294) $ (-1180))) (-15 -4291 ((-1294) $)) (-15 -4312 ((-1294) $ (-791) (-791) (-938) (-938))) (-15 -4277 ((-1294) $ (-938) (-391) (-391))) (-15 -4303 ((-1294) $ (-938) (-391) (-391))) (-15 -4276 ((-1294) $ (-938) (-1180))) (-15 -4315 ((-1294) $ (-791) (-791))) (-15 -4275 ((-1294) $ (-480) (-938))) (-15 -4314 ((-1294) $ (-938) (-938))) (-15 -4292 ((-1180) $ (-1180))) (-15 -4292 ((-1180) $ (-1180) (-1180))) (-15 -4292 ((-1180) $ (-1180) (-661 (-1180)))) (-15 -4294 ((-1294) $)) (-15 -4290 ((-558) $)) (-15 -4376 ((-877) $))))) (T -1291)) -((-4376 (*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1291)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-661 (-962 (-229)))) (-5 *1 (-1291)))) (-4288 (*1 *1) (-5 *1 (-1291))) (-4287 (*1 *1 *1) (-5 *1 (-1291))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1291)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1291)))) (-4287 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-661 (-270))) (-5 *1 (-1291)))) (-4286 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-938)) (-5 *4 (-229)) (-5 *5 (-558)) (-5 *6 (-888)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4285 (*1 *2 *1) (-12 (-5 *2 (-1288 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4280 (-558)) (|:| -4278 (-558)) (|:| |spline| (-558)) (|:| -4309 (-558)) (|:| |axesColor| (-888)) (|:| -4281 (-558)) (|:| |unitsColor| (-888)) (|:| |showing| (-558))))) (-5 *1 (-1291)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1291)))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4283 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4282 (*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1291)))) (-4309 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4309 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-888)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4281 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-888)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4280 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4279 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4278 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4312 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-791)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4277 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-391)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4303 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-938)) (-5 *4 (-391)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4276 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4315 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4275 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4314 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4292 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) (-4292 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) (-4292 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1291)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1291))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4304 (((-1294) $ (-391)) 169 T ELT) (((-1294) $ (-391) (-391) (-391)) 170 T ELT)) (-4292 (((-1180) $ (-1180)) 178 T ELT) (((-1180) $ (-1180) (-1180)) 176 T ELT) (((-1180) $ (-1180) (-661 (-1180))) 175 T ELT)) (-4320 (($) 67 T ELT)) (-4311 (((-1294) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1294) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1294) $ (-558) (-558) (-391) (-391) (-391)) 144 T ELT) (((-1294) $ (-391) (-391)) 145 T ELT) (((-1294) $ (-391) (-391) (-391)) 152 T ELT)) (-4323 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-4325 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-4324 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4321 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-4322 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-4303 (((-1294) $ (-391) (-391)) 171 T ELT)) (-4313 (((-1294) $ (-1180)) 153 T ELT)) (-4318 (((-1154 (-229)) $) 68 T ELT) (($ $ (-1154 (-229))) 69 T ELT)) (-4299 (((-1294) $ (-1180)) 187 T ELT)) (-4298 (((-1294) $ (-1180)) 188 T ELT)) (-4305 (((-1294) $ (-391) (-391)) 151 T ELT) (((-1294) $ (-558) (-558)) 168 T ELT)) (-4314 (((-1294) $ (-938) (-938)) 160 T ELT)) (-4294 (((-1294) $) 137 T ELT)) (-4302 (((-1294) $ (-1180)) 186 T ELT)) (-4307 (((-1294) $ (-1180)) 134 T ELT)) (-4316 (((-661 (-270)) $) 70 T ELT) (($ $ (-661 (-270))) 71 T ELT)) (-4315 (((-1294) $ (-791) (-791)) 159 T ELT)) (-4317 (((-1294) $ (-791) (-962 (-229))) 193 T ELT)) (-4319 (($ $) 73 T ELT) (($ (-1154 (-229)) (-1180)) 74 T ELT) (($ (-1154 (-229)) (-661 (-270))) 75 T ELT)) (-4296 (((-1294) $ (-391) (-391) (-391)) 131 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4290 (((-558) $) 128 T ELT)) (-4295 (((-1294) $ (-391)) 173 T ELT)) (-4300 (((-1294) $ (-391)) 191 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4301 (((-1294) $ (-391)) 190 T ELT)) (-4306 (((-1294) $ (-1180)) 136 T ELT)) (-4312 (((-1294) $ (-791) (-791) (-938) (-938)) 158 T ELT)) (-4308 (((-1294) $ (-1180)) 133 T ELT)) (-4310 (((-1294) $ (-1180)) 135 T ELT)) (-4293 (((-1294) $ (-159) (-159)) 157 T ELT)) (-4376 (((-877) $) 166 T ELT)) (-4291 (((-1294) $) 138 T ELT)) (-4297 (((-1294) $ (-1180)) 189 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4309 (((-1294) $ (-1180)) 132 T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1292) (-13 (-1122) (-10 -8 (-15 -4325 ((-391))) (-15 -4325 ((-391) (-391))) (-15 -4324 ((-391))) (-15 -4324 ((-391) (-391))) (-15 -4323 ((-391))) (-15 -4323 ((-391) (-391))) (-15 -4322 ((-391))) (-15 -4322 ((-391) (-391))) (-15 -4321 ((-391))) (-15 -4321 ((-391) (-391))) (-15 -4320 ($)) (-15 -4319 ($ $)) (-15 -4319 ($ (-1154 (-229)) (-1180))) (-15 -4319 ($ (-1154 (-229)) (-661 (-270)))) (-15 -4318 ((-1154 (-229)) $)) (-15 -4318 ($ $ (-1154 (-229)))) (-15 -4317 ((-1294) $ (-791) (-962 (-229)))) (-15 -4316 ((-661 (-270)) $)) (-15 -4316 ($ $ (-661 (-270)))) (-15 -4315 ((-1294) $ (-791) (-791))) (-15 -4314 ((-1294) $ (-938) (-938))) (-15 -4313 ((-1294) $ (-1180))) (-15 -4312 ((-1294) $ (-791) (-791) (-938) (-938))) (-15 -4311 ((-1294) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4311 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4311 ((-1294) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4311 ((-1294) $ (-558) (-558) (-391) (-391) (-391))) (-15 -4311 ((-1294) $ (-391) (-391))) (-15 -4311 ((-1294) $ (-391) (-391) (-391))) (-15 -4310 ((-1294) $ (-1180))) (-15 -4309 ((-1294) $ (-1180))) (-15 -4308 ((-1294) $ (-1180))) (-15 -4307 ((-1294) $ (-1180))) (-15 -4306 ((-1294) $ (-1180))) (-15 -4305 ((-1294) $ (-391) (-391))) (-15 -4305 ((-1294) $ (-558) (-558))) (-15 -4304 ((-1294) $ (-391))) (-15 -4304 ((-1294) $ (-391) (-391) (-391))) (-15 -4303 ((-1294) $ (-391) (-391))) (-15 -4302 ((-1294) $ (-1180))) (-15 -4301 ((-1294) $ (-391))) (-15 -4300 ((-1294) $ (-391))) (-15 -4299 ((-1294) $ (-1180))) (-15 -4298 ((-1294) $ (-1180))) (-15 -4297 ((-1294) $ (-1180))) (-15 -4296 ((-1294) $ (-391) (-391) (-391))) (-15 -4295 ((-1294) $ (-391))) (-15 -4294 ((-1294) $)) (-15 -4293 ((-1294) $ (-159) (-159))) (-15 -4292 ((-1180) $ (-1180))) (-15 -4292 ((-1180) $ (-1180) (-1180))) (-15 -4292 ((-1180) $ (-1180) (-661 (-1180)))) (-15 -4291 ((-1294) $)) (-15 -4290 ((-558) $))))) (T -1292)) -((-4325 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4324 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4323 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4322 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4322 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4321 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) (-4320 (*1 *1) (-5 *1 (-1292))) (-4319 (*1 *1 *1) (-5 *1 (-1292))) (-4319 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-229))) (-5 *3 (-1180)) (-5 *1 (-1292)))) (-4319 (*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-229))) (-5 *3 (-661 (-270))) (-5 *1 (-1292)))) (-4318 (*1 *2 *1) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-1292)))) (-4318 (*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-1292)))) (-4317 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-791)) (-5 *4 (-962 (-229))) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4316 (*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1292)))) (-4316 (*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1292)))) (-4315 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4314 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4313 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4312 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-791)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4311 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4311 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1292)))) (-4311 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4311 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-558)) (-5 *4 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4311 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4311 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4305 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4305 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4304 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4304 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4303 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4302 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4297 (*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4296 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4295 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4294 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4293 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4292 (*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1292)))) (-4292 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1292)))) (-4292 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1292)))) (-4291 (*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1292)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1292))))) -((-4334 (((-661 (-1180)) (-661 (-1180))) 103 T ELT) (((-661 (-1180))) 96 T ELT)) (-4335 (((-661 (-1180))) 94 T ELT)) (-4332 (((-661 (-938)) (-661 (-938))) 69 T ELT) (((-661 (-938))) 64 T ELT)) (-4331 (((-661 (-791)) (-661 (-791))) 61 T ELT) (((-661 (-791))) 55 T ELT)) (-4333 (((-1294)) 71 T ELT)) (-4337 (((-938) (-938)) 87 T ELT) (((-938)) 86 T ELT)) (-4336 (((-938) (-938)) 85 T ELT) (((-938)) 84 T ELT)) (-4329 (((-888) (-888)) 81 T ELT) (((-888)) 80 T ELT)) (-4339 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-4338 (((-938)) 88 T ELT) (((-938) (-938)) 89 T ELT)) (-4330 (((-938) (-938)) 83 T ELT) (((-938)) 82 T ELT)) (-4326 (((-888) (-888)) 75 T ELT) (((-888)) 73 T ELT)) (-4327 (((-888) (-888)) 77 T ELT) (((-888)) 76 T ELT)) (-4328 (((-888) (-888)) 79 T ELT) (((-888)) 78 T ELT))) -(((-1293) (-10 -7 (-15 -4326 ((-888))) (-15 -4326 ((-888) (-888))) (-15 -4327 ((-888))) (-15 -4327 ((-888) (-888))) (-15 -4328 ((-888))) (-15 -4328 ((-888) (-888))) (-15 -4329 ((-888))) (-15 -4329 ((-888) (-888))) (-15 -4330 ((-938))) (-15 -4330 ((-938) (-938))) (-15 -4331 ((-661 (-791)))) (-15 -4331 ((-661 (-791)) (-661 (-791)))) (-15 -4332 ((-661 (-938)))) (-15 -4332 ((-661 (-938)) (-661 (-938)))) (-15 -4333 ((-1294))) (-15 -4334 ((-661 (-1180)))) (-15 -4334 ((-661 (-1180)) (-661 (-1180)))) (-15 -4335 ((-661 (-1180)))) (-15 -4336 ((-938))) (-15 -4337 ((-938))) (-15 -4336 ((-938) (-938))) (-15 -4337 ((-938) (-938))) (-15 -4338 ((-938) (-938))) (-15 -4338 ((-938))) (-15 -4339 ((-229) (-391))) (-15 -4339 ((-229))))) (T -1293)) -((-4339 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1293)))) (-4339 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1293)))) (-4338 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4338 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4337 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4337 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4336 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4335 (*1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1293)))) (-4334 (*1 *2 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1293)))) (-4334 (*1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1293)))) (-4333 (*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1293)))) (-4332 (*1 *2 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1293)))) (-4332 (*1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1293)))) (-4331 (*1 *2 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1293)))) (-4331 (*1 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1293)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4330 (*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4329 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4328 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4327 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) (-4326 (*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293))))) -((-4340 (($) 6 T ELT)) (-4376 (((-877) $) 9 T ELT))) -(((-1294) (-13 (-630 (-877)) (-10 -8 (-15 -4340 ($))))) (T -1294)) -((-4340 (*1 *1) (-5 *1 (-1294)))) -((-4379 (($ $ |#2|) 10 T ELT))) -(((-1295 |#1| |#2|) (-10 -7 (-15 -4379 (|#1| |#1| |#2|))) (-1296 |#2|) (-376)) (T -1295)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4341 (((-136)) 38 T ELT)) (-4376 (((-877) $) 13 T ELT)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ |#1|) 39 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) -(((-1296 |#1|) (-142) (-376)) (T -1296)) -((-4379 (*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-376)))) (-4341 (*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) -(-13 (-737 |t#1|) (-10 -8 (-15 -4379 ($ $ |t#1|)) (-15 -4341 ((-136))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-668 |#1|) . T) ((-660 |#1|) . T) ((-737 |#1|) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1122) . T) ((-1238) . T)) -((-4346 (((-661 (-1231 |#1|)) (-1198) (-1231 |#1|)) 83 T ELT)) (-4344 (((-1176 (-1176 (-965 |#1|))) (-1198) (-1176 (-965 |#1|))) 63 T ELT)) (-4347 (((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-791) (-1231 |#1|) (-1176 (-1231 |#1|))) 74 T ELT)) (-4342 (((-1 (-1176 (-965 |#1|)) (-1176 (-965 |#1|))) (-791)) 65 T ELT)) (-4345 (((-1 (-1192 (-965 |#1|)) (-965 |#1|)) (-1198)) 32 T ELT)) (-4343 (((-1 (-1176 (-965 |#1|)) (-1176 (-965 |#1|))) (-791)) 64 T ELT))) -(((-1297 |#1|) (-10 -7 (-15 -4342 ((-1 (-1176 (-965 |#1|)) (-1176 (-965 |#1|))) (-791))) (-15 -4343 ((-1 (-1176 (-965 |#1|)) (-1176 (-965 |#1|))) (-791))) (-15 -4344 ((-1176 (-1176 (-965 |#1|))) (-1198) (-1176 (-965 |#1|)))) (-15 -4345 ((-1 (-1192 (-965 |#1|)) (-965 |#1|)) (-1198))) (-15 -4346 ((-661 (-1231 |#1|)) (-1198) (-1231 |#1|))) (-15 -4347 ((-1 (-1176 (-1231 |#1|)) (-1176 (-1231 |#1|))) (-791) (-1231 |#1|) (-1176 (-1231 |#1|))))) (-376)) (T -1297)) -((-4347 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-791)) (-4 *6 (-376)) (-5 *4 (-1231 *6)) (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1297 *6)) (-5 *5 (-1176 *4)))) (-4346 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-4 *5 (-376)) (-5 *2 (-661 (-1231 *5))) (-5 *1 (-1297 *5)) (-5 *4 (-1231 *5)))) (-4345 (*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1 (-1192 (-965 *4)) (-965 *4))) (-5 *1 (-1297 *4)) (-4 *4 (-376)))) (-4344 (*1 *2 *3 *4) (-12 (-5 *3 (-1198)) (-4 *5 (-376)) (-5 *2 (-1176 (-1176 (-965 *5)))) (-5 *1 (-1297 *5)) (-5 *4 (-1176 (-965 *5))))) (-4343 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1176 (-965 *4)) (-1176 (-965 *4)))) (-5 *1 (-1297 *4)) (-4 *4 (-376)))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1176 (-965 *4)) (-1176 (-965 *4)))) (-5 *1 (-1297 *4)) (-4 *4 (-376))))) -((-4349 (((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|) 80 T ELT)) (-4348 (((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|)))) 79 T ELT))) -(((-1298 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4348 ((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))))) (-15 -4349 ((-2 (|:| -2222 (-709 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-709 |#2|))) |#2|))) (-363) (-1264 |#1|) (-1264 |#2|) (-422 |#2| |#3|)) (T -1298)) -((-4349 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) (-5 *2 (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) (-5 *1 (-1298 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-4348 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-2 (|:| -2222 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) (-5 *1 (-1298 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4350 (((-1156) $) 11 T ELT)) (-4351 (((-1156) $) 9 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 17 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1299) (-13 (-1104) (-10 -8 (-15 -4351 ((-1156) $)) (-15 -4350 ((-1156) $))))) (T -1299)) -((-4351 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299)))) (-4350 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4352 (((-1156) $) 9 T ELT)) (-4376 (((-877) $) 15 T ELT) (($ (-1203)) NIL T ELT) (((-1203) $) NIL T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT))) -(((-1300) (-13 (-1104) (-10 -8 (-15 -4352 ((-1156) $))))) (T -1300)) -((-4352 (*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1300))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 58 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 81 T ELT) (($ (-558)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3528 (((-791)) NIL T CONST)) (-4353 (((-1294) (-791)) 16 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 36 T CONST)) (-3065 (($) 84 T CONST)) (-3454 (((-114) $ $) 87 T ELT)) (-4379 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-4267 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 63 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) -(((-1301 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1070) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4379 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4353 ((-1294) (-791))))) (-1070) (-861) (-815) (-969 |#1| |#3| |#2|) (-661 |#2|) (-661 (-791)) (-791)) (T -1301)) -((-4379 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-815)) (-14 *6 (-661 *3)) (-5 *1 (-1301 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-969 *2 *4 *3)) (-14 *7 (-661 (-791))) (-14 *8 (-791)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-815)) (-14 *8 (-661 *5)) (-5 *2 (-1294)) (-5 *1 (-1301 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-969 *4 *6 *5)) (-14 *9 (-661 *3)) (-14 *10 *3)))) -((-2967 (((-114) $ $) NIL T ELT)) (-4111 (((-661 (-2 (|:| -4291 $) (|:| -1905 (-661 |#4|)))) (-661 |#4|)) NIL T ELT)) (-4112 (((-661 $) (-661 |#4|)) 96 T ELT)) (-3484 (((-661 |#3|) $) NIL T ELT)) (-3309 (((-114) $) NIL T ELT)) (-3300 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4118 ((|#4| |#4| $) NIL T ELT)) (-3310 (((-2 (|:| |under| $) (|:| -3532 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4140 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3305 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3308 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4119 (((-661 |#4|) (-661 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-3301 (((-661 |#4|) (-661 |#4|) $) 28 (|has| |#1| (-569)) ELT)) (-3302 (((-661 |#4|) (-661 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3575 (((-3 $ #1#) (-661 |#4|)) NIL T ELT)) (-3574 (($ (-661 |#4|)) NIL T ELT)) (-4229 (((-3 $ #1#) $) 78 T ELT)) (-4115 ((|#4| |#4| $) 83 T ELT)) (-1467 (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-3826 (($ |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3303 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4124 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4113 ((|#4| |#4| $) NIL T ELT)) (-4272 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4425)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4126 (((-2 (|:| -4291 (-661 |#4|)) (|:| -1905 (-661 |#4|))) $) NIL T ELT)) (-3290 (((-661 |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4125 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3598 ((|#3| $) 84 T ELT)) (-3007 (((-661 |#4|) $) 32 (|has| $ (-6 -4425)) ELT)) (-3663 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT)) (-4356 (((-3 $ #1#) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-661 |#4|)) 38 T ELT)) (-2160 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4426)) ELT)) (-4388 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3315 (((-661 |#3|) $) NIL T ELT)) (-3314 (((-114) |#3| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-4228 (((-3 |#4| #1#) $) NIL T ELT)) (-4127 (((-661 |#4|) $) 54 T ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) 82 T ELT)) (-4129 (((-114) $ $) 93 T ELT)) (-3304 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4231 (((-3 |#4| #1#) $) 77 T ELT)) (-1468 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4109 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-4199 (($ $ |#4|) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4198 (($ $ (-661 |#4|) (-661 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT) (($ $ (-661 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1122))) ELT)) (-1329 (((-114) $ $) NIL T ELT)) (-3823 (((-114) $) 75 T ELT)) (-3993 (($) 46 T ELT)) (-4378 (((-791) $) NIL T ELT)) (-2157 (((-791) |#4| $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#4| (-1122))) ELT) (((-791) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-3820 (($ $) NIL T ELT)) (-4402 (((-547) $) NIL (|has| |#4| (-631 (-547))) ELT)) (-3950 (($ (-661 |#4|)) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-3313 (($ $ |#3|) NIL T ELT)) (-4114 (($ $) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (((-661 |#4|) $) 63 T ELT)) (-4108 (((-791) $) NIL (|has| |#3| (-381)) ELT)) (-4355 (((-3 $ #1#) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ #1#) (-661 |#4|)) 45 T ELT)) (-4354 (((-661 $) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-661 $) (-661 |#4|)) 74 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-4128 (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3744 (-661 |#4|))) #1#) (-661 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4120 (((-114) $ (-1 (-114) |#4| (-661 |#4|))) NIL T ELT)) (-2159 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4110 (((-661 |#3|) $) NIL T ELT)) (-4363 (((-114) |#3| $) NIL T ELT)) (-3454 (((-114) $ $) NIL T ELT)) (-4387 (((-791) $) NIL (|has| $ (-6 -4425)) ELT))) -(((-1302 |#1| |#2| |#3| |#4|) (-13 (-1233 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4356 ((-3 $ #1="failed") (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4356 ((-3 $ #1#) (-661 |#4|))) (-15 -4355 ((-3 $ #1#) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4355 ((-3 $ #1#) (-661 |#4|))) (-15 -4354 ((-661 $) (-661 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4354 ((-661 $) (-661 |#4|))))) (-569) (-815) (-861) (-1086 |#1| |#2| |#3|)) (T -1302)) -((-4356 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1302 *5 *6 *7 *8)))) (-4356 (*1 *1 *2) (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1302 *3 *4 *5 *6)))) (-4355 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1302 *5 *6 *7 *8)))) (-4355 (*1 *1 *2) (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1302 *3 *4 *5 *6)))) (-4354 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-661 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-861)) (-5 *2 (-661 (-1302 *6 *7 *8 *9))) (-5 *1 (-1302 *6 *7 *8 *9)))) (-4354 (*1 *2 *3) (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 (-1302 *4 *5 *6 *7))) (-5 *1 (-1302 *4 *5 *6 *7))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4154 (($) 22 T CONST)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) -(((-1303 |#1|) (-142) (-1070)) (T -1303)) -NIL -(-13 (-1070) (-111 |t#1| |t#1|) (-633 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 |#1|) |has| |#1| (-175)) ((-737 |#1|) |has| |#1| (-175)) ((-746) . T) ((-1072 |#1|) . T) ((-1077 |#1|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T)) -((-2967 (((-114) $ $) 67 T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4364 (((-661 |#1|) $) 52 T ELT)) (-4377 (($ $ (-791)) 46 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4365 (($ $ (-791)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-4154 (($) NIL T CONST)) (-4369 (($ $ $) 70 T ELT) (($ $ (-841 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3575 (((-3 (-841 |#1|) #1#) $) NIL T ELT)) (-3574 (((-841 |#1|) $) NIL T ELT)) (-4389 (($ $) 39 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4381 (((-114) $) NIL T ELT)) (-4380 (($ $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ (-841 |#1|) |#2|) 38 T ELT)) (-4366 (($ $) 40 T ELT)) (-4371 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4385 (((-841 |#1|) $) NIL T ELT)) (-4386 (((-841 |#1|) $) 41 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4370 (($ $ $) 69 T ELT) (($ $ (-841 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1952 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3295 (((-841 |#1|) $) 35 T ELT)) (-3592 ((|#2| $) 37 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4378 (((-791) $) 43 T ELT)) (-4383 (((-114) $) 47 T ELT)) (-4382 ((|#2| $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-841 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-558)) NIL T ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-841 |#1|)) NIL T ELT)) (-4384 ((|#2| $ $) 76 T ELT) ((|#2| $ (-841 |#1|)) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 13 T CONST)) (-3065 (($) 19 T CONST)) (-3064 (((-661 (-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3454 (((-114) $ $) 44 T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 28 T ELT)) (** (($ $ (-791)) NIL T ELT) (($ $ (-938)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-841 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) -(((-1304 |#1| |#2|) (-13 (-397 |#2| (-841 |#1|)) (-1311 |#1| |#2|)) (-861) (-1070)) (T -1304)) -NIL -((-4372 ((|#3| |#3| (-791)) 28 T ELT)) (-4373 ((|#3| |#3| (-791)) 34 T ELT)) (-4357 ((|#3| |#3| |#3| (-791)) 35 T ELT))) -(((-1305 |#1| |#2| |#3|) (-10 -7 (-15 -4373 (|#3| |#3| (-791))) (-15 -4372 (|#3| |#3| (-791))) (-15 -4357 (|#3| |#3| |#3| (-791)))) (-13 (-1070) (-737 (-419 (-558)))) (-861) (-1311 |#2| |#1|)) (T -1305)) -((-4357 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1070) (-737 (-419 (-558))))) (-4 *5 (-861)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1311 *5 *4)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1070) (-737 (-419 (-558))))) (-4 *5 (-861)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1311 *5 *4)))) (-4373 (*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1070) (-737 (-419 (-558))))) (-4 *5 (-861)) (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1311 *5 *4))))) -((-4362 (((-114) $) 15 T ELT)) (-4363 (((-114) $) 14 T ELT)) (-4358 (($ $) 19 T ELT) (($ $ (-791)) 21 T ELT))) -(((-1306 |#1| |#2|) (-10 -7 (-15 -4358 (|#1| |#1| (-791))) (-15 -4358 (|#1| |#1|)) (-15 -4362 ((-114) |#1|)) (-15 -4363 ((-114) |#1|))) (-1307 |#2|) (-376)) (T -1306)) -NIL -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-2274 (((-2 (|:| -1980 $) (|:| -4412 $) (|:| |associate| $)) $) 52 T ELT)) (-2273 (($ $) 51 T ELT)) (-2271 (((-114) $) 49 T ELT)) (-4362 (((-114) $) 111 T ELT)) (-4359 (((-791)) 107 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4205 (($ $) 88 T ELT)) (-4401 (((-417 $) $) 87 T ELT)) (-1788 (((-114) $ $) 72 T ELT)) (-4154 (($) 22 T CONST)) (-3575 (((-3 |#1| "failed") $) 118 T ELT)) (-3574 ((|#1| $) 119 T ELT)) (-2963 (($ $ $) 68 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-2962 (($ $ $) 69 T ELT)) (-3142 (((-2 (|:| -4384 (-661 $)) (|:| -2640 $)) (-661 $)) 63 T ELT)) (-1974 (($ $ (-791)) 104 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4153 (((-114) $) 86 T ELT)) (-4202 (((-845 (-938)) $) 101 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2641 (((-114) $) 40 T ELT)) (-1785 (((-3 (-661 $) #1="failed") (-661 $) $) 65 T ELT)) (-2102 (($ $ $) 57 T ELT) (($ (-661 $)) 56 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-2874 (($ $) 85 T ELT)) (-4361 (((-114) $) 110 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-3109 (((-1192 $) (-1192 $) (-1192 $)) 55 T ELT)) (-3562 (($ $ $) 59 T ELT) (($ (-661 $)) 58 T ELT)) (-4162 (((-417 $) $) 89 T ELT)) (-4360 (((-845 (-938))) 108 T ELT)) (-1786 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2640 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3886 (((-3 $ "failed") $ $) 53 T ELT)) (-3141 (((-711 (-661 $)) (-661 $) $) 62 T ELT)) (-1787 (((-791) $) 71 T ELT)) (-3280 (((-2 (|:| -2184 $) (|:| -3303 $)) $ $) 70 T ELT)) (-1975 (((-3 (-791) "failed") $ $) 102 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4341 (((-136)) 116 T ELT)) (-4378 (((-845 (-938)) $) 109 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3103 (((-711 $) $) 100 (-3957 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-2272 (((-114) $ $) 50 T ELT)) (-4363 (((-114) $) 112 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-4358 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-791)) 105 (|has| |#1| (-381)) ELT)) (-3454 (((-114) $ $) 8 T ELT)) (-4379 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) -(((-1307 |#1|) (-142) (-376)) (T -1307)) -((-4363 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4362 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-845 (-938))))) (-4360 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-845 (-938))))) (-4359 (*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-791)))) (-4358 (*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-4358 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-4 *3 (-381))))) -(-13 (-376) (-1059 |t#1|) (-1296 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-414)) |%noBranch|) (-15 -4363 ((-114) $)) (-15 -4362 ((-114) $)) (-15 -4361 ((-114) $)) (-15 -4378 ((-845 (-938)) $)) (-15 -4360 ((-845 (-938)))) (-15 -4359 ((-791))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-414)) (-15 -4358 ($ $)) (-15 -4358 ($ $ (-791)))) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3957 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-633 (-419 (-558))) . T) ((-633 (-558)) . T) ((-633 |#1|) . T) ((-633 $) . T) ((-630 (-877)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) -3957 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-464) . T) ((-569) . T) ((-666 (-419 (-558))) . T) ((-666 (-558)) . T) ((-666 |#1|) . T) ((-666 $) . T) ((-668 (-419 (-558))) . T) ((-668 |#1|) . T) ((-668 $) . T) ((-660 (-419 (-558))) . T) ((-660 |#1|) . T) ((-660 $) . T) ((-737 (-419 (-558))) . T) ((-737 |#1|) . T) ((-737 $) . T) ((-746) . T) ((-940) . T) ((-1059 |#1|) . T) ((-1072 (-419 (-558))) . T) ((-1072 |#1|) . T) ((-1072 $) . T) ((-1077 (-419 (-558))) . T) ((-1077 |#1|) . T) ((-1077 $) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1243) . T) ((-1296 |#1|) . T)) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4364 (((-661 |#1|) $) 52 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4365 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-791)) 54 (|has| |#2| (-175)) ELT)) (-4154 (($) 22 T CONST)) (-4369 (($ $ |#1|) 66 T ELT) (($ $ (-841 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3575 (((-3 (-841 |#1|) "failed") $) 76 T ELT)) (-3574 (((-841 |#1|) $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4381 (((-114) $) 57 T ELT)) (-4380 (($ $) 56 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-4367 (((-114) $) 62 T ELT)) (-4368 (($ (-841 |#1|) |#2|) 63 T ELT)) (-4366 (($ $) 61 T ELT)) (-4371 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4385 (((-841 |#1|) $) 73 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4370 (($ $ |#1|) 69 T ELT) (($ $ (-841 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4383 (((-114) $) 59 T ELT)) (-4382 ((|#2| $) 58 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-841 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4384 ((|#2| $ (-841 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1308 |#1| |#2|) (-142) (-861) (-1070)) (T -1308)) -((* (*1 *1 *1 *2) (-12 (-4 *1 (-1308 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4385 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-841 *3)))) (-4371 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4))))) (-4384 (*1 *2 *1 *3) (-12 (-5 *3 (-841 *4)) (-4 *1 (-1308 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1070)))) (-4384 (*1 *2 *1 *1) (-12 (-4 *1 (-1308 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-4370 (*1 *1 *1 *2) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4370 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4370 (*1 *1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4369 (*1 *1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4368 (*1 *1 *2 *3) (-12 (-5 *2 (-841 *4)) (-4 *4 (-861)) (-4 *1 (-1308 *4 *3)) (-4 *3 (-1070)))) (-4367 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-114)))) (-4366 (*1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4376 (*1 *1 *2) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4383 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-114)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-114)))) (-4380 (*1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) (-4365 (*1 *1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) (-4 *3 (-175)))) (-4365 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-4 *4 (-175)))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4364 (*1 *2 *1) (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-661 *3))))) -(-13 (-1070) (-1303 |t#2|) (-1059 (-841 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4385 ((-841 |t#1|) $)) (-15 -4371 ((-2 (|:| |k| (-841 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4384 (|t#2| $ (-841 |t#1|))) (-15 -4384 (|t#2| $ $)) (-15 -4370 ($ $ |t#1|)) (-15 -4370 ($ $ (-841 |t#1|))) (-15 -4370 ($ $ $)) (-15 -4369 ($ $ |t#1|)) (-15 -4369 ($ $ (-841 |t#1|))) (-15 -4369 ($ $ $)) (-15 -4368 ($ (-841 |t#1|) |t#2|)) (-15 -4367 ((-114) $)) (-15 -4366 ($ $)) (-15 -4376 ($ |t#1|)) (-15 -4383 ((-114) $)) (-15 -4382 (|t#2| $)) (-15 -4381 ((-114) $)) (-15 -4380 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -4365 ($ $ $)) (-15 -4365 ($ $ (-791)))) |%noBranch|) (-15 -4388 ($ (-1 |t#2| |t#2|) $)) (-15 -4364 ((-661 |t#1|) $)) (IF (|has| |t#2| (-6 -4418)) (-6 -4418) |%noBranch|))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 (-841 |#1|)) . T) ((-633 |#2|) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-660 |#2|) |has| |#2| (-175)) ((-737 |#2|) |has| |#2| (-175)) ((-746) . T) ((-1059 (-841 |#1|)) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1303 |#2|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4364 (((-661 |#1|) $) 97 T ELT)) (-4377 (($ $ (-791)) 101 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4365 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-791)) NIL (|has| |#2| (-175)) ELT)) (-4154 (($) NIL T CONST)) (-4369 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3575 (((-3 (-841 |#1|) #1#) $) NIL T ELT) (((-3 (-908 |#1|) #1#) $) NIL T ELT)) (-3574 (((-841 |#1|) $) NIL T ELT) (((-908 |#1|) $) NIL T ELT)) (-4389 (($ $) 100 T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4381 (((-114) $) 89 T ELT)) (-4380 (($ $) 92 T ELT)) (-4374 (($ $ $ (-791)) 102 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ (-841 |#1|) |#2|) NIL T ELT) (($ (-908 |#1|) |#2|) 28 T ELT)) (-4366 (($ $) 118 T ELT)) (-4371 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4385 (((-841 |#1|) $) NIL T ELT)) (-4386 (((-841 |#1|) $) NIL T ELT)) (-4388 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4370 (($ $ |#1|) NIL T ELT) (($ $ (-841 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4372 (($ $ (-791)) 111 (|has| |#2| (-737 (-419 (-558)))) ELT)) (-1952 (((-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3295 (((-908 |#1|) $) 82 T ELT)) (-3592 ((|#2| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4373 (($ $ (-791)) 108 (|has| |#2| (-737 (-419 (-558)))) ELT)) (-4378 (((-791) $) 98 T ELT)) (-4383 (((-114) $) 83 T ELT)) (-4382 ((|#2| $) 87 T ELT)) (-4376 (((-877) $) 68 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-841 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-908 |#1|)) NIL T ELT) (($ (-684 |#1| |#2|)) 47 T ELT) (((-1304 |#1| |#2|) $) 75 T ELT) (((-1313 |#1| |#2|) $) 80 T ELT)) (-4247 (((-661 |#2|) $) NIL T ELT)) (-4107 ((|#2| $ (-908 |#1|)) NIL T ELT)) (-4384 ((|#2| $ (-841 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 21 T CONST)) (-3065 (($) 27 T CONST)) (-3064 (((-661 (-2 (|:| |k| (-908 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4375 (((-3 (-684 |#1| |#2|) #1#) $) 117 T ELT)) (-3454 (((-114) $ $) 76 T ELT)) (-4267 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-4269 (($ $ $) 20 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-908 |#1|)) NIL T ELT))) -(((-1309 |#1| |#2|) (-13 (-1311 |#1| |#2|) (-397 |#2| (-908 |#1|)) (-10 -8 (-15 -4376 ($ (-684 |#1| |#2|))) (-15 -4376 ((-1304 |#1| |#2|) $)) (-15 -4376 ((-1313 |#1| |#2|) $)) (-15 -4375 ((-3 (-684 |#1| |#2|) "failed") $)) (-15 -4374 ($ $ $ (-791))) (IF (|has| |#2| (-737 (-419 (-558)))) (PROGN (-15 -4373 ($ $ (-791))) (-15 -4372 ($ $ (-791)))) |%noBranch|))) (-861) (-175)) (T -1309)) -((-4376 (*1 *1 *2) (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *1 (-1309 *3 *4)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-4376 (*1 *2 *1) (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-4375 (*1 *2 *1) (|partial| -12 (-5 *2 (-684 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-4374 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) (-4373 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-737 (-419 (-558)))) (-4 *3 (-861)) (-4 *4 (-175)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-737 (-419 (-558)))) (-4 *3 (-861)) (-4 *4 (-175))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4364 (((-661 (-1198)) $) NIL T ELT)) (-4392 (($ (-1304 (-1198) |#1|)) NIL T ELT)) (-4377 (($ $ (-791)) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4365 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-791)) NIL (|has| |#1| (-175)) ELT)) (-4154 (($) NIL T CONST)) (-4369 (($ $ (-1198)) NIL T ELT) (($ $ (-841 (-1198))) NIL T ELT) (($ $ $) NIL T ELT)) (-3575 (((-3 (-841 (-1198)) #1#) $) NIL T ELT)) (-3574 (((-841 (-1198)) $) NIL T ELT)) (-3887 (((-3 $ #1#) $) NIL T ELT)) (-4381 (((-114) $) NIL T ELT)) (-4380 (($ $) NIL T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ (-841 (-1198)) |#1|) NIL T ELT)) (-4366 (($ $) NIL T ELT)) (-4371 (((-2 (|:| |k| (-841 (-1198))) (|:| |c| |#1|)) $) NIL T ELT)) (-4385 (((-841 (-1198)) $) NIL T ELT)) (-4386 (((-841 (-1198)) $) NIL T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4370 (($ $ (-1198)) NIL T ELT) (($ $ (-841 (-1198))) NIL T ELT) (($ $ $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4393 (((-1304 (-1198) |#1|) $) NIL T ELT)) (-4378 (((-791) $) NIL T ELT)) (-4383 (((-114) $) NIL T ELT)) (-4382 ((|#1| $) NIL T ELT)) (-4376 (((-877) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-841 (-1198))) NIL T ELT) (($ (-1198)) NIL T ELT)) (-4384 ((|#1| $ (-841 (-1198))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3528 (((-791)) NIL T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) NIL T CONST)) (-4391 (((-661 (-2 (|:| |k| (-1198)) (|:| |c| $))) $) NIL T ELT)) (-3065 (($) NIL T CONST)) (-3454 (((-114) $ $) NIL T ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) NIL T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) NIL T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1198) $) NIL T ELT))) -(((-1310 |#1|) (-13 (-1311 (-1198) |#1|) (-10 -8 (-15 -4393 ((-1304 (-1198) |#1|) $)) (-15 -4392 ($ (-1304 (-1198) |#1|))) (-15 -4391 ((-661 (-2 (|:| |k| (-1198)) (|:| |c| $))) $)))) (-1070)) (T -1310)) -((-4393 (*1 *2 *1) (-12 (-5 *2 (-1304 (-1198) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) (-4392 (*1 *1 *2) (-12 (-5 *2 (-1304 (-1198) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| (-1198)) (|:| |c| (-1310 *3))))) (-5 *1 (-1310 *3)) (-4 *3 (-1070))))) -((-2967 (((-114) $ $) 7 T ELT)) (-3606 (((-114) $) 21 T ELT)) (-4364 (((-661 |#1|) $) 52 T ELT)) (-4377 (($ $ (-791)) 86 T ELT)) (-1426 (((-3 $ "failed") $ $) 25 T ELT)) (-4365 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-791)) 54 (|has| |#2| (-175)) ELT)) (-4154 (($) 22 T CONST)) (-4369 (($ $ |#1|) 66 T ELT) (($ $ (-841 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3575 (((-3 (-841 |#1|) "failed") $) 76 T ELT)) (-3574 (((-841 |#1|) $) 77 T ELT)) (-3887 (((-3 $ "failed") $) 42 T ELT)) (-4381 (((-114) $) 57 T ELT)) (-4380 (($ $) 56 T ELT)) (-2641 (((-114) $) 40 T ELT)) (-4367 (((-114) $) 62 T ELT)) (-4368 (($ (-841 |#1|) |#2|) 63 T ELT)) (-4366 (($ $) 61 T ELT)) (-4371 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4385 (((-841 |#1|) $) 73 T ELT)) (-4386 (((-841 |#1|) $) 88 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4370 (($ $ |#1|) 69 T ELT) (($ $ (-841 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3660 (((-1180) $) 11 T ELT)) (-3661 (((-1141) $) 12 T ELT)) (-4378 (((-791) $) 87 T ELT)) (-4383 (((-114) $) 59 T ELT)) (-4382 ((|#2| $) 58 T ELT)) (-4376 (((-877) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-841 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4384 ((|#2| $ (-841 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3528 (((-791)) 37 T CONST)) (-1378 (((-114) $ $) 6 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 39 T CONST)) (-3454 (((-114) $ $) 8 T ELT)) (-4267 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4269 (($ $ $) 18 T ELT)) (** (($ $ (-938)) 33 T ELT) (($ $ (-791)) 41 T ELT)) (* (($ (-938) $) 17 T ELT) (($ (-791) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) -(((-1311 |#1| |#2|) (-142) (-861) (-1070)) (T -1311)) -((-4386 (*1 *2 *1) (-12 (-4 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-841 *3)))) (-4378 (*1 *2 *1) (-12 (-4 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-791)))) (-4377 (*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(-13 (-1308 |t#1| |t#2|) (-10 -8 (-15 -4386 ((-841 |t#1|) $)) (-15 -4378 ((-791) $)) (-15 -4377 ($ $ (-791))))) -(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-633 (-558)) . T) ((-633 (-841 |#1|)) . T) ((-633 |#2|) . T) ((-630 (-877)) . T) ((-666 (-558)) . T) ((-666 |#2|) . T) ((-666 $) . T) ((-668 |#2|) . T) ((-668 $) . T) ((-660 |#2|) |has| |#2| (-175)) ((-737 |#2|) |has| |#2| (-175)) ((-746) . T) ((-1059 (-841 |#1|)) . T) ((-1072 |#2|) . T) ((-1077 |#2|) . T) ((-1070) . T) ((-1078) . T) ((-1133) . T) ((-1122) . T) ((-1238) . T) ((-1303 |#2|) . T) ((-1308 |#1| |#2|) . T)) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) NIL T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4154 (($) NIL T CONST)) (-3575 (((-3 |#2| #1#) $) NIL T ELT)) (-3574 ((|#2| $) NIL T ELT)) (-4389 (($ $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 42 T ELT)) (-4381 (((-114) $) 36 T ELT)) (-4380 (($ $) 37 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-2649 (((-791) $) NIL T ELT)) (-3222 (((-661 $) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ |#2| |#1|) NIL T ELT)) (-4385 ((|#2| $) 24 T ELT)) (-4386 ((|#2| $) 22 T ELT)) (-4388 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1952 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3295 ((|#2| $) NIL T ELT)) (-3592 ((|#1| $) NIL T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4383 (((-114) $) 32 T ELT)) (-4382 ((|#1| $) 33 T ELT)) (-4376 (((-877) $) 65 T ELT) (($ (-558)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4247 (((-661 |#1|) $) NIL T ELT)) (-4107 ((|#1| $ |#2|) NIL T ELT)) (-4384 ((|#1| $ |#2|) 28 T ELT)) (-3528 (((-791)) 14 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 29 T CONST)) (-3065 (($) 11 T CONST)) (-3064 (((-661 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3454 (((-114) $ $) 30 T ELT)) (-4379 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-4267 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4269 (($ $ $) 50 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 52 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4387 (((-791) $) 16 T ELT))) -(((-1312 |#1| |#2|) (-13 (-1070) (-1303 |#1|) (-397 |#1| |#2|) (-633 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4387 ((-791) $)) (-15 -4386 (|#2| $)) (-15 -4385 (|#2| $)) (-15 -4389 ($ $)) (-15 -4384 (|#1| $ |#2|)) (-15 -4383 ((-114) $)) (-15 -4382 (|#1| $)) (-15 -4381 ((-114) $)) (-15 -4380 ($ $)) (-15 -4388 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4379 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4418)) (-6 -4418) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|) (IF (|has| |#1| (-6 -4423)) (-6 -4423) |%noBranch|))) (-1070) (-859)) (T -1312)) -((* (*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-859)))) (-4389 (*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-859)))) (-4388 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1312 *3 *4)) (-4 *4 (-859)))) (-4387 (*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-859)))) (-4386 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1070)))) (-4385 (*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1070)))) (-4384 (*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859)))) (-4383 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-859)))) (-4382 (*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859)))) (-4381 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-859)))) (-4380 (*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-859)))) (-4379 (*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1070)) (-4 *3 (-859))))) -((-2967 (((-114) $ $) 27 T ELT)) (-3606 (((-114) $) NIL T ELT)) (-4364 (((-661 |#1|) $) 132 T ELT)) (-4392 (($ (-1304 |#1| |#2|)) 50 T ELT)) (-4377 (($ $ (-791)) 38 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4365 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-791)) 52 (|has| |#2| (-175)) ELT)) (-4154 (($) NIL T CONST)) (-4369 (($ $ |#1|) 114 T ELT) (($ $ (-841 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3575 (((-3 (-841 |#1|) #1#) $) NIL T ELT)) (-3574 (((-841 |#1|) $) NIL T ELT)) (-3887 (((-3 $ #1#) $) 122 T ELT)) (-4381 (((-114) $) 117 T ELT)) (-4380 (($ $) 118 T ELT)) (-2641 (((-114) $) NIL T ELT)) (-4367 (((-114) $) NIL T ELT)) (-4368 (($ (-841 |#1|) |#2|) 20 T ELT)) (-4366 (($ $) NIL T ELT)) (-4371 (((-2 (|:| |k| (-841 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4385 (((-841 |#1|) $) 123 T ELT)) (-4386 (((-841 |#1|) $) 126 T ELT)) (-4388 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4370 (($ $ |#1|) 112 T ELT) (($ $ (-841 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4393 (((-1304 |#1| |#2|) $) 94 T ELT)) (-4378 (((-791) $) 129 T ELT)) (-4383 (((-114) $) 81 T ELT)) (-4382 ((|#2| $) 32 T ELT)) (-4376 (((-877) $) 73 T ELT) (($ (-558)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-841 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4384 ((|#2| $ (-841 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3528 (((-791)) 120 T CONST)) (-1378 (((-114) $ $) NIL T ELT)) (-3059 (($) 15 T CONST)) (-4391 (((-661 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-3065 (($) 33 T CONST)) (-3454 (((-114) $ $) 14 T ELT)) (-4267 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-4269 (($ $ $) 61 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 55 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) 53 T ELT) (($ (-558) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) -(((-1313 |#1| |#2|) (-13 (-1311 |#1| |#2|) (-10 -8 (-15 -4393 ((-1304 |#1| |#2|) $)) (-15 -4392 ($ (-1304 |#1| |#2|))) (-15 -4391 ((-661 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-861) (-1070)) (T -1313)) -((-4393 (*1 *2 *1) (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1313 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) (-4392 (*1 *1 *2) (-12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *1 (-1313 *3 *4)))) (-4391 (*1 *2 *1) (-12 (-5 *2 (-661 (-2 (|:| |k| *3) (|:| |c| (-1313 *3 *4))))) (-5 *1 (-1313 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -((-2967 (((-114) $ $) NIL T ELT)) (-4395 (($ (-661 (-938))) 10 T ELT)) (-4394 (((-992) $) 12 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4376 (((-877) $) 25 T ELT) (($ (-992)) 14 T ELT) (((-992) $) 13 T ELT)) (-1378 (((-114) $ $) NIL T ELT)) (-3454 (((-114) $ $) 17 T ELT))) -(((-1314) (-13 (-1122) (-502 (-992)) (-10 -8 (-15 -4395 ($ (-661 (-938)))) (-15 -4394 ((-992) $))))) (T -1314)) -((-4395 (*1 *1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1314)))) (-4394 (*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1314))))) -((-4396 (((-661 (-1176 |#1|)) (-1 (-661 (-1176 |#1|)) (-661 (-1176 |#1|))) (-558)) 16 T ELT) (((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|))) 13 T ELT))) -(((-1315 |#1|) (-10 -7 (-15 -4396 ((-1176 |#1|) (-1 (-1176 |#1|) (-1176 |#1|)))) (-15 -4396 ((-661 (-1176 |#1|)) (-1 (-661 (-1176 |#1|)) (-661 (-1176 |#1|))) (-558)))) (-1238)) (T -1315)) -((-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-661 (-1176 *5)) (-661 (-1176 *5)))) (-5 *4 (-558)) (-5 *2 (-661 (-1176 *5))) (-5 *1 (-1315 *5)) (-4 *5 (-1238)))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1315 *4)) (-4 *4 (-1238))))) -((-4398 (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|))) 174 T ELT) (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114)) 173 T ELT) (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114) (-114)) 172 T ELT) (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-1067 |#1| |#2|)) 156 T ELT)) (-4397 (((-661 (-1067 |#1| |#2|)) (-661 (-965 |#1|))) 85 T ELT) (((-661 (-1067 |#1| |#2|)) (-661 (-965 |#1|)) (-114)) 84 T ELT) (((-661 (-1067 |#1| |#2|)) (-661 (-965 |#1|)) (-114) (-114)) 83 T ELT)) (-4401 (((-661 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-800 |#1| (-878 |#3|)))) (-1067 |#1| |#2|)) 73 T ELT)) (-4399 (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|))) 140 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114)) 139 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114) (-114)) 138 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 132 T ELT)) (-4400 (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|))) 145 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114)) 144 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114) (-114)) 143 T ELT) (((-661 (-661 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|)) 142 T ELT)) (-4402 (((-661 (-800 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-800 |#1| (-878 |#3|)))) 111 T ELT) (((-1192 (-1045 (-419 |#1|))) (-1192 |#1|)) 102 T ELT) (((-965 (-1045 (-419 |#1|))) (-800 |#1| (-878 |#3|))) 109 T ELT) (((-965 (-1045 (-419 |#1|))) (-965 |#1|)) 107 T ELT) (((-800 |#1| (-878 |#3|)) (-800 |#1| (-878 |#2|))) 33 T ELT))) -(((-1316 |#1| |#2| |#3|) (-10 -7 (-15 -4397 ((-661 (-1067 |#1| |#2|)) (-661 (-965 |#1|)) (-114) (-114))) (-15 -4397 ((-661 (-1067 |#1| |#2|)) (-661 (-965 |#1|)) (-114))) (-15 -4397 ((-661 (-1067 |#1| |#2|)) (-661 (-965 |#1|)))) (-15 -4398 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-1067 |#1| |#2|))) (-15 -4398 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114) (-114) (-114))) (-15 -4398 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114) (-114))) (-15 -4398 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)) (-114))) (-15 -4398 ((-661 (-2 (|:| -1950 (-1192 |#1|)) (|:| -3642 (-661 (-965 |#1|))))) (-661 (-965 |#1|)))) (-15 -4399 ((-661 (-661 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -4399 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114) (-114) (-114))) (-15 -4399 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114) (-114))) (-15 -4399 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114))) (-15 -4399 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)))) (-15 -4400 ((-661 (-661 (-1045 (-419 |#1|)))) (-1067 |#1| |#2|))) (-15 -4400 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114) (-114))) (-15 -4400 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)) (-114))) (-15 -4400 ((-661 (-661 (-1045 (-419 |#1|)))) (-661 (-965 |#1|)))) (-15 -4401 ((-661 (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-800 |#1| (-878 |#3|)))) (-1067 |#1| |#2|))) (-15 -4402 ((-800 |#1| (-878 |#3|)) (-800 |#1| (-878 |#2|)))) (-15 -4402 ((-965 (-1045 (-419 |#1|))) (-965 |#1|))) (-15 -4402 ((-965 (-1045 (-419 |#1|))) (-800 |#1| (-878 |#3|)))) (-15 -4402 ((-1192 (-1045 (-419 |#1|))) (-1192 |#1|))) (-15 -4402 ((-661 (-800 |#1| (-878 |#3|))) (-1167 |#1| (-543 (-878 |#3|)) (-878 |#3|) (-800 |#1| (-878 |#3|)))))) (-13 (-860) (-319) (-149) (-1041)) (-661 (-1198)) (-661 (-1198))) (T -1316)) -((-4402 (*1 *2 *3) (-12 (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-800 *4 (-878 *6)))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-800 *4 (-878 *6)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-1192 (-1045 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-800 *4 (-878 *6))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *6 (-661 (-1198))) (-5 *2 (-965 (-1045 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-965 (-1045 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-800 *4 (-878 *5))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *5 (-661 (-1198))) (-5 *2 (-800 *4 (-878 *6))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *5 (-661 (-1198))) (-5 *2 (-661 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-800 *4 (-878 *6))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) (-4400 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4400 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *5 (-661 (-1198))) (-5 *2 (-661 (-661 (-1045 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) (-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4399 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *5 (-661 (-1198))) (-5 *2 (-661 (-661 (-1045 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) (-4398 (*1 *2 *3) (-12 (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *4)) (|:| -3642 (-661 (-965 *4)))))) (-5 *1 (-1316 *4 *5 *6)) (-5 *3 (-661 (-965 *4))) (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) (-4398 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4398 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4398 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *5 (-661 (-1198))) (-5 *2 (-661 (-2 (|:| -1950 (-1192 *4)) (|:| -3642 (-661 (-965 *4)))))) (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-1067 *4 *5))) (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) (-4397 (*1 *2 *3 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) (-4397 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198)))))) -((-4405 (((-3 (-1288 (-419 (-558))) #1="failed") (-1288 |#1|) |#1|) 21 T ELT)) (-4403 (((-114) (-1288 |#1|)) 12 T ELT)) (-4404 (((-3 (-1288 (-558)) #1#) (-1288 |#1|)) 16 T ELT))) -(((-1317 |#1|) (-10 -7 (-15 -4403 ((-114) (-1288 |#1|))) (-15 -4404 ((-3 (-1288 (-558)) #1="failed") (-1288 |#1|))) (-15 -4405 ((-3 (-1288 (-419 (-558))) #1#) (-1288 |#1|) |#1|))) (-13 (-1070) (-658 (-558)))) (T -1317)) -((-4405 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 (-558)))) (-5 *2 (-1288 (-419 (-558)))) (-5 *1 (-1317 *4)))) (-4404 (*1 *2 *3) (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 (-558)))) (-5 *2 (-1288 (-558))) (-5 *1 (-1317 *4)))) (-4403 (*1 *2 *3) (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 (-558)))) (-5 *2 (-114)) (-5 *1 (-1317 *4))))) -((-2967 (((-114) $ $) NIL T ELT)) (-3606 (((-114) $) 12 T ELT)) (-1426 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3538 (((-791)) 9 T ELT)) (-4154 (($) NIL T CONST)) (-3887 (((-3 $ #1#) $) 57 T ELT)) (-3395 (($) 46 T ELT)) (-2641 (((-114) $) 38 T ELT)) (-3865 (((-711 $) $) 36 T ELT)) (-2220 (((-938) $) 14 T ELT)) (-3660 (((-1180) $) NIL T ELT)) (-3866 (($) 26 T CONST)) (-2631 (($ (-938)) 47 T ELT)) (-3661 (((-1141) $) NIL T ELT)) (-4402 (((-558) $) 16 T ELT)) (-4376 (((-877) $) 21 T ELT) (($ (-558)) 18 T ELT)) (-3528 (((-791)) 10 T CONST)) (-1378 (((-114) $ $) 59 T ELT)) (-3059 (($) 23 T CONST)) (-3065 (($) 25 T CONST)) (-3454 (((-114) $ $) 31 T ELT)) (-4267 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-4269 (($ $ $) 29 T ELT)) (** (($ $ (-938)) NIL T ELT) (($ $ (-791)) 52 T ELT)) (* (($ (-938) $) NIL T ELT) (($ (-791) $) NIL T ELT) (($ (-558) $) 41 T ELT) (($ $ $) 40 T ELT))) -(((-1318 |#1|) (-13 (-175) (-381) (-631 (-558)) (-1173)) (-938)) (T -1318)) -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -NIL -((-3 3097028 3097033 3097038 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3097013 3097018 3097023 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3096998 3097003 3097008 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3096983 3096988 3096993 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1318 3096021 3096901 3096978 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1317 3095229 3095409 3095630 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1316 3086261 3088167 3090139 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1315 3085649 3085802 3085991 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1314 3085108 3085414 3085527 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1313 3082720 3084566 3084770 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1312 3079522 3081119 3081694 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1311 3076848 3078524 3078579 "XPOLYC" 3078867 XPOLYC (NIL T T) -9 NIL 3078980 NIL) (-1310 3074419 3076348 3076552 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1309 3070724 3073278 3073666 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1308 3065611 3067190 3067245 "XFALG" 3069417 XFALG (NIL T T) -9 NIL 3070206 NIL) (-1307 3060802 3063500 3063542 "XF" 3064163 XF (NIL T) -9 NIL 3064563 NIL) (-1306 3060516 3060628 3060797 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1305 3059739 3059861 3060066 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1304 3057536 3059638 3059734 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1303 3056191 3056929 3056972 "XALG" 3056977 XALG (NIL T) -9 NIL 3057088 NIL) (-1302 3049692 3054588 3055070 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1301 3047990 3048933 3049256 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1300 3047586 3047860 3047930 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1299 3047070 3047375 3047469 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1298 3046147 3046357 3046652 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1297 3044443 3044906 3045368 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1296 3043367 3043925 3043967 "VSPACE" 3044103 VSPACE (NIL T) -9 NIL 3044177 NIL) (-1295 3043238 3043271 3043362 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1294 3043081 3043135 3043203 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1293 3040064 3040859 3041596 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1292 3031159 3033763 3035936 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1291 3024733 3026627 3028206 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1290 3023217 3023612 3024018 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1289 3022044 3022325 3022641 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1288 3017121 3021871 3021963 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1287 3010177 3014822 3014865 "VECTCAT" 3015860 VECTCAT (NIL T) -9 NIL 3016447 NIL) (-1286 3009456 3009782 3010172 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1285 3008947 3009192 3009312 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1284 3008880 3008885 3008915 "UTYPE" 3008920 UTYPE (NIL) -9 NIL NIL NIL) (-1283 3007862 3008038 3008300 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1282 3005713 3006221 3006745 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1281 2995626 3001549 3001592 "UTSCAT" 3002704 UTSCAT (NIL T) -9 NIL 3003462 NIL) (-1280 2993688 2994632 2995621 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1279 2993358 2993407 2993540 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1278 2985104 2991541 2992021 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1277 2979083 2981914 2981957 "URAGG" 2984027 URAGG (NIL T) -9 NIL 2984750 NIL) (-1276 2977090 2978056 2979078 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1275 2972841 2976063 2976526 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1274 2965316 2972764 2972836 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1273 2953958 2961400 2961462 "UPXSCCA" 2962036 UPXSCCA (NIL T T) -9 NIL 2962269 NIL) (-1272 2953676 2953779 2953953 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1271 2942218 2949385 2949428 "UPXSCAT" 2950076 UPXSCAT (NIL T) -9 NIL 2950685 NIL) (-1270 2941727 2941812 2941991 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1269 2933457 2941315 2941579 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1268 2932352 2932622 2932972 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1267 2925093 2928528 2928583 "UPSCAT" 2929663 UPSCAT (NIL T T) -9 NIL 2930428 NIL) (-1266 2924506 2924761 2925088 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1265 2924176 2924225 2924358 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1264 2908236 2917187 2917230 "UPOLYC" 2919331 UPOLYC (NIL T) -9 NIL 2920552 NIL) (-1263 2902256 2905123 2908231 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1262 2901688 2901813 2901977 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1261 2901322 2901409 2901548 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1260 2900135 2900402 2900706 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1259 2899464 2899594 2899780 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1258 2899052 2899127 2899276 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1257 2889816 2898816 2898945 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1256 2889178 2889315 2889520 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1255 2887773 2888624 2888901 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1254 2886999 2887197 2887423 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1253 2873801 2886922 2886994 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1252 2853540 2866787 2866849 "ULSCCAT" 2867487 ULSCCAT (NIL T T) -9 NIL 2867776 NIL) (-1251 2852872 2853159 2853535 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1250 2841232 2848321 2848364 "ULSCAT" 2849227 ULSCAT (NIL T) -9 NIL 2849958 NIL) (-1249 2840741 2840826 2841005 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1248 2822808 2840237 2840479 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1247 2821835 2822535 2822649 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2822760) (-1246 2820861 2821561 2821675 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2821786) (-1245 2819887 2820587 2820701 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2820812) (-1244 2818913 2819613 2819727 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2819838) (-1243 2816992 2818159 2818189 "UFD" 2818401 UFD (NIL) -9 NIL 2818515 NIL) (-1242 2816834 2816892 2816987 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1241 2816086 2816293 2816509 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1240 2814288 2814747 2815218 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1239 2814009 2814252 2814283 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1238 2813942 2813947 2813977 "TYPE" 2813982 TYPE (NIL) -9 NIL NIL NIL) (-1237 2813101 2813321 2813561 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1236 2812276 2812710 2812945 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1235 2810430 2811003 2811542 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1234 2809450 2809691 2809932 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1233 2797701 2802209 2802306 "TSETCAT" 2807575 TSETCAT (NIL T T T T) -9 NIL 2809106 NIL) (-1232 2793995 2795832 2797696 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1231 2788436 2793215 2793498 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1230 2783773 2784786 2785715 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1229 2783270 2783345 2783508 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1228 2781333 2781624 2781981 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1227 2780817 2780966 2780996 "TRIGCAT" 2781209 TRIGCAT (NIL) -9 NIL NIL NIL) (-1226 2780568 2780671 2780812 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1225 2777540 2779672 2779953 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1224 2776646 2777342 2777372 "TRANFUN" 2777407 TRANFUN (NIL) -9 NIL 2777473 NIL) (-1223 2776110 2776361 2776641 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1222 2775947 2775985 2776046 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1221 2775400 2775531 2775683 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1220 2774135 2774796 2775033 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1219 2773947 2773984 2774056 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1218 2772158 2772807 2773236 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1217 2771862 2771937 2772027 "TEMUTL" NIL TEMUTL (NIL) -7 NIL NIL NIL) (-1216 2770233 2770573 2770898 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1215 2761427 2768077 2768133 "TBAGG" 2768533 TBAGG (NIL T T) -9 NIL 2768744 NIL) (-1214 2757998 2759670 2761422 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1213 2757475 2757600 2757745 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1212 2756981 2757305 2757395 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1211 2756478 2756595 2756733 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1210 2749658 2756380 2756473 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1209 2745402 2746700 2747948 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1208 2744771 2744930 2745111 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1207 2741925 2742678 2743461 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1206 2741696 2741889 2741920 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1205 2740643 2741335 2741461 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2741647) (-1204 2739900 2740455 2740534 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2740594) (-1203 2736698 2737866 2738576 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1202 2734388 2735068 2735700 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1201 2730466 2731512 2732489 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1200 2727610 2730119 2730349 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1199 2727203 2727290 2727413 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1198 2723816 2725298 2726119 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1197 2718987 2720742 2722462 "SWITCH" NIL SWITCH (NIL) -8 NIL NIL NIL) (-1196 2711991 2718179 2718473 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1195 2703721 2711579 2711843 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2703000 2703139 2703356 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1193 2702680 2702745 2702858 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1192 2693402 2702389 2702515 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1191 2692127 2692425 2692781 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1190 2691529 2691607 2691799 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1189 2673631 2691025 2691267 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1188 2673227 2673501 2673571 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1187 2672560 2672844 2672984 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1186 2667111 2668378 2669337 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1185 2666643 2666743 2666907 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1184 2661754 2663036 2664183 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1183 2656212 2657683 2658994 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1182 2649091 2651155 2652947 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1181 2642014 2649003 2649086 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1180 2636636 2641728 2641843 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1179 2636223 2636306 2636450 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1178 2635374 2635575 2635810 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1177 2635114 2635172 2635265 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1176 2627806 2633309 2633920 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1175 2626982 2627187 2627418 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1174 2626223 2626597 2626745 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1173 2625719 2625964 2625994 "STEP" 2626088 STEP (NIL) -9 NIL 2626159 NIL) (-1172 2618915 2625637 2625714 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1171 2613095 2617706 2617749 "STAGG" 2618181 STAGG (NIL T) -9 NIL 2618360 NIL) (-1170 2611470 2612220 2613090 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1169 2609613 2611297 2611389 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1168 2608930 2609443 2609473 "SRING" 2609478 SRING (NIL) -9 NIL 2609498 NIL) (-1167 2601459 2607441 2607897 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1166 2595200 2596647 2598160 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1165 2587584 2592529 2592559 "SRAGG" 2593862 SRAGG (NIL) -9 NIL 2594470 NIL) (-1164 2586879 2587200 2587579 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1163 2580972 2586197 2586621 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1162 2575154 2578345 2579072 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1161 2571553 2572384 2573030 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1160 2570528 2570833 2570863 "SPFCAT" 2571307 SPFCAT (NIL) -9 NIL NIL NIL) (-1159 2569465 2569717 2569981 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1158 2560112 2562428 2562458 "SPADXPT" 2567134 SPADXPT (NIL) -9 NIL 2569298 NIL) (-1157 2559914 2559960 2560029 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1156 2557528 2559878 2559909 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1155 2549129 2551232 2551275 "SPACEC" 2555648 SPACEC (NIL T) -9 NIL 2557464 NIL) (-1154 2546943 2549075 2549124 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1153 2545870 2546061 2546352 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1152 2544268 2544601 2545013 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1151 2543533 2543767 2544028 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1150 2539713 2540673 2541668 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1149 2536071 2536770 2537499 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1148 2529817 2535420 2535517 "SNTSCAT" 2535522 SNTSCAT (NIL T T T T) -9 NIL 2535592 NIL) (-1147 2523685 2528450 2528841 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1146 2517499 2523603 2523680 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1145 2515931 2516262 2516660 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1144 2507560 2512496 2512599 "SMATCAT" 2513953 SMATCAT (NIL NIL T T T) -9 NIL 2514503 NIL) (-1143 2505400 2506384 2507555 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1142 2502980 2504608 2504651 "SKAGG" 2504912 SKAGG (NIL T) -9 NIL 2505047 NIL) (-1141 2498822 2502630 2502800 "SINT" NIL SINT (NIL) -8 NIL NIL 2502952) (-1140 2498632 2498676 2498742 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1139 2497707 2497939 2498207 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1138 2496707 2496869 2497146 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1137 2496049 2496392 2496516 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1136 2495392 2495702 2495842 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1135 2493503 2493995 2494501 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1134 2486976 2493422 2493498 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1133 2486487 2486727 2486757 "SGROUP" 2486850 SGROUP (NIL) -9 NIL 2486912 NIL) (-1132 2486377 2486409 2486482 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1131 2483797 2484567 2485290 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1130 2477641 2483244 2483341 "SFRTCAT" 2483346 SFRTCAT (NIL T T T T) -9 NIL 2483385 NIL) (-1129 2471977 2473097 2474233 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1128 2466066 2467245 2468429 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1127 2465727 2465834 2465945 "SFORT" NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1126 2464687 2465601 2465722 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1125 2460276 2461183 2461278 "SEXCAT" 2463900 SEXCAT (NIL T T T T T) -9 NIL 2464460 NIL) (-1124 2459237 2460203 2460271 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1123 2457622 2458211 2458514 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1122 2457152 2457340 2457370 "SETCAT" 2457487 SETCAT (NIL) -9 NIL 2457572 NIL) (-1121 2456984 2457048 2457147 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1120 2453198 2455445 2455488 "SETAGG" 2456358 SETAGG (NIL T) -9 NIL 2456698 NIL) (-1119 2452804 2452956 2453193 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1118 2449740 2452751 2452799 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1117 2449202 2449515 2449616 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1116 2448329 2448695 2448756 "SEGXCAT" 2449042 SEGXCAT (NIL T T) -9 NIL 2449162 NIL) (-1115 2447254 2447522 2447565 "SEGCAT" 2448087 SEGCAT (NIL T) -9 NIL 2448308 NIL) (-1114 2446934 2446999 2447112 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1113 2445997 2446470 2446678 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1112 2445571 2445853 2445930 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1111 2444936 2445072 2445276 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1110 2443999 2444749 2444931 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1109 2443245 2443947 2443994 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1108 2434770 2443110 2443240 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1107 2433624 2433914 2434233 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1106 2432916 2433130 2433322 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-1105 2432257 2432415 2432594 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1104 2431836 2432070 2432100 "SASTCAT" 2432105 SASTCAT (NIL) -9 NIL 2432118 NIL) (-1103 2431293 2431725 2431801 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-1102 2430893 2430934 2431107 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1101 2430521 2430562 2430721 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1100 2423634 2430436 2430516 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1099 2422271 2422603 2423004 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1098 2421014 2421380 2421685 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1097 2420632 2420856 2420939 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1096 2418066 2418704 2419162 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1095 2417899 2417933 2418004 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-1094 2417382 2417688 2417782 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-1093 2412953 2413826 2414746 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1092 2401659 2407262 2407359 "RSETCAT" 2411478 RSETCAT (NIL T T T T) -9 NIL 2412575 NIL) (-1091 2400183 2400830 2401654 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1090 2393892 2395346 2396866 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1089 2391761 2392324 2392398 "RRCC" 2393484 RRCC (NIL T T) -9 NIL 2393828 NIL) (-1088 2391277 2391479 2391756 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-1087 2390739 2391052 2391153 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-1086 2363064 2373764 2373831 "RPOLCAT" 2384497 RPOLCAT (NIL T T T) -9 NIL 2387657 NIL) (-1085 2357133 2359969 2363059 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-1084 2348172 2355804 2356286 "ROUTINE" NIL ROUTINE (NIL) -8 NIL NIL NIL) (-1083 2344380 2347916 2348056 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-1082 2342689 2343435 2343695 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1081 2338379 2341144 2341174 "RNS" 2341443 RNS (NIL) -9 NIL 2341699 NIL) (-1080 2337285 2337770 2338304 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-1079 2336395 2336799 2337001 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1078 2335688 2336192 2336222 "RNG" 2336227 RNG (NIL) -9 NIL 2336248 NIL) (-1077 2334983 2335461 2335504 "RMODULE" 2335509 RMODULE (NIL T) -9 NIL 2335536 NIL) (-1076 2333906 2334012 2334348 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1075 2330762 2333490 2333787 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1074 2323372 2325849 2325964 "RMATCAT" 2329323 RMATCAT (NIL NIL NIL T T T) -9 NIL 2330305 NIL) (-1073 2322877 2323060 2323367 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-1072 2322450 2322664 2322707 "RLINSET" 2322769 RLINSET (NIL T) -9 NIL 2322813 NIL) (-1071 2322092 2322173 2322301 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1070 2321016 2321690 2321720 "RING" 2321776 RING (NIL) -9 NIL 2321868 NIL) (-1069 2320858 2320914 2321011 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-1068 2319905 2320172 2320430 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-1067 2310833 2319525 2319731 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1066 2310091 2310575 2310616 "RGBCSPC" 2310674 RGBCSPC (NIL T) -9 NIL 2310726 NIL) (-1065 2309157 2309616 2309657 "RGBCMDL" 2309889 RGBCMDL (NIL T) -9 NIL 2310003 NIL) (-1064 2308866 2308935 2309038 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1063 2308626 2308667 2308764 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1062 2307037 2307467 2307849 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-1061 2304613 2305281 2305951 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-1060 2304158 2304256 2304419 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1059 2303776 2303874 2303917 "RETRACT" 2304050 RETRACT (NIL T) -9 NIL 2304137 NIL) (-1058 2303653 2303684 2303771 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-1057 2303249 2303523 2303593 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-1056 2295825 2303007 2303134 "RESULT" NIL RESULT (NIL) -8 NIL NIL NIL) (-1055 2294359 2295191 2295390 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1054 2294046 2294107 2294205 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1053 2293786 2293827 2293934 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1052 2293518 2293559 2293670 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-1051 2288538 2289995 2291218 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-1050 2285608 2286366 2287177 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-1049 2283568 2284190 2284792 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-1048 2276097 2282079 2282535 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1047 2275021 2275460 2275710 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-1046 2274502 2274617 2274784 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1045 2270112 2273887 2274114 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1044 2269339 2269538 2269753 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-1043 2266621 2267459 2268343 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1042 2263193 2264229 2265290 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1041 2263027 2263080 2263110 "REAL" 2263115 REAL (NIL) -9 NIL 2263150 NIL) (-1040 2262510 2262816 2262910 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-1039 2261987 2262065 2262272 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1038 2261215 2261407 2261620 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-1037 2260096 2260393 2260763 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1036 2258348 2258820 2259358 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1035 2257265 2257542 2257932 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1034 2256084 2256394 2256817 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1033 2249467 2252933 2252963 "RCFIELD" 2254258 RCFIELD (NIL) -9 NIL 2254989 NIL) (-1032 2248088 2248698 2249392 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-1031 2244251 2246161 2246204 "RCAGG" 2247288 RCAGG (NIL T) -9 NIL 2247753 NIL) (-1030 2243973 2244084 2244246 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-1029 2243406 2243536 2243701 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-1028 2243019 2243098 2243219 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1027 2242427 2242577 2242729 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-1026 2242206 2242256 2242329 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-1025 2234675 2241314 2241625 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1024 2224370 2234540 2234670 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1023 2223999 2224092 2224122 "RADCAT" 2224282 RADCAT (NIL) -9 NIL NIL NIL) (-1022 2223834 2223894 2223994 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-1021 2221916 2223661 2223753 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1020 2221590 2221639 2221770 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1019 2213887 2217925 2217967 "QUATCAT" 2218758 QUATCAT (NIL T) -9 NIL 2219524 NIL) (-1018 2211130 2212413 2213791 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-1017 2207012 2211077 2211125 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-1016 2204379 2206060 2206103 "QUAGG" 2206484 QUAGG (NIL T) -9 NIL 2206659 NIL) (-1015 2203975 2204249 2204319 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-1014 2203005 2203607 2203772 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1013 2202679 2202728 2202859 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1012 2192303 2198437 2198479 "QFCAT" 2199147 QFCAT (NIL T) -9 NIL 2200148 NIL) (-1011 2189196 2190632 2192207 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-1010 2188737 2188871 2189003 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-1009 2182826 2184005 2185189 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1008 2182237 2182419 2182655 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1007 2180036 2180570 2180998 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1006 2178930 2179172 2179491 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1005 2177278 2177476 2177832 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1004 2173005 2174221 2174264 "PTRANFN" 2176175 PTRANFN (NIL T) -9 NIL NIL NIL) (-1003 2171631 2171976 2172300 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1002 2171317 2171380 2171491 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1001 2165344 2170103 2170146 "PTCAT" 2170446 PTCAT (NIL T) -9 NIL 2170599 NIL) (-1000 2165034 2165075 2165201 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-999 2163913 2164229 2164563 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-998 2152712 2155287 2157611 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-997 2145553 2148470 2148566 "PSETCAT" 2151587 PSETCAT (NIL T T T T) -9 NIL 2152401 NIL) (-996 2143985 2144727 2145548 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-995 2143304 2143499 2143527 "PSCURVE" 2143795 PSCURVE (NIL) -9 NIL 2143962 NIL) (-994 2138950 2140717 2140782 "PSCAT" 2141626 PSCAT (NIL T T T) -9 NIL 2141866 NIL) (-993 2138263 2138545 2138945 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-992 2136684 2137575 2137838 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-991 2136171 2136477 2136569 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-990 2127191 2129613 2131801 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-989 2124922 2126513 2126553 "PRQAGG" 2126736 PRQAGG (NIL T) -9 NIL 2126838 NIL) (-988 2124101 2124550 2124578 "PROPLOG" 2124717 PROPLOG (NIL) -9 NIL 2124832 NIL) (-987 2123776 2123839 2123962 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-986 2123212 2123351 2123523 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-985 2121457 2122223 2122520 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-984 2121010 2121141 2121269 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-983 2115599 2119950 2120770 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-982 2115428 2115466 2115525 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-981 2114864 2115005 2115157 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-980 2113332 2113751 2114217 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-979 2113049 2113110 2113138 "PRIMCAT" 2113262 PRIMCAT (NIL) -9 NIL NIL NIL) (-978 2112220 2112416 2112644 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-977 2108068 2112170 2112215 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-976 2107767 2107829 2107940 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-975 2104948 2107414 2107648 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-974 2104399 2104556 2104584 "PPCURVE" 2104789 PPCURVE (NIL) -9 NIL 2104925 NIL) (-973 2104009 2104257 2104340 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-972 2101765 2102186 2102778 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-971 2101206 2101270 2101504 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-970 2097916 2098402 2099014 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-969 2083491 2089576 2089641 "POLYCAT" 2093155 POLYCAT (NIL T T T) -9 NIL 2095033 NIL) (-968 2078998 2081146 2083486 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-967 2078653 2078727 2078847 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-966 2078342 2078405 2078514 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-965 2071746 2078073 2078233 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-964 2070633 2070896 2071172 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-963 2069230 2069543 2069874 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-962 2064354 2069178 2069225 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-961 2062842 2063253 2063628 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-960 2061590 2061899 2062298 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-959 2061261 2061345 2061462 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-958 2060838 2060913 2061088 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-957 2060318 2060416 2060578 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-956 2059784 2059906 2060062 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-955 2058676 2058894 2059272 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-954 2058287 2058372 2058524 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-953 2057836 2057918 2058100 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-952 2057528 2057609 2057722 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-951 2057039 2057114 2057323 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-950 2056378 2056508 2056713 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-949 2055740 2055874 2056037 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-948 2055044 2055226 2055407 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-947 2054767 2054841 2054935 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-946 2051322 2052516 2053437 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-945 2050406 2050607 2050842 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-944 2045955 2047345 2048493 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-943 2025864 2030755 2035606 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-942 2025604 2025657 2025760 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-941 2025045 2025179 2025359 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-940 2023129 2024295 2024323 "PID" 2024520 PID (NIL) -9 NIL 2024647 NIL) (-939 2022917 2022960 2023035 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-938 2022096 2022764 2022851 "PI" NIL PI (NIL) -8 NIL NIL 2022891) (-937 2021548 2021699 2021875 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-936 2017876 2018834 2019739 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-935 2016240 2016529 2016895 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-934 2015682 2015797 2015958 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-933 2012278 2014551 2014904 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-932 2010884 2011164 2011489 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-931 2009646 2009901 2010250 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-930 2008349 2008577 2008931 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-929 2005433 2006939 2006967 "PFECAT" 2007560 PFECAT (NIL) -9 NIL 2007937 NIL) (-928 2005056 2005221 2005428 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-927 2003880 2004162 2004463 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-926 2002062 2002449 2002879 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-925 1998082 2001988 2002057 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-924 1993973 1995126 1995996 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-923 1991885 1992997 1993038 "PERMCAT" 1993438 PERMCAT (NIL T) -9 NIL 1993736 NIL) (-922 1991579 1991626 1991750 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-921 1987999 1989705 1990352 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-920 1985445 1987753 1987875 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-919 1984326 1984589 1984630 "PDSPC" 1985163 PDSPC (NIL T) -9 NIL 1985408 NIL) (-918 1983693 1983959 1984321 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-917 1982407 1983343 1983384 "PDRING" 1983389 PDRING (NIL T) -9 NIL 1983417 NIL) (-916 1981150 1981912 1981966 "PDMOD" 1981971 PDMOD (NIL T T) -9 NIL 1982075 NIL) (-915 1978965 1979791 1980459 "PDEPROB" NIL PDEPROB (NIL) -8 NIL NIL NIL) (-914 1977009 1977549 1978104 "PDEPACK" NIL PDEPACK (NIL) -7 NIL NIL NIL) (-913 1976102 1976314 1976563 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-912 1973619 1974510 1974538 "PDECAT" 1975325 PDECAT (NIL) -9 NIL 1976038 NIL) (-911 1973236 1973303 1973357 "PDDOM" 1973522 PDDOM (NIL T T) -9 NIL 1973602 NIL) (-910 1973088 1973124 1973231 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-909 1972872 1972911 1973001 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-908 1971183 1971944 1972241 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-907 1970872 1970935 1971044 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-906 1968992 1969428 1969885 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-905 1962572 1964419 1965720 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-904 1962203 1962276 1962408 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-903 1959908 1960589 1961068 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-902 1958094 1958529 1958936 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-901 1957548 1957799 1957840 "PATMAB" 1957947 PATMAB (NIL T) -9 NIL 1958030 NIL) (-900 1956189 1956597 1956855 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-899 1955727 1955858 1955899 "PATAB" 1955904 PATAB (NIL T) -9 NIL 1956076 NIL) (-898 1954270 1954707 1955130 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-897 1953948 1954023 1954125 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-896 1953637 1953700 1953809 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-895 1953442 1953488 1953555 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-894 1953120 1953195 1953297 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-893 1952809 1952872 1952981 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-892 1952500 1952570 1952667 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-891 1952189 1952252 1952361 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-890 1951340 1951724 1951906 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-889 1950947 1951045 1951164 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-888 1949848 1950276 1950504 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-887 1948507 1949167 1949527 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-886 1941633 1947910 1948105 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-885 1934090 1941130 1941315 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-884 1930889 1932750 1932790 "PADICCT" 1933371 PADICCT (NIL NIL) -9 NIL 1933653 NIL) (-883 1928935 1930839 1930884 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-882 1928097 1928307 1928573 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-881 1927439 1927582 1927786 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-880 1925875 1926843 1927123 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-879 1925397 1925658 1925755 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-878 1924449 1925134 1925306 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-877 1914865 1917738 1919938 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-876 1914254 1914569 1914696 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-875 1913531 1913726 1913754 "OUTBCON" 1914072 OUTBCON (NIL) -9 NIL 1914238 NIL) (-874 1913239 1913369 1913526 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-873 1912620 1912765 1912926 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-872 1911985 1912418 1912507 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-871 1911404 1911826 1911854 "OSGROUP" 1911859 OSGROUP (NIL) -9 NIL 1911881 NIL) (-870 1910368 1910629 1910914 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-869 1907690 1910242 1910363 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-868 1904883 1907439 1907566 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-867 1902894 1903422 1903983 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-866 1896272 1898760 1898801 "OREPCAT" 1901149 OREPCAT (NIL T) -9 NIL 1902253 NIL) (-865 1894297 1895231 1896267 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-864 1893489 1893767 1893795 "ORDTYPE" 1894104 ORDTYPE (NIL) -9 NIL 1894267 NIL) (-863 1893013 1893229 1893484 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-862 1892467 1892850 1893008 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-861 1891965 1892335 1892363 "ORDSET" 1892368 ORDSET (NIL) -9 NIL 1892390 NIL) (-860 1890616 1891587 1891615 "ORDRING" 1891620 ORDRING (NIL) -9 NIL 1891649 NIL) (-859 1889867 1890432 1890460 "ORDMON" 1890465 ORDMON (NIL) -9 NIL 1890486 NIL) (-858 1889162 1889327 1889522 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-857 1888377 1888892 1888920 "ORDFIN" 1888985 ORDFIN (NIL) -9 NIL 1889059 NIL) (-856 1887771 1887910 1888096 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-855 1884516 1886733 1887142 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-854 1881831 1882801 1883615 "OPTPROB" NIL OPTPROB (NIL) -8 NIL NIL NIL) (-853 1879257 1879956 1880660 "OPTPACK" NIL OPTPACK (NIL) -7 NIL NIL NIL) (-852 1876870 1877696 1877724 "OPTCAT" 1878543 OPTCAT (NIL) -9 NIL 1879193 NIL) (-851 1876273 1876632 1876737 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-850 1876081 1876126 1876192 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-849 1875387 1875667 1875708 "OPERCAT" 1875920 OPERCAT (NIL T) -9 NIL 1876017 NIL) (-848 1875197 1875265 1875382 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-847 1872596 1873979 1874483 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-846 1872017 1872144 1872318 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-845 1868988 1871150 1871519 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-844 1865613 1868428 1868468 "OMSAGG" 1868529 OMSAGG (NIL T) -9 NIL 1868593 NIL) (-843 1864081 1865281 1865450 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-842 1862359 1863551 1863579 "OINTDOM" 1863584 OINTDOM (NIL) -9 NIL 1863605 NIL) (-841 1859778 1861359 1861689 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-840 1859025 1859728 1859773 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-839 1856281 1858865 1859020 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-838 1847858 1856150 1856276 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-837 1841301 1847748 1847853 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-836 1840273 1840510 1840783 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-835 1837907 1838577 1839281 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-834 1833662 1834622 1835647 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-833 1833170 1833258 1833452 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-832 1830605 1831187 1831862 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-831 1827992 1828500 1829097 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-830 1826353 1826997 1827483 "ODEPROB" NIL ODEPROB (NIL) -8 NIL NIL NIL) (-829 1823340 1823879 1824526 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-828 1822691 1822799 1823059 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-827 1819637 1820488 1821352 "ODEPACK" NIL ODEPACK (NIL) -7 NIL NIL NIL) (-826 1818791 1818916 1819138 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-825 1814283 1815744 1817191 "ODEIFTBL" NIL ODEIFTBL (NIL) -8 NIL NIL NIL) (-824 1810540 1811342 1812262 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-823 1809978 1810073 1810296 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-822 1808041 1808750 1808778 "ODECAT" 1809383 ODECAT (NIL) -9 NIL 1809914 NIL) (-821 1807722 1807771 1807898 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-820 1804339 1807517 1807639 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-819 1803532 1804132 1804160 "OCAMON" 1804165 OCAMON (NIL) -9 NIL 1804186 NIL) (-818 1797803 1800568 1800608 "OC" 1801705 OC (NIL T) -9 NIL 1802563 NIL) (-817 1795803 1796731 1797709 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-816 1795223 1795648 1795676 "OASGP" 1795681 OASGP (NIL) -9 NIL 1795701 NIL) (-815 1794319 1794946 1794974 "OAMONS" 1795014 OAMONS (NIL) -9 NIL 1795057 NIL) (-814 1793495 1794054 1794082 "OAMON" 1794140 OAMON (NIL) -9 NIL 1794192 NIL) (-813 1793389 1793422 1793490 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-812 1792170 1792923 1792951 "OAGROUP" 1793098 OAGROUP (NIL) -9 NIL 1793191 NIL) (-811 1791959 1792047 1792165 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-810 1791699 1791755 1791843 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-809 1786734 1788306 1789842 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-808 1783429 1784463 1785498 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-807 1780710 1781650 1781678 "NUMINT" 1782601 NUMINT (NIL) -9 NIL 1783365 NIL) (-806 1779820 1780053 1780271 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-805 1768660 1771699 1774149 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-804 1762506 1768109 1768204 "NTSCAT" 1768209 NTSCAT (NIL T T T T) -9 NIL 1768248 NIL) (-803 1761847 1762026 1762219 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-802 1761536 1761599 1761708 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-801 1749189 1759140 1759952 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-800 1738207 1749051 1749184 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-799 1736927 1737252 1737609 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-798 1735763 1736027 1736385 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-797 1734930 1735063 1735279 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-796 1733233 1733553 1733962 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-795 1732946 1732980 1733104 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-794 1732765 1732800 1732869 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-793 1732538 1732731 1732760 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-792 1732097 1732165 1732344 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-791 1730405 1731460 1731715 "NNI" NIL NNI (NIL) -8 NIL NIL 1732062) (-790 1729133 1729470 1729834 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-789 1726193 1727248 1728147 "NIPROB" NIL NIPROB (NIL) -8 NIL NIL NIL) (-788 1725170 1725422 1725724 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-787 1724254 1724820 1724861 "NETCLT" 1725033 NETCLT (NIL T) -9 NIL 1725115 NIL) (-786 1723158 1723425 1723706 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-785 1722957 1723000 1723075 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-784 1721488 1721876 1722296 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-783 1720158 1721098 1721126 "NASRING" 1721236 NASRING (NIL) -9 NIL 1721316 NIL) (-782 1720003 1720059 1720153 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-781 1718970 1719621 1719649 "NARNG" 1719766 NARNG (NIL) -9 NIL 1719857 NIL) (-780 1718746 1718831 1718965 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-779 1717798 1718047 1718282 "NAGSP" NIL NAGSP (NIL) -7 NIL NIL NIL) (-778 1710495 1712407 1714080 "NAGS" NIL NAGS (NIL) -7 NIL NIL NIL) (-777 1709330 1709662 1709993 "NAGF07" NIL NAGF07 (NIL) -7 NIL NIL NIL) (-776 1705089 1706446 1707753 "NAGF04" NIL NAGF04 (NIL) -7 NIL NIL NIL) (-775 1699574 1701284 1702917 "NAGF02" NIL NAGF02 (NIL) -7 NIL NIL NIL) (-774 1695835 1696995 1698112 "NAGF01" NIL NAGF01 (NIL) -7 NIL NIL NIL) (-773 1690980 1692594 1694179 "NAGE04" NIL NAGE04 (NIL) -7 NIL NIL NIL) (-772 1684151 1686380 1688510 "NAGE02" NIL NAGE02 (NIL) -7 NIL NIL NIL) (-771 1680988 1681995 1682959 "NAGE01" NIL NAGE01 (NIL) -7 NIL NIL NIL) (-770 1679303 1679855 1680413 "NAGD03" NIL NAGD03 (NIL) -7 NIL NIL NIL) (-769 1672933 1674915 1676869 "NAGD02" NIL NAGD02 (NIL) -7 NIL NIL NIL) (-768 1668092 1669589 1671029 "NAGD01" NIL NAGD01 (NIL) -7 NIL NIL NIL) (-767 1665046 1665940 1666777 "NAGC06" NIL NAGC06 (NIL) -7 NIL NIL NIL) (-766 1663829 1664179 1664535 "NAGC05" NIL NAGC05 (NIL) -7 NIL NIL NIL) (-765 1663317 1663448 1663592 "NAGC02" NIL NAGC02 (NIL) -7 NIL NIL NIL) (-764 1662118 1662845 1662885 "NAALG" 1662964 NAALG (NIL T) -9 NIL 1663025 NIL) (-763 1661988 1662023 1662113 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-762 1656964 1658150 1659337 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-761 1656359 1656446 1656630 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-760 1648414 1652852 1652905 "MTSCAT" 1653975 MTSCAT (NIL T T) -9 NIL 1654490 NIL) (-759 1648180 1648240 1648332 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-758 1648006 1648045 1648105 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-757 1644862 1647567 1647608 "MSETAGG" 1647613 MSETAGG (NIL T) -9 NIL 1647647 NIL) (-756 1640977 1643904 1644224 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-755 1637291 1639056 1639801 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-754 1636924 1636997 1637128 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-753 1636577 1636618 1636762 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-752 1634442 1634779 1635210 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-751 1627882 1634340 1634437 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-750 1627407 1627448 1627656 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-749 1626964 1627013 1627197 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-748 1626232 1626325 1626546 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-747 1624849 1625210 1625600 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-746 1623994 1624377 1624405 "MONOID" 1624624 MONOID (NIL) -9 NIL 1624771 NIL) (-745 1623659 1623808 1623989 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-744 1612553 1619391 1619450 "MONOGEN" 1620124 MONOGEN (NIL T T) -9 NIL 1620580 NIL) (-743 1610565 1611451 1612434 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-742 1609282 1609830 1609858 "MONADWU" 1610250 MONADWU (NIL) -9 NIL 1610488 NIL) (-741 1608828 1609029 1609277 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-740 1608113 1608417 1608445 "MONAD" 1608652 MONAD (NIL) -9 NIL 1608764 NIL) (-739 1607880 1607976 1608108 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-738 1606266 1607040 1607319 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-737 1605434 1605934 1605974 "MODULE" 1605979 MODULE (NIL T) -9 NIL 1606018 NIL) (-736 1605113 1605239 1605429 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-735 1602882 1603709 1604024 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-734 1600094 1601458 1601979 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-733 1598717 1599298 1599575 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-732 1587927 1597371 1597785 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-731 1584938 1586927 1587196 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-730 1584019 1584389 1584579 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-729 1583588 1583637 1583816 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-728 1581481 1582420 1582461 "MLO" 1582884 MLO (NIL T) -9 NIL 1583126 NIL) (-727 1579362 1579889 1580484 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-726 1578830 1578926 1579080 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-725 1578500 1578576 1578699 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-724 1577712 1577898 1578126 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-723 1577205 1577321 1577477 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-722 1576577 1576691 1576876 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-721 1572717 1576247 1576383 "MINT" NIL MINT (NIL) -8 NIL NIL NIL) (-720 1571744 1572017 1572294 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-719 1566912 1570664 1571069 "MFLOAT" NIL MFLOAT (NIL) -8 NIL NIL NIL) (-718 1566345 1566433 1566604 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-717 1563503 1564382 1565261 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-716 1562170 1562518 1562871 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-715 1558817 1561301 1561342 "MDAGG" 1561597 MDAGG (NIL T) -9 NIL 1561740 NIL) (-714 1546789 1558297 1558504 "MCMPLX" NIL MCMPLX (NIL) -8 NIL NIL NIL) (-713 1546059 1546223 1546424 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-712 1544177 1544489 1544869 "MCALCFN" NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-711 1543248 1543536 1543769 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-710 1541335 1541912 1542474 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-709 1537084 1540922 1541170 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-708 1533431 1534202 1534936 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-707 1532176 1532345 1532676 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-706 1521623 1525230 1525307 "MATCAT" 1530342 MATCAT (NIL T T T) -9 NIL 1531814 NIL) (-705 1518895 1520205 1521618 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-704 1517296 1517656 1518040 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-703 1516429 1516626 1516848 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-702 1515180 1515506 1515833 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-701 1514338 1514743 1514920 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-700 1514007 1514071 1514194 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-699 1513655 1513728 1513842 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-698 1513190 1513305 1513447 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-697 1511385 1512162 1512466 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-696 1510875 1511180 1511271 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-695 1507660 1509542 1510003 "M3D" NIL M3D (NIL T) -8 NIL NIL NIL) (-694 1501131 1505968 1506009 "LZSTAGG" 1506791 LZSTAGG (NIL T) -9 NIL 1507086 NIL) (-693 1498220 1499669 1501126 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-692 1495590 1496566 1497053 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-691 1495167 1495449 1495524 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-690 1487358 1495028 1495162 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-689 1486721 1486866 1487094 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-688 1484202 1484901 1485614 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-687 1482311 1482635 1483084 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-686 1475438 1481398 1481439 "LSAGG" 1481501 LSAGG (NIL T) -9 NIL 1481579 NIL) (-685 1473110 1474220 1475433 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-684 1470617 1472459 1472708 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-683 1470284 1470375 1470498 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-682 1469967 1470046 1470074 "LOGIC" 1470185 LOGIC (NIL) -9 NIL 1470267 NIL) (-681 1469862 1469891 1469962 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-680 1469181 1469339 1469532 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-679 1467958 1468207 1468560 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-678 1463841 1466586 1466627 "LODOCAT" 1467065 LODOCAT (NIL T) -9 NIL 1467276 NIL) (-677 1463633 1463709 1463836 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-676 1460687 1463510 1463628 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-675 1457839 1460637 1460682 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-674 1454979 1457768 1457834 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-673 1454029 1454204 1454507 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-672 1452183 1453291 1453544 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-671 1447263 1450346 1450387 "LNAGG" 1451249 LNAGG (NIL T) -9 NIL 1451684 NIL) (-670 1446648 1446916 1447258 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-669 1443213 1444158 1444797 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-668 1442512 1442990 1443031 "LMODULE" 1443036 LMODULE (NIL T) -9 NIL 1443062 NIL) (-667 1439671 1442247 1442370 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-666 1439247 1439461 1439502 "LLINSET" 1439563 LLINSET (NIL T) -9 NIL 1439607 NIL) (-665 1438919 1439182 1439242 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-664 1438518 1438598 1438737 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-663 1436969 1437317 1437716 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-662 1436140 1436336 1436564 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-661 1429116 1435394 1435649 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-660 1428699 1428935 1428976 "LINSET" 1428981 LINSET (NIL T) -9 NIL 1429015 NIL) (-659 1427628 1428322 1428489 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-658 1425927 1426655 1426696 "LINEXP" 1427186 LINEXP (NIL T) -9 NIL 1427459 NIL) (-657 1424632 1425536 1425717 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-656 1423451 1423724 1424028 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-655 1422657 1423253 1423363 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-654 1420207 1420929 1421679 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-653 1418833 1419130 1419522 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-652 1417661 1418236 1418276 "LIECAT" 1418416 LIECAT (NIL T) -9 NIL 1418567 NIL) (-651 1417535 1417568 1417656 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-650 1411771 1417225 1417453 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-649 1404213 1411447 1411603 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-648 1400665 1401614 1402549 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-647 1399289 1400197 1400225 "LFCAT" 1400432 LFCAT (NIL) -9 NIL 1400571 NIL) (-646 1397506 1397840 1398190 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-645 1395002 1395674 1396362 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-644 1392010 1392992 1393495 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-643 1391498 1391803 1391895 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-642 1390202 1390527 1390928 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-641 1389459 1389545 1389774 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-640 1384509 1388024 1388562 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-639 1384132 1384182 1384343 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-638 1382980 1383696 1383737 "LALG" 1383799 LALG (NIL T) -9 NIL 1383858 NIL) (-637 1382762 1382839 1382975 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-636 1380668 1382030 1382281 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-635 1380497 1380527 1380568 "KVTFROM" 1380630 KVTFROM (NIL T) -9 NIL NIL NIL) (-634 1379419 1380029 1380214 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-633 1379248 1379278 1379319 "KRCFROM" 1379381 KRCFROM (NIL T) -9 NIL NIL NIL) (-632 1378344 1378541 1378838 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-631 1378173 1378203 1378244 "KONVERT" 1378306 KONVERT (NIL T) -9 NIL NIL NIL) (-630 1378002 1378032 1378073 "KOERCE" 1378135 KOERCE (NIL T) -9 NIL NIL NIL) (-629 1377572 1377665 1377797 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-628 1375603 1376509 1376886 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-627 1368943 1373838 1373892 "KDAGG" 1374269 KDAGG (NIL T T) -9 NIL 1374475 NIL) (-626 1368591 1368733 1368938 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-625 1361534 1368374 1368529 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-624 1361181 1361466 1361529 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-623 1360146 1360650 1360899 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-622 1359267 1359721 1359926 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-621 1358128 1358623 1358923 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-620 1357405 1357809 1357970 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-619 1357112 1357351 1357400 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-618 1351347 1356802 1357030 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-617 1350761 1351097 1351218 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-616 1346907 1348938 1348992 "IXAGG" 1349921 IXAGG (NIL T T) -9 NIL 1350380 NIL) (-615 1346111 1346483 1346902 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-614 1341328 1346047 1346106 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-613 1340286 1340564 1340830 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-612 1338936 1339143 1339438 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-611 1337887 1338109 1338392 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-610 1337562 1337625 1337748 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-609 1336821 1337196 1337370 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-608 1334842 1336086 1336364 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-607 1324388 1330109 1331272 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-606 1323633 1323785 1324021 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-605 1318606 1323587 1323628 "ISTRING" NIL ISTRING (NIL NIL) -8 NIL NIL NIL) (-604 1318094 1318399 1318491 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-603 1317378 1317471 1317687 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1316510 1316735 1316975 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-601 1314917 1315298 1315727 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1314702 1314746 1314822 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1313546 1313845 1314142 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1312816 1313170 1313321 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-597 1312015 1312146 1312360 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-596 1310170 1310667 1311211 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1307272 1308514 1309206 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-594 1307097 1307137 1307197 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1303145 1307023 1307092 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1301203 1303083 1303140 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1300571 1300873 1301003 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1300021 1300312 1300444 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-589 1299099 1299725 1299852 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-588 1298509 1299003 1299031 "IOBCON" 1299036 IOBCON (NIL) -9 NIL 1299057 NIL) (-587 1298078 1298142 1298325 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1290110 1292485 1294814 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1287218 1288002 1288867 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1286895 1286992 1287109 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-583 1284387 1286831 1286890 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1282494 1283023 1283591 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1281989 1282104 1282246 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1280368 1280774 1281237 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1278142 1278736 1279348 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1275509 1276119 1276840 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1271645 1272683 1273732 "INTPACK" NIL INTPACK (NIL) -7 NIL NIL NIL) (-576 1271049 1271207 1271415 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1270568 1270654 1270842 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1268773 1269294 1269751 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-573 1261841 1263494 1265224 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1251431 1254844 1258229 "INTFTBL" NIL INTFTBL (NIL) -8 NIL NIL NIL) (-571 1250797 1250959 1251132 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1248664 1249128 1249673 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1246861 1247756 1247784 "INTDOM" 1248085 INTDOM (NIL) -9 NIL 1248292 NIL) (-568 1246410 1246614 1246856 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-567 1242278 1244699 1244753 "INTCAT" 1245552 INTCAT (NIL T) -9 NIL 1245873 NIL) (-566 1241840 1241961 1242089 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-565 1240676 1240848 1241155 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1240249 1240345 1240502 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1233382 1240104 1240244 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1232673 1233235 1233300 "INT8" NIL INT8 (NIL) -8 NIL NIL 1233334) (-561 1231963 1232525 1232590 "INT64" NIL INT64 (NIL) -8 NIL NIL 1232624) (-560 1231253 1231815 1231880 "INT32" NIL INT32 (NIL) -8 NIL NIL 1231914) (-559 1230543 1231105 1231170 "INT16" NIL INT16 (NIL) -8 NIL NIL 1231204) (-558 1227049 1230462 1230538 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-557 1221160 1224597 1224625 "INS" 1225559 INS (NIL) -9 NIL 1226224 NIL) (-556 1219230 1220148 1221087 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-555 1218285 1218508 1218784 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1217499 1217640 1217837 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1216489 1216630 1216867 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1215641 1215805 1216065 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1214921 1215036 1215224 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1213660 1213929 1214253 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1212940 1213081 1213264 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1212603 1212675 1212773 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1209677 1211175 1211690 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-546 1209276 1209383 1209497 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-545 1208431 1209077 1209178 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-544 1207281 1207549 1207870 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1206344 1207211 1207276 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1205969 1206049 1206166 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1204877 1205424 1205630 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-540 1200969 1202025 1202969 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1199823 1200146 1200174 "INBCON" 1200687 INBCON (NIL) -9 NIL 1200953 NIL) (-538 1199277 1199542 1199818 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-537 1198767 1199072 1199163 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-536 1198220 1198532 1198638 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-535 1194301 1198111 1198215 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1193137 1193276 1193592 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1191561 1191828 1192165 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1185491 1191498 1191556 "ILIST" NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1183293 1185373 1185486 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1178171 1183224 1183288 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1177548 1177884 1178000 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-528 1172317 1176983 1177171 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1171375 1172239 1172312 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1170947 1171024 1171078 "IEVALAB" 1171285 IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1170702 1170782 1170942 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-524 1169766 1170622 1170697 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1168899 1169686 1169761 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1168298 1168832 1168894 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1166778 1167305 1167357 "IDPC" 1167869 IDPC (NIL T T) -9 NIL 1168150 NIL) (-520 1166140 1166700 1166773 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1165385 1166062 1166135 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1165075 1165291 1165351 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-517 1162137 1163021 1163916 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1155736 1157024 1158071 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1154994 1155124 1155324 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1154096 1154601 1154748 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-513 1152473 1152804 1153197 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1147783 1152174 1152287 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1145041 1145665 1146360 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1143267 1143747 1144280 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1141017 1143159 1143262 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1136856 1140955 1141012 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1130371 1135729 1136210 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-506 1129939 1130002 1130175 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1129431 1129580 1129608 "HYPCAT" 1129815 HYPCAT (NIL) -9 NIL NIL NIL) (-504 1129087 1129240 1129426 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-503 1128697 1128945 1129028 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1128530 1128579 1128620 "HOMOTOP" 1128625 HOMOTOP (NIL T) -9 NIL 1128658 NIL) (-501 1125074 1126462 1126503 "HOAGG" 1127484 HOAGG (NIL T) -9 NIL 1128213 NIL) (-500 1124066 1124543 1125069 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-499 1117300 1123789 1123939 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-498 1116235 1116493 1116756 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1115197 1116100 1116230 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1113377 1115030 1115118 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1112688 1113043 1113177 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-494 1106175 1112621 1112683 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1099355 1105909 1106061 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1098805 1098963 1099127 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-491 1091981 1098696 1098800 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1091469 1091774 1091866 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-489 1089071 1091253 1091435 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-488 1084423 1088953 1089066 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1077602 1084320 1084418 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1069582 1076967 1077223 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1068613 1069126 1069154 "GROUP" 1069357 GROUP (NIL) -9 NIL 1069491 NIL) (-484 1068156 1068357 1068608 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-483 1066828 1067167 1067554 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1065656 1066016 1066067 "GRMOD" 1066596 GRMOD (NIL T T) -9 NIL 1066764 NIL) (-481 1065475 1065523 1065651 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-480 1061595 1062809 1063809 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1060293 1060626 1060950 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-478 1059846 1059974 1060115 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-477 1058923 1059425 1059476 "GRALG" 1059629 GRALG (NIL T T) -9 NIL 1059722 NIL) (-476 1058658 1058755 1058918 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-475 1055350 1058336 1058514 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1054761 1054824 1055082 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1050632 1051500 1052026 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1049807 1050009 1050247 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1044795 1045722 1046742 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1044543 1044600 1044689 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1044025 1044114 1044279 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1043534 1043575 1043788 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1042332 1042616 1042921 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1035649 1042020 1042182 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1025443 1030439 1031543 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1023570 1024618 1024646 "GCDDOM" 1024901 GCDDOM (NIL) -9 NIL 1025058 NIL) (-463 1023193 1023350 1023565 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-462 1013974 1016448 1018840 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1012100 1012428 1012849 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1011041 1011230 1011497 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1009912 1010119 1010423 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-458 1009372 1009515 1009664 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1007974 1008322 1008636 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1006507 1006829 1007153 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1004109 1004465 1004872 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 997325 998999 1000590 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 994611 995371 995399 "FVFUN" 996555 FVFUN (NIL) -9 NIL 997275 NIL) (-452 993841 994059 994087 "FVC" 994378 FVC (NIL) -9 NIL 994561 NIL) (-451 993490 993714 993782 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-450 993111 993335 993416 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 991971 992595 992798 "FTEM" NIL FTEM (NIL) -8 NIL NIL NIL) (-448 990056 990745 991208 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-447 988638 988947 989342 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 987269 987636 987968 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-445 986568 986692 986880 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 985542 985808 986155 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 983189 983723 984209 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 982770 982830 983000 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-441 981129 981984 982287 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-440 980273 980407 980631 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-439 979444 979605 979832 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-438 975419 978388 978429 "FSAGG" 978799 FSAGG (NIL T) -9 NIL 979058 NIL) (-437 973765 974528 975324 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-436 971707 972005 972553 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-435 970748 970931 971233 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-434 970425 970474 970603 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 950580 960087 960128 "FS" 964012 FS (NIL T) -9 NIL 966301 NIL) (-432 942782 946290 950280 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-431 942316 942443 942595 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 936859 940005 940045 "FRNAALG" 941365 FRNAALG (NIL T) -9 NIL 941963 NIL) (-429 933600 934851 936109 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-428 933281 933330 933457 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 931756 932318 932614 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 931034 931127 931418 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-425 928848 929618 929936 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 927939 928388 928429 "FRETRCT" 928434 FRETRCT (NIL T) -9 NIL 928610 NIL) (-423 927312 927590 927934 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-422 924133 925596 925655 "FRAMALG" 926537 FRAMALG (NIL T T) -9 NIL 926829 NIL) (-421 922729 923280 923910 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-420 922422 922485 922592 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-419 916099 922226 922417 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 915792 915855 915962 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 908143 912667 913998 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-416 901979 905435 905463 "FPS" 906582 FPS (NIL) -9 NIL 907139 NIL) (-415 901536 901669 901833 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-414 898417 900406 900434 "FPC" 900659 FPC (NIL) -9 NIL 900801 NIL) (-413 898263 898315 898412 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-412 897021 897751 897792 "FPATMAB" 897797 FPATMAB (NIL T) -9 NIL 897949 NIL) (-411 895448 896047 896394 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 891347 891947 892629 "FORTRAN" NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 888921 889585 889613 "FORTFN" 890673 FORTFN (NIL) -9 NIL 891297 NIL) (-408 888673 888735 888763 "FORTCAT" 888822 FORTCAT (NIL) -9 NIL 888884 NIL) (-407 886878 887408 887947 "FORT" NIL FORT (NIL) -7 NIL NIL NIL) (-406 886453 886511 886684 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 885686 885886 886079 "FOP" NIL FOP (NIL) -7 NIL NIL NIL) (-404 884217 885084 885258 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 882831 883342 883370 "FNCAT" 883830 FNCAT (NIL) -9 NIL 884090 NIL) (-402 882282 882798 882826 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-401 880608 881781 881809 "FMTC" 881814 FMTC (NIL) -9 NIL 881850 NIL) (-400 879187 880557 880603 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 875776 877142 877183 "FMONCAT" 878400 FMONCAT (NIL T) -9 NIL 879005 NIL) (-398 873098 873846 873874 "FMFUN" 875018 FMFUN (NIL) -9 NIL 875726 NIL) (-397 869971 871023 871077 "FMCAT" 872272 FMCAT (NIL T T) -9 NIL 872767 NIL) (-396 869204 869421 869449 "FMC" 869739 FMC (NIL) -9 NIL 869921 NIL) (-395 867929 869025 869125 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 867051 867775 867924 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-393 865238 865690 866184 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 863173 863709 864287 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 856608 861510 862124 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-390 855126 856200 856241 "FLINEXP" 856246 FLINEXP (NIL T) -9 NIL 856339 NIL) (-389 854534 854793 855121 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-388 853740 853902 854126 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 850658 851710 851762 "FLALG" 852989 FLALG (NIL T T) -9 NIL 853456 NIL) (-386 849829 849990 850217 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 843195 847235 847276 "FLAGG" 848538 FLAGG (NIL T) -9 NIL 849190 NIL) (-384 842289 842700 843190 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-383 838927 840134 840193 "FINRALG" 841321 FINRALG (NIL T T) -9 NIL 841829 NIL) (-382 838318 838583 838922 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-381 837624 837923 837951 "FINITE" 838147 FINITE (NIL) -9 NIL 838254 NIL) (-380 829575 832154 832194 "FINAALG" 835861 FINAALG (NIL T) -9 NIL 837314 NIL) (-379 825800 827059 828196 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-378 824360 824782 824836 "FILECAT" 825520 FILECAT (NIL T T) -9 NIL 825736 NIL) (-377 823708 824185 824288 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-376 821026 822851 822879 "FIELD" 822919 FIELD (NIL) -9 NIL 822999 NIL) (-375 820047 820510 821021 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-374 818046 818996 819343 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 817286 817468 817688 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 812591 817224 817281 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 812253 812320 812455 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 811793 811835 812044 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 808467 809346 810125 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 803786 808399 808462 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 798500 803275 803465 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 793016 797781 798039 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 787258 792467 792678 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 786281 786491 786806 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 781789 784441 784469 "FFIELDC" 785089 FFIELDC (NIL) -9 NIL 785465 NIL) (-362 780864 781303 781784 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-361 780479 780537 780661 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 778623 779146 779663 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-359 773752 778422 778523 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 768885 773541 773648 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 763586 768676 768784 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 763040 763089 763324 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 741502 752543 752629 "FFCAT" 757794 FFCAT (NIL T T T) -9 NIL 759245 NIL) (-354 737728 738960 740272 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-353 732606 737659 737723 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 722496 726758 727946 "FEXPR" NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 721424 721893 721934 "FEVALAB" 722018 FEVALAB (NIL T) -9 NIL 722279 NIL) (-350 720829 721081 721419 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-349 717691 718576 718691 "FDIVCAT" 720259 FDIVCAT (NIL T T T T) -9 NIL 720696 NIL) (-348 717483 717516 717686 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-347 716790 716883 717160 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 715303 716274 716477 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 714393 714780 714982 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-344 713318 713607 713896 "FCPAK1" NIL FCPAK1 (NIL) -7 NIL NIL NIL) (-343 712430 712927 713068 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 699262 703098 706636 "FC" NIL FC (NIL) -8 NIL NIL NIL) (-341 690886 695496 695536 "FAXF" 697338 FAXF (NIL T) -9 NIL 698030 NIL) (-340 688796 689603 690421 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-339 683622 688315 688491 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 678107 680482 680535 "FAMR" 681558 FAMR (NIL T T) -9 NIL 682018 NIL) (-337 677303 677669 678102 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-336 676352 677245 677298 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 673982 674834 674887 "FAMONC" 675828 FAMONC (NIL T T) -9 NIL 676214 NIL) (-334 672562 673840 673977 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 670634 670995 671398 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 669911 670108 670330 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 661813 669358 669557 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 659832 660402 660988 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 656704 657356 658086 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 651840 652547 653353 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 651529 651592 651701 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 636330 650574 651003 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 626889 635645 635936 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 626380 626684 626775 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-323 626153 626346 626375 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-322 625842 625910 626023 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 625359 625501 625542 "EVALAB" 625712 EVALAB (NIL T) -9 NIL 625816 NIL) (-320 624987 625133 625354 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-319 622102 623643 623671 "EUCDOM" 624226 EUCDOM (NIL) -9 NIL 624576 NIL) (-318 621027 621521 622097 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-317 620716 620779 620888 "ESTOOLS2" NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 620509 620557 620637 "ESTOOLS1" NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 610556 613537 616287 "ESTOOLS" NIL ESTOOLS (NIL) -7 NIL NIL NIL) (-314 610333 610371 610453 "ESCONT1" NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 607401 608228 609008 "ESCONT" NIL ESCONT (NIL) -7 NIL NIL NIL) (-312 607126 607182 607282 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 606814 606878 606987 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 600513 602443 602471 "ES" 605239 ES (NIL) -9 NIL 606649 NIL) (-309 596979 598534 600349 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-308 596327 596480 596656 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-307 589509 596231 596322 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 589198 589261 589370 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 582897 585940 587377 "EQ" NIL -3956 (NIL T) -8 NIL NIL NIL) (-304 579200 580296 581389 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-303 578026 578377 578683 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-302 576986 577660 577688 "ENTIRER" 577693 ENTIRER (NIL) -9 NIL 577739 NIL) (-301 573675 575416 575765 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 572779 572990 573044 "ELTAGG" 573424 ELTAGG (NIL T T) -9 NIL 573635 NIL) (-299 572559 572633 572774 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-298 572317 572352 572406 "ELTAB" 572490 ELTAB (NIL T T) -9 NIL 572542 NIL) (-297 571568 571738 571937 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 571292 571366 571394 "ELEMFUN" 571499 ELEMFUN (NIL) -9 NIL NIL NIL) (-295 571192 571219 571287 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-294 565714 569231 569272 "ELAGG" 570212 ELAGG (NIL T) -9 NIL 570675 NIL) (-293 564504 565046 565709 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-292 563922 564089 564245 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-291 562826 563148 563430 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-290 556190 558188 559017 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-289 550168 552164 552975 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-288 547973 548379 548851 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 538896 540815 542363 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-286 538003 538510 538659 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-285 537133 537970 537998 "E04UCFA" NIL E04UCFA (NIL) -8 NIL NIL NIL) (-284 536263 537100 537128 "E04NAFA" NIL E04NAFA (NIL) -8 NIL NIL NIL) (-283 535393 536230 536258 "E04MBFA" NIL E04MBFA (NIL) -8 NIL NIL NIL) (-282 534523 535360 535388 "E04JAFA" NIL E04JAFA (NIL) -8 NIL NIL NIL) (-281 533655 534490 534518 "E04GCFA" NIL E04GCFA (NIL) -8 NIL NIL NIL) (-280 532787 533622 533650 "E04FDFA" NIL E04FDFA (NIL) -8 NIL NIL NIL) (-279 531917 532754 532782 "E04DGFA" NIL E04DGFA (NIL) -8 NIL NIL NIL) (-278 527338 528786 530150 "E04AGNT" NIL E04AGNT (NIL) -7 NIL NIL NIL) (-277 525958 526639 526679 "DVARCAT" 527020 DVARCAT (NIL T) -9 NIL 527183 NIL) (-276 525373 525639 525953 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-275 517480 525239 525368 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 515830 516621 516662 "DSEXT" 517025 DSEXT (NIL T) -9 NIL 517319 NIL) (-273 514635 515159 515825 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-272 514359 514424 514522 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 510495 511717 512854 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-270 506126 507488 508556 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-269 504801 505162 505548 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-268 504487 504546 504664 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 503459 503758 504049 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-266 503042 503117 503268 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 495455 497567 499682 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 490972 491991 493070 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 487554 489637 489678 "DQAGG" 490307 DQAGG (NIL T) -9 NIL 490581 NIL) (-262 474080 481677 481760 "DPOLCAT" 483612 DPOLCAT (NIL T T T T) -9 NIL 484157 NIL) (-261 470485 472134 474075 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-260 463460 470382 470480 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 456344 463288 463455 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 455935 456197 456286 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 455344 455797 455877 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-256 454627 454955 455106 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-255 447807 454361 454513 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 445583 446873 446914 "DMEXT" 446919 DMEXT (NIL T) -9 NIL 447095 NIL) (-253 445239 445301 445445 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-252 438522 444724 444914 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 435172 437347 437388 "DLAGG" 437938 DLAGG (NIL T) -9 NIL 438168 NIL) (-250 433597 434411 434439 "DIVRING" 434531 DIVRING (NIL) -9 NIL 434614 NIL) (-249 433048 433292 433592 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-248 431476 431893 432299 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-247 430513 430734 430999 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 424020 430445 430508 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 412293 418720 418773 "DIRPCAT" 419031 DIRPCAT (NIL NIL T) -9 NIL 419906 NIL) (-244 410307 411075 411956 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-243 409754 409920 410106 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-242 406279 408638 408679 "DIOPS" 409113 DIOPS (NIL T) -9 NIL 409342 NIL) (-241 405939 406083 406274 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-240 404846 405618 405646 "DIFRING" 405651 DIFRING (NIL) -9 NIL 405673 NIL) (-239 404494 404592 404620 "DIFFSPC" 404739 DIFFSPC (NIL) -9 NIL 404814 NIL) (-238 404235 404337 404489 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-237 403171 403769 403810 "DIFFMOD" 403815 DIFFMOD (NIL T) -9 NIL 403913 NIL) (-236 402867 402924 402965 "DIFFDOM" 403086 DIFFDOM (NIL T) -9 NIL 403154 NIL) (-235 402748 402778 402862 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-234 400487 401951 401992 "DIFEXT" 401997 DIFEXT (NIL T) -9 NIL 402150 NIL) (-233 397632 399991 400032 "DIAGG" 400037 DIAGG (NIL T) -9 NIL 400057 NIL) (-232 397182 397375 397627 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-231 392376 396372 396649 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 388834 389887 390897 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-229 383429 387986 388314 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-228 381974 382272 382654 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 379134 380329 380729 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 376840 378965 379054 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 376220 376365 376548 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 373533 374257 375058 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 371635 372094 372658 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 371014 371350 371465 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-221 364248 370737 370887 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-220 362162 362674 363180 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 361801 361850 362001 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 361053 361622 361713 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 359071 359517 359878 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 358360 358652 358798 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 357426 358327 358355 "D03FAFA" NIL D03FAFA (NIL) -8 NIL NIL NIL) (-214 356493 357393 357421 "D03EEFA" NIL D03EEFA (NIL) -8 NIL NIL NIL) (-213 354888 355378 355867 "D03AGNT" NIL D03AGNT (NIL) -7 NIL NIL NIL) (-212 354137 354855 354883 "D02EJFA" NIL D02EJFA (NIL) -8 NIL NIL NIL) (-211 353386 354104 354132 "D02CJFA" NIL D02CJFA (NIL) -8 NIL NIL NIL) (-210 352635 353353 353381 "D02BHFA" NIL D02BHFA (NIL) -8 NIL NIL NIL) (-209 351884 352602 352630 "D02BBFA" NIL D02BBFA (NIL) -8 NIL NIL NIL) (-208 346601 348256 349862 "D02AGNT" NIL D02AGNT (NIL) -7 NIL NIL NIL) (-207 344881 345420 345964 "D01WGTS" NIL D01WGTS (NIL) -7 NIL NIL NIL) (-206 343896 344848 344876 "D01TRNS" NIL D01TRNS (NIL) -8 NIL NIL NIL) (-205 342912 343863 343891 "D01GBFA" NIL D01GBFA (NIL) -8 NIL NIL NIL) (-204 341928 342879 342907 "D01FCFA" NIL D01FCFA (NIL) -8 NIL NIL NIL) (-203 340944 341895 341923 "D01ASFA" NIL D01ASFA (NIL) -8 NIL NIL NIL) (-202 339960 340911 340939 "D01AQFA" NIL D01AQFA (NIL) -8 NIL NIL NIL) (-201 338976 339927 339955 "D01APFA" NIL D01APFA (NIL) -8 NIL NIL NIL) (-200 337992 338943 338971 "D01ANFA" NIL D01ANFA (NIL) -8 NIL NIL NIL) (-199 337008 337959 337987 "D01AMFA" NIL D01AMFA (NIL) -8 NIL NIL NIL) (-198 336024 336975 337003 "D01ALFA" NIL D01ALFA (NIL) -8 NIL NIL NIL) (-197 335040 335991 336019 "D01AKFA" NIL D01AKFA (NIL) -8 NIL NIL NIL) (-196 334056 335007 335035 "D01AJFA" NIL D01AJFA (NIL) -8 NIL NIL NIL) (-195 328820 330445 332006 "D01AGNT" NIL D01AGNT (NIL) -7 NIL NIL NIL) (-194 328271 328417 328569 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 325633 326426 327153 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-192 325072 325218 325389 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 323131 323443 323812 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 322685 322943 323044 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-189 321890 322278 322306 "CTORCAT" 322488 CTORCAT (NIL) -9 NIL 322601 NIL) (-188 321591 321726 321885 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-187 321081 321341 321449 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 320492 320928 321001 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-185 319951 320068 320221 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 316336 317095 317853 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 315823 316129 316221 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-182 315042 315251 315479 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 314546 314651 314855 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 314299 314333 314439 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 311222 311984 312703 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 310732 310877 311019 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-177 306680 309195 309687 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 306554 306581 306609 "CONDUIT" 306646 CONDUIT (NIL) -9 NIL NIL NIL) (-175 305508 306182 306210 "COMRING" 306215 COMRING (NIL) -9 NIL 306267 NIL) (-174 304654 305030 305214 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-173 304350 304391 304519 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 304043 304106 304213 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 292851 303993 304038 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 292312 292451 292611 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-169 292065 292106 292204 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 273356 285657 285697 "COMPCAT" 286701 COMPCAT (NIL T) -9 NIL 288049 NIL) (-167 265896 269410 273000 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-166 265653 265687 265790 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 265480 265520 265579 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-164 265057 265339 265414 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-163 264631 264875 264962 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-162 263826 264074 264102 "COMBOPC" 264440 COMBOPC (NIL) -9 NIL 264615 NIL) (-161 262890 263142 263384 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 259811 260499 261126 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 258688 259142 259377 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-158 258176 258481 258573 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-157 257863 257916 258041 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 257330 257642 257741 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-155 253850 254920 256000 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-154 252198 253124 253364 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 248291 250316 250357 "CLAGG" 251286 CLAGG (NIL T) -9 NIL 251822 NIL) (-152 247168 247703 248286 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-151 246797 246888 247028 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 244734 245241 245789 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 243774 244448 244476 "CHARZ" 244481 CHARZ (NIL) -9 NIL 244496 NIL) (-148 243568 243614 243692 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 242486 243192 243220 "CHARNZ" 243281 CHARNZ (NIL) -9 NIL 243330 NIL) (-146 239939 241049 241578 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-145 239647 239726 239754 "CFCAT" 239865 CFCAT (NIL) -9 NIL NIL NIL) (-144 238986 239115 239298 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 234957 238399 238679 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-142 234335 234522 234699 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-141 233858 234282 234330 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-140 233327 233639 233737 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-139 232815 233120 233212 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-138 232064 232224 232445 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 227649 228909 229653 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 226023 227036 227293 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-135 225600 225882 225957 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-134 225042 225298 225326 "CACHSET" 225458 CACHSET (NIL) -9 NIL 225536 NIL) (-133 224432 224820 224848 "CABMON" 224898 CABMON (NIL) -9 NIL 224954 NIL) (-132 223959 224226 224336 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-131 219152 223616 223788 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-130 218114 218826 218961 "BYTE" NIL BYTE (NIL) -8 NIL NIL 219124) (-129 215566 217880 217987 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 212974 215304 215426 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 210194 212416 212457 "BTCAT" 212525 BTCAT (NIL T) -9 NIL 212602 NIL) (-126 209942 210040 210189 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-125 204915 209158 209186 "BTAGG" 209300 BTAGG (NIL) -9 NIL 209410 NIL) (-124 204543 204704 204910 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-123 201578 204004 204219 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 200830 200986 201170 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 197337 199528 199569 "BRAGG" 200218 BRAGG (NIL T) -9 NIL 200476 NIL) (-120 196279 196779 197332 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-119 188736 195776 195961 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 186782 188686 188731 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 186510 186546 186660 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 184703 185149 185612 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 180611 182041 182939 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-114 179475 180373 180497 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-113 179068 179225 179253 "BOOLE" 179364 BOOLE (NIL) -9 NIL 179445 NIL) (-112 178970 178997 179063 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-111 178139 178639 178693 "BMODULE" 178698 BMODULE (NIL T T) -9 NIL 178763 NIL) (-110 173627 177990 178063 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-109 173144 173287 173427 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-108 166380 172868 173017 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-107 164098 165607 165648 "BGAGG" 165908 BGAGG (NIL T) -9 NIL 166045 NIL) (-106 163964 164002 164093 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-105 163172 163533 163738 "BFUNCT" NIL BFUNCT (NIL) -8 NIL NIL NIL) (-104 162012 162213 162501 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 158623 161161 161491 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158206 158302 158330 "BASTYPE" 158507 BASTYPE (NIL) -9 NIL 158606 NIL) (-101 157967 158066 158201 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-100 157478 157566 157718 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156369 157048 157234 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156095 156100 156126 "ATTREG" 156131 ATTREG (NIL) -9 NIL NIL NIL) (-97 154591 155126 155478 "ATTRBUT" NIL ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154193 154467 154533 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-95 153693 153842 153868 "ATRIG" 154069 ATRIG (NIL) -9 NIL NIL NIL) (-94 153548 153601 153688 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-93 153126 153360 153386 "ASTCAT" 153391 ASTCAT (NIL) -9 NIL 153421 NIL) (-92 152925 153002 153121 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-91 151070 152758 152846 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149877 150190 150555 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148916 149629 149753 "ASP9" NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 147809 148632 148774 "ASP80" NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 147545 147765 147804 "ASP8" NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 146500 147309 147427 "ASP78" NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 145469 146266 146383 "ASP77" NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 144395 145207 145338 "ASP74" NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 143310 144131 144263 "ASP73" NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 142223 143046 143178 "ASP7" NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 141310 142118 142218 "ASP6" NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 140258 141074 141192 "ASP55" NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 139209 140020 140139 "ASP50" NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138290 138989 139099 "ASP49" NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 137099 137940 138108 "ASP42" NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 135903 136745 136915 "ASP41" NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134984 135683 135793 "ASP4" NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 133935 134748 134866 "ASP35" NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133672 133891 133930 "ASP34" NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133436 133521 133597 "ASP33" NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132345 133172 133304 "ASP31" NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 132082 132301 132340 "ASP30" NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131844 131931 132007 "ASP29" NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131581 131800 131839 "ASP28" NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131318 131537 131576 "ASP27" NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130396 131096 131207 "ASP24" NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129468 130279 130391 "ASP20" NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128413 129230 129349 "ASP19" NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 128177 128262 128338 "ASP12" NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 127056 127889 128033 "ASP10" NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 126137 126836 126946 "ASP1" NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 123923 126041 126132 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123114 123305 123526 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118671 122845 122959 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 112827 114873 114948 "ARR2CAT" 117578 ARR2CAT (NIL T T T) -9 NIL 118336 NIL) (-56 111190 111967 112822 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110548 110924 111049 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109470 109640 109939 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109169 109223 109342 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108549 108696 108853 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 107951 108244 108364 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105560 106664 106991 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105082 105345 105441 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 98718 104057 104511 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94294 95903 95954 "AMR" 96702 AMR (NIL T T) -9 NIL 97302 NIL) (-46 93645 93926 94289 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77150 93579 93640 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73566 76826 76995 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70576 71236 71843 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69955 70068 70252 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66354 66985 67579 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55838 66047 66197 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55152 55307 55486 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53941 54679 54717 "ALGEBRA" 54722 ALGEBRA (NIL T) -9 NIL 54763 NIL) (-37 53727 53804 53936 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34130 51007 51059 "ALAGG" 51195 ALAGG (NIL T T) -9 NIL 51356 NIL) (-35 33630 33779 33805 "AHYP" 34006 AHYP (NIL) -9 NIL NIL NIL) (-34 32932 33115 33141 "AGG" 33424 AGG (NIL) -9 NIL 33613 NIL) (-33 32725 32812 32927 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30843 31312 31717 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30335 30640 30730 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29705 30000 30156 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17213 26525 26563 "ACFS" 27170 ACFS (NIL T) -9 NIL 27409 NIL) (-28 15836 16446 17208 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11459 13782 13808 "ACF" 14687 ACF (NIL) -9 NIL 15100 NIL) (-26 10555 10961 11454 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10065 10308 10334 "ABELSG" 10426 ABELSG (NIL) -9 NIL 10491 NIL) (-24 9963 9994 10060 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9232 9579 9605 "ABELMON" 9775 ABELMON (NIL) -9 NIL 9887 NIL) (-22 8981 9089 9227 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8231 8687 8713 "ABELGRP" 8785 ABELGRP (NIL) -9 NIL 8860 NIL) (-20 7845 8010 8226 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3064 7104 7143 "A1AGG" 7148 A1AGG (NIL T) -9 NIL 7188 NIL) (-18 30 1497 3059 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) 24 T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) 18 T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) 11 T CONST)) (-3257 (($ $ $) NIL T ELT) (($) 17 T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-4154 (($ $ $) 20 T ELT)) (-4155 (($ $ $) 19 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) 22 T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) 21 T ELT))) +(((-1204 |#1|) (-13 (-856) (-681) (-10 -8 (-15 -4155 ($ $ $)) (-15 -4154 ($ $ $)) (-15 -4153 ($) -4381))) (-937)) (T -1204)) +((-4155 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-937)))) (-4154 (*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-937)))) (-4153 (*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-937))))) +((-790) (|%not| (|%ilt| @1 (|%ilength| |#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 9 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 7 T ELT))) +(((-1205) (-1121)) (T -1205)) +NIL +((-4001 (((-660 (-660 (-964 |#1|))) (-660 (-419 (-964 |#1|))) (-660 (-1197))) 69 T ELT)) (-4000 (((-660 (-305 (-419 (-964 |#1|)))) (-305 (-419 (-964 |#1|)))) 81 T ELT) (((-660 (-305 (-419 (-964 |#1|)))) (-419 (-964 |#1|))) 77 T ELT) (((-660 (-305 (-419 (-964 |#1|)))) (-305 (-419 (-964 |#1|))) (-1197)) 82 T ELT) (((-660 (-305 (-419 (-964 |#1|)))) (-419 (-964 |#1|)) (-1197)) 76 T ELT) (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-305 (-419 (-964 |#1|))))) 107 T ELT) (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-419 (-964 |#1|)))) 106 T ELT) (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-305 (-419 (-964 |#1|)))) (-660 (-1197))) 108 T ELT) (((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-419 (-964 |#1|))) (-660 (-1197))) 105 T ELT))) +(((-1206 |#1|) (-10 -7 (-15 -4000 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-419 (-964 |#1|))) (-660 (-1197)))) (-15 -4000 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-305 (-419 (-964 |#1|)))) (-660 (-1197)))) (-15 -4000 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-419 (-964 |#1|))))) (-15 -4000 ((-660 (-660 (-305 (-419 (-964 |#1|))))) (-660 (-305 (-419 (-964 |#1|)))))) (-15 -4000 ((-660 (-305 (-419 (-964 |#1|)))) (-419 (-964 |#1|)) (-1197))) (-15 -4000 ((-660 (-305 (-419 (-964 |#1|)))) (-305 (-419 (-964 |#1|))) (-1197))) (-15 -4000 ((-660 (-305 (-419 (-964 |#1|)))) (-419 (-964 |#1|)))) (-15 -4000 ((-660 (-305 (-419 (-964 |#1|)))) (-305 (-419 (-964 |#1|))))) (-15 -4001 ((-660 (-660 (-964 |#1|))) (-660 (-419 (-964 |#1|))) (-660 (-1197))))) (-569)) (T -1206)) +((-4001 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-964 *5)))) (-5 *1 (-1206 *5)))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-305 (-419 (-964 *4)))))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *4))))) (-5 *1 (-1206 *4)) (-5 *3 (-419 (-964 *4))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-305 (-419 (-964 *5)))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-1197)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *5))))) (-5 *1 (-1206 *5)) (-5 *3 (-419 (-964 *5))))) (-4000 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-1206 *4)) (-5 *3 (-660 (-305 (-419 (-964 *4))))))) (-4000 (*1 *2 *3) (-12 (-5 *3 (-660 (-419 (-964 *4)))) (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-1206 *4)))) (-4000 (*1 *2 *3 *4) (-12 (-5 *4 (-660 (-1197))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-1206 *5)) (-5 *3 (-660 (-305 (-419 (-964 *5))))))) (-4000 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-1206 *5))))) +((-4006 (((-1179)) 7 T ELT)) (-4003 (((-1179)) 11 T CONST)) (-4002 (((-1293) (-1179)) 13 T ELT)) (-4005 (((-1179)) 8 T CONST)) (-4004 (((-132)) 10 T CONST))) +(((-1207) (-13 (-1237) (-10 -7 (-15 -4006 ((-1179))) (-15 -4005 ((-1179)) -4381) (-15 -4004 ((-132)) -4381) (-15 -4003 ((-1179)) -4381) (-15 -4002 ((-1293) (-1179)))))) (T -1207)) +((-4006 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-4005 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-4004 (*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1207)))) (-4003 (*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207)))) (-4002 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) +((-4010 (((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|)))) 56 T ELT)) (-4013 (((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|))) 38 T ELT)) (-4014 (((-1210 (-660 |#1|)) (-660 |#1|)) 49 T ELT)) (-4016 (((-660 (-660 |#1|)) (-660 |#1|)) 45 T ELT)) (-4019 (((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))) 53 T ELT)) (-4018 (((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|)))) 52 T ELT)) (-4015 (((-660 (-660 |#1|)) (-660 (-660 |#1|))) 43 T ELT)) (-4017 (((-660 |#1|) (-660 |#1|)) 46 T ELT)) (-4009 (((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|)))) 32 T ELT)) (-4008 (((-660 (-660 (-660 |#1|))) (-1 (-114) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|)))) 29 T ELT)) (-4007 (((-2 (|:| |fs| (-114)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-114) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|))) 24 T ELT)) (-4011 (((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|)))) 58 T ELT)) (-4012 (((-660 (-660 |#1|)) (-1210 (-660 |#1|))) 60 T ELT))) +(((-1208 |#1|) (-10 -7 (-15 -4007 ((-2 (|:| |fs| (-114)) (|:| |sd| (-660 |#1|)) (|:| |td| (-660 (-660 |#1|)))) (-1 (-114) |#1| |#1|) (-660 |#1|) (-660 (-660 |#1|)))) (-15 -4008 ((-660 (-660 (-660 |#1|))) (-1 (-114) |#1| |#1|) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -4009 ((-660 (-660 (-660 |#1|))) (-660 |#1|) (-660 (-660 (-660 |#1|))))) (-15 -4010 ((-660 (-660 |#1|)) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -4011 ((-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))))) (-15 -4012 ((-660 (-660 |#1|)) (-1210 (-660 |#1|)))) (-15 -4013 ((-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)))) (-15 -4014 ((-1210 (-660 |#1|)) (-660 |#1|))) (-15 -4015 ((-660 (-660 |#1|)) (-660 (-660 |#1|)))) (-15 -4016 ((-660 (-660 |#1|)) (-660 |#1|))) (-15 -4017 ((-660 |#1|) (-660 |#1|))) (-15 -4018 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 |#1|) (-660 (-660 (-660 |#1|))) (-660 (-660 |#1|)) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))) (-660 (-660 (-660 |#1|))))) (-15 -4019 ((-2 (|:| |f1| (-660 |#1|)) (|:| |f2| (-660 (-660 (-660 |#1|)))) (|:| |f3| (-660 (-660 |#1|))) (|:| |f4| (-660 (-660 (-660 |#1|))))) (-660 (-660 (-660 |#1|)))))) (-860)) (T -1208)) +((-4019 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-2 (|:| |f1| (-660 *4)) (|:| |f2| (-660 (-660 (-660 *4)))) (|:| |f3| (-660 (-660 *4))) (|:| |f4| (-660 (-660 (-660 *4)))))) (-5 *1 (-1208 *4)) (-5 *3 (-660 (-660 (-660 *4)))))) (-4018 (*1 *2 *3 *4 *5 *4 *4 *4) (-12 (-4 *6 (-860)) (-5 *3 (-660 *6)) (-5 *5 (-660 *3)) (-5 *2 (-2 (|:| |f1| *3) (|:| |f2| (-660 *5)) (|:| |f3| *5) (|:| |f4| (-660 *5)))) (-5 *1 (-1208 *6)) (-5 *4 (-660 *5)))) (-4017 (*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-1208 *3)))) (-4016 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-660 *4)))) (-4015 (*1 *2 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-860)) (-5 *1 (-1208 *3)))) (-4014 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-1210 (-660 *4))) (-5 *1 (-1208 *4)) (-5 *3 (-660 *4)))) (-4013 (*1 *2 *3) (-12 (-4 *4 (-860)) (-5 *2 (-660 (-660 (-660 *4)))) (-5 *1 (-1208 *4)) (-5 *3 (-660 (-660 *4))))) (-4012 (*1 *2 *3) (-12 (-5 *3 (-1210 (-660 *4))) (-4 *4 (-860)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1208 *4)))) (-4011 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1208 *4)) (-4 *4 (-860)))) (-4010 (*1 *2 *2 *3) (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-4 *4 (-860)) (-5 *1 (-1208 *4)))) (-4009 (*1 *2 *3 *2) (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-660 *4)) (-4 *4 (-860)) (-5 *1 (-1208 *4)))) (-4008 (*1 *2 *3 *4 *2) (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-660 *5)) (-4 *5 (-860)) (-5 *1 (-1208 *5)))) (-4007 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-860)) (-5 *4 (-660 *6)) (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-660 *4)))) (-5 *1 (-1208 *6)) (-5 *5 (-660 *4))))) +((-2966 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4026 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2412 (((-1293) $ |#1| |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) NIL T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) NIL T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2415 ((|#1| $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT) (($ (-1 |#2| |#2|) $) NIL T ELT) (($ (-1 |#2| |#2| |#2|) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-2883 (((-660 |#1|) $) NIL T ELT)) (-2446 (((-114) |#1| $) NIL T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2417 (((-660 |#1|) $) NIL T ELT)) (-2418 (((-114) |#1| $) NIL T ELT)) (-3660 (((-1140) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ELT)) (-4230 ((|#2| $) NIL (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) #1#) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL T ELT)) (-2413 (($ $ |#2|) NIL (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#2| $ |#1|) NIL T ELT) ((|#2| $ |#1| |#2|) NIL T ELT)) (-1597 (($) NIL T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) NIL (-12 (|has| $ (-6 -4424)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (((-790) |#2| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT) (((-790) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-4375 (((-876) $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-629 (-876)))) ELT)) (-1377 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) NIL T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) NIL (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) NIL (-3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-102))) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1209 |#1| |#2|) (-13 (-1214 |#1| |#2|) (-10 -7 (-6 -4424))) (-1121) (-1121)) (T -1209)) +NIL +((-4020 (($ (-660 (-660 |#1|))) 10 T ELT)) (-4021 (((-660 (-660 |#1|)) $) 11 T ELT)) (-4375 (((-876) $) 33 T ELT))) +(((-1210 |#1|) (-10 -8 (-15 -4020 ($ (-660 (-660 |#1|)))) (-15 -4021 ((-660 (-660 |#1|)) $)) (-15 -4375 ((-876) $))) (-1121)) (T -1210)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1210 *3)) (-4 *3 (-1121)))) (-4021 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 *3))) (-5 *1 (-1210 *3)) (-4 *3 (-1121)))) (-4020 (*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-1210 *3))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4022 (($ |#1| (-55)) 10 T ELT)) (-3969 ((|#1| $) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3031 (((-114) $ |#1|) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2916 (((-55) $) 14 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1211 |#1|) (-13 (-848 |#1|) (-10 -8 (-15 -4022 ($ |#1| (-55))))) (-1121)) (T -1211)) +((-4022 (*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) +((-4023 ((|#1| (-660 |#1|)) 46 T ELT)) (-4025 ((|#1| |#1| (-558)) 24 T ELT)) (-4024 (((-1191 |#1|) |#1| (-937)) 20 T ELT))) +(((-1212 |#1|) (-10 -7 (-15 -4023 (|#1| (-660 |#1|))) (-15 -4024 ((-1191 |#1|) |#1| (-937))) (-15 -4025 (|#1| |#1| (-558)))) (-376)) (T -1212)) +((-4025 (*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1212 *2)) (-4 *2 (-376)))) (-4024 (*1 *2 *3 *4) (-12 (-5 *4 (-937)) (-5 *2 (-1191 *3)) (-5 *1 (-1212 *3)) (-4 *3 (-376)))) (-4023 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-376))))) +((-4026 (($) 10 T ELT) (($ (-660 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)))) 14 T ELT)) (-3824 (($ (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) $) 67 T ELT) (($ (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) NIL T ELT) (((-3 |#3| #1="failed") |#2| $) NIL T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) 39 T ELT) (((-660 |#3|) $) 41 T ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) 57 T ELT) (($ (-1 |#3| |#3|) $) 33 T ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) 53 T ELT) (($ (-1 |#3| |#3|) $) NIL T ELT) (($ (-1 |#3| |#3| |#3|) $ $) 38 T ELT)) (-1388 (((-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) $) 60 T ELT)) (-4036 (($ (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) $) 16 T ELT)) (-2417 (((-660 |#2|) $) 19 T ELT)) (-2418 (((-114) |#2| $) 65 T ELT)) (-1467 (((-3 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) #1#) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) 64 T ELT)) (-1389 (((-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) $) 69 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 73 T ELT)) (-2419 (((-660 |#3|) $) 43 T ELT)) (-4229 ((|#3| $ |#2|) 30 T ELT) ((|#3| $ |#2| |#3|) 31 T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) NIL T ELT) (((-790) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) $) NIL T ELT) (((-790) |#3| $) NIL T ELT) (((-790) (-1 (-114) |#3|) $) 79 T ELT)) (-4375 (((-876) $) 27 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) $) NIL T ELT) (((-114) (-1 (-114) |#3|) $) 71 T ELT)) (-3453 (((-114) $ $) 51 T ELT))) +(((-1213 |#1| |#2| |#3|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -4375 ((-876) |#1|)) (-15 -4387 (|#1| (-1 |#3| |#3| |#3|) |#1| |#1|)) (-15 -4026 (|#1| (-660 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))))) (-15 -4026 (|#1|)) (-15 -4387 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2159 (|#1| (-1 |#3| |#3|) |#1|)) (-15 -2158 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2157 ((-114) (-1 (-114) |#3|) |#1|)) (-15 -2156 ((-790) (-1 (-114) |#3|) |#1|)) (-15 -3289 ((-660 |#3|) |#1|)) (-15 -2156 ((-790) |#3| |#1|)) (-15 -4229 (|#3| |#1| |#2| |#3|)) (-15 -4229 (|#3| |#1| |#2|)) (-15 -2419 ((-660 |#3|) |#1|)) (-15 -2418 ((-114) |#2| |#1|)) (-15 -2417 ((-660 |#2|) |#1|)) (-15 -3824 ((-3 |#3| #1="failed") |#2| |#1|)) (-15 -3824 (|#1| (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -3824 (|#1| (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) |#1|)) (-15 -1467 ((-3 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) #1#) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -1388 ((-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) |#1|)) (-15 -4036 (|#1| (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) |#1|)) (-15 -1389 ((-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) |#1|)) (-15 -2156 ((-790) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) |#1|)) (-15 -3289 ((-660 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -2156 ((-790) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -2157 ((-114) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -2158 ((-114) (-1 (-114) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -2159 (|#1| (-1 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|)) (-15 -4387 (|#1| (-1 (-2 (|:| -4289 |#2|) (|:| -2285 |#3|)) (-2 (|:| -4289 |#2|) (|:| -2285 |#3|))) |#1|))) (-1214 |#2| |#3|) (-1121) (-1121)) (T -1213)) +NIL +((-2966 (((-114) $ $) 19 (-3956 (|has| |#2| (-102)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ELT)) (-4026 (($) 77 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 76 T ELT)) (-2412 (((-1293) $ |#1| |#1|) 104 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#2| $ |#1| |#2|) 78 T ELT)) (-1712 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 49 (|has| $ (-6 -4424)) ELT)) (-4139 (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 59 (|has| $ (-6 -4424)) ELT)) (-2445 (((-3 |#2| #1="failed") |#1| $) 65 T ELT)) (-4153 (($) 7 T CONST)) (-1466 (($ $) 62 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT)) (-3824 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 51 (|has| $ (-6 -4424)) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 50 (|has| $ (-6 -4424)) ELT) (((-3 |#2| #1#) |#1| $) 66 T ELT)) (-3825 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 61 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 58 (|has| $ (-6 -4424)) ELT)) (-4271 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 60 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 57 (|has| $ (-6 -4424)) ELT) (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 56 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#2| $ |#1| |#2|) 92 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#2| $ |#1|) 93 T ELT)) (-3289 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 30 (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) 84 (|has| $ (-6 -4424)) ELT)) (-2414 ((|#1| $) 101 (|has| |#1| (-860)) ELT)) (-3006 (((-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 29 (|has| $ (-6 -4424)) ELT) (((-660 |#2|) $) 85 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 27 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-114) |#2| $) 87 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 ((|#1| $) 100 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 34 (|has| $ (-6 -4425)) ELT) (($ (-1 |#2| |#2|) $) 80 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 35 T ELT) (($ (-1 |#2| |#2|) $) 79 T ELT) (($ (-1 |#2| |#2| |#2|) $ $) 75 T ELT)) (-3659 (((-1179) $) 22 (-3956 (|has| |#2| (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-2883 (((-660 |#1|) $) 67 T ELT)) (-2446 (((-114) |#1| $) 68 T ELT)) (-1388 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 43 T ELT)) (-4036 (($ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 44 T ELT)) (-2417 (((-660 |#1|) $) 98 T ELT)) (-2418 (((-114) |#1| $) 97 T ELT)) (-3660 (((-1140) $) 21 (-3956 (|has| |#2| (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT)) (-4230 ((|#2| $) 102 (|has| |#1| (-860)) ELT)) (-1467 (((-3 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) "failed") (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 55 T ELT)) (-2413 (($ $ |#2|) 103 (|has| $ (-6 -4425)) ELT)) (-1389 (((-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 45 T ELT)) (-2157 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 32 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) 82 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))))) 26 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-305 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 25 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) 24 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 23 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 91 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ |#2| |#2|) 90 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-305 |#2|)) 89 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT) (($ $ (-660 (-305 |#2|))) 88 (-12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#2| $) 99 (-12 (|has| $ (-6 -4424)) (|has| |#2| (-1121))) ELT)) (-2419 (((-660 |#2|) $) 96 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#2| $ |#1|) 95 T ELT) ((|#2| $ |#1| |#2|) 94 T ELT)) (-1597 (($) 53 T ELT) (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 52 T ELT)) (-2156 (((-790) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) $) 28 (-12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) |#2| $) 86 (-12 (|has| |#2| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#2|) $) 83 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 63 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ELT)) (-3949 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 54 T ELT)) (-4375 (((-876) $) 17 (-3956 (|has| |#2| (-629 (-876))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876)))) ELT)) (-1377 (((-114) $ $) 20 (-3956 (|has| |#2| (-102)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ELT)) (-1390 (($ (-660 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) 46 T ELT)) (-2158 (((-114) (-1 (-114) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) $) 33 (|has| $ (-6 -4424)) ELT) (((-114) (-1 (-114) |#2|) $) 81 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (-3956 (|has| |#2| (-102)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102))) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1214 |#1| |#2|) (-142) (-1121) (-1121)) (T -1214)) +((-4217 (*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) (-4026 (*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) (-4026 (*1 *1 *2) (-12 (-5 *2 (-660 (-2 (|:| -4289 *3) (|:| -2285 *4)))) (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) (-4387 (*1 *1 *2 *1 *1) (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(-13 (-626 |t#1| |t#2|) (-615 |t#1| |t#2|) (-10 -8 (-15 -4217 (|t#2| $ |t#1| |t#2|)) (-15 -4026 ($)) (-15 -4026 ($ (-660 (-2 (|:| -4289 |t#1|) (|:| -2285 |t#2|))))) (-15 -4387 ($ (-1 |t#2| |t#2| |t#2|) $ $)))) +(((-34) . T) ((-107 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-102) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-102)) (|has| |#2| (-1121)) (|has| |#2| (-102))) ((-629 (-876)) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-629 (-876))) (|has| |#2| (-1121)) (|has| |#2| (-629 (-876)))) ((-153 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-630 (-547)) |has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-630 (-547))) ((-233 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-242 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-298 |#1| |#2|) . T) ((-300 |#1| |#2|) . T) ((-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) -12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ((-321 |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-501 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) . T) ((-501 |#2|) . T) ((-615 |#1| |#2|) . T) ((-526 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-2 (|:| -4289 |#1|) (|:| -2285 |#2|))) -12 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-321 (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)))) (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121))) ((-526 |#2| |#2|) -12 (|has| |#2| (-321 |#2|)) (|has| |#2| (-1121))) ((-626 |#1| |#2|) . T) ((-1121) -3956 (|has| (-2 (|:| -4289 |#1|) (|:| -2285 |#2|)) (-1121)) (|has| |#2| (-1121))) ((-1237) . T)) +((-4032 (((-114)) 29 T ELT)) (-4029 (((-1293) (-1179)) 31 T ELT)) (-4033 (((-114)) 41 T ELT)) (-4030 (((-1293)) 39 T ELT)) (-4028 (((-1293) (-1179) (-1179)) 30 T ELT)) (-4034 (((-114)) 42 T ELT)) (-4036 (((-1293) |#1| |#2|) 53 T ELT)) (-4027 (((-1293)) 26 T ELT)) (-4035 (((-3 |#2| "failed") |#1|) 51 T ELT)) (-4031 (((-1293)) 40 T ELT))) +(((-1215 |#1| |#2|) (-10 -7 (-15 -4027 ((-1293))) (-15 -4028 ((-1293) (-1179) (-1179))) (-15 -4029 ((-1293) (-1179))) (-15 -4030 ((-1293))) (-15 -4031 ((-1293))) (-15 -4032 ((-114))) (-15 -4033 ((-114))) (-15 -4034 ((-114))) (-15 -4035 ((-3 |#2| "failed") |#1|)) (-15 -4036 ((-1293) |#1| |#2|))) (-1121) (-1121)) (T -1215)) +((-4036 (*1 *2 *3 *4) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4035 (*1 *2 *3) (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121)))) (-4034 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4033 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4032 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4031 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4030 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) (-4029 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-4028 (*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)))) (-4027 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +((-4038 (((-1179) (-1179)) 22 T ELT)) (-4037 (((-51) (-1179)) 25 T ELT))) +(((-1216) (-10 -7 (-15 -4037 ((-51) (-1179))) (-15 -4038 ((-1179) (-1179))))) (T -1216)) +((-4038 (*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216)))) (-4037 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-51)) (-5 *1 (-1216))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4044 (((-660 (-1179)) $) 39 T ELT)) (-4040 (((-660 (-1179)) $ (-660 (-1179))) 42 T ELT)) (-4039 (((-660 (-1179)) $ (-660 (-1179))) 41 T ELT)) (-4041 (((-660 (-1179)) $ (-660 (-1179))) 43 T ELT)) (-4042 (((-660 (-1179)) $) 38 T ELT)) (-4043 (($) 28 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4045 (((-660 (-1179)) $) 40 T ELT)) (-4046 (((-1293) $ (-558)) 35 T ELT) (((-1293) $) 36 T ELT)) (-4401 (($ (-876) (-558)) 33 T ELT) (($ (-876) (-558) (-876)) NIL T ELT)) (-4375 (((-876) $) 49 T ELT) (($ (-876)) 32 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1217) (-13 (-1121) (-632 (-876)) (-10 -8 (-15 -4401 ($ (-876) (-558))) (-15 -4401 ($ (-876) (-558) (-876))) (-15 -4046 ((-1293) $ (-558))) (-15 -4046 ((-1293) $)) (-15 -4045 ((-660 (-1179)) $)) (-15 -4044 ((-660 (-1179)) $)) (-15 -4043 ($)) (-15 -4042 ((-660 (-1179)) $)) (-15 -4041 ((-660 (-1179)) $ (-660 (-1179)))) (-15 -4040 ((-660 (-1179)) $ (-660 (-1179)))) (-15 -4039 ((-660 (-1179)) $ (-660 (-1179))))))) (T -1217)) +((-4401 (*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-558)) (-5 *1 (-1217)))) (-4401 (*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-558)) (-5 *1 (-1217)))) (-4046 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1217)))) (-4046 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1217)))) (-4045 (*1 *2 *1) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217)))) (-4044 (*1 *2 *1) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217)))) (-4043 (*1 *1) (-5 *1 (-1217))) (-4042 (*1 *2 *1) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217)))) (-4041 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217)))) (-4040 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217)))) (-4039 (*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) +((-4375 (((-1217) |#1|) 11 T ELT))) +(((-1218 |#1|) (-10 -7 (-15 -4375 ((-1217) |#1|))) (-1121)) (T -1218)) +((-4375 (*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1218 *3)) (-4 *3 (-1121))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4051 (((-1179) $ (-1179)) 21 T ELT) (((-1179) $) 20 T ELT)) (-1899 (((-1179) $ (-1179)) 19 T ELT)) (-1903 (($ $ (-1179)) NIL T ELT)) (-4049 (((-3 (-1179) #1="failed") $) 11 T ELT)) (-4050 (((-1179) $) 8 T ELT)) (-4048 (((-3 (-1179) #1#) $) 12 T ELT)) (-1900 (((-1179) $) 9 T ELT)) (-1904 (($ (-402)) NIL T ELT) (($ (-402) (-1179)) NIL T ELT)) (-3969 (((-402) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-1901 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4047 (((-114) $) 25 T ELT)) (-4375 (((-876) $) NIL T ELT)) (-1902 (($ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1219) (-13 (-378 (-402) (-1179)) (-10 -8 (-15 -4051 ((-1179) $ (-1179))) (-15 -4051 ((-1179) $)) (-15 -4050 ((-1179) $)) (-15 -4049 ((-3 (-1179) #1="failed") $)) (-15 -4048 ((-3 (-1179) #1#) $)) (-15 -4047 ((-114) $))))) (T -1219)) +((-4051 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4051 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4050 (*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4049 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4048 (*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219)))) (-4047 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1219))))) +((-4052 (((-3 (-558) #1="failed") |#1|) 19 T ELT)) (-4053 (((-3 (-558) #1#) |#1|) 14 T ELT)) (-4054 (((-558) (-1179)) 33 T ELT))) +(((-1220 |#1|) (-10 -7 (-15 -4052 ((-3 (-558) #1="failed") |#1|)) (-15 -4053 ((-3 (-558) #1#) |#1|)) (-15 -4054 ((-558) (-1179)))) (-1069)) (T -1220)) +((-4054 (*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-558)) (-5 *1 (-1220 *4)) (-4 *4 (-1069)))) (-4053 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1220 *3)) (-4 *3 (-1069)))) (-4052 (*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1220 *3)) (-4 *3 (-1069))))) +((-4055 (((-1153 (-229))) 9 T ELT))) +(((-1221) (-10 -7 (-15 -4055 ((-1153 (-229)))))) (T -1221)) +((-4055 (*1 *2) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-1221))))) +((-4056 (($) 12 T ELT)) (-3917 (($ $) 36 T ELT)) (-3915 (($ $) 34 T ELT)) (-3903 (($ $) 26 T ELT)) (-3919 (($ $) 18 T ELT)) (-3920 (($ $) 16 T ELT)) (-3918 (($ $) 20 T ELT)) (-3906 (($ $) 31 T ELT)) (-3916 (($ $) 35 T ELT)) (-3904 (($ $) 30 T ELT))) +(((-1222 |#1|) (-10 -7 (-15 -4056 (|#1|)) (-15 -3917 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3904 (|#1| |#1|))) (-1223)) (T -1222)) +NIL +((-3911 (($ $) 26 T ELT)) (-4068 (($ $) 11 T ELT)) (-3909 (($ $) 27 T ELT)) (-4067 (($ $) 10 T ELT)) (-3913 (($ $) 28 T ELT)) (-4066 (($ $) 9 T ELT)) (-4056 (($) 16 T ELT)) (-4371 (($ $) 19 T ELT)) (-4372 (($ $) 18 T ELT)) (-3914 (($ $) 29 T ELT)) (-4065 (($ $) 8 T ELT)) (-3912 (($ $) 30 T ELT)) (-4064 (($ $) 7 T ELT)) (-3910 (($ $) 31 T ELT)) (-4063 (($ $) 6 T ELT)) (-3917 (($ $) 20 T ELT)) (-3905 (($ $) 32 T ELT)) (-3915 (($ $) 21 T ELT)) (-3903 (($ $) 33 T ELT)) (-3919 (($ $) 22 T ELT)) (-3907 (($ $) 34 T ELT)) (-3920 (($ $) 23 T ELT)) (-3908 (($ $) 35 T ELT)) (-3918 (($ $) 24 T ELT)) (-3906 (($ $) 36 T ELT)) (-3916 (($ $) 25 T ELT)) (-3904 (($ $) 37 T ELT)) (** (($ $ $) 17 T ELT))) +(((-1223) (-142)) (T -1223)) +((-4056 (*1 *1) (-4 *1 (-1223)))) +(-13 (-1226) (-95) (-505) (-35) (-296) (-10 -8 (-15 -4056 ($)))) +(((-35) . T) ((-95) . T) ((-296) . T) ((-505) . T) ((-1226) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 19 T ELT)) (-4061 (($ |#1| (-660 $)) 28 T ELT) (($ (-660 |#1|)) 35 T ELT) (($ |#1|) 30 T ELT)) (-3425 ((|#1| $ |#1|) 14 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 13 (|has| $ (-6 -4425)) ELT)) (-4153 (($) NIL T CONST)) (-3289 (((-660 |#1|) $) 70 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 59 T ELT)) (-3427 (((-114) $ $) 50 (|has| |#1| (-1121)) ELT)) (-3006 (((-660 |#1|) $) 71 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 69 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 29 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 27 T ELT)) (-3430 (((-660 |#1|) $) 55 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 67 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 102 T ELT)) (-3822 (((-114) $) 9 T ELT)) (-3992 (($) 10 T ELT)) (-4229 ((|#1| $ #1#) NIL T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-4057 (((-660 $) $) 84 T ELT)) (-4058 (((-114) $ $) 105 T ELT)) (-4059 (((-660 $) $) 100 T ELT)) (-4060 (($ $) 101 T ELT)) (-4062 (((-114) $) 77 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 25 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 17 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3819 (($ $) 83 T ELT)) (-4375 (((-876) $) 86 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 12 T ELT)) (-3428 (((-114) $ $) 39 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 66 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 37 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 81 (|has| $ (-6 -4424)) ELT))) +(((-1224 |#1|) (-13 (-1030 |#1|) (-10 -8 (-6 -4424) (-6 -4425) (-15 -4061 ($ |#1| (-660 $))) (-15 -4061 ($ (-660 |#1|))) (-15 -4061 ($ |#1|)) (-15 -4062 ((-114) $)) (-15 -4060 ($ $)) (-15 -4059 ((-660 $) $)) (-15 -4058 ((-114) $ $)) (-15 -4057 ((-660 $) $)))) (-1121)) (T -1224)) +((-4062 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-4061 (*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4061 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) (-4061 (*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4060 (*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) (-4059 (*1 *2 *1) (-12 (-5 *2 (-660 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-4058 (*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1224 *3)) (-4 *3 (-1121)))) (-4057 (*1 *2 *1) (-12 (-5 *2 (-660 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +((-4068 (($ $) 15 T ELT)) (-4066 (($ $) 12 T ELT)) (-4065 (($ $) 10 T ELT)) (-4064 (($ $) 17 T ELT))) +(((-1225 |#1|) (-10 -7 (-15 -4064 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -4068 (|#1| |#1|))) (-1226)) (T -1225)) +NIL +((-4068 (($ $) 11 T ELT)) (-4067 (($ $) 10 T ELT)) (-4066 (($ $) 9 T ELT)) (-4065 (($ $) 8 T ELT)) (-4064 (($ $) 7 T ELT)) (-4063 (($ $) 6 T ELT))) +(((-1226) (-142)) (T -1226)) +((-4068 (*1 *1 *1) (-4 *1 (-1226))) (-4067 (*1 *1 *1) (-4 *1 (-1226))) (-4066 (*1 *1 *1) (-4 *1 (-1226))) (-4065 (*1 *1 *1) (-4 *1 (-1226))) (-4064 (*1 *1 *1) (-4 *1 (-1226))) (-4063 (*1 *1 *1) (-4 *1 (-1226)))) +(-13 (-10 -8 (-15 -4063 ($ $)) (-15 -4064 ($ $)) (-15 -4065 ($ $)) (-15 -4066 ($ $)) (-15 -4067 ($ $)) (-15 -4068 ($ $)))) +((-4071 ((|#2| |#2|) 95 T ELT)) (-4074 (((-114) |#2|) 29 T ELT)) (-4072 ((|#2| |#2|) 33 T ELT)) (-4073 ((|#2| |#2|) 35 T ELT)) (-4069 ((|#2| |#2| (-1197)) 89 T ELT) ((|#2| |#2|) 90 T ELT)) (-4075 (((-171 |#2|) |#2|) 31 T ELT)) (-4070 ((|#2| |#2| (-1197)) 91 T ELT) ((|#2| |#2|) 92 T ELT))) +(((-1227 |#1| |#2|) (-10 -7 (-15 -4069 (|#2| |#2|)) (-15 -4069 (|#2| |#2| (-1197))) (-15 -4070 (|#2| |#2|)) (-15 -4070 (|#2| |#2| (-1197))) (-15 -4071 (|#2| |#2|)) (-15 -4072 (|#2| |#2|)) (-15 -4073 (|#2| |#2|)) (-15 -4074 ((-114) |#2|)) (-15 -4075 ((-171 |#2|) |#2|))) (-13 (-464) (-1058 (-558)) (-657 (-558))) (-13 (-27) (-1223) (-433 |#1|))) (T -1227)) +((-4075 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-171 *3)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) (-4074 (*1 *2 *3) (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-114)) (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) (-4073 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3))))) (-4072 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3))))) (-4071 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3))))) (-4070 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) (-4070 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3))))) (-4069 (*1 *2 *2 *3) (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) (-4069 (*1 *2 *2) (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *3)))))) +((-4076 ((|#4| |#4| |#1|) 31 T ELT)) (-4077 ((|#4| |#4| |#1|) 32 T ELT))) +(((-1228 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4076 (|#4| |#4| |#1|)) (-15 -4077 (|#4| |#4| |#1|))) (-569) (-385 |#1|) (-385 |#1|) (-705 |#1| |#2| |#3|)) (T -1228)) +((-4077 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) (-4076 (*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) +((-4095 ((|#2| |#2|) 148 T ELT)) (-4097 ((|#2| |#2|) 145 T ELT)) (-4094 ((|#2| |#2|) 136 T ELT)) (-4096 ((|#2| |#2|) 133 T ELT)) (-4093 ((|#2| |#2|) 141 T ELT)) (-4092 ((|#2| |#2|) 129 T ELT)) (-4081 ((|#2| |#2|) 44 T ELT)) (-4080 ((|#2| |#2|) 105 T ELT)) (-4078 ((|#2| |#2|) 88 T ELT)) (-4091 ((|#2| |#2|) 143 T ELT)) (-4090 ((|#2| |#2|) 131 T ELT)) (-4103 ((|#2| |#2|) 153 T ELT)) (-4101 ((|#2| |#2|) 151 T ELT)) (-4102 ((|#2| |#2|) 152 T ELT)) (-4100 ((|#2| |#2|) 150 T ELT)) (-4079 ((|#2| |#2|) 163 T ELT)) (-4104 ((|#2| |#2|) 30 (-12 (|has| |#2| (-630 (-904 |#1|))) (|has| |#2| (-900 |#1|)) (|has| |#1| (-630 (-904 |#1|))) (|has| |#1| (-900 |#1|))) ELT)) (-4082 ((|#2| |#2|) 89 T ELT)) (-4083 ((|#2| |#2|) 154 T ELT)) (-4392 ((|#2| |#2|) 155 T ELT)) (-4089 ((|#2| |#2|) 142 T ELT)) (-4088 ((|#2| |#2|) 130 T ELT)) (-4087 ((|#2| |#2|) 149 T ELT)) (-4099 ((|#2| |#2|) 147 T ELT)) (-4086 ((|#2| |#2|) 137 T ELT)) (-4098 ((|#2| |#2|) 135 T ELT)) (-4085 ((|#2| |#2|) 139 T ELT)) (-4084 ((|#2| |#2|) 127 T ELT))) +(((-1229 |#1| |#2|) (-10 -7 (-15 -4392 (|#2| |#2|)) (-15 -4078 (|#2| |#2|)) (-15 -4079 (|#2| |#2|)) (-15 -4080 (|#2| |#2|)) (-15 -4081 (|#2| |#2|)) (-15 -4082 (|#2| |#2|)) (-15 -4083 (|#2| |#2|)) (-15 -4084 (|#2| |#2|)) (-15 -4085 (|#2| |#2|)) (-15 -4086 (|#2| |#2|)) (-15 -4087 (|#2| |#2|)) (-15 -4088 (|#2| |#2|)) (-15 -4089 (|#2| |#2|)) (-15 -4090 (|#2| |#2|)) (-15 -4091 (|#2| |#2|)) (-15 -4092 (|#2| |#2|)) (-15 -4093 (|#2| |#2|)) (-15 -4094 (|#2| |#2|)) (-15 -4095 (|#2| |#2|)) (-15 -4096 (|#2| |#2|)) (-15 -4097 (|#2| |#2|)) (-15 -4098 (|#2| |#2|)) (-15 -4099 (|#2| |#2|)) (-15 -4100 (|#2| |#2|)) (-15 -4101 (|#2| |#2|)) (-15 -4102 (|#2| |#2|)) (-15 -4103 (|#2| |#2|)) (IF (|has| |#1| (-900 |#1|)) (IF (|has| |#1| (-630 (-904 |#1|))) (IF (|has| |#2| (-630 (-904 |#1|))) (IF (|has| |#2| (-900 |#1|)) (-15 -4104 (|#2| |#2|)) |%noBranch|) |%noBranch|) |%noBranch|) |%noBranch|)) (-464) (-13 (-433 |#1|) (-1223))) (T -1229)) +((-4104 (*1 *2 *2) (-12 (-4 *3 (-630 (-904 *3))) (-4 *3 (-900 *3)) (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-630 (-904 *3))) (-4 *2 (-900 *3)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4103 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4102 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4101 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4100 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4099 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4098 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4097 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4096 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4095 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4094 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4093 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4092 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4091 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4090 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4089 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4088 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4087 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4086 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4085 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4084 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4083 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4082 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4081 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4080 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4079 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4078 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) (-4392 (*1 *2 *2) (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1197)) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4243 (((-964 |#1|) $ (-790)) 17 T ELT) (((-964 |#1|) $ (-790) (-790)) NIL T ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-790) $ (-1197)) NIL T ELT) (((-790) $ (-1197) (-790)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ $ (-660 (-1197)) (-660 (-543 (-1197)))) NIL T ELT) (($ $ (-1197) (-543 (-1197))) NIL T ELT) (($ |#1| (-543 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4241 (($ $ (-1197)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4105 (($ (-1 $) (-1197) |#1|) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4198 (($ $ (-790)) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (($ $ (-1197) $) NIL T ELT) (($ $ (-660 (-1197)) (-660 $)) NIL T ELT) (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT)) (-4187 (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT)) (-4377 (((-543 (-1197)) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-1197)) NIL T ELT) (($ (-964 |#1|)) NIL T ELT)) (-4106 ((|#1| $ (-543 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (((-964 |#1|) $ (-790)) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3069 (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT))) +(((-1230 |#1|) (-13 (-759 |#1| (-1197)) (-10 -8 (-15 -4106 ((-964 |#1|) $ (-790))) (-15 -4375 ($ (-1197))) (-15 -4375 ($ (-964 |#1|))) (IF (|has| |#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $ (-1197) |#1|)) (-15 -4105 ($ (-1 $) (-1197) |#1|))) |%noBranch|))) (-1069)) (T -1230)) +((-4106 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-964 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1069)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1230 *3)) (-4 *3 (-1069)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-964 *3)) (-4 *3 (-1069)) (-5 *1 (-1230 *3)))) (-4241 (*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)))) (-4105 (*1 *1 *2 *3 *4) (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1197)) (-5 *1 (-1230 *4)) (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1069))))) +((-4122 (((-114) |#5| $) 68 T ELT) (((-114) $) 109 T ELT)) (-4117 ((|#5| |#5| $) 83 T ELT)) (-4139 (($ (-1 (-114) |#5|) $) NIL T ELT) (((-3 |#5| #1="failed") $ |#4|) 126 T ELT)) (-4118 (((-660 |#5|) (-660 |#5|) $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 81 T ELT)) (-3574 (((-3 $ #1#) (-660 |#5|)) 134 T ELT)) (-4228 (((-3 $ #1#) $) 119 T ELT)) (-4114 ((|#5| |#5| $) 101 T ELT)) (-4123 (((-114) |#5| $ (-1 (-114) |#5| |#5|)) 36 T ELT)) (-4112 ((|#5| |#5| $) 105 T ELT)) (-4271 ((|#5| (-1 |#5| |#5| |#5|) $ |#5| |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $ |#5|) NIL T ELT) ((|#5| (-1 |#5| |#5| |#5|) $) NIL T ELT) ((|#5| |#5| $ (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|)) 77 T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#5|)) (|:| -1904 (-660 |#5|))) $) 63 T ELT)) (-4124 (((-114) |#5| $) 66 T ELT) (((-114) $) 110 T ELT)) (-3597 ((|#4| $) 115 T ELT)) (-4227 (((-3 |#5| #1#) $) 117 T ELT)) (-4126 (((-660 |#5|) $) 55 T ELT)) (-4120 (((-114) |#5| $) 75 T ELT) (((-114) $) 114 T ELT)) (-4115 ((|#5| |#5| $) 89 T ELT)) (-4128 (((-114) $ $) 29 T ELT)) (-4121 (((-114) |#5| $) 71 T ELT) (((-114) $) 112 T ELT)) (-4116 ((|#5| |#5| $) 86 T ELT)) (-4230 (((-3 |#5| #1#) $) 116 T ELT)) (-4198 (($ $ |#5|) 135 T ELT)) (-4377 (((-790) $) 60 T ELT)) (-3949 (($ (-660 |#5|)) 132 T ELT)) (-3310 (($ $ |#4|) 130 T ELT)) (-3312 (($ $ |#4|) 128 T ELT)) (-4113 (($ $) 127 T ELT)) (-4375 (((-876) $) NIL T ELT) (((-660 |#5|) $) 120 T ELT)) (-4107 (((-790) $) 139 T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#5|))) #1#) (-660 |#5|) (-1 (-114) |#5| |#5|)) 49 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#5|))) #1#) (-660 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|)) 51 T ELT)) (-4119 (((-114) $ (-1 (-114) |#5| (-660 |#5|))) 107 T ELT)) (-4109 (((-660 |#4|) $) 122 T ELT)) (-4362 (((-114) |#4| $) 125 T ELT)) (-3453 (((-114) $ $) 20 T ELT))) +(((-1231 |#1| |#2| |#3| |#4| |#5|) (-10 -7 (-15 -4107 ((-790) |#1|)) (-15 -4198 (|#1| |#1| |#5|)) (-15 -4139 ((-3 |#5| #1="failed") |#1| |#4|)) (-15 -4362 ((-114) |#4| |#1|)) (-15 -4109 ((-660 |#4|) |#1|)) (-15 -4228 ((-3 |#1| #1#) |#1|)) (-15 -4227 ((-3 |#5| #1#) |#1|)) (-15 -4230 ((-3 |#5| #1#) |#1|)) (-15 -4112 (|#5| |#5| |#1|)) (-15 -4113 (|#1| |#1|)) (-15 -4114 (|#5| |#5| |#1|)) (-15 -4115 (|#5| |#5| |#1|)) (-15 -4116 (|#5| |#5| |#1|)) (-15 -4117 (|#5| |#5| |#1|)) (-15 -4118 ((-660 |#5|) (-660 |#5|) |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4271 (|#5| |#5| |#1| (-1 |#5| |#5| |#5|) (-1 (-114) |#5| |#5|))) (-15 -4120 ((-114) |#1|)) (-15 -4121 ((-114) |#1|)) (-15 -4122 ((-114) |#1|)) (-15 -4119 ((-114) |#1| (-1 (-114) |#5| (-660 |#5|)))) (-15 -4120 ((-114) |#5| |#1|)) (-15 -4121 ((-114) |#5| |#1|)) (-15 -4122 ((-114) |#5| |#1|)) (-15 -4123 ((-114) |#5| |#1| (-1 (-114) |#5| |#5|))) (-15 -4124 ((-114) |#1|)) (-15 -4124 ((-114) |#5| |#1|)) (-15 -4125 ((-2 (|:| -4290 (-660 |#5|)) (|:| -1904 (-660 |#5|))) |#1|)) (-15 -4377 ((-790) |#1|)) (-15 -4126 ((-660 |#5|) |#1|)) (-15 -4127 ((-3 (-2 (|:| |bas| |#1|) (|:| -3743 (-660 |#5|))) #1#) (-660 |#5|) (-1 (-114) |#5|) (-1 (-114) |#5| |#5|))) (-15 -4127 ((-3 (-2 (|:| |bas| |#1|) (|:| -3743 (-660 |#5|))) #1#) (-660 |#5|) (-1 (-114) |#5| |#5|))) (-15 -4128 ((-114) |#1| |#1|)) (-15 -3310 (|#1| |#1| |#4|)) (-15 -3312 (|#1| |#1| |#4|)) (-15 -3597 (|#4| |#1|)) (-15 -3574 ((-3 |#1| #1#) (-660 |#5|))) (-15 -4375 ((-660 |#5|) |#1|)) (-15 -3949 (|#1| (-660 |#5|))) (-15 -4271 (|#5| (-1 |#5| |#5| |#5|) |#1|)) (-15 -4271 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5|)) (-15 -4139 (|#1| (-1 (-114) |#5|) |#1|)) (-15 -4271 (|#5| (-1 |#5| |#5| |#5|) |#1| |#5| |#5|)) (-15 -4375 ((-876) |#1|)) (-15 -3453 ((-114) |#1| |#1|))) (-1232 |#2| |#3| |#4| |#5|) (-569) (-814) (-860) (-1085 |#2| |#3| |#4|)) (T -1231)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) 90 T ELT)) (-4111 (((-660 $) (-660 |#4|)) 91 T ELT)) (-3483 (((-660 |#3|) $) 37 T ELT)) (-3308 (((-114) $) 30 T ELT)) (-3299 (((-114) $) 21 (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) 106 T ELT) (((-114) $) 102 T ELT)) (-4117 ((|#4| |#4| $) 97 T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) 31 T ELT)) (-4139 (($ (-1 (-114) |#4|) $) 66 (|has| $ (-6 -4424)) ELT) (((-3 |#4| "failed") $ |#3|) 84 T ELT)) (-4153 (($) 46 T CONST)) (-3304 (((-114) $) 26 (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) 28 (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) 27 (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) 29 (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 98 T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 22 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) 23 (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ "failed") (-660 |#4|)) 40 T ELT)) (-3573 (($ (-660 |#4|)) 39 T ELT)) (-4228 (((-3 $ "failed") $) 87 T ELT)) (-4114 ((|#4| |#4| $) 94 T ELT)) (-1466 (($ $) 69 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#4| $) 68 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#4|) $) 65 (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) 24 (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) 107 T ELT)) (-4112 ((|#4| |#4| $) 92 T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) 67 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) 64 (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) 63 (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 99 T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) 110 T ELT)) (-3289 (((-660 |#4|) $) 53 (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) 109 T ELT) (((-114) $) 108 T ELT)) (-3597 ((|#3| $) 38 T ELT)) (-3006 (((-660 |#4|) $) 54 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) 56 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#4| |#4|) $) 49 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) 48 T ELT)) (-3314 (((-660 |#3|) $) 36 T ELT)) (-3313 (((-114) |#3| $) 35 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-4227 (((-3 |#4| "failed") $) 88 T ELT)) (-4126 (((-660 |#4|) $) 112 T ELT)) (-4120 (((-114) |#4| $) 104 T ELT) (((-114) $) 100 T ELT)) (-4115 ((|#4| |#4| $) 95 T ELT)) (-4128 (((-114) $ $) 115 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) 25 (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) 105 T ELT) (((-114) $) 101 T ELT)) (-4116 ((|#4| |#4| $) 96 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4230 (((-3 |#4| "failed") $) 89 T ELT)) (-1467 (((-3 |#4| "failed") (-1 (-114) |#4|) $) 62 T ELT)) (-4108 (((-3 $ "failed") $ |#4|) 83 T ELT)) (-4198 (($ $ |#4|) 82 T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) 51 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) 60 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) 59 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) 58 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) 57 (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) 42 T ELT)) (-3822 (((-114) $) 45 T ELT)) (-3992 (($) 44 T ELT)) (-4377 (((-790) $) 111 T ELT)) (-2156 (((-790) |#4| $) 55 (-12 (|has| |#4| (-1121)) (|has| $ (-6 -4424))) ELT) (((-790) (-1 (-114) |#4|) $) 52 (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) 43 T ELT)) (-4401 (((-547) $) 70 (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) 61 T ELT)) (-3310 (($ $ |#3|) 32 T ELT)) (-3312 (($ $ |#3|) 34 T ELT)) (-4113 (($ $) 93 T ELT)) (-3311 (($ $ |#3|) 33 T ELT)) (-4375 (((-876) $) 13 T ELT) (((-660 |#4|) $) 41 T ELT)) (-4107 (((-790) $) 81 (|has| |#3| (-381)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-114) |#4| |#4|)) 114 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) "failed") (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) 113 T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) 103 T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) 50 (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) 86 T ELT)) (-4362 (((-114) |#3| $) 85 T ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4386 (((-790) $) 47 (|has| $ (-6 -4424)) ELT))) +(((-1232 |#1| |#2| |#3| |#4|) (-142) (-569) (-814) (-860) (-1085 |t#1| |t#2| |t#3|)) (T -1232)) +((-4128 (*1 *2 *1 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-4127 (*1 *2 *3 *4) (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3743 (-660 *8)))) (-5 *3 (-660 *8)) (-4 *1 (-1232 *5 *6 *7 *8)))) (-4127 (*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |bas| *1) (|:| -3743 (-660 *9)))) (-5 *3 (-660 *9)) (-4 *1 (-1232 *6 *7 *8 *9)))) (-4126 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *6)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-790)))) (-4125 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-2 (|:| -4290 (-660 *6)) (|:| -1904 (-660 *6)))))) (-4124 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-4124 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-4123 (*1 *2 *3 *1 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1232 *5 *6 *7 *3)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-114)))) (-4122 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-4121 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-4120 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-4119 (*1 *2 *1 *3) (-12 (-5 *3 (-1 (-114) *7 (-660 *7))) (-4 *1 (-1232 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)))) (-4122 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-4121 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-4120 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) (-4271 (*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) (-4 *1 (-1232 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *2 (-1085 *5 *6 *7)))) (-4118 (*1 *2 *2 *1 *3 *4) (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) (-4 *1 (-1232 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)))) (-4117 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4116 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4115 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4114 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4113 (*1 *1 *1) (-12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-1085 *2 *3 *4)))) (-4112 (*1 *2 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4111 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1232 *4 *5 *6 *7)))) (-4110 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-660 (-2 (|:| -4290 *1) (|:| -1904 (-660 *7))))) (-5 *3 (-660 *7)) (-4 *1 (-1232 *4 *5 *6 *7)))) (-4230 (*1 *2 *1) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4227 (*1 *2 *1) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4228 (*1 *1 *1) (|partial| -12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-1085 *2 *3 *4)))) (-4109 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *5)))) (-4362 (*1 *2 *3 *1) (-12 (-4 *1 (-1232 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-860)) (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-114)))) (-4139 (*1 *2 *1 *3) (|partial| -12 (-4 *1 (-1232 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-860)) (-4 *2 (-1085 *4 *5 *3)))) (-4108 (*1 *1 *1 *2) (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4198 (*1 *1 *1 *2) (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) (-4107 (*1 *2 *1) (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-790))))) +(-13 (-996 |t#1| |t#2| |t#3| |t#4|) (-10 -8 (-6 -4424) (-6 -4425) (-15 -4128 ((-114) $ $)) (-15 -4127 ((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |t#4|))) "failed") (-660 |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4127 ((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |t#4|))) "failed") (-660 |t#4|) (-1 (-114) |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4126 ((-660 |t#4|) $)) (-15 -4377 ((-790) $)) (-15 -4125 ((-2 (|:| -4290 (-660 |t#4|)) (|:| -1904 (-660 |t#4|))) $)) (-15 -4124 ((-114) |t#4| $)) (-15 -4124 ((-114) $)) (-15 -4123 ((-114) |t#4| $ (-1 (-114) |t#4| |t#4|))) (-15 -4122 ((-114) |t#4| $)) (-15 -4121 ((-114) |t#4| $)) (-15 -4120 ((-114) |t#4| $)) (-15 -4119 ((-114) $ (-1 (-114) |t#4| (-660 |t#4|)))) (-15 -4122 ((-114) $)) (-15 -4121 ((-114) $)) (-15 -4120 ((-114) $)) (-15 -4271 (|t#4| |t#4| $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4118 ((-660 |t#4|) (-660 |t#4|) $ (-1 |t#4| |t#4| |t#4|) (-1 (-114) |t#4| |t#4|))) (-15 -4117 (|t#4| |t#4| $)) (-15 -4116 (|t#4| |t#4| $)) (-15 -4115 (|t#4| |t#4| $)) (-15 -4114 (|t#4| |t#4| $)) (-15 -4113 ($ $)) (-15 -4112 (|t#4| |t#4| $)) (-15 -4111 ((-660 $) (-660 |t#4|))) (-15 -4110 ((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |t#4|)))) (-660 |t#4|))) (-15 -4230 ((-3 |t#4| "failed") $)) (-15 -4227 ((-3 |t#4| "failed") $)) (-15 -4228 ((-3 $ "failed") $)) (-15 -4109 ((-660 |t#3|) $)) (-15 -4362 ((-114) |t#3| $)) (-15 -4139 ((-3 |t#4| "failed") $ |t#3|)) (-15 -4108 ((-3 $ "failed") $ |t#4|)) (-15 -4198 ($ $ |t#4|)) (IF (|has| |t#3| (-381)) (-15 -4107 ((-790) $)) |%noBranch|))) +(((-34) . T) ((-102) . T) ((-629 (-660 |#4|)) . T) ((-629 (-876)) . T) ((-153 |#4|) . T) ((-630 (-547)) |has| |#4| (-630 (-547))) ((-321 |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-501 |#4|) . T) ((-526 |#4| |#4|) -12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ((-996 |#1| |#2| |#3| |#4|) . T) ((-1121) . T) ((-1237) . T)) +((-4134 (($ |#1| (-660 (-660 (-961 (-229)))) (-114)) 19 T ELT)) (-4133 (((-114) $ (-114)) 18 T ELT)) (-4132 (((-114) $) 17 T ELT)) (-4130 (((-660 (-660 (-961 (-229)))) $) 13 T ELT)) (-4129 ((|#1| $) 8 T ELT)) (-4131 (((-114) $) 15 T ELT))) +(((-1233 |#1|) (-10 -8 (-15 -4129 (|#1| $)) (-15 -4130 ((-660 (-660 (-961 (-229)))) $)) (-15 -4131 ((-114) $)) (-15 -4132 ((-114) $)) (-15 -4133 ((-114) $ (-114))) (-15 -4134 ($ |#1| (-660 (-660 (-961 (-229)))) (-114)))) (-994)) (T -1233)) +((-4134 (*1 *1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-114)) (-5 *1 (-1233 *2)) (-4 *2 (-994)))) (-4133 (*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1233 *3)) (-4 *3 (-994)))) (-4132 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1233 *3)) (-4 *3 (-994)))) (-4131 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1233 *3)) (-4 *3 (-994)))) (-4130 (*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-1233 *3)) (-4 *3 (-994)))) (-4129 (*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-994))))) +((-4136 (((-961 (-229)) (-961 (-229))) 31 T ELT)) (-4135 (((-961 (-229)) (-229) (-229) (-229) (-229)) 10 T ELT)) (-4138 (((-660 (-961 (-229))) (-961 (-229)) (-961 (-229)) (-961 (-229)) (-229) (-660 (-660 (-229)))) 57 T ELT)) (-4265 (((-229) (-961 (-229)) (-961 (-229))) 27 T ELT)) (-4263 (((-961 (-229)) (-961 (-229)) (-961 (-229))) 28 T ELT)) (-4137 (((-660 (-660 (-229))) (-558)) 45 T ELT)) (-4266 (((-961 (-229)) (-961 (-229)) (-961 (-229))) 26 T ELT)) (-4268 (((-961 (-229)) (-961 (-229)) (-961 (-229))) 24 T ELT)) (* (((-961 (-229)) (-229) (-961 (-229))) 22 T ELT))) +(((-1234) (-10 -7 (-15 -4135 ((-961 (-229)) (-229) (-229) (-229) (-229))) (-15 * ((-961 (-229)) (-229) (-961 (-229)))) (-15 -4268 ((-961 (-229)) (-961 (-229)) (-961 (-229)))) (-15 -4266 ((-961 (-229)) (-961 (-229)) (-961 (-229)))) (-15 -4265 ((-229) (-961 (-229)) (-961 (-229)))) (-15 -4263 ((-961 (-229)) (-961 (-229)) (-961 (-229)))) (-15 -4136 ((-961 (-229)) (-961 (-229)))) (-15 -4137 ((-660 (-660 (-229))) (-558))) (-15 -4138 ((-660 (-961 (-229))) (-961 (-229)) (-961 (-229)) (-961 (-229)) (-229) (-660 (-660 (-229))))))) (T -1234)) +((-4138 (*1 *2 *3 *3 *3 *4 *5) (-12 (-5 *5 (-660 (-660 (-229)))) (-5 *4 (-229)) (-5 *2 (-660 (-961 *4))) (-5 *1 (-1234)) (-5 *3 (-961 *4)))) (-4137 (*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-660 (-660 (-229)))) (-5 *1 (-1234)))) (-4136 (*1 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) (-4263 (*1 *2 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) (-4265 (*1 *2 *3 *3) (-12 (-5 *3 (-961 (-229))) (-5 *2 (-229)) (-5 *1 (-1234)))) (-4266 (*1 *2 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) (-4268 (*1 *2 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) (* (*1 *2 *3 *2) (-12 (-5 *2 (-961 (-229))) (-5 *3 (-229)) (-5 *1 (-1234)))) (-4135 (*1 *2 *3 *3 *3 *3) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)) (-5 *3 (-229))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4139 ((|#1| $ (-790)) 18 T ELT)) (-4262 (((-790) $) 13 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4375 (((-976 |#1|) $) 12 T ELT) (($ (-976 |#1|)) 11 T ELT) (((-876) $) 29 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-3453 (((-114) $ $) 22 (|has| |#1| (-1121)) ELT))) +(((-1235 |#1|) (-13 (-502 (-976 |#1|)) (-10 -8 (-15 -4139 (|#1| $ (-790))) (-15 -4262 ((-790) $)) (IF (|has| |#1| (-629 (-876))) (-6 (-629 (-876))) |%noBranch|) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|))) (-1237)) (T -1235)) +((-4139 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-1235 *2)) (-4 *2 (-1237)))) (-4262 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1235 *3)) (-4 *3 (-1237))))) +((-4142 (((-417 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-558)) 92 T ELT)) (-4140 (((-417 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 84 T ELT)) (-4141 (((-417 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|))) 68 T ELT))) +(((-1236 |#1|) (-10 -7 (-15 -4140 ((-417 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -4141 ((-417 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)))) (-15 -4142 ((-417 (-1191 (-1191 |#1|))) (-1191 (-1191 |#1|)) (-558)))) (-363)) (T -1236)) +((-4142 (*1 *2 *3 *4) (-12 (-5 *4 (-558)) (-4 *5 (-363)) (-5 *2 (-417 (-1191 (-1191 *5)))) (-5 *1 (-1236 *5)) (-5 *3 (-1191 (-1191 *5))))) (-4141 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1191 (-1191 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1191 (-1191 *4))))) (-4140 (*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1191 (-1191 *4)))) (-5 *1 (-1236 *4)) (-5 *3 (-1191 (-1191 *4)))))) +NIL +(((-1237) (-142)) (T -1237)) +NIL +(-13 (-10 -7 (-6 -2500))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 9 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1238) (-1103)) (T -1238)) +NIL +((-4146 (((-114)) 18 T ELT)) (-4143 (((-1293) (-660 |#1|) (-660 |#1|)) 22 T ELT) (((-1293) (-660 |#1|)) 23 T ELT)) (-4148 (((-114) |#1| |#1|) 37 (|has| |#1| (-860)) ELT)) (-4145 (((-114) |#1| |#1| (-1 (-114) |#1| |#1|)) 29 T ELT) (((-3 (-114) "failed") |#1| |#1|) 27 T ELT)) (-4147 ((|#1| (-660 |#1|)) 38 (|has| |#1| (-860)) ELT) ((|#1| (-660 |#1|) (-1 (-114) |#1| |#1|)) 32 T ELT)) (-4144 (((-2 (|:| -3646 (-660 |#1|)) (|:| -3645 (-660 |#1|)))) 20 T ELT))) +(((-1239 |#1|) (-10 -7 (-15 -4143 ((-1293) (-660 |#1|))) (-15 -4143 ((-1293) (-660 |#1|) (-660 |#1|))) (-15 -4144 ((-2 (|:| -3646 (-660 |#1|)) (|:| -3645 (-660 |#1|))))) (-15 -4145 ((-3 (-114) "failed") |#1| |#1|)) (-15 -4145 ((-114) |#1| |#1| (-1 (-114) |#1| |#1|))) (-15 -4147 (|#1| (-660 |#1|) (-1 (-114) |#1| |#1|))) (-15 -4146 ((-114))) (IF (|has| |#1| (-860)) (PROGN (-15 -4147 (|#1| (-660 |#1|))) (-15 -4148 ((-114) |#1| |#1|))) |%noBranch|)) (-1121)) (T -1239)) +((-4148 (*1 *2 *3 *3) (-12 (-5 *2 (-114)) (-5 *1 (-1239 *3)) (-4 *3 (-860)) (-4 *3 (-1121)))) (-4147 (*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-860)) (-5 *1 (-1239 *2)))) (-4146 (*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-4147 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1239 *2)) (-4 *2 (-1121)))) (-4145 (*1 *2 *3 *3 *4) (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-114)) (-5 *1 (-1239 *3)))) (-4145 (*1 *2 *3 *3) (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-4144 (*1 *2) (-12 (-5 *2 (-2 (|:| -3646 (-660 *3)) (|:| -3645 (-660 *3)))) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) (-4143 (*1 *2 *3 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4)))) (-4143 (*1 *2 *3) (-12 (-5 *3 (-660 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4))))) +((-4149 (((-1293) (-660 (-1197)) (-660 (-1197))) 14 T ELT) (((-1293) (-660 (-1197))) 12 T ELT)) (-4151 (((-1293)) 16 T ELT)) (-4150 (((-2 (|:| -3645 (-660 (-1197))) (|:| -3646 (-660 (-1197))))) 20 T ELT))) +(((-1240) (-10 -7 (-15 -4149 ((-1293) (-660 (-1197)))) (-15 -4149 ((-1293) (-660 (-1197)) (-660 (-1197)))) (-15 -4150 ((-2 (|:| -3645 (-660 (-1197))) (|:| -3646 (-660 (-1197)))))) (-15 -4151 ((-1293))))) (T -1240)) +((-4151 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240)))) (-4150 (*1 *2) (-12 (-5 *2 (-2 (|:| -3645 (-660 (-1197))) (|:| -3646 (-660 (-1197))))) (-5 *1 (-1240)))) (-4149 (*1 *2 *3 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) (-4149 (*1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) +((-4204 (($ $) 17 T ELT)) (-4152 (((-114) $) 27 T ELT))) +(((-1241 |#1|) (-10 -7 (-15 -4204 (|#1| |#1|)) (-15 -4152 ((-114) |#1|))) (-1242)) (T -1241)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 63 T ELT)) (-4400 (((-417 $) $) 64 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4152 (((-114) $) 65 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-4161 (((-417 $) $) 62 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT))) +(((-1242) (-142)) (T -1242)) +((-4152 (*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-114)))) (-4400 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1242)))) (-4204 (*1 *1 *1) (-4 *1 (-1242))) (-4161 (*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1242))))) +(-13 (-464) (-10 -8 (-15 -4152 ((-114) $)) (-15 -4400 ((-417 $) $)) (-15 -4204 ($ $)) (-15 -4161 ((-417 $) $)))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 $) . T) ((-102) . T) ((-111 $ $) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-302) . T) ((-464) . T) ((-569) . T) ((-665 (-558)) . T) ((-665 $) . T) ((-667 $) . T) ((-659 $) . T) ((-736 $) . T) ((-745) . T) ((-1071 $) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-1243) (-13 (-856) (-681) (-10 -8 (-15 -4155 ($ $ $)) (-15 -4154 ($ $ $)) (-15 -4153 ($) -4381)))) (T -1243)) +((-4155 (*1 *1 *1 *1) (-5 *1 (-1243))) (-4154 (*1 *1 *1 *1) (-5 *1 (-1243))) (-4153 (*1 *1) (-5 *1 (-1243)))) +((-790) (|%not| (|%ilt| 16 (|%ilength| |#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-1244) (-13 (-856) (-681) (-10 -8 (-15 -4155 ($ $ $)) (-15 -4154 ($ $ $)) (-15 -4153 ($) -4381)))) (T -1244)) +((-4155 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4154 (*1 *1 *1 *1) (-5 *1 (-1244))) (-4153 (*1 *1) (-5 *1 (-1244)))) +((-790) (|%not| (|%ilt| 32 (|%ilength| |#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-1245) (-13 (-856) (-681) (-10 -8 (-15 -4155 ($ $ $)) (-15 -4154 ($ $ $)) (-15 -4153 ($) -4381)))) (T -1245)) +((-4155 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4154 (*1 *1 *1 *1) (-5 *1 (-1245))) (-4153 (*1 *1) (-5 *1 (-1245)))) +((-790) (|%not| (|%ilt| 64 (|%ilength| |#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-2525 (($ $) NIL T ELT)) (-3537 (((-790)) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3394 (($) NIL T ELT)) (-2929 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-3257 (($ $ $) NIL T ELT) (($) NIL T CONST)) (-2219 (((-937) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2630 (($ (-937)) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT)) (-4154 (($ $ $) NIL T ELT)) (-4155 (($ $ $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2523 (($ $ $) NIL T ELT)) (-2964 (((-114) $ $) NIL T ELT)) (-2965 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL T ELT)) (-3085 (((-114) $ $) NIL T ELT)) (-2524 (($ $ $) NIL T ELT))) +(((-1246) (-13 (-856) (-681) (-10 -8 (-15 -4155 ($ $ $)) (-15 -4154 ($ $ $)) (-15 -4153 ($) -4381)))) (T -1246)) +((-4155 (*1 *1 *1 *1) (-5 *1 (-1246))) (-4154 (*1 *1 *1 *1) (-5 *1 (-1246))) (-4153 (*1 *1) (-5 *1 (-1246)))) +((-790) (|%not| (|%ilt| 8 (|%ilength| |#1|)))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3530 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 10 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2272 (($ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-2270 (((-114) $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-4200 (($ $ (-558)) NIL T ELT) (($ $ (-558) (-558)) NIL T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) NIL T ELT)) (-4160 (((-1277 |#1| |#2| |#3|) $) NIL T ELT)) (-4157 (((-3 (-1277 |#1| |#2| |#3|) #1="failed") $) NIL T ELT)) (-4158 (((-1277 |#1| |#2| |#3|) $) NIL T ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4052 (((-558) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-1277 |#1| |#2| |#3|) #1#) $) NIL T ELT) (((-3 (-1197) #1#) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-1197))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT)) (-3573 (((-1277 |#1| |#2| |#3|) $) NIL T ELT) (((-1197) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-1197))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-558) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) ELT)) (-4159 (($ $) NIL T ELT) (($ (-558) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-1277 |#1| |#2| |#3|)) (-708 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-1277 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1277 |#1| |#2| |#3|)))) (-708 $) (-1287 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT) (((-708 (-558)) (-708 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4156 (((-419 (-964 |#1|)) $ (-558)) NIL (|has| |#1| (-569)) ELT) (((-419 (-964 |#1|)) $ (-558) (-558)) NIL (|has| |#1| (-569)) ELT)) (-3394 (($) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3603 (((-114) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-900 (-391))) (|has| |#1| (-376))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-900 (-558))) (|has| |#1| (-376))) ELT)) (-4201 (((-558) $) NIL T ELT) (((-558) $ (-558)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3398 (((-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3864 (((-710 $) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-376))) ELT)) (-3604 (((-114) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-4206 (($ $ (-937)) NIL T ELT)) (-4244 (($ (-1 |#1| (-558)) $) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-558)) 18 T ELT) (($ $ (-1102) (-558)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-558))) NIL T ELT)) (-2929 (($ $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-3257 (($ $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2493 (((-708 (-1277 |#1| |#2| |#3|)) (-1287 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-1277 |#1| |#2| |#3|))) (|:| |vec| (-1287 (-1277 |#1| |#2| |#3|)))) (-1287 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT) (((-708 (-558)) (-1287 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-657 (-558))) (|has| |#1| (-376))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4208 (($ (-558) (-1277 |#1| |#2| |#3|)) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4241 (($ $) 27 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 28 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (($) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1172)) (|has| |#1| (-376))) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3529 (($ $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-319)) (|has| |#1| (-376))) ELT)) (-3531 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-558)) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1197) (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-526 (-1197) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1197)) (-660 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-526 (-1197) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-305 (-1277 |#1| |#2| |#3|)))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-321 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-305 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-321 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-321 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1277 |#1| |#2| |#3|)) (-660 (-1277 |#1| |#2| |#3|))) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-321 (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-558)) NIL T ELT) (($ $ $) NIL (|has| (-558) (-1132)) ELT) (($ $ (-1277 |#1| |#2| |#3|)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-298 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) (|has| |#1| (-376))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) (-790)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1284 |#2|)) 26 T ELT) (($ $) 25 (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3395 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3397 (((-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT)) (-4377 (((-558) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4401 (((-547) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-630 (-547))) (|has| |#1| (-376))) ELT) (((-391) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-376))) ELT) (((-229) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1040)) (|has| |#1| (-376))) ELT) (((-904 (-391)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-630 (-904 (-391)))) (|has| |#1| (-376))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-630 (-904 (-558)))) (|has| |#1| (-376))) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1277 |#1| |#2| |#3|)) NIL T ELT) (($ (-1284 |#2|)) 24 T ELT) (($ (-1197)) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-1197))) (|has| |#1| (-376))) ELT) (($ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT) (($ (-419 (-558))) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-1058 (-558))) (|has| |#1| (-376))) (|has| |#1| (-38 (-419 (-558))))) ELT)) (-4106 ((|#1| $ (-558)) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-147)) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 11 T ELT)) (-3532 (((-1277 |#1| |#2| |#3|) $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-557)) (|has| |#1| (-376))) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-928)) (|has| |#1| (-376))) (|has| |#1| (-569))) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-558)) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3802 (($ $) NIL (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) ELT)) (-3058 (($) 20 T CONST)) (-3064 (($) 15 T CONST)) (-3069 (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) (-790)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|))) NIL (|has| |#1| (-376)) ELT) (($ $ (-1284 |#2|)) NIL T ELT) (($ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-240)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-916 (-1197))) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-2964 (((-114) $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-2965 (((-114) $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-3084 (((-114) $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-3085 (((-114) $ $) NIL (-3956 (-12 (|has| (-1277 |#1| |#2| |#3|) (-841)) (|has| |#1| (-376))) (-12 (|has| (-1277 |#1| |#2| |#3|) (-860)) (|has| |#1| (-376)))) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT) (($ (-1277 |#1| |#2| |#3|) (-1277 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 22 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ (-1277 |#1| |#2| |#3|)) NIL (|has| |#1| (-376)) ELT) (($ (-1277 |#1| |#2| |#3|) $) NIL (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1247 |#1| |#2| |#3|) (-13 (-1251 |#1| (-1277 |#1| |#2| |#3|)) (-910 $ (-1284 |#2|)) (-10 -8 (-15 -4375 ($ (-1284 |#2|))) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -1247)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1247 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-4387 (((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)) 23 T ELT))) +(((-1248 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4387 ((-1247 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1247 |#1| |#3| |#5|)))) (-1069) (-1069) (-1197) (-1197) |#1| |#2|) (T -1248)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 (-1102)) $) 92 T ELT)) (-4260 (((-1197) $) 126 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-558)) 121 T ELT) (($ $ (-558) (-558)) 120 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 127 T ELT)) (-3911 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3437 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3909 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 198 T ELT)) (-3913 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) 22 T CONST)) (-2962 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4156 (((-419 (-964 |#1|)) $ (-558)) 196 (|has| |#1| (-569)) ELT) (((-419 (-964 |#1|)) $ (-558) (-558)) 195 (|has| |#1| (-569)) ELT)) (-2961 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 176 (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) 91 T ELT)) (-4056 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-558) $) 123 T ELT) (((-558) $ (-558)) 122 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) 124 T ELT)) (-4244 (($ (-1 |#1| (-558)) $) 197 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 185 (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| (-558)) 78 T ELT) (($ $ (-1102) (-558)) 94 T ELT) (($ $ (-660 (-1102)) (-660 (-558))) 93 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4371 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-2101 (($ (-660 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4241 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 193 (-3956 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 175 (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-558)) 118 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 177 (|has| |#1| (-376)) ELT)) (-4372 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT)) (-1786 (((-790) $) 179 (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-558)) 128 T ELT) (($ $ $) 104 (|has| (-558) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) 116 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197))) 114 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197) (-790)) 113 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 112 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-790)) 106 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-4377 (((-558) $) 81 T ELT)) (-3914 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-558)) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-4202 ((|#1| $) 125 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3915 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-558)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1197)) 115 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197))) 111 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197) (-790)) 110 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 109 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT) (($ $ (-790)) 105 (|has| |#1| (-15 * (|#1| (-558) |#1|))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1249 |#1|) (-142) (-1069)) (T -1249)) +((-4247 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1069)) (-4 *1 (-1249 *3)))) (-4244 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1249 *3)) (-4 *3 (-1069)))) (-4156 (*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1249 *4)) (-4 *4 (-1069)) (-4 *4 (-569)) (-5 *2 (-419 (-964 *4))))) (-4156 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-1249 *4)) (-4 *4 (-1069)) (-4 *4 (-569)) (-5 *2 (-419 (-964 *4))))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558)))))) (-4241 (*1 *1 *1 *2) (-3956 (-12 (-5 *2 (-1197)) (-4 *1 (-1249 *3)) (-4 *3 (-1069)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1249 *3)) (-4 *3 (-1069)) (-12 (|has| *3 (-15 -3483 ((-660 *2) *3))) (|has| *3 (-15 -4241 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) +(-13 (-1266 |t#1| (-558)) (-10 -8 (-15 -4247 ($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |t#1|))))) (-15 -4244 ($ (-1 |t#1| (-558)) $)) (IF (|has| |t#1| (-569)) (PROGN (-15 -4156 ((-419 (-964 |t#1|)) $ (-558))) (-15 -4156 ((-419 (-964 |t#1|)) $ (-558) (-558)))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $)) (IF (|has| |t#1| (-15 -4241 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -3483 ((-660 (-1197)) |t#1|))) (-15 -4241 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-558))) (-15 -4241 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1022)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-558)) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-558) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-558) |#1|) . T) ((-298 $ $) |has| (-558) (-1132)) ((-302) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-665 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-736 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-745) . T) ((-910 $ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-916 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-918 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ((-993 |#1| (-558) (-1102)) . T) ((-939) |has| |#1| (-376)) ((-1022) |has| |#1| (-38 (-419 (-558)))) ((-1071 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-558)))) ((-1226) |has| |#1| (-38 (-419 (-558)))) ((-1237) . T) ((-1242) |has| |#1| (-376)) ((-1266 |#1| (-558)) . T)) +((-3605 (((-114) $) 12 T ELT)) (-3574 (((-3 |#3| #1="failed") $) 17 T ELT) (((-3 (-1197) #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT)) (-3573 ((|#3| $) 14 T ELT) (((-1197) $) NIL T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT))) +(((-1250 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-3 (-558) #1="failed") |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3574 ((-3 (-1197) #1#) |#1|)) (-15 -3573 ((-1197) |#1|)) (-15 -3574 ((-3 |#3| #1#) |#1|)) (-15 -3573 (|#3| |#1|)) (-15 -3605 ((-114) |#1|))) (-1251 |#2| |#3|) (-1069) (-1280 |#2|)) (T -1250)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3530 ((|#2| $) 263 (-2960 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3483 (((-660 (-1102)) $) 92 T ELT)) (-4260 (((-1197) $) 126 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-558)) 121 T ELT) (($ $ (-558) (-558)) 120 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 127 T ELT)) (-4160 ((|#2| $) 299 T ELT)) (-4157 (((-3 |#2| "failed") $) 295 T ELT)) (-4158 ((|#2| $) 296 T ELT)) (-3911 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 272 (-2960 (|has| |#2| (-928)) (|has| |#1| (-376))) ELT)) (-4204 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3437 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 269 (-2960 (|has| |#2| (-928)) (|has| |#1| (-376))) ELT)) (-1787 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3909 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4052 (((-558) $) 281 (-2960 (|has| |#2| (-841)) (|has| |#1| (-376))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 198 T ELT)) (-3913 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#2| #2="failed") $) 302 T ELT) (((-3 (-558) #2#) $) 292 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-419 (-558)) #2#) $) 290 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-3 (-1197) #2#) $) 274 (-2960 (|has| |#2| (-1058 (-1197))) (|has| |#1| (-376))) ELT)) (-3573 ((|#2| $) 303 T ELT) (((-558) $) 291 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-419 (-558)) $) 289 (-2960 (|has| |#2| (-1058 (-558))) (|has| |#1| (-376))) ELT) (((-1197) $) 273 (-2960 (|has| |#2| (-1058 (-1197))) (|has| |#1| (-376))) ELT)) (-4159 (($ $) 298 T ELT) (($ (-558) $) 297 T ELT)) (-2962 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4388 (($ $) 77 T ELT)) (-2492 (((-708 |#2|) (-708 $)) 251 (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) 250 (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 249 (-2960 (|has| |#2| (-657 (-558))) (|has| |#1| (-376))) ELT) (((-708 (-558)) (-708 $)) 248 (-2960 (|has| |#2| (-657 (-558))) (|has| |#1| (-376))) ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4156 (((-419 (-964 |#1|)) $ (-558)) 196 (|has| |#1| (-569)) ELT) (((-419 (-964 |#1|)) $ (-558) (-558)) 195 (|has| |#1| (-569)) ELT)) (-3394 (($) 265 (-2960 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-2961 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 176 (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3603 (((-114) $) 279 (-2960 (|has| |#2| (-841)) (|has| |#1| (-376))) ELT)) (-3292 (((-114) $) 91 T ELT)) (-4056 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 257 (-2960 (|has| |#2| (-900 (-391))) (|has| |#1| (-376))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 256 (-2960 (|has| |#2| (-900 (-558))) (|has| |#1| (-376))) ELT)) (-4201 (((-558) $) 123 T ELT) (((-558) $ (-558)) 122 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3396 (($ $) 261 (|has| |#1| (-376)) ELT)) (-3398 ((|#2| $) 259 (|has| |#1| (-376)) ELT)) (-3411 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3864 (((-710 $) $) 293 (-2960 (|has| |#2| (-1172)) (|has| |#1| (-376))) ELT)) (-3604 (((-114) $) 280 (-2960 (|has| |#2| (-841)) (|has| |#1| (-376))) ELT)) (-4206 (($ $ (-937)) 124 T ELT)) (-4244 (($ (-1 |#1| (-558)) $) 197 T ELT)) (-1784 (((-3 (-660 $) #3="failed") (-660 $) $) 185 (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| (-558)) 78 T ELT) (($ $ (-1102) (-558)) 94 T ELT) (($ $ (-660 (-1102)) (-660 (-558))) 93 T ELT)) (-2929 (($ $ $) 288 (-2960 (|has| |#2| (-860)) (|has| |#1| (-376))) ELT)) (-3257 (($ $ $) 287 (-2960 (|has| |#2| (-860)) (|has| |#1| (-376))) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT) (($ (-1 |#2| |#2|) $) 241 (|has| |#1| (-376)) ELT)) (-4371 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2493 (((-708 |#2|) (-1287 $)) 253 (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) 252 (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 247 (-2960 (|has| |#2| (-657 (-558))) (|has| |#1| (-376))) ELT) (((-708 (-558)) (-1287 $)) 246 (-2960 (|has| |#2| (-657 (-558))) (|has| |#1| (-376))) ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-2101 (($ (-660 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4208 (($ (-558) |#2|) 300 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4241 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 193 (-3956 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3865 (($) 294 (-2960 (|has| |#2| (-1172)) (|has| |#1| (-376))) CONST)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 175 (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-3529 (($ $) 264 (-2960 (|has| |#2| (-319)) (|has| |#1| (-376))) ELT)) (-3531 ((|#2| $) 267 (-2960 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 270 (-2960 (|has| |#2| (-928)) (|has| |#1| (-376))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 271 (-2960 (|has| |#2| (-928)) (|has| |#1| (-376))) ELT)) (-4161 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-558)) 118 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 177 (|has| |#1| (-376)) ELT)) (-4372 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1197) |#2|) 240 (-2960 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-660 (-1197)) (-660 |#2|)) 239 (-2960 (|has| |#2| (-526 (-1197) |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-660 (-305 |#2|))) 238 (-2960 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-305 |#2|)) 237 (-2960 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ |#2| |#2|) 236 (-2960 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) 235 (-2960 (|has| |#2| (-321 |#2|)) (|has| |#1| (-376))) ELT)) (-1786 (((-790) $) 179 (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-558)) 128 T ELT) (($ $ $) 104 (|has| (-558) (-1132)) ELT) (($ $ |#2|) 234 (-2960 (|has| |#2| (-298 |#2| |#2|)) (|has| |#1| (-376))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1 |#2| |#2|) (-790)) 243 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 242 (|has| |#1| (-376)) ELT) (($ $) 108 (-3956 (-2960 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) 106 (-3956 (-2960 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) 116 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197))) 114 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1197) (-790)) 113 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 112 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-3395 (($ $) 262 (|has| |#1| (-376)) ELT)) (-3397 ((|#2| $) 260 (|has| |#1| (-376)) ELT)) (-4377 (((-558) $) 81 T ELT)) (-3914 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4401 (((-229) $) 278 (-2960 (|has| |#2| (-1040)) (|has| |#1| (-376))) ELT) (((-391) $) 277 (-2960 (|has| |#2| (-1040)) (|has| |#1| (-376))) ELT) (((-547) $) 276 (-2960 (|has| |#2| (-630 (-547))) (|has| |#1| (-376))) ELT) (((-904 (-391)) $) 255 (-2960 (|has| |#2| (-630 (-904 (-391)))) (|has| |#1| (-376))) ELT) (((-904 (-558)) $) 254 (-2960 (|has| |#2| (-630 (-904 (-558)))) (|has| |#1| (-376))) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 268 (-2960 (-2960 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#1| (-376))) ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 301 T ELT) (($ (-1197)) 275 (-2960 (|has| |#2| (-1058 (-1197))) (|has| |#1| (-376))) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-558)) 76 T ELT)) (-3102 (((-710 $) $) 65 (-3956 (-2960 (-3956 (|has| |#2| (-147)) (-2960 (|has| $ (-147)) (|has| |#2| (-928)))) (|has| |#1| (-376))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 37 T CONST)) (-4202 ((|#1| $) 125 T ELT)) (-3532 ((|#2| $) 266 (-2960 (|has| |#2| (-557)) (|has| |#1| (-376))) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3915 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-558)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3802 (($ $) 282 (-2960 (|has| |#2| (-841)) (|has| |#1| (-376))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1 |#2| |#2|) (-790)) 245 (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) 244 (|has| |#1| (-376)) ELT) (($ $) 107 (-3956 (-2960 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) 105 (-3956 (-2960 (|has| |#2| (-239)) (|has| |#1| (-376))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) 115 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197))) 111 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-1197) (-790)) 110 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 109 (-3956 (-2960 (|has| |#2| (-918 (-1197))) (|has| |#1| (-376))) (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|))))) ELT)) (-2964 (((-114) $ $) 286 (-2960 (|has| |#2| (-860)) (|has| |#1| (-376))) ELT)) (-2965 (((-114) $ $) 284 (-2960 (|has| |#2| (-860)) (|has| |#1| (-376))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-3084 (((-114) $ $) 285 (-2960 (|has| |#2| (-860)) (|has| |#1| (-376))) ELT)) (-3085 (((-114) $ $) 283 (-2960 (|has| |#2| (-860)) (|has| |#1| (-376))) ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 258 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ $ |#2|) 233 (|has| |#1| (-376)) ELT) (($ |#2| $) 232 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1251 |#1| |#2|) (-142) (-1069) (-1280 |t#1|)) (T -1251)) +((-4377 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1280 *3)) (-5 *2 (-558)))) (-4208 (*1 *1 *2 *3) (-12 (-5 *2 (-558)) (-4 *4 (-1069)) (-4 *1 (-1251 *4 *3)) (-4 *3 (-1280 *4)))) (-4160 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1280 *3)))) (-4159 (*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1280 *2)))) (-4159 (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1280 *3)))) (-4158 (*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1280 *3)))) (-4157 (*1 *2 *1) (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1280 *3))))) +(-13 (-1249 |t#1|) (-1058 |t#2|) (-632 |t#2|) (-10 -8 (-15 -4208 ($ (-558) |t#2|)) (-15 -4377 ((-558) $)) (-15 -4160 (|t#2| $)) (-15 -4159 ($ $)) (-15 -4159 ($ (-558) $)) (-15 -4158 (|t#2| $)) (-15 -4157 ((-3 |t#2| "failed") $)) (IF (|has| |t#1| (-376)) (-6 (-1011 |t#2|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-558)) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 |#2|) |has| |#1| (-376)) ((-38 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 |#2| |#2|) |has| |#1| (-376)) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-147))) (|has| |#1| (-147))) ((-149) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-149))) (|has| |#1| (-149))) ((-632 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 (-1197)) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) ((-632 |#1|) |has| |#1| (-175)) ((-632 |#2|) . T) ((-632 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-630 (-229)) -12 (|has| |#1| (-376)) (|has| |#2| (-1040))) ((-630 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-1040))) ((-630 (-547)) -12 (|has| |#1| (-376)) (|has| |#2| (-630 (-547)))) ((-630 (-904 (-391))) -12 (|has| |#1| (-376)) (|has| |#2| (-630 (-904 (-391))))) ((-630 (-904 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-630 (-904 (-558))))) ((-236 $) -3956 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-234 |#2|) |has| |#1| (-376)) ((-240) -3956 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-239) -3956 (|has| |#1| (-15 * (|#1| (-558) |#1|))) (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (-12 (|has| |#1| (-376)) (|has| |#2| (-240)))) ((-274 |#2|) |has| |#1| (-376)) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-558) |#1|) . T) ((-298 |#2| $) -12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ((-298 $ $) |has| (-558) (-1132)) ((-302) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-376) |has| |#1| (-376)) ((-351 |#2|) |has| |#1| (-376)) ((-390 |#2|) |has| |#1| (-376)) ((-412 |#2|) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-526 (-1197) |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1197) |#2|))) ((-526 |#2| |#2|) -12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ((-569) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-665 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 |#2|) |has| |#1| (-376)) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-667 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ((-667 |#1|) . T) ((-667 |#2|) |has| |#1| (-376)) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-659 |#1|) |has| |#1| (-175)) ((-659 |#2|) |has| |#1| (-376)) ((-659 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-657 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ((-657 |#2|) |has| |#1| (-376)) ((-736 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-736 |#1|) |has| |#1| (-175)) ((-736 |#2|) |has| |#1| (-376)) ((-736 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-745) . T) ((-811) -12 (|has| |#1| (-376)) (|has| |#2| (-841))) ((-813) -12 (|has| |#1| (-376)) (|has| |#2| (-841))) ((-815) -12 (|has| |#1| (-376)) (|has| |#2| (-841))) ((-818) -12 (|has| |#1| (-376)) (|has| |#2| (-841))) ((-841) -12 (|has| |#1| (-376)) (|has| |#2| (-841))) ((-859) -12 (|has| |#1| (-376)) (|has| |#2| (-841))) ((-860) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) (-12 (|has| |#1| (-376)) (|has| |#2| (-841)))) ((-863) -3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) (-12 (|has| |#1| (-376)) (|has| |#2| (-841)))) ((-910 $ (-1197)) -3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-916 (-1197))))) ((-916 (-1197)) -3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-916 (-1197))))) ((-918 (-1197)) -3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-916 (-1197))))) ((-900 (-391)) -12 (|has| |#1| (-376)) (|has| |#2| (-900 (-391)))) ((-900 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-900 (-558)))) ((-898 |#2|) |has| |#1| (-376)) ((-928) -12 (|has| |#1| (-376)) (|has| |#2| (-928))) ((-993 |#1| (-558) (-1102)) . T) ((-939) |has| |#1| (-376)) ((-1011 |#2|) |has| |#1| (-376)) ((-1022) |has| |#1| (-38 (-419 (-558)))) ((-1040) -12 (|has| |#1| (-376)) (|has| |#2| (-1040))) ((-1058 (-419 (-558))) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) ((-1058 (-558)) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) ((-1058 (-1197)) -12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) ((-1058 |#2|) . T) ((-1071 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1071 |#1|) . T) ((-1071 |#2|) |has| |#1| (-376)) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1076 |#1|) . T) ((-1076 |#2|) |has| |#1| (-376)) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) -12 (|has| |#1| (-376)) (|has| |#2| (-1172))) ((-1223) |has| |#1| (-38 (-419 (-558)))) ((-1226) |has| |#1| (-38 (-419 (-558)))) ((-1237) . T) ((-1242) |has| |#1| (-376)) ((-1249 |#1|) . T) ((-1266 |#1| (-558)) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 83 T ELT)) (-3530 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 102 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-558)) 111 T ELT) (($ $ (-558) (-558)) 114 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|))) $) 51 T ELT)) (-4160 ((|#2| $) 11 T ELT)) (-4157 (((-3 |#2| #1="failed") $) 35 T ELT)) (-4158 ((|#2| $) 36 T ELT)) (-3911 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 184 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1#) $ $) NIL T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-928))) ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-928))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 180 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4052 (((-558) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-841))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-558)) (|:| |c| |#1|)))) 59 T ELT)) (-3913 (($ $) 212 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 188 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) 159 T ELT) (((-3 (-558) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) ELT) (((-3 (-1197) #1#) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) ELT)) (-3573 ((|#2| $) 158 T ELT) (((-558) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) ELT) (((-419 (-558)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-558)))) ELT) (((-1197) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) ELT)) (-4159 (($ $) 65 T ELT) (($ (-558) $) 28 T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 |#2|) (-708 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ELT) (((-708 (-558)) (-708 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ELT)) (-3886 (((-3 $ #1#) $) 90 T ELT)) (-4156 (((-419 (-964 |#1|)) $ (-558)) 126 (|has| |#1| (-569)) ELT) (((-419 (-964 |#1|)) $ (-558) (-558)) 128 (|has| |#1| (-569)) ELT)) (-3394 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3603 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-841))) ELT)) (-3292 (((-114) $) 76 T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-900 (-558)))) ELT)) (-4201 (((-558) $) 107 T ELT) (((-558) $ (-558)) 109 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3396 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3398 ((|#2| $) 167 (|has| |#1| (-376)) ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3864 (((-710 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1172))) ELT)) (-3604 (((-114) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-841))) ELT)) (-4206 (($ $ (-937)) 150 T ELT)) (-4244 (($ (-1 |#1| (-558)) $) 146 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-558)) 20 T ELT) (($ $ (-1102) (-558)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-558))) NIL T ELT)) (-2929 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) ELT)) (-3257 (($ $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 143 T ELT) (($ (-1 |#2| |#2|) $) NIL (|has| |#1| (-376)) ELT)) (-4371 (($ $) 178 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2493 (((-708 |#2|) (-1287 $)) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ELT) (((-708 (-558)) (-1287 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-657 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4208 (($ (-558) |#2|) 10 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 161 (|has| |#1| (-376)) ELT)) (-4241 (($ $) 230 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 235 (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT)) (-3865 (($) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1172))) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-3529 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-319))) ELT)) (-3531 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-928))) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-928))) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-558)) 140 T ELT)) (-3885 (((-3 $ #1#) $ $) 130 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) 176 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 99 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) ELT) (($ $ (-1197) |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1197) |#2|))) ELT) (($ $ (-660 (-1197)) (-660 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-526 (-1197) |#2|))) ELT) (($ $ (-660 (-305 |#2|))) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-305 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ |#2| |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT) (($ $ (-660 |#2|) (-660 |#2|)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-321 |#2|))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-558)) 105 T ELT) (($ $ $) 92 (|has| (-558) (-1132)) ELT) (($ $ |#2|) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-298 |#2| |#2|))) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) 151 (-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) 155 (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT)) (-3395 (($ $) NIL (|has| |#1| (-376)) ELT)) (-3397 ((|#2| $) 168 (|has| |#1| (-376)) ELT)) (-4377 (((-558) $) 12 T ELT)) (-3914 (($ $) 214 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 190 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 210 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 186 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 182 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4401 (((-229) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1040))) ELT) (((-391) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1040))) ELT) (((-547) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-630 (-547)))) ELT) (((-904 (-391)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-630 (-904 (-558))))) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-928))) ELT)) (-3291 (($ $) 138 T ELT)) (-4375 (((-876) $) 268 T ELT) (($ (-558)) 24 T ELT) (($ |#1|) 22 (|has| |#1| (-175)) ELT) (($ |#2|) 21 T ELT) (($ (-1197)) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-1058 (-1197)))) ELT) (($ (-419 (-558))) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-558)) 87 T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#1| (-376)) (|has| |#2| (-928))) (|has| |#1| (-147)) (-12 (|has| |#1| (-376)) (|has| |#2| (-147)))) ELT)) (-3527 (((-790)) 157 T CONST)) (-4202 ((|#1| $) 104 T ELT)) (-3532 ((|#2| $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-557))) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) 220 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 196 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) 216 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 192 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 224 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-558)) 136 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-558)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 226 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 222 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 218 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3802 (($ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-841))) ELT)) (-3058 (($) 13 T CONST)) (-3064 (($) 18 T CONST)) (-3069 (($ $ (-1 |#2| |#2|) (-790)) NIL (|has| |#1| (-376)) ELT) (($ $ (-1 |#2| |#2|)) NIL (|has| |#1| (-376)) ELT) (($ $) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-790)) NIL (-3956 (-12 (|has| |#1| (-376)) (|has| |#2| (-239))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT) (($ $ (-660 (-1197))) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT) (($ $ (-1197) (-790)) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-3956 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-558) |#1|)))) (-12 (|has| |#1| (-376)) (|has| |#2| (-918 (-1197))))) ELT)) (-2964 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) ELT)) (-2965 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) ELT)) (-3453 (((-114) $ $) 74 T ELT)) (-3084 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) ELT)) (-3085 (((-114) $ $) NIL (-12 (|has| |#1| (-376)) (|has| |#2| (-860))) ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 165 (|has| |#1| (-376)) ELT) (($ |#2| |#2|) 166 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 229 T ELT) (($ $ $) 80 T ELT)) (-4268 (($ $ $) 78 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 86 T ELT) (($ $ (-558)) 162 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 81 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 154 T ELT) (($ $ |#2|) 164 (|has| |#1| (-376)) ELT) (($ |#2| $) 163 (|has| |#1| (-376)) ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1252 |#1| |#2|) (-1251 |#1| |#2|) (-1069) (-1280 |#1|)) (T -1252)) +NIL +((-4163 (((-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))) |#1| (-114)) 13 T ELT)) (-4162 (((-417 |#1|) |#1|) 26 T ELT)) (-4161 (((-417 |#1|) |#1|) 24 T ELT))) +(((-1253 |#1|) (-10 -7 (-15 -4161 ((-417 |#1|) |#1|)) (-15 -4162 ((-417 |#1|) |#1|)) (-15 -4163 ((-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| |#1|) (|:| -2625 (-558)))))) |#1| (-114)))) (-1263 (-558))) (T -1253)) +((-4163 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) (-5 *1 (-1253 *3)) (-4 *3 (-1263 (-558))))) (-4162 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1263 (-558))))) (-4161 (*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1263 (-558)))))) +((-2966 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4165 (($ |#1| |#1|) 11 T ELT) (($ |#1|) 10 T ELT)) (-4387 (((-1175 |#1|) (-1 |#1| |#1|) $) 44 (|has| |#1| (-859)) ELT)) (-3646 ((|#1| $) 15 T ELT)) (-3648 ((|#1| $) 12 T ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-3644 (((-558) $) 19 T ELT)) (-3645 ((|#1| $) 18 T ELT)) (-3647 ((|#1| $) 13 T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4164 (((-114) $) 17 T ELT)) (-4392 (((-1175 |#1|) $) 41 (|has| |#1| (-859)) ELT) (((-1175 |#1|) (-660 $)) 40 (|has| |#1| (-859)) ELT)) (-4401 (($ |#1|) 26 T ELT)) (-4375 (($ (-1109 |#1|)) 25 T ELT) (((-876) $) 37 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-1121)) ELT)) (-4166 (($ |#1| |#1|) 21 T ELT) (($ |#1|) 20 T ELT)) (-3649 (($ $ (-558)) 14 T ELT)) (-3453 (((-114) $ $) 30 (|has| |#1| (-1121)) ELT))) +(((-1254 |#1|) (-13 (-1114 |#1|) (-10 -8 (-15 -4166 ($ |#1|)) (-15 -4165 ($ |#1|)) (-15 -4375 ($ (-1109 |#1|))) (-15 -4164 ((-114) $)) (IF (|has| |#1| (-1121)) (-6 (-1121)) |%noBranch|) (IF (|has| |#1| (-859)) (-6 (-1115 |#1| (-1175 |#1|))) |%noBranch|))) (-1237)) (T -1254)) +((-4166 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-4165 (*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237)))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1109 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) (-4164 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1254 *3)) (-4 *3 (-1237))))) +((-4387 (((-1175 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 23 (|has| |#1| (-859)) ELT) (((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|)) 17 T ELT))) +(((-1255 |#1| |#2|) (-10 -7 (-15 -4387 ((-1254 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) (IF (|has| |#1| (-859)) (-15 -4387 ((-1175 |#2|) (-1 |#2| |#1|) (-1254 |#1|))) |%noBranch|)) (-1237) (-1237)) (T -1255)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-859)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1175 *6)) (-5 *1 (-1255 *5 *6)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1254 *6)) (-5 *1 (-1255 *5 *6))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4196 (((-1287 |#2|) $ (-790)) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4194 (($ (-1191 |#2|)) NIL T ELT)) (-3485 (((-1191 $) $ (-1102)) NIL T ELT) (((-1191 |#2|) $) NIL T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#2| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#2| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#2| (-569)) ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1102))) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4184 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4204 (($ $) NIL (|has| |#2| (-464)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#2| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1#) (-660 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-1787 (((-114) $ $) NIL (|has| |#2| (-376)) ELT)) (-4190 (($ $ (-790)) NIL T ELT)) (-4189 (($ $ (-790)) NIL T ELT)) (-4180 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) NIL (|has| |#2| (-464)) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #1#) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-3 (-1102) #1#) $) NIL T ELT)) (-3573 ((|#2| $) NIL T ELT) (((-419 (-558)) $) NIL (|has| |#2| (-1058 (-419 (-558)))) ELT) (((-558) $) NIL (|has| |#2| (-1058 (-558))) ELT) (((-1102) $) NIL T ELT)) (-4185 (($ $ $ (-1102)) NIL (|has| |#2| (-175)) ELT) ((|#2| $ $) NIL (|has| |#2| (-175)) ELT)) (-2962 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-2492 (((-708 (-558)) (-708 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-708 $) (-1287 $)) NIL T ELT) (((-708 |#2|) (-708 $)) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2961 (($ $ $) NIL (|has| |#2| (-376)) ELT)) (-4188 (($ $ $) NIL T ELT)) (-4182 (($ $ $) NIL (|has| |#2| (-569)) ELT)) (-4181 (((-2 (|:| -4383 |#2|) (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#2| (-376)) ELT)) (-3922 (($ $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#2| (-464)) ELT)) (-3218 (((-660 $) $) NIL T ELT)) (-4152 (((-114) $) NIL (|has| |#2| (-928)) ELT)) (-1803 (($ $ |#2| (-790) $) NIL T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) NIL (-12 (|has| (-1102) (-900 (-391))) (|has| |#2| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) NIL (-12 (|has| (-1102) (-900 (-558))) (|has| |#2| (-900 (-558)))) ELT)) (-4201 (((-790) $ $) NIL (|has| |#2| (-569)) ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3864 (((-710 $) $) NIL (|has| |#2| (-1172)) ELT)) (-3486 (($ (-1191 |#2|) (-1102)) NIL T ELT) (($ (-1191 $) (-1102)) NIL T ELT)) (-4206 (($ $ (-790)) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#2| (-376)) ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#2| (-790)) 18 T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1102)) NIL T ELT) (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL T ELT)) (-3220 (((-790) $) NIL T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-1804 (($ (-1 (-790) (-790)) $) NIL T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4195 (((-1191 |#2|) $) NIL T ELT)) (-3484 (((-3 (-1102) #1#) $) NIL T ELT)) (-2493 (((-708 (-558)) (-1287 $)) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) NIL (|has| |#2| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#2|)) (|:| |vec| (-1287 |#2|))) (-1287 $) $) NIL T ELT) (((-708 |#2|) (-1287 $)) NIL T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4191 (((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790)) NIL T ELT)) (-3223 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3222 (((-3 (-660 $) #1#) $) NIL T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1102)) (|:| -2631 (-790))) #1#) $) NIL T ELT)) (-4241 (($ $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT)) (-3865 (($) NIL (|has| |#2| (-1172)) CONST)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 ((|#2| $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#2| (-464)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#2| (-464)) ELT) (($ $ $) NIL (|has| |#2| (-464)) ELT)) (-4167 (($ $ (-790) |#2| $) NIL T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) NIL (|has| |#2| (-928)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#2| (-928)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#2| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-3885 (((-3 $ #1#) $ |#2|) NIL (|has| |#2| (-569)) ELT) (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#2| (-376)) ELT)) (-4197 (($ $ (-660 (-305 $))) NIL T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1102) |#2|) NIL T ELT) (($ $ (-660 (-1102)) (-660 |#2|)) NIL T ELT) (($ $ (-1102) $) NIL T ELT) (($ $ (-660 (-1102)) (-660 $)) NIL T ELT)) (-1786 (((-790) $) NIL (|has| |#2| (-376)) ELT)) (-4229 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) NIL (|has| |#2| (-569)) ELT) ((|#2| (-419 $) |#2|) NIL (|has| |#2| (-376)) ELT) (((-419 $) $ (-419 $)) NIL (|has| |#2| (-569)) ELT)) (-4193 (((-3 $ #1#) $ (-790)) NIL T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#2| (-376)) ELT)) (-4186 (($ $ (-1102)) NIL (|has| |#2| (-175)) ELT) ((|#2| $) NIL (|has| |#2| (-175)) ELT)) (-4187 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) NIL T ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-4377 (((-790) $) NIL T ELT) (((-790) $ (-1102)) NIL T ELT) (((-660 (-790)) $ (-660 (-1102))) NIL T ELT)) (-4401 (((-904 (-391)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-391)))) (|has| |#2| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) NIL (-12 (|has| (-1102) (-630 (-904 (-558)))) (|has| |#2| (-630 (-904 (-558))))) ELT) (((-547) $) NIL (-12 (|has| (-1102) (-630 (-547))) (|has| |#2| (-630 (-547)))) ELT)) (-3217 ((|#2| $) NIL (|has| |#2| (-464)) ELT) (($ $ (-1102)) NIL (|has| |#2| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) NIL (-12 (|has| $ (-147)) (|has| |#2| (-928))) ELT)) (-4183 (((-3 $ #1#) $ $) NIL (|has| |#2| (-569)) ELT) (((-3 (-419 $) #1#) (-419 $) $) NIL (|has| |#2| (-569)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1102)) NIL T ELT) (($ (-1284 |#1|)) 20 T ELT) (($ (-419 (-558))) NIL (-3956 (|has| |#2| (-38 (-419 (-558)))) (|has| |#2| (-1058 (-419 (-558))))) ELT) (($ $) NIL (|has| |#2| (-569)) ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-790)) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-3102 (((-710 $) $) NIL (-3956 (-12 (|has| $ (-147)) (|has| |#2| (-928))) (|has| |#2| (-147))) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| |#2| (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL (|has| |#2| (-569)) ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) 14 T CONST)) (-3069 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) NIL T ELT) (($ $) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) NIL T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1197)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) NIL (|has| |#2| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (|has| |#2| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#2|) NIL (|has| |#2| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-419 (-558))) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) NIL (|has| |#2| (-38 (-419 (-558)))) ELT) (($ |#2| $) NIL T ELT) (($ $ |#2|) NIL T ELT))) +(((-1256 |#1| |#2|) (-13 (-1263 |#2|) (-632 (-1284 |#1|)) (-10 -8 (-15 -4167 ($ $ (-790) |#2| $)))) (-1197) (-1069)) (T -1256)) +((-4167 (*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1256 *4 *3)) (-14 *4 (-1197)) (-4 *3 (-1069))))) +((-4387 (((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)) 15 T ELT))) +(((-1257 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 ((-1256 |#3| |#4|) (-1 |#4| |#2|) (-1256 |#1| |#2|)))) (-1197) (-1069) (-1197) (-1069)) (T -1257)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1256 *5 *6)) (-14 *5 (-1197)) (-4 *6 (-1069)) (-4 *8 (-1069)) (-5 *2 (-1256 *7 *8)) (-5 *1 (-1257 *5 *6 *7 *8)) (-14 *7 (-1197))))) +((-4170 (((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|) 21 T ELT)) (-4168 ((|#1| |#3|) 13 T ELT)) (-4169 ((|#3| |#3|) 19 T ELT))) +(((-1258 |#1| |#2| |#3|) (-10 -7 (-15 -4168 (|#1| |#3|)) (-15 -4169 (|#3| |#3|)) (-15 -4170 ((-2 (|:| |num| |#3|) (|:| |den| |#1|)) |#3|))) (-569) (-1011 |#1|) (-1263 |#2|)) (T -1258)) +((-4170 (*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1258 *4 *5 *3)) (-4 *3 (-1263 *5)))) (-4169 (*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *4 (-1011 *3)) (-5 *1 (-1258 *3 *4 *2)) (-4 *2 (-1263 *4)))) (-4168 (*1 *2 *3) (-12 (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-1258 *2 *4 *3)) (-4 *3 (-1263 *4))))) +((-4172 (((-3 |#2| #1="failed") |#2| (-790) |#1|) 35 T ELT)) (-4171 (((-3 |#2| #1#) |#2| (-790)) 36 T ELT)) (-4174 (((-3 (-2 (|:| -3539 |#2|) (|:| -3538 |#2|)) #1#) |#2|) 50 T ELT)) (-4175 (((-660 |#2|) |#2|) 52 T ELT)) (-4173 (((-3 |#2| #1#) |#2| |#2|) 46 T ELT))) +(((-1259 |#1| |#2|) (-10 -7 (-15 -4171 ((-3 |#2| #1="failed") |#2| (-790))) (-15 -4172 ((-3 |#2| #1#) |#2| (-790) |#1|)) (-15 -4173 ((-3 |#2| #1#) |#2| |#2|)) (-15 -4174 ((-3 (-2 (|:| -3539 |#2|) (|:| -3538 |#2|)) #1#) |#2|)) (-15 -4175 ((-660 |#2|) |#2|))) (-13 (-569) (-149)) (-1263 |#1|)) (T -1259)) +((-4175 (*1 *2 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-660 *3)) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1263 *4)))) (-4174 (*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-2 (|:| -3539 *3) (|:| -3538 *3))) (-5 *1 (-1259 *4 *3)) (-4 *3 (-1263 *4)))) (-4173 (*1 *2 *2 *2) (|partial| -12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1259 *3 *2)) (-4 *2 (-1263 *3)))) (-4172 (*1 *2 *2 *3 *4) (|partial| -12 (-5 *3 (-790)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4)))) (-4171 (*1 *2 *2 *3) (|partial| -12 (-5 *3 (-790)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4))))) +((-4176 (((-3 (-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) "failed") |#2| |#2|) 30 T ELT))) +(((-1260 |#1| |#2|) (-10 -7 (-15 -4176 ((-3 (-2 (|:| -2183 |#2|) (|:| -3302 |#2|)) "failed") |#2| |#2|))) (-569) (-1263 |#1|)) (T -1260)) +((-4176 (*1 *2 *3 *3) (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-1260 *4 *3)) (-4 *3 (-1263 *4))))) +((-4177 ((|#2| |#2| |#2|) 22 T ELT)) (-4178 ((|#2| |#2| |#2|) 36 T ELT)) (-4179 ((|#2| |#2| |#2| (-790) (-790)) 44 T ELT))) +(((-1261 |#1| |#2|) (-10 -7 (-15 -4177 (|#2| |#2| |#2|)) (-15 -4178 (|#2| |#2| |#2|)) (-15 -4179 (|#2| |#2| |#2| (-790) (-790)))) (-1069) (-1263 |#1|)) (T -1261)) +((-4179 (*1 *2 *2 *2 *3 *3) (-12 (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *1 (-1261 *4 *2)) (-4 *2 (-1263 *4)))) (-4178 (*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1263 *3)))) (-4177 (*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1263 *3))))) +((-4196 (((-1287 |#2|) $ (-790)) 129 T ELT)) (-3483 (((-660 (-1102)) $) 16 T ELT)) (-4194 (($ (-1191 |#2|)) 80 T ELT)) (-3219 (((-790) $) NIL T ELT) (((-790) $ (-660 (-1102))) 21 T ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 216 T ELT)) (-4204 (($ $) 206 T ELT)) (-4400 (((-417 $) $) 204 T ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 95 T ELT)) (-4190 (($ $ (-790)) 84 T ELT)) (-4189 (($ $ (-790)) 86 T ELT)) (-4180 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 157 T ELT)) (-3574 (((-3 |#2| #1#) $) 132 T ELT) (((-3 (-419 (-558)) #1#) $) NIL T ELT) (((-3 (-558) #1#) $) NIL T ELT) (((-3 (-1102) #1#) $) NIL T ELT)) (-3573 ((|#2| $) 130 T ELT) (((-419 (-558)) $) NIL T ELT) (((-558) $) NIL T ELT) (((-1102) $) NIL T ELT)) (-4182 (($ $ $) 182 T ELT)) (-4181 (((-2 (|:| -4383 |#2|) (|:| -2183 $) (|:| -3302 $)) $ $) 184 T ELT)) (-4201 (((-790) $ $) 201 T ELT)) (-3864 (((-710 $) $) 149 T ELT)) (-3293 (($ |#2| (-790)) NIL T ELT) (($ $ (-1102) (-790)) 59 T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-3220 (((-790) $) NIL T ELT) (((-790) $ (-1102)) 54 T ELT) (((-660 (-790)) $ (-660 (-1102))) 55 T ELT)) (-4195 (((-1191 |#2|) $) 72 T ELT)) (-3484 (((-3 (-1102) #1#) $) 52 T ELT)) (-4191 (((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790)) 83 T ELT)) (-4241 (($ $) 231 T ELT)) (-3865 (($) 134 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 213 T ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 101 T ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 99 T ELT)) (-4161 (((-417 $) $) 120 T ELT)) (-4197 (($ $ (-660 (-305 $))) 51 T ELT) (($ $ (-305 $)) NIL T ELT) (($ $ $ $) NIL T ELT) (($ $ (-660 $) (-660 $)) NIL T ELT) (($ $ (-1102) |#2|) 39 T ELT) (($ $ (-660 (-1102)) (-660 |#2|)) 36 T ELT) (($ $ (-1102) $) 32 T ELT) (($ $ (-660 (-1102)) (-660 $)) 30 T ELT)) (-1786 (((-790) $) 219 T ELT)) (-4229 ((|#2| $ |#2|) NIL T ELT) (($ $ $) NIL T ELT) (((-419 $) (-419 $) (-419 $)) 176 T ELT) ((|#2| (-419 $) |#2|) 218 T ELT) (((-419 $) $ (-419 $)) 200 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 224 T ELT)) (-4187 (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102))) NIL T ELT) (($ $ (-1102)) 169 T ELT) (($ $) 167 T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|)) 166 T ELT) (($ $ (-1 |#2| |#2|) (-790)) NIL T ELT) (($ $ (-1 |#2| |#2|) $) 161 T ELT) (($ $ (-1197)) NIL T ELT) (($ $ (-660 (-1197))) NIL T ELT) (($ $ (-1197) (-790)) NIL T ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL T ELT)) (-4377 (((-790) $) NIL T ELT) (((-790) $ (-1102)) 17 T ELT) (((-660 (-790)) $ (-660 (-1102))) 23 T ELT)) (-3217 ((|#2| $) NIL T ELT) (($ $ (-1102)) 151 T ELT)) (-4183 (((-3 $ #1#) $ $) 192 T ELT) (((-3 (-419 $) #1#) (-419 $) $) 188 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#2|) NIL T ELT) (($ (-1102)) 64 T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT))) +(((-1262 |#1| |#2|) (-10 -7 (-15 -4375 (|#1| |#1|)) (-15 -3108 ((-1191 |#1|) (-1191 |#1|) (-1191 |#1|))) (-15 -4187 (|#1| |#1| (-660 (-1197)) (-660 (-790)))) (-15 -4187 (|#1| |#1| (-1197) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1197)))) (-15 -4187 (|#1| |#1| (-1197))) (-15 -4400 ((-417 |#1|) |#1|)) (-15 -4204 (|#1| |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -3865 (|#1|)) (-15 -3864 ((-710 |#1|) |#1|)) (-15 -4229 ((-419 |#1|) |#1| (-419 |#1|))) (-15 -1786 ((-790) |#1|)) (-15 -3279 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -4241 (|#1| |#1|)) (-15 -4229 (|#2| (-419 |#1|) |#2|)) (-15 -4180 ((-2 (|:| |primePart| |#1|) (|:| |commonPart| |#1|)) |#1| |#1|)) (-15 -4181 ((-2 (|:| -4383 |#2|) (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| |#1|)) (-15 -4182 (|#1| |#1| |#1|)) (-15 -4183 ((-3 (-419 |#1|) #1="failed") (-419 |#1|) |#1|)) (-15 -4183 ((-3 |#1| #1#) |#1| |#1|)) (-15 -4201 ((-790) |#1| |#1|)) (-15 -4229 ((-419 |#1|) (-419 |#1|) (-419 |#1|))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) |#1|)) (-15 -4189 (|#1| |#1| (-790))) (-15 -4190 (|#1| |#1| (-790))) (-15 -4191 ((-2 (|:| -2183 |#1|) (|:| -3302 |#1|)) |#1| (-790))) (-15 -4194 (|#1| (-1191 |#2|))) (-15 -4195 ((-1191 |#2|) |#1|)) (-15 -4196 ((-1287 |#2|) |#1| (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|) (-790))) (-15 -4187 (|#1| |#1| (-1 |#2| |#2|))) (-15 -4187 (|#1| |#1| (-790))) (-15 -4187 (|#1| |#1|)) (-15 -4229 (|#1| |#1| |#1|)) (-15 -4229 (|#2| |#1| |#2|)) (-15 -4161 ((-417 |#1|) |#1|)) (-15 -3107 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3106 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3105 ((-417 (-1191 |#1|)) (-1191 |#1|))) (-15 -3104 ((-3 (-660 (-1191 |#1|)) #1#) (-660 (-1191 |#1|)) (-1191 |#1|))) (-15 -3217 (|#1| |#1| (-1102))) (-15 -3483 ((-660 (-1102)) |#1|)) (-15 -3219 ((-790) |#1| (-660 (-1102)))) (-15 -3219 ((-790) |#1|)) (-15 -3293 (|#1| |#1| (-660 (-1102)) (-660 (-790)))) (-15 -3293 (|#1| |#1| (-1102) (-790))) (-15 -3220 ((-660 (-790)) |#1| (-660 (-1102)))) (-15 -3220 ((-790) |#1| (-1102))) (-15 -3484 ((-3 (-1102) #1#) |#1|)) (-15 -4377 ((-660 (-790)) |#1| (-660 (-1102)))) (-15 -4377 ((-790) |#1| (-1102))) (-15 -4375 (|#1| (-1102))) (-15 -3574 ((-3 (-1102) #1#) |#1|)) (-15 -3573 ((-1102) |#1|)) (-15 -4197 (|#1| |#1| (-660 (-1102)) (-660 |#1|))) (-15 -4197 (|#1| |#1| (-1102) |#1|)) (-15 -4197 (|#1| |#1| (-660 (-1102)) (-660 |#2|))) (-15 -4197 (|#1| |#1| (-1102) |#2|)) (-15 -4197 (|#1| |#1| (-660 |#1|) (-660 |#1|))) (-15 -4197 (|#1| |#1| |#1| |#1|)) (-15 -4197 (|#1| |#1| (-305 |#1|))) (-15 -4197 (|#1| |#1| (-660 (-305 |#1|)))) (-15 -4377 ((-790) |#1|)) (-15 -3293 (|#1| |#2| (-790))) (-15 -3574 ((-3 (-558) #1#) |#1|)) (-15 -3573 ((-558) |#1|)) (-15 -3574 ((-3 (-419 (-558)) #1#) |#1|)) (-15 -3573 ((-419 (-558)) |#1|)) (-15 -3573 (|#2| |#1|)) (-15 -3574 ((-3 |#2| #1#) |#1|)) (-15 -4375 (|#1| |#2|)) (-15 -3220 ((-790) |#1|)) (-15 -3217 (|#2| |#1|)) (-15 -4187 (|#1| |#1| (-1102))) (-15 -4187 (|#1| |#1| (-660 (-1102)))) (-15 -4187 (|#1| |#1| (-1102) (-790))) (-15 -4187 (|#1| |#1| (-660 (-1102)) (-660 (-790)))) (-15 -4375 (|#1| (-558))) (-15 -4375 ((-876) |#1|))) (-1263 |#2|) (-1069)) (T -1262)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4196 (((-1287 |#1|) $ (-790)) 268 T ELT)) (-3483 (((-660 (-1102)) $) 120 T ELT)) (-4194 (($ (-1191 |#1|)) 266 T ELT)) (-3485 (((-1191 $) $ (-1102)) 135 T ELT) (((-1191 |#1|) $) 134 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 97 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 98 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 100 (|has| |#1| (-569)) ELT)) (-3219 (((-790) $) 122 T ELT) (((-790) $ (-660 (-1102))) 121 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4184 (($ $ $) 253 (|has| |#1| (-569)) ELT)) (-3107 (((-417 (-1191 $)) (-1191 $)) 110 (|has| |#1| (-928)) ELT)) (-4204 (($ $) 108 (|has| |#1| (-464)) ELT)) (-4400 (((-417 $) $) 107 (|has| |#1| (-464)) ELT)) (-3104 (((-3 (-660 (-1191 $)) #1="failed") (-660 (-1191 $)) (-1191 $)) 113 (|has| |#1| (-928)) ELT)) (-1787 (((-114) $ $) 238 (|has| |#1| (-376)) ELT)) (-4190 (($ $ (-790)) 261 T ELT)) (-4189 (($ $ (-790)) 260 T ELT)) (-4180 (((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $) 248 (|has| |#1| (-464)) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| #2="failed") $) 178 T ELT) (((-3 (-419 (-558)) #2#) $) 175 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-3 (-558) #2#) $) 173 (|has| |#1| (-1058 (-558))) ELT) (((-3 (-1102) #2#) $) 150 T ELT)) (-3573 ((|#1| $) 177 T ELT) (((-419 (-558)) $) 176 (|has| |#1| (-1058 (-419 (-558)))) ELT) (((-558) $) 174 (|has| |#1| (-1058 (-558))) ELT) (((-1102) $) 151 T ELT)) (-4185 (($ $ $ (-1102)) 118 (|has| |#1| (-175)) ELT) ((|#1| $ $) 256 (|has| |#1| (-175)) ELT)) (-2962 (($ $ $) 242 (|has| |#1| (-376)) ELT)) (-4388 (($ $) 168 T ELT)) (-2492 (((-708 (-558)) (-708 $)) 146 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-708 $) (-1287 $)) 145 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-708 $) (-1287 $)) 144 T ELT) (((-708 |#1|) (-708 $)) 143 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 241 (|has| |#1| (-376)) ELT)) (-4188 (($ $ $) 259 T ELT)) (-4182 (($ $ $) 250 (|has| |#1| (-569)) ELT)) (-4181 (((-2 (|:| -4383 |#1|) (|:| -2183 $) (|:| -3302 $)) $ $) 249 (|has| |#1| (-569)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 236 (|has| |#1| (-376)) ELT)) (-3922 (($ $) 190 (|has| |#1| (-464)) ELT) (($ $ (-1102)) 115 (|has| |#1| (-464)) ELT)) (-3218 (((-660 $) $) 119 T ELT)) (-4152 (((-114) $) 106 (|has| |#1| (-928)) ELT)) (-1803 (($ $ |#1| (-790) $) 186 T ELT)) (-3196 (((-902 (-391) $) $ (-904 (-391)) (-902 (-391) $)) 94 (-12 (|has| (-1102) (-900 (-391))) (|has| |#1| (-900 (-391)))) ELT) (((-902 (-558) $) $ (-904 (-558)) (-902 (-558) $)) 93 (-12 (|has| (-1102) (-900 (-558))) (|has| |#1| (-900 (-558)))) ELT)) (-4201 (((-790) $ $) 254 (|has| |#1| (-569)) ELT)) (-2640 (((-114) $) 40 T ELT)) (-2648 (((-790) $) 183 T ELT)) (-3864 (((-710 $) $) 234 (|has| |#1| (-1172)) ELT)) (-3486 (($ (-1191 |#1|) (-1102)) 127 T ELT) (($ (-1191 $) (-1102)) 126 T ELT)) (-4206 (($ $ (-790)) 265 T ELT)) (-1784 (((-3 (-660 $) #3="failed") (-660 $) $) 245 (|has| |#1| (-376)) ELT)) (-3221 (((-660 $) $) 136 T ELT)) (-4366 (((-114) $) 166 T ELT)) (-3293 (($ |#1| (-790)) 167 T ELT) (($ $ (-1102) (-790)) 129 T ELT) (($ $ (-660 (-1102)) (-660 (-790))) 128 T ELT)) (-4192 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $ (-1102)) 130 T ELT) (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 263 T ELT)) (-3220 (((-790) $) 184 T ELT) (((-790) $ (-1102)) 132 T ELT) (((-660 (-790)) $ (-660 (-1102))) 131 T ELT)) (-1804 (($ (-1 (-790) (-790)) $) 185 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 165 T ELT)) (-4195 (((-1191 |#1|) $) 267 T ELT)) (-3484 (((-3 (-1102) #4="failed") $) 133 T ELT)) (-2493 (((-708 (-558)) (-1287 $)) 148 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 (-558))) (|:| |vec| (-1287 (-558)))) (-1287 $) $) 147 (|has| |#1| (-657 (-558))) ELT) (((-2 (|:| -1782 (-708 |#1|)) (|:| |vec| (-1287 |#1|))) (-1287 $) $) 142 T ELT) (((-708 |#1|) (-1287 $)) 141 T ELT)) (-3294 (($ $) 163 T ELT)) (-3591 ((|#1| $) 162 T ELT)) (-2101 (($ (-660 $)) 104 (|has| |#1| (-464)) ELT) (($ $ $) 103 (|has| |#1| (-464)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-4191 (((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790)) 262 T ELT)) (-3223 (((-3 (-660 $) #4#) $) 124 T ELT)) (-3222 (((-3 (-660 $) #4#) $) 125 T ELT)) (-3224 (((-3 (-2 (|:| |var| (-1102)) (|:| -2631 (-790))) #4#) $) 123 T ELT)) (-4241 (($ $) 246 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3865 (($) 233 (|has| |#1| (-1172)) CONST)) (-3660 (((-1140) $) 12 T ELT)) (-2004 (((-114) $) 180 T ELT)) (-2003 ((|#1| $) 181 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 105 (|has| |#1| (-464)) ELT)) (-3561 (($ (-660 $)) 102 (|has| |#1| (-464)) ELT) (($ $ $) 101 (|has| |#1| (-464)) ELT)) (-3105 (((-417 (-1191 $)) (-1191 $)) 112 (|has| |#1| (-928)) ELT)) (-3106 (((-417 (-1191 $)) (-1191 $)) 111 (|has| |#1| (-928)) ELT)) (-4161 (((-417 $) $) 109 (|has| |#1| (-928)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #3#) $ $ $) 244 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 243 (|has| |#1| (-376)) ELT)) (-3885 (((-3 $ "failed") $ |#1|) 188 (|has| |#1| (-569)) ELT) (((-3 $ "failed") $ $) 96 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 237 (|has| |#1| (-376)) ELT)) (-4197 (($ $ (-660 (-305 $))) 159 T ELT) (($ $ (-305 $)) 158 T ELT) (($ $ $ $) 157 T ELT) (($ $ (-660 $) (-660 $)) 156 T ELT) (($ $ (-1102) |#1|) 155 T ELT) (($ $ (-660 (-1102)) (-660 |#1|)) 154 T ELT) (($ $ (-1102) $) 153 T ELT) (($ $ (-660 (-1102)) (-660 $)) 152 T ELT)) (-1786 (((-790) $) 239 (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ |#1|) 278 T ELT) (($ $ $) 277 T ELT) (((-419 $) (-419 $) (-419 $)) 255 (|has| |#1| (-569)) ELT) ((|#1| (-419 $) |#1|) 247 (|has| |#1| (-376)) ELT) (((-419 $) $ (-419 $)) 235 (|has| |#1| (-569)) ELT)) (-4193 (((-3 $ "failed") $ (-790)) 264 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 240 (|has| |#1| (-376)) ELT)) (-4186 (($ $ (-1102)) 117 (|has| |#1| (-175)) ELT) ((|#1| $) 257 (|has| |#1| (-175)) ELT)) (-4187 (($ $ (-660 (-1102)) (-660 (-790))) 49 T ELT) (($ $ (-1102) (-790)) 48 T ELT) (($ $ (-660 (-1102))) 47 T ELT) (($ $ (-1102)) 45 T ELT) (($ $) 276 T ELT) (($ $ (-790)) 274 T ELT) (($ $ (-1 |#1| |#1|)) 272 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 271 T ELT) (($ $ (-1 |#1| |#1|) $) 258 T ELT) (($ $ (-1197)) 232 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 230 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 229 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 228 (|has| |#1| (-918 (-1197))) ELT)) (-4377 (((-790) $) 164 T ELT) (((-790) $ (-1102)) 140 T ELT) (((-660 (-790)) $ (-660 (-1102))) 139 T ELT)) (-4401 (((-904 (-391)) $) 92 (-12 (|has| (-1102) (-630 (-904 (-391)))) (|has| |#1| (-630 (-904 (-391))))) ELT) (((-904 (-558)) $) 91 (-12 (|has| (-1102) (-630 (-904 (-558)))) (|has| |#1| (-630 (-904 (-558))))) ELT) (((-547) $) 90 (-12 (|has| (-1102) (-630 (-547))) (|has| |#1| (-630 (-547)))) ELT)) (-3217 ((|#1| $) 189 (|has| |#1| (-464)) ELT) (($ $ (-1102)) 116 (|has| |#1| (-464)) ELT)) (-3103 (((-3 (-1287 $) #1#) (-708 $)) 114 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) ELT)) (-4183 (((-3 $ "failed") $ $) 252 (|has| |#1| (-569)) ELT) (((-3 (-419 $) "failed") (-419 $) $) 251 (|has| |#1| (-569)) ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 179 T ELT) (($ (-1102)) 149 T ELT) (($ (-419 (-558))) 88 (-3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ELT) (($ $) 95 (|has| |#1| (-569)) ELT)) (-4246 (((-660 |#1|) $) 182 T ELT)) (-4106 ((|#1| $ (-790)) 169 T ELT) (($ $ (-1102) (-790)) 138 T ELT) (($ $ (-660 (-1102)) (-660 (-790))) 137 T ELT)) (-3102 (((-710 $) $) 89 (-3956 (-2960 (|has| $ (-147)) (|has| |#1| (-928))) (|has| |#1| (-147))) ELT)) (-3527 (((-790)) 37 T CONST)) (-1802 (($ $ $ (-790)) 187 (|has| |#1| (-175)) ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 99 (|has| |#1| (-569)) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-660 (-1102)) (-660 (-790))) 52 T ELT) (($ $ (-1102) (-790)) 51 T ELT) (($ $ (-660 (-1102))) 50 T ELT) (($ $ (-1102)) 46 T ELT) (($ $) 275 T ELT) (($ $ (-790)) 273 T ELT) (($ $ (-1 |#1| |#1|)) 270 T ELT) (($ $ (-1 |#1| |#1|) (-790)) 269 T ELT) (($ $ (-1197)) 231 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197))) 227 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-1197) (-790)) 226 (|has| |#1| (-918 (-1197))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 225 (|has| |#1| (-918 (-1197))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 170 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ (-419 (-558)) $) 171 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ |#1| $) 161 T ELT) (($ $ |#1|) 160 T ELT))) +(((-1263 |#1|) (-142) (-1069)) (T -1263)) +((-4196 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-1263 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4)))) (-4195 (*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-5 *2 (-1191 *3)))) (-4194 (*1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1069)) (-4 *1 (-1263 *3)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-4193 (*1 *1 *1 *2) (|partial| -12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-4192 (*1 *2 *1 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1263 *3)))) (-4191 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1263 *4)))) (-4190 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-4189 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-4188 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)))) (-4187 (*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) (-4186 (*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-175)))) (-4185 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-175)))) (-4229 (*1 *2 *2 *2) (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-569)))) (-4201 (*1 *2 *1 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-569)) (-5 *2 (-790)))) (-4184 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-569)))) (-4183 (*1 *1 *1 *1) (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-569)))) (-4183 (*1 *2 *2 *1) (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-569)))) (-4182 (*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-569)))) (-4181 (*1 *2 *1 *1) (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| -4383 *3) (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1263 *3)))) (-4180 (*1 *2 *1 *1) (-12 (-4 *3 (-464)) (-4 *3 (-1069)) (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1263 *3)))) (-4229 (*1 *2 *3 *2) (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558))))))) +(-13 (-968 |t#1| (-790) (-1102)) (-298 |t#1| |t#1|) (-298 $ $) (-240) (-234 |t#1|) (-10 -8 (-15 -4196 ((-1287 |t#1|) $ (-790))) (-15 -4195 ((-1191 |t#1|) $)) (-15 -4194 ($ (-1191 |t#1|))) (-15 -4206 ($ $ (-790))) (-15 -4193 ((-3 $ "failed") $ (-790))) (-15 -4192 ((-2 (|:| -2183 $) (|:| -3302 $)) $ $)) (-15 -4191 ((-2 (|:| -2183 $) (|:| -3302 $)) $ (-790))) (-15 -4190 ($ $ (-790))) (-15 -4189 ($ $ (-790))) (-15 -4188 ($ $ $)) (-15 -4187 ($ $ (-1 |t#1| |t#1|) $)) (IF (|has| |t#1| (-1172)) (-6 (-1172)) |%noBranch|) (IF (|has| |t#1| (-175)) (PROGN (-15 -4186 (|t#1| $)) (-15 -4185 (|t#1| $ $))) |%noBranch|) (IF (|has| |t#1| (-569)) (PROGN (-6 (-298 (-419 $) (-419 $))) (-15 -4229 ((-419 $) (-419 $) (-419 $))) (-15 -4201 ((-790) $ $)) (-15 -4184 ($ $ $)) (-15 -4183 ((-3 $ "failed") $ $)) (-15 -4183 ((-3 (-419 $) "failed") (-419 $) $)) (-15 -4182 ($ $ $)) (-15 -4181 ((-2 (|:| -4383 |t#1|) (|:| -2183 $) (|:| -3302 $)) $ $))) |%noBranch|) (IF (|has| |t#1| (-464)) (-15 -4180 ((-2 (|:| |primePart| $) (|:| |commonPart| $)) $ $)) |%noBranch|) (IF (|has| |t#1| (-376)) (PROGN (-6 (-319)) (-6 -4420) (-15 -4229 (|t#1| (-419 $) |t#1|))) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (-15 -4241 ($ $)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-790)) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-1058 (-419 (-558)))) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 (-1102)) . T) ((-632 |#1|) . T) ((-632 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-630 (-547)) -12 (|has| |#1| (-630 (-547))) (|has| (-1102) (-630 (-547)))) ((-630 (-904 (-391))) -12 (|has| |#1| (-630 (-904 (-391)))) (|has| (-1102) (-630 (-904 (-391))))) ((-630 (-904 (-558))) -12 (|has| |#1| (-630 (-904 (-558)))) (|has| (-1102) (-630 (-904 (-558))))) ((-236 $) . T) ((-234 |#1|) . T) ((-240) . T) ((-239) . T) ((-274 |#1|) . T) ((-298 (-419 $) (-419 $)) |has| |#1| (-569)) ((-298 |#1| |#1|) . T) ((-298 $ $) . T) ((-302) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-321 $) . T) ((-338 |#1| (-790)) . T) ((-390 |#1|) . T) ((-424 |#1|) . T) ((-464) -3956 (|has| |#1| (-928)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-526 (-1102) |#1|) . T) ((-526 (-1102) $) . T) ((-526 $ $) . T) ((-569) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 (-558)) |has| |#1| (-657 (-558))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-657 (-558)) |has| |#1| (-657 (-558))) ((-657 |#1|) . T) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376))) ((-745) . T) ((-910 $ (-1102)) . T) ((-910 $ (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-916 (-1102)) . T) ((-916 (-1197)) |has| |#1| (-916 (-1197))) ((-918 (-1102)) . T) ((-918 (-1197)) -3956 (|has| |#1| (-918 (-1197))) (|has| |#1| (-916 (-1197)))) ((-900 (-391)) -12 (|has| |#1| (-900 (-391))) (|has| (-1102) (-900 (-391)))) ((-900 (-558)) -12 (|has| |#1| (-900 (-558))) (|has| (-1102) (-900 (-558)))) ((-968 |#1| (-790) (-1102)) . T) ((-928) |has| |#1| (-928)) ((-939) |has| |#1| (-376)) ((-1058 (-419 (-558))) |has| |#1| (-1058 (-419 (-558)))) ((-1058 (-558)) |has| |#1| (-1058 (-558))) ((-1058 (-1102)) . T) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-928)) (|has| |#1| (-569)) (|has| |#1| (-464)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1172) |has| |#1| (-1172)) ((-1237) . T) ((-1242) |has| |#1| (-928))) +((-4387 ((|#4| (-1 |#3| |#1|) |#2|) 22 T ELT))) +(((-1264 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#4| (-1 |#3| |#1|) |#2|))) (-1069) (-1263 |#1|) (-1069) (-1263 |#3|)) (T -1264)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1263 *6)) (-5 *1 (-1264 *5 *4 *6 *2)) (-4 *4 (-1263 *5))))) +((-3483 (((-660 (-1102)) $) 34 T ELT)) (-4388 (($ $) 31 T ELT)) (-3293 (($ |#2| |#3|) NIL T ELT) (($ $ (-1102) |#3|) 28 T ELT) (($ $ (-660 (-1102)) (-660 |#3|)) 27 T ELT)) (-3294 (($ $) 14 T ELT)) (-3591 ((|#2| $) 12 T ELT)) (-4377 ((|#3| $) 10 T ELT))) +(((-1265 |#1| |#2| |#3|) (-10 -7 (-15 -3483 ((-660 (-1102)) |#1|)) (-15 -3293 (|#1| |#1| (-660 (-1102)) (-660 |#3|))) (-15 -3293 (|#1| |#1| (-1102) |#3|)) (-15 -4388 (|#1| |#1|)) (-15 -3293 (|#1| |#2| |#3|)) (-15 -4377 (|#3| |#1|)) (-15 -3294 (|#1| |#1|)) (-15 -3591 (|#2| |#1|))) (-1266 |#2| |#3|) (-1069) (-813)) (T -1265)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 (-1102)) $) 92 T ELT)) (-4260 (((-1197) $) 126 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4200 (($ $ |#2|) 121 T ELT) (($ $ |#2| |#2|) 120 T ELT)) (-4203 (((-1175 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) 127 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-3292 (((-114) $) 91 T ELT)) (-4201 ((|#2| $) 123 T ELT) ((|#2| $ |#2|) 122 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-4206 (($ $ (-937)) 124 T ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| |#2|) 78 T ELT) (($ $ (-1102) |#2|) 94 T ELT) (($ $ (-660 (-1102)) (-660 |#2|)) 93 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4198 (($ $ |#2|) 118 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) ELT)) (-4229 ((|#1| $ |#2|) 128 T ELT) (($ $ $) 104 (|has| |#2| (-1132)) ELT)) (-4187 (($ $ (-1197)) 116 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1197))) 114 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1197) (-790)) 113 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 112 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-790)) 106 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-4377 ((|#2| $) 81 T ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4106 ((|#1| $ |#2|) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-4202 ((|#1| $) 125 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-4199 ((|#1| $ |#2|) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| |#2|))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1197)) 115 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1197))) 111 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-1197) (-790)) 110 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 109 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT) (($ $ (-790)) 105 (|has| |#1| (-15 * (|#1| |#2| |#1|))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1266 |#1| |#2|) (-142) (-1069) (-813)) (T -1266)) +((-4203 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-1175 (-2 (|:| |k| *4) (|:| |c| *3)))))) (-4260 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-1197)))) (-4202 (*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)))) (-4201 (*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-4201 (*1 *2 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-4200 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-4200 (*1 *1 *1 *2 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-4199 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-813)) (|has| *2 (-15 ** (*2 *2 *3))) (|has| *2 (-15 -4375 (*2 (-1197)))) (-4 *2 (-1069)))) (-4198 (*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) (-4197 (*1 *2 *1 *3) (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1175 *3))))) +(-13 (-993 |t#1| |t#2| (-1102)) (-298 |t#2| |t#1|) (-10 -8 (-15 -4203 ((-1175 (-2 (|:| |k| |t#2|) (|:| |c| |t#1|))) $)) (-15 -4260 ((-1197) $)) (-15 -4202 (|t#1| $)) (-15 -4206 ($ $ (-937))) (-15 -4201 (|t#2| $)) (-15 -4201 (|t#2| $ |t#2|)) (-15 -4200 ($ $ |t#2|)) (-15 -4200 ($ $ |t#2| |t#2|)) (IF (|has| |t#1| (-15 -4375 (|t#1| (-1197)))) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4199 (|t#1| $ |t#2|)) |%noBranch|) |%noBranch|) (-15 -4198 ($ $ |t#2|)) (IF (|has| |t#2| (-1132)) (-6 (-298 $ $)) |%noBranch|) (IF (|has| |t#1| (-15 * (|t#1| |t#2| |t#1|))) (PROGN (-6 (-240)) (IF (|has| |t#1| (-916 (-1197))) (-6 (-916 (-1197))) |%noBranch|)) |%noBranch|) (IF (|has| |t#1| (-15 ** (|t#1| |t#1| |t#2|))) (-15 -4197 ((-1175 |t#1|) $ |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| |#2|) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-240) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-239) |has| |#1| (-15 * (|#1| |#2| |#1|))) ((-298 |#2| |#1|) . T) ((-298 $ $) |has| |#2| (-1132)) ((-302) |has| |#1| (-569)) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) . T) ((-910 $ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-916 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-918 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| |#2| |#1|)))) ((-993 |#1| |#2| (-1102)) . T) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-4204 ((|#2| |#2|) 12 T ELT)) (-4400 (((-417 |#2|) |#2|) 14 T ELT)) (-4205 (((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))) 30 T ELT))) +(((-1267 |#1| |#2|) (-10 -7 (-15 -4400 ((-417 |#2|) |#2|)) (-15 -4204 (|#2| |#2|)) (-15 -4205 ((-2 (|:| |flg| (-3 #1="nil" #2="sqfr" #3="irred" #4="prime")) (|:| |fctr| |#2|) (|:| |xpnt| (-558))) (-2 (|:| |flg| (-3 #1# #2# #3# #4#)) (|:| |fctr| |#2|) (|:| |xpnt| (-558)))))) (-569) (-13 (-1263 |#1|) (-569) (-10 -8 (-15 -3561 ($ $ $))))) (T -1267)) +((-4205 (*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-558)))) (-4 *4 (-13 (-1263 *3) (-569) (-10 -8 (-15 -3561 ($ $ $))))) (-4 *3 (-569)) (-5 *1 (-1267 *3 *4)))) (-4204 (*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-1267 *3 *2)) (-4 *2 (-13 (-1263 *3) (-569) (-10 -8 (-15 -3561 ($ $ $))))))) (-4400 (*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-1267 *4 *3)) (-4 *3 (-13 (-1263 *4) (-569) (-10 -8 (-15 -3561 ($ $ $)))))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 11 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) NIL T ELT) (($ $ (-419 (-558)) (-419 (-558))) NIL T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) NIL T ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-1247 |#1| |#2| |#3|) #1#) $) 19 T ELT) (((-3 (-1277 |#1| |#2| |#3|) #1#) $) 22 T ELT)) (-3573 (((-1247 |#1| |#2| |#3|) $) NIL T ELT) (((-1277 |#1| |#2| |#3|) $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4210 (((-419 (-558)) $) 68 T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (($ (-419 (-558)) (-1247 |#1| |#2| |#3|)) NIL T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) NIL T ELT) (((-419 (-558)) $ (-419 (-558))) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) NIL T ELT) (($ $ (-419 (-558))) NIL T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-419 (-558))) 30 T ELT) (($ $ (-1102) (-419 (-558))) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4209 (((-1247 |#1| |#2| |#3|) $) 71 T ELT)) (-4207 (((-3 (-1247 |#1| |#2| |#3|) #1#) $) NIL T ELT)) (-4208 (((-1247 |#1| |#2| |#3|) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4241 (($ $) 39 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) NIL (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 40 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) NIL T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) NIL (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) NIL T ELT) (($ $ $) NIL (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 37 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1284 |#2|)) 38 T ELT)) (-4377 (((-419 (-558)) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) NIL T ELT)) (-4375 (((-876) $) 107 T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT) (($ (-1247 |#1| |#2| |#3|)) 16 T ELT) (($ (-1277 |#1| |#2| |#3|)) 17 T ELT) (($ (-1284 |#2|)) 36 T ELT) (($ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 12 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) 73 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 32 T CONST)) (-3064 (($) 26 T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-1284 |#2|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 34 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ (-558)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1268 |#1| |#2| |#3|) (-13 (-1272 |#1| (-1247 |#1| |#2| |#3|)) (-910 $ (-1284 |#2|)) (-1058 (-1277 |#1| |#2| |#3|)) (-632 (-1284 |#2|)) (-10 -8 (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -1268)) +((-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1268 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-4387 (((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)) 24 T ELT))) +(((-1269 |#1| |#2| |#3| |#4| |#5| |#6|) (-10 -7 (-15 -4387 ((-1268 |#2| |#4| |#6|) (-1 |#2| |#1|) (-1268 |#1| |#3| |#5|)))) (-1069) (-1069) (-1197) (-1197) |#1| |#2|) (T -1269)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5 *7 *9)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) (-5 *2 (-1268 *6 *8 *10)) (-5 *1 (-1269 *5 *6 *7 *8 *9 *10)) (-14 *8 (-1197))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 (-1102)) $) 92 T ELT)) (-4260 (((-1197) $) 126 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) 121 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 120 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 127 T ELT)) (-3911 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3437 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3909 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 196 T ELT)) (-3913 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) 22 T CONST)) (-2962 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 176 (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) 91 T ELT)) (-4056 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) 123 T ELT) (((-419 (-558)) $ (-419 (-558))) 122 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) 124 T ELT) (($ $ (-419 (-558))) 195 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 185 (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| (-419 (-558))) 78 T ELT) (($ $ (-1102) (-419 (-558))) 94 T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) 93 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4371 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-2101 (($ (-660 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4241 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 193 (-3956 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 175 (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) 118 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 177 (|has| |#1| (-376)) ELT)) (-4372 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) 179 (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) 116 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) 114 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) 113 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 112 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) 106 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4377 (((-419 (-558)) $) 81 T ELT)) (-3914 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-4202 ((|#1| $) 125 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3915 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1197)) 115 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) 111 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) 110 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 109 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) 105 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1270 |#1|) (-142) (-1069)) (T -1270)) +((-4247 (*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))) (-4 *4 (-1069)) (-4 *1 (-1270 *4)))) (-4206 (*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1270 *3)) (-4 *3 (-1069)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558)))))) (-4241 (*1 *1 *1 *2) (-3956 (-12 (-5 *2 (-1197)) (-4 *1 (-1270 *3)) (-4 *3 (-1069)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1270 *3)) (-4 *3 (-1069)) (-12 (|has| *3 (-15 -3483 ((-660 *2) *3))) (|has| *3 (-15 -4241 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) +(-13 (-1266 |t#1| (-419 (-558))) (-10 -8 (-15 -4247 ($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |t#1|))))) (-15 -4206 ($ $ (-419 (-558)))) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $)) (IF (|has| |t#1| (-15 -4241 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -3483 ((-660 (-1197)) |t#1|))) (-15 -4241 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-558))) (-15 -4241 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1022)) (-6 (-1223))) |%noBranch|) (IF (|has| |t#1| (-376)) (-6 (-376)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-419 (-558))) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-419 (-558)) |#1|) . T) ((-298 $ $) |has| (-419 (-558)) (-1132)) ((-302) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-665 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-736 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-745) . T) ((-910 $ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-916 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-918 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-993 |#1| (-419 (-558)) (-1102)) . T) ((-939) |has| |#1| (-376)) ((-1022) |has| |#1| (-38 (-419 (-558)))) ((-1071 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-558)))) ((-1226) |has| |#1| (-38 (-419 (-558)))) ((-1237) . T) ((-1242) |has| |#1| (-376)) ((-1266 |#1| (-419 (-558))) . T)) +((-3605 (((-114) $) 12 T ELT)) (-3574 (((-3 |#3| "failed") $) 17 T ELT)) (-3573 ((|#3| $) 14 T ELT))) +(((-1271 |#1| |#2| |#3|) (-10 -7 (-15 -3574 ((-3 |#3| "failed") |#1|)) (-15 -3573 (|#3| |#1|)) (-15 -3605 ((-114) |#1|))) (-1272 |#2| |#3|) (-1069) (-1249 |#2|)) (T -1271)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 (-1102)) $) 92 T ELT)) (-4260 (((-1197) $) 126 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) 121 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 120 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 127 T ELT)) (-3911 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 187 (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) 188 (|has| |#1| (-376)) ELT)) (-3437 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) 178 (|has| |#1| (-376)) ELT)) (-3909 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 196 T ELT)) (-3913 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#2| "failed") $) 209 T ELT)) (-3573 ((|#2| $) 210 T ELT)) (-2962 (($ $ $) 182 (|has| |#1| (-376)) ELT)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4210 (((-419 (-558)) $) 206 T ELT)) (-2961 (($ $ $) 181 (|has| |#1| (-376)) ELT)) (-4211 (($ (-419 (-558)) |#2|) 207 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 176 (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) 189 (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) 91 T ELT)) (-4056 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) 123 T ELT) (((-419 (-558)) $ (-419 (-558))) 122 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) 124 T ELT) (($ $ (-419 (-558))) 195 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 185 (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| (-419 (-558))) 78 T ELT) (($ $ (-1102) (-419 (-558))) 94 T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) 93 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4371 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-2101 (($ (-660 $)) 174 (|has| |#1| (-376)) ELT) (($ $ $) 173 (|has| |#1| (-376)) ELT)) (-4209 ((|#2| $) 205 T ELT)) (-4207 (((-3 |#2| "failed") $) 203 T ELT)) (-4208 ((|#2| $) 204 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 190 (|has| |#1| (-376)) ELT)) (-4241 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 193 (-3956 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 175 (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) 172 (|has| |#1| (-376)) ELT) (($ $ $) 171 (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) 186 (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 184 (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 183 (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) 118 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 177 (|has| |#1| (-376)) ELT)) (-4372 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) 179 (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) 128 T ELT) (($ $ $) 104 (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 180 (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) 116 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) 114 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) 113 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 112 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) 106 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4377 (((-419 (-558)) $) 81 T ELT)) (-3914 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT) (($ |#2|) 208 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-4202 ((|#1| $) 125 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3915 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1197)) 115 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) 111 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) 110 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 109 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) 105 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT) (($ $ $) 192 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 191 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1272 |#1| |#2|) (-142) (-1069) (-1249 |t#1|)) (T -1272)) +((-4377 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-558))))) (-4211 (*1 *1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-4 *4 (-1069)) (-4 *1 (-1272 *4 *3)) (-4 *3 (-1249 *4)))) (-4210 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-558))))) (-4209 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1249 *3)))) (-4208 (*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1249 *3)))) (-4207 (*1 *2 *1) (|partial| -12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1249 *3))))) +(-13 (-1270 |t#1|) (-1058 |t#2|) (-632 |t#2|) (-10 -8 (-15 -4211 ($ (-419 (-558)) |t#2|)) (-15 -4210 ((-419 (-558)) $)) (-15 -4209 (|t#2| $)) (-15 -4377 ((-419 (-558)) $)) (-15 -4208 (|t#2| $)) (-15 -4207 ((-3 |t#2| "failed") $)))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-419 (-558))) . T) ((-25) . T) ((-38 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 |#2|) . T) ((-632 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ((-250) |has| |#1| (-376)) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-419 (-558)) |#1|) . T) ((-298 $ $) |has| (-419 (-558)) (-1132)) ((-302) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-319) |has| |#1| (-376)) ((-376) |has| |#1| (-376)) ((-464) |has| |#1| (-376)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-665 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-736 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376))) ((-745) . T) ((-910 $ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-916 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-918 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ((-993 |#1| (-419 (-558)) (-1102)) . T) ((-939) |has| |#1| (-376)) ((-1022) |has| |#1| (-38 (-419 (-558)))) ((-1058 |#2|) . T) ((-1071 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) -3956 (|has| |#1| (-376)) (|has| |#1| (-38 (-419 (-558))))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-376)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-558)))) ((-1226) |has| |#1| (-38 (-419 (-558)))) ((-1237) . T) ((-1242) |has| |#1| (-376)) ((-1266 |#1| (-419 (-558))) . T) ((-1270 |#1|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 104 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-419 (-558))) 116 T ELT) (($ $ (-419 (-558)) (-419 (-558))) 118 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|))) $) 54 T ELT)) (-3911 (($ $) 192 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4204 (($ $) NIL (|has| |#1| (-376)) ELT)) (-4400 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1787 (((-114) $ $) NIL (|has| |#1| (-376)) ELT)) (-3909 (($ $) 188 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-790) (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#1|)))) 65 T ELT)) (-3913 (($ $) 196 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT)) (-3573 ((|#2| $) NIL T ELT)) (-2962 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 85 T ELT)) (-4210 (((-419 (-558)) $) 13 T ELT)) (-2961 (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4211 (($ (-419 (-558)) |#2|) 11 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) NIL (|has| |#1| (-376)) ELT)) (-4152 (((-114) $) NIL (|has| |#1| (-376)) ELT)) (-3292 (((-114) $) 74 T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-419 (-558)) $) 113 T ELT) (((-419 (-558)) $ (-419 (-558))) 114 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) 130 T ELT) (($ $ (-419 (-558))) 128 T ELT)) (-1784 (((-3 (-660 $) #1#) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-419 (-558))) 33 T ELT) (($ $ (-1102) (-419 (-558))) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-419 (-558)))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 125 T ELT)) (-4371 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-2101 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4209 ((|#2| $) 12 T ELT)) (-4207 (((-3 |#2| #1#) $) 44 T ELT)) (-4208 ((|#2| $) 45 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-2873 (($ $) 101 (|has| |#1| (-376)) ELT)) (-4241 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 151 (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) NIL (|has| |#1| (-376)) ELT)) (-3561 (($ (-660 $)) NIL (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-376)) ELT)) (-4161 (((-417 $) $) NIL (|has| |#1| (-376)) ELT)) (-1785 (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) NIL (|has| |#1| (-376)) ELT) (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4198 (($ $ (-419 (-558))) 122 T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) NIL (|has| |#1| (-376)) ELT)) (-4372 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 98 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) ELT)) (-1786 (((-790) $) NIL (|has| |#1| (-376)) ELT)) (-4229 ((|#1| $ (-419 (-558))) 108 T ELT) (($ $ $) 94 (|has| (-419 (-558)) (-1132)) ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) NIL (|has| |#1| (-376)) ELT)) (-4187 (($ $ (-1197)) 138 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) 134 (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-4377 (((-419 (-558)) $) 16 T ELT)) (-3914 (($ $) 198 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 174 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 194 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 190 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 120 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) 37 T ELT) (($ |#1|) 27 (|has| |#1| (-175)) ELT) (($ |#2|) 34 T ELT) (($ (-419 (-558))) 139 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT)) (-4106 ((|#1| $ (-419 (-558))) 107 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 127 T CONST)) (-4202 ((|#1| $) 106 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) 204 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 180 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) 200 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 176 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 208 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 184 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-419 (-558))) NIL (-12 (|has| |#1| (-15 ** (|#1| |#1| (-419 (-558))))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 210 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 186 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 206 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 182 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 202 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 178 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 21 T CONST)) (-3064 (($) 17 T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-419 (-558)) |#1|))) ELT)) (-3453 (((-114) $ $) 72 T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT) (($ $ $) 100 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 142 T ELT) (($ $ $) 78 T ELT)) (-4268 (($ $ $) 76 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 82 T ELT) (($ $ (-558)) 157 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 80 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 137 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1273 |#1| |#2|) (-1272 |#1| |#2|) (-1069) (-1249 |#1|)) (T -1273)) +NIL +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 37 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL T ELT)) (-2272 (($ $) NIL T ELT)) (-2270 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 (-558) #1#) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1058 (-558))) ELT) (((-3 (-419 (-558)) #1#) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1058 (-419 (-558)))) ELT) (((-3 (-1268 |#2| |#3| |#4|) #1#) $) 22 T ELT)) (-3573 (((-558) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1058 (-558))) ELT) (((-419 (-558)) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-1058 (-419 (-558)))) ELT) (((-1268 |#2| |#3| |#4|) $) NIL T ELT)) (-4388 (($ $) 41 T ELT)) (-3886 (((-3 $ #1#) $) 27 T ELT)) (-3922 (($ $) NIL (|has| (-1268 |#2| |#3| |#4|) (-464)) ELT)) (-1803 (($ $ (-1268 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) 11 T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ (-1268 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) 25 T ELT)) (-3220 (((-331 |#2| |#3| |#4|) $) NIL T ELT)) (-1804 (($ (-1 (-331 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) $) NIL T ELT)) (-4387 (($ (-1 (-1268 |#2| |#3| |#4|) (-1268 |#2| |#3| |#4|)) $) NIL T ELT)) (-4213 (((-3 (-854 |#2|) #1#) $) 91 T ELT)) (-3294 (($ $) NIL T ELT)) (-3591 (((-1268 |#2| |#3| |#4|) $) 20 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-2004 (((-114) $) NIL T ELT)) (-2003 (((-1268 |#2| |#3| |#4|) $) NIL T ELT)) (-3885 (((-3 $ #1#) $ (-1268 |#2| |#3| |#4|)) NIL (|has| (-1268 |#2| |#3| |#4|) (-569)) ELT) (((-3 $ #1#) $ $) NIL T ELT)) (-4212 (((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) #1#) $) 74 T ELT)) (-4377 (((-331 |#2| |#3| |#4|) $) 17 T ELT)) (-3217 (((-1268 |#2| |#3| |#4|) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-464)) ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ (-1268 |#2| |#3| |#4|)) NIL T ELT) (($ $) NIL T ELT) (($ (-419 (-558))) NIL (-3956 (|has| (-1268 |#2| |#3| |#4|) (-1058 (-419 (-558)))) (|has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558))))) ELT)) (-4246 (((-660 (-1268 |#2| |#3| |#4|)) $) NIL T ELT)) (-4106 (((-1268 |#2| |#3| |#4|) $ (-331 |#2| |#3| |#4|)) NIL T ELT)) (-3102 (((-710 $) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-1802 (($ $ $ (-790)) NIL (|has| (-1268 |#2| |#3| |#4|) (-175)) ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-2271 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ (-1268 |#2| |#3| |#4|)) NIL (|has| (-1268 |#2| |#3| |#4|) (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ (-1268 |#2| |#3| |#4|)) NIL T ELT) (($ (-1268 |#2| |#3| |#4|) $) NIL T ELT) (($ (-419 (-558)) $) NIL (|has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| (-1268 |#2| |#3| |#4|) (-38 (-419 (-558)))) ELT))) +(((-1274 |#1| |#2| |#3| |#4|) (-13 (-338 (-1268 |#2| |#3| |#4|) (-331 |#2| |#3| |#4|)) (-569) (-10 -8 (-15 -4213 ((-3 (-854 |#2|) #1="failed") $)) (-15 -4212 ((-3 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 |#2| |#3| |#4|)) (|:| |%expon| (-331 |#2| |#3| |#4|)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-419 (-558))) (|:| |c| |#2|)))))) (|:| |%type| (-1179))) #1#) $)))) (-13 (-1058 (-558)) (-657 (-558)) (-464)) (-13 (-27) (-1223) (-433 |#1|)) (-1197) |#2|) (T -1274)) +((-4213 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) (-5 *2 (-854 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-433 *3))) (-14 *5 (-1197)) (-14 *6 *4))) (-4212 (*1 *2 *1) (|partial| -12 (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) (-5 *2 (-2 (|:| |%term| (-2 (|:| |%coef| (-1268 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) (|:| |%expTerms| (-660 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))))) (|:| |%type| (-1179)))) (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-433 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) +((-3821 ((|#2| $) 34 T ELT)) (-4224 ((|#2| $) 18 T ELT)) (-4226 (($ $) 44 T ELT)) (-4214 (($ $ (-558)) 79 T ELT)) (-3425 ((|#2| $ |#2|) 76 T ELT)) (-4215 ((|#2| $ |#2|) 72 T ELT)) (-4217 ((|#2| $ #1="value" |#2|) NIL T ELT) ((|#2| $ #2="first" |#2|) 65 T ELT) (($ $ #3="rest" $) 69 T ELT) ((|#2| $ #4="last" |#2|) 67 T ELT)) (-3426 (($ $ (-660 $)) 75 T ELT)) (-4225 ((|#2| $) 17 T ELT)) (-4228 (($ $) NIL T ELT) (($ $ (-790)) 52 T ELT)) (-3431 (((-660 $) $) 31 T ELT)) (-3427 (((-114) $ $) 63 T ELT)) (-3946 (((-114) $) 33 T ELT)) (-4227 ((|#2| $) 25 T ELT) (($ $ (-790)) 58 T ELT)) (-4229 ((|#2| $ #1#) NIL T ELT) ((|#2| $ #2#) 10 T ELT) (($ $ #3#) 16 T ELT) ((|#2| $ #4#) 13 T ELT)) (-4062 (((-114) $) 23 T ELT)) (-4221 (($ $) 47 T ELT)) (-4219 (($ $) 80 T ELT)) (-4222 (((-790) $) 51 T ELT)) (-4223 (($ $) 50 T ELT)) (-4231 (($ $ $) 71 T ELT) (($ |#2| $) NIL T ELT)) (-3941 (((-660 $) $) 32 T ELT)) (-3453 (((-114) $ $) 61 T ELT)) (-4386 (((-790) $) 43 T ELT))) +(((-1275 |#1| |#2|) (-10 -7 (-15 -3453 ((-114) |#1| |#1|)) (-15 -4214 (|#1| |#1| (-558))) (-15 -4217 (|#2| |#1| #1="last" |#2|)) (-15 -4215 (|#2| |#1| |#2|)) (-15 -4217 (|#1| |#1| #2="rest" |#1|)) (-15 -4217 (|#2| |#1| #3="first" |#2|)) (-15 -4219 (|#1| |#1|)) (-15 -4221 (|#1| |#1|)) (-15 -4222 ((-790) |#1|)) (-15 -4223 (|#1| |#1|)) (-15 -4224 (|#2| |#1|)) (-15 -4225 (|#2| |#1|)) (-15 -4226 (|#1| |#1|)) (-15 -4227 (|#1| |#1| (-790))) (-15 -4229 (|#2| |#1| #1#)) (-15 -4227 (|#2| |#1|)) (-15 -4228 (|#1| |#1| (-790))) (-15 -4229 (|#1| |#1| #2#)) (-15 -4228 (|#1| |#1|)) (-15 -4229 (|#2| |#1| #3#)) (-15 -4231 (|#1| |#2| |#1|)) (-15 -4231 (|#1| |#1| |#1|)) (-15 -3425 (|#2| |#1| |#2|)) (-15 -4217 (|#2| |#1| #4="value" |#2|)) (-15 -3426 (|#1| |#1| (-660 |#1|))) (-15 -3427 ((-114) |#1| |#1|)) (-15 -4062 ((-114) |#1|)) (-15 -4229 (|#2| |#1| #4#)) (-15 -3821 (|#2| |#1|)) (-15 -3946 ((-114) |#1|)) (-15 -3431 ((-660 |#1|) |#1|)) (-15 -3941 ((-660 |#1|) |#1|)) (-15 -4386 ((-790) |#1|))) (-1276 |#2|) (-1237)) (T -1275)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-3821 ((|#1| $) 52 T ELT)) (-4224 ((|#1| $) 71 T ELT)) (-4226 (($ $) 73 T ELT)) (-4214 (($ $ (-558)) 58 (|has| $ (-6 -4425)) ELT)) (-3425 ((|#1| $ |#1|) 43 (|has| $ (-6 -4425)) ELT)) (-4216 (($ $ $) 62 (|has| $ (-6 -4425)) ELT)) (-4215 ((|#1| $ |#1|) 60 (|has| $ (-6 -4425)) ELT)) (-4218 ((|#1| $ |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4217 ((|#1| $ #1="value" |#1|) 44 (|has| $ (-6 -4425)) ELT) ((|#1| $ "first" |#1|) 63 (|has| $ (-6 -4425)) ELT) (($ $ "rest" $) 61 (|has| $ (-6 -4425)) ELT) ((|#1| $ "last" |#1|) 59 (|has| $ (-6 -4425)) ELT)) (-3426 (($ $ (-660 $)) 45 (|has| $ (-6 -4425)) ELT)) (-4225 ((|#1| $) 72 T ELT)) (-4153 (($) 7 T CONST)) (-4228 (($ $) 79 T ELT) (($ $ (-790)) 77 T ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-3431 (((-660 $) $) 54 T ELT)) (-3427 (((-114) $ $) 46 (|has| |#1| (-1121)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT)) (-3430 (((-660 |#1|) $) 49 T ELT)) (-3946 (((-114) $) 53 T ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-4227 ((|#1| $) 76 T ELT) (($ $ (-790)) 74 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 82 T ELT) (($ $ (-790)) 80 T ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ #1#) 51 T ELT) ((|#1| $ "first") 81 T ELT) (($ $ "rest") 78 T ELT) ((|#1| $ "last") 75 T ELT)) (-3429 (((-558) $ $) 48 T ELT)) (-4062 (((-114) $) 50 T ELT)) (-4221 (($ $) 68 T ELT)) (-4219 (($ $) 65 (|has| $ (-6 -4425)) ELT)) (-4222 (((-790) $) 69 T ELT)) (-4223 (($ $) 70 T ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3819 (($ $) 10 T ELT)) (-4220 (($ $ $) 67 (|has| $ (-6 -4425)) ELT) (($ $ |#1|) 66 (|has| $ (-6 -4425)) ELT)) (-4231 (($ $ $) 84 T ELT) (($ |#1| $) 83 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-3941 (((-660 $) $) 55 T ELT)) (-3428 (((-114) $ $) 47 (|has| |#1| (-1121)) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1276 |#1|) (-142) (-1237)) (T -1276)) +((-4231 (*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4231 (*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4230 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4230 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) (-4228 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4229 (*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) (-4228 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) (-4227 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4229 (*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4227 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) (-4226 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4225 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4224 (*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4223 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4222 (*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1237)) (-5 *2 (-790)))) (-4221 (*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4220 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4220 (*1 *1 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4219 (*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4218 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4217 (*1 *2 *1 *3 *2) (-12 (-5 *3 "first") (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4216 (*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4217 (*1 *1 *1 *2 *1) (-12 (-5 *2 "rest") (|has| *1 (-6 -4425)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) (-4215 (*1 *2 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4217 (*1 *2 *1 *3 *2) (-12 (-5 *3 "last") (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) (-4214 (*1 *1 *1 *2) (-12 (-5 *2 (-558)) (|has| *1 (-6 -4425)) (-4 *1 (-1276 *3)) (-4 *3 (-1237))))) +(-13 (-1030 |t#1|) (-10 -8 (-15 -4231 ($ $ $)) (-15 -4231 ($ |t#1| $)) (-15 -4230 (|t#1| $)) (-15 -4229 (|t#1| $ "first")) (-15 -4230 ($ $ (-790))) (-15 -4228 ($ $)) (-15 -4229 ($ $ "rest")) (-15 -4228 ($ $ (-790))) (-15 -4227 (|t#1| $)) (-15 -4229 (|t#1| $ "last")) (-15 -4227 ($ $ (-790))) (-15 -4226 ($ $)) (-15 -4225 (|t#1| $)) (-15 -4224 (|t#1| $)) (-15 -4223 ($ $)) (-15 -4222 ((-790) $)) (-15 -4221 ($ $)) (IF (|has| $ (-6 -4425)) (PROGN (-15 -4220 ($ $ $)) (-15 -4220 ($ $ |t#1|)) (-15 -4219 ($ $)) (-15 -4218 (|t#1| $ |t#1|)) (-15 -4217 (|t#1| $ "first" |t#1|)) (-15 -4216 ($ $ $)) (-15 -4217 ($ $ "rest" $)) (-15 -4215 (|t#1| $ |t#1|)) (-15 -4217 (|t#1| $ "last" |t#1|)) (-15 -4214 ($ $ (-558)))) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-629 (-876)))) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-501 |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-1030 |#1|) . T) ((-1121) |has| |#1| (-1121)) ((-1237) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-3483 (((-660 (-1102)) $) NIL T ELT)) (-4260 (((-1197) $) 90 T ELT)) (-4240 (((-1256 |#2| |#1|) $ (-790)) 73 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) NIL (|has| |#1| (-569)) ELT)) (-2272 (($ $) NIL (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 143 (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-790)) 128 T ELT) (($ $ (-790) (-790)) 131 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-790)) (|:| |c| |#1|))) $) 43 T ELT)) (-3911 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3437 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-790)) (|:| |c| |#1|)))) 52 T ELT) (($ (-1175 |#1|)) NIL T ELT)) (-3913 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) NIL T CONST)) (-4234 (($ $) 135 T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4245 (($ $) 141 T ELT)) (-4243 (((-964 |#1|) $ (-790)) 63 T ELT) (((-964 |#1|) $ (-790) (-790)) 65 T ELT)) (-3292 (((-114) $) NIL T ELT)) (-4056 (($) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-790) $) NIL T ELT) (((-790) $ (-790)) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4237 (($ $) 118 T ELT)) (-3411 (($ $ (-558)) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4233 (($ (-558) (-558) $) 137 T ELT)) (-4206 (($ $ (-937)) 140 T ELT)) (-4244 (($ (-1 |#1| (-558)) $) 112 T ELT)) (-4366 (((-114) $) NIL T ELT)) (-3293 (($ |#1| (-790)) 16 T ELT) (($ $ (-1102) (-790)) NIL T ELT) (($ $ (-660 (-1102)) (-660 (-790))) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 99 T ELT)) (-4371 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4238 (($ $) 116 T ELT)) (-4239 (($ $) 114 T ELT)) (-4232 (($ (-558) (-558) $) 139 T ELT)) (-4241 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 157 (-3956 (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223))) (-12 (|has| |#1| (-38 (-419 (-558)))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))))) ELT) (($ $ (-1284 |#2|)) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4235 (($ $ (-558) (-558)) 122 T ELT)) (-4198 (($ $ (-790)) 124 T ELT)) (-3885 (((-3 $ #1#) $ $) NIL (|has| |#1| (-569)) ELT)) (-4372 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4236 (($ $) 120 T ELT)) (-4197 (((-1175 |#1|) $ |#1|) 101 (|has| |#1| (-15 ** (|#1| |#1| (-790)))) ELT)) (-4229 ((|#1| $ (-790)) 96 T ELT) (($ $ $) 133 (|has| (-790) (-1132)) ELT)) (-4187 (($ $ (-1197)) 109 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $) 103 (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-1284 |#2|)) 104 T ELT)) (-4377 (((-790) $) NIL T ELT)) (-3914 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 126 T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) 26 T ELT) (($ (-419 (-558))) 149 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) NIL (|has| |#1| (-569)) ELT) (($ |#1|) 25 (|has| |#1| (-175)) ELT) (($ (-1256 |#2| |#1|)) 81 T ELT) (($ (-1284 |#2|)) 22 T ELT)) (-4246 (((-1175 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ (-790)) 95 T ELT)) (-3102 (((-710 $) $) NIL (|has| |#1| (-147)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4202 ((|#1| $) 91 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3917 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3915 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-790)) 89 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-790)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 18 T CONST)) (-3064 (($) 13 T CONST)) (-3069 (($ $ (-1197)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-1197) (-790)) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) NIL (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $) NIL (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-790)) NIL (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-1284 |#2|)) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4378 (($ $ |#1|) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) 108 T ELT)) (-4268 (($ $ $) 20 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ |#1|) 146 (|has| |#1| (-376)) ELT) (($ $ $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| $) 107 T ELT) (($ (-419 (-558)) $) NIL (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) NIL (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1277 |#1| |#2| |#3|) (-13 (-1280 |#1|) (-910 $ (-1284 |#2|)) (-10 -8 (-15 -4375 ($ (-1256 |#2| |#1|))) (-15 -4240 ((-1256 |#2| |#1|) $ (-790))) (-15 -4375 ($ (-1284 |#2|))) (-15 -4239 ($ $)) (-15 -4238 ($ $)) (-15 -4237 ($ $)) (-15 -4236 ($ $)) (-15 -4235 ($ $ (-558) (-558))) (-15 -4234 ($ $)) (-15 -4233 ($ (-558) (-558) $)) (-15 -4232 ($ (-558) (-558) $)) (IF (|has| |#1| (-38 (-419 (-558)))) (-15 -4241 ($ $ (-1284 |#2|))) |%noBranch|))) (-1069) (-1197) |#1|) (T -1277)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-1277 *3 *4 *5)))) (-4240 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1277 *4 *5 *6)) (-4 *4 (-1069)) (-14 *5 (-1197)) (-14 *6 *4))) (-4375 (*1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *5 *3))) (-4239 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2))) (-4238 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2))) (-4237 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2))) (-4236 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2))) (-4235 (*1 *1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3))) (-4234 (*1 *1 *1) (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2))) (-4233 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3))) (-4232 (*1 *1 *2 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3))) (-4241 (*1 *1 *1 *2) (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3)))) +((-4387 ((|#4| (-1 |#2| |#1|) |#3|) 17 T ELT))) +(((-1278 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4387 (|#4| (-1 |#2| |#1|) |#3|))) (-1069) (-1069) (-1280 |#1|) (-1280 |#2|)) (T -1278)) +((-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1280 *6)) (-5 *1 (-1278 *5 *6 *4 *2)) (-4 *4 (-1280 *5))))) +((-3605 (((-114) $) 17 T ELT)) (-3911 (($ $) 105 T ELT)) (-4068 (($ $) 81 T ELT)) (-3909 (($ $) 101 T ELT)) (-4067 (($ $) 77 T ELT)) (-3913 (($ $) 109 T ELT)) (-4066 (($ $) 85 T ELT)) (-4371 (($ $) 75 T ELT)) (-4372 (($ $) 73 T ELT)) (-3914 (($ $) 111 T ELT)) (-4065 (($ $) 87 T ELT)) (-3912 (($ $) 107 T ELT)) (-4064 (($ $) 83 T ELT)) (-3910 (($ $) 103 T ELT)) (-4063 (($ $) 79 T ELT)) (-4375 (((-876) $) 61 T ELT) (($ (-558)) NIL T ELT) (($ (-419 (-558))) NIL T ELT) (($ $) NIL T ELT) (($ |#2|) NIL T ELT)) (-3917 (($ $) 117 T ELT)) (-3905 (($ $) 93 T ELT)) (-3915 (($ $) 113 T ELT)) (-3903 (($ $) 89 T ELT)) (-3919 (($ $) 121 T ELT)) (-3907 (($ $) 97 T ELT)) (-3920 (($ $) 123 T ELT)) (-3908 (($ $) 99 T ELT)) (-3918 (($ $) 119 T ELT)) (-3906 (($ $) 95 T ELT)) (-3916 (($ $) 115 T ELT)) (-3904 (($ $) 91 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT) (($ $ |#2|) 65 T ELT) (($ $ $) 68 T ELT) (($ $ (-419 (-558))) 71 T ELT))) +(((-1279 |#1| |#2|) (-10 -7 (-15 ** (|#1| |#1| (-419 (-558)))) (-15 -4068 (|#1| |#1|)) (-15 -4067 (|#1| |#1|)) (-15 -4066 (|#1| |#1|)) (-15 -4065 (|#1| |#1|)) (-15 -4064 (|#1| |#1|)) (-15 -4063 (|#1| |#1|)) (-15 -3904 (|#1| |#1|)) (-15 -3906 (|#1| |#1|)) (-15 -3908 (|#1| |#1|)) (-15 -3907 (|#1| |#1|)) (-15 -3903 (|#1| |#1|)) (-15 -3905 (|#1| |#1|)) (-15 -3910 (|#1| |#1|)) (-15 -3912 (|#1| |#1|)) (-15 -3914 (|#1| |#1|)) (-15 -3913 (|#1| |#1|)) (-15 -3909 (|#1| |#1|)) (-15 -3911 (|#1| |#1|)) (-15 -3916 (|#1| |#1|)) (-15 -3918 (|#1| |#1|)) (-15 -3920 (|#1| |#1|)) (-15 -3919 (|#1| |#1|)) (-15 -3915 (|#1| |#1|)) (-15 -3917 (|#1| |#1|)) (-15 -4371 (|#1| |#1|)) (-15 -4372 (|#1| |#1|)) (-15 ** (|#1| |#1| |#1|)) (-15 ** (|#1| |#1| |#2|)) (-15 -4375 (|#1| |#2|)) (-15 -4375 (|#1| |#1|)) (-15 -4375 (|#1| (-419 (-558)))) (-15 -4375 (|#1| (-558))) (-15 ** (|#1| |#1| (-790))) (-15 ** (|#1| |#1| (-937))) (-15 -3605 ((-114) |#1|)) (-15 -4375 ((-876) |#1|))) (-1280 |#2|) (-1069)) (T -1279)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-3483 (((-660 (-1102)) $) 92 T ELT)) (-4260 (((-1197) $) 126 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 68 (|has| |#1| (-569)) ELT)) (-2272 (($ $) 69 (|has| |#1| (-569)) ELT)) (-2270 (((-114) $) 71 (|has| |#1| (-569)) ELT)) (-4200 (($ $ (-790)) 121 T ELT) (($ $ (-790) (-790)) 120 T ELT)) (-4203 (((-1175 (-2 (|:| |k| (-790)) (|:| |c| |#1|))) $) 127 T ELT)) (-3911 (($ $) 160 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4068 (($ $) 143 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-3437 (($ $) 142 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3909 (($ $) 159 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4067 (($ $) 144 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4247 (($ (-1175 (-2 (|:| |k| (-790)) (|:| |c| |#1|)))) 180 T ELT) (($ (-1175 |#1|)) 178 T ELT)) (-3913 (($ $) 158 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4066 (($ $) 145 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4153 (($) 22 T CONST)) (-4388 (($ $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4245 (($ $) 177 T ELT)) (-4243 (((-964 |#1|) $ (-790)) 175 T ELT) (((-964 |#1|) $ (-790) (-790)) 174 T ELT)) (-3292 (((-114) $) 91 T ELT)) (-4056 (($) 170 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4201 (((-790) $) 123 T ELT) (((-790) $ (-790)) 122 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3411 (($ $ (-558)) 141 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4206 (($ $ (-937)) 124 T ELT)) (-4244 (($ (-1 |#1| (-558)) $) 176 T ELT)) (-4366 (((-114) $) 79 T ELT)) (-3293 (($ |#1| (-790)) 78 T ELT) (($ $ (-1102) (-790)) 94 T ELT) (($ $ (-660 (-1102)) (-660 (-790))) 93 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) 80 T ELT)) (-4371 (($ $) 167 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3294 (($ $) 82 T ELT)) (-3591 ((|#1| $) 83 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-4241 (($ $) 172 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-1197)) 171 (-3956 (-12 (|has| |#1| (-29 (-558))) (|has| |#1| (-978)) (|has| |#1| (-1223)) (|has| |#1| (-38 (-419 (-558))))) (-12 (|has| |#1| (-15 -3483 ((-660 (-1197)) |#1|))) (|has| |#1| (-15 -4241 (|#1| |#1| (-1197)))) (|has| |#1| (-38 (-419 (-558)))))) ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4198 (($ $ (-790)) 118 T ELT)) (-3885 (((-3 $ "failed") $ $) 67 (|has| |#1| (-569)) ELT)) (-4372 (($ $) 168 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4197 (((-1175 |#1|) $ |#1|) 117 (|has| |#1| (-15 ** (|#1| |#1| (-790)))) ELT)) (-4229 ((|#1| $ (-790)) 128 T ELT) (($ $ $) 104 (|has| (-790) (-1132)) ELT)) (-4187 (($ $ (-1197)) 116 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197))) 114 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-1197) (-790)) 113 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 112 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $) 108 (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-790)) 106 (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT)) (-4377 (((-790) $) 81 T ELT)) (-3914 (($ $) 157 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4065 (($ $) 146 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3912 (($ $) 156 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4064 (($ $) 147 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3910 (($ $) 155 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4063 (($ $) 148 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3291 (($ $) 90 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ (-419 (-558))) 74 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $) 66 (|has| |#1| (-569)) ELT) (($ |#1|) 64 (|has| |#1| (-175)) ELT)) (-4246 (((-1175 |#1|) $) 179 T ELT)) (-4106 ((|#1| $ (-790)) 76 T ELT)) (-3102 (((-710 $) $) 65 (|has| |#1| (-147)) ELT)) (-3527 (((-790)) 37 T CONST)) (-4202 ((|#1| $) 125 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3917 (($ $) 166 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3905 (($ $) 154 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-2271 (((-114) $ $) 70 (|has| |#1| (-569)) ELT)) (-3915 (($ $) 165 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3903 (($ $) 153 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3919 (($ $) 164 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3907 (($ $) 152 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-4199 ((|#1| $ (-790)) 119 (-12 (|has| |#1| (-15 ** (|#1| |#1| (-790)))) (|has| |#1| (-15 -4375 (|#1| (-1197))))) ELT)) (-3920 (($ $) 163 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3908 (($ $) 151 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3918 (($ $) 162 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3906 (($ $) 150 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3916 (($ $) 161 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3904 (($ $) 149 (|has| |#1| (-38 (-419 (-558)))) ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3069 (($ $ (-1197)) 115 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197))) 111 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-1197) (-790)) 110 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $ (-660 (-1197)) (-660 (-790))) 109 (-12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ELT) (($ $) 107 (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT) (($ $ (-790)) 105 (|has| |#1| (-15 * (|#1| (-790) |#1|))) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 75 (|has| |#1| (-376)) ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ |#1|) 173 (|has| |#1| (-376)) ELT) (($ $ $) 169 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 140 (|has| |#1| (-38 (-419 (-558)))) ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 85 T ELT) (($ |#1| $) 84 T ELT) (($ (-419 (-558)) $) 73 (|has| |#1| (-38 (-419 (-558)))) ELT) (($ $ (-419 (-558))) 72 (|has| |#1| (-38 (-419 (-558)))) ELT))) +(((-1280 |#1|) (-142) (-1069)) (T -1280)) +((-4247 (*1 *1 *2) (-12 (-5 *2 (-1175 (-2 (|:| |k| (-790)) (|:| |c| *3)))) (-4 *3 (-1069)) (-4 *1 (-1280 *3)))) (-4246 (*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1069)) (-5 *2 (-1175 *3)))) (-4247 (*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-4 *1 (-1280 *3)))) (-4245 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1069)))) (-4244 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1280 *3)) (-4 *3 (-1069)))) (-4243 (*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-1280 *4)) (-4 *4 (-1069)) (-5 *2 (-964 *4)))) (-4243 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-4 *1 (-1280 *4)) (-4 *4 (-1069)) (-5 *2 (-964 *4)))) (** (*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) (-4241 (*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558)))))) (-4241 (*1 *1 *1 *2) (-3956 (-12 (-5 *2 (-1197)) (-4 *1 (-1280 *3)) (-4 *3 (-1069)) (-12 (-4 *3 (-29 (-558))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-558)))))) (-12 (-5 *2 (-1197)) (-4 *1 (-1280 *3)) (-4 *3 (-1069)) (-12 (|has| *3 (-15 -3483 ((-660 *2) *3))) (|has| *3 (-15 -4241 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558))))))))) +(-13 (-1266 |t#1| (-790)) (-10 -8 (-15 -4247 ($ (-1175 (-2 (|:| |k| (-790)) (|:| |c| |t#1|))))) (-15 -4246 ((-1175 |t#1|) $)) (-15 -4247 ($ (-1175 |t#1|))) (-15 -4245 ($ $)) (-15 -4244 ($ (-1 |t#1| (-558)) $)) (-15 -4243 ((-964 |t#1|) $ (-790))) (-15 -4243 ((-964 |t#1|) $ (-790) (-790))) (IF (|has| |t#1| (-376)) (-15 ** ($ $ |t#1|)) |%noBranch|) (IF (|has| |t#1| (-38 (-419 (-558)))) (PROGN (-15 -4241 ($ $)) (IF (|has| |t#1| (-15 -4241 (|t#1| |t#1| (-1197)))) (IF (|has| |t#1| (-15 -3483 ((-660 (-1197)) |t#1|))) (-15 -4241 ($ $ (-1197))) |%noBranch|) |%noBranch|) (IF (|has| |t#1| (-1223)) (IF (|has| |t#1| (-978)) (IF (|has| |t#1| (-29 (-558))) (-15 -4241 ($ $ (-1197))) |%noBranch|) |%noBranch|) |%noBranch|) (-6 (-1022)) (-6 (-1223))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-47 |#1| (-790)) . T) ((-25) . T) ((-38 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-38 |#1|) |has| |#1| (-175)) ((-38 $) |has| |#1| (-569)) ((-35) |has| |#1| (-38 (-419 (-558)))) ((-95) |has| |#1| (-38 (-419 (-558)))) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-111 |#1| |#1|) . T) ((-111 $ $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-133) . T) ((-147) |has| |#1| (-147)) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-632 (-558)) . T) ((-632 |#1|) |has| |#1| (-175)) ((-632 $) |has| |#1| (-569)) ((-629 (-876)) . T) ((-175) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-236 $) |has| |#1| (-15 * (|#1| (-790) |#1|))) ((-240) |has| |#1| (-15 * (|#1| (-790) |#1|))) ((-239) |has| |#1| (-15 * (|#1| (-790) |#1|))) ((-296) |has| |#1| (-38 (-419 (-558)))) ((-298 (-790) |#1|) . T) ((-298 $ $) |has| (-790) (-1132)) ((-302) |has| |#1| (-569)) ((-505) |has| |#1| (-38 (-419 (-558)))) ((-569) |has| |#1| (-569)) ((-665 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-659 |#1|) |has| |#1| (-175)) ((-659 $) |has| |#1| (-569)) ((-736 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-736 |#1|) |has| |#1| (-175)) ((-736 $) |has| |#1| (-569)) ((-745) . T) ((-910 $ (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ((-916 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ((-918 (-1197)) -12 (|has| |#1| (-916 (-1197))) (|has| |#1| (-15 * (|#1| (-790) |#1|)))) ((-993 |#1| (-790) (-1102)) . T) ((-1022) |has| |#1| (-38 (-419 (-558)))) ((-1071 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1071 |#1|) . T) ((-1071 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1076 (-419 (-558))) |has| |#1| (-38 (-419 (-558)))) ((-1076 |#1|) . T) ((-1076 $) -3956 (|has| |#1| (-569)) (|has| |#1| (-175))) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1223) |has| |#1| (-38 (-419 (-558)))) ((-1226) |has| |#1| (-38 (-419 (-558)))) ((-1237) . T) ((-1266 |#1| (-790)) . T)) +((-4250 (((-1 (-1175 |#1|) (-660 (-1175 |#1|))) (-1 |#2| (-660 |#2|))) 24 T ELT)) (-4249 (((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|)) 16 T ELT)) (-4248 (((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|)) 13 T ELT)) (-4253 ((|#2| (-1 |#2| |#2| |#2|) |#1| |#1|) 48 T ELT)) (-4252 ((|#2| (-1 |#2| |#2|) |#1|) 46 T ELT)) (-4254 ((|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|)) 60 T ELT)) (-4255 (((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))) 66 T ELT)) (-4251 ((|#2| |#2| |#2|) 43 T ELT))) +(((-1281 |#1| |#2|) (-10 -7 (-15 -4248 ((-1 (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2|))) (-15 -4249 ((-1 (-1175 |#1|) (-1175 |#1|) (-1175 |#1|)) (-1 |#2| |#2| |#2|))) (-15 -4250 ((-1 (-1175 |#1|) (-660 (-1175 |#1|))) (-1 |#2| (-660 |#2|)))) (-15 -4251 (|#2| |#2| |#2|)) (-15 -4252 (|#2| (-1 |#2| |#2|) |#1|)) (-15 -4253 (|#2| (-1 |#2| |#2| |#2|) |#1| |#1|)) (-15 -4254 (|#2| (-1 |#2| (-660 |#2|)) (-660 |#1|))) (-15 -4255 ((-660 |#2|) (-660 |#1|) (-660 (-1 |#2| (-660 |#2|)))))) (-38 (-419 (-558))) (-1280 |#1|)) (T -1281)) +((-4255 (*1 *2 *3 *4) (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 (-1 *6 (-660 *6)))) (-4 *5 (-38 (-419 (-558)))) (-4 *6 (-1280 *5)) (-5 *2 (-660 *6)) (-5 *1 (-1281 *5 *6)))) (-4254 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 (-660 *2))) (-5 *4 (-660 *5)) (-4 *5 (-38 (-419 (-558)))) (-4 *2 (-1280 *5)) (-5 *1 (-1281 *5 *2)))) (-4253 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-558)))))) (-4252 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-558)))))) (-4251 (*1 *2 *2 *2) (-12 (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1281 *3 *2)) (-4 *2 (-1280 *3)))) (-4250 (*1 *2 *3) (-12 (-5 *3 (-1 *5 (-660 *5))) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1175 *4) (-660 (-1175 *4)))) (-5 *1 (-1281 *4 *5)))) (-4249 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1175 *4) (-1175 *4) (-1175 *4))) (-5 *1 (-1281 *4 *5)))) (-4248 (*1 *2 *3) (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-558)))) (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1281 *4 *5))))) +((-4257 ((|#2| |#4| (-790)) 31 T ELT)) (-4256 ((|#4| |#2|) 26 T ELT)) (-4259 ((|#4| (-419 |#2|)) 49 (|has| |#1| (-569)) ELT)) (-4258 (((-1 |#4| (-660 |#4|)) |#3|) 43 T ELT))) +(((-1282 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4256 (|#4| |#2|)) (-15 -4257 (|#2| |#4| (-790))) (-15 -4258 ((-1 |#4| (-660 |#4|)) |#3|)) (IF (|has| |#1| (-569)) (-15 -4259 (|#4| (-419 |#2|))) |%noBranch|)) (-1069) (-1263 |#1|) (-677 |#2|) (-1280 |#1|)) (T -1282)) +((-4259 (*1 *2 *3) (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-569)) (-4 *4 (-1069)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) (-4 *6 (-677 *5)))) (-4258 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-660 *6))) (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-1280 *4)))) (-4257 (*1 *2 *3 *4) (-12 (-5 *4 (-790)) (-4 *5 (-1069)) (-4 *2 (-1263 *5)) (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-677 *2)) (-4 *3 (-1280 *5)))) (-4256 (*1 *2 *3) (-12 (-4 *4 (-1069)) (-4 *3 (-1263 *4)) (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-677 *3))))) +NIL +(((-1283) (-142)) (T -1283)) +NIL +(-13 (-10 -7 (-6 -2500))) +((-2966 (((-114) $ $) NIL T ELT)) (-4260 (((-1197)) 12 T ELT)) (-3659 (((-1179) $) 18 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 11 T ELT) (((-1197) $) 8 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 15 T ELT))) +(((-1284 |#1|) (-13 (-1121) (-629 (-1197)) (-10 -8 (-15 -4375 ((-1197) $)) (-15 -4260 ((-1197))))) (-1197)) (T -1284)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) (-4260 (*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) +((-4267 (($ (-790)) 19 T ELT)) (-4264 (((-708 |#2|) $ $) 41 T ELT)) (-4261 ((|#2| $) 51 T ELT)) (-4262 ((|#2| $) 50 T ELT)) (-4265 ((|#2| $ $) 36 T ELT)) (-4263 (($ $ $) 47 T ELT)) (-4266 (($ $) 23 T ELT) (($ $ $) 29 T ELT)) (-4268 (($ $ $) 15 T ELT)) (* (($ (-558) $) 26 T ELT) (($ |#2| $) 32 T ELT) (($ $ |#2|) 31 T ELT))) +(((-1285 |#1| |#2|) (-10 -7 (-15 -4261 (|#2| |#1|)) (-15 -4262 (|#2| |#1|)) (-15 -4263 (|#1| |#1| |#1|)) (-15 -4264 ((-708 |#2|) |#1| |#1|)) (-15 -4265 (|#2| |#1| |#1|)) (-15 * (|#1| |#1| |#2|)) (-15 * (|#1| |#2| |#1|)) (-15 * (|#1| (-558) |#1|)) (-15 -4266 (|#1| |#1| |#1|)) (-15 -4266 (|#1| |#1|)) (-15 -4267 (|#1| (-790))) (-15 -4268 (|#1| |#1| |#1|))) (-1286 |#2|) (-1237)) (T -1285)) +NIL +((-2966 (((-114) $ $) 19 (|has| |#1| (-102)) ELT)) (-4267 (($ (-790)) 121 (|has| |#1| (-23)) ELT)) (-2412 (((-1293) $ (-558) (-558)) 44 (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) 107 T ELT) (((-114) $) 101 (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) 98 (|has| $ (-6 -4425)) ELT) (($ $) 97 (-12 (|has| |#1| (-860)) (|has| $ (-6 -4425))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) 108 T ELT) (($ $) 102 (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) 56 (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) 64 (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) 81 (|has| $ (-6 -4424)) ELT)) (-4153 (($) 7 T CONST)) (-2509 (($ $) 99 (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) 109 T ELT)) (-1466 (($ $) 84 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-3825 (($ |#1| $) 83 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) (($ (-1 (-114) |#1|) $) 80 (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) 82 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) 79 (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) 78 (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) 57 (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) 55 T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) 106 T ELT) (((-558) |#1| $) 105 (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) 104 (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) 30 (|has| $ (-6 -4424)) ELT)) (-4264 (((-708 |#1|) $ $) 114 (|has| |#1| (-1069)) ELT)) (-4043 (($ (-790) |#1|) 74 T ELT)) (-2414 (((-558) $) 47 (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) 91 (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) 110 T ELT) (($ $ $) 103 (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) 29 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) 27 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-2415 (((-558) $) 48 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) 92 (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) 34 (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) 35 T ELT) (($ (-1 |#1| |#1| |#1|) $ $) 69 T ELT)) (-4261 ((|#1| $) 111 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))) ELT)) (-4262 ((|#1| $) 112 (-12 (|has| |#1| (-1069)) (|has| |#1| (-1022))) ELT)) (-3659 (((-1179) $) 22 (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) 66 T ELT) (($ $ $ (-558)) 65 T ELT)) (-2417 (((-660 (-558)) $) 50 T ELT)) (-2418 (((-114) (-558) $) 51 T ELT)) (-3660 (((-1140) $) 21 (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) 46 (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) 77 T ELT)) (-2413 (($ $ |#1|) 45 (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) 32 (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) 26 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) 25 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) 24 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) 23 (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) 11 T ELT)) (-2416 (((-114) |#1| $) 49 (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) 52 T ELT)) (-3822 (((-114) $) 8 T ELT)) (-3992 (($) 9 T ELT)) (-4229 ((|#1| $ (-558) |#1|) 54 T ELT) ((|#1| $ (-558)) 53 T ELT) (($ $ (-1254 (-558))) 75 T ELT)) (-4265 ((|#1| $ $) 115 (|has| |#1| (-1069)) ELT)) (-2517 (($ $ (-558)) 68 T ELT) (($ $ (-1254 (-558))) 67 T ELT)) (-4263 (($ $ $) 113 (|has| |#1| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) 31 (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) 28 (-12 (|has| |#1| (-1121)) (|has| $ (-6 -4424))) ELT)) (-1933 (($ $ $ (-558)) 100 (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) 10 T ELT)) (-4401 (((-547) $) 85 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 76 T ELT)) (-4231 (($ $ |#1|) 73 T ELT) (($ |#1| $) 72 T ELT) (($ $ $) 71 T ELT) (($ (-660 $)) 70 T ELT)) (-4375 (((-876) $) 17 (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) 20 (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) 33 (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) 93 (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) 95 (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) 18 (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) 94 (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) 96 (|has| |#1| (-860)) ELT)) (-4266 (($ $) 120 (|has| |#1| (-21)) ELT) (($ $ $) 119 (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) 122 (|has| |#1| (-25)) ELT)) (* (($ (-558) $) 118 (|has| |#1| (-21)) ELT) (($ |#1| $) 117 (|has| |#1| (-745)) ELT) (($ $ |#1|) 116 (|has| |#1| (-745)) ELT)) (-4386 (((-790) $) 6 (|has| $ (-6 -4424)) ELT))) +(((-1286 |#1|) (-142) (-1237)) (T -1286)) +((-4268 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-25)))) (-4267 (*1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1237)))) (-4266 (*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (-4266 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) (* (*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-4 *1 (-1286 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-745)))) (* (*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-745)))) (-4265 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1069)))) (-4264 (*1 *2 *1 *1) (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1237)) (-4 *3 (-1069)) (-5 *2 (-708 *3)))) (-4263 (*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1069)))) (-4262 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) (-4 *2 (-1069)))) (-4261 (*1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) (-4 *2 (-1069))))) +(-13 (-19 |t#1|) (-10 -8 (IF (|has| |t#1| (-25)) (-15 -4268 ($ $ $)) |%noBranch|) (IF (|has| |t#1| (-23)) (-15 -4267 ($ (-790))) |%noBranch|) (IF (|has| |t#1| (-21)) (PROGN (-15 -4266 ($ $)) (-15 -4266 ($ $ $)) (-15 * ($ (-558) $))) |%noBranch|) (IF (|has| |t#1| (-745)) (PROGN (-15 * ($ |t#1| $)) (-15 * ($ $ |t#1|))) |%noBranch|) (IF (|has| |t#1| (-1069)) (PROGN (-15 -4265 (|t#1| $ $)) (-15 -4264 ((-708 |t#1|) $ $)) (-15 -4263 ($ $ $))) |%noBranch|) (IF (|has| |t#1| (-1022)) (IF (|has| |t#1| (-1069)) (PROGN (-15 -4262 (|t#1| $)) (-15 -4261 (|t#1| $))) |%noBranch|) |%noBranch|))) +(((-34) . T) ((-102) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-102))) ((-629 (-876)) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860)) (|has| |#1| (-629 (-876)))) ((-153 |#1|) . T) ((-630 (-547)) |has| |#1| (-630 (-547))) ((-298 (-558) |#1|) . T) ((-298 (-1254 (-558)) $) . T) ((-300 (-558) |#1|) . T) ((-321 |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-385 |#1|) . T) ((-501 |#1|) . T) ((-615 (-558) |#1|) . T) ((-526 |#1| |#1|) -12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ((-670 |#1|) . T) ((-19 |#1|) . T) ((-860) |has| |#1| (-860)) ((-863) |has| |#1| (-860)) ((-1121) -3956 (|has| |#1| (-1121)) (|has| |#1| (-860))) ((-1237) . T)) +((-2966 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-4267 (($ (-790)) NIL (|has| |#1| (-23)) ELT)) (-4269 (($ (-660 |#1|)) 11 T ELT)) (-2412 (((-1293) $ (-558) (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-1934 (((-114) (-1 (-114) |#1| |#1|) $) NIL T ELT) (((-114) $) NIL (|has| |#1| (-860)) ELT)) (-1932 (($ (-1 (-114) |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT) (($ $) NIL (-12 (|has| $ (-6 -4425)) (|has| |#1| (-860))) ELT)) (-3309 (($ (-1 (-114) |#1| |#1|) $) NIL T ELT) (($ $) NIL (|has| |#1| (-860)) ELT)) (-4217 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT) ((|#1| $ (-1254 (-558)) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-4139 (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4153 (($) NIL T CONST)) (-2509 (($ $) NIL (|has| $ (-6 -4425)) ELT)) (-2510 (($ $) NIL T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-3825 (($ |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) (($ (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4271 ((|#1| (-1 |#1| |#1| |#1|) $ |#1| |#1|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT) ((|#1| (-1 |#1| |#1| |#1|) $ |#1|) NIL (|has| $ (-6 -4424)) ELT) ((|#1| (-1 |#1| |#1| |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-1718 ((|#1| $ (-558) |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-3514 ((|#1| $ (-558)) NIL T ELT)) (-3838 (((-558) (-1 (-114) |#1|) $) NIL T ELT) (((-558) |#1| $) NIL (|has| |#1| (-1121)) ELT) (((-558) |#1| $ (-558)) NIL (|has| |#1| (-1121)) ELT)) (-3289 (((-660 |#1|) $) 16 (|has| $ (-6 -4424)) ELT)) (-4264 (((-708 |#1|) $ $) NIL (|has| |#1| (-1069)) ELT)) (-4043 (($ (-790) |#1|) NIL T ELT)) (-2414 (((-558) $) NIL (|has| (-558) (-860)) ELT)) (-2929 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3937 (($ (-1 (-114) |#1| |#1|) $ $) NIL T ELT) (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-3006 (((-660 |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2415 (((-558) $) 12 (|has| (-558) (-860)) ELT)) (-3257 (($ $ $) NIL (|has| |#1| (-860)) ELT)) (-2159 (($ (-1 |#1| |#1|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT) (($ (-1 |#1| |#1| |#1|) $ $) NIL T ELT)) (-4261 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))) ELT)) (-4262 ((|#1| $) NIL (-12 (|has| |#1| (-1022)) (|has| |#1| (-1069))) ELT)) (-3659 (((-1179) $) NIL (|has| |#1| (-1121)) ELT)) (-2516 (($ |#1| $ (-558)) NIL T ELT) (($ $ $ (-558)) NIL T ELT)) (-2417 (((-660 (-558)) $) NIL T ELT)) (-2418 (((-114) (-558) $) NIL T ELT)) (-3660 (((-1140) $) NIL (|has| |#1| (-1121)) ELT)) (-4230 ((|#1| $) NIL (|has| (-558) (-860)) ELT)) (-1467 (((-3 |#1| "failed") (-1 (-114) |#1|) $) NIL T ELT)) (-2413 (($ $ |#1|) NIL (|has| $ (-6 -4425)) ELT)) (-2157 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 (-305 |#1|))) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-305 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ |#1| |#1|) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT) (($ $ (-660 |#1|) (-660 |#1|)) NIL (-12 (|has| |#1| (-321 |#1|)) (|has| |#1| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-2416 (((-114) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-2419 (((-660 |#1|) $) NIL T ELT)) (-3822 (((-114) $) NIL T ELT)) (-3992 (($) NIL T ELT)) (-4229 ((|#1| $ (-558) |#1|) NIL T ELT) ((|#1| $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4265 ((|#1| $ $) NIL (|has| |#1| (-1069)) ELT)) (-2517 (($ $ (-558)) NIL T ELT) (($ $ (-1254 (-558))) NIL T ELT)) (-4263 (($ $ $) NIL (|has| |#1| (-1069)) ELT)) (-2156 (((-790) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT) (((-790) |#1| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#1| (-1121))) ELT)) (-1933 (($ $ $ (-558)) NIL (|has| $ (-6 -4425)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) 20 (|has| |#1| (-630 (-547))) ELT)) (-3949 (($ (-660 |#1|)) 10 T ELT)) (-4231 (($ $ |#1|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ $) NIL T ELT) (($ (-660 $)) NIL T ELT)) (-4375 (((-876) $) NIL (|has| |#1| (-629 (-876))) ELT)) (-1377 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-2158 (((-114) (-1 (-114) |#1|) $) NIL (|has| $ (-6 -4424)) ELT)) (-2964 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-2965 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3453 (((-114) $ $) NIL (|has| |#1| (-102)) ELT)) (-3084 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-3085 (((-114) $ $) NIL (|has| |#1| (-860)) ELT)) (-4266 (($ $) NIL (|has| |#1| (-21)) ELT) (($ $ $) NIL (|has| |#1| (-21)) ELT)) (-4268 (($ $ $) NIL (|has| |#1| (-25)) ELT)) (* (($ (-558) $) NIL (|has| |#1| (-21)) ELT) (($ |#1| $) NIL (|has| |#1| (-745)) ELT) (($ $ |#1|) NIL (|has| |#1| (-745)) ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1287 |#1|) (-13 (-1286 |#1|) (-10 -8 (-15 -4269 ($ (-660 |#1|))))) (-1237)) (T -1287)) +((-4269 (*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3))))) +((-4270 (((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 13 T ELT)) (-4271 ((|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|) 15 T ELT)) (-4387 (((-3 (-1287 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1287 |#1|)) 30 T ELT) (((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|)) 18 T ELT))) +(((-1288 |#1| |#2|) (-10 -7 (-15 -4270 ((-1287 |#2|) (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -4271 (|#2| (-1 |#2| |#1| |#2|) (-1287 |#1|) |#2|)) (-15 -4387 ((-1287 |#2|) (-1 |#2| |#1|) (-1287 |#1|))) (-15 -4387 ((-3 (-1287 |#2|) #1="failed") (-1 (-3 |#2| #1#) |#1|) (-1287 |#1|)))) (-1237) (-1237)) (T -1288)) +((-4387 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1288 *5 *6)))) (-4387 (*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1288 *5 *6)))) (-4271 (*1 *2 *3 *4 *2) (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-1288 *5 *2)))) (-4270 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-1287 *5)) (-5 *1 (-1288 *6 *5))))) +((-4272 (((-480) (-660 (-660 (-961 (-229)))) (-660 (-270))) 22 T ELT) (((-480) (-660 (-660 (-961 (-229))))) 21 T ELT) (((-480) (-660 (-660 (-961 (-229)))) (-887) (-887) (-937) (-660 (-270))) 20 T ELT)) (-4273 (((-1290) (-660 (-660 (-961 (-229)))) (-660 (-270))) 30 T ELT) (((-1290) (-660 (-660 (-961 (-229)))) (-887) (-887) (-937) (-660 (-270))) 29 T ELT)) (-4375 (((-1290) (-480)) 46 T ELT))) +(((-1289) (-10 -7 (-15 -4272 ((-480) (-660 (-660 (-961 (-229)))) (-887) (-887) (-937) (-660 (-270)))) (-15 -4272 ((-480) (-660 (-660 (-961 (-229)))))) (-15 -4272 ((-480) (-660 (-660 (-961 (-229)))) (-660 (-270)))) (-15 -4273 ((-1290) (-660 (-660 (-961 (-229)))) (-887) (-887) (-937) (-660 (-270)))) (-15 -4273 ((-1290) (-660 (-660 (-961 (-229)))) (-660 (-270)))) (-15 -4375 ((-1290) (-480))))) (T -1289)) +((-4375 (*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1290)) (-5 *1 (-1289)))) (-4273 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-1289)))) (-4273 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-887)) (-5 *5 (-937)) (-5 *6 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-1289)))) (-4272 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-660 (-270))) (-5 *2 (-480)) (-5 *1 (-1289)))) (-4272 (*1 *2 *3) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *2 (-480)) (-5 *1 (-1289)))) (-4272 (*1 *2 *3 *4 *4 *5 *6) (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-887)) (-5 *5 (-937)) (-5 *6 (-660 (-270))) (-5 *2 (-480)) (-5 *1 (-1289))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4291 (((-1179) $ (-1179)) 107 T ELT) (((-1179) $ (-1179) (-1179)) 105 T ELT) (((-1179) $ (-1179) (-660 (-1179))) 104 T ELT)) (-4287 (($) 69 T ELT)) (-4274 (((-1293) $ (-480) (-937)) 54 T ELT)) (-4280 (((-1293) $ (-937) (-1179)) 89 T ELT) (((-1293) $ (-937) (-887)) 90 T ELT)) (-4302 (((-1293) $ (-937) (-391) (-391)) 57 T ELT)) (-4312 (((-1293) $ (-1179)) 84 T ELT)) (-4275 (((-1293) $ (-937) (-1179)) 94 T ELT)) (-4276 (((-1293) $ (-937) (-391) (-391)) 58 T ELT)) (-4313 (((-1293) $ (-937) (-937)) 55 T ELT)) (-4293 (((-1293) $) 85 T ELT)) (-4278 (((-1293) $ (-937) (-1179)) 93 T ELT)) (-4282 (((-1293) $ (-480) (-937)) 41 T ELT)) (-4279 (((-1293) $ (-937) (-1179)) 92 T ELT)) (-4315 (((-660 (-270)) $) 29 T ELT) (($ $ (-660 (-270))) 30 T ELT)) (-4314 (((-1293) $ (-790) (-790)) 52 T ELT)) (-4286 (($ $) 70 T ELT) (($ (-480) (-660 (-270))) 71 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4289 (((-558) $) 48 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4283 (((-1287 (-3 (-480) "undefined")) $) 47 T ELT)) (-4284 (((-1287 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4279 (-558)) (|:| -4277 (-558)) (|:| |spline| (-558)) (|:| -4308 (-558)) (|:| |axesColor| (-887)) (|:| -4280 (-558)) (|:| |unitsColor| (-887)) (|:| |showing| (-558)))) $) 46 T ELT)) (-4285 (((-1293) $ (-937) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-887) (-558) (-887) (-558)) 83 T ELT)) (-4288 (((-660 (-961 (-229))) $) NIL T ELT)) (-4281 (((-480) $ (-937)) 43 T ELT)) (-4311 (((-1293) $ (-790) (-790) (-937) (-937)) 50 T ELT)) (-4309 (((-1293) $ (-1179)) 95 T ELT)) (-4277 (((-1293) $ (-937) (-1179)) 91 T ELT)) (-4375 (((-876) $) 102 T ELT)) (-4290 (((-1293) $) 96 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4308 (((-1293) $ (-937) (-1179)) 87 T ELT) (((-1293) $ (-937) (-887)) 88 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1290) (-13 (-1121) (-10 -8 (-15 -4288 ((-660 (-961 (-229))) $)) (-15 -4287 ($)) (-15 -4286 ($ $)) (-15 -4315 ((-660 (-270)) $)) (-15 -4315 ($ $ (-660 (-270)))) (-15 -4286 ($ (-480) (-660 (-270)))) (-15 -4285 ((-1293) $ (-937) (-229) (-229) (-229) (-229) (-558) (-558) (-558) (-558) (-887) (-558) (-887) (-558))) (-15 -4284 ((-1287 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4279 (-558)) (|:| -4277 (-558)) (|:| |spline| (-558)) (|:| -4308 (-558)) (|:| |axesColor| (-887)) (|:| -4280 (-558)) (|:| |unitsColor| (-887)) (|:| |showing| (-558)))) $)) (-15 -4283 ((-1287 (-3 (-480) "undefined")) $)) (-15 -4312 ((-1293) $ (-1179))) (-15 -4282 ((-1293) $ (-480) (-937))) (-15 -4281 ((-480) $ (-937))) (-15 -4308 ((-1293) $ (-937) (-1179))) (-15 -4308 ((-1293) $ (-937) (-887))) (-15 -4280 ((-1293) $ (-937) (-1179))) (-15 -4280 ((-1293) $ (-937) (-887))) (-15 -4279 ((-1293) $ (-937) (-1179))) (-15 -4278 ((-1293) $ (-937) (-1179))) (-15 -4277 ((-1293) $ (-937) (-1179))) (-15 -4309 ((-1293) $ (-1179))) (-15 -4290 ((-1293) $)) (-15 -4311 ((-1293) $ (-790) (-790) (-937) (-937))) (-15 -4276 ((-1293) $ (-937) (-391) (-391))) (-15 -4302 ((-1293) $ (-937) (-391) (-391))) (-15 -4275 ((-1293) $ (-937) (-1179))) (-15 -4314 ((-1293) $ (-790) (-790))) (-15 -4274 ((-1293) $ (-480) (-937))) (-15 -4313 ((-1293) $ (-937) (-937))) (-15 -4291 ((-1179) $ (-1179))) (-15 -4291 ((-1179) $ (-1179) (-1179))) (-15 -4291 ((-1179) $ (-1179) (-660 (-1179)))) (-15 -4293 ((-1293) $)) (-15 -4289 ((-558) $)) (-15 -4375 ((-876) $))))) (T -1290)) +((-4375 (*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1290)))) (-4288 (*1 *2 *1) (-12 (-5 *2 (-660 (-961 (-229)))) (-5 *1 (-1290)))) (-4287 (*1 *1) (-5 *1 (-1290))) (-4286 (*1 *1 *1) (-5 *1 (-1290))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1290)))) (-4315 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1290)))) (-4286 (*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-660 (-270))) (-5 *1 (-1290)))) (-4285 (*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) (-12 (-5 *3 (-937)) (-5 *4 (-229)) (-5 *5 (-558)) (-5 *6 (-887)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4284 (*1 *2 *1) (-12 (-5 *2 (-1287 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)) (|:| -4279 (-558)) (|:| -4277 (-558)) (|:| |spline| (-558)) (|:| -4308 (-558)) (|:| |axesColor| (-887)) (|:| -4280 (-558)) (|:| |unitsColor| (-887)) (|:| |showing| (-558))))) (-5 *1 (-1290)))) (-4283 (*1 *2 *1) (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1290)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4282 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4281 (*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-5 *2 (-480)) (-5 *1 (-1290)))) (-4308 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4308 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-887)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4280 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4280 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-887)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4279 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4278 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4277 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4311 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-790)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4276 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-391)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4302 (*1 *2 *1 *3 *4 *4) (-12 (-5 *3 (-937)) (-5 *4 (-391)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4275 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4314 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4274 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4291 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-4291 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) (-4291 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1290))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4303 (((-1293) $ (-391)) 169 T ELT) (((-1293) $ (-391) (-391) (-391)) 170 T ELT)) (-4291 (((-1179) $ (-1179)) 178 T ELT) (((-1179) $ (-1179) (-1179)) 176 T ELT) (((-1179) $ (-1179) (-660 (-1179))) 175 T ELT)) (-4319 (($) 67 T ELT)) (-4310 (((-1293) $ (-391) (-391) (-391) (-391) (-391)) 141 T ELT) (((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $) 139 T ELT) (((-1293) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) 140 T ELT) (((-1293) $ (-558) (-558) (-391) (-391) (-391)) 144 T ELT) (((-1293) $ (-391) (-391)) 145 T ELT) (((-1293) $ (-391) (-391) (-391)) 152 T ELT)) (-4322 (((-391)) 122 T ELT) (((-391) (-391)) 123 T ELT)) (-4324 (((-391)) 117 T ELT) (((-391) (-391)) 119 T ELT)) (-4323 (((-391)) 120 T ELT) (((-391) (-391)) 121 T ELT)) (-4320 (((-391)) 126 T ELT) (((-391) (-391)) 127 T ELT)) (-4321 (((-391)) 124 T ELT) (((-391) (-391)) 125 T ELT)) (-4302 (((-1293) $ (-391) (-391)) 171 T ELT)) (-4312 (((-1293) $ (-1179)) 153 T ELT)) (-4317 (((-1153 (-229)) $) 68 T ELT) (($ $ (-1153 (-229))) 69 T ELT)) (-4298 (((-1293) $ (-1179)) 187 T ELT)) (-4297 (((-1293) $ (-1179)) 188 T ELT)) (-4304 (((-1293) $ (-391) (-391)) 151 T ELT) (((-1293) $ (-558) (-558)) 168 T ELT)) (-4313 (((-1293) $ (-937) (-937)) 160 T ELT)) (-4293 (((-1293) $) 137 T ELT)) (-4301 (((-1293) $ (-1179)) 186 T ELT)) (-4306 (((-1293) $ (-1179)) 134 T ELT)) (-4315 (((-660 (-270)) $) 70 T ELT) (($ $ (-660 (-270))) 71 T ELT)) (-4314 (((-1293) $ (-790) (-790)) 159 T ELT)) (-4316 (((-1293) $ (-790) (-961 (-229))) 193 T ELT)) (-4318 (($ $) 73 T ELT) (($ (-1153 (-229)) (-1179)) 74 T ELT) (($ (-1153 (-229)) (-660 (-270))) 75 T ELT)) (-4295 (((-1293) $ (-391) (-391) (-391)) 131 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4289 (((-558) $) 128 T ELT)) (-4294 (((-1293) $ (-391)) 173 T ELT)) (-4299 (((-1293) $ (-391)) 191 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4300 (((-1293) $ (-391)) 190 T ELT)) (-4305 (((-1293) $ (-1179)) 136 T ELT)) (-4311 (((-1293) $ (-790) (-790) (-937) (-937)) 158 T ELT)) (-4307 (((-1293) $ (-1179)) 133 T ELT)) (-4309 (((-1293) $ (-1179)) 135 T ELT)) (-4292 (((-1293) $ (-159) (-159)) 157 T ELT)) (-4375 (((-876) $) 166 T ELT)) (-4290 (((-1293) $) 138 T ELT)) (-4296 (((-1293) $ (-1179)) 189 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4308 (((-1293) $ (-1179)) 132 T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1291) (-13 (-1121) (-10 -8 (-15 -4324 ((-391))) (-15 -4324 ((-391) (-391))) (-15 -4323 ((-391))) (-15 -4323 ((-391) (-391))) (-15 -4322 ((-391))) (-15 -4322 ((-391) (-391))) (-15 -4321 ((-391))) (-15 -4321 ((-391) (-391))) (-15 -4320 ((-391))) (-15 -4320 ((-391) (-391))) (-15 -4319 ($)) (-15 -4318 ($ $)) (-15 -4318 ($ (-1153 (-229)) (-1179))) (-15 -4318 ($ (-1153 (-229)) (-660 (-270)))) (-15 -4317 ((-1153 (-229)) $)) (-15 -4317 ($ $ (-1153 (-229)))) (-15 -4316 ((-1293) $ (-790) (-961 (-229)))) (-15 -4315 ((-660 (-270)) $)) (-15 -4315 ($ $ (-660 (-270)))) (-15 -4314 ((-1293) $ (-790) (-790))) (-15 -4313 ((-1293) $ (-937) (-937))) (-15 -4312 ((-1293) $ (-1179))) (-15 -4311 ((-1293) $ (-790) (-790) (-937) (-937))) (-15 -4310 ((-1293) $ (-391) (-391) (-391) (-391) (-391))) (-15 -4310 ((-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))) $)) (-15 -4310 ((-1293) $ (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229))))) (-15 -4310 ((-1293) $ (-558) (-558) (-391) (-391) (-391))) (-15 -4310 ((-1293) $ (-391) (-391))) (-15 -4310 ((-1293) $ (-391) (-391) (-391))) (-15 -4309 ((-1293) $ (-1179))) (-15 -4308 ((-1293) $ (-1179))) (-15 -4307 ((-1293) $ (-1179))) (-15 -4306 ((-1293) $ (-1179))) (-15 -4305 ((-1293) $ (-1179))) (-15 -4304 ((-1293) $ (-391) (-391))) (-15 -4304 ((-1293) $ (-558) (-558))) (-15 -4303 ((-1293) $ (-391))) (-15 -4303 ((-1293) $ (-391) (-391) (-391))) (-15 -4302 ((-1293) $ (-391) (-391))) (-15 -4301 ((-1293) $ (-1179))) (-15 -4300 ((-1293) $ (-391))) (-15 -4299 ((-1293) $ (-391))) (-15 -4298 ((-1293) $ (-1179))) (-15 -4297 ((-1293) $ (-1179))) (-15 -4296 ((-1293) $ (-1179))) (-15 -4295 ((-1293) $ (-391) (-391) (-391))) (-15 -4294 ((-1293) $ (-391))) (-15 -4293 ((-1293) $)) (-15 -4292 ((-1293) $ (-159) (-159))) (-15 -4291 ((-1179) $ (-1179))) (-15 -4291 ((-1179) $ (-1179) (-1179))) (-15 -4291 ((-1179) $ (-1179) (-660 (-1179)))) (-15 -4290 ((-1293) $)) (-15 -4289 ((-558) $))))) (T -1291)) +((-4324 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4324 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4323 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4323 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4322 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4322 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4321 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4321 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4320 (*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4320 (*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) (-4319 (*1 *1) (-5 *1 (-1291))) (-4318 (*1 *1 *1) (-5 *1 (-1291))) (-4318 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-229))) (-5 *3 (-1179)) (-5 *1 (-1291)))) (-4318 (*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-229))) (-5 *3 (-660 (-270))) (-5 *1 (-1291)))) (-4317 (*1 *2 *1) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-1291)))) (-4317 (*1 *1 *1 *2) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-1291)))) (-4316 (*1 *2 *1 *3 *4) (-12 (-5 *3 (-790)) (-5 *4 (-961 (-229))) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4315 (*1 *2 *1) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1291)))) (-4315 (*1 *1 *1 *2) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1291)))) (-4314 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4313 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4312 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4311 (*1 *2 *1 *3 *3 *4 *4) (-12 (-5 *3 (-790)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4310 (*1 *2 *1 *3 *3 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4310 (*1 *2 *1) (-12 (-5 *2 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-1291)))) (-4310 (*1 *2 *1 *3) (-12 (-5 *3 (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4310 (*1 *2 *1 *3 *3 *4 *4 *4) (-12 (-5 *3 (-558)) (-5 *4 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4310 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4310 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4309 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4308 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4307 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4306 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4305 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4304 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4304 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4303 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4303 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4302 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4301 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4300 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4299 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4298 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4297 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4296 (*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4295 (*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4294 (*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4293 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4292 (*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4291 (*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1291)))) (-4291 (*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1291)))) (-4291 (*1 *2 *1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1291)))) (-4290 (*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1291)))) (-4289 (*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1291))))) +((-4333 (((-660 (-1179)) (-660 (-1179))) 103 T ELT) (((-660 (-1179))) 96 T ELT)) (-4334 (((-660 (-1179))) 94 T ELT)) (-4331 (((-660 (-937)) (-660 (-937))) 69 T ELT) (((-660 (-937))) 64 T ELT)) (-4330 (((-660 (-790)) (-660 (-790))) 61 T ELT) (((-660 (-790))) 55 T ELT)) (-4332 (((-1293)) 71 T ELT)) (-4336 (((-937) (-937)) 87 T ELT) (((-937)) 86 T ELT)) (-4335 (((-937) (-937)) 85 T ELT) (((-937)) 84 T ELT)) (-4328 (((-887) (-887)) 81 T ELT) (((-887)) 80 T ELT)) (-4338 (((-229)) 91 T ELT) (((-229) (-391)) 93 T ELT)) (-4337 (((-937)) 88 T ELT) (((-937) (-937)) 89 T ELT)) (-4329 (((-937) (-937)) 83 T ELT) (((-937)) 82 T ELT)) (-4325 (((-887) (-887)) 75 T ELT) (((-887)) 73 T ELT)) (-4326 (((-887) (-887)) 77 T ELT) (((-887)) 76 T ELT)) (-4327 (((-887) (-887)) 79 T ELT) (((-887)) 78 T ELT))) +(((-1292) (-10 -7 (-15 -4325 ((-887))) (-15 -4325 ((-887) (-887))) (-15 -4326 ((-887))) (-15 -4326 ((-887) (-887))) (-15 -4327 ((-887))) (-15 -4327 ((-887) (-887))) (-15 -4328 ((-887))) (-15 -4328 ((-887) (-887))) (-15 -4329 ((-937))) (-15 -4329 ((-937) (-937))) (-15 -4330 ((-660 (-790)))) (-15 -4330 ((-660 (-790)) (-660 (-790)))) (-15 -4331 ((-660 (-937)))) (-15 -4331 ((-660 (-937)) (-660 (-937)))) (-15 -4332 ((-1293))) (-15 -4333 ((-660 (-1179)))) (-15 -4333 ((-660 (-1179)) (-660 (-1179)))) (-15 -4334 ((-660 (-1179)))) (-15 -4335 ((-937))) (-15 -4336 ((-937))) (-15 -4335 ((-937) (-937))) (-15 -4336 ((-937) (-937))) (-15 -4337 ((-937) (-937))) (-15 -4337 ((-937))) (-15 -4338 ((-229) (-391))) (-15 -4338 ((-229))))) (T -1292)) +((-4338 (*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1292)))) (-4338 (*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1292)))) (-4337 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4337 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4336 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4335 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4336 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4335 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4334 (*1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1292)))) (-4333 (*1 *2 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1292)))) (-4333 (*1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1292)))) (-4332 (*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1292)))) (-4331 (*1 *2 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1292)))) (-4331 (*1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1292)))) (-4330 (*1 *2 *2) (-12 (-5 *2 (-660 (-790))) (-5 *1 (-1292)))) (-4330 (*1 *2) (-12 (-5 *2 (-660 (-790))) (-5 *1 (-1292)))) (-4329 (*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4329 (*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) (-4328 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4328 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4327 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4327 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4326 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4326 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4325 (*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) (-4325 (*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292))))) +((-4339 (($) 6 T ELT)) (-4375 (((-876) $) 9 T ELT))) +(((-1293) (-13 (-629 (-876)) (-10 -8 (-15 -4339 ($))))) (T -1293)) +((-4339 (*1 *1) (-5 *1 (-1293)))) +((-4378 (($ $ |#2|) 10 T ELT))) +(((-1294 |#1| |#2|) (-10 -7 (-15 -4378 (|#1| |#1| |#2|))) (-1295 |#2|) (-376)) (T -1294)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4340 (((-136)) 38 T ELT)) (-4375 (((-876) $) 13 T ELT)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ |#1|) 39 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ |#1| $) 32 T ELT) (($ $ |#1|) 36 T ELT))) +(((-1295 |#1|) (-142) (-376)) (T -1295)) +((-4378 (*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-376)))) (-4340 (*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) +(-13 (-736 |t#1|) (-10 -8 (-15 -4378 ($ $ |t#1|)) (-15 -4340 ((-136))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-667 |#1|) . T) ((-659 |#1|) . T) ((-736 |#1|) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1121) . T) ((-1237) . T)) +((-4345 (((-660 (-1230 |#1|)) (-1197) (-1230 |#1|)) 83 T ELT)) (-4343 (((-1175 (-1175 (-964 |#1|))) (-1197) (-1175 (-964 |#1|))) 63 T ELT)) (-4346 (((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-790) (-1230 |#1|) (-1175 (-1230 |#1|))) 74 T ELT)) (-4341 (((-1 (-1175 (-964 |#1|)) (-1175 (-964 |#1|))) (-790)) 65 T ELT)) (-4344 (((-1 (-1191 (-964 |#1|)) (-964 |#1|)) (-1197)) 32 T ELT)) (-4342 (((-1 (-1175 (-964 |#1|)) (-1175 (-964 |#1|))) (-790)) 64 T ELT))) +(((-1296 |#1|) (-10 -7 (-15 -4341 ((-1 (-1175 (-964 |#1|)) (-1175 (-964 |#1|))) (-790))) (-15 -4342 ((-1 (-1175 (-964 |#1|)) (-1175 (-964 |#1|))) (-790))) (-15 -4343 ((-1175 (-1175 (-964 |#1|))) (-1197) (-1175 (-964 |#1|)))) (-15 -4344 ((-1 (-1191 (-964 |#1|)) (-964 |#1|)) (-1197))) (-15 -4345 ((-660 (-1230 |#1|)) (-1197) (-1230 |#1|))) (-15 -4346 ((-1 (-1175 (-1230 |#1|)) (-1175 (-1230 |#1|))) (-790) (-1230 |#1|) (-1175 (-1230 |#1|))))) (-376)) (T -1296)) +((-4346 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-790)) (-4 *6 (-376)) (-5 *4 (-1230 *6)) (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1296 *6)) (-5 *5 (-1175 *4)))) (-4345 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-376)) (-5 *2 (-660 (-1230 *5))) (-5 *1 (-1296 *5)) (-5 *4 (-1230 *5)))) (-4344 (*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1191 (-964 *4)) (-964 *4))) (-5 *1 (-1296 *4)) (-4 *4 (-376)))) (-4343 (*1 *2 *3 *4) (-12 (-5 *3 (-1197)) (-4 *5 (-376)) (-5 *2 (-1175 (-1175 (-964 *5)))) (-5 *1 (-1296 *5)) (-5 *4 (-1175 (-964 *5))))) (-4342 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-1175 (-964 *4)) (-1175 (-964 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-376)))) (-4341 (*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-1175 (-964 *4)) (-1175 (-964 *4)))) (-5 *1 (-1296 *4)) (-4 *4 (-376))))) +((-4348 (((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) |#2|) 80 T ELT)) (-4347 (((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|)))) 79 T ELT))) +(((-1297 |#1| |#2| |#3| |#4|) (-10 -7 (-15 -4347 ((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))))) (-15 -4348 ((-2 (|:| -2221 (-708 |#2|)) (|:| |basisDen| |#2|) (|:| |basisInv| (-708 |#2|))) |#2|))) (-363) (-1263 |#1|) (-1263 |#2|) (-422 |#2| |#3|)) (T -1297)) +((-4348 (*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5)))) (-4347 (*1 *2) (-12 (-4 *3 (-363)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| -2221 (-708 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-708 *4)))) (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4349 (((-1155) $) 11 T ELT)) (-4350 (((-1155) $) 9 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 17 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1298) (-13 (-1103) (-10 -8 (-15 -4350 ((-1155) $)) (-15 -4349 ((-1155) $))))) (T -1298)) +((-4350 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1298)))) (-4349 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1298))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4351 (((-1155) $) 9 T ELT)) (-4375 (((-876) $) 15 T ELT) (($ (-1202)) NIL T ELT) (((-1202) $) NIL T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT))) +(((-1299) (-13 (-1103) (-10 -8 (-15 -4351 ((-1155) $))))) (T -1299)) +((-4351 (*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1299))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 58 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 81 T ELT) (($ (-558)) NIL T ELT) (($ |#4|) 65 T ELT) ((|#4| $) 70 T ELT) (($ |#1|) NIL (|has| |#1| (-175)) ELT)) (-3527 (((-790)) NIL T CONST)) (-4352 (((-1293) (-790)) 16 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 36 T CONST)) (-3064 (($) 84 T CONST)) (-3453 (((-114) $ $) 87 T ELT)) (-4378 (((-3 $ #1#) $ $) NIL (|has| |#1| (-376)) ELT)) (-4266 (($ $) 89 T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 63 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 91 T ELT) (($ |#1| $) NIL (|has| |#1| (-175)) ELT) (($ $ |#1|) NIL (|has| |#1| (-175)) ELT))) +(((-1300 |#1| |#2| |#3| |#4| |#5| |#6| |#7|) (-13 (-1069) (-502 |#4|) (-10 -8 (IF (|has| |#1| (-175)) (-6 (-38 |#1|)) |%noBranch|) (IF (|has| |#1| (-376)) (-15 -4378 ((-3 $ "failed") $ $)) |%noBranch|) (-15 -4352 ((-1293) (-790))))) (-1069) (-860) (-814) (-968 |#1| |#3| |#2|) (-660 |#2|) (-660 (-790)) (-790)) (T -1300)) +((-4378 (*1 *1 *1 *1) (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1069)) (-4 *3 (-860)) (-4 *4 (-814)) (-14 *6 (-660 *3)) (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) (-4 *5 (-968 *2 *4 *3)) (-14 *7 (-660 (-790))) (-14 *8 (-790)))) (-4352 (*1 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-1069)) (-4 *5 (-860)) (-4 *6 (-814)) (-14 *8 (-660 *5)) (-5 *2 (-1293)) (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) (-4 *7 (-968 *4 *6 *5)) (-14 *9 (-660 *3)) (-14 *10 *3)))) +((-2966 (((-114) $ $) NIL T ELT)) (-4110 (((-660 (-2 (|:| -4290 $) (|:| -1904 (-660 |#4|)))) (-660 |#4|)) NIL T ELT)) (-4111 (((-660 $) (-660 |#4|)) 96 T ELT)) (-3483 (((-660 |#3|) $) NIL T ELT)) (-3308 (((-114) $) NIL T ELT)) (-3299 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4122 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4117 ((|#4| |#4| $) NIL T ELT)) (-3309 (((-2 (|:| |under| $) (|:| -3531 $) (|:| |upper| $)) $ |#3|) NIL T ELT)) (-4139 (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT) (((-3 |#4| #1="failed") $ |#3|) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3304 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-3306 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3305 (((-114) $ $) NIL (|has| |#1| (-569)) ELT)) (-3307 (((-114) $) NIL (|has| |#1| (-569)) ELT)) (-4118 (((-660 |#4|) (-660 |#4|) $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) 31 T ELT)) (-3300 (((-660 |#4|) (-660 |#4|) $) 28 (|has| |#1| (-569)) ELT)) (-3301 (((-660 |#4|) (-660 |#4|) $) NIL (|has| |#1| (-569)) ELT)) (-3574 (((-3 $ #1#) (-660 |#4|)) NIL T ELT)) (-3573 (($ (-660 |#4|)) NIL T ELT)) (-4228 (((-3 $ #1#) $) 78 T ELT)) (-4114 ((|#4| |#4| $) 83 T ELT)) (-1466 (($ $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-3825 (($ |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (($ (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3302 (((-2 (|:| |rnum| |#1|) (|:| |polnum| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4123 (((-114) |#4| $ (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4112 ((|#4| |#4| $) NIL T ELT)) (-4271 ((|#4| (-1 |#4| |#4| |#4|) $ |#4| |#4|) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) ((|#4| (-1 |#4| |#4| |#4|) $ |#4|) NIL (|has| $ (-6 -4424)) ELT) ((|#4| (-1 |#4| |#4| |#4|) $) NIL (|has| $ (-6 -4424)) ELT) ((|#4| |#4| $ (-1 |#4| |#4| |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4125 (((-2 (|:| -4290 (-660 |#4|)) (|:| -1904 (-660 |#4|))) $) NIL T ELT)) (-3289 (((-660 |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4124 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-3597 ((|#3| $) 84 T ELT)) (-3006 (((-660 |#4|) $) 32 (|has| $ (-6 -4424)) ELT)) (-3662 (((-114) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT)) (-4355 (((-3 $ #1#) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 35 T ELT) (((-3 $ #1#) (-660 |#4|)) 38 T ELT)) (-2159 (($ (-1 |#4| |#4|) $) NIL (|has| $ (-6 -4425)) ELT)) (-4387 (($ (-1 |#4| |#4|) $) NIL T ELT)) (-3314 (((-660 |#3|) $) NIL T ELT)) (-3313 (((-114) |#3| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-4227 (((-3 |#4| #1#) $) NIL T ELT)) (-4126 (((-660 |#4|) $) 54 T ELT)) (-4120 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4115 ((|#4| |#4| $) 82 T ELT)) (-4128 (((-114) $ $) 93 T ELT)) (-3303 (((-2 (|:| |num| |#4|) (|:| |den| |#1|)) |#4| $) NIL (|has| |#1| (-569)) ELT)) (-4121 (((-114) |#4| $) NIL T ELT) (((-114) $) NIL T ELT)) (-4116 ((|#4| |#4| $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4230 (((-3 |#4| #1#) $) 77 T ELT)) (-1467 (((-3 |#4| #1#) (-1 (-114) |#4|) $) NIL T ELT)) (-4108 (((-3 $ #1#) $ |#4|) NIL T ELT)) (-4198 (($ $ |#4|) NIL T ELT)) (-2157 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4197 (($ $ (-660 |#4|) (-660 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ |#4| |#4|) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-305 |#4|)) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT) (($ $ (-660 (-305 |#4|))) NIL (-12 (|has| |#4| (-321 |#4|)) (|has| |#4| (-1121))) ELT)) (-1328 (((-114) $ $) NIL T ELT)) (-3822 (((-114) $) 75 T ELT)) (-3992 (($) 46 T ELT)) (-4377 (((-790) $) NIL T ELT)) (-2156 (((-790) |#4| $) NIL (-12 (|has| $ (-6 -4424)) (|has| |#4| (-1121))) ELT) (((-790) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-3819 (($ $) NIL T ELT)) (-4401 (((-547) $) NIL (|has| |#4| (-630 (-547))) ELT)) (-3949 (($ (-660 |#4|)) NIL T ELT)) (-3310 (($ $ |#3|) NIL T ELT)) (-3312 (($ $ |#3|) NIL T ELT)) (-4113 (($ $) NIL T ELT)) (-3311 (($ $ |#3|) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (((-660 |#4|) $) 63 T ELT)) (-4107 (((-790) $) NIL (|has| |#3| (-381)) ELT)) (-4354 (((-3 $ #1#) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 44 T ELT) (((-3 $ #1#) (-660 |#4|)) 45 T ELT)) (-4353 (((-660 $) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|)) 73 T ELT) (((-660 $) (-660 |#4|)) 74 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-4127 (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4| |#4|)) 27 T ELT) (((-3 (-2 (|:| |bas| $) (|:| -3743 (-660 |#4|))) #1#) (-660 |#4|) (-1 (-114) |#4|) (-1 (-114) |#4| |#4|)) NIL T ELT)) (-4119 (((-114) $ (-1 (-114) |#4| (-660 |#4|))) NIL T ELT)) (-2158 (((-114) (-1 (-114) |#4|) $) NIL (|has| $ (-6 -4424)) ELT)) (-4109 (((-660 |#3|) $) NIL T ELT)) (-4362 (((-114) |#3| $) NIL T ELT)) (-3453 (((-114) $ $) NIL T ELT)) (-4386 (((-790) $) NIL (|has| $ (-6 -4424)) ELT))) +(((-1301 |#1| |#2| |#3| |#4|) (-13 (-1232 |#1| |#2| |#3| |#4|) (-10 -8 (-15 -4355 ((-3 $ #1="failed") (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4355 ((-3 $ #1#) (-660 |#4|))) (-15 -4354 ((-3 $ #1#) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4354 ((-3 $ #1#) (-660 |#4|))) (-15 -4353 ((-660 $) (-660 |#4|) (-1 (-114) |#4| |#4|) (-1 |#4| |#4| |#4|))) (-15 -4353 ((-660 $) (-660 |#4|))))) (-569) (-814) (-860) (-1085 |#1| |#2| |#3|)) (T -1301)) +((-4355 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-4355 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-4354 (*1 *1 *2 *3 *4) (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1301 *5 *6 *7 *8)))) (-4354 (*1 *1 *2) (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1301 *3 *4 *5 *6)))) (-4353 (*1 *2 *3 *4 *5) (-12 (-5 *3 (-660 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-860)) (-5 *2 (-660 (-1301 *6 *7 *8 *9))) (-5 *1 (-1301 *6 *7 *8 *9)))) (-4353 (*1 *2 *3) (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 (-1301 *4 *5 *6 *7))) (-5 *1 (-1301 *4 *5 *6 *7))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4153 (($) 22 T CONST)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#1|) 50 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ |#1|) 52 T ELT) (($ |#1| $) 51 T ELT))) +(((-1302 |#1|) (-142) (-1069)) (T -1302)) +NIL +(-13 (-1069) (-111 |t#1| |t#1|) (-632 |t#1|) (-10 -7 (IF (|has| |t#1| (-175)) (-6 (-38 |t#1|)) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#1|) |has| |#1| (-175)) ((-102) . T) ((-111 |#1| |#1|) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 |#1|) |has| |#1| (-175)) ((-736 |#1|) |has| |#1| (-175)) ((-745) . T) ((-1071 |#1|) . T) ((-1076 |#1|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T)) +((-2966 (((-114) $ $) 67 T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4363 (((-660 |#1|) $) 52 T ELT)) (-4376 (($ $ (-790)) 46 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4364 (($ $ (-790)) 24 (|has| |#2| (-175)) ELT) (($ $ $) 25 (|has| |#2| (-175)) ELT)) (-4153 (($) NIL T CONST)) (-4368 (($ $ $) 70 T ELT) (($ $ (-840 |#1|)) 56 T ELT) (($ $ |#1|) 60 T ELT)) (-3574 (((-3 (-840 |#1|) #1#) $) NIL T ELT)) (-3573 (((-840 |#1|) $) NIL T ELT)) (-4388 (($ $) 39 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4380 (((-114) $) NIL T ELT)) (-4379 (($ $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ (-840 |#1|) |#2|) 38 T ELT)) (-4365 (($ $) 40 T ELT)) (-4370 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 12 T ELT)) (-4384 (((-840 |#1|) $) NIL T ELT)) (-4385 (((-840 |#1|) $) 41 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4369 (($ $ $) 69 T ELT) (($ $ (-840 |#1|)) 58 T ELT) (($ $ |#1|) 62 T ELT)) (-1951 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3294 (((-840 |#1|) $) 35 T ELT)) (-3591 ((|#2| $) 37 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4377 (((-790) $) 43 T ELT)) (-4382 (((-114) $) 47 T ELT)) (-4381 ((|#2| $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-840 |#1|)) 30 T ELT) (($ |#1|) 31 T ELT) (($ |#2|) NIL T ELT) (($ (-558)) NIL T ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-840 |#1|)) NIL T ELT)) (-4383 ((|#2| $ $) 76 T ELT) ((|#2| $ (-840 |#1|)) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 13 T CONST)) (-3064 (($) 19 T CONST)) (-3063 (((-660 (-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-3453 (((-114) $ $) 44 T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 28 T ELT)) (** (($ $ (-790)) NIL T ELT) (($ $ (-937)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ |#2| $) 27 T ELT) (($ $ |#2|) 68 T ELT) (($ |#2| (-840 |#1|)) NIL T ELT) (($ |#1| $) 33 T ELT) (($ $ $) NIL T ELT))) +(((-1303 |#1| |#2|) (-13 (-397 |#2| (-840 |#1|)) (-1310 |#1| |#2|)) (-860) (-1069)) (T -1303)) +NIL +((-4371 ((|#3| |#3| (-790)) 28 T ELT)) (-4372 ((|#3| |#3| (-790)) 34 T ELT)) (-4356 ((|#3| |#3| |#3| (-790)) 35 T ELT))) +(((-1304 |#1| |#2| |#3|) (-10 -7 (-15 -4372 (|#3| |#3| (-790))) (-15 -4371 (|#3| |#3| (-790))) (-15 -4356 (|#3| |#3| |#3| (-790)))) (-13 (-1069) (-736 (-419 (-558)))) (-860) (-1310 |#2| |#1|)) (T -1304)) +((-4356 (*1 *2 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-13 (-1069) (-736 (-419 (-558))))) (-4 *5 (-860)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) (-4371 (*1 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-13 (-1069) (-736 (-419 (-558))))) (-4 *5 (-860)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) (-4372 (*1 *2 *2 *3) (-12 (-5 *3 (-790)) (-4 *4 (-13 (-1069) (-736 (-419 (-558))))) (-4 *5 (-860)) (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1310 *5 *4))))) +((-4361 (((-114) $) 15 T ELT)) (-4362 (((-114) $) 14 T ELT)) (-4357 (($ $) 19 T ELT) (($ $ (-790)) 21 T ELT))) +(((-1305 |#1| |#2|) (-10 -7 (-15 -4357 (|#1| |#1| (-790))) (-15 -4357 (|#1| |#1|)) (-15 -4361 ((-114) |#1|)) (-15 -4362 ((-114) |#1|))) (-1306 |#2|) (-376)) (T -1305)) +NIL +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-2273 (((-2 (|:| -1979 $) (|:| -4411 $) (|:| |associate| $)) $) 52 T ELT)) (-2272 (($ $) 51 T ELT)) (-2270 (((-114) $) 49 T ELT)) (-4361 (((-114) $) 111 T ELT)) (-4358 (((-790)) 107 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4204 (($ $) 88 T ELT)) (-4400 (((-417 $) $) 87 T ELT)) (-1787 (((-114) $ $) 72 T ELT)) (-4153 (($) 22 T CONST)) (-3574 (((-3 |#1| "failed") $) 118 T ELT)) (-3573 ((|#1| $) 119 T ELT)) (-2962 (($ $ $) 68 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-2961 (($ $ $) 69 T ELT)) (-3141 (((-2 (|:| -4383 (-660 $)) (|:| -2639 $)) (-660 $)) 63 T ELT)) (-1973 (($ $ (-790)) 104 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT) (($ $) 103 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4152 (((-114) $) 86 T ELT)) (-4201 (((-844 (-937)) $) 101 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-2640 (((-114) $) 40 T ELT)) (-1784 (((-3 (-660 $) #1="failed") (-660 $) $) 65 T ELT)) (-2101 (($ $ $) 57 T ELT) (($ (-660 $)) 56 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-2873 (($ $) 85 T ELT)) (-4360 (((-114) $) 110 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-3108 (((-1191 $) (-1191 $) (-1191 $)) 55 T ELT)) (-3561 (($ $ $) 59 T ELT) (($ (-660 $)) 58 T ELT)) (-4161 (((-417 $) $) 89 T ELT)) (-4359 (((-844 (-937))) 108 T ELT)) (-1785 (((-2 (|:| |coef1| $) (|:| |coef2| $) (|:| -2639 $)) $ $) 67 T ELT) (((-3 (-2 (|:| |coef1| $) (|:| |coef2| $)) #1#) $ $ $) 66 T ELT)) (-3885 (((-3 $ "failed") $ $) 53 T ELT)) (-3140 (((-710 (-660 $)) (-660 $) $) 62 T ELT)) (-1786 (((-790) $) 71 T ELT)) (-3279 (((-2 (|:| -2183 $) (|:| -3302 $)) $ $) 70 T ELT)) (-1974 (((-3 (-790) "failed") $ $) 102 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-4340 (((-136)) 116 T ELT)) (-4377 (((-844 (-937)) $) 109 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ $) 54 T ELT) (($ (-419 (-558))) 81 T ELT) (($ |#1|) 117 T ELT)) (-3102 (((-710 $) $) 100 (-3956 (|has| |#1| (-147)) (|has| |#1| (-381))) ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-2271 (((-114) $ $) 50 T ELT)) (-4362 (((-114) $) 112 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-4357 (($ $) 106 (|has| |#1| (-381)) ELT) (($ $ (-790)) 105 (|has| |#1| (-381)) ELT)) (-3453 (((-114) $ $) 8 T ELT)) (-4378 (($ $ $) 80 T ELT) (($ $ |#1|) 115 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT) (($ $ (-558)) 84 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ $ (-419 (-558))) 83 T ELT) (($ (-419 (-558)) $) 82 T ELT) (($ $ |#1|) 114 T ELT) (($ |#1| $) 113 T ELT))) +(((-1306 |#1|) (-142) (-376)) (T -1306)) +((-4362 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4361 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4360 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-114)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-844 (-937))))) (-4359 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-844 (-937))))) (-4358 (*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-790)))) (-4357 (*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-376)) (-4 *2 (-381)))) (-4357 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-4 *3 (-381))))) +(-13 (-376) (-1058 |t#1|) (-1295 |t#1|) (-10 -8 (IF (|has| |t#1| (-149)) (-6 (-149)) |%noBranch|) (IF (|has| |t#1| (-147)) (-6 (-414)) |%noBranch|) (-15 -4362 ((-114) $)) (-15 -4361 ((-114) $)) (-15 -4360 ((-114) $)) (-15 -4377 ((-844 (-937)) $)) (-15 -4359 ((-844 (-937)))) (-15 -4358 ((-790))) (IF (|has| |t#1| (-381)) (PROGN (-6 (-414)) (-15 -4357 ($ $)) (-15 -4357 ($ $ (-790)))) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 (-419 (-558))) . T) ((-38 $) . T) ((-102) . T) ((-111 (-419 (-558)) (-419 (-558))) . T) ((-111 |#1| |#1|) . T) ((-111 $ $) . T) ((-133) . T) ((-147) -3956 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-149) |has| |#1| (-149)) ((-632 (-419 (-558))) . T) ((-632 (-558)) . T) ((-632 |#1|) . T) ((-632 $) . T) ((-629 (-876)) . T) ((-175) . T) ((-250) . T) ((-302) . T) ((-319) . T) ((-376) . T) ((-414) -3956 (|has| |#1| (-381)) (|has| |#1| (-147))) ((-464) . T) ((-569) . T) ((-665 (-419 (-558))) . T) ((-665 (-558)) . T) ((-665 |#1|) . T) ((-665 $) . T) ((-667 (-419 (-558))) . T) ((-667 |#1|) . T) ((-667 $) . T) ((-659 (-419 (-558))) . T) ((-659 |#1|) . T) ((-659 $) . T) ((-736 (-419 (-558))) . T) ((-736 |#1|) . T) ((-736 $) . T) ((-745) . T) ((-939) . T) ((-1058 |#1|) . T) ((-1071 (-419 (-558))) . T) ((-1071 |#1|) . T) ((-1071 $) . T) ((-1076 (-419 (-558))) . T) ((-1076 |#1|) . T) ((-1076 $) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1242) . T) ((-1295 |#1|) . T)) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4363 (((-660 |#1|) $) 52 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4364 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-790)) 54 (|has| |#2| (-175)) ELT)) (-4153 (($) 22 T CONST)) (-4368 (($ $ |#1|) 66 T ELT) (($ $ (-840 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3574 (((-3 (-840 |#1|) "failed") $) 76 T ELT)) (-3573 (((-840 |#1|) $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4380 (((-114) $) 57 T ELT)) (-4379 (($ $) 56 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-4366 (((-114) $) 62 T ELT)) (-4367 (($ (-840 |#1|) |#2|) 63 T ELT)) (-4365 (($ $) 61 T ELT)) (-4370 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4384 (((-840 |#1|) $) 73 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4369 (($ $ |#1|) 69 T ELT) (($ $ (-840 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4382 (((-114) $) 59 T ELT)) (-4381 ((|#2| $) 58 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-840 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4383 ((|#2| $ (-840 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1307 |#1| |#2|) (-142) (-860) (-1069)) (T -1307)) +((* (*1 *1 *1 *2) (-12 (-4 *1 (-1307 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1069)))) (* (*1 *1 *2 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4384 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-840 *3)))) (-4370 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-2 (|:| |k| (-840 *3)) (|:| |c| *4))))) (-4383 (*1 *2 *1 *3) (-12 (-5 *3 (-840 *4)) (-4 *1 (-1307 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1069)))) (-4383 (*1 *2 *1 *1) (-12 (-4 *1 (-1307 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1069)))) (-4369 (*1 *1 *1 *2) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4369 (*1 *1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)))) (-4369 (*1 *1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4368 (*1 *1 *1 *2) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4368 (*1 *1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)))) (-4368 (*1 *1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4367 (*1 *1 *2 *3) (-12 (-5 *2 (-840 *4)) (-4 *4 (-860)) (-4 *1 (-1307 *4 *3)) (-4 *3 (-1069)))) (-4366 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-114)))) (-4365 (*1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4375 (*1 *1 *2) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4382 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-114)))) (-4381 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1069)))) (-4380 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-114)))) (-4379 (*1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) (-4364 (*1 *1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)) (-4 *3 (-175)))) (-4364 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-4 *4 (-175)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)))) (-4363 (*1 *2 *1) (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-660 *3))))) +(-13 (-1069) (-1302 |t#2|) (-1058 (-840 |t#1|)) (-10 -8 (-15 * ($ |t#1| $)) (-15 * ($ $ |t#2|)) (-15 -4384 ((-840 |t#1|) $)) (-15 -4370 ((-2 (|:| |k| (-840 |t#1|)) (|:| |c| |t#2|)) $)) (-15 -4383 (|t#2| $ (-840 |t#1|))) (-15 -4383 (|t#2| $ $)) (-15 -4369 ($ $ |t#1|)) (-15 -4369 ($ $ (-840 |t#1|))) (-15 -4369 ($ $ $)) (-15 -4368 ($ $ |t#1|)) (-15 -4368 ($ $ (-840 |t#1|))) (-15 -4368 ($ $ $)) (-15 -4367 ($ (-840 |t#1|) |t#2|)) (-15 -4366 ((-114) $)) (-15 -4365 ($ $)) (-15 -4375 ($ |t#1|)) (-15 -4382 ((-114) $)) (-15 -4381 (|t#2| $)) (-15 -4380 ((-114) $)) (-15 -4379 ($ $)) (IF (|has| |t#2| (-175)) (PROGN (-15 -4364 ($ $ $)) (-15 -4364 ($ $ (-790)))) |%noBranch|) (-15 -4387 ($ (-1 |t#2| |t#2|) $)) (-15 -4363 ((-660 |t#1|) $)) (IF (|has| |t#2| (-6 -4417)) (-6 -4417) |%noBranch|))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 (-840 |#1|)) . T) ((-632 |#2|) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#2|) . T) ((-665 $) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-659 |#2|) |has| |#2| (-175)) ((-736 |#2|) |has| |#2| (-175)) ((-745) . T) ((-1058 (-840 |#1|)) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1302 |#2|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4363 (((-660 |#1|) $) 97 T ELT)) (-4376 (($ $ (-790)) 101 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4364 (($ $ $) NIL (|has| |#2| (-175)) ELT) (($ $ (-790)) NIL (|has| |#2| (-175)) ELT)) (-4153 (($) NIL T CONST)) (-4368 (($ $ |#1|) NIL T ELT) (($ $ (-840 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-3574 (((-3 (-840 |#1|) #1#) $) NIL T ELT) (((-3 (-907 |#1|) #1#) $) NIL T ELT)) (-3573 (((-840 |#1|) $) NIL T ELT) (((-907 |#1|) $) NIL T ELT)) (-4388 (($ $) 100 T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4380 (((-114) $) 89 T ELT)) (-4379 (($ $) 92 T ELT)) (-4373 (($ $ $ (-790)) 102 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ (-840 |#1|) |#2|) NIL T ELT) (($ (-907 |#1|) |#2|) 28 T ELT)) (-4365 (($ $) 118 T ELT)) (-4370 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4384 (((-840 |#1|) $) NIL T ELT)) (-4385 (((-840 |#1|) $) NIL T ELT)) (-4387 (($ (-1 |#2| |#2|) $) NIL T ELT)) (-4369 (($ $ |#1|) NIL T ELT) (($ $ (-840 |#1|)) NIL T ELT) (($ $ $) NIL T ELT)) (-4371 (($ $ (-790)) 111 (|has| |#2| (-736 (-419 (-558)))) ELT)) (-1951 (((-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-3294 (((-907 |#1|) $) 82 T ELT)) (-3591 ((|#2| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4372 (($ $ (-790)) 108 (|has| |#2| (-736 (-419 (-558)))) ELT)) (-4377 (((-790) $) 98 T ELT)) (-4382 (((-114) $) 83 T ELT)) (-4381 ((|#2| $) 87 T ELT)) (-4375 (((-876) $) 68 T ELT) (($ (-558)) NIL T ELT) (($ |#2|) 59 T ELT) (($ (-840 |#1|)) NIL T ELT) (($ |#1|) 70 T ELT) (($ (-907 |#1|)) NIL T ELT) (($ (-683 |#1| |#2|)) 47 T ELT) (((-1303 |#1| |#2|) $) 75 T ELT) (((-1312 |#1| |#2|) $) 80 T ELT)) (-4246 (((-660 |#2|) $) NIL T ELT)) (-4106 ((|#2| $ (-907 |#1|)) NIL T ELT)) (-4383 ((|#2| $ (-840 |#1|)) NIL T ELT) ((|#2| $ $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 21 T CONST)) (-3064 (($) 27 T CONST)) (-3063 (((-660 (-2 (|:| |k| (-907 |#1|)) (|:| |c| |#2|))) $) NIL T ELT)) (-4374 (((-3 (-683 |#1| |#2|) #1#) $) 117 T ELT)) (-3453 (((-114) $ $) 76 T ELT)) (-4266 (($ $) 110 T ELT) (($ $ $) 109 T ELT)) (-4268 (($ $ $) 20 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 48 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) NIL T ELT) (($ |#1| $) NIL T ELT) (($ |#2| (-907 |#1|)) NIL T ELT))) +(((-1308 |#1| |#2|) (-13 (-1310 |#1| |#2|) (-397 |#2| (-907 |#1|)) (-10 -8 (-15 -4375 ($ (-683 |#1| |#2|))) (-15 -4375 ((-1303 |#1| |#2|) $)) (-15 -4375 ((-1312 |#1| |#2|) $)) (-15 -4374 ((-3 (-683 |#1| |#2|) "failed") $)) (-15 -4373 ($ $ $ (-790))) (IF (|has| |#2| (-736 (-419 (-558)))) (PROGN (-15 -4372 ($ $ (-790))) (-15 -4371 ($ $ (-790)))) |%noBranch|))) (-860) (-175)) (T -1308)) +((-4375 (*1 *1 *2) (-12 (-5 *2 (-683 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *1 (-1308 *3 *4)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-4375 (*1 *2 *1) (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-4374 (*1 *2 *1) (|partial| -12 (-5 *2 (-683 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-4373 (*1 *1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) (-4372 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-736 (-419 (-558)))) (-4 *3 (-860)) (-4 *4 (-175)))) (-4371 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-736 (-419 (-558)))) (-4 *3 (-860)) (-4 *4 (-175))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4363 (((-660 (-1197)) $) NIL T ELT)) (-4391 (($ (-1303 (-1197) |#1|)) NIL T ELT)) (-4376 (($ $ (-790)) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4364 (($ $ $) NIL (|has| |#1| (-175)) ELT) (($ $ (-790)) NIL (|has| |#1| (-175)) ELT)) (-4153 (($) NIL T CONST)) (-4368 (($ $ (-1197)) NIL T ELT) (($ $ (-840 (-1197))) NIL T ELT) (($ $ $) NIL T ELT)) (-3574 (((-3 (-840 (-1197)) #1#) $) NIL T ELT)) (-3573 (((-840 (-1197)) $) NIL T ELT)) (-3886 (((-3 $ #1#) $) NIL T ELT)) (-4380 (((-114) $) NIL T ELT)) (-4379 (($ $) NIL T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ (-840 (-1197)) |#1|) NIL T ELT)) (-4365 (($ $) NIL T ELT)) (-4370 (((-2 (|:| |k| (-840 (-1197))) (|:| |c| |#1|)) $) NIL T ELT)) (-4384 (((-840 (-1197)) $) NIL T ELT)) (-4385 (((-840 (-1197)) $) NIL T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-4369 (($ $ (-1197)) NIL T ELT) (($ $ (-840 (-1197))) NIL T ELT) (($ $ $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4392 (((-1303 (-1197) |#1|) $) NIL T ELT)) (-4377 (((-790) $) NIL T ELT)) (-4382 (((-114) $) NIL T ELT)) (-4381 ((|#1| $) NIL T ELT)) (-4375 (((-876) $) NIL T ELT) (($ (-558)) NIL T ELT) (($ |#1|) NIL T ELT) (($ (-840 (-1197))) NIL T ELT) (($ (-1197)) NIL T ELT)) (-4383 ((|#1| $ (-840 (-1197))) NIL T ELT) ((|#1| $ $) NIL T ELT)) (-3527 (((-790)) NIL T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) NIL T CONST)) (-4390 (((-660 (-2 (|:| |k| (-1197)) (|:| |c| $))) $) NIL T ELT)) (-3064 (($) NIL T CONST)) (-3453 (((-114) $ $) NIL T ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) NIL T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) NIL T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) NIL T ELT) (($ |#1| $) NIL T ELT) (($ $ |#1|) NIL T ELT) (($ (-1197) $) NIL T ELT))) +(((-1309 |#1|) (-13 (-1310 (-1197) |#1|) (-10 -8 (-15 -4392 ((-1303 (-1197) |#1|) $)) (-15 -4391 ($ (-1303 (-1197) |#1|))) (-15 -4390 ((-660 (-2 (|:| |k| (-1197)) (|:| |c| $))) $)))) (-1069)) (T -1309)) +((-4392 (*1 *2 *1) (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1069)))) (-4391 (*1 *1 *2) (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1069)) (-5 *1 (-1309 *3)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| (-1197)) (|:| |c| (-1309 *3))))) (-5 *1 (-1309 *3)) (-4 *3 (-1069))))) +((-2966 (((-114) $ $) 7 T ELT)) (-3605 (((-114) $) 21 T ELT)) (-4363 (((-660 |#1|) $) 52 T ELT)) (-4376 (($ $ (-790)) 86 T ELT)) (-1425 (((-3 $ "failed") $ $) 25 T ELT)) (-4364 (($ $ $) 55 (|has| |#2| (-175)) ELT) (($ $ (-790)) 54 (|has| |#2| (-175)) ELT)) (-4153 (($) 22 T CONST)) (-4368 (($ $ |#1|) 66 T ELT) (($ $ (-840 |#1|)) 65 T ELT) (($ $ $) 64 T ELT)) (-3574 (((-3 (-840 |#1|) "failed") $) 76 T ELT)) (-3573 (((-840 |#1|) $) 77 T ELT)) (-3886 (((-3 $ "failed") $) 42 T ELT)) (-4380 (((-114) $) 57 T ELT)) (-4379 (($ $) 56 T ELT)) (-2640 (((-114) $) 40 T ELT)) (-4366 (((-114) $) 62 T ELT)) (-4367 (($ (-840 |#1|) |#2|) 63 T ELT)) (-4365 (($ $) 61 T ELT)) (-4370 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) 72 T ELT)) (-4384 (((-840 |#1|) $) 73 T ELT)) (-4385 (((-840 |#1|) $) 88 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 53 T ELT)) (-4369 (($ $ |#1|) 69 T ELT) (($ $ (-840 |#1|)) 68 T ELT) (($ $ $) 67 T ELT)) (-3659 (((-1179) $) 11 T ELT)) (-3660 (((-1140) $) 12 T ELT)) (-4377 (((-790) $) 87 T ELT)) (-4382 (((-114) $) 59 T ELT)) (-4381 ((|#2| $) 58 T ELT)) (-4375 (((-876) $) 13 T ELT) (($ (-558)) 38 T ELT) (($ |#2|) 80 T ELT) (($ (-840 |#1|)) 75 T ELT) (($ |#1|) 60 T ELT)) (-4383 ((|#2| $ (-840 |#1|)) 71 T ELT) ((|#2| $ $) 70 T ELT)) (-3527 (((-790)) 37 T CONST)) (-1377 (((-114) $ $) 6 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 39 T CONST)) (-3453 (((-114) $ $) 8 T ELT)) (-4266 (($ $) 28 T ELT) (($ $ $) 27 T ELT)) (-4268 (($ $ $) 18 T ELT)) (** (($ $ (-937)) 33 T ELT) (($ $ (-790)) 41 T ELT)) (* (($ (-937) $) 17 T ELT) (($ (-790) $) 20 T ELT) (($ (-558) $) 29 T ELT) (($ $ $) 32 T ELT) (($ |#2| $) 79 T ELT) (($ $ |#2|) 78 T ELT) (($ |#1| $) 74 T ELT))) +(((-1310 |#1| |#2|) (-142) (-860) (-1069)) (T -1310)) +((-4385 (*1 *2 *1) (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-840 *3)))) (-4377 (*1 *2 *1) (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-790)))) (-4376 (*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1310 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069))))) +(-13 (-1307 |t#1| |t#2|) (-10 -8 (-15 -4385 ((-840 |t#1|) $)) (-15 -4377 ((-790) $)) (-15 -4376 ($ $ (-790))))) +(((-21) . T) ((-23) . T) ((-25) . T) ((-38 |#2|) |has| |#2| (-175)) ((-102) . T) ((-111 |#2| |#2|) . T) ((-133) . T) ((-632 (-558)) . T) ((-632 (-840 |#1|)) . T) ((-632 |#2|) . T) ((-629 (-876)) . T) ((-665 (-558)) . T) ((-665 |#2|) . T) ((-665 $) . T) ((-667 |#2|) . T) ((-667 $) . T) ((-659 |#2|) |has| |#2| (-175)) ((-736 |#2|) |has| |#2| (-175)) ((-745) . T) ((-1058 (-840 |#1|)) . T) ((-1071 |#2|) . T) ((-1076 |#2|) . T) ((-1069) . T) ((-1077) . T) ((-1132) . T) ((-1121) . T) ((-1237) . T) ((-1302 |#2|) . T) ((-1307 |#1| |#2|) . T)) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) NIL T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4153 (($) NIL T CONST)) (-3574 (((-3 |#2| #1#) $) NIL T ELT)) (-3573 ((|#2| $) NIL T ELT)) (-4388 (($ $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 42 T ELT)) (-4380 (((-114) $) 36 T ELT)) (-4379 (($ $) 37 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-2648 (((-790) $) NIL T ELT)) (-3221 (((-660 $) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ |#2| |#1|) NIL T ELT)) (-4384 ((|#2| $) 24 T ELT)) (-4385 ((|#2| $) 22 T ELT)) (-4387 (($ (-1 |#1| |#1|) $) NIL T ELT)) (-1951 (((-2 (|:| |k| |#2|) (|:| |c| |#1|)) $) NIL T ELT)) (-3294 ((|#2| $) NIL T ELT)) (-3591 ((|#1| $) NIL T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4382 (((-114) $) 32 T ELT)) (-4381 ((|#1| $) 33 T ELT)) (-4375 (((-876) $) 65 T ELT) (($ (-558)) 46 T ELT) (($ |#1|) 41 T ELT) (($ |#2|) NIL T ELT)) (-4246 (((-660 |#1|) $) NIL T ELT)) (-4106 ((|#1| $ |#2|) NIL T ELT)) (-4383 ((|#1| $ |#2|) 28 T ELT)) (-3527 (((-790)) 14 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 29 T CONST)) (-3064 (($) 11 T CONST)) (-3063 (((-660 (-2 (|:| |k| |#2|) (|:| |c| |#1|))) $) NIL T ELT)) (-3453 (((-114) $ $) 30 T ELT)) (-4378 (($ $ |#1|) 67 (|has| |#1| (-376)) ELT)) (-4266 (($ $) NIL T ELT) (($ $ $) NIL T ELT)) (-4268 (($ $ $) 50 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 52 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) NIL T ELT) (($ $ $) 51 T ELT) (($ |#1| $) 47 T ELT) (($ $ |#1|) NIL T ELT) (($ |#1| |#2|) NIL T ELT)) (-4386 (((-790) $) 16 T ELT))) +(((-1311 |#1| |#2|) (-13 (-1069) (-1302 |#1|) (-397 |#1| |#2|) (-632 |#2|) (-10 -8 (-15 * ($ $ |#1|)) (-15 -4386 ((-790) $)) (-15 -4385 (|#2| $)) (-15 -4384 (|#2| $)) (-15 -4388 ($ $)) (-15 -4383 (|#1| $ |#2|)) (-15 -4382 ((-114) $)) (-15 -4381 (|#1| $)) (-15 -4380 ((-114) $)) (-15 -4379 ($ $)) (-15 -4387 ($ (-1 |#1| |#1|) $)) (IF (|has| |#1| (-376)) (-15 -4378 ($ $ |#1|)) |%noBranch|) (IF (|has| |#1| (-6 -4417)) (-6 -4417) |%noBranch|) (IF (|has| |#1| (-6 -4421)) (-6 -4421) |%noBranch|) (IF (|has| |#1| (-6 -4422)) (-6 -4422) |%noBranch|))) (-1069) (-858)) (T -1311)) +((* (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858)))) (-4388 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858)))) (-4387 (*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-1311 *3 *4)) (-4 *4 (-858)))) (-4386 (*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858)))) (-4385 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1069)))) (-4384 (*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1069)))) (-4383 (*1 *2 *1 *3) (-12 (-4 *2 (-1069)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-4382 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858)))) (-4381 (*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858)))) (-4380 (*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858)))) (-4379 (*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858)))) (-4378 (*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1069)) (-4 *3 (-858))))) +((-2966 (((-114) $ $) 27 T ELT)) (-3605 (((-114) $) NIL T ELT)) (-4363 (((-660 |#1|) $) 132 T ELT)) (-4391 (($ (-1303 |#1| |#2|)) 50 T ELT)) (-4376 (($ $ (-790)) 38 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-4364 (($ $ $) 54 (|has| |#2| (-175)) ELT) (($ $ (-790)) 52 (|has| |#2| (-175)) ELT)) (-4153 (($) NIL T CONST)) (-4368 (($ $ |#1|) 114 T ELT) (($ $ (-840 |#1|)) 115 T ELT) (($ $ $) 26 T ELT)) (-3574 (((-3 (-840 |#1|) #1#) $) NIL T ELT)) (-3573 (((-840 |#1|) $) NIL T ELT)) (-3886 (((-3 $ #1#) $) 122 T ELT)) (-4380 (((-114) $) 117 T ELT)) (-4379 (($ $) 118 T ELT)) (-2640 (((-114) $) NIL T ELT)) (-4366 (((-114) $) NIL T ELT)) (-4367 (($ (-840 |#1|) |#2|) 20 T ELT)) (-4365 (($ $) NIL T ELT)) (-4370 (((-2 (|:| |k| (-840 |#1|)) (|:| |c| |#2|)) $) NIL T ELT)) (-4384 (((-840 |#1|) $) 123 T ELT)) (-4385 (((-840 |#1|) $) 126 T ELT)) (-4387 (($ (-1 |#2| |#2|) $) 131 T ELT)) (-4369 (($ $ |#1|) 112 T ELT) (($ $ (-840 |#1|)) 113 T ELT) (($ $ $) 62 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4392 (((-1303 |#1| |#2|) $) 94 T ELT)) (-4377 (((-790) $) 129 T ELT)) (-4382 (((-114) $) 81 T ELT)) (-4381 ((|#2| $) 32 T ELT)) (-4375 (((-876) $) 73 T ELT) (($ (-558)) 87 T ELT) (($ |#2|) 85 T ELT) (($ (-840 |#1|)) 18 T ELT) (($ |#1|) 84 T ELT)) (-4383 ((|#2| $ (-840 |#1|)) 116 T ELT) ((|#2| $ $) 28 T ELT)) (-3527 (((-790)) 120 T CONST)) (-1377 (((-114) $ $) NIL T ELT)) (-3058 (($) 15 T CONST)) (-4390 (((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $) 59 T ELT)) (-3064 (($) 33 T CONST)) (-3453 (((-114) $ $) 14 T ELT)) (-4266 (($ $) 98 T ELT) (($ $ $) 101 T ELT)) (-4268 (($ $ $) 61 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 55 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) 53 T ELT) (($ (-558) $) 106 T ELT) (($ $ $) 22 T ELT) (($ |#2| $) 19 T ELT) (($ $ |#2|) 21 T ELT) (($ |#1| $) 92 T ELT))) +(((-1312 |#1| |#2|) (-13 (-1310 |#1| |#2|) (-10 -8 (-15 -4392 ((-1303 |#1| |#2|) $)) (-15 -4391 ($ (-1303 |#1| |#2|))) (-15 -4390 ((-660 (-2 (|:| |k| |#1|) (|:| |c| $))) $)))) (-860) (-1069)) (T -1312)) +((-4392 (*1 *2 *1) (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)))) (-4391 (*1 *1 *2) (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *1 (-1312 *3 *4)))) (-4390 (*1 *2 *1) (-12 (-5 *2 (-660 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) (-5 *1 (-1312 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069))))) +((-2966 (((-114) $ $) NIL T ELT)) (-4394 (($ (-660 (-937))) 10 T ELT)) (-4393 (((-991) $) 12 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4375 (((-876) $) 25 T ELT) (($ (-991)) 14 T ELT) (((-991) $) 13 T ELT)) (-1377 (((-114) $ $) NIL T ELT)) (-3453 (((-114) $ $) 17 T ELT))) +(((-1313) (-13 (-1121) (-502 (-991)) (-10 -8 (-15 -4394 ($ (-660 (-937)))) (-15 -4393 ((-991) $))))) (T -1313)) +((-4394 (*1 *1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1313)))) (-4393 (*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-1313))))) +((-4395 (((-660 (-1175 |#1|)) (-1 (-660 (-1175 |#1|)) (-660 (-1175 |#1|))) (-558)) 16 T ELT) (((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|))) 13 T ELT))) +(((-1314 |#1|) (-10 -7 (-15 -4395 ((-1175 |#1|) (-1 (-1175 |#1|) (-1175 |#1|)))) (-15 -4395 ((-660 (-1175 |#1|)) (-1 (-660 (-1175 |#1|)) (-660 (-1175 |#1|))) (-558)))) (-1237)) (T -1314)) +((-4395 (*1 *2 *3 *4) (-12 (-5 *3 (-1 (-660 (-1175 *5)) (-660 (-1175 *5)))) (-5 *4 (-558)) (-5 *2 (-660 (-1175 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1237)))) (-4395 (*1 *2 *3) (-12 (-5 *3 (-1 (-1175 *4) (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1314 *4)) (-4 *4 (-1237))))) +((-4397 (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|))) 174 T ELT) (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114)) 173 T ELT) (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114) (-114)) 172 T ELT) (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114) (-114) (-114)) 171 T ELT) (((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-1066 |#1| |#2|)) 156 T ELT)) (-4396 (((-660 (-1066 |#1| |#2|)) (-660 (-964 |#1|))) 85 T ELT) (((-660 (-1066 |#1| |#2|)) (-660 (-964 |#1|)) (-114)) 84 T ELT) (((-660 (-1066 |#1| |#2|)) (-660 (-964 |#1|)) (-114) (-114)) 83 T ELT)) (-4400 (((-660 (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-799 |#1| (-877 |#3|)))) (-1066 |#1| |#2|)) 73 T ELT)) (-4398 (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|))) 140 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114)) 139 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114) (-114)) 138 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114) (-114) (-114)) 137 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|)) 132 T ELT)) (-4399 (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|))) 145 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114)) 144 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114) (-114)) 143 T ELT) (((-660 (-660 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|)) 142 T ELT)) (-4401 (((-660 (-799 |#1| (-877 |#3|))) (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-799 |#1| (-877 |#3|)))) 111 T ELT) (((-1191 (-1044 (-419 |#1|))) (-1191 |#1|)) 102 T ELT) (((-964 (-1044 (-419 |#1|))) (-799 |#1| (-877 |#3|))) 109 T ELT) (((-964 (-1044 (-419 |#1|))) (-964 |#1|)) 107 T ELT) (((-799 |#1| (-877 |#3|)) (-799 |#1| (-877 |#2|))) 33 T ELT))) +(((-1315 |#1| |#2| |#3|) (-10 -7 (-15 -4396 ((-660 (-1066 |#1| |#2|)) (-660 (-964 |#1|)) (-114) (-114))) (-15 -4396 ((-660 (-1066 |#1| |#2|)) (-660 (-964 |#1|)) (-114))) (-15 -4396 ((-660 (-1066 |#1| |#2|)) (-660 (-964 |#1|)))) (-15 -4397 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-1066 |#1| |#2|))) (-15 -4397 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114) (-114) (-114))) (-15 -4397 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114) (-114))) (-15 -4397 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)) (-114))) (-15 -4397 ((-660 (-2 (|:| -1949 (-1191 |#1|)) (|:| -3641 (-660 (-964 |#1|))))) (-660 (-964 |#1|)))) (-15 -4398 ((-660 (-660 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|))) (-15 -4398 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114) (-114) (-114))) (-15 -4398 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114) (-114))) (-15 -4398 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114))) (-15 -4398 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)))) (-15 -4399 ((-660 (-660 (-1044 (-419 |#1|)))) (-1066 |#1| |#2|))) (-15 -4399 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114) (-114))) (-15 -4399 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)) (-114))) (-15 -4399 ((-660 (-660 (-1044 (-419 |#1|)))) (-660 (-964 |#1|)))) (-15 -4400 ((-660 (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-799 |#1| (-877 |#3|)))) (-1066 |#1| |#2|))) (-15 -4401 ((-799 |#1| (-877 |#3|)) (-799 |#1| (-877 |#2|)))) (-15 -4401 ((-964 (-1044 (-419 |#1|))) (-964 |#1|))) (-15 -4401 ((-964 (-1044 (-419 |#1|))) (-799 |#1| (-877 |#3|)))) (-15 -4401 ((-1191 (-1044 (-419 |#1|))) (-1191 |#1|))) (-15 -4401 ((-660 (-799 |#1| (-877 |#3|))) (-1166 |#1| (-543 (-877 |#3|)) (-877 |#3|) (-799 |#1| (-877 |#3|)))))) (-13 (-859) (-319) (-149) (-1040)) (-660 (-1197)) (-660 (-1197))) (T -1315)) +((-4401 (*1 *2 *3) (-12 (-5 *3 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-799 *4 (-877 *6)))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-799 *4 (-877 *6)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-1191 (-1044 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-799 *4 (-877 *6))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *6 (-660 (-1197))) (-5 *2 (-964 (-1044 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-964 *4)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-964 (-1044 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) (-4401 (*1 *2 *3) (-12 (-5 *3 (-799 *4 (-877 *5))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *5 (-660 (-1197))) (-5 *2 (-799 *4 (-877 *6))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) (-4400 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *5 (-660 (-1197))) (-5 *2 (-660 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-799 *4 (-877 *6))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) (-4399 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4399 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4399 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *5 (-660 (-1197))) (-5 *2 (-660 (-660 (-1044 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) (-4398 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4398 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4398 (*1 *2 *3 *4 *4 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4398 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *5 (-660 (-1197))) (-5 *2 (-660 (-660 (-1044 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) (-4397 (*1 *2 *3) (-12 (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *4)) (|:| -3641 (-660 (-964 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-660 (-964 *4))) (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) (-4397 (*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4397 (*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4397 (*1 *2 *3 *4 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4397 (*1 *2 *3) (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *5 (-660 (-1197))) (-5 *2 (-660 (-2 (|:| -1949 (-1191 *4)) (|:| -3641 (-660 (-964 *4)))))) (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) (-4396 (*1 *2 *3) (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-1066 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) (-4396 (*1 *2 *3 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) (-4396 (*1 *2 *3 *4 *4) (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197)))))) +((-4404 (((-3 (-1287 (-419 (-558))) #1="failed") (-1287 |#1|) |#1|) 21 T ELT)) (-4402 (((-114) (-1287 |#1|)) 12 T ELT)) (-4403 (((-3 (-1287 (-558)) #1#) (-1287 |#1|)) 16 T ELT))) +(((-1316 |#1|) (-10 -7 (-15 -4402 ((-114) (-1287 |#1|))) (-15 -4403 ((-3 (-1287 (-558)) #1="failed") (-1287 |#1|))) (-15 -4404 ((-3 (-1287 (-419 (-558))) #1#) (-1287 |#1|) |#1|))) (-13 (-1069) (-657 (-558)))) (T -1316)) +((-4404 (*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 (-558)))) (-5 *2 (-1287 (-419 (-558)))) (-5 *1 (-1316 *4)))) (-4403 (*1 *2 *3) (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 (-558)))) (-5 *2 (-1287 (-558))) (-5 *1 (-1316 *4)))) (-4402 (*1 *2 *3) (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 (-558)))) (-5 *2 (-114)) (-5 *1 (-1316 *4))))) +((-2966 (((-114) $ $) NIL T ELT)) (-3605 (((-114) $) 12 T ELT)) (-1425 (((-3 $ #1="failed") $ $) NIL T ELT)) (-3537 (((-790)) 9 T ELT)) (-4153 (($) NIL T CONST)) (-3886 (((-3 $ #1#) $) 57 T ELT)) (-3394 (($) 46 T ELT)) (-2640 (((-114) $) 38 T ELT)) (-3864 (((-710 $) $) 36 T ELT)) (-2219 (((-937) $) 14 T ELT)) (-3659 (((-1179) $) NIL T ELT)) (-3865 (($) 26 T CONST)) (-2630 (($ (-937)) 47 T ELT)) (-3660 (((-1140) $) NIL T ELT)) (-4401 (((-558) $) 16 T ELT)) (-4375 (((-876) $) 21 T ELT) (($ (-558)) 18 T ELT)) (-3527 (((-790)) 10 T CONST)) (-1377 (((-114) $ $) 59 T ELT)) (-3058 (($) 23 T CONST)) (-3064 (($) 25 T CONST)) (-3453 (((-114) $ $) 31 T ELT)) (-4266 (($ $) 50 T ELT) (($ $ $) 44 T ELT)) (-4268 (($ $ $) 29 T ELT)) (** (($ $ (-937)) NIL T ELT) (($ $ (-790)) 52 T ELT)) (* (($ (-937) $) NIL T ELT) (($ (-790) $) NIL T ELT) (($ (-558) $) 41 T ELT) (($ $ $) 40 T ELT))) +(((-1317 |#1|) (-13 (-175) (-381) (-630 (-558)) (-1172)) (-937)) (T -1317)) +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +NIL +((-3 3091958 3091963 3091968 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-2 3091943 3091948 3091953 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1 3091928 3091933 3091938 NIL NIL NIL (NIL) -8 NIL NIL NIL) (0 3091913 3091918 3091923 NIL NIL NIL (NIL) -8 NIL NIL NIL) (-1317 3090951 3091831 3091908 "ZMOD" NIL ZMOD (NIL NIL) -8 NIL NIL NIL) (-1316 3090159 3090339 3090560 "ZLINDEP" NIL ZLINDEP (NIL T) -7 NIL NIL NIL) (-1315 3081191 3083097 3085069 "ZDSOLVE" NIL ZDSOLVE (NIL T NIL NIL) -7 NIL NIL NIL) (-1314 3080579 3080732 3080921 "YSTREAM" NIL YSTREAM (NIL T) -7 NIL NIL NIL) (-1313 3080038 3080344 3080457 "YDIAGRAM" NIL YDIAGRAM (NIL) -8 NIL NIL NIL) (-1312 3077650 3079496 3079700 "XRPOLY" NIL XRPOLY (NIL T T) -8 NIL NIL NIL) (-1311 3074452 3076049 3076624 "XPR" NIL XPR (NIL T T) -8 NIL NIL NIL) (-1310 3071778 3073454 3073509 "XPOLYC" 3073797 XPOLYC (NIL T T) -9 NIL 3073910 NIL) (-1309 3069349 3071278 3071482 "XPOLY" NIL XPOLY (NIL T) -8 NIL NIL NIL) (-1308 3065654 3068208 3068596 "XPBWPOLY" NIL XPBWPOLY (NIL T T) -8 NIL NIL NIL) (-1307 3060541 3062120 3062175 "XFALG" 3064347 XFALG (NIL T T) -9 NIL 3065136 NIL) (-1306 3055732 3058430 3058472 "XF" 3059093 XF (NIL T) -9 NIL 3059493 NIL) (-1305 3055446 3055558 3055727 "XF-" NIL XF- (NIL T T) -7 NIL NIL NIL) (-1304 3054669 3054791 3054996 "XEXPPKG" NIL XEXPPKG (NIL T T T) -7 NIL NIL NIL) (-1303 3052466 3054568 3054664 "XDPOLY" NIL XDPOLY (NIL T T) -8 NIL NIL NIL) (-1302 3051121 3051859 3051902 "XALG" 3051907 XALG (NIL T) -9 NIL 3052018 NIL) (-1301 3044622 3049518 3050000 "WUTSET" NIL WUTSET (NIL T T T T) -8 NIL NIL NIL) (-1300 3042920 3043863 3044186 "WP" NIL WP (NIL T T T T NIL NIL NIL) -8 NIL NIL NIL) (-1299 3042516 3042790 3042860 "WHILEAST" NIL WHILEAST (NIL) -8 NIL NIL NIL) (-1298 3042000 3042305 3042399 "WHEREAST" NIL WHEREAST (NIL) -8 NIL NIL NIL) (-1297 3041077 3041287 3041582 "WFFINTBS" NIL WFFINTBS (NIL T T T T) -7 NIL NIL NIL) (-1296 3039373 3039836 3040298 "WEIER" NIL WEIER (NIL T) -7 NIL NIL NIL) (-1295 3038297 3038855 3038897 "VSPACE" 3039033 VSPACE (NIL T) -9 NIL 3039107 NIL) (-1294 3038168 3038201 3038292 "VSPACE-" NIL VSPACE- (NIL T T) -7 NIL NIL NIL) (-1293 3038011 3038065 3038133 "VOID" NIL VOID (NIL) -8 NIL NIL NIL) (-1292 3034994 3035789 3036526 "VIEWDEF" NIL VIEWDEF (NIL) -7 NIL NIL NIL) (-1291 3026089 3028693 3030866 "VIEW3D" NIL VIEW3D (NIL) -8 NIL NIL NIL) (-1290 3019663 3021557 3023136 "VIEW2D" NIL VIEW2D (NIL) -8 NIL NIL NIL) (-1289 3018147 3018542 3018948 "VIEW" NIL VIEW (NIL) -7 NIL NIL NIL) (-1288 3016974 3017255 3017571 "VECTOR2" NIL VECTOR2 (NIL T T) -7 NIL NIL NIL) (-1287 3012051 3016801 3016893 "VECTOR" NIL VECTOR (NIL T) -8 NIL NIL NIL) (-1286 3005107 3009752 3009795 "VECTCAT" 3010790 VECTCAT (NIL T) -9 NIL 3011377 NIL) (-1285 3004386 3004712 3005102 "VECTCAT-" NIL VECTCAT- (NIL T T) -7 NIL NIL NIL) (-1284 3003877 3004122 3004242 "VARIABLE" NIL VARIABLE (NIL NIL) -8 NIL NIL NIL) (-1283 3003810 3003815 3003845 "UTYPE" 3003850 UTYPE (NIL) -9 NIL NIL NIL) (-1282 3002792 3002968 3003230 "UTSODETL" NIL UTSODETL (NIL T T T T) -7 NIL NIL NIL) (-1281 3000643 3001151 3001675 "UTSODE" NIL UTSODE (NIL T T) -7 NIL NIL NIL) (-1280 2990556 2996479 2996522 "UTSCAT" 2997634 UTSCAT (NIL T) -9 NIL 2998392 NIL) (-1279 2988618 2989562 2990551 "UTSCAT-" NIL UTSCAT- (NIL T T) -7 NIL NIL NIL) (-1278 2988288 2988337 2988470 "UTS2" NIL UTS2 (NIL T T T T) -7 NIL NIL NIL) (-1277 2980034 2986471 2986951 "UTS" NIL UTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1276 2974013 2976844 2976887 "URAGG" 2978957 URAGG (NIL T) -9 NIL 2979680 NIL) (-1275 2972020 2972986 2974008 "URAGG-" NIL URAGG- (NIL T T) -7 NIL NIL NIL) (-1274 2967771 2970993 2971456 "UPXSSING" NIL UPXSSING (NIL T T NIL NIL) -8 NIL NIL NIL) (-1273 2960246 2967694 2967766 "UPXSCONS" NIL UPXSCONS (NIL T T) -8 NIL NIL NIL) (-1272 2948888 2956330 2956392 "UPXSCCA" 2956966 UPXSCCA (NIL T T) -9 NIL 2957199 NIL) (-1271 2948606 2948709 2948883 "UPXSCCA-" NIL UPXSCCA- (NIL T T T) -7 NIL NIL NIL) (-1270 2937148 2944315 2944358 "UPXSCAT" 2945006 UPXSCAT (NIL T) -9 NIL 2945615 NIL) (-1269 2936657 2936742 2936921 "UPXS2" NIL UPXS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1268 2928387 2936245 2936509 "UPXS" NIL UPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1267 2927282 2927552 2927902 "UPSQFREE" NIL UPSQFREE (NIL T T) -7 NIL NIL NIL) (-1266 2920023 2923458 2923513 "UPSCAT" 2924593 UPSCAT (NIL T T) -9 NIL 2925358 NIL) (-1265 2919436 2919691 2920018 "UPSCAT-" NIL UPSCAT- (NIL T T T) -7 NIL NIL NIL) (-1264 2919106 2919155 2919288 "UPOLYC2" NIL UPOLYC2 (NIL T T T T) -7 NIL NIL NIL) (-1263 2903166 2912117 2912160 "UPOLYC" 2914261 UPOLYC (NIL T) -9 NIL 2915482 NIL) (-1262 2897186 2900053 2903161 "UPOLYC-" NIL UPOLYC- (NIL T T) -7 NIL NIL NIL) (-1261 2896618 2896743 2896907 "UPMP" NIL UPMP (NIL T T) -7 NIL NIL NIL) (-1260 2896252 2896339 2896478 "UPDIVP" NIL UPDIVP (NIL T T) -7 NIL NIL NIL) (-1259 2895065 2895332 2895636 "UPDECOMP" NIL UPDECOMP (NIL T T) -7 NIL NIL NIL) (-1258 2894394 2894524 2894710 "UPCDEN" NIL UPCDEN (NIL T T T) -7 NIL NIL NIL) (-1257 2893982 2894057 2894206 "UP2" NIL UP2 (NIL NIL T NIL T) -7 NIL NIL NIL) (-1256 2884746 2893746 2893875 "UP" NIL UP (NIL NIL T) -8 NIL NIL NIL) (-1255 2884108 2884245 2884450 "UNISEG2" NIL UNISEG2 (NIL T T) -7 NIL NIL NIL) (-1254 2882703 2883554 2883831 "UNISEG" NIL UNISEG (NIL T) -8 NIL NIL NIL) (-1253 2881929 2882127 2882353 "UNIFACT" NIL UNIFACT (NIL T) -7 NIL NIL NIL) (-1252 2868731 2881852 2881924 "ULSCONS" NIL ULSCONS (NIL T T) -8 NIL NIL NIL) (-1251 2848470 2861717 2861779 "ULSCCAT" 2862417 ULSCCAT (NIL T T) -9 NIL 2862706 NIL) (-1250 2847802 2848089 2848465 "ULSCCAT-" NIL ULSCCAT- (NIL T T T) -7 NIL NIL NIL) (-1249 2836162 2843251 2843294 "ULSCAT" 2844157 ULSCAT (NIL T) -9 NIL 2844888 NIL) (-1248 2835671 2835756 2835935 "ULS2" NIL ULS2 (NIL T T NIL NIL NIL NIL) -7 NIL NIL NIL) (-1247 2817738 2835167 2835409 "ULS" NIL ULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1246 2816765 2817465 2817579 "UINT8" NIL UINT8 (NIL) -8 NIL NIL 2817690) (-1245 2815791 2816491 2816605 "UINT64" NIL UINT64 (NIL) -8 NIL NIL 2816716) (-1244 2814817 2815517 2815631 "UINT32" NIL UINT32 (NIL) -8 NIL NIL 2815742) (-1243 2813843 2814543 2814657 "UINT16" NIL UINT16 (NIL) -8 NIL NIL 2814768) (-1242 2811922 2813089 2813119 "UFD" 2813331 UFD (NIL) -9 NIL 2813445 NIL) (-1241 2811764 2811822 2811917 "UFD-" NIL UFD- (NIL T) -7 NIL NIL NIL) (-1240 2811016 2811223 2811439 "UDVO" NIL UDVO (NIL) -7 NIL NIL NIL) (-1239 2809218 2809677 2810148 "UDPO" NIL UDPO (NIL T) -7 NIL NIL NIL) (-1238 2808939 2809182 2809213 "TYPEAST" NIL TYPEAST (NIL) -8 NIL NIL NIL) (-1237 2808872 2808877 2808907 "TYPE" 2808912 TYPE (NIL) -9 NIL NIL NIL) (-1236 2808031 2808251 2808491 "TWOFACT" NIL TWOFACT (NIL T) -7 NIL NIL NIL) (-1235 2807206 2807640 2807875 "TUPLE" NIL TUPLE (NIL T) -8 NIL NIL NIL) (-1234 2805360 2805933 2806472 "TUBETOOL" NIL TUBETOOL (NIL) -7 NIL NIL NIL) (-1233 2804380 2804621 2804862 "TUBE" NIL TUBE (NIL T) -8 NIL NIL NIL) (-1232 2792631 2797139 2797236 "TSETCAT" 2802505 TSETCAT (NIL T T T T) -9 NIL 2804036 NIL) (-1231 2788925 2790762 2792626 "TSETCAT-" NIL TSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1230 2783366 2788145 2788428 "TS" NIL TS (NIL T) -8 NIL NIL NIL) (-1229 2778703 2779716 2780645 "TRMANIP" NIL TRMANIP (NIL T T) -7 NIL NIL NIL) (-1228 2778200 2778275 2778438 "TRIMAT" NIL TRIMAT (NIL T T T T) -7 NIL NIL NIL) (-1227 2776263 2776554 2776911 "TRIGMNIP" NIL TRIGMNIP (NIL T T) -7 NIL NIL NIL) (-1226 2775747 2775896 2775926 "TRIGCAT" 2776139 TRIGCAT (NIL) -9 NIL NIL NIL) (-1225 2775498 2775601 2775742 "TRIGCAT-" NIL TRIGCAT- (NIL T) -7 NIL NIL NIL) (-1224 2772470 2774602 2774883 "TREE" NIL TREE (NIL T) -8 NIL NIL NIL) (-1223 2771576 2772272 2772302 "TRANFUN" 2772337 TRANFUN (NIL) -9 NIL 2772403 NIL) (-1222 2771040 2771291 2771571 "TRANFUN-" NIL TRANFUN- (NIL T) -7 NIL NIL NIL) (-1221 2770877 2770915 2770976 "TOPSP" NIL TOPSP (NIL) -7 NIL NIL NIL) (-1220 2770330 2770461 2770613 "TOOLSIGN" NIL TOOLSIGN (NIL T) -7 NIL NIL NIL) (-1219 2769065 2769726 2769963 "TEXTFILE" NIL TEXTFILE (NIL) -8 NIL NIL NIL) (-1218 2768877 2768914 2768986 "TEX1" NIL TEX1 (NIL T) -7 NIL NIL NIL) (-1217 2767088 2767737 2768166 "TEX" NIL TEX (NIL) -8 NIL NIL NIL) (-1216 2766792 2766867 2766957 "TEMUTL" NIL TEMUTL (NIL) -7 NIL NIL NIL) (-1215 2765163 2765503 2765828 "TBCMPPK" NIL TBCMPPK (NIL T T) -7 NIL NIL NIL) (-1214 2756357 2763007 2763063 "TBAGG" 2763463 TBAGG (NIL T T) -9 NIL 2763674 NIL) (-1213 2752928 2754600 2756352 "TBAGG-" NIL TBAGG- (NIL T T T) -7 NIL NIL NIL) (-1212 2752405 2752530 2752675 "TANEXP" NIL TANEXP (NIL T) -7 NIL NIL NIL) (-1211 2751911 2752235 2752325 "TALGOP" NIL TALGOP (NIL T) -8 NIL NIL NIL) (-1210 2751408 2751525 2751663 "TABLEAU" NIL TABLEAU (NIL T) -8 NIL NIL NIL) (-1209 2744588 2751310 2751403 "TABLE" NIL TABLE (NIL T T) -8 NIL NIL NIL) (-1208 2740332 2741630 2742878 "TABLBUMP" NIL TABLBUMP (NIL T) -7 NIL NIL NIL) (-1207 2739701 2739860 2740041 "SYSTEM" NIL SYSTEM (NIL) -7 NIL NIL NIL) (-1206 2736855 2737608 2738391 "SYSSOLP" NIL SYSSOLP (NIL T) -7 NIL NIL NIL) (-1205 2736626 2736819 2736850 "SYSPTR" NIL SYSPTR (NIL) -8 NIL NIL NIL) (-1204 2735573 2736265 2736391 "SYSNNI" NIL SYSNNI (NIL NIL) -8 NIL NIL 2736577) (-1203 2734830 2735385 2735464 "SYSINT" NIL SYSINT (NIL NIL) -8 NIL NIL 2735524) (-1202 2731628 2732796 2733506 "SYNTAX" NIL SYNTAX (NIL) -8 NIL NIL NIL) (-1201 2729318 2729998 2730630 "SYMTAB" NIL SYMTAB (NIL) -8 NIL NIL NIL) (-1200 2725396 2726442 2727419 "SYMS" NIL SYMS (NIL) -8 NIL NIL NIL) (-1199 2722540 2725049 2725279 "SYMPOLY" NIL SYMPOLY (NIL T) -8 NIL NIL NIL) (-1198 2722133 2722220 2722343 "SYMFUNC" NIL SYMFUNC (NIL T) -7 NIL NIL NIL) (-1197 2718746 2720228 2721049 "SYMBOL" NIL SYMBOL (NIL) -8 NIL NIL NIL) (-1196 2713917 2715672 2717392 "SWITCH" NIL SWITCH (NIL) -8 NIL NIL NIL) (-1195 2706921 2713109 2713403 "SUTS" NIL SUTS (NIL T NIL NIL) -8 NIL NIL NIL) (-1194 2698651 2706509 2706773 "SUPXS" NIL SUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-1193 2697930 2698069 2698286 "SUPFRACF" NIL SUPFRACF (NIL T T T T) -7 NIL NIL NIL) (-1192 2697610 2697675 2697788 "SUP2" NIL SUP2 (NIL T T) -7 NIL NIL NIL) (-1191 2688332 2697319 2697445 "SUP" NIL SUP (NIL T) -8 NIL NIL NIL) (-1190 2687057 2687355 2687711 "SUMRF" NIL SUMRF (NIL T) -7 NIL NIL NIL) (-1189 2686459 2686537 2686729 "SUMFS" NIL SUMFS (NIL T T) -7 NIL NIL NIL) (-1188 2668561 2685955 2686197 "SULS" NIL SULS (NIL T NIL NIL) -8 NIL NIL NIL) (-1187 2668157 2668431 2668501 "SUCHTAST" NIL SUCHTAST (NIL) -8 NIL NIL NIL) (-1186 2667490 2667774 2667914 "SUCH" NIL SUCH (NIL T T) -8 NIL NIL NIL) (-1185 2662041 2663308 2664267 "SUBSPACE" NIL SUBSPACE (NIL NIL T) -8 NIL NIL NIL) (-1184 2661573 2661673 2661837 "SUBRESP" NIL SUBRESP (NIL T T) -7 NIL NIL NIL) (-1183 2656684 2657966 2659113 "STTFNC" NIL STTFNC (NIL T) -7 NIL NIL NIL) (-1182 2651142 2652613 2653924 "STTF" NIL STTF (NIL T) -7 NIL NIL NIL) (-1181 2644021 2646085 2647877 "STTAYLOR" NIL STTAYLOR (NIL T) -7 NIL NIL NIL) (-1180 2636944 2643933 2644016 "STRTBL" NIL STRTBL (NIL T) -8 NIL NIL NIL) (-1179 2631606 2636660 2636773 "STRING" NIL STRING (NIL) -8 NIL NIL NIL) (-1178 2631193 2631276 2631420 "STREAM3" NIL STREAM3 (NIL T T T) -7 NIL NIL NIL) (-1177 2630344 2630545 2630780 "STREAM2" NIL STREAM2 (NIL T T) -7 NIL NIL NIL) (-1176 2630084 2630142 2630235 "STREAM1" NIL STREAM1 (NIL T) -7 NIL NIL NIL) (-1175 2622776 2628279 2628890 "STREAM" NIL STREAM (NIL T) -8 NIL NIL NIL) (-1174 2621952 2622157 2622388 "STINPROD" NIL STINPROD (NIL T) -7 NIL NIL NIL) (-1173 2621193 2621567 2621715 "STEPAST" NIL STEPAST (NIL) -8 NIL NIL NIL) (-1172 2620689 2620934 2620964 "STEP" 2621058 STEP (NIL) -9 NIL 2621129 NIL) (-1171 2613885 2620607 2620684 "STBL" NIL STBL (NIL T T NIL) -8 NIL NIL NIL) (-1170 2608065 2612676 2612719 "STAGG" 2613151 STAGG (NIL T) -9 NIL 2613330 NIL) (-1169 2606440 2607190 2608060 "STAGG-" NIL STAGG- (NIL T T) -7 NIL NIL NIL) (-1168 2604583 2606267 2606359 "STACK" NIL STACK (NIL T) -8 NIL NIL NIL) (-1167 2603900 2604413 2604443 "SRING" 2604448 SRING (NIL) -9 NIL 2604468 NIL) (-1166 2596429 2602411 2602867 "SREGSET" NIL SREGSET (NIL T T T T) -8 NIL NIL NIL) (-1165 2590170 2591617 2593130 "SRDCMPK" NIL SRDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1164 2582554 2587499 2587529 "SRAGG" 2588832 SRAGG (NIL) -9 NIL 2589440 NIL) (-1163 2581849 2582170 2582549 "SRAGG-" NIL SRAGG- (NIL T) -7 NIL NIL NIL) (-1162 2575942 2581167 2581591 "SQMATRIX" NIL SQMATRIX (NIL NIL T) -8 NIL NIL NIL) (-1161 2570124 2573315 2574042 "SPLTREE" NIL SPLTREE (NIL T T) -8 NIL NIL NIL) (-1160 2566523 2567354 2568000 "SPLNODE" NIL SPLNODE (NIL T T) -8 NIL NIL NIL) (-1159 2565498 2565803 2565833 "SPFCAT" 2566277 SPFCAT (NIL) -9 NIL NIL NIL) (-1158 2564435 2564687 2564951 "SPECOUT" NIL SPECOUT (NIL) -7 NIL NIL NIL) (-1157 2555082 2557398 2557428 "SPADXPT" 2562104 SPADXPT (NIL) -9 NIL 2564268 NIL) (-1156 2554884 2554930 2554999 "SPADPRSR" NIL SPADPRSR (NIL) -7 NIL NIL NIL) (-1155 2552498 2554848 2554879 "SPADAST" NIL SPADAST (NIL) -8 NIL NIL NIL) (-1154 2544099 2546202 2546245 "SPACEC" 2550618 SPACEC (NIL T) -9 NIL 2552434 NIL) (-1153 2541913 2544045 2544094 "SPACE3" NIL SPACE3 (NIL T) -8 NIL NIL NIL) (-1152 2540840 2541031 2541322 "SORTPAK" NIL SORTPAK (NIL T T) -7 NIL NIL NIL) (-1151 2539238 2539571 2539983 "SOLVETRA" NIL SOLVETRA (NIL T) -7 NIL NIL NIL) (-1150 2538503 2538737 2538998 "SOLVESER" NIL SOLVESER (NIL T) -7 NIL NIL NIL) (-1149 2534683 2535643 2536638 "SOLVERAD" NIL SOLVERAD (NIL T) -7 NIL NIL NIL) (-1148 2531041 2531740 2532469 "SOLVEFOR" NIL SOLVEFOR (NIL T T) -7 NIL NIL NIL) (-1147 2524787 2530390 2530487 "SNTSCAT" 2530492 SNTSCAT (NIL T T T T) -9 NIL 2530562 NIL) (-1146 2518655 2523420 2523811 "SMTS" NIL SMTS (NIL T T T) -8 NIL NIL NIL) (-1145 2512469 2518573 2518650 "SMP" NIL SMP (NIL T T) -8 NIL NIL NIL) (-1144 2510901 2511232 2511630 "SMITH" NIL SMITH (NIL T T T T) -7 NIL NIL NIL) (-1143 2502530 2507466 2507569 "SMATCAT" 2508923 SMATCAT (NIL NIL T T T) -9 NIL 2509473 NIL) (-1142 2500370 2501354 2502525 "SMATCAT-" NIL SMATCAT- (NIL T NIL T T T) -7 NIL NIL NIL) (-1141 2497950 2499578 2499621 "SKAGG" 2499882 SKAGG (NIL T) -9 NIL 2500017 NIL) (-1140 2493792 2497600 2497770 "SINT" NIL SINT (NIL) -8 NIL NIL 2497922) (-1139 2493602 2493646 2493712 "SIMPAN" NIL SIMPAN (NIL) -7 NIL NIL NIL) (-1138 2492677 2492909 2493177 "SIGNRF" NIL SIGNRF (NIL T) -7 NIL NIL NIL) (-1137 2491677 2491839 2492116 "SIGNEF" NIL SIGNEF (NIL T T) -7 NIL NIL NIL) (-1136 2491019 2491362 2491486 "SIGAST" NIL SIGAST (NIL) -8 NIL NIL NIL) (-1135 2490362 2490672 2490812 "SIG" NIL SIG (NIL) -8 NIL NIL NIL) (-1134 2488473 2488965 2489471 "SHP" NIL SHP (NIL T NIL) -7 NIL NIL NIL) (-1133 2481946 2488392 2488468 "SHDP" NIL SHDP (NIL NIL NIL T) -8 NIL NIL NIL) (-1132 2481457 2481697 2481727 "SGROUP" 2481820 SGROUP (NIL) -9 NIL 2481882 NIL) (-1131 2481347 2481379 2481452 "SGROUP-" NIL SGROUP- (NIL T) -7 NIL NIL NIL) (-1130 2478767 2479537 2480260 "SGCF" NIL SGCF (NIL) -7 NIL NIL NIL) (-1129 2472611 2478214 2478311 "SFRTCAT" 2478316 SFRTCAT (NIL T T T T) -9 NIL 2478355 NIL) (-1128 2466947 2468067 2469203 "SFRGCD" NIL SFRGCD (NIL T T T T T) -7 NIL NIL NIL) (-1127 2461036 2462215 2463399 "SFQCMPK" NIL SFQCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1126 2460697 2460804 2460915 "SFORT" NIL SFORT (NIL T T) -8 NIL NIL NIL) (-1125 2459657 2460571 2460692 "SEXOF" NIL SEXOF (NIL T T T T T) -8 NIL NIL NIL) (-1124 2455246 2456153 2456248 "SEXCAT" 2458870 SEXCAT (NIL T T T T T) -9 NIL 2459430 NIL) (-1123 2454207 2455173 2455241 "SEX" NIL SEX (NIL) -8 NIL NIL NIL) (-1122 2452592 2453181 2453484 "SETMN" NIL SETMN (NIL NIL NIL) -8 NIL NIL NIL) (-1121 2452122 2452310 2452340 "SETCAT" 2452457 SETCAT (NIL) -9 NIL 2452542 NIL) (-1120 2451954 2452018 2452117 "SETCAT-" NIL SETCAT- (NIL T) -7 NIL NIL NIL) (-1119 2448168 2450415 2450458 "SETAGG" 2451328 SETAGG (NIL T) -9 NIL 2451668 NIL) (-1118 2447774 2447926 2448163 "SETAGG-" NIL SETAGG- (NIL T T) -7 NIL NIL NIL) (-1117 2444710 2447721 2447769 "SET" NIL SET (NIL T) -8 NIL NIL NIL) (-1116 2444172 2444485 2444586 "SEQAST" NIL SEQAST (NIL) -8 NIL NIL NIL) (-1115 2443299 2443665 2443726 "SEGXCAT" 2444012 SEGXCAT (NIL T T) -9 NIL 2444132 NIL) (-1114 2442224 2442492 2442535 "SEGCAT" 2443057 SEGCAT (NIL T) -9 NIL 2443278 NIL) (-1113 2441904 2441969 2442082 "SEGBIND2" NIL SEGBIND2 (NIL T T) -7 NIL NIL NIL) (-1112 2440967 2441440 2441648 "SEGBIND" NIL SEGBIND (NIL T) -8 NIL NIL NIL) (-1111 2440541 2440823 2440900 "SEGAST" NIL SEGAST (NIL) -8 NIL NIL NIL) (-1110 2439906 2440042 2440246 "SEG2" NIL SEG2 (NIL T T) -7 NIL NIL NIL) (-1109 2438969 2439719 2439901 "SEG" NIL SEG (NIL T) -8 NIL NIL NIL) (-1108 2438215 2438917 2438964 "SDVAR" NIL SDVAR (NIL T) -8 NIL NIL NIL) (-1107 2429740 2438080 2438210 "SDPOL" NIL SDPOL (NIL T) -8 NIL NIL NIL) (-1106 2428594 2428884 2429203 "SCPKG" NIL SCPKG (NIL T) -7 NIL NIL NIL) (-1105 2427886 2428100 2428292 "SCOPE" NIL SCOPE (NIL) -8 NIL NIL NIL) (-1104 2427227 2427385 2427564 "SCACHE" NIL SCACHE (NIL T) -7 NIL NIL NIL) (-1103 2426806 2427040 2427070 "SASTCAT" 2427075 SASTCAT (NIL) -9 NIL 2427088 NIL) (-1102 2426263 2426695 2426771 "SAOS" NIL SAOS (NIL) -8 NIL NIL NIL) (-1101 2425863 2425904 2426077 "SAERFFC" NIL SAERFFC (NIL T T T) -7 NIL NIL NIL) (-1100 2425491 2425532 2425691 "SAEFACT" NIL SAEFACT (NIL T T T) -7 NIL NIL NIL) (-1099 2418604 2425406 2425486 "SAE" NIL SAE (NIL T T NIL) -8 NIL NIL NIL) (-1098 2417241 2417573 2417974 "RURPK" NIL RURPK (NIL T NIL) -7 NIL NIL NIL) (-1097 2415984 2416350 2416655 "RULESET" NIL RULESET (NIL T T T) -8 NIL NIL NIL) (-1096 2415602 2415826 2415909 "RULECOLD" NIL RULECOLD (NIL NIL) -8 NIL NIL NIL) (-1095 2413036 2413674 2414132 "RULE" NIL RULE (NIL T T T) -8 NIL NIL NIL) (-1094 2412869 2412903 2412974 "RTVALUE" NIL RTVALUE (NIL) -8 NIL NIL NIL) (-1093 2412352 2412658 2412752 "RSTRCAST" NIL RSTRCAST (NIL) -8 NIL NIL NIL) (-1092 2407923 2408796 2409716 "RSETGCD" NIL RSETGCD (NIL T T T T T) -7 NIL NIL NIL) (-1091 2396629 2402232 2402329 "RSETCAT" 2406448 RSETCAT (NIL T T T T) -9 NIL 2407545 NIL) (-1090 2395153 2395800 2396624 "RSETCAT-" NIL RSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-1089 2388862 2390316 2391836 "RSDCMPK" NIL RSDCMPK (NIL T T T T T) -7 NIL NIL NIL) (-1088 2386731 2387294 2387368 "RRCC" 2388454 RRCC (NIL T T) -9 NIL 2388798 NIL) (-1087 2386247 2386449 2386726 "RRCC-" NIL RRCC- (NIL T T T) -7 NIL NIL NIL) (-1086 2385709 2386022 2386123 "RPTAST" NIL RPTAST (NIL) -8 NIL NIL NIL) (-1085 2358034 2368734 2368801 "RPOLCAT" 2379467 RPOLCAT (NIL T T T) -9 NIL 2382627 NIL) (-1084 2352103 2354939 2358029 "RPOLCAT-" NIL RPOLCAT- (NIL T T T T) -7 NIL NIL NIL) (-1083 2343142 2350774 2351256 "ROUTINE" NIL ROUTINE (NIL) -8 NIL NIL NIL) (-1082 2339350 2342886 2343026 "ROMAN" NIL ROMAN (NIL) -8 NIL NIL NIL) (-1081 2337659 2338405 2338665 "ROIRC" NIL ROIRC (NIL T T) -8 NIL NIL NIL) (-1080 2333349 2336114 2336144 "RNS" 2336413 RNS (NIL) -9 NIL 2336669 NIL) (-1079 2332255 2332740 2333274 "RNS-" NIL RNS- (NIL T) -7 NIL NIL NIL) (-1078 2331365 2331769 2331971 "RNGBIND" NIL RNGBIND (NIL T T) -8 NIL NIL NIL) (-1077 2330658 2331162 2331192 "RNG" 2331197 RNG (NIL) -9 NIL 2331218 NIL) (-1076 2329953 2330431 2330474 "RMODULE" 2330479 RMODULE (NIL T) -9 NIL 2330506 NIL) (-1075 2328876 2328982 2329318 "RMCAT2" NIL RMCAT2 (NIL NIL NIL T T T T T T T T) -7 NIL NIL NIL) (-1074 2325732 2328460 2328757 "RMATRIX" NIL RMATRIX (NIL NIL NIL T) -8 NIL NIL NIL) (-1073 2318342 2320819 2320934 "RMATCAT" 2324293 RMATCAT (NIL NIL NIL T T T) -9 NIL 2325275 NIL) (-1072 2317847 2318030 2318337 "RMATCAT-" NIL RMATCAT- (NIL T NIL NIL T T T) -7 NIL NIL NIL) (-1071 2317420 2317634 2317677 "RLINSET" 2317739 RLINSET (NIL T) -9 NIL 2317783 NIL) (-1070 2317062 2317143 2317271 "RINTERP" NIL RINTERP (NIL NIL T) -7 NIL NIL NIL) (-1069 2315986 2316660 2316690 "RING" 2316746 RING (NIL) -9 NIL 2316838 NIL) (-1068 2315828 2315884 2315981 "RING-" NIL RING- (NIL T) -7 NIL NIL NIL) (-1067 2314875 2315142 2315400 "RIDIST" NIL RIDIST (NIL) -7 NIL NIL NIL) (-1066 2305803 2314495 2314701 "RGCHAIN" NIL RGCHAIN (NIL T NIL) -8 NIL NIL NIL) (-1065 2305061 2305545 2305586 "RGBCSPC" 2305644 RGBCSPC (NIL T) -9 NIL 2305696 NIL) (-1064 2304127 2304586 2304627 "RGBCMDL" 2304859 RGBCMDL (NIL T) -9 NIL 2304973 NIL) (-1063 2303836 2303905 2304008 "RFFACTOR" NIL RFFACTOR (NIL T) -7 NIL NIL NIL) (-1062 2303596 2303637 2303734 "RFFACT" NIL RFFACT (NIL T) -7 NIL NIL NIL) (-1061 2302007 2302437 2302819 "RFDIST" NIL RFDIST (NIL) -7 NIL NIL NIL) (-1060 2299583 2300251 2300921 "RF" NIL RF (NIL T) -7 NIL NIL NIL) (-1059 2299128 2299226 2299389 "RETSOL" NIL RETSOL (NIL T T) -7 NIL NIL NIL) (-1058 2298746 2298844 2298887 "RETRACT" 2299020 RETRACT (NIL T) -9 NIL 2299107 NIL) (-1057 2298623 2298654 2298741 "RETRACT-" NIL RETRACT- (NIL T T) -7 NIL NIL NIL) (-1056 2298219 2298493 2298563 "RETAST" NIL RETAST (NIL) -8 NIL NIL NIL) (-1055 2290795 2297977 2298104 "RESULT" NIL RESULT (NIL) -8 NIL NIL NIL) (-1054 2289329 2290161 2290360 "RESRING" NIL RESRING (NIL T T T T NIL) -8 NIL NIL NIL) (-1053 2289016 2289077 2289175 "RESLATC" NIL RESLATC (NIL T) -7 NIL NIL NIL) (-1052 2288756 2288797 2288904 "REPSQ" NIL REPSQ (NIL T) -7 NIL NIL NIL) (-1051 2288488 2288529 2288640 "REPDB" NIL REPDB (NIL T) -7 NIL NIL NIL) (-1050 2283508 2284965 2286188 "REP2" NIL REP2 (NIL T) -7 NIL NIL NIL) (-1049 2280578 2281336 2282147 "REP1" NIL REP1 (NIL T) -7 NIL NIL NIL) (-1048 2278538 2279160 2279762 "REP" NIL REP (NIL) -7 NIL NIL NIL) (-1047 2271067 2277049 2277505 "REGSET" NIL REGSET (NIL T T T T) -8 NIL NIL NIL) (-1046 2269991 2270430 2270680 "REF" NIL REF (NIL T) -8 NIL NIL NIL) (-1045 2269472 2269587 2269754 "REDORDER" NIL REDORDER (NIL T T) -7 NIL NIL NIL) (-1044 2265082 2268857 2269084 "RECLOS" NIL RECLOS (NIL T) -8 NIL NIL NIL) (-1043 2264309 2264508 2264723 "REALSOLV" NIL REALSOLV (NIL) -7 NIL NIL NIL) (-1042 2261591 2262429 2263313 "REAL0Q" NIL REAL0Q (NIL T) -7 NIL NIL NIL) (-1041 2258163 2259199 2260260 "REAL0" NIL REAL0 (NIL T) -7 NIL NIL NIL) (-1040 2257997 2258050 2258080 "REAL" 2258085 REAL (NIL) -9 NIL 2258120 NIL) (-1039 2257480 2257786 2257880 "RDUCEAST" NIL RDUCEAST (NIL) -8 NIL NIL NIL) (-1038 2256957 2257035 2257242 "RDIV" NIL RDIV (NIL T T T T T) -7 NIL NIL NIL) (-1037 2256185 2256377 2256590 "RDIST" NIL RDIST (NIL T) -7 NIL NIL NIL) (-1036 2255066 2255363 2255733 "RDETRS" NIL RDETRS (NIL T T) -7 NIL NIL NIL) (-1035 2253318 2253790 2254328 "RDETR" NIL RDETR (NIL T T) -7 NIL NIL NIL) (-1034 2252235 2252512 2252902 "RDEEFS" NIL RDEEFS (NIL T T) -7 NIL NIL NIL) (-1033 2251054 2251364 2251787 "RDEEF" NIL RDEEF (NIL T T) -7 NIL NIL NIL) (-1032 2244437 2247903 2247933 "RCFIELD" 2249228 RCFIELD (NIL) -9 NIL 2249959 NIL) (-1031 2243058 2243668 2244362 "RCFIELD-" NIL RCFIELD- (NIL T) -7 NIL NIL NIL) (-1030 2239221 2241131 2241174 "RCAGG" 2242258 RCAGG (NIL T) -9 NIL 2242723 NIL) (-1029 2238943 2239054 2239216 "RCAGG-" NIL RCAGG- (NIL T T) -7 NIL NIL NIL) (-1028 2238376 2238506 2238671 "RATRET" NIL RATRET (NIL T) -7 NIL NIL NIL) (-1027 2237989 2238068 2238189 "RATFACT" NIL RATFACT (NIL T) -7 NIL NIL NIL) (-1026 2237397 2237547 2237699 "RANDSRC" NIL RANDSRC (NIL) -7 NIL NIL NIL) (-1025 2237176 2237226 2237299 "RADUTIL" NIL RADUTIL (NIL) -7 NIL NIL NIL) (-1024 2229645 2236284 2236595 "RADIX" NIL RADIX (NIL NIL) -8 NIL NIL NIL) (-1023 2219340 2229510 2229640 "RADFF" NIL RADFF (NIL T T T NIL NIL) -8 NIL NIL NIL) (-1022 2218969 2219062 2219092 "RADCAT" 2219252 RADCAT (NIL) -9 NIL NIL NIL) (-1021 2218804 2218864 2218964 "RADCAT-" NIL RADCAT- (NIL T) -7 NIL NIL NIL) (-1020 2216886 2218631 2218723 "QUEUE" NIL QUEUE (NIL T) -8 NIL NIL NIL) (-1019 2216560 2216609 2216740 "QUATCT2" NIL QUATCT2 (NIL T T T T) -7 NIL NIL NIL) (-1018 2208857 2212895 2212937 "QUATCAT" 2213728 QUATCAT (NIL T) -9 NIL 2214494 NIL) (-1017 2206100 2207383 2208761 "QUATCAT-" NIL QUATCAT- (NIL T T) -7 NIL NIL NIL) (-1016 2201982 2206047 2206095 "QUAT" NIL QUAT (NIL T) -8 NIL NIL NIL) (-1015 2199349 2201030 2201073 "QUAGG" 2201454 QUAGG (NIL T) -9 NIL 2201629 NIL) (-1014 2198945 2199219 2199289 "QQUTAST" NIL QQUTAST (NIL) -8 NIL NIL NIL) (-1013 2197975 2198577 2198742 "QFORM" NIL QFORM (NIL NIL T) -8 NIL NIL NIL) (-1012 2197649 2197698 2197829 "QFCAT2" NIL QFCAT2 (NIL T T T T) -7 NIL NIL NIL) (-1011 2187273 2193407 2193449 "QFCAT" 2194117 QFCAT (NIL T) -9 NIL 2195118 NIL) (-1010 2184166 2185602 2187177 "QFCAT-" NIL QFCAT- (NIL T T) -7 NIL NIL NIL) (-1009 2183707 2183841 2183973 "QEQUAT" NIL QEQUAT (NIL) -8 NIL NIL NIL) (-1008 2177796 2178975 2180159 "QCMPACK" NIL QCMPACK (NIL T T T T T) -7 NIL NIL NIL) (-1007 2177207 2177389 2177625 "QALGSET2" NIL QALGSET2 (NIL NIL NIL) -7 NIL NIL NIL) (-1006 2175006 2175540 2175968 "QALGSET" NIL QALGSET (NIL T T T T) -8 NIL NIL NIL) (-1005 2173900 2174142 2174461 "PWFFINTB" NIL PWFFINTB (NIL T T T T) -7 NIL NIL NIL) (-1004 2172248 2172446 2172802 "PUSHVAR" NIL PUSHVAR (NIL T T T T) -7 NIL NIL NIL) (-1003 2167975 2169191 2169234 "PTRANFN" 2171145 PTRANFN (NIL T) -9 NIL NIL NIL) (-1002 2166601 2166946 2167270 "PTPACK" NIL PTPACK (NIL T) -7 NIL NIL NIL) (-1001 2166287 2166350 2166461 "PTFUNC2" NIL PTFUNC2 (NIL T T) -7 NIL NIL NIL) (-1000 2160314 2165073 2165116 "PTCAT" 2165416 PTCAT (NIL T) -9 NIL 2165569 NIL) (-999 2160007 2160048 2160172 "PSQFR" NIL PSQFR (NIL T T T T) -7 NIL NIL NIL) (-998 2158886 2159202 2159536 "PSEUDLIN" NIL PSEUDLIN (NIL T) -7 NIL NIL NIL) (-997 2147685 2150260 2152584 "PSETPK" NIL PSETPK (NIL T T T T) -7 NIL NIL NIL) (-996 2140526 2143443 2143539 "PSETCAT" 2146560 PSETCAT (NIL T T T T) -9 NIL 2147374 NIL) (-995 2138958 2139700 2140521 "PSETCAT-" NIL PSETCAT- (NIL T T T T T) -7 NIL NIL NIL) (-994 2138277 2138472 2138500 "PSCURVE" 2138768 PSCURVE (NIL) -9 NIL 2138935 NIL) (-993 2133923 2135690 2135755 "PSCAT" 2136599 PSCAT (NIL T T T) -9 NIL 2136839 NIL) (-992 2133236 2133518 2133918 "PSCAT-" NIL PSCAT- (NIL T T T T) -7 NIL NIL NIL) (-991 2131657 2132548 2132811 "PRTITION" NIL PRTITION (NIL) -8 NIL NIL NIL) (-990 2131144 2131450 2131542 "PRTDAST" NIL PRTDAST (NIL) -8 NIL NIL NIL) (-989 2122164 2124586 2126774 "PRS" NIL PRS (NIL T T) -7 NIL NIL NIL) (-988 2119895 2121486 2121526 "PRQAGG" 2121709 PRQAGG (NIL T) -9 NIL 2121811 NIL) (-987 2119074 2119523 2119551 "PROPLOG" 2119690 PROPLOG (NIL) -9 NIL 2119805 NIL) (-986 2118749 2118812 2118935 "PROPFUN2" NIL PROPFUN2 (NIL T T) -7 NIL NIL NIL) (-985 2118185 2118324 2118496 "PROPFUN1" NIL PROPFUN1 (NIL T) -7 NIL NIL NIL) (-984 2116430 2117196 2117493 "PROPFRML" NIL PROPFRML (NIL T) -8 NIL NIL NIL) (-983 2115983 2116114 2116242 "PROPERTY" NIL PROPERTY (NIL) -8 NIL NIL NIL) (-982 2110572 2114923 2115743 "PRODUCT" NIL PRODUCT (NIL T T) -8 NIL NIL NIL) (-981 2110401 2110439 2110498 "PRINT" NIL PRINT (NIL) -7 NIL NIL NIL) (-980 2109837 2109978 2110130 "PRIMES" NIL PRIMES (NIL T) -7 NIL NIL NIL) (-979 2108305 2108724 2109190 "PRIMELT" NIL PRIMELT (NIL T) -7 NIL NIL NIL) (-978 2108022 2108083 2108111 "PRIMCAT" 2108235 PRIMCAT (NIL) -9 NIL NIL NIL) (-977 2107193 2107389 2107617 "PRIMARR2" NIL PRIMARR2 (NIL T T) -7 NIL NIL NIL) (-976 2103041 2107143 2107188 "PRIMARR" NIL PRIMARR (NIL T) -8 NIL NIL NIL) (-975 2102740 2102802 2102913 "PREASSOC" NIL PREASSOC (NIL T T) -7 NIL NIL NIL) (-974 2099921 2102387 2102621 "PR" NIL PR (NIL T T) -8 NIL NIL NIL) (-973 2099372 2099529 2099557 "PPCURVE" 2099762 PPCURVE (NIL) -9 NIL 2099898 NIL) (-972 2098982 2099230 2099313 "PORTNUM" NIL PORTNUM (NIL) -8 NIL NIL NIL) (-971 2096738 2097159 2097751 "POLYROOT" NIL POLYROOT (NIL T T T T T) -7 NIL NIL NIL) (-970 2096179 2096243 2096477 "POLYLIFT" NIL POLYLIFT (NIL T T T T T) -7 NIL NIL NIL) (-969 2092889 2093375 2093987 "POLYCATQ" NIL POLYCATQ (NIL T T T T T) -7 NIL NIL NIL) (-968 2078464 2084549 2084614 "POLYCAT" 2088128 POLYCAT (NIL T T T) -9 NIL 2090006 NIL) (-967 2073971 2076119 2078459 "POLYCAT-" NIL POLYCAT- (NIL T T T T) -7 NIL NIL NIL) (-966 2073626 2073700 2073820 "POLY2UP" NIL POLY2UP (NIL NIL T) -7 NIL NIL NIL) (-965 2073315 2073378 2073487 "POLY2" NIL POLY2 (NIL T T) -7 NIL NIL NIL) (-964 2066719 2073046 2073206 "POLY" NIL POLY (NIL T) -8 NIL NIL NIL) (-963 2065606 2065869 2066145 "POLUTIL" NIL POLUTIL (NIL T T) -7 NIL NIL NIL) (-962 2064203 2064516 2064847 "POLTOPOL" NIL POLTOPOL (NIL NIL T) -7 NIL NIL NIL) (-961 2059327 2064151 2064198 "POINT" NIL POINT (NIL T) -8 NIL NIL NIL) (-960 2057815 2058226 2058601 "PNTHEORY" NIL PNTHEORY (NIL) -7 NIL NIL NIL) (-959 2056563 2056872 2057271 "PMTOOLS" NIL PMTOOLS (NIL T T T) -7 NIL NIL NIL) (-958 2056234 2056318 2056435 "PMSYM" NIL PMSYM (NIL T) -7 NIL NIL NIL) (-957 2055811 2055886 2056061 "PMQFCAT" NIL PMQFCAT (NIL T T T) -7 NIL NIL NIL) (-956 2055291 2055389 2055551 "PMPREDFS" NIL PMPREDFS (NIL T T T) -7 NIL NIL NIL) (-955 2054757 2054879 2055035 "PMPRED" NIL PMPRED (NIL T) -7 NIL NIL NIL) (-954 2053649 2053867 2054245 "PMPLCAT" NIL PMPLCAT (NIL T T T T T) -7 NIL NIL NIL) (-953 2053260 2053345 2053497 "PMLSAGG" NIL PMLSAGG (NIL T T T) -7 NIL NIL NIL) (-952 2052809 2052891 2053073 "PMKERNEL" NIL PMKERNEL (NIL T T) -7 NIL NIL NIL) (-951 2052501 2052582 2052695 "PMINS" NIL PMINS (NIL T) -7 NIL NIL NIL) (-950 2052012 2052087 2052296 "PMFS" NIL PMFS (NIL T T T) -7 NIL NIL NIL) (-949 2051351 2051481 2051686 "PMDOWN" NIL PMDOWN (NIL T T T) -7 NIL NIL NIL) (-948 2050713 2050847 2051010 "PMASSFS" NIL PMASSFS (NIL T T) -7 NIL NIL NIL) (-947 2050017 2050199 2050380 "PMASS" NIL PMASS (NIL) -7 NIL NIL NIL) (-946 2049740 2049814 2049908 "PLOTTOOL" NIL PLOTTOOL (NIL) -7 NIL NIL NIL) (-945 2046295 2047489 2048410 "PLOT3D" NIL PLOT3D (NIL) -8 NIL NIL NIL) (-944 2045379 2045580 2045815 "PLOT1" NIL PLOT1 (NIL T) -7 NIL NIL NIL) (-943 2040928 2042318 2043466 "PLOT" NIL PLOT (NIL) -8 NIL NIL NIL) (-942 2020837 2025728 2030579 "PLEQN" NIL PLEQN (NIL T T T T) -7 NIL NIL NIL) (-941 2020577 2020630 2020733 "PINTERPA" NIL PINTERPA (NIL T T) -7 NIL NIL NIL) (-940 2020018 2020152 2020332 "PINTERP" NIL PINTERP (NIL NIL T) -7 NIL NIL NIL) (-939 2018102 2019268 2019296 "PID" 2019493 PID (NIL) -9 NIL 2019620 NIL) (-938 2017890 2017933 2018008 "PICOERCE" NIL PICOERCE (NIL T) -7 NIL NIL NIL) (-937 2017069 2017737 2017824 "PI" NIL PI (NIL) -8 NIL NIL 2017864) (-936 2016521 2016672 2016848 "PGROEB" NIL PGROEB (NIL T) -7 NIL NIL NIL) (-935 2012849 2013807 2014712 "PGE" NIL PGE (NIL) -7 NIL NIL NIL) (-934 2011213 2011502 2011868 "PGCD" NIL PGCD (NIL T T T T) -7 NIL NIL NIL) (-933 2010655 2010770 2010931 "PFRPAC" NIL PFRPAC (NIL T) -7 NIL NIL NIL) (-932 2007251 2009524 2009877 "PFR" NIL PFR (NIL T) -8 NIL NIL NIL) (-931 2005857 2006137 2006462 "PFOTOOLS" NIL PFOTOOLS (NIL T T) -7 NIL NIL NIL) (-930 2004619 2004874 2005223 "PFOQ" NIL PFOQ (NIL T T T) -7 NIL NIL NIL) (-929 2003322 2003550 2003904 "PFO" NIL PFO (NIL T T T T T) -7 NIL NIL NIL) (-928 2000406 2001912 2001940 "PFECAT" 2002533 PFECAT (NIL) -9 NIL 2002910 NIL) (-927 2000029 2000194 2000401 "PFECAT-" NIL PFECAT- (NIL T) -7 NIL NIL NIL) (-926 1998853 1999135 1999436 "PFBRU" NIL PFBRU (NIL T T) -7 NIL NIL NIL) (-925 1997035 1997422 1997852 "PFBR" NIL PFBR (NIL T T T T) -7 NIL NIL NIL) (-924 1993055 1996961 1997030 "PF" NIL PF (NIL NIL) -8 NIL NIL NIL) (-923 1988946 1990099 1990969 "PERMGRP" NIL PERMGRP (NIL T) -8 NIL NIL NIL) (-922 1986858 1987970 1988011 "PERMCAT" 1988411 PERMCAT (NIL T) -9 NIL 1988709 NIL) (-921 1986552 1986599 1986723 "PERMAN" NIL PERMAN (NIL NIL T) -7 NIL NIL NIL) (-920 1982972 1984678 1985325 "PERM" NIL PERM (NIL T) -8 NIL NIL NIL) (-919 1980418 1982726 1982848 "PENDTREE" NIL PENDTREE (NIL T) -8 NIL NIL NIL) (-918 1979299 1979562 1979603 "PDSPC" 1980136 PDSPC (NIL T) -9 NIL 1980381 NIL) (-917 1978666 1978932 1979294 "PDSPC-" NIL PDSPC- (NIL T T) -7 NIL NIL NIL) (-916 1977380 1978316 1978357 "PDRING" 1978362 PDRING (NIL T) -9 NIL 1978390 NIL) (-915 1976123 1976885 1976939 "PDMOD" 1976944 PDMOD (NIL T T) -9 NIL 1977048 NIL) (-914 1973938 1974764 1975432 "PDEPROB" NIL PDEPROB (NIL) -8 NIL NIL NIL) (-913 1971982 1972522 1973077 "PDEPACK" NIL PDEPACK (NIL) -7 NIL NIL NIL) (-912 1971075 1971287 1971536 "PDECOMP" NIL PDECOMP (NIL T T) -7 NIL NIL NIL) (-911 1968592 1969483 1969511 "PDECAT" 1970298 PDECAT (NIL) -9 NIL 1971011 NIL) (-910 1968209 1968276 1968330 "PDDOM" 1968495 PDDOM (NIL T T) -9 NIL 1968575 NIL) (-909 1968061 1968097 1968204 "PDDOM-" NIL PDDOM- (NIL T T T) -7 NIL NIL NIL) (-908 1967845 1967884 1967974 "PCOMP" NIL PCOMP (NIL T T) -7 NIL NIL NIL) (-907 1966156 1966917 1967214 "PBWLB" NIL PBWLB (NIL T) -8 NIL NIL NIL) (-906 1965845 1965908 1966017 "PATTERN2" NIL PATTERN2 (NIL T T) -7 NIL NIL NIL) (-905 1963965 1964401 1964858 "PATTERN1" NIL PATTERN1 (NIL T T) -7 NIL NIL NIL) (-904 1957545 1959392 1960693 "PATTERN" NIL PATTERN (NIL T) -8 NIL NIL NIL) (-903 1957176 1957249 1957381 "PATRES2" NIL PATRES2 (NIL T T T) -7 NIL NIL NIL) (-902 1954881 1955562 1956041 "PATRES" NIL PATRES (NIL T T) -8 NIL NIL NIL) (-901 1953067 1953502 1953909 "PATMATCH" NIL PATMATCH (NIL T T T) -7 NIL NIL NIL) (-900 1952521 1952772 1952813 "PATMAB" 1952920 PATMAB (NIL T) -9 NIL 1953003 NIL) (-899 1951162 1951570 1951828 "PATLRES" NIL PATLRES (NIL T T T) -8 NIL NIL NIL) (-898 1950700 1950831 1950872 "PATAB" 1950877 PATAB (NIL T) -9 NIL 1951049 NIL) (-897 1949243 1949680 1950103 "PARTPERM" NIL PARTPERM (NIL) -7 NIL NIL NIL) (-896 1948921 1948996 1949098 "PARSURF" NIL PARSURF (NIL T) -8 NIL NIL NIL) (-895 1948610 1948673 1948782 "PARSU2" NIL PARSU2 (NIL T T) -7 NIL NIL NIL) (-894 1948415 1948461 1948528 "PARSER" NIL PARSER (NIL) -7 NIL NIL NIL) (-893 1948093 1948168 1948270 "PARSCURV" NIL PARSCURV (NIL T) -8 NIL NIL NIL) (-892 1947782 1947845 1947954 "PARSC2" NIL PARSC2 (NIL T T) -7 NIL NIL NIL) (-891 1947473 1947543 1947640 "PARPCURV" NIL PARPCURV (NIL T) -8 NIL NIL NIL) (-890 1947162 1947225 1947334 "PARPC2" NIL PARPC2 (NIL T T) -7 NIL NIL NIL) (-889 1946313 1946697 1946879 "PARAMAST" NIL PARAMAST (NIL) -8 NIL NIL NIL) (-888 1945920 1946018 1946137 "PAN2EXPR" NIL PAN2EXPR (NIL) -7 NIL NIL NIL) (-887 1944821 1945249 1945477 "PALETTE" NIL PALETTE (NIL) -8 NIL NIL NIL) (-886 1943480 1944140 1944500 "PAIR" NIL PAIR (NIL T T) -8 NIL NIL NIL) (-885 1936606 1942883 1943078 "PADICRC" NIL PADICRC (NIL NIL T) -8 NIL NIL NIL) (-884 1929063 1936103 1936288 "PADICRAT" NIL PADICRAT (NIL NIL) -8 NIL NIL NIL) (-883 1925862 1927723 1927763 "PADICCT" 1928344 PADICCT (NIL NIL) -9 NIL 1928626 NIL) (-882 1923908 1925812 1925857 "PADIC" NIL PADIC (NIL NIL) -8 NIL NIL NIL) (-881 1923070 1923280 1923546 "PADEPAC" NIL PADEPAC (NIL T NIL NIL) -7 NIL NIL NIL) (-880 1922412 1922555 1922759 "PADE" NIL PADE (NIL T T T) -7 NIL NIL NIL) (-879 1920848 1921816 1922096 "OWP" NIL OWP (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-878 1920370 1920631 1920728 "OVERSET" NIL OVERSET (NIL) -8 NIL NIL NIL) (-877 1919422 1920107 1920279 "OVAR" NIL OVAR (NIL NIL) -8 NIL NIL NIL) (-876 1909838 1912711 1914911 "OUTFORM" NIL OUTFORM (NIL) -8 NIL NIL NIL) (-875 1909227 1909542 1909669 "OUTBFILE" NIL OUTBFILE (NIL) -8 NIL NIL NIL) (-874 1908504 1908699 1908727 "OUTBCON" 1909045 OUTBCON (NIL) -9 NIL 1909211 NIL) (-873 1908212 1908342 1908499 "OUTBCON-" NIL OUTBCON- (NIL T) -7 NIL NIL NIL) (-872 1907593 1907738 1907899 "OUT" NIL OUT (NIL) -7 NIL NIL NIL) (-871 1906958 1907391 1907480 "OSI" NIL OSI (NIL) -8 NIL NIL NIL) (-870 1906377 1906799 1906827 "OSGROUP" 1906832 OSGROUP (NIL) -9 NIL 1906854 NIL) (-869 1905341 1905602 1905887 "ORTHPOL" NIL ORTHPOL (NIL T) -7 NIL NIL NIL) (-868 1902663 1905215 1905336 "OREUP" NIL OREUP (NIL NIL T NIL NIL) -8 NIL NIL NIL) (-867 1899856 1902412 1902539 "ORESUP" NIL ORESUP (NIL T NIL NIL) -8 NIL NIL NIL) (-866 1897867 1898395 1898956 "OREPCTO" NIL OREPCTO (NIL T T) -7 NIL NIL NIL) (-865 1891245 1893733 1893774 "OREPCAT" 1896122 OREPCAT (NIL T) -9 NIL 1897226 NIL) (-864 1889270 1890204 1891240 "OREPCAT-" NIL OREPCAT- (NIL T T) -7 NIL NIL NIL) (-863 1888462 1888740 1888768 "ORDTYPE" 1889077 ORDTYPE (NIL) -9 NIL 1889240 NIL) (-862 1887986 1888202 1888457 "ORDTYPE-" NIL ORDTYPE- (NIL T) -7 NIL NIL NIL) (-861 1887440 1887823 1887981 "ORDSTRCT" NIL ORDSTRCT (NIL T NIL) -8 NIL NIL NIL) (-860 1886938 1887308 1887336 "ORDSET" 1887341 ORDSET (NIL) -9 NIL 1887363 NIL) (-859 1885589 1886560 1886588 "ORDRING" 1886593 ORDRING (NIL) -9 NIL 1886622 NIL) (-858 1884840 1885405 1885433 "ORDMON" 1885438 ORDMON (NIL) -9 NIL 1885459 NIL) (-857 1884135 1884300 1884495 "ORDFUNS" NIL ORDFUNS (NIL NIL T) -7 NIL NIL NIL) (-856 1883350 1883865 1883893 "ORDFIN" 1883958 ORDFIN (NIL) -9 NIL 1884032 NIL) (-855 1882744 1882883 1883069 "ORDCOMP2" NIL ORDCOMP2 (NIL T T) -7 NIL NIL NIL) (-854 1879489 1881706 1882115 "ORDCOMP" NIL ORDCOMP (NIL T) -8 NIL NIL NIL) (-853 1876804 1877774 1878588 "OPTPROB" NIL OPTPROB (NIL) -8 NIL NIL NIL) (-852 1874230 1874929 1875633 "OPTPACK" NIL OPTPACK (NIL) -7 NIL NIL NIL) (-851 1871843 1872669 1872697 "OPTCAT" 1873516 OPTCAT (NIL) -9 NIL 1874166 NIL) (-850 1871246 1871605 1871710 "OPSIG" NIL OPSIG (NIL) -8 NIL NIL NIL) (-849 1871054 1871099 1871165 "OPQUERY" NIL OPQUERY (NIL) -7 NIL NIL NIL) (-848 1870360 1870640 1870681 "OPERCAT" 1870893 OPERCAT (NIL T) -9 NIL 1870990 NIL) (-847 1870170 1870238 1870355 "OPERCAT-" NIL OPERCAT- (NIL T T) -7 NIL NIL NIL) (-846 1867569 1868952 1869456 "OP" NIL OP (NIL T) -8 NIL NIL NIL) (-845 1866990 1867117 1867291 "ONECOMP2" NIL ONECOMP2 (NIL T T) -7 NIL NIL NIL) (-844 1863961 1866123 1866492 "ONECOMP" NIL ONECOMP (NIL T) -8 NIL NIL NIL) (-843 1860586 1863401 1863441 "OMSAGG" 1863502 OMSAGG (NIL T) -9 NIL 1863566 NIL) (-842 1859054 1860254 1860423 "OMLO" NIL OMLO (NIL T T) -8 NIL NIL NIL) (-841 1857332 1858524 1858552 "OINTDOM" 1858557 OINTDOM (NIL) -9 NIL 1858578 NIL) (-840 1854751 1856332 1856662 "OFMONOID" NIL OFMONOID (NIL T) -8 NIL NIL NIL) (-839 1853998 1854701 1854746 "ODVAR" NIL ODVAR (NIL T) -8 NIL NIL NIL) (-838 1851254 1853838 1853993 "ODR" NIL ODR (NIL T T NIL) -8 NIL NIL NIL) (-837 1842831 1851123 1851249 "ODPOL" NIL ODPOL (NIL T) -8 NIL NIL NIL) (-836 1836274 1842721 1842826 "ODP" NIL ODP (NIL NIL T NIL) -8 NIL NIL NIL) (-835 1835246 1835483 1835756 "ODETOOLS" NIL ODETOOLS (NIL T T) -7 NIL NIL NIL) (-834 1832880 1833550 1834254 "ODESYS" NIL ODESYS (NIL T T) -7 NIL NIL NIL) (-833 1828635 1829595 1830620 "ODERTRIC" NIL ODERTRIC (NIL T T) -7 NIL NIL NIL) (-832 1828143 1828231 1828425 "ODERED" NIL ODERED (NIL T T T T T) -7 NIL NIL NIL) (-831 1825578 1826160 1826835 "ODERAT" NIL ODERAT (NIL T T) -7 NIL NIL NIL) (-830 1822965 1823473 1824070 "ODEPRRIC" NIL ODEPRRIC (NIL T T T T) -7 NIL NIL NIL) (-829 1821326 1821970 1822456 "ODEPROB" NIL ODEPROB (NIL) -8 NIL NIL NIL) (-828 1818313 1818852 1819499 "ODEPRIM" NIL ODEPRIM (NIL T T T T) -7 NIL NIL NIL) (-827 1817664 1817772 1818032 "ODEPAL" NIL ODEPAL (NIL T T T T) -7 NIL NIL NIL) (-826 1814610 1815461 1816325 "ODEPACK" NIL ODEPACK (NIL) -7 NIL NIL NIL) (-825 1813764 1813889 1814111 "ODEINT" NIL ODEINT (NIL T T) -7 NIL NIL NIL) (-824 1809256 1810717 1812164 "ODEIFTBL" NIL ODEIFTBL (NIL) -8 NIL NIL NIL) (-823 1805513 1806315 1807235 "ODEEF" NIL ODEEF (NIL T T) -7 NIL NIL NIL) (-822 1804951 1805046 1805269 "ODECONST" NIL ODECONST (NIL T T T) -7 NIL NIL NIL) (-821 1803014 1803723 1803751 "ODECAT" 1804356 ODECAT (NIL) -9 NIL 1804887 NIL) (-820 1802695 1802744 1802871 "OCTCT2" NIL OCTCT2 (NIL T T T T) -7 NIL NIL NIL) (-819 1799312 1802490 1802612 "OCT" NIL OCT (NIL T) -8 NIL NIL NIL) (-818 1798505 1799105 1799133 "OCAMON" 1799138 OCAMON (NIL) -9 NIL 1799159 NIL) (-817 1792776 1795541 1795581 "OC" 1796678 OC (NIL T) -9 NIL 1797536 NIL) (-816 1790776 1791704 1792682 "OC-" NIL OC- (NIL T T) -7 NIL NIL NIL) (-815 1790196 1790621 1790649 "OASGP" 1790654 OASGP (NIL) -9 NIL 1790674 NIL) (-814 1789292 1789919 1789947 "OAMONS" 1789987 OAMONS (NIL) -9 NIL 1790030 NIL) (-813 1788468 1789027 1789055 "OAMON" 1789113 OAMON (NIL) -9 NIL 1789165 NIL) (-812 1788362 1788395 1788463 "OAMON-" NIL OAMON- (NIL T) -7 NIL NIL NIL) (-811 1787143 1787896 1787924 "OAGROUP" 1788071 OAGROUP (NIL) -9 NIL 1788164 NIL) (-810 1786932 1787020 1787138 "OAGROUP-" NIL OAGROUP- (NIL T) -7 NIL NIL NIL) (-809 1786672 1786728 1786816 "NUMTUBE" NIL NUMTUBE (NIL T) -7 NIL NIL NIL) (-808 1781707 1783279 1784815 "NUMQUAD" NIL NUMQUAD (NIL) -7 NIL NIL NIL) (-807 1778402 1779436 1780471 "NUMODE" NIL NUMODE (NIL) -7 NIL NIL NIL) (-806 1775683 1776623 1776651 "NUMINT" 1777574 NUMINT (NIL) -9 NIL 1778338 NIL) (-805 1774793 1775026 1775244 "NUMFMT" NIL NUMFMT (NIL) -7 NIL NIL NIL) (-804 1763633 1766672 1769122 "NUMERIC" NIL NUMERIC (NIL T) -7 NIL NIL NIL) (-803 1757479 1763082 1763177 "NTSCAT" 1763182 NTSCAT (NIL T T T T) -9 NIL 1763221 NIL) (-802 1756820 1756999 1757192 "NTPOLFN" NIL NTPOLFN (NIL T) -7 NIL NIL NIL) (-801 1756509 1756572 1756681 "NSUP2" NIL NSUP2 (NIL T T) -7 NIL NIL NIL) (-800 1744162 1754113 1754925 "NSUP" NIL NSUP (NIL T) -8 NIL NIL NIL) (-799 1733180 1744024 1744157 "NSMP" NIL NSMP (NIL T T) -8 NIL NIL NIL) (-798 1731900 1732225 1732582 "NREP" NIL NREP (NIL T) -7 NIL NIL NIL) (-797 1730736 1731000 1731358 "NPCOEF" NIL NPCOEF (NIL T T T T T) -7 NIL NIL NIL) (-796 1729903 1730036 1730252 "NORMRETR" NIL NORMRETR (NIL T T T T NIL) -7 NIL NIL NIL) (-795 1728206 1728526 1728935 "NORMPK" NIL NORMPK (NIL T T T T T) -7 NIL NIL NIL) (-794 1727919 1727953 1728077 "NORMMA" NIL NORMMA (NIL T T T T) -7 NIL NIL NIL) (-793 1727738 1727773 1727842 "NONE1" NIL NONE1 (NIL T) -7 NIL NIL NIL) (-792 1727511 1727704 1727733 "NONE" NIL NONE (NIL) -8 NIL NIL NIL) (-791 1727070 1727138 1727317 "NODE1" NIL NODE1 (NIL T T) -7 NIL NIL NIL) (-790 1725378 1726433 1726688 "NNI" NIL NNI (NIL) -8 NIL NIL 1727035) (-789 1724106 1724443 1724807 "NLINSOL" NIL NLINSOL (NIL T) -7 NIL NIL NIL) (-788 1721166 1722221 1723120 "NIPROB" NIL NIPROB (NIL) -8 NIL NIL NIL) (-787 1720143 1720395 1720697 "NFINTBAS" NIL NFINTBAS (NIL T T) -7 NIL NIL NIL) (-786 1719227 1719793 1719834 "NETCLT" 1720006 NETCLT (NIL T) -9 NIL 1720088 NIL) (-785 1718131 1718398 1718679 "NCODIV" NIL NCODIV (NIL T T) -7 NIL NIL NIL) (-784 1717930 1717973 1718048 "NCNTFRAC" NIL NCNTFRAC (NIL T) -7 NIL NIL NIL) (-783 1716461 1716849 1717269 "NCEP" NIL NCEP (NIL T) -7 NIL NIL NIL) (-782 1715131 1716071 1716099 "NASRING" 1716209 NASRING (NIL) -9 NIL 1716289 NIL) (-781 1714976 1715032 1715126 "NASRING-" NIL NASRING- (NIL T) -7 NIL NIL NIL) (-780 1713943 1714594 1714622 "NARNG" 1714739 NARNG (NIL) -9 NIL 1714830 NIL) (-779 1713719 1713804 1713938 "NARNG-" NIL NARNG- (NIL T) -7 NIL NIL NIL) (-778 1712771 1713020 1713255 "NAGSP" NIL NAGSP (NIL) -7 NIL NIL NIL) (-777 1705468 1707380 1709053 "NAGS" NIL NAGS (NIL) -7 NIL NIL NIL) (-776 1704303 1704635 1704966 "NAGF07" NIL NAGF07 (NIL) -7 NIL NIL NIL) (-775 1700062 1701419 1702726 "NAGF04" NIL NAGF04 (NIL) -7 NIL NIL NIL) (-774 1694547 1696257 1697890 "NAGF02" NIL NAGF02 (NIL) -7 NIL NIL NIL) (-773 1690808 1691968 1693085 "NAGF01" NIL NAGF01 (NIL) -7 NIL NIL NIL) (-772 1685953 1687567 1689152 "NAGE04" NIL NAGE04 (NIL) -7 NIL NIL NIL) (-771 1679124 1681353 1683483 "NAGE02" NIL NAGE02 (NIL) -7 NIL NIL NIL) (-770 1675961 1676968 1677932 "NAGE01" NIL NAGE01 (NIL) -7 NIL NIL NIL) (-769 1674276 1674828 1675386 "NAGD03" NIL NAGD03 (NIL) -7 NIL NIL NIL) (-768 1667906 1669888 1671842 "NAGD02" NIL NAGD02 (NIL) -7 NIL NIL NIL) (-767 1663065 1664562 1666002 "NAGD01" NIL NAGD01 (NIL) -7 NIL NIL NIL) (-766 1660019 1660913 1661750 "NAGC06" NIL NAGC06 (NIL) -7 NIL NIL NIL) (-765 1658802 1659152 1659508 "NAGC05" NIL NAGC05 (NIL) -7 NIL NIL NIL) (-764 1658290 1658421 1658565 "NAGC02" NIL NAGC02 (NIL) -7 NIL NIL NIL) (-763 1657091 1657818 1657858 "NAALG" 1657937 NAALG (NIL T) -9 NIL 1657998 NIL) (-762 1656961 1656996 1657086 "NAALG-" NIL NAALG- (NIL T T) -7 NIL NIL NIL) (-761 1651937 1653123 1654310 "MULTSQFR" NIL MULTSQFR (NIL T T T T) -7 NIL NIL NIL) (-760 1651332 1651419 1651603 "MULTFACT" NIL MULTFACT (NIL T T T T) -7 NIL NIL NIL) (-759 1643387 1647825 1647878 "MTSCAT" 1648948 MTSCAT (NIL T T) -9 NIL 1649463 NIL) (-758 1643153 1643213 1643305 "MTHING" NIL MTHING (NIL T) -7 NIL NIL NIL) (-757 1642979 1643018 1643078 "MSYSCMD" NIL MSYSCMD (NIL) -7 NIL NIL NIL) (-756 1639835 1642540 1642581 "MSETAGG" 1642586 MSETAGG (NIL T) -9 NIL 1642620 NIL) (-755 1635950 1638877 1639197 "MSET" NIL MSET (NIL T) -8 NIL NIL NIL) (-754 1632264 1634029 1634774 "MRING" NIL MRING (NIL T T) -8 NIL NIL NIL) (-753 1631897 1631970 1632101 "MRF2" NIL MRF2 (NIL T T T) -7 NIL NIL NIL) (-752 1631550 1631591 1631735 "MRATFAC" NIL MRATFAC (NIL T T T T) -7 NIL NIL NIL) (-751 1629415 1629752 1630183 "MPRFF" NIL MPRFF (NIL T T T T) -7 NIL NIL NIL) (-750 1622855 1629313 1629410 "MPOLY" NIL MPOLY (NIL NIL T) -8 NIL NIL NIL) (-749 1622380 1622421 1622629 "MPCPF" NIL MPCPF (NIL T T T T) -7 NIL NIL NIL) (-748 1621937 1621986 1622170 "MPC3" NIL MPC3 (NIL T T T T T T T) -7 NIL NIL NIL) (-747 1621205 1621298 1621519 "MPC2" NIL MPC2 (NIL T T T T T T T) -7 NIL NIL NIL) (-746 1619822 1620183 1620573 "MONOTOOL" NIL MONOTOOL (NIL T T) -7 NIL NIL NIL) (-745 1618967 1619350 1619378 "MONOID" 1619597 MONOID (NIL) -9 NIL 1619744 NIL) (-744 1618632 1618781 1618962 "MONOID-" NIL MONOID- (NIL T) -7 NIL NIL NIL) (-743 1607526 1614364 1614423 "MONOGEN" 1615097 MONOGEN (NIL T T) -9 NIL 1615553 NIL) (-742 1605538 1606424 1607407 "MONOGEN-" NIL MONOGEN- (NIL T T T) -7 NIL NIL NIL) (-741 1604255 1604803 1604831 "MONADWU" 1605223 MONADWU (NIL) -9 NIL 1605461 NIL) (-740 1603801 1604002 1604250 "MONADWU-" NIL MONADWU- (NIL T) -7 NIL NIL NIL) (-739 1603086 1603390 1603418 "MONAD" 1603625 MONAD (NIL) -9 NIL 1603737 NIL) (-738 1602853 1602949 1603081 "MONAD-" NIL MONAD- (NIL T) -7 NIL NIL NIL) (-737 1601239 1602013 1602292 "MOEBIUS" NIL MOEBIUS (NIL T) -8 NIL NIL NIL) (-736 1600407 1600907 1600947 "MODULE" 1600952 MODULE (NIL T) -9 NIL 1600991 NIL) (-735 1600086 1600212 1600402 "MODULE-" NIL MODULE- (NIL T T) -7 NIL NIL NIL) (-734 1597855 1598682 1598997 "MODRING" NIL MODRING (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-733 1595067 1596431 1596952 "MODOP" NIL MODOP (NIL T T) -8 NIL NIL NIL) (-732 1593690 1594271 1594548 "MODMONOM" NIL MODMONOM (NIL T T NIL) -8 NIL NIL NIL) (-731 1582900 1592344 1592758 "MODMON" NIL MODMON (NIL T T) -8 NIL NIL NIL) (-730 1579911 1581900 1582169 "MODFIELD" NIL MODFIELD (NIL T T NIL NIL NIL) -8 NIL NIL NIL) (-729 1578992 1579362 1579552 "MMLFORM" NIL MMLFORM (NIL) -8 NIL NIL NIL) (-728 1578561 1578610 1578789 "MMAP" NIL MMAP (NIL T T T T T T) -7 NIL NIL NIL) (-727 1576454 1577393 1577434 "MLO" 1577857 MLO (NIL T) -9 NIL 1578099 NIL) (-726 1574335 1574862 1575457 "MLIFT" NIL MLIFT (NIL T T T T) -7 NIL NIL NIL) (-725 1573803 1573899 1574053 "MKUCFUNC" NIL MKUCFUNC (NIL T T T) -7 NIL NIL NIL) (-724 1573473 1573549 1573672 "MKRECORD" NIL MKRECORD (NIL T T) -7 NIL NIL NIL) (-723 1572685 1572871 1573099 "MKFUNC" NIL MKFUNC (NIL T) -7 NIL NIL NIL) (-722 1572178 1572294 1572450 "MKFLCFN" NIL MKFLCFN (NIL T) -7 NIL NIL NIL) (-721 1571550 1571664 1571849 "MKBCFUNC" NIL MKBCFUNC (NIL T T T T) -7 NIL NIL NIL) (-720 1567690 1571220 1571356 "MINT" NIL MINT (NIL) -8 NIL NIL NIL) (-719 1566717 1566990 1567267 "MHROWRED" NIL MHROWRED (NIL T) -7 NIL NIL NIL) (-718 1561885 1565637 1566042 "MFLOAT" NIL MFLOAT (NIL) -8 NIL NIL NIL) (-717 1561318 1561406 1561577 "MFINFACT" NIL MFINFACT (NIL T T T T) -7 NIL NIL NIL) (-716 1558476 1559355 1560234 "MESH" NIL MESH (NIL) -7 NIL NIL NIL) (-715 1557143 1557491 1557844 "MDDFACT" NIL MDDFACT (NIL T) -7 NIL NIL NIL) (-714 1553790 1556274 1556315 "MDAGG" 1556570 MDAGG (NIL T) -9 NIL 1556713 NIL) (-713 1541762 1553270 1553477 "MCMPLX" NIL MCMPLX (NIL) -8 NIL NIL NIL) (-712 1541032 1541196 1541397 "MCDEN" NIL MCDEN (NIL T T) -7 NIL NIL NIL) (-711 1539150 1539462 1539842 "MCALCFN" NIL MCALCFN (NIL T T T T) -7 NIL NIL NIL) (-710 1538221 1538509 1538742 "MAYBE" NIL MAYBE (NIL T) -8 NIL NIL NIL) (-709 1536308 1536885 1537447 "MATSTOR" NIL MATSTOR (NIL T) -7 NIL NIL NIL) (-708 1532057 1535895 1536143 "MATRIX" NIL MATRIX (NIL T) -8 NIL NIL NIL) (-707 1528404 1529175 1529909 "MATLIN" NIL MATLIN (NIL T T T T) -7 NIL NIL NIL) (-706 1527149 1527318 1527649 "MATCAT2" NIL MATCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-705 1516596 1520203 1520280 "MATCAT" 1525315 MATCAT (NIL T T T) -9 NIL 1526787 NIL) (-704 1513868 1515178 1516591 "MATCAT-" NIL MATCAT- (NIL T T T T) -7 NIL NIL NIL) (-703 1512269 1512629 1513013 "MAPPKG3" NIL MAPPKG3 (NIL T T T) -7 NIL NIL NIL) (-702 1511402 1511599 1511821 "MAPPKG2" NIL MAPPKG2 (NIL T T) -7 NIL NIL NIL) (-701 1510153 1510479 1510806 "MAPPKG1" NIL MAPPKG1 (NIL T) -7 NIL NIL NIL) (-700 1509311 1509716 1509893 "MAPPAST" NIL MAPPAST (NIL) -8 NIL NIL NIL) (-699 1508980 1509044 1509167 "MAPHACK3" NIL MAPHACK3 (NIL T T T) -7 NIL NIL NIL) (-698 1508628 1508701 1508815 "MAPHACK2" NIL MAPHACK2 (NIL T T) -7 NIL NIL NIL) (-697 1508163 1508278 1508420 "MAPHACK1" NIL MAPHACK1 (NIL T) -7 NIL NIL NIL) (-696 1506358 1507135 1507439 "MAGMA" NIL MAGMA (NIL T) -8 NIL NIL NIL) (-695 1505848 1506153 1506244 "MACROAST" NIL MACROAST (NIL) -8 NIL NIL NIL) (-694 1502633 1504515 1504976 "M3D" NIL M3D (NIL T) -8 NIL NIL NIL) (-693 1496104 1500941 1500982 "LZSTAGG" 1501764 LZSTAGG (NIL T) -9 NIL 1502059 NIL) (-692 1493193 1494642 1496099 "LZSTAGG-" NIL LZSTAGG- (NIL T T) -7 NIL NIL NIL) (-691 1490563 1491539 1492026 "LWORD" NIL LWORD (NIL T) -8 NIL NIL NIL) (-690 1490140 1490422 1490497 "LSTAST" NIL LSTAST (NIL) -8 NIL NIL NIL) (-689 1482331 1490001 1490135 "LSQM" NIL LSQM (NIL NIL T) -8 NIL NIL NIL) (-688 1481694 1481839 1482067 "LSPP" NIL LSPP (NIL T T T T) -7 NIL NIL NIL) (-687 1479175 1479874 1480587 "LSMP1" NIL LSMP1 (NIL T) -7 NIL NIL NIL) (-686 1477284 1477608 1478057 "LSMP" NIL LSMP (NIL T T T T) -7 NIL NIL NIL) (-685 1470411 1476371 1476412 "LSAGG" 1476474 LSAGG (NIL T) -9 NIL 1476552 NIL) (-684 1468083 1469193 1470406 "LSAGG-" NIL LSAGG- (NIL T T) -7 NIL NIL NIL) (-683 1465590 1467432 1467681 "LPOLY" NIL LPOLY (NIL T T) -8 NIL NIL NIL) (-682 1465257 1465348 1465471 "LPEFRAC" NIL LPEFRAC (NIL T) -7 NIL NIL NIL) (-681 1464940 1465019 1465047 "LOGIC" 1465158 LOGIC (NIL) -9 NIL 1465240 NIL) (-680 1464835 1464864 1464935 "LOGIC-" NIL LOGIC- (NIL T) -7 NIL NIL NIL) (-679 1464154 1464312 1464505 "LODOOPS" NIL LODOOPS (NIL T T) -7 NIL NIL NIL) (-678 1462931 1463180 1463533 "LODOF" NIL LODOF (NIL T T) -7 NIL NIL NIL) (-677 1458814 1461559 1461600 "LODOCAT" 1462038 LODOCAT (NIL T) -9 NIL 1462249 NIL) (-676 1458606 1458682 1458809 "LODOCAT-" NIL LODOCAT- (NIL T T) -7 NIL NIL NIL) (-675 1455660 1458483 1458601 "LODO2" NIL LODO2 (NIL T T) -8 NIL NIL NIL) (-674 1452812 1455610 1455655 "LODO1" NIL LODO1 (NIL T) -8 NIL NIL NIL) (-673 1449952 1452741 1452807 "LODO" NIL LODO (NIL T NIL) -8 NIL NIL NIL) (-672 1449002 1449177 1449480 "LODEEF" NIL LODEEF (NIL T T T) -7 NIL NIL NIL) (-671 1447156 1448264 1448517 "LO" NIL LO (NIL T T T) -8 NIL NIL NIL) (-670 1442236 1445319 1445360 "LNAGG" 1446222 LNAGG (NIL T) -9 NIL 1446657 NIL) (-669 1441621 1441889 1442231 "LNAGG-" NIL LNAGG- (NIL T T) -7 NIL NIL NIL) (-668 1438186 1439131 1439770 "LMOPS" NIL LMOPS (NIL T T NIL) -8 NIL NIL NIL) (-667 1437485 1437963 1438004 "LMODULE" 1438009 LMODULE (NIL T) -9 NIL 1438035 NIL) (-666 1434644 1437220 1437343 "LMDICT" NIL LMDICT (NIL T) -8 NIL NIL NIL) (-665 1434220 1434434 1434475 "LLINSET" 1434536 LLINSET (NIL T) -9 NIL 1434580 NIL) (-664 1433892 1434155 1434215 "LITERAL" NIL LITERAL (NIL T) -8 NIL NIL NIL) (-663 1433491 1433571 1433710 "LIST3" NIL LIST3 (NIL T T T) -7 NIL NIL NIL) (-662 1431942 1432290 1432689 "LIST2MAP" NIL LIST2MAP (NIL T T) -7 NIL NIL NIL) (-661 1431113 1431309 1431537 "LIST2" NIL LIST2 (NIL T T) -7 NIL NIL NIL) (-660 1424089 1430367 1430622 "LIST" NIL LIST (NIL T) -8 NIL NIL NIL) (-659 1423672 1423908 1423949 "LINSET" 1423954 LINSET (NIL T) -9 NIL 1423988 NIL) (-658 1422601 1423295 1423462 "LINFORM" NIL LINFORM (NIL T NIL) -8 NIL NIL NIL) (-657 1420900 1421628 1421669 "LINEXP" 1422159 LINEXP (NIL T) -9 NIL 1422432 NIL) (-656 1419605 1420509 1420690 "LINELT" NIL LINELT (NIL T NIL) -8 NIL NIL NIL) (-655 1418424 1418697 1419001 "LINDEP" NIL LINDEP (NIL T T) -7 NIL NIL NIL) (-654 1417630 1418226 1418336 "LINBASIS" NIL LINBASIS (NIL NIL) -8 NIL NIL NIL) (-653 1415180 1415902 1416652 "LIMITRF" NIL LIMITRF (NIL T) -7 NIL NIL NIL) (-652 1413806 1414103 1414495 "LIMITPS" NIL LIMITPS (NIL T T) -7 NIL NIL NIL) (-651 1412634 1413209 1413249 "LIECAT" 1413389 LIECAT (NIL T) -9 NIL 1413540 NIL) (-650 1412508 1412541 1412629 "LIECAT-" NIL LIECAT- (NIL T T) -7 NIL NIL NIL) (-649 1406744 1412198 1412426 "LIE" NIL LIE (NIL T T) -8 NIL NIL NIL) (-648 1399186 1406420 1406576 "LIB" NIL LIB (NIL) -8 NIL NIL NIL) (-647 1395638 1396587 1397522 "LGROBP" NIL LGROBP (NIL NIL T) -7 NIL NIL NIL) (-646 1394262 1395170 1395198 "LFCAT" 1395405 LFCAT (NIL) -9 NIL 1395544 NIL) (-645 1392479 1392813 1393163 "LF" NIL LF (NIL T T) -7 NIL NIL NIL) (-644 1389975 1390647 1391335 "LEXTRIPK" NIL LEXTRIPK (NIL T NIL) -7 NIL NIL NIL) (-643 1386983 1387965 1388468 "LEXP" NIL LEXP (NIL T T NIL) -8 NIL NIL NIL) (-642 1386471 1386776 1386868 "LETAST" NIL LETAST (NIL) -8 NIL NIL NIL) (-641 1385175 1385500 1385901 "LEADCDET" NIL LEADCDET (NIL T T T T) -7 NIL NIL NIL) (-640 1384432 1384518 1384747 "LAZM3PK" NIL LAZM3PK (NIL T T T T T T) -7 NIL NIL NIL) (-639 1379482 1382997 1383535 "LAUPOL" NIL LAUPOL (NIL T T) -8 NIL NIL NIL) (-638 1379105 1379155 1379316 "LAPLACE" NIL LAPLACE (NIL T T) -7 NIL NIL NIL) (-637 1377953 1378669 1378710 "LALG" 1378772 LALG (NIL T) -9 NIL 1378831 NIL) (-636 1377735 1377812 1377948 "LALG-" NIL LALG- (NIL T T) -7 NIL NIL NIL) (-635 1375641 1377003 1377254 "LA" NIL LA (NIL T T T) -8 NIL NIL NIL) (-634 1375470 1375500 1375541 "KVTFROM" 1375603 KVTFROM (NIL T) -9 NIL NIL NIL) (-633 1374392 1375002 1375187 "KTVLOGIC" NIL KTVLOGIC (NIL) -8 NIL NIL NIL) (-632 1374221 1374251 1374292 "KRCFROM" 1374354 KRCFROM (NIL T) -9 NIL NIL NIL) (-631 1373317 1373514 1373811 "KOVACIC" NIL KOVACIC (NIL T T) -7 NIL NIL NIL) (-630 1373146 1373176 1373217 "KONVERT" 1373279 KONVERT (NIL T) -9 NIL NIL NIL) (-629 1372975 1373005 1373046 "KOERCE" 1373108 KOERCE (NIL T) -9 NIL NIL NIL) (-628 1372545 1372638 1372770 "KERNEL2" NIL KERNEL2 (NIL T T) -7 NIL NIL NIL) (-627 1370576 1371482 1371859 "KERNEL" NIL KERNEL (NIL T) -8 NIL NIL NIL) (-626 1363916 1368811 1368865 "KDAGG" 1369242 KDAGG (NIL T T) -9 NIL 1369448 NIL) (-625 1363564 1363706 1363911 "KDAGG-" NIL KDAGG- (NIL T T T) -7 NIL NIL NIL) (-624 1356507 1363347 1363502 "KAFILE" NIL KAFILE (NIL T) -8 NIL NIL NIL) (-623 1356154 1356439 1356502 "JVMOP" NIL JVMOP (NIL) -8 NIL NIL NIL) (-622 1355119 1355623 1355872 "JVMMDACC" NIL JVMMDACC (NIL) -8 NIL NIL NIL) (-621 1354240 1354694 1354899 "JVMFDACC" NIL JVMFDACC (NIL) -8 NIL NIL NIL) (-620 1353101 1353596 1353896 "JVMCSTTG" NIL JVMCSTTG (NIL) -8 NIL NIL NIL) (-619 1352378 1352782 1352943 "JVMCFACC" NIL JVMCFACC (NIL) -8 NIL NIL NIL) (-618 1352085 1352324 1352373 "JVMBCODE" NIL JVMBCODE (NIL) -8 NIL NIL NIL) (-617 1346320 1351775 1352003 "JORDAN" NIL JORDAN (NIL T T) -8 NIL NIL NIL) (-616 1345734 1346070 1346191 "JOINAST" NIL JOINAST (NIL) -8 NIL NIL NIL) (-615 1341880 1343911 1343965 "IXAGG" 1344894 IXAGG (NIL T T) -9 NIL 1345353 NIL) (-614 1341084 1341456 1341875 "IXAGG-" NIL IXAGG- (NIL T T T) -7 NIL NIL NIL) (-613 1336301 1341020 1341079 "IVECTOR" NIL IVECTOR (NIL T NIL) -8 NIL NIL NIL) (-612 1335259 1335537 1335803 "ITUPLE" NIL ITUPLE (NIL T) -8 NIL NIL NIL) (-611 1333909 1334116 1334411 "ITRIGMNP" NIL ITRIGMNP (NIL T T T) -7 NIL NIL NIL) (-610 1332860 1333082 1333365 "ITFUN3" NIL ITFUN3 (NIL T T T) -7 NIL NIL NIL) (-609 1332535 1332598 1332721 "ITFUN2" NIL ITFUN2 (NIL T T) -7 NIL NIL NIL) (-608 1331794 1332169 1332343 "ITFORM" NIL ITFORM (NIL) -8 NIL NIL NIL) (-607 1329815 1331059 1331337 "ITAYLOR" NIL ITAYLOR (NIL T) -8 NIL NIL NIL) (-606 1319361 1325082 1326245 "ISUPS" NIL ISUPS (NIL T) -8 NIL NIL NIL) (-605 1318606 1318758 1318994 "ISUMP" NIL ISUMP (NIL T T T T) -7 NIL NIL NIL) (-604 1318094 1318399 1318491 "ISAST" NIL ISAST (NIL) -8 NIL NIL NIL) (-603 1317378 1317471 1317687 "IRURPK" NIL IRURPK (NIL T T T T T) -7 NIL NIL NIL) (-602 1316510 1316735 1316975 "IRSN" NIL IRSN (NIL) -7 NIL NIL NIL) (-601 1314917 1315298 1315727 "IRRF2F" NIL IRRF2F (NIL T) -7 NIL NIL NIL) (-600 1314702 1314746 1314822 "IRREDFFX" NIL IRREDFFX (NIL T) -7 NIL NIL NIL) (-599 1313546 1313845 1314142 "IROOT" NIL IROOT (NIL T) -7 NIL NIL NIL) (-598 1312816 1313170 1313321 "IRFORM" NIL IRFORM (NIL) -8 NIL NIL NIL) (-597 1312015 1312146 1312360 "IR2F" NIL IR2F (NIL T T) -7 NIL NIL NIL) (-596 1310170 1310667 1311211 "IR2" NIL IR2 (NIL T T) -7 NIL NIL NIL) (-595 1307272 1308514 1309206 "IR" NIL IR (NIL T) -8 NIL NIL NIL) (-594 1307097 1307137 1307197 "IPRNTPK" NIL IPRNTPK (NIL) -7 NIL NIL NIL) (-593 1303145 1307023 1307092 "IPF" NIL IPF (NIL NIL) -8 NIL NIL NIL) (-592 1301203 1303083 1303140 "IPADIC" NIL IPADIC (NIL NIL NIL) -8 NIL NIL NIL) (-591 1300571 1300873 1301003 "IP4ADDR" NIL IP4ADDR (NIL) -8 NIL NIL NIL) (-590 1300021 1300312 1300444 "IOMODE" NIL IOMODE (NIL) -8 NIL NIL NIL) (-589 1299099 1299725 1299852 "IOBFILE" NIL IOBFILE (NIL) -8 NIL NIL NIL) (-588 1298509 1299003 1299031 "IOBCON" 1299036 IOBCON (NIL) -9 NIL 1299057 NIL) (-587 1298078 1298142 1298325 "INVLAPLA" NIL INVLAPLA (NIL T T) -7 NIL NIL NIL) (-586 1290110 1292485 1294814 "INTTR" NIL INTTR (NIL T T) -7 NIL NIL NIL) (-585 1287218 1288002 1288867 "INTTOOLS" NIL INTTOOLS (NIL T T) -7 NIL NIL NIL) (-584 1286895 1286992 1287109 "INTSLPE" NIL INTSLPE (NIL) -7 NIL NIL NIL) (-583 1284387 1286831 1286890 "INTRVL" NIL INTRVL (NIL T) -8 NIL NIL NIL) (-582 1282494 1283023 1283591 "INTRF" NIL INTRF (NIL T) -7 NIL NIL NIL) (-581 1281989 1282104 1282246 "INTRET" NIL INTRET (NIL T) -7 NIL NIL NIL) (-580 1280368 1280774 1281237 "INTRAT" NIL INTRAT (NIL T T) -7 NIL NIL NIL) (-579 1278142 1278736 1279348 "INTPM" NIL INTPM (NIL T T) -7 NIL NIL NIL) (-578 1275509 1276119 1276840 "INTPAF" NIL INTPAF (NIL T T T) -7 NIL NIL NIL) (-577 1271645 1272683 1273732 "INTPACK" NIL INTPACK (NIL) -7 NIL NIL NIL) (-576 1271049 1271207 1271415 "INTHERTR" NIL INTHERTR (NIL T T) -7 NIL NIL NIL) (-575 1270568 1270654 1270842 "INTHERAL" NIL INTHERAL (NIL T T T T) -7 NIL NIL NIL) (-574 1268773 1269294 1269751 "INTHEORY" NIL INTHEORY (NIL) -7 NIL NIL NIL) (-573 1261841 1263494 1265224 "INTG0" NIL INTG0 (NIL T T T) -7 NIL NIL NIL) (-572 1251431 1254844 1258229 "INTFTBL" NIL INTFTBL (NIL) -8 NIL NIL NIL) (-571 1250797 1250959 1251132 "INTFACT" NIL INTFACT (NIL T) -7 NIL NIL NIL) (-570 1248664 1249128 1249673 "INTEF" NIL INTEF (NIL T T) -7 NIL NIL NIL) (-569 1246861 1247756 1247784 "INTDOM" 1248085 INTDOM (NIL) -9 NIL 1248292 NIL) (-568 1246410 1246614 1246856 "INTDOM-" NIL INTDOM- (NIL T) -7 NIL NIL NIL) (-567 1242278 1244699 1244753 "INTCAT" 1245552 INTCAT (NIL T) -9 NIL 1245873 NIL) (-566 1241840 1241961 1242089 "INTBIT" NIL INTBIT (NIL) -7 NIL NIL NIL) (-565 1240676 1240848 1241155 "INTALG" NIL INTALG (NIL T T T T T) -7 NIL NIL NIL) (-564 1240249 1240345 1240502 "INTAF" NIL INTAF (NIL T T) -7 NIL NIL NIL) (-563 1233382 1240104 1240244 "INTABL" NIL INTABL (NIL T T T) -8 NIL NIL NIL) (-562 1232673 1233235 1233300 "INT8" NIL INT8 (NIL) -8 NIL NIL 1233334) (-561 1231963 1232525 1232590 "INT64" NIL INT64 (NIL) -8 NIL NIL 1232624) (-560 1231253 1231815 1231880 "INT32" NIL INT32 (NIL) -8 NIL NIL 1231914) (-559 1230543 1231105 1231170 "INT16" NIL INT16 (NIL) -8 NIL NIL 1231204) (-558 1227049 1230462 1230538 "INT" NIL INT (NIL) -8 NIL NIL NIL) (-557 1221160 1224597 1224625 "INS" 1225559 INS (NIL) -9 NIL 1226224 NIL) (-556 1219230 1220148 1221087 "INS-" NIL INS- (NIL T) -7 NIL NIL NIL) (-555 1218285 1218508 1218784 "INPSIGN" NIL INPSIGN (NIL T T) -7 NIL NIL NIL) (-554 1217499 1217640 1217837 "INPRODPF" NIL INPRODPF (NIL T T) -7 NIL NIL NIL) (-553 1216489 1216630 1216867 "INPRODFF" NIL INPRODFF (NIL T T T T) -7 NIL NIL NIL) (-552 1215641 1215805 1216065 "INNMFACT" NIL INNMFACT (NIL T T T T) -7 NIL NIL NIL) (-551 1214921 1215036 1215224 "INMODGCD" NIL INMODGCD (NIL T T NIL NIL) -7 NIL NIL NIL) (-550 1213660 1213929 1214253 "INFSP" NIL INFSP (NIL T T T) -7 NIL NIL NIL) (-549 1212940 1213081 1213264 "INFPROD0" NIL INFPROD0 (NIL T T) -7 NIL NIL NIL) (-548 1212603 1212675 1212773 "INFORM1" NIL INFORM1 (NIL T) -7 NIL NIL NIL) (-547 1209677 1211175 1211690 "INFORM" NIL INFORM (NIL) -8 NIL NIL NIL) (-546 1209276 1209383 1209497 "INFINITY" NIL INFINITY (NIL) -7 NIL NIL NIL) (-545 1208431 1209077 1209178 "INETCLTS" NIL INETCLTS (NIL) -8 NIL NIL NIL) (-544 1207281 1207549 1207870 "INEP" NIL INEP (NIL T T T) -7 NIL NIL NIL) (-543 1206344 1207211 1207276 "INDE" NIL INDE (NIL T) -8 NIL NIL NIL) (-542 1205969 1206049 1206166 "INCRMAPS" NIL INCRMAPS (NIL T) -7 NIL NIL NIL) (-541 1204877 1205424 1205630 "INBFILE" NIL INBFILE (NIL) -8 NIL NIL NIL) (-540 1200969 1202025 1202969 "INBFF" NIL INBFF (NIL T) -7 NIL NIL NIL) (-539 1199823 1200146 1200174 "INBCON" 1200687 INBCON (NIL) -9 NIL 1200953 NIL) (-538 1199277 1199542 1199818 "INBCON-" NIL INBCON- (NIL T) -7 NIL NIL NIL) (-537 1198767 1199072 1199163 "INAST" NIL INAST (NIL) -8 NIL NIL NIL) (-536 1198220 1198532 1198638 "IMPTAST" NIL IMPTAST (NIL) -8 NIL NIL NIL) (-535 1194301 1198111 1198215 "IMATRIX" NIL IMATRIX (NIL T NIL NIL) -8 NIL NIL NIL) (-534 1193137 1193276 1193592 "IMATQF" NIL IMATQF (NIL T T T T T T T T) -7 NIL NIL NIL) (-533 1191561 1191828 1192165 "IMATLIN" NIL IMATLIN (NIL T T T T) -7 NIL NIL NIL) (-532 1185491 1191498 1191556 "ILIST" NIL ILIST (NIL T NIL) -8 NIL NIL NIL) (-531 1183293 1185373 1185486 "IIARRAY2" NIL IIARRAY2 (NIL T NIL NIL T T) -8 NIL NIL NIL) (-530 1178171 1183224 1183288 "IFF" NIL IFF (NIL NIL NIL) -8 NIL NIL NIL) (-529 1177548 1177884 1178000 "IFAST" NIL IFAST (NIL) -8 NIL NIL NIL) (-528 1172317 1176983 1177171 "IFARRAY" NIL IFARRAY (NIL T NIL) -8 NIL NIL NIL) (-527 1171375 1172239 1172312 "IFAMON" NIL IFAMON (NIL T T NIL) -8 NIL NIL NIL) (-526 1170947 1171024 1171078 "IEVALAB" 1171285 IEVALAB (NIL T T) -9 NIL NIL NIL) (-525 1170702 1170782 1170942 "IEVALAB-" NIL IEVALAB- (NIL T T T) -7 NIL NIL NIL) (-524 1169766 1170622 1170697 "IDPOAMS" NIL IDPOAMS (NIL T T) -8 NIL NIL NIL) (-523 1168899 1169686 1169761 "IDPOAM" NIL IDPOAM (NIL T T) -8 NIL NIL NIL) (-522 1168298 1168832 1168894 "IDPO" NIL IDPO (NIL T T) -8 NIL NIL NIL) (-521 1166778 1167305 1167357 "IDPC" 1167869 IDPC (NIL T T) -9 NIL 1168150 NIL) (-520 1166140 1166700 1166773 "IDPAM" NIL IDPAM (NIL T T) -8 NIL NIL NIL) (-519 1165385 1166062 1166135 "IDPAG" NIL IDPAG (NIL T T) -8 NIL NIL NIL) (-518 1165075 1165291 1165351 "IDENT" NIL IDENT (NIL) -8 NIL NIL NIL) (-517 1162137 1163021 1163916 "IDECOMP" NIL IDECOMP (NIL NIL NIL) -7 NIL NIL NIL) (-516 1155736 1157024 1158071 "IDEAL" NIL IDEAL (NIL T T T T) -8 NIL NIL NIL) (-515 1154994 1155124 1155324 "ICDEN" NIL ICDEN (NIL T T T T) -7 NIL NIL NIL) (-514 1154096 1154601 1154748 "ICARD" NIL ICARD (NIL) -8 NIL NIL NIL) (-513 1152473 1152804 1153197 "IBPTOOLS" NIL IBPTOOLS (NIL T T T T) -7 NIL NIL NIL) (-512 1147783 1152174 1152287 "IBITS" NIL IBITS (NIL NIL) -8 NIL NIL NIL) (-511 1145041 1145665 1146360 "IBATOOL" NIL IBATOOL (NIL T T T) -7 NIL NIL NIL) (-510 1143267 1143747 1144280 "IBACHIN" NIL IBACHIN (NIL T T T) -7 NIL NIL NIL) (-509 1141017 1143159 1143262 "IARRAY2" NIL IARRAY2 (NIL T NIL NIL) -8 NIL NIL NIL) (-508 1136856 1140955 1141012 "IARRAY1" NIL IARRAY1 (NIL T NIL) -8 NIL NIL NIL) (-507 1130371 1135729 1136210 "IAN" NIL IAN (NIL) -8 NIL NIL NIL) (-506 1129939 1130002 1130175 "IALGFACT" NIL IALGFACT (NIL T T T T) -7 NIL NIL NIL) (-505 1129431 1129580 1129608 "HYPCAT" 1129815 HYPCAT (NIL) -9 NIL NIL NIL) (-504 1129087 1129240 1129426 "HYPCAT-" NIL HYPCAT- (NIL T) -7 NIL NIL NIL) (-503 1128697 1128945 1129028 "HOSTNAME" NIL HOSTNAME (NIL) -8 NIL NIL NIL) (-502 1128530 1128579 1128620 "HOMOTOP" 1128625 HOMOTOP (NIL T) -9 NIL 1128658 NIL) (-501 1125074 1126462 1126503 "HOAGG" 1127484 HOAGG (NIL T) -9 NIL 1128213 NIL) (-500 1124066 1124543 1125069 "HOAGG-" NIL HOAGG- (NIL T T) -7 NIL NIL NIL) (-499 1117300 1123789 1123939 "HEXADEC" NIL HEXADEC (NIL) -8 NIL NIL NIL) (-498 1116235 1116493 1116756 "HEUGCD" NIL HEUGCD (NIL T) -7 NIL NIL NIL) (-497 1115197 1116100 1116230 "HELLFDIV" NIL HELLFDIV (NIL T T T T) -8 NIL NIL NIL) (-496 1113377 1115030 1115118 "HEAP" NIL HEAP (NIL T) -8 NIL NIL NIL) (-495 1112688 1113043 1113177 "HEADAST" NIL HEADAST (NIL) -8 NIL NIL NIL) (-494 1106175 1112621 1112683 "HDP" NIL HDP (NIL NIL T) -8 NIL NIL NIL) (-493 1099355 1105909 1106061 "HDMP" NIL HDMP (NIL NIL T) -8 NIL NIL NIL) (-492 1098805 1098963 1099127 "HB" NIL HB (NIL) -7 NIL NIL NIL) (-491 1091981 1098696 1098800 "HASHTBL" NIL HASHTBL (NIL T T NIL) -8 NIL NIL NIL) (-490 1091469 1091774 1091866 "HASAST" NIL HASAST (NIL) -8 NIL NIL NIL) (-489 1089071 1091253 1091435 "HACKPI" NIL HACKPI (NIL) -8 NIL NIL NIL) (-488 1084423 1088953 1089066 "GTSET" NIL GTSET (NIL T T T T) -8 NIL NIL NIL) (-487 1077602 1084320 1084418 "GSTBL" NIL GSTBL (NIL T T T NIL) -8 NIL NIL NIL) (-486 1069582 1076967 1077223 "GSERIES" NIL GSERIES (NIL T NIL NIL) -8 NIL NIL NIL) (-485 1068613 1069126 1069154 "GROUP" 1069357 GROUP (NIL) -9 NIL 1069491 NIL) (-484 1068156 1068357 1068608 "GROUP-" NIL GROUP- (NIL T) -7 NIL NIL NIL) (-483 1066828 1067167 1067554 "GROEBSOL" NIL GROEBSOL (NIL NIL T T) -7 NIL NIL NIL) (-482 1065656 1066016 1066067 "GRMOD" 1066596 GRMOD (NIL T T) -9 NIL 1066764 NIL) (-481 1065475 1065523 1065651 "GRMOD-" NIL GRMOD- (NIL T T T) -7 NIL NIL NIL) (-480 1061595 1062809 1063809 "GRIMAGE" NIL GRIMAGE (NIL) -8 NIL NIL NIL) (-479 1060293 1060626 1060950 "GRDEF" NIL GRDEF (NIL) -7 NIL NIL NIL) (-478 1059846 1059974 1060115 "GRAY" NIL GRAY (NIL) -7 NIL NIL NIL) (-477 1058923 1059425 1059476 "GRALG" 1059629 GRALG (NIL T T) -9 NIL 1059722 NIL) (-476 1058658 1058755 1058918 "GRALG-" NIL GRALG- (NIL T T T) -7 NIL NIL NIL) (-475 1055350 1058336 1058514 "GPOLSET" NIL GPOLSET (NIL T T T T) -8 NIL NIL NIL) (-474 1054761 1054824 1055082 "GOSPER" NIL GOSPER (NIL T T T T T) -7 NIL NIL NIL) (-473 1050632 1051500 1052026 "GMODPOL" NIL GMODPOL (NIL NIL T T T NIL T) -8 NIL NIL NIL) (-472 1049807 1050009 1050247 "GHENSEL" NIL GHENSEL (NIL T T) -7 NIL NIL NIL) (-471 1044795 1045722 1046742 "GENUPS" NIL GENUPS (NIL T T) -7 NIL NIL NIL) (-470 1044543 1044600 1044689 "GENUFACT" NIL GENUFACT (NIL T) -7 NIL NIL NIL) (-469 1044025 1044114 1044279 "GENPGCD" NIL GENPGCD (NIL T T T T) -7 NIL NIL NIL) (-468 1043534 1043575 1043788 "GENMFACT" NIL GENMFACT (NIL T T T T T) -7 NIL NIL NIL) (-467 1042332 1042616 1042921 "GENEEZ" NIL GENEEZ (NIL T T) -7 NIL NIL NIL) (-466 1035649 1042020 1042182 "GDMP" NIL GDMP (NIL NIL T T) -8 NIL NIL NIL) (-465 1025443 1030439 1031543 "GCNAALG" NIL GCNAALG (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-464 1023570 1024618 1024646 "GCDDOM" 1024901 GCDDOM (NIL) -9 NIL 1025058 NIL) (-463 1023193 1023350 1023565 "GCDDOM-" NIL GCDDOM- (NIL T) -7 NIL NIL NIL) (-462 1013974 1016448 1018840 "GBINTERN" NIL GBINTERN (NIL T T T T) -7 NIL NIL NIL) (-461 1012100 1012428 1012849 "GBF" NIL GBF (NIL T T T T) -7 NIL NIL NIL) (-460 1011041 1011230 1011497 "GBEUCLID" NIL GBEUCLID (NIL T T T T) -7 NIL NIL NIL) (-459 1009912 1010119 1010423 "GB" NIL GB (NIL T T T T) -7 NIL NIL NIL) (-458 1009372 1009515 1009664 "GAUSSFAC" NIL GAUSSFAC (NIL) -7 NIL NIL NIL) (-457 1007974 1008322 1008636 "GALUTIL" NIL GALUTIL (NIL T) -7 NIL NIL NIL) (-456 1006507 1006829 1007153 "GALPOLYU" NIL GALPOLYU (NIL T T) -7 NIL NIL NIL) (-455 1004109 1004465 1004872 "GALFACTU" NIL GALFACTU (NIL T T T) -7 NIL NIL NIL) (-454 997325 998999 1000590 "GALFACT" NIL GALFACT (NIL T) -7 NIL NIL NIL) (-453 994611 995371 995399 "FVFUN" 996555 FVFUN (NIL) -9 NIL 997275 NIL) (-452 993841 994059 994087 "FVC" 994378 FVC (NIL) -9 NIL 994561 NIL) (-451 993490 993714 993782 "FUNDESC" NIL FUNDESC (NIL) -8 NIL NIL NIL) (-450 993111 993335 993416 "FUNCTION" NIL FUNCTION (NIL NIL) -8 NIL NIL NIL) (-449 991971 992595 992798 "FTEM" NIL FTEM (NIL) -8 NIL NIL NIL) (-448 990056 990745 991208 "FT" NIL FT (NIL) -8 NIL NIL NIL) (-447 988638 988947 989342 "FSUPFACT" NIL FSUPFACT (NIL T T T) -7 NIL NIL NIL) (-446 987269 987636 987968 "FST" NIL FST (NIL) -8 NIL NIL NIL) (-445 986568 986692 986880 "FSRED" NIL FSRED (NIL T T) -7 NIL NIL NIL) (-444 985542 985808 986155 "FSPRMELT" NIL FSPRMELT (NIL T T) -7 NIL NIL NIL) (-443 983189 983723 984209 "FSPECF" NIL FSPECF (NIL T T) -7 NIL NIL NIL) (-442 982770 982830 983000 "FSINT" NIL FSINT (NIL T T) -7 NIL NIL NIL) (-441 981129 981984 982287 "FSERIES" NIL FSERIES (NIL T T) -8 NIL NIL NIL) (-440 980273 980407 980631 "FSCINT" NIL FSCINT (NIL T T) -7 NIL NIL NIL) (-439 979444 979605 979832 "FSAGG2" NIL FSAGG2 (NIL T T T T) -7 NIL NIL NIL) (-438 975419 978388 978429 "FSAGG" 978799 FSAGG (NIL T) -9 NIL 979058 NIL) (-437 973765 974528 975324 "FSAGG-" NIL FSAGG- (NIL T T) -7 NIL NIL NIL) (-436 971707 972005 972553 "FS2UPS" NIL FS2UPS (NIL T T T T T NIL) -7 NIL NIL NIL) (-435 970748 970931 971233 "FS2EXPXP" NIL FS2EXPXP (NIL T T NIL NIL) -7 NIL NIL NIL) (-434 970425 970474 970603 "FS2" NIL FS2 (NIL T T T T) -7 NIL NIL NIL) (-433 950580 960087 960128 "FS" 964012 FS (NIL T) -9 NIL 966301 NIL) (-432 942782 946290 950280 "FS-" NIL FS- (NIL T T) -7 NIL NIL NIL) (-431 942316 942443 942595 "FRUTIL" NIL FRUTIL (NIL T) -7 NIL NIL NIL) (-430 936859 940005 940045 "FRNAALG" 941365 FRNAALG (NIL T) -9 NIL 941963 NIL) (-429 933600 934851 936109 "FRNAALG-" NIL FRNAALG- (NIL T T) -7 NIL NIL NIL) (-428 933281 933330 933457 "FRNAAF2" NIL FRNAAF2 (NIL T T T T) -7 NIL NIL NIL) (-427 931756 932318 932614 "FRMOD" NIL FRMOD (NIL T T T T NIL) -8 NIL NIL NIL) (-426 931034 931127 931418 "FRIDEAL2" NIL FRIDEAL2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-425 928848 929618 929936 "FRIDEAL" NIL FRIDEAL (NIL T T T T) -8 NIL NIL NIL) (-424 927939 928388 928429 "FRETRCT" 928434 FRETRCT (NIL T) -9 NIL 928610 NIL) (-423 927312 927590 927934 "FRETRCT-" NIL FRETRCT- (NIL T T) -7 NIL NIL NIL) (-422 924133 925596 925655 "FRAMALG" 926537 FRAMALG (NIL T T) -9 NIL 926829 NIL) (-421 922729 923280 923910 "FRAMALG-" NIL FRAMALG- (NIL T T T) -7 NIL NIL NIL) (-420 922422 922485 922592 "FRAC2" NIL FRAC2 (NIL T T) -7 NIL NIL NIL) (-419 916099 922226 922417 "FRAC" NIL FRAC (NIL T) -8 NIL NIL NIL) (-418 915792 915855 915962 "FR2" NIL FR2 (NIL T T) -7 NIL NIL NIL) (-417 908143 912667 913998 "FR" NIL FR (NIL T) -8 NIL NIL NIL) (-416 901979 905435 905463 "FPS" 906582 FPS (NIL) -9 NIL 907139 NIL) (-415 901536 901669 901833 "FPS-" NIL FPS- (NIL T) -7 NIL NIL NIL) (-414 898417 900406 900434 "FPC" 900659 FPC (NIL) -9 NIL 900801 NIL) (-413 898263 898315 898412 "FPC-" NIL FPC- (NIL T) -7 NIL NIL NIL) (-412 897021 897751 897792 "FPATMAB" 897797 FPATMAB (NIL T) -9 NIL 897949 NIL) (-411 895448 896047 896394 "FPARFRAC" NIL FPARFRAC (NIL T T) -8 NIL NIL NIL) (-410 891347 891947 892629 "FORTRAN" NIL FORTRAN (NIL NIL NIL NIL NIL) -8 NIL NIL NIL) (-409 888921 889585 889613 "FORTFN" 890673 FORTFN (NIL) -9 NIL 891297 NIL) (-408 888673 888735 888763 "FORTCAT" 888822 FORTCAT (NIL) -9 NIL 888884 NIL) (-407 886878 887408 887947 "FORT" NIL FORT (NIL) -7 NIL NIL NIL) (-406 886453 886511 886684 "FORDER" NIL FORDER (NIL T T T T) -7 NIL NIL NIL) (-405 885686 885886 886079 "FOP" NIL FOP (NIL) -7 NIL NIL NIL) (-404 884217 885084 885258 "FNLA" NIL FNLA (NIL NIL NIL T) -8 NIL NIL NIL) (-403 882831 883342 883370 "FNCAT" 883830 FNCAT (NIL) -9 NIL 884090 NIL) (-402 882282 882798 882826 "FNAME" NIL FNAME (NIL) -8 NIL NIL NIL) (-401 880608 881781 881809 "FMTC" 881814 FMTC (NIL) -9 NIL 881850 NIL) (-400 879187 880557 880603 "FMONOID" NIL FMONOID (NIL T) -8 NIL NIL NIL) (-399 875776 877142 877183 "FMONCAT" 878400 FMONCAT (NIL T) -9 NIL 879005 NIL) (-398 873098 873846 873874 "FMFUN" 875018 FMFUN (NIL) -9 NIL 875726 NIL) (-397 869971 871023 871077 "FMCAT" 872272 FMCAT (NIL T T) -9 NIL 872767 NIL) (-396 869204 869421 869449 "FMC" 869739 FMC (NIL) -9 NIL 869921 NIL) (-395 867929 869025 869125 "FM1" NIL FM1 (NIL T T) -8 NIL NIL NIL) (-394 867051 867775 867924 "FM" NIL FM (NIL T T) -8 NIL NIL NIL) (-393 865238 865690 866184 "FLOATRP" NIL FLOATRP (NIL T) -7 NIL NIL NIL) (-392 863173 863709 864287 "FLOATCP" NIL FLOATCP (NIL T) -7 NIL NIL NIL) (-391 856608 861510 862124 "FLOAT" NIL FLOAT (NIL) -8 NIL NIL NIL) (-390 855126 856200 856241 "FLINEXP" 856246 FLINEXP (NIL T) -9 NIL 856339 NIL) (-389 854534 854793 855121 "FLINEXP-" NIL FLINEXP- (NIL T T) -7 NIL NIL NIL) (-388 853740 853902 854126 "FLASORT" NIL FLASORT (NIL T T) -7 NIL NIL NIL) (-387 850658 851710 851762 "FLALG" 852989 FLALG (NIL T T) -9 NIL 853456 NIL) (-386 849829 849990 850217 "FLAGG2" NIL FLAGG2 (NIL T T T T) -7 NIL NIL NIL) (-385 843195 847235 847276 "FLAGG" 848538 FLAGG (NIL T) -9 NIL 849190 NIL) (-384 842289 842700 843190 "FLAGG-" NIL FLAGG- (NIL T T) -7 NIL NIL NIL) (-383 838927 840134 840193 "FINRALG" 841321 FINRALG (NIL T T) -9 NIL 841829 NIL) (-382 838318 838583 838922 "FINRALG-" NIL FINRALG- (NIL T T T) -7 NIL NIL NIL) (-381 837624 837923 837951 "FINITE" 838147 FINITE (NIL) -9 NIL 838254 NIL) (-380 829575 832154 832194 "FINAALG" 835861 FINAALG (NIL T) -9 NIL 837314 NIL) (-379 825800 827059 828196 "FINAALG-" NIL FINAALG- (NIL T T) -7 NIL NIL NIL) (-378 824360 824782 824836 "FILECAT" 825520 FILECAT (NIL T T) -9 NIL 825736 NIL) (-377 823708 824185 824288 "FILE" NIL FILE (NIL T) -8 NIL NIL NIL) (-376 821026 822851 822879 "FIELD" 822919 FIELD (NIL) -9 NIL 822999 NIL) (-375 820047 820510 821021 "FIELD-" NIL FIELD- (NIL T) -7 NIL NIL NIL) (-374 818046 818996 819343 "FGROUP" NIL FGROUP (NIL T) -8 NIL NIL NIL) (-373 817286 817468 817688 "FGLMICPK" NIL FGLMICPK (NIL T NIL) -7 NIL NIL NIL) (-372 812591 817224 817281 "FFX" NIL FFX (NIL T NIL) -8 NIL NIL NIL) (-371 812253 812320 812455 "FFSLPE" NIL FFSLPE (NIL T T T) -7 NIL NIL NIL) (-370 811793 811835 812044 "FFPOLY2" NIL FFPOLY2 (NIL T T) -7 NIL NIL NIL) (-369 808467 809346 810125 "FFPOLY" NIL FFPOLY (NIL T) -7 NIL NIL NIL) (-368 803786 808399 808462 "FFP" NIL FFP (NIL T NIL) -8 NIL NIL NIL) (-367 798500 803275 803465 "FFNBX" NIL FFNBX (NIL T NIL) -8 NIL NIL NIL) (-366 793016 797781 798039 "FFNBP" NIL FFNBP (NIL T NIL) -8 NIL NIL NIL) (-365 787258 792467 792678 "FFNB" NIL FFNB (NIL NIL NIL) -8 NIL NIL NIL) (-364 786281 786491 786806 "FFINTBAS" NIL FFINTBAS (NIL T T T) -7 NIL NIL NIL) (-363 781789 784441 784469 "FFIELDC" 785089 FFIELDC (NIL) -9 NIL 785465 NIL) (-362 780864 781303 781784 "FFIELDC-" NIL FFIELDC- (NIL T) -7 NIL NIL NIL) (-361 780479 780537 780661 "FFHOM" NIL FFHOM (NIL T T T) -7 NIL NIL NIL) (-360 778623 779146 779663 "FFF" NIL FFF (NIL T) -7 NIL NIL NIL) (-359 773752 778422 778523 "FFCGX" NIL FFCGX (NIL T NIL) -8 NIL NIL NIL) (-358 768885 773541 773648 "FFCGP" NIL FFCGP (NIL T NIL) -8 NIL NIL NIL) (-357 763586 768676 768784 "FFCG" NIL FFCG (NIL NIL NIL) -8 NIL NIL NIL) (-356 763040 763089 763324 "FFCAT2" NIL FFCAT2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-355 741502 752543 752629 "FFCAT" 757794 FFCAT (NIL T T T) -9 NIL 759245 NIL) (-354 737728 738960 740272 "FFCAT-" NIL FFCAT- (NIL T T T T) -7 NIL NIL NIL) (-353 732606 737659 737723 "FF" NIL FF (NIL NIL NIL) -8 NIL NIL NIL) (-352 722496 726758 727946 "FEXPR" NIL FEXPR (NIL NIL NIL T) -8 NIL NIL NIL) (-351 721424 721893 721934 "FEVALAB" 722018 FEVALAB (NIL T) -9 NIL 722279 NIL) (-350 720829 721081 721419 "FEVALAB-" NIL FEVALAB- (NIL T T) -7 NIL NIL NIL) (-349 717691 718576 718691 "FDIVCAT" 720259 FDIVCAT (NIL T T T T) -9 NIL 720696 NIL) (-348 717483 717516 717686 "FDIVCAT-" NIL FDIVCAT- (NIL T T T T T) -7 NIL NIL NIL) (-347 716790 716883 717160 "FDIV2" NIL FDIV2 (NIL T T T T T T T T) -7 NIL NIL NIL) (-346 715303 716274 716477 "FDIV" NIL FDIV (NIL T T T T) -8 NIL NIL NIL) (-345 714393 714780 714982 "FCTRDATA" NIL FCTRDATA (NIL) -8 NIL NIL NIL) (-344 713318 713607 713896 "FCPAK1" NIL FCPAK1 (NIL) -7 NIL NIL NIL) (-343 712430 712927 713068 "FCOMP" NIL FCOMP (NIL T) -8 NIL NIL NIL) (-342 699262 703098 706636 "FC" NIL FC (NIL) -8 NIL NIL NIL) (-341 690886 695496 695536 "FAXF" 697338 FAXF (NIL T) -9 NIL 698030 NIL) (-340 688796 689603 690421 "FAXF-" NIL FAXF- (NIL T T) -7 NIL NIL NIL) (-339 683622 688315 688491 "FARRAY" NIL FARRAY (NIL T) -8 NIL NIL NIL) (-338 678107 680482 680535 "FAMR" 681558 FAMR (NIL T T) -9 NIL 682018 NIL) (-337 677303 677669 678102 "FAMR-" NIL FAMR- (NIL T T T) -7 NIL NIL NIL) (-336 676352 677245 677298 "FAMONOID" NIL FAMONOID (NIL T) -8 NIL NIL NIL) (-335 673982 674834 674887 "FAMONC" 675828 FAMONC (NIL T T) -9 NIL 676214 NIL) (-334 672562 673840 673977 "FAGROUP" NIL FAGROUP (NIL T) -8 NIL NIL NIL) (-333 670634 670995 671398 "FACUTIL" NIL FACUTIL (NIL T T T T) -7 NIL NIL NIL) (-332 669911 670108 670330 "FACTFUNC" NIL FACTFUNC (NIL T) -7 NIL NIL NIL) (-331 661813 669358 669557 "EXPUPXS" NIL EXPUPXS (NIL T NIL NIL) -8 NIL NIL NIL) (-330 659832 660402 660988 "EXPRTUBE" NIL EXPRTUBE (NIL) -7 NIL NIL NIL) (-329 656704 657356 658086 "EXPRODE" NIL EXPRODE (NIL T T) -7 NIL NIL NIL) (-328 651840 652547 653353 "EXPR2UPS" NIL EXPR2UPS (NIL T T) -7 NIL NIL NIL) (-327 651529 651592 651701 "EXPR2" NIL EXPR2 (NIL T T) -7 NIL NIL NIL) (-326 636330 650574 651003 "EXPR" NIL EXPR (NIL T) -8 NIL NIL NIL) (-325 626889 635645 635936 "EXPEXPAN" NIL EXPEXPAN (NIL T T NIL NIL) -8 NIL NIL NIL) (-324 626380 626684 626775 "EXITAST" NIL EXITAST (NIL) -8 NIL NIL NIL) (-323 626153 626346 626375 "EXIT" NIL EXIT (NIL) -8 NIL NIL NIL) (-322 625842 625910 626023 "EVALCYC" NIL EVALCYC (NIL T) -7 NIL NIL NIL) (-321 625359 625501 625542 "EVALAB" 625712 EVALAB (NIL T) -9 NIL 625816 NIL) (-320 624987 625133 625354 "EVALAB-" NIL EVALAB- (NIL T T) -7 NIL NIL NIL) (-319 622102 623643 623671 "EUCDOM" 624226 EUCDOM (NIL) -9 NIL 624576 NIL) (-318 621027 621521 622097 "EUCDOM-" NIL EUCDOM- (NIL T) -7 NIL NIL NIL) (-317 620716 620779 620888 "ESTOOLS2" NIL ESTOOLS2 (NIL T T) -7 NIL NIL NIL) (-316 620509 620557 620637 "ESTOOLS1" NIL ESTOOLS1 (NIL T) -7 NIL NIL NIL) (-315 610556 613537 616287 "ESTOOLS" NIL ESTOOLS (NIL) -7 NIL NIL NIL) (-314 610333 610371 610453 "ESCONT1" NIL ESCONT1 (NIL NIL NIL) -7 NIL NIL NIL) (-313 607401 608228 609008 "ESCONT" NIL ESCONT (NIL) -7 NIL NIL NIL) (-312 607126 607182 607282 "ES2" NIL ES2 (NIL T T) -7 NIL NIL NIL) (-311 606814 606878 606987 "ES1" NIL ES1 (NIL T T) -7 NIL NIL NIL) (-310 600513 602443 602471 "ES" 605239 ES (NIL) -9 NIL 606649 NIL) (-309 596979 598534 600349 "ES-" NIL ES- (NIL T) -7 NIL NIL NIL) (-308 596327 596480 596656 "ERROR" NIL ERROR (NIL) -7 NIL NIL NIL) (-307 589509 596231 596322 "EQTBL" NIL EQTBL (NIL T T) -8 NIL NIL NIL) (-306 589198 589261 589370 "EQ2" NIL EQ2 (NIL T T) -7 NIL NIL NIL) (-305 582897 585940 587377 "EQ" NIL -3955 (NIL T) -8 NIL NIL NIL) (-304 579200 580296 581389 "EP" NIL EP (NIL T) -7 NIL NIL NIL) (-303 578026 578377 578683 "ENV" NIL ENV (NIL) -8 NIL NIL NIL) (-302 576986 577660 577688 "ENTIRER" 577693 ENTIRER (NIL) -9 NIL 577739 NIL) (-301 573675 575416 575765 "EMR" NIL EMR (NIL T T T NIL NIL NIL) -8 NIL NIL NIL) (-300 572779 572990 573044 "ELTAGG" 573424 ELTAGG (NIL T T) -9 NIL 573635 NIL) (-299 572559 572633 572774 "ELTAGG-" NIL ELTAGG- (NIL T T T) -7 NIL NIL NIL) (-298 572317 572352 572406 "ELTAB" 572490 ELTAB (NIL T T) -9 NIL 572542 NIL) (-297 571568 571738 571937 "ELFUTS" NIL ELFUTS (NIL T T) -7 NIL NIL NIL) (-296 571292 571366 571394 "ELEMFUN" 571499 ELEMFUN (NIL) -9 NIL NIL NIL) (-295 571192 571219 571287 "ELEMFUN-" NIL ELEMFUN- (NIL T) -7 NIL NIL NIL) (-294 565714 569231 569272 "ELAGG" 570212 ELAGG (NIL T) -9 NIL 570675 NIL) (-293 564504 565046 565709 "ELAGG-" NIL ELAGG- (NIL T T) -7 NIL NIL NIL) (-292 563922 564089 564245 "ELABOR" NIL ELABOR (NIL) -8 NIL NIL NIL) (-291 562826 563148 563430 "ELABEXPR" NIL ELABEXPR (NIL) -8 NIL NIL NIL) (-290 556190 558188 559017 "EFUPXS" NIL EFUPXS (NIL T T T T) -7 NIL NIL NIL) (-289 550168 552164 552975 "EFULS" NIL EFULS (NIL T T T) -7 NIL NIL NIL) (-288 547973 548379 548851 "EFSTRUC" NIL EFSTRUC (NIL T T) -7 NIL NIL NIL) (-287 538896 540815 542363 "EF" NIL EF (NIL T T) -7 NIL NIL NIL) (-286 538003 538510 538659 "EAB" NIL EAB (NIL) -8 NIL NIL NIL) (-285 537133 537970 537998 "E04UCFA" NIL E04UCFA (NIL) -8 NIL NIL NIL) (-284 536263 537100 537128 "E04NAFA" NIL E04NAFA (NIL) -8 NIL NIL NIL) (-283 535393 536230 536258 "E04MBFA" NIL E04MBFA (NIL) -8 NIL NIL NIL) (-282 534523 535360 535388 "E04JAFA" NIL E04JAFA (NIL) -8 NIL NIL NIL) (-281 533655 534490 534518 "E04GCFA" NIL E04GCFA (NIL) -8 NIL NIL NIL) (-280 532787 533622 533650 "E04FDFA" NIL E04FDFA (NIL) -8 NIL NIL NIL) (-279 531917 532754 532782 "E04DGFA" NIL E04DGFA (NIL) -8 NIL NIL NIL) (-278 527338 528786 530150 "E04AGNT" NIL E04AGNT (NIL) -7 NIL NIL NIL) (-277 525958 526639 526679 "DVARCAT" 527020 DVARCAT (NIL T) -9 NIL 527183 NIL) (-276 525373 525639 525953 "DVARCAT-" NIL DVARCAT- (NIL T T) -7 NIL NIL NIL) (-275 517480 525239 525368 "DSMP" NIL DSMP (NIL T T T) -8 NIL NIL NIL) (-274 515830 516621 516662 "DSEXT" 517025 DSEXT (NIL T) -9 NIL 517319 NIL) (-273 514635 515159 515825 "DSEXT-" NIL DSEXT- (NIL T T) -7 NIL NIL NIL) (-272 514359 514424 514522 "DROPT1" NIL DROPT1 (NIL T) -7 NIL NIL NIL) (-271 510495 511717 512854 "DROPT0" NIL DROPT0 (NIL) -7 NIL NIL NIL) (-270 506126 507488 508556 "DROPT" NIL DROPT (NIL) -8 NIL NIL NIL) (-269 504801 505162 505548 "DRAWPT" NIL DRAWPT (NIL) -7 NIL NIL NIL) (-268 504487 504546 504664 "DRAWHACK" NIL DRAWHACK (NIL T) -7 NIL NIL NIL) (-267 503459 503758 504049 "DRAWCX" NIL DRAWCX (NIL) -7 NIL NIL NIL) (-266 503042 503117 503268 "DRAWCURV" NIL DRAWCURV (NIL T T) -7 NIL NIL NIL) (-265 495455 497567 499682 "DRAWCFUN" NIL DRAWCFUN (NIL) -7 NIL NIL NIL) (-264 490972 491991 493070 "DRAW" NIL DRAW (NIL T) -7 NIL NIL NIL) (-263 487554 489637 489678 "DQAGG" 490307 DQAGG (NIL T) -9 NIL 490581 NIL) (-262 474080 481677 481760 "DPOLCAT" 483612 DPOLCAT (NIL T T T T) -9 NIL 484157 NIL) (-261 470485 472134 474075 "DPOLCAT-" NIL DPOLCAT- (NIL T T T T T) -7 NIL NIL NIL) (-260 463460 470382 470480 "DPMO" NIL DPMO (NIL NIL T T) -8 NIL NIL NIL) (-259 456344 463288 463455 "DPMM" NIL DPMM (NIL NIL T T T) -8 NIL NIL NIL) (-258 455935 456197 456286 "DOMTMPLT" NIL DOMTMPLT (NIL) -8 NIL NIL NIL) (-257 455344 455797 455877 "DOMCTOR" NIL DOMCTOR (NIL) -8 NIL NIL NIL) (-256 454627 454955 455106 "DOMAIN" NIL DOMAIN (NIL) -8 NIL NIL NIL) (-255 447807 454361 454513 "DMP" NIL DMP (NIL NIL T) -8 NIL NIL NIL) (-254 445583 446873 446914 "DMEXT" 446919 DMEXT (NIL T) -9 NIL 447095 NIL) (-253 445239 445301 445445 "DLP" NIL DLP (NIL T) -7 NIL NIL NIL) (-252 438522 444724 444914 "DLIST" NIL DLIST (NIL T) -8 NIL NIL NIL) (-251 435172 437347 437388 "DLAGG" 437938 DLAGG (NIL T) -9 NIL 438168 NIL) (-250 433597 434411 434439 "DIVRING" 434531 DIVRING (NIL) -9 NIL 434614 NIL) (-249 433048 433292 433592 "DIVRING-" NIL DIVRING- (NIL T) -7 NIL NIL NIL) (-248 431476 431893 432299 "DISPLAY" NIL DISPLAY (NIL) -7 NIL NIL NIL) (-247 430513 430734 430999 "DIRPROD2" NIL DIRPROD2 (NIL NIL T T) -7 NIL NIL NIL) (-246 424020 430445 430508 "DIRPROD" NIL DIRPROD (NIL NIL T) -8 NIL NIL NIL) (-245 412293 418720 418773 "DIRPCAT" 419031 DIRPCAT (NIL NIL T) -9 NIL 419906 NIL) (-244 410307 411075 411956 "DIRPCAT-" NIL DIRPCAT- (NIL T NIL T) -7 NIL NIL NIL) (-243 409754 409920 410106 "DIOSP" NIL DIOSP (NIL) -7 NIL NIL NIL) (-242 406279 408638 408679 "DIOPS" 409113 DIOPS (NIL T) -9 NIL 409342 NIL) (-241 405939 406083 406274 "DIOPS-" NIL DIOPS- (NIL T T) -7 NIL NIL NIL) (-240 404846 405618 405646 "DIFRING" 405651 DIFRING (NIL) -9 NIL 405673 NIL) (-239 404494 404592 404620 "DIFFSPC" 404739 DIFFSPC (NIL) -9 NIL 404814 NIL) (-238 404235 404337 404489 "DIFFSPC-" NIL DIFFSPC- (NIL T) -7 NIL NIL NIL) (-237 403171 403769 403810 "DIFFMOD" 403815 DIFFMOD (NIL T) -9 NIL 403913 NIL) (-236 402867 402924 402965 "DIFFDOM" 403086 DIFFDOM (NIL T) -9 NIL 403154 NIL) (-235 402748 402778 402862 "DIFFDOM-" NIL DIFFDOM- (NIL T T) -7 NIL NIL NIL) (-234 400487 401951 401992 "DIFEXT" 401997 DIFEXT (NIL T) -9 NIL 402150 NIL) (-233 397632 399991 400032 "DIAGG" 400037 DIAGG (NIL T) -9 NIL 400057 NIL) (-232 397182 397375 397627 "DIAGG-" NIL DIAGG- (NIL T T) -7 NIL NIL NIL) (-231 392376 396372 396649 "DHMATRIX" NIL DHMATRIX (NIL T) -8 NIL NIL NIL) (-230 388834 389887 390897 "DFSFUN" NIL DFSFUN (NIL) -7 NIL NIL NIL) (-229 383429 387986 388314 "DFLOAT" NIL DFLOAT (NIL) -8 NIL NIL NIL) (-228 381974 382272 382654 "DFINTTLS" NIL DFINTTLS (NIL T T) -7 NIL NIL NIL) (-227 379134 380329 380729 "DERHAM" NIL DERHAM (NIL T NIL) -8 NIL NIL NIL) (-226 376840 378965 379054 "DEQUEUE" NIL DEQUEUE (NIL T) -8 NIL NIL NIL) (-225 376220 376365 376548 "DEGRED" NIL DEGRED (NIL T T) -7 NIL NIL NIL) (-224 373533 374257 375058 "DEFINTRF" NIL DEFINTRF (NIL T) -7 NIL NIL NIL) (-223 371635 372094 372658 "DEFINTEF" NIL DEFINTEF (NIL T T) -7 NIL NIL NIL) (-222 371014 371350 371465 "DEFAST" NIL DEFAST (NIL) -8 NIL NIL NIL) (-221 364248 370737 370887 "DECIMAL" NIL DECIMAL (NIL) -8 NIL NIL NIL) (-220 362162 362674 363180 "DDFACT" NIL DDFACT (NIL T T) -7 NIL NIL NIL) (-219 361801 361850 362001 "DBLRESP" NIL DBLRESP (NIL T T T T) -7 NIL NIL NIL) (-218 361053 361622 361713 "DBASIS" NIL DBASIS (NIL NIL) -8 NIL NIL NIL) (-217 359071 359517 359878 "DBASE" NIL DBASE (NIL T) -8 NIL NIL NIL) (-216 358360 358652 358798 "DATAARY" NIL DATAARY (NIL NIL T) -8 NIL NIL NIL) (-215 357426 358327 358355 "D03FAFA" NIL D03FAFA (NIL) -8 NIL NIL NIL) (-214 356493 357393 357421 "D03EEFA" NIL D03EEFA (NIL) -8 NIL NIL NIL) (-213 354888 355378 355867 "D03AGNT" NIL D03AGNT (NIL) -7 NIL NIL NIL) (-212 354137 354855 354883 "D02EJFA" NIL D02EJFA (NIL) -8 NIL NIL NIL) (-211 353386 354104 354132 "D02CJFA" NIL D02CJFA (NIL) -8 NIL NIL NIL) (-210 352635 353353 353381 "D02BHFA" NIL D02BHFA (NIL) -8 NIL NIL NIL) (-209 351884 352602 352630 "D02BBFA" NIL D02BBFA (NIL) -8 NIL NIL NIL) (-208 346601 348256 349862 "D02AGNT" NIL D02AGNT (NIL) -7 NIL NIL NIL) (-207 344881 345420 345964 "D01WGTS" NIL D01WGTS (NIL) -7 NIL NIL NIL) (-206 343896 344848 344876 "D01TRNS" NIL D01TRNS (NIL) -8 NIL NIL NIL) (-205 342912 343863 343891 "D01GBFA" NIL D01GBFA (NIL) -8 NIL NIL NIL) (-204 341928 342879 342907 "D01FCFA" NIL D01FCFA (NIL) -8 NIL NIL NIL) (-203 340944 341895 341923 "D01ASFA" NIL D01ASFA (NIL) -8 NIL NIL NIL) (-202 339960 340911 340939 "D01AQFA" NIL D01AQFA (NIL) -8 NIL NIL NIL) (-201 338976 339927 339955 "D01APFA" NIL D01APFA (NIL) -8 NIL NIL NIL) (-200 337992 338943 338971 "D01ANFA" NIL D01ANFA (NIL) -8 NIL NIL NIL) (-199 337008 337959 337987 "D01AMFA" NIL D01AMFA (NIL) -8 NIL NIL NIL) (-198 336024 336975 337003 "D01ALFA" NIL D01ALFA (NIL) -8 NIL NIL NIL) (-197 335040 335991 336019 "D01AKFA" NIL D01AKFA (NIL) -8 NIL NIL NIL) (-196 334056 335007 335035 "D01AJFA" NIL D01AJFA (NIL) -8 NIL NIL NIL) (-195 328820 330445 332006 "D01AGNT" NIL D01AGNT (NIL) -7 NIL NIL NIL) (-194 328271 328417 328569 "CYCLOTOM" NIL CYCLOTOM (NIL) -7 NIL NIL NIL) (-193 325633 326426 327153 "CYCLES" NIL CYCLES (NIL) -7 NIL NIL NIL) (-192 325072 325218 325389 "CVMP" NIL CVMP (NIL T) -7 NIL NIL NIL) (-191 323131 323443 323812 "CTRIGMNP" NIL CTRIGMNP (NIL T T) -7 NIL NIL NIL) (-190 322685 322943 323044 "CTORKIND" NIL CTORKIND (NIL) -8 NIL NIL NIL) (-189 321890 322278 322306 "CTORCAT" 322488 CTORCAT (NIL) -9 NIL 322601 NIL) (-188 321591 321726 321885 "CTORCAT-" NIL CTORCAT- (NIL T) -7 NIL NIL NIL) (-187 321081 321341 321449 "CTORCALL" NIL CTORCALL (NIL T) -8 NIL NIL NIL) (-186 320492 320928 321001 "CTOR" NIL CTOR (NIL) -8 NIL NIL NIL) (-185 319951 320068 320221 "CSTTOOLS" NIL CSTTOOLS (NIL T T) -7 NIL NIL NIL) (-184 316336 317095 317853 "CRFP" NIL CRFP (NIL T T) -7 NIL NIL NIL) (-183 315823 316129 316221 "CRCEAST" NIL CRCEAST (NIL) -8 NIL NIL NIL) (-182 315042 315251 315479 "CRAPACK" NIL CRAPACK (NIL T) -7 NIL NIL NIL) (-181 314546 314651 314855 "CPMATCH" NIL CPMATCH (NIL T T T) -7 NIL NIL NIL) (-180 314299 314333 314439 "CPIMA" NIL CPIMA (NIL T T T) -7 NIL NIL NIL) (-179 311222 311984 312703 "COORDSYS" NIL COORDSYS (NIL T) -7 NIL NIL NIL) (-178 310732 310877 311019 "CONTOUR" NIL CONTOUR (NIL) -8 NIL NIL NIL) (-177 306680 309195 309687 "CONTFRAC" NIL CONTFRAC (NIL T) -8 NIL NIL NIL) (-176 306554 306581 306609 "CONDUIT" 306646 CONDUIT (NIL) -9 NIL NIL NIL) (-175 305508 306182 306210 "COMRING" 306215 COMRING (NIL) -9 NIL 306267 NIL) (-174 304654 305030 305214 "COMPPROP" NIL COMPPROP (NIL) -8 NIL NIL NIL) (-173 304350 304391 304519 "COMPLPAT" NIL COMPLPAT (NIL T T T) -7 NIL NIL NIL) (-172 304043 304106 304213 "COMPLEX2" NIL COMPLEX2 (NIL T T) -7 NIL NIL NIL) (-171 292851 303993 304038 "COMPLEX" NIL COMPLEX (NIL T) -8 NIL NIL NIL) (-170 292312 292451 292611 "COMPILER" NIL COMPILER (NIL) -7 NIL NIL NIL) (-169 292065 292106 292204 "COMPFACT" NIL COMPFACT (NIL T T) -7 NIL NIL NIL) (-168 273356 285657 285697 "COMPCAT" 286701 COMPCAT (NIL T) -9 NIL 288049 NIL) (-167 265896 269410 273000 "COMPCAT-" NIL COMPCAT- (NIL T T) -7 NIL NIL NIL) (-166 265653 265687 265790 "COMMUPC" NIL COMMUPC (NIL T T T) -7 NIL NIL NIL) (-165 265480 265520 265579 "COMMONOP" NIL COMMONOP (NIL) -7 NIL NIL NIL) (-164 265057 265339 265414 "COMMAAST" NIL COMMAAST (NIL) -8 NIL NIL NIL) (-163 264631 264875 264962 "COMM" NIL COMM (NIL) -8 NIL NIL NIL) (-162 263826 264074 264102 "COMBOPC" 264440 COMBOPC (NIL) -9 NIL 264615 NIL) (-161 262890 263142 263384 "COMBINAT" NIL COMBINAT (NIL T) -7 NIL NIL NIL) (-160 259811 260499 261126 "COMBF" NIL COMBF (NIL T T) -7 NIL NIL NIL) (-159 258688 259142 259377 "COLOR" NIL COLOR (NIL) -8 NIL NIL NIL) (-158 258176 258481 258573 "COLONAST" NIL COLONAST (NIL) -8 NIL NIL NIL) (-157 257863 257916 258041 "CMPLXRT" NIL CMPLXRT (NIL T T) -7 NIL NIL NIL) (-156 257330 257642 257741 "CLLCTAST" NIL CLLCTAST (NIL) -8 NIL NIL NIL) (-155 253850 254920 256000 "CLIP" NIL CLIP (NIL) -7 NIL NIL NIL) (-154 252198 253124 253364 "CLIF" NIL CLIF (NIL NIL T NIL) -8 NIL NIL NIL) (-153 248291 250316 250357 "CLAGG" 251286 CLAGG (NIL T) -9 NIL 251822 NIL) (-152 247168 247703 248286 "CLAGG-" NIL CLAGG- (NIL T T) -7 NIL NIL NIL) (-151 246797 246888 247028 "CINTSLPE" NIL CINTSLPE (NIL T T) -7 NIL NIL NIL) (-150 244734 245241 245789 "CHVAR" NIL CHVAR (NIL T T T) -7 NIL NIL NIL) (-149 243774 244448 244476 "CHARZ" 244481 CHARZ (NIL) -9 NIL 244496 NIL) (-148 243568 243614 243692 "CHARPOL" NIL CHARPOL (NIL T) -7 NIL NIL NIL) (-147 242486 243192 243220 "CHARNZ" 243281 CHARNZ (NIL) -9 NIL 243330 NIL) (-146 239939 241049 241578 "CHAR" NIL CHAR (NIL) -8 NIL NIL NIL) (-145 239647 239726 239754 "CFCAT" 239865 CFCAT (NIL) -9 NIL NIL NIL) (-144 238986 239115 239298 "CDEN" NIL CDEN (NIL T T T) -7 NIL NIL NIL) (-143 234957 238399 238679 "CCLASS" NIL CCLASS (NIL) -8 NIL NIL NIL) (-142 234335 234522 234699 "CATEGORY" NIL -10 (NIL) -8 NIL NIL NIL) (-141 233858 234282 234330 "CATCTOR" NIL CATCTOR (NIL) -8 NIL NIL NIL) (-140 233327 233639 233737 "CATAST" NIL CATAST (NIL) -8 NIL NIL NIL) (-139 232815 233120 233212 "CASEAST" NIL CASEAST (NIL) -8 NIL NIL NIL) (-138 232064 232224 232445 "CARTEN2" NIL CARTEN2 (NIL NIL NIL T T) -7 NIL NIL NIL) (-137 227649 228909 229653 "CARTEN" NIL CARTEN (NIL NIL NIL T) -8 NIL NIL NIL) (-136 226023 227036 227293 "CARD" NIL CARD (NIL) -8 NIL NIL NIL) (-135 225600 225882 225957 "CAPSLAST" NIL CAPSLAST (NIL) -8 NIL NIL NIL) (-134 225042 225298 225326 "CACHSET" 225458 CACHSET (NIL) -9 NIL 225536 NIL) (-133 224432 224820 224848 "CABMON" 224898 CABMON (NIL) -9 NIL 224954 NIL) (-132 223959 224226 224336 "BYTEORD" NIL BYTEORD (NIL) -8 NIL NIL NIL) (-131 219152 223616 223788 "BYTEBUF" NIL BYTEBUF (NIL) -8 NIL NIL NIL) (-130 218114 218826 218961 "BYTE" NIL BYTE (NIL) -8 NIL NIL 219124) (-129 215566 217880 217987 "BTREE" NIL BTREE (NIL T) -8 NIL NIL NIL) (-128 212974 215304 215426 "BTOURN" NIL BTOURN (NIL T) -8 NIL NIL NIL) (-127 210194 212416 212457 "BTCAT" 212525 BTCAT (NIL T) -9 NIL 212602 NIL) (-126 209942 210040 210189 "BTCAT-" NIL BTCAT- (NIL T T) -7 NIL NIL NIL) (-125 204915 209158 209186 "BTAGG" 209300 BTAGG (NIL) -9 NIL 209410 NIL) (-124 204543 204704 204910 "BTAGG-" NIL BTAGG- (NIL T) -7 NIL NIL NIL) (-123 201578 204004 204219 "BSTREE" NIL BSTREE (NIL T) -8 NIL NIL NIL) (-122 200830 200986 201170 "BRILL" NIL BRILL (NIL T) -7 NIL NIL NIL) (-121 197337 199528 199569 "BRAGG" 200218 BRAGG (NIL T) -9 NIL 200476 NIL) (-120 196279 196779 197332 "BRAGG-" NIL BRAGG- (NIL T T) -7 NIL NIL NIL) (-119 188736 195776 195961 "BPADICRT" NIL BPADICRT (NIL NIL) -8 NIL NIL NIL) (-118 186782 188686 188731 "BPADIC" NIL BPADIC (NIL NIL) -8 NIL NIL NIL) (-117 186510 186546 186660 "BOUNDZRO" NIL BOUNDZRO (NIL T T) -7 NIL NIL NIL) (-116 184703 185149 185612 "BOP1" NIL BOP1 (NIL T) -7 NIL NIL NIL) (-115 180611 182041 182939 "BOP" NIL BOP (NIL) -8 NIL NIL NIL) (-114 179475 180373 180497 "BOOLEAN" NIL BOOLEAN (NIL) -8 NIL NIL NIL) (-113 179068 179225 179253 "BOOLE" 179364 BOOLE (NIL) -9 NIL 179445 NIL) (-112 178970 178997 179063 "BOOLE-" NIL BOOLE- (NIL T) -7 NIL NIL NIL) (-111 178139 178639 178693 "BMODULE" 178698 BMODULE (NIL T T) -9 NIL 178763 NIL) (-110 173627 177990 178063 "BITS" NIL BITS (NIL) -8 NIL NIL NIL) (-109 173144 173287 173427 "BINDING" NIL BINDING (NIL) -8 NIL NIL NIL) (-108 166380 172868 173017 "BINARY" NIL BINARY (NIL) -8 NIL NIL NIL) (-107 164098 165607 165648 "BGAGG" 165908 BGAGG (NIL T) -9 NIL 166045 NIL) (-106 163964 164002 164093 "BGAGG-" NIL BGAGG- (NIL T T) -7 NIL NIL NIL) (-105 163172 163533 163738 "BFUNCT" NIL BFUNCT (NIL) -8 NIL NIL NIL) (-104 162012 162213 162501 "BEZOUT" NIL BEZOUT (NIL T T T T T) -7 NIL NIL NIL) (-103 158623 161161 161491 "BBTREE" NIL BBTREE (NIL T) -8 NIL NIL NIL) (-102 158206 158302 158330 "BASTYPE" 158507 BASTYPE (NIL) -9 NIL 158606 NIL) (-101 157967 158066 158201 "BASTYPE-" NIL BASTYPE- (NIL T) -7 NIL NIL NIL) (-100 157478 157566 157718 "BALFACT" NIL BALFACT (NIL T T) -7 NIL NIL NIL) (-99 156369 157048 157234 "AUTOMOR" NIL AUTOMOR (NIL T) -8 NIL NIL NIL) (-98 156095 156100 156126 "ATTREG" 156131 ATTREG (NIL) -9 NIL NIL NIL) (-97 154591 155126 155478 "ATTRBUT" NIL ATTRBUT (NIL) -8 NIL NIL NIL) (-96 154193 154467 154533 "ATTRAST" NIL ATTRAST (NIL) -8 NIL NIL NIL) (-95 153693 153842 153868 "ATRIG" 154069 ATRIG (NIL) -9 NIL NIL NIL) (-94 153548 153601 153688 "ATRIG-" NIL ATRIG- (NIL T) -7 NIL NIL NIL) (-93 153126 153360 153386 "ASTCAT" 153391 ASTCAT (NIL) -9 NIL 153421 NIL) (-92 152925 153002 153121 "ASTCAT-" NIL ASTCAT- (NIL T) -7 NIL NIL NIL) (-91 151070 152758 152846 "ASTACK" NIL ASTACK (NIL T) -8 NIL NIL NIL) (-90 149877 150190 150555 "ASSOCEQ" NIL ASSOCEQ (NIL T T) -7 NIL NIL NIL) (-89 148916 149629 149753 "ASP9" NIL ASP9 (NIL NIL) -8 NIL NIL NIL) (-88 147809 148632 148774 "ASP80" NIL ASP80 (NIL NIL) -8 NIL NIL NIL) (-87 147545 147765 147804 "ASP8" NIL ASP8 (NIL NIL) -8 NIL NIL NIL) (-86 146500 147309 147427 "ASP78" NIL ASP78 (NIL NIL) -8 NIL NIL NIL) (-85 145469 146266 146383 "ASP77" NIL ASP77 (NIL NIL) -8 NIL NIL NIL) (-84 144395 145207 145338 "ASP74" NIL ASP74 (NIL NIL) -8 NIL NIL NIL) (-83 143310 144131 144263 "ASP73" NIL ASP73 (NIL NIL) -8 NIL NIL NIL) (-82 142223 143046 143178 "ASP7" NIL ASP7 (NIL NIL) -8 NIL NIL NIL) (-81 141310 142118 142218 "ASP6" NIL ASP6 (NIL NIL) -8 NIL NIL NIL) (-80 140258 141074 141192 "ASP55" NIL ASP55 (NIL NIL) -8 NIL NIL NIL) (-79 139209 140020 140139 "ASP50" NIL ASP50 (NIL NIL) -8 NIL NIL NIL) (-78 138290 138989 139099 "ASP49" NIL ASP49 (NIL NIL) -8 NIL NIL NIL) (-77 137099 137940 138108 "ASP42" NIL ASP42 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-76 135903 136745 136915 "ASP41" NIL ASP41 (NIL NIL NIL NIL) -8 NIL NIL NIL) (-75 134984 135683 135793 "ASP4" NIL ASP4 (NIL NIL) -8 NIL NIL NIL) (-74 133935 134748 134866 "ASP35" NIL ASP35 (NIL NIL) -8 NIL NIL NIL) (-73 133672 133891 133930 "ASP34" NIL ASP34 (NIL NIL) -8 NIL NIL NIL) (-72 133436 133521 133597 "ASP33" NIL ASP33 (NIL NIL) -8 NIL NIL NIL) (-71 132345 133172 133304 "ASP31" NIL ASP31 (NIL NIL) -8 NIL NIL NIL) (-70 132082 132301 132340 "ASP30" NIL ASP30 (NIL NIL) -8 NIL NIL NIL) (-69 131844 131931 132007 "ASP29" NIL ASP29 (NIL NIL) -8 NIL NIL NIL) (-68 131581 131800 131839 "ASP28" NIL ASP28 (NIL NIL) -8 NIL NIL NIL) (-67 131318 131537 131576 "ASP27" NIL ASP27 (NIL NIL) -8 NIL NIL NIL) (-66 130396 131096 131207 "ASP24" NIL ASP24 (NIL NIL) -8 NIL NIL NIL) (-65 129468 130279 130391 "ASP20" NIL ASP20 (NIL NIL) -8 NIL NIL NIL) (-64 128413 129230 129349 "ASP19" NIL ASP19 (NIL NIL) -8 NIL NIL NIL) (-63 128177 128262 128338 "ASP12" NIL ASP12 (NIL NIL) -8 NIL NIL NIL) (-62 127056 127889 128033 "ASP10" NIL ASP10 (NIL NIL) -8 NIL NIL NIL) (-61 126137 126836 126946 "ASP1" NIL ASP1 (NIL NIL) -8 NIL NIL NIL) (-60 123923 126041 126132 "ARRAY2" NIL ARRAY2 (NIL T) -8 NIL NIL NIL) (-59 123114 123305 123526 "ARRAY12" NIL ARRAY12 (NIL T T) -7 NIL NIL NIL) (-58 118671 122845 122959 "ARRAY1" NIL ARRAY1 (NIL T) -8 NIL NIL NIL) (-57 112827 114873 114948 "ARR2CAT" 117578 ARR2CAT (NIL T T T) -9 NIL 118336 NIL) (-56 111190 111967 112822 "ARR2CAT-" NIL ARR2CAT- (NIL T T T T) -7 NIL NIL NIL) (-55 110548 110924 111049 "ARITY" NIL ARITY (NIL) -8 NIL NIL NIL) (-54 109470 109640 109939 "APPRULE" NIL APPRULE (NIL T T T) -7 NIL NIL NIL) (-53 109169 109223 109342 "APPLYORE" NIL APPLYORE (NIL T T T) -7 NIL NIL NIL) (-52 108549 108696 108853 "ANY1" NIL ANY1 (NIL T) -7 NIL NIL NIL) (-51 107951 108244 108364 "ANY" NIL ANY (NIL) -8 NIL NIL NIL) (-50 105560 106664 106991 "ANTISYM" NIL ANTISYM (NIL T NIL) -8 NIL NIL NIL) (-49 105082 105345 105441 "ANON" NIL ANON (NIL) -8 NIL NIL NIL) (-48 98718 104057 104511 "AN" NIL AN (NIL) -8 NIL NIL NIL) (-47 94294 95903 95954 "AMR" 96702 AMR (NIL T T) -9 NIL 97302 NIL) (-46 93645 93926 94289 "AMR-" NIL AMR- (NIL T T T) -7 NIL NIL NIL) (-45 77150 93579 93640 "ALIST" NIL ALIST (NIL T T) -8 NIL NIL NIL) (-44 73566 76826 76995 "ALGSC" NIL ALGSC (NIL T NIL NIL NIL) -8 NIL NIL NIL) (-43 70576 71236 71843 "ALGPKG" NIL ALGPKG (NIL T T) -7 NIL NIL NIL) (-42 69955 70068 70252 "ALGMFACT" NIL ALGMFACT (NIL T T T) -7 NIL NIL NIL) (-41 66354 66985 67579 "ALGMANIP" NIL ALGMANIP (NIL T T) -7 NIL NIL NIL) (-40 55838 66047 66197 "ALGFF" NIL ALGFF (NIL T T T NIL) -8 NIL NIL NIL) (-39 55152 55307 55486 "ALGFACT" NIL ALGFACT (NIL T) -7 NIL NIL NIL) (-38 53941 54679 54717 "ALGEBRA" 54722 ALGEBRA (NIL T) -9 NIL 54763 NIL) (-37 53727 53804 53936 "ALGEBRA-" NIL ALGEBRA- (NIL T T) -7 NIL NIL NIL) (-36 34130 51007 51059 "ALAGG" 51195 ALAGG (NIL T T) -9 NIL 51356 NIL) (-35 33630 33779 33805 "AHYP" 34006 AHYP (NIL) -9 NIL NIL NIL) (-34 32932 33115 33141 "AGG" 33424 AGG (NIL) -9 NIL 33613 NIL) (-33 32725 32812 32927 "AGG-" NIL AGG- (NIL T) -7 NIL NIL NIL) (-32 30843 31312 31717 "AF" NIL AF (NIL T T) -7 NIL NIL NIL) (-31 30335 30640 30730 "ADDAST" NIL ADDAST (NIL) -8 NIL NIL NIL) (-30 29705 30000 30156 "ACPLOT" NIL ACPLOT (NIL) -8 NIL NIL NIL) (-29 17213 26525 26563 "ACFS" 27170 ACFS (NIL T) -9 NIL 27409 NIL) (-28 15836 16446 17208 "ACFS-" NIL ACFS- (NIL T T) -7 NIL NIL NIL) (-27 11459 13782 13808 "ACF" 14687 ACF (NIL) -9 NIL 15100 NIL) (-26 10555 10961 11454 "ACF-" NIL ACF- (NIL T) -7 NIL NIL NIL) (-25 10065 10308 10334 "ABELSG" 10426 ABELSG (NIL) -9 NIL 10491 NIL) (-24 9963 9994 10060 "ABELSG-" NIL ABELSG- (NIL T) -7 NIL NIL NIL) (-23 9232 9579 9605 "ABELMON" 9775 ABELMON (NIL) -9 NIL 9887 NIL) (-22 8981 9089 9227 "ABELMON-" NIL ABELMON- (NIL T) -7 NIL NIL NIL) (-21 8231 8687 8713 "ABELGRP" 8785 ABELGRP (NIL) -9 NIL 8860 NIL) (-20 7845 8010 8226 "ABELGRP-" NIL ABELGRP- (NIL T) -7 NIL NIL NIL) (-19 3064 7104 7143 "A1AGG" 7148 A1AGG (NIL T) -9 NIL 7188 NIL) (-18 30 1497 3059 "A1AGG-" NIL A1AGG- (NIL T T) -7 NIL NIL NIL))
\ No newline at end of file diff --git a/src/share/algebra/operation.daase b/src/share/algebra/operation.daase index 3a983c3a..a05f0234 100644 --- a/src/share/algebra/operation.daase +++ b/src/share/algebra/operation.daase @@ -1,407 +1,407 @@ -(719468 . 3524522244) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 (-558)))) - (-5 *2 (-1288 (-419 (-558)))) (-5 *1 (-1317 *4))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 (-558)))) - (-5 *2 (-1288 (-558))) (-5 *1 (-1317 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 (-558)))) (-5 *2 (-114)) - (-5 *1 (-1317 *4))))) -(((*1 *2 *3) - (-12 (-4 *5 (-13 (-631 *2) (-175))) (-5 *2 (-905 *4)) (-5 *1 (-173 *4 *5 *3)) - (-4 *4 (-1122)) (-4 *3 (-168 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-1110 (-855 (-391))))) - (-5 *2 (-661 (-1110 (-855 (-229))))) (-5 *1 (-315)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) - (-5 *2 (-1288 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1288 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-569)) (-4 *3 (-1122)))) - ((*1 *1 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-475 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-547)))) - ((*1 *2 *1) (-12 (-4 *1 (-631 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *1 (-635 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) - (-12 (-5 *2 (-965 *3)) (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) - (-4 *5 (-631 (-1198))) (-4 *4 (-815)) (-4 *5 (-861)))) - ((*1 *1 *2) - (-3957 - (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-12 (-5 *2 (-965 (-419 (-558)))) (-4 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198))) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1180)) - (-5 *1 (-1090 *4 *5 *6 *7 *8)))) - ((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1130 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1180)) - (-5 *1 (-1166 *4 *5 *6 *7 *8)))) - ((*1 *1 *2) (-12 (-5 *2 (-1124)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1203)))) - ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-877)) (-5 *3 (-558)) (-5 *1 (-1218)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-877)) (-5 *3 (-558)) (-5 *1 (-1218)))) - ((*1 *2 *3) - (-12 (-5 *3 (-800 *4 (-878 *5))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-14 *5 (-661 (-1198))) (-5 *2 (-800 *4 (-878 *6))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *6 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-965 (-1045 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-800 *4 (-878 *6))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-14 *6 (-661 (-1198))) (-5 *2 (-965 (-1045 (-419 *4)))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *5 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-1192 (-1045 (-419 *4)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-800 *4 (-878 *6)))) - (-4 *4 (-13 (-860) (-319) (-149) (-1041))) (-14 *6 (-661 (-1198))) - (-5 *2 (-661 (-800 *4 (-878 *6)))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-661 (-1198)))))) +(719467 . 3524556580) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 (-558)))) + (-5 *2 (-1287 (-419 (-558)))) (-5 *1 (-1316 *4))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 (-558)))) + (-5 *2 (-1287 (-558))) (-5 *1 (-1316 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 (-558)))) (-5 *2 (-114)) + (-5 *1 (-1316 *4))))) +(((*1 *2 *3) + (-12 (-4 *5 (-13 (-630 *2) (-175))) (-5 *2 (-904 *4)) (-5 *1 (-173 *4 *5 *3)) + (-4 *4 (-1121)) (-4 *3 (-168 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-1109 (-854 (-391))))) + (-5 *2 (-660 (-1109 (-854 (-229))))) (-5 *1 (-315)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1263 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) + (-5 *2 (-1287 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1287 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-417 *1)) (-4 *1 (-433 *3)) (-4 *3 (-569)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-475 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-547)))) + ((*1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) (-12 (-4 *1 (-634 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-743 *3 *2)) (-4 *2 (-1263 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-964 *3)) (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) + (-4 *5 (-630 (-1197))) (-4 *4 (-814)) (-4 *5 (-860)))) + ((*1 *1 *2) + (-3956 + (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) + (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860))))) + ((*1 *1 *2) + (-12 (-5 *2 (-964 (-419 (-558)))) (-4 *1 (-1085 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197))) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) + (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1179)) + (-5 *1 (-1089 *4 *5 *6 *7 *8)))) + ((*1 *2 *3) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) + (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1129 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1179)) + (-5 *1 (-1165 *4 *5 *6 *7 *8)))) + ((*1 *1 *2) (-12 (-5 *2 (-1123)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1202)))) + ((*1 *1 *2 *3 *2) (-12 (-5 *2 (-876)) (-5 *3 (-558)) (-5 *1 (-1217)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-876)) (-5 *3 (-558)) (-5 *1 (-1217)))) + ((*1 *2 *3) + (-12 (-5 *3 (-799 *4 (-877 *5))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-14 *5 (-660 (-1197))) (-5 *2 (-799 *4 (-877 *6))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *6 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-964 *4)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-964 (-1044 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-799 *4 (-877 *6))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-14 *6 (-660 (-1197))) (-5 *2 (-964 (-1044 (-419 *4)))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *5 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-1191 (-1044 (-419 *4)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-799 *4 (-877 *6)))) + (-4 *4 (-13 (-859) (-319) (-149) (-1040))) (-14 *6 (-660 (-1197))) + (-5 *2 (-660 (-799 *4 (-877 *6)))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-660 (-1197)))))) (((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-417 *3)) - (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5)))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-417 *3)) + (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-4 *7 (-969 *6 *4 *5)) - (-5 *2 (-417 (-1192 *7))) (-5 *1 (-762 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-417 (-1191 *7))) (-5 *1 (-761 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-417 *1)) (-4 *1 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-464)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-417 *1)) (-4 *1 (-968 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-464)) (-5 *2 (-417 *3)) - (-5 *1 (-1000 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) + (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-464)) (-5 *2 (-417 *3)) + (-5 *1 (-999 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) - (-5 *2 (-417 (-1192 (-419 *7)))) (-5 *1 (-1194 *4 *5 *6 *7)) - (-5 *3 (-1192 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1243)))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-417 (-1191 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) + (-5 *3 (-1191 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1242)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-1268 *4 *3)) - (-4 *3 (-13 (-1264 *4) (-569) (-10 -8 (-15 -3562 ($ $ $))))))) + (-12 (-4 *4 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-1267 *4 *3)) + (-4 *3 (-13 (-1263 *4) (-569) (-10 -8 (-15 -3561 ($ $ $))))))) ((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-14 *5 (-661 (-1198))) - (-5 *2 (-661 (-1167 *4 (-543 (-878 *6)) (-878 *6) (-800 *4 (-878 *6))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198)))))) + (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-14 *5 (-660 (-1197))) + (-5 *2 (-660 (-1166 *4 (-543 (-877 *6)) (-877 *6) (-799 *4 (-877 *6))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-14 *5 (-661 (-1198))) (-5 *2 (-661 (-661 (-1045 (-419 *4))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) + (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-14 *5 (-660 (-1197))) (-5 *2 (-660 (-660 (-1044 (-419 *4))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198)))))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-661 (-1198))) - (-5 *2 (-661 (-661 (-391)))) (-5 *1 (-1044)) (-5 *5 (-391)))) + (-12 (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-660 (-1197))) + (-5 *2 (-660 (-660 (-391)))) (-5 *1 (-1043)) (-5 *5 (-391)))) ((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-14 *5 (-661 (-1198))) (-5 *2 (-661 (-661 (-1045 (-419 *4))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) + (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-14 *5 (-660 (-1197))) (-5 *2 (-660 (-660 (-1044 (-419 *4))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *5))))) (-5 *1 (-1316 *5 *6 *7)) - (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-661 (-1045 (-419 *4))))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1067 *4 *5)) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-14 *5 (-661 (-1198))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *4)) (|:| -3642 (-661 (-965 *4)))))) - (-5 *1 (-1316 *4 *5 *6)) (-14 *6 (-661 (-1198))))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *5))))) (-5 *1 (-1315 *5 *6 *7)) + (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-660 (-1044 (-419 *4))))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1066 *4 *5)) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-14 *5 (-660 (-1197))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *4)) (|:| -3641 (-660 (-964 *4)))))) + (-5 *1 (-1315 *4 *5 *6)) (-14 *6 (-660 (-1197))))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) - (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))) - (-14 *7 (-661 (-1198))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))) + (-14 *7 (-660 (-1197))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) - (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))) - (-14 *7 (-661 (-1198))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) - (-5 *1 (-1316 *5 *6 *7)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))) - (-14 *7 (-661 (-1198))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *4)) (|:| -3642 (-661 (-965 *4)))))) - (-5 *1 (-1316 *4 *5 *6)) (-5 *3 (-661 (-965 *4))) (-14 *5 (-661 (-1198))) - (-14 *6 (-661 (-1198)))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))) + (-14 *7 (-660 (-1197))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) + (-5 *1 (-1315 *5 *6 *7)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))) + (-14 *7 (-660 (-1197))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *4)) (|:| -3641 (-660 (-964 *4)))))) + (-5 *1 (-1315 *4 *5 *6)) (-5 *3 (-660 (-964 *4))) (-14 *5 (-660 (-1197))) + (-14 *6 (-660 (-1197)))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-1067 *5 *6))) - (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-1066 *5 *6))) + (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-114)) - (-4 *5 (-13 (-860) (-319) (-149) (-1041))) (-5 *2 (-661 (-1067 *5 *6))) - (-5 *1 (-1316 *5 *6 *7)) (-14 *6 (-661 (-1198))) (-14 *7 (-661 (-1198))))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-114)) + (-4 *5 (-13 (-859) (-319) (-149) (-1040))) (-5 *2 (-660 (-1066 *5 *6))) + (-5 *1 (-1315 *5 *6 *7)) (-14 *6 (-660 (-1197))) (-14 *7 (-660 (-1197))))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-860) (-319) (-149) (-1041))) - (-5 *2 (-661 (-1067 *4 *5))) (-5 *1 (-1316 *4 *5 *6)) - (-14 *5 (-661 (-1198))) (-14 *6 (-661 (-1198)))))) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-859) (-319) (-149) (-1040))) + (-5 *2 (-660 (-1066 *4 *5))) (-5 *1 (-1315 *4 *5 *6)) + (-14 *5 (-660 (-1197))) (-14 *6 (-660 (-1197)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 (-1176 *4) (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1315 *4)) - (-4 *4 (-1238)))) + (-12 (-5 *3 (-1 (-1175 *4) (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1314 *4)) + (-4 *4 (-1237)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-661 (-1176 *5)) (-661 (-1176 *5)))) (-5 *4 (-558)) - (-5 *2 (-661 (-1176 *5))) (-5 *1 (-1315 *5)) (-4 *5 (-1238))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1314))))) -(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-1314))))) + (-12 (-5 *3 (-1 (-660 (-1175 *5)) (-660 (-1175 *5)))) (-5 *4 (-558)) + (-5 *2 (-660 (-1175 *5))) (-5 *1 (-1314 *5)) (-4 *5 (-1237))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1313))))) +(((*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-1313))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *6 (-569)) (-5 *2 (-661 (-326 *6))) - (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1070)))) + (-12 (-5 *4 (-937)) (-4 *6 (-569)) (-5 *2 (-660 (-326 *6))) + (-5 *1 (-225 *5 *6)) (-5 *3 (-326 *6)) (-4 *5 (-1069)))) ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569)))) ((*1 *2 *3) - (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1224))) - (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-661 *5)) + (-12 (-5 *3 (-595 *5)) (-4 *5 (-13 (-29 *4) (-1223))) + (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-660 *5)) (-5 *1 (-597 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-595 (-419 (-965 *4)))) - (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-661 (-326 *4))) + (-12 (-5 *3 (-595 (-419 (-964 *4)))) + (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-660 (-326 *4))) (-5 *1 (-601 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1116 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1171 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1115 *3 *2)) (-4 *3 (-859)) (-4 *2 (-1170 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *1)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1171 *4)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-859)) + (-4 *2 (-1170 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223))))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 (-1198) *3)) (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-1303 (-1197) *3)) (-5 *1 (-1309 *3)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1313 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1069))))) (((*1 *1 *2) - (-12 (-5 *2 (-1304 (-1198) *3)) (-4 *3 (-1070)) (-5 *1 (-1310 *3)))) + (-12 (-5 *2 (-1303 (-1197) *3)) (-4 *3 (-1069)) (-5 *1 (-1309 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *1 (-1313 *3 *4))))) + (-12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) + (-5 *1 (-1312 *3 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |k| (-1198)) (|:| |c| (-1310 *3))))) - (-5 *1 (-1310 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-660 (-2 (|:| |k| (-1197)) (|:| |c| (-1309 *3))))) + (-5 *1 (-1309 *3)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |k| *3) (|:| |c| (-1313 *3 *4))))) - (-5 *1 (-1313 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-791)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-938)))) + (-12 (-5 *2 (-660 (-2 (|:| |k| *3) (|:| |c| (-1312 *3 *4))))) + (-5 *1 (-1312 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-790)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-25)) (-5 *2 (-937)))) ((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-159)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-159)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-159)))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224))) (-5 *1 (-231 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1133)) (-4 *2 (-1238)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-133)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223))) (-5 *1 (-231 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1132)) (-4 *2 (-1237)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-133)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-374 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-395 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-860)))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) ((*1 *1 *2 *1) - (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *6 (-245 (-4387 *3) (-791))) + (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *6 (-245 (-4386 *3) (-790))) (-14 *7 - (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *6)) - (-2 (|:| -2631 *5) (|:| -2632 *6)))) - (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-861)) - (-4 *2 (-969 *4 *6 (-878 *3))))) + (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *6)) + (-2 (|:| -2630 *5) (|:| -2631 *6)))) + (-5 *1 (-473 *3 *4 *5 *6 *7 *2)) (-4 *5 (-860)) + (-4 *2 (-968 *4 *6 (-877 *3))))) ((*1 *1 *1 *2) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) + (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) ((*1 *1 *1 *1) (-5 *1 (-547))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-666 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-665 *2)) (-4 *2 (-1132)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *7 (-1122)) (-5 *2 (-1 *7 *5)) (-5 *1 (-704 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-4 *7 (-1121)) (-5 *2 (-1 *7 *5)) (-5 *1 (-703 *5 *6 *7)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-706 *3 *2 *4)) (-4 *3 (-1070)) (-4 *2 (-385 *3)) + (-12 (-4 *1 (-705 *3 *2 *4)) (-4 *3 (-1069)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-706 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-705 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-4 *1 (-740))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) + ((*1 *1 *1 *1) (-4 *1 (-739))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-569)) - (-5 *1 (-990 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1072 *2)) (-4 *2 (-1133)))) - ((*1 *1 *1 *1) (-4 *1 (-1133))) + (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-569)) + (-5 *1 (-989 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1071 *2)) (-4 *2 (-1132)))) + ((*1 *1 *1 *1) (-4 *1 (-1132))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *2 (-245 *3 *4)) + (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *2 (-245 *3 *4)) (-4 *5 (-245 *3 *4)))) ((*1 *2 *1 *2) - (-12 (-4 *1 (-1144 *3 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) + (-12 (-4 *1 (-1143 *3 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) - (-4 *2 (-969 *3 (-543 *4) *4)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-962 (-229))) (-5 *3 (-229)) (-5 *1 (-1235)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-746)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-746)))) + (-12 (-4 *3 (-1069)) (-4 *4 (-860)) (-5 *1 (-1146 *3 *4 *2)) + (-4 *2 (-968 *3 (-543 *4) *4)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-961 (-229))) (-5 *3 (-229)) (-5 *1 (-1234)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-745)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-745)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-558)) (-4 *1 (-1287 *3)) (-4 *3 (-1238)) (-4 *3 (-21)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1308 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-859))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) - ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-661 (-1198))))) + (-12 (-5 *2 (-558)) (-4 *1 (-1286 *3)) (-4 *3 (-1237)) (-4 *3 (-21)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1307 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1069)))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) + ((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-660 (-1197))))) ((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-661 (-1198))))) - ((*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1122)))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1069) (-860))) + (-14 *3 (-660 (-1197))))) + ((*1 *1 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1121)))) ((*1 *1 *1) - (-12 (-14 *2 (-661 (-1198))) (-4 *3 (-175)) (-4 *5 (-245 (-4387 *2) (-791))) + (-12 (-14 *2 (-660 (-1197))) (-4 *3 (-175)) (-4 *5 (-245 (-4386 *2) (-790))) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *4) (|:| -2632 *5)) - (-2 (|:| -2631 *4) (|:| -2632 *5)))) - (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-861)) - (-4 *7 (-969 *3 *5 (-878 *2))))) - ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) - ((*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *1 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1070)))) + (-1 (-114) (-2 (|:| -2630 *4) (|:| -2631 *5)) + (-2 (|:| -2630 *4) (|:| -2631 *5)))) + (-5 *1 (-473 *2 *3 *4 *5 *6 *7)) (-4 *4 (-860)) + (-4 *7 (-968 *3 *5 (-877 *2))))) + ((*1 *1 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-863)))) + ((*1 *1 *1) (-12 (-4 *2 (-569)) (-5 *1 (-639 *2 *3)) (-4 *3 (-1263 *2)))) + ((*1 *1 *1) (-12 (-4 *1 (-727 *2)) (-4 *2 (-1069)))) ((*1 *1 *1) - (-12 (-5 *1 (-755 *2 *3)) (-4 *3 (-861)) (-4 *2 (-1070)) (-4 *3 (-746)))) - ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-5 *1 (-754 *2 *3)) (-4 *3 (-860)) (-4 *2 (-1069)) (-4 *3 (-745)))) + ((*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-859))))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-50 *3 *4)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-50 *3 *4)) + (-14 *4 (-660 (-1197))))) ((*1 *1 *2 *1 *1 *3) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-58 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-58 *6)) (-5 *1 (-59 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *8 *7)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) - (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) + (-14 *6 (-790)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-171 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-5 *2 (-171 *6)) (-5 *1 (-172 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1070) (-861))) - (-5 *1 (-227 *3 *4)) (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-1 (-326 *3) (-326 *3))) (-4 *3 (-13 (-1069) (-860))) + (-5 *1 (-227 *3 *4)) (-14 *4 (-660 (-1197))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) (-4 *6 (-1238)) - (-4 *7 (-1238)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-305 *3)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-246 *5 *6)) (-14 *5 (-790)) (-4 *6 (-1237)) + (-4 *7 (-1237)) (-5 *2 (-246 *5 *7)) (-5 *1 (-247 *5 *6 *7)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-305 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-305 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-305 *6)) (-5 *1 (-306 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-628 *1)) (-4 *1 (-310)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *1 *1)) (-5 *3 (-627 *1)) (-4 *1 (-310)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1180)) (-5 *5 (-628 *6)) (-4 *6 (-310)) - (-4 *2 (-1238)) (-5 *1 (-311 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1179)) (-5 *5 (-627 *6)) (-4 *6 (-310)) + (-4 *2 (-1237)) (-5 *1 (-311 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-628 *5)) (-4 *5 (-310)) (-4 *2 (-310)) + (-12 (-5 *3 (-1 *2 *5)) (-5 *4 (-627 *5)) (-4 *5 (-310)) (-4 *2 (-310)) (-5 *1 (-312 *5 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-709 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-5 *2 (-709 *6)) (-5 *1 (-317 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-708 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) + (-5 *2 (-708 *6)) (-5 *1 (-317 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-326 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-326 *6)) (-5 *1 (-327 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-346 *5 *6 *7 *8)) (-4 *5 (-376)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *9 (-376)) (-4 *10 (-1264 *9)) (-4 *11 (-1264 (-419 *10))) + (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *9 (-376)) (-4 *10 (-1263 *9)) (-4 *11 (-1263 (-419 *10))) (-5 *2 (-346 *9 *10 *11 *12)) (-5 *1 (-347 *5 *6 *7 *8 *9 *10 *11 *12)) (-4 *12 (-355 *9 *10 *11)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-351 *3)) (-4 *3 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1243)) (-4 *8 (-1243)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-4 *9 (-1264 *8)) (-4 *2 (-355 *8 *9 *10)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1242)) (-4 *8 (-1242)) (-4 *6 (-1263 *5)) + (-4 *7 (-1263 (-419 *6))) (-4 *9 (-1263 *8)) (-4 *2 (-355 *8 *9 *10)) (-5 *1 (-356 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-355 *5 *6 *7)) - (-4 *10 (-1264 (-419 *9))))) + (-4 *10 (-1263 (-419 *9))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *2 (-385 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *2 (-385 *6)) (-5 *1 (-386 *5 *4 *6 *2)) (-4 *4 (-385 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) + (-4 *4 (-1121)))) ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-569)) (-5 *1 (-417 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-417 *5)) (-4 *5 (-569)) (-4 *6 (-569)) @@ -411,29 +411,29 @@ (-5 *2 (-419 *6)) (-5 *1 (-420 *5 *6)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *9 *5)) (-5 *4 (-425 *5 *6 *7 *8)) (-4 *5 (-319)) - (-4 *6 (-1012 *5)) (-4 *7 (-1264 *6)) (-4 *8 (-13 (-422 *6 *7) (-1059 *6))) - (-4 *9 (-319)) (-4 *10 (-1012 *9)) (-4 *11 (-1264 *10)) + (-4 *6 (-1011 *5)) (-4 *7 (-1263 *6)) (-4 *8 (-13 (-422 *6 *7) (-1058 *6))) + (-4 *9 (-319)) (-4 *10 (-1011 *9)) (-4 *11 (-1263 *10)) (-5 *2 (-425 *9 *10 *11 *12)) (-5 *1 (-426 *5 *6 *7 *8 *9 *10 *11 *12)) - (-4 *12 (-13 (-422 *10 *11) (-1059 *10))))) + (-4 *12 (-13 (-422 *10 *11) (-1058 *10))))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-430 *6)) (-5 *1 (-428 *4 *5 *2 *6)) (-4 *4 (-430 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-433 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-433 *6)) (-5 *1 (-434 *5 *4 *6 *2)) (-4 *4 (-433 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-438 *6)) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-438 *6)) (-5 *1 (-439 *5 *4 *6 *2)) (-4 *4 (-438 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1238)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-501 *3)) (-4 *3 (-1237)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-863)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-595 *5)) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-595 *6)) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *6 *5)) - (-5 *4 (-3 (-2 (|:| -2351 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) - (-4 *6 (-376)) (-5 *2 (-2 (|:| -2351 *6) (|:| |coeff| *6))) + (-5 *4 (-3 (-2 (|:| -2350 *5) (|:| |coeff| *5)) "failed")) (-4 *5 (-376)) + (-4 *6 (-376)) (-5 *2 (-2 (|:| -2350 *6) (|:| |coeff| *6))) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) (|partial| -12 (-5 *3 (-1 *2 *5)) (-5 *4 (-3 *5 "failed")) (-4 *5 (-376)) @@ -443,436 +443,436 @@ (-5 *4 (-3 (-2 (|:| |mainpart| *5) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *5) (|:| |logand| *5))))) "failed")) (-4 *5 (-376)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *6) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *6) (|:| |logand| *6)))))) (-5 *1 (-596 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-613 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-613 *6)) (-5 *1 (-610 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-612 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-612 *6)) (-5 *1 (-609 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-613 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-612 *7)) + (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-612 *8)) + (-5 *1 (-610 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-613 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1176 *8)) - (-5 *1 (-611 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-612 *7)) + (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1175 *8)) + (-5 *1 (-610 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-613 *6)) (-5 *5 (-1176 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1176 *8)) - (-5 *1 (-611 *6 *7 *8)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-612 *6)) (-5 *5 (-1175 *7)) + (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1175 *8)) + (-5 *1 (-610 *6 *7 *8)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-661 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-661 *6)) (-5 *1 (-662 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-660 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-660 *6)) (-5 *1 (-661 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-661 *6)) (-5 *5 (-661 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-661 *8)) - (-5 *1 (-664 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-660 *6)) (-5 *5 (-660 *7)) + (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-660 *8)) + (-5 *1 (-663 *6 *7 *8)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1 *3 *3 *3)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-385 *5)) - (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) - (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) + (-12 (-5 *3 (-1 *8 *5)) (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-385 *5)) + (-4 *7 (-385 *5)) (-4 *2 (-705 *8 *9 *10)) + (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-705 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1070)) - (-4 *8 (-1070)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-706 *8 *9 *10)) - (-5 *1 (-707 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-706 *5 *6 *7)) + (|partial| -12 (-5 *3 (-1 (-3 *8 "failed") *5)) (-4 *5 (-1069)) + (-4 *8 (-1069)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *2 (-705 *8 *9 *10)) + (-5 *1 (-706 *5 *6 *7 *4 *8 *9 *10 *2)) (-4 *4 (-705 *5 *6 *7)) (-4 *9 (-385 *8)) (-4 *10 (-385 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1264 *5)) - (-4 *2 (-1264 (-419 *8))) (-5 *1 (-729 *5 *6 *4 *7 *8 *2)) - (-4 *4 (-1264 (-419 *6))) (-4 *8 (-1264 *7)))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-569)) (-4 *7 (-569)) (-4 *6 (-1263 *5)) + (-4 *2 (-1263 (-419 *8))) (-5 *1 (-728 *5 *6 *4 *7 *8 *2)) + (-4 *4 (-1263 (-419 *6))) (-4 *8 (-1263 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1070)) (-4 *9 (-1070)) (-4 *5 (-861)) - (-4 *6 (-815)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-815)) (-4 *4 (-969 *8 *6 *5)))) + (-12 (-5 *3 (-1 *9 *8)) (-4 *8 (-1069)) (-4 *9 (-1069)) (-4 *5 (-860)) + (-4 *6 (-814)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-747 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-814)) (-4 *4 (-968 *8 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-861)) (-4 *6 (-861)) (-4 *7 (-815)) - (-4 *9 (-1070)) (-4 *2 (-969 *9 *8 *6)) (-5 *1 (-749 *5 *6 *7 *8 *9 *4 *2)) - (-4 *8 (-815)) (-4 *4 (-969 *9 *7 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-860)) (-4 *6 (-860)) (-4 *7 (-814)) + (-4 *9 (-1069)) (-4 *2 (-968 *9 *8 *6)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) + (-4 *8 (-814)) (-4 *4 (-968 *9 *7 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-755 *5 *7)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-4 *7 (-746)) (-5 *2 (-755 *6 *7)) (-5 *1 (-754 *5 *6 *7)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-754 *5 *7)) (-4 *5 (-1069)) (-4 *6 (-1069)) + (-4 *7 (-745)) (-5 *2 (-754 *6 *7)) (-5 *1 (-753 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-755 *3 *4)) (-4 *4 (-746)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-754 *3 *4)) (-4 *4 (-745)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-801 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-5 *2 (-801 *6)) (-5 *1 (-802 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-800 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) + (-5 *2 (-800 *6)) (-5 *1 (-801 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-818 *6)) - (-5 *1 (-821 *4 *5 *2 *6)) (-4 *4 (-818 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-817 *6)) + (-5 *1 (-820 *4 *5 *2 *6)) (-4 *4 (-817 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-845 *6)) (-5 *1 (-846 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-844 *6)) (-5 *1 (-845 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-845 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-845 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *1 (-846 *5 *6)))) + (-12 (-5 *2 (-844 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-844 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *1 (-845 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-855 *6)) (-5 *1 (-856 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-854 *6)) (-5 *1 (-855 *5 *6)))) ((*1 *2 *3 *4 *2 *2) - (-12 (-5 *2 (-855 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-855 *5)) (-4 *5 (-1122)) - (-4 *6 (-1122)) (-5 *1 (-856 *5 *6)))) + (-12 (-5 *2 (-854 *6)) (-5 *3 (-1 *6 *5)) (-5 *4 (-854 *5)) (-4 *5 (-1121)) + (-4 *6 (-1121)) (-5 *1 (-855 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-892 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-892 *6)) (-5 *1 (-891 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-891 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-891 *6)) (-5 *1 (-890 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-894 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-894 *6)) (-5 *1 (-893 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-893 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-893 *6)) (-5 *1 (-892 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-897 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-897 *6)) (-5 *1 (-896 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-896 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-896 *6)) (-5 *1 (-895 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-903 *5 *6)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *7 (-1122)) (-5 *2 (-903 *5 *7)) (-5 *1 (-904 *5 *6 *7)))) + (-12 (-5 *3 (-1 *7 *6)) (-5 *4 (-902 *5 *6)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-4 *7 (-1121)) (-5 *2 (-902 *5 *7)) (-5 *1 (-903 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-905 *6)) (-5 *1 (-907 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-904 *6)) (-5 *1 (-906 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-965 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-5 *2 (-965 *6)) (-5 *1 (-966 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-964 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) + (-5 *2 (-964 *6)) (-5 *1 (-965 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-861)) (-4 *8 (-1070)) - (-4 *6 (-815)) + (-12 (-5 *3 (-1 *2 *7)) (-5 *4 (-1 *2 *8)) (-4 *7 (-860)) (-4 *8 (-1069)) + (-4 *6 (-814)) (-4 *2 - (-13 (-1122) - (-10 -8 (-15 -4269 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-791)))))) - (-5 *1 (-971 *6 *7 *8 *5 *2)) (-4 *5 (-969 *8 *6 *7)))) + (-13 (-1121) + (-10 -8 (-15 -4268 ($ $ $)) (-15 * ($ $ $)) (-15 ** ($ $ (-790)))))) + (-5 *1 (-970 *6 *7 *8 *5 *2)) (-4 *5 (-968 *8 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-977 *6)) (-5 *1 (-978 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-976 *6)) (-5 *1 (-977 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-985 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-985 *6)) (-5 *1 (-987 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-984 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-984 *6)) (-5 *1 (-986 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-962 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-5 *2 (-962 *6)) (-5 *1 (-1002 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-961 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) + (-5 *2 (-961 *6)) (-5 *1 (-1001 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-1 *2 (-965 *4))) (-4 *4 (-1070)) (-4 *2 (-969 (-965 *4) *5 *6)) - (-4 *5 (-815)) + (-12 (-5 *3 (-1 *2 (-964 *4))) (-4 *4 (-1069)) (-4 *2 (-968 (-964 *4) *5 *6)) + (-4 *5 (-814)) (-4 *6 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198)))))) - (-5 *1 (-1005 *4 *5 *6 *2)))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197)))))) + (-5 *1 (-1004 *4 *5 *6 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1012 *6)) - (-5 *1 (-1013 *5 *6 *4 *2)) (-4 *4 (-1012 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-569)) (-4 *6 (-569)) (-4 *2 (-1011 *6)) + (-5 *1 (-1012 *5 *6 *4 *2)) (-4 *4 (-1011 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1019 *6)) - (-5 *1 (-1020 *4 *5 *2 *6)) (-4 *4 (-1019 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-175)) (-4 *6 (-175)) (-4 *2 (-1018 *6)) + (-5 *1 (-1019 *4 *5 *2 *6)) (-4 *4 (-1018 *5)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-12 (-5 *2 (-1 *5 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) + (-12 (-5 *2 (-1 *5 *5)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1070)) (-4 *10 (-1070)) (-14 *5 (-791)) - (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) - (-4 *2 (-1074 *5 *6 *10 *11 *12)) - (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) - (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) + (-12 (-5 *3 (-1 *10 *7)) (-4 *7 (-1069)) (-4 *10 (-1069)) (-14 *5 (-790)) + (-14 *6 (-790)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) + (-4 *2 (-1073 *5 *6 *10 *11 *12)) + (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *10 *11 *12 *2)) + (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *11 (-245 *6 *10)) (-4 *12 (-245 *5 *10)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-1110 *6)) (-5 *1 (-1111 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-1109 *6)) (-5 *1 (-1110 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1110 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-661 *6)) (-5 *1 (-1111 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1109 *5)) (-4 *5 (-859)) (-4 *5 (-1237)) + (-4 *6 (-1237)) (-5 *2 (-660 *6)) (-5 *1 (-1110 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1113 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-1113 *6)) (-5 *1 (-1114 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1112 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-1112 *6)) (-5 *1 (-1113 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1116 *4 *2)) (-4 *4 (-860)) - (-4 *2 (-1171 *4)))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *1 (-1115 *4 *2)) (-4 *4 (-859)) + (-4 *2 (-1170 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1176 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-1176 *6)) (-5 *1 (-1178 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1175 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-1175 *6)) (-5 *1 (-1177 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1176 *6)) (-5 *5 (-1176 *7)) - (-4 *6 (-1238)) (-4 *7 (-1238)) (-4 *8 (-1238)) (-5 *2 (-1176 *8)) - (-5 *1 (-1179 *6 *7 *8)))) + (-12 (-5 *3 (-1 *8 *6 *7)) (-5 *4 (-1175 *6)) (-5 *5 (-1175 *7)) + (-4 *6 (-1237)) (-4 *7 (-1237)) (-4 *8 (-1237)) (-5 *2 (-1175 *8)) + (-5 *1 (-1178 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1192 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) - (-5 *2 (-1192 *6)) (-5 *1 (-1193 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1191 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) + (-5 *2 (-1191 *6)) (-5 *1 (-1192 *5 *6)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1215 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-1 *4 *4 *4)) (-4 *1 (-1214 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1248 *5 *7 *9)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1248 *6 *8 *10)) (-5 *1 (-1249 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1198)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1247 *5 *7 *9)) (-4 *5 (-1069)) + (-4 *6 (-1069)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1247 *6 *8 *10)) (-5 *1 (-1248 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1197)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-1255 *6)) (-5 *1 (-1256 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-1254 *6)) (-5 *1 (-1255 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1255 *5)) (-4 *5 (-860)) (-4 *5 (-1238)) - (-4 *6 (-1238)) (-5 *2 (-1176 *6)) (-5 *1 (-1256 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1254 *5)) (-4 *5 (-859)) (-4 *5 (-1237)) + (-4 *6 (-1237)) (-5 *2 (-1175 *6)) (-5 *1 (-1255 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1257 *5 *6)) (-14 *5 (-1198)) - (-4 *6 (-1070)) (-4 *8 (-1070)) (-5 *2 (-1257 *7 *8)) - (-5 *1 (-1258 *5 *6 *7 *8)) (-14 *7 (-1198)))) + (-12 (-5 *3 (-1 *8 *6)) (-5 *4 (-1256 *5 *6)) (-14 *5 (-1197)) + (-4 *6 (-1069)) (-4 *8 (-1069)) (-5 *2 (-1256 *7 *8)) + (-5 *1 (-1257 *5 *6 *7 *8)) (-14 *7 (-1197)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1264 *6)) - (-5 *1 (-1265 *5 *4 *6 *2)) (-4 *4 (-1264 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1263 *6)) + (-5 *1 (-1264 *5 *4 *6 *2)) (-4 *4 (-1263 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1269 *5 *7 *9)) (-4 *5 (-1070)) - (-4 *6 (-1070)) (-14 *7 (-1198)) (-14 *9 *5) (-14 *10 *6) - (-5 *2 (-1269 *6 *8 *10)) (-5 *1 (-1270 *5 *6 *7 *8 *9 *10)) - (-14 *8 (-1198)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1268 *5 *7 *9)) (-4 *5 (-1069)) + (-4 *6 (-1069)) (-14 *7 (-1197)) (-14 *9 *5) (-14 *10 *6) + (-5 *2 (-1268 *6 *8 *10)) (-5 *1 (-1269 *5 *6 *7 *8 *9 *10)) + (-14 *8 (-1197)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1070)) (-4 *6 (-1070)) (-4 *2 (-1281 *6)) - (-5 *1 (-1279 *5 *6 *4 *2)) (-4 *4 (-1281 *5)))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1069)) (-4 *6 (-1069)) (-4 *2 (-1280 *6)) + (-5 *1 (-1278 *5 *6 *4 *2)) (-4 *4 (-1280 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *6 (-1238)) - (-5 *2 (-1288 *6)) (-5 *1 (-1289 *5 *6)))) + (-12 (-5 *3 (-1 *6 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *6 (-1237)) + (-5 *2 (-1287 *6)) (-5 *1 (-1288 *5 *6)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1288 *5)) - (-4 *5 (-1238)) (-4 *6 (-1238)) (-5 *2 (-1288 *6)) (-5 *1 (-1289 *5 *6)))) + (|partial| -12 (-5 *3 (-1 (-3 *6 "failed") *5)) (-5 *4 (-1287 *5)) + (-4 *5 (-1237)) (-4 *6 (-1237)) (-5 *2 (-1287 *6)) (-5 *1 (-1288 *5 *6)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-1070)))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-1069)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-1312 *3 *4)) - (-4 *4 (-859))))) -(((*1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-34)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-258)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-992)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-1311 *3 *4)) + (-4 *4 (-858))))) +(((*1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-34)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-258)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-991)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-558)))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-859))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858))))) (((*1 *2 *1) - (-12 (-4 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-841 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1070))))) + (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-840 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1069))))) (((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-841 *3)))) - ((*1 *2 *1) (-12 (-4 *2 (-859)) (-5 *1 (-1312 *3 *2)) (-4 *3 (-1070))))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-840 *3)))) + ((*1 *2 *1) (-12 (-4 *2 (-858)) (-5 *1 (-1311 *3 *2)) (-4 *3 (-1069))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1313 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-861)) + (-12 (-5 *3 (-1312 *4 *2)) (-4 *1 (-387 *4 *2)) (-4 *4 (-860)) (-4 *2 (-175)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1308 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1307 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1069)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-841 *4)) (-4 *1 (-1308 *4 *2)) (-4 *4 (-861)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859))))) + (-12 (-5 *3 (-840 *4)) (-4 *1 (-1307 *4 *2)) (-4 *4 (-860)) (-4 *2 (-1069)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1069)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-859))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) (-5 *1 (-703 *4 *5)) - (-4 *4 (-1122)))) - ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) - ((*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1308 *3 *2)) (-4 *3 (-861)) (-4 *2 (-1070)))) - ((*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-1312 *2 *3)) (-4 *3 (-859))))) + (-12 (-5 *3 (-1 *5)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) (-5 *1 (-702 *4 *5)) + (-4 *4 (-1121)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) + ((*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-433 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1307 *3 *2)) (-4 *3 (-860)) (-4 *2 (-1069)))) + ((*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-1311 *2 *3)) (-4 *3 (-858))))) (((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1312 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-859))))) -(((*1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *1 *1) (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-859))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1311 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-858))))) +(((*1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) + ((*1 *1 *1) (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-858))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *2 (-376)))) + (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *2 (-376)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-229)))) ((*1 *1 *1 *1) - (-3957 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1238))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) + (-3956 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1237))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) ((*1 *1 *1 *1) (-4 *1 (-376))) ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-1146 *3 (-628 *1))) (-4 *3 (-569)) (-4 *3 (-1122)) + (-12 (-5 *2 (-1145 *3 (-627 *1))) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) ((*1 *1 *1 *1) (-5 *1 (-547))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-636 *2 *4 *3)) (-4 *2 (-38 *4)) - (-4 *3 (|SubsetCategory| (-746) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-635 *2 *4 *3)) (-4 *2 (-38 *4)) + (-4 *3 (|SubsetCategory| (-745) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-175)) (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4)) - (-4 *2 (|SubsetCategory| (-746) *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)) (-4 *2 (-376)))) + (-12 (-4 *4 (-175)) (-5 *1 (-635 *3 *4 *2)) (-4 *3 (-38 *4)) + (-4 *2 (|SubsetCategory| (-745) *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-651 *2)) (-4 *2 (-175)) (-4 *2 (-376)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-672 *2 *4 *3)) (-4 *2 (-737 *4)) - (-4 *3 (|SubsetCategory| (-746) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-671 *2 *4 *3)) (-4 *2 (-736 *4)) + (-4 *3 (|SubsetCategory| (-745) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *4 (-175)) (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4)) - (-4 *2 (|SubsetCategory| (-746) *4)))) + (-12 (-4 *4 (-175)) (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-736 *4)) + (-4 *2 (|SubsetCategory| (-745) *4)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-880 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1070)) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-791))) (-14 *5 (-791)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)))) + (|partial| -12 (-5 *1 (-879 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *2 (-1069)) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-790))) (-14 *5 (-790)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) (-4 *5 (-245 *4 *2)) + (-12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-376)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1296 *2)) (-4 *2 (-376)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1295 *2)) (-4 *2 (-376)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1070)) (-4 *3 (-861)) (-4 *4 (-815)) - (-14 *6 (-661 *3)) (-5 *1 (-1301 *2 *3 *4 *5 *6 *7 *8)) - (-4 *5 (-969 *2 *4 *3)) (-14 *7 (-661 (-791))) (-14 *8 (-791)))) + (|partial| -12 (-4 *2 (-376)) (-4 *2 (-1069)) (-4 *3 (-860)) (-4 *4 (-814)) + (-14 *6 (-660 *3)) (-5 *1 (-1300 *2 *3 *4 *5 *6 *7 *8)) + (-4 *5 (-968 *2 *4 *3)) (-14 *7 (-660 (-790))) (-14 *8 (-790)))) ((*1 *1 *1 *2) - (-12 (-5 *1 (-1312 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1070)) (-4 *3 (-859))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) + (-12 (-5 *1 (-1311 *2 *3)) (-4 *2 (-376)) (-4 *2 (-1069)) (-4 *3 (-858))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) ((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-790)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *1) - (-12 (-5 *2 (-558)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-558)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) + (-14 *4 (-660 (-1197))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-286)))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) + (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-286)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *8)) (-5 *4 (-661 *6)) (-4 *6 (-861)) - (-4 *8 (-969 *7 *5 *6)) (-4 *5 (-815)) (-4 *7 (-1070)) (-5 *2 (-661 (-791))) + (-12 (-5 *3 (-1191 *8)) (-5 *4 (-660 *6)) (-4 *6 (-860)) + (-4 *8 (-968 *7 *5 *6)) (-4 *5 (-814)) (-4 *7 (-1069)) (-5 *2 (-660 (-790))) (-5 *1 (-333 *5 *6 *7 *8)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-938)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-937)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *2 (-791)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *2 (-790)))) ((*1 *2 *1) (-12 (-4 *1 (-482 *3 *2)) (-4 *3 (-175)) (-4 *2 (-23)))) ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1264 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-639 *3 *4)) (-4 *4 (-1263 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-727 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 (-791))))) + (-12 (-5 *3 (-660 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 (-790))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) - (-5 *2 (-791)))) + (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) + (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *2 *4)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *2 (-814)))) + (-12 (-4 *1 (-993 *3 *2 *4)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *2 (-813)))) ((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-791)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-1252 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1281 *3)) + (-12 (-4 *1 (-1251 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1280 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1250 *3)) + (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-558))))) - ((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-845 (-938))))) + ((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-844 (-937))))) ((*1 *2 *1) - (-12 (-4 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-791))))) + (-12 (-4 *1 (-1310 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-790))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)))) + (-12 (-5 *2 (-790)) (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-1311 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070))))) + (-12 (-5 *2 (-790)) (-4 *1 (-1310 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069))))) (((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-376)) (-14 *6 (-1288 (-709 *3))) - (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))))) - ((*1 *1 *2) (-12 (-5 *2 (-1146 (-558) (-628 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1287 *3)) (-4 *3 (-376)) (-14 *6 (-1287 (-708 *3))) + (-5 *1 (-44 *3 *4 *5 *6)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))))) + ((*1 *1 *2) (-12 (-5 *2 (-1145 (-558) (-627 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *3) (-12 (-5 *2 (-51)) (-5 *1 (-52 *3)) (-4 *3 (-1237)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3950 'X) (-3950) (-719))) (-5 *1 (-61 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-352 (-3949 'X) (-3949) (-718))) (-5 *1 (-61 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'JINT 'X 'ELAM) (-3950) (-719)))) - (-5 *1 (-62 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'JINT 'X 'ELAM) (-3949) (-718)))) + (-5 *1 (-62 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 'XC) (-719)))) (-5 *1 (-64 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 'XC) (-718)))) (-5 *1 (-64 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3950) (-3950 'XC) (-719))) (-5 *1 (-66 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-352 (-3949) (-3949 'XC) (-718))) (-5 *1 (-66 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'X) (-3950 '-4396) (-719)))) (-5 *1 (-71 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'X) (-3949 '-4395) (-718)))) (-5 *1 (-71 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 'X) (-719)))) (-5 *1 (-74 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 'X) (-718)))) (-5 *1 (-74 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3950) (-3950 'X) (-719))) (-5 *1 (-75 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-352 (-3949) (-3949 'X) (-718))) (-5 *1 (-75 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'X 'EPS) (-3950 '-4396) (-719)))) - (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'X 'EPS) (-3949 '-4395) (-718)))) + (-5 *1 (-76 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'EPS) (-3950 'YA 'YB) (-719)))) - (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1198)) (-14 *4 (-1198)) (-14 *5 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'EPS) (-3949 'YA 'YB) (-718)))) + (-5 *1 (-77 *3 *4 *5)) (-14 *3 (-1197)) (-14 *4 (-1197)) (-14 *5 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3950) (-3950 'X) (-719))) (-5 *1 (-78 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-352 (-3949) (-3949 'X) (-718))) (-5 *1 (-78 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 'XC) (-719)))) (-5 *1 (-79 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 'XC) (-718)))) (-5 *1 (-79 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950) (-3950 'X) (-719)))) (-5 *1 (-80 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949) (-3949 'X) (-718)))) (-5 *1 (-80 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'X) (-3950 '-4396) (-719)))) (-5 *1 (-82 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'X) (-3949 '-4395) (-718)))) (-5 *1 (-82 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'X '-4396) (-3950) (-719)))) (-5 *1 (-83 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'X '-4395) (-3949) (-718)))) (-5 *1 (-83 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-709 (-352 (-3950 'X '-4396) (-3950) (-719)))) (-5 *1 (-84 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-708 (-352 (-3949 'X '-4395) (-3949) (-718)))) (-5 *1 (-84 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-709 (-352 (-3950 'X) (-3950) (-719)))) (-5 *1 (-85 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-708 (-352 (-3949 'X) (-3949) (-718)))) (-5 *1 (-85 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-352 (-3950 'X) (-3950) (-719)))) (-5 *1 (-86 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-1287 (-352 (-3949 'X) (-3949) (-718)))) (-5 *1 (-86 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-709 (-352 (-3950 'XL 'XR 'ELAM) (-3950) (-719)))) - (-5 *1 (-88 *3)) (-14 *3 (-1198)))) + (-12 (-5 *2 (-708 (-352 (-3949 'XL 'XR 'ELAM) (-3949) (-718)))) + (-5 *1 (-88 *3)) (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-352 (-3950 'X) (-3950 '-4396) (-719))) (-5 *1 (-89 *3)) - (-14 *3 (-1198)))) + (-12 (-5 *2 (-352 (-3949 'X) (-3949 '-4395) (-718))) (-5 *1 (-89 *3)) + (-14 *3 (-1197)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) - (-14 *4 (-791)) (-4 *5 (-175)))) + (-12 (-5 *2 (-660 (-137 *3 *4 *5))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-790)) (-4 *5 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) - (-14 *4 (-791)))) + (-12 (-5 *2 (-660 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-790)))) ((*1 *1 *2) - (-12 (-5 *2 (-1163 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) + (-12 (-5 *2 (-1162 *4 *5)) (-14 *4 (-790)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) ((*1 *1 *2) - (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-791)) (-4 *5 (-175)) + (-12 (-5 *2 (-246 *4 *5)) (-14 *4 (-790)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-709 *4))) (-4 *4 (-175)) - (-5 *2 (-1288 (-709 (-419 (-965 *4))))) (-5 *1 (-192 *4)))) + (-12 (-5 *3 (-1287 (-708 *4))) (-4 *4 (-175)) + (-5 *2 (-1287 (-708 (-419 (-964 *4))))) (-5 *1 (-192 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1113 (-326 *4))) (-4 *4 (-13 (-861) (-569) (-631 (-391)))) - (-5 *2 (-1113 (-391))) (-5 *1 (-268 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286)))) + (-12 (-5 *3 (-1112 (-326 *4))) (-4 *4 (-13 (-860) (-569) (-630 (-391)))) + (-5 *2 (-1112 (-391))) (-5 *1 (-268 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-277 *2)) (-4 *2 (-860)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-286)))) ((*1 *2 *1) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) + (-12 (-4 *2 (-1263 *3)) (-5 *1 (-301 *3 *2 *4 *5 *6 *7)) (-4 *3 (-175)) (-4 *4 (-23)) (-14 *5 (-1 *2 *2 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-433 *3))) - (-14 *5 (-1198)) (-14 *6 *4) - (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) + (-12 (-5 *2 (-1268 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-433 *3))) + (-14 *5 (-1197)) (-14 *6 *4) + (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) (-5 *1 (-325 *3 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) - (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) + (-12 (-5 *2 (-326 *5)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) + (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *2 *3) (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *3 *4 *2)) (-4 *3 (-341 *4)))) @@ -880,2874 +880,2874 @@ (-12 (-4 *4 (-363)) (-4 *2 (-341 *4)) (-5 *1 (-361 *2 *4 *3)) (-4 *3 (-341 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) - (-5 *2 (-1313 *3 *4)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) + (-5 *2 (-1312 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) - (-5 *2 (-1304 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-861)) (-4 *3 (-175)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) + (-5 *2 (-1303 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-860)) (-4 *3 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-396)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-396)))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-719))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-396)))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-718))) (-4 *1 (-396)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-398)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-398)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-305 (-326 (-171 (-391))))) (-5 *1 (-410 *3 *4 *5 *6)) - (-14 *3 (-1198)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1="void"))) - (-14 *5 (-661 (-1198))) (-14 *6 (-1202)))) + (-14 *3 (-1197)) (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1="void"))) + (-14 *5 (-660 (-1197))) (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-326 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-558)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-326 (-558)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-326 (-391))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-558))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-326 (-558))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-714)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-326 (-713)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-719)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-326 (-718)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-305 (-326 (-721)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-305 (-326 (-720)))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-714))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-326 (-713))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-719))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-326 (-718))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-721))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-326 (-720))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) - (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) + (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-660 (-342))) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1198)) - (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-14 *5 (-661 (-1198))) - (-14 *6 (-1202)))) + (-12 (-5 *2 (-342)) (-5 *1 (-410 *3 *4 *5 *6)) (-14 *3 (-1197)) + (-14 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-14 *5 (-660 (-1197))) + (-14 *6 (-1201)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-965 (-419 *3)))) (-4 *3 (-569)) (-4 *3 (-1122)) + (-12 (-5 *2 (-419 (-964 (-419 *3)))) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 (-419 *3))) (-4 *3 (-569)) (-4 *3 (-1122)) + (-12 (-5 *2 (-964 (-419 *3))) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 *3)) (-4 *3 (-569)) (-4 *3 (-1122)) (-4 *1 (-433 *3)))) + (-12 (-5 *2 (-419 *3)) (-4 *3 (-569)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1146 *3 (-628 *1))) (-4 *3 (-1070)) (-4 *3 (-1122)) + (-12 (-5 *2 (-1145 *3 (-627 *1))) (-4 *3 (-1069)) (-4 *3 (-1121)) (-4 *1 (-433 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-861) (-21))) (-5 *1 (-441 *3 *4)) + (-12 (-5 *2 (-343 *4)) (-4 *4 (-13 (-860) (-21))) (-5 *1 (-441 *3 *4)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))))) ((*1 *1 *2) (-12 (-5 *1 (-441 *2 *3)) (-4 *2 (-13 (-175) (-38 (-419 (-558))))) - (-4 *3 (-13 (-861) (-21))))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-446)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-446)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-446)))) + (-4 *3 (-13 (-860) (-21))))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-446)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-446)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-446)))) ((*1 *1 *2) (-12 (-5 *2 (-446)) (-5 *1 (-448)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-452)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-452)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-719))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-452)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-718))) (-4 *1 (-452)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |localSymbols| (-1202)) (|:| -1813 (-661 (-342))))) + (-12 (-5 *2 (-2 (|:| |localSymbols| (-1201)) (|:| -1812 (-660 (-342))))) (-4 *1 (-453)))) ((*1 *1 *2) (-12 (-5 *2 (-342)) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-4 *1 (-453)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-419 (-965 *3)))) (-4 *3 (-175)) - (-14 *6 (-1288 (-709 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-938)) - (-14 *5 (-661 (-1198))))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-480)))) + (-12 (-5 *2 (-1287 (-419 (-964 *3)))) (-4 *3 (-175)) + (-14 *6 (-1287 (-708 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-14 *4 (-937)) + (-14 *5 (-660 (-1197))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-480)))) ((*1 *1 *2) - (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3) + (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-486 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1146 (-558) (-628 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-514)))) - ((*1 *1 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-536)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-617)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-618 *3 *2)) (-4 *2 (-764 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-630 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *1 (-633 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-4 *1 (-638 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1309 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-650 *3 *2)) (-4 *2 (-764 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-697 *3)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-5 *1 (-695 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) - (-12 (-5 *2 (-977 (-977 (-977 *3)))) (-4 *3 (-1122)) (-5 *1 (-695 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) - ((*1 *1 *2) (-12 (-5 *2 (-1136)) (-5 *1 (-701)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *2)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-1069)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1145 (-558) (-627 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-514)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-536)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-616)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-617 *3 *2)) (-4 *2 (-763 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-629 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) (-12 (-4 *1 (-632 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) (-12 (-4 *1 (-637 *2)) (-4 *2 (-1069)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1308 *3 *4)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-5 *1 (-649 *3 *2)) (-4 *2 (-763 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-696 *3)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) + (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-5 *1 (-694 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-5 *2 (-976 (-976 (-976 *3)))) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) + ((*1 *1 *2) (-12 (-5 *2 (-1135)) (-5 *1 (-700)))) + ((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *2)) (-4 *4 (-385 *3)) (-4 *2 (-385 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-721))) (-5 *1 (-714)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-719))) (-5 *1 (-714)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-558))) (-5 *1 (-714)))) - ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-714)))) - ((*1 *1 *2) (-12 (-5 *2 (-721)) (-5 *1 (-719)))) - ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-719)))) - ((*1 *2 *3) (-12 (-5 *3 (-326 (-558))) (-5 *2 (-326 (-721))) (-5 *1 (-721)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730)))) - ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + ((*1 *2 *1) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-713)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-720))) (-5 *1 (-713)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-718))) (-5 *1 (-713)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-558))) (-5 *1 (-713)))) + ((*1 *1 *2) (-12 (-5 *2 (-171 (-391))) (-5 *1 (-713)))) + ((*1 *1 *2) (-12 (-5 *2 (-720)) (-5 *1 (-718)))) + ((*1 *2 *1) (-12 (-5 *2 (-391)) (-5 *1 (-718)))) + ((*1 *2 *3) (-12 (-5 *3 (-326 (-558))) (-5 *2 (-326 (-720))) (-5 *1 (-720)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729)))) + ((*1 *2 *1) + (-12 (-4 *2 (-175)) (-5 *1 (-730 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *3 (-23)) + (-12 (-4 *2 (-175)) (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-2 (|:| -4384 *3) (|:| -4368 *4)))) (-4 *3 (-1070)) - (-4 *4 (-746)) (-5 *1 (-755 *3 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-783)))) + (-12 (-5 *2 (-660 (-2 (|:| -4383 *3) (|:| -4367 *4)))) (-4 *3 (-1069)) + (-4 *4 (-745)) (-5 *1 (-754 *3 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-782)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) - (-5 *1 (-789)))) + (-5 *1 (-788)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-789)))) + (-5 *1 (-788)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-789)))) - ((*1 *2 *3) (-12 (-5 *2 (-793)) (-5 *1 (-794 *3)) (-4 *3 (-1238)))) + (-5 *1 (-788)))) + ((*1 *2 *3) (-12 (-5 *2 (-792)) (-5 *1 (-793 *3)) (-4 *3 (-1237)))) ((*1 *1 *2) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-830)))) + (-5 *1 (-829)))) ((*1 *1 *2) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) - (-5 *1 (-854)))) + (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) + (-5 *1 (-853)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) - (-5 *1 (-854)))) + (-12 (-5 *2 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) + (-5 *1 (-853)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) - (-5 *1 (-854)))) - ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-872)))) - ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 (-48))) (-5 *2 (-326 (-558))) (-5 *1 (-889)))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) + (-5 *1 (-853)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-871)))) + ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) + ((*1 *2 *3) (-12 (-5 *3 (-964 (-48))) (-5 *2 (-326 (-558))) (-5 *1 (-888)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 (-48)))) (-5 *2 (-326 (-558))) (-5 *1 (-889)))) - ((*1 *1 *2) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-841 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) + (-12 (-5 *3 (-419 (-964 (-48)))) (-5 *2 (-326 (-558))) (-5 *1 (-888)))) + ((*1 *1 *2) (-12 (-5 *1 (-907 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-840 *3)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) ((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |pde| (-661 (-326 (-229)))) + (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| - (-661 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) - (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) - (|:| |dFinish| (-709 (-229)))))) - (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) + (-660 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) + (|:| |dFinish| (-708 (-229)))))) + (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) - (-5 *1 (-915)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-921 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-921 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-921 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-933 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-933 *3)) (-4 *3 (-319)))) - ((*1 *2 *3) - (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-939 *4)) (-4 *4 (-569)))) - ((*1 *2 *3) (-12 (-5 *2 (-1294)) (-5 *1 (-1054 *3)) (-4 *3 (-1238)))) - ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1054 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-661 *2)))) - ((*1 *2 *3) (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-1061 *3)) (-4 *3 (-569)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *4 (-861)) (-5 *1 (-1147 *3 *4 *2)) - (-4 *2 (-969 *3 (-543 *4) *4)))) - ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *2 (-861)) (-5 *1 (-1147 *3 *2 *4)) - (-4 *4 (-969 *3 (-543 *2) *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1165)))) - ((*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3) - (-5 *1 (-1196 *3 *4 *5)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1197)))) - ((*1 *2 *1) (-12 (-5 *2 (-1210 (-1198) (-448))) (-5 *1 (-1202)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1211 *3)) (-4 *3 (-1122)))) - ((*1 *2 *3) (-12 (-5 *2 (-1218)) (-5 *1 (-1219 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 *3)) (-4 *3 (-1070)) (-5 *1 (-1231 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1231 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1248 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *2) (-12 (-5 *2 (-1110 *3)) (-4 *3 (-1238)) (-5 *1 (-1255 *3)))) - ((*1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1278 *3 *4 *5)) - (-4 *3 (-1070)) (-14 *5 *3))) - ((*1 *1 *2) - (-12 (-5 *2 (-1257 *4 *3)) (-4 *3 (-1070)) (-14 *4 (-1198)) (-14 *5 *3) - (-5 *1 (-1278 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2))) - ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1291)) (-5 *1 (-1290)))) - ((*1 *2 *1) (-12 (-5 *2 (-877)) (-5 *1 (-1291)))) - ((*1 *1 *2) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1313 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) + (-5 *1 (-914)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-920 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-920 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-920 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-417 *3))) (-4 *3 (-319)) (-5 *1 (-932 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 *3)) (-5 *1 (-932 *3)) (-4 *3 (-319)))) + ((*1 *2 *3) + (-12 (-5 *3 (-489)) (-5 *2 (-326 *4)) (-5 *1 (-938 *4)) (-4 *4 (-569)))) + ((*1 *2 *3) (-12 (-5 *2 (-1293)) (-5 *1 (-1053 *3)) (-4 *3 (-1237)))) + ((*1 *2 *3) (-12 (-5 *3 (-323)) (-5 *1 (-1053 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-660 *2)))) + ((*1 *2 *3) (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-1060 *3)) (-4 *3 (-569)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1069)) (-4 *4 (-860)) (-5 *1 (-1146 *3 *4 *2)) + (-4 *2 (-968 *3 (-543 *4) *4)))) + ((*1 *1 *2) + (-12 (-4 *3 (-1069)) (-4 *2 (-860)) (-5 *1 (-1146 *3 *2 *4)) + (-4 *4 (-968 *3 (-543 *2) *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-146)) (-4 *1 (-1164)))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1069)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) + (-4 *3 (-1069)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-1069)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3) + (-5 *1 (-1195 *3 *4 *5)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1196)))) + ((*1 *2 *1) (-12 (-5 *2 (-1209 (-1197) (-448))) (-5 *1 (-1201)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1210 *3)) (-4 *3 (-1121)))) + ((*1 *2 *3) (-12 (-5 *2 (-1217)) (-5 *1 (-1218 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-964 *3)) (-4 *3 (-1069)) (-5 *1 (-1230 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1230 *3)) (-4 *3 (-1069)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1247 *3 *4 *5)) + (-4 *3 (-1069)) (-14 *5 *3))) + ((*1 *1 *2) (-12 (-5 *2 (-1109 *3)) (-4 *3 (-1237)) (-5 *1 (-1254 *3)))) + ((*1 *1 *2) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1277 *3 *4 *5)) + (-4 *3 (-1069)) (-14 *5 *3))) + ((*1 *1 *2) + (-12 (-5 *2 (-1256 *4 *3)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3) + (-5 *1 (-1277 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-480)) (-5 *2 (-1290)) (-5 *1 (-1289)))) + ((*1 *2 *1) (-12 (-5 *2 (-876)) (-5 *1 (-1290)))) + ((*1 *1 *2) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1312 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) ((*1 *2 *1) - (-12 (-5 *2 (-1304 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) + (-12 (-5 *2 (-1303 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) - (-5 *1 (-1309 *3 *4))))) + (-12 (-5 *2 (-683 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) + (-5 *1 (-1308 *3 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-1304 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) - (-5 *1 (-684 *3 *4)))) + (|partial| -12 (-5 *2 (-1303 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) + (-5 *1 (-683 *3 *4)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-684 *3 *4)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) + (|partial| -12 (-5 *2 (-683 *3 *4)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) + (-12 (-5 *3 (-1112 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-162)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1198)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-162)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1197)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-1309 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1308 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-660 (-558))) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) (-4 *1 (-296))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-684 *3 *4)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-5 *1 (-644 *3 *4 *5)) - (-14 *5 (-938)))) + (-12 (-5 *2 (-683 *3 *4)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-5 *1 (-643 *3 *4 *5)) + (-14 *5 (-937)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1070) (-737 (-419 (-558))))) (-4 *5 (-861)) - (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1311 *5 *4)))) + (-12 (-5 *3 (-790)) (-4 *4 (-13 (-1069) (-736 (-419 (-558))))) (-4 *5 (-860)) + (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-737 (-419 (-558)))) - (-4 *3 (-861)) (-4 *4 (-175))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-736 (-419 (-558)))) + (-4 *3 (-860)) (-4 *4 (-175))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) (-4 *1 (-296))) ((*1 *2 *3) (-12 (-5 *3 (-417 *4)) (-4 *4 (-569)) - (-5 *2 (-661 (-2 (|:| -4384 (-791)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) + (-5 *2 (-660 (-2 (|:| -4383 (-790)) (|:| |logand| *4)))) (-5 *1 (-332 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *1) - (-12 (-5 *2 (-684 *3 *4)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) + (-12 (-5 *2 (-683 *3 *4)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1070) (-737 (-419 (-558))))) (-4 *5 (-861)) - (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1311 *5 *4)))) + (-12 (-5 *3 (-790)) (-4 *4 (-13 (-1069) (-736 (-419 (-558))))) (-4 *5 (-860)) + (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1310 *5 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-1309 *3 *4)) (-4 *4 (-737 (-419 (-558)))) - (-4 *3 (-861)) (-4 *4 (-175))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1308 *3 *4)) (-4 *4 (-736 (-419 (-558)))) + (-4 *3 (-860)) (-4 *4 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| |k| (-841 *3)) (|:| |c| *4)))))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) + (-5 *2 (-2 (|:| |k| (-840 *3)) (|:| |c| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-841 *3)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-840 *3)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-1313 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) + (-12 (-5 *2 (-1312 *3 *4)) (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)))) - ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)))) + ((*1 *1 *1 *1) (|partial| -12 (-4 *1 (-399 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (|partial| -12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-841 *3)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1122)))) + (-12 (-5 *2 (-840 *3)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-558)) (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1070)))) + (-12 (-5 *4 (-558)) (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1069)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-841 *4)) (-4 *4 (-861)) (-4 *1 (-1308 *4 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-840 *4)) (-4 *4 (-860)) (-4 *1 (-1307 *4 *3)) (-4 *3 (-1069))))) (((*1 *2 *1) - (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-114)))) + (-12 (-4 *1 (-47 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1070)))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-606 *3)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-114)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1264 *3)))) + (-12 (-4 *3 (-569)) (-5 *2 (-114)) (-5 *1 (-639 *3 *4)) (-4 *4 (-1263 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) + (-12 (-5 *2 (-114)) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) ((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-861)) (-4 *3 (-175)))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-114))))) +(((*1 *1 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-860)) (-4 *3 (-175)))) ((*1 *1 *1) - (-12 (-5 *1 (-644 *2 *3 *4)) (-4 *2 (-861)) - (-4 *3 (-13 (-175) (-737 (-419 (-558))))) (-14 *4 (-938)))) - ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070))))) + (-12 (-5 *1 (-643 *2 *3 *4)) (-4 *2 (-860)) + (-4 *3 (-13 (-175) (-736 (-419 (-558))))) (-14 *4 (-937)))) + ((*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) + (-12 (-5 *2 (-790)) (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-4 *4 (-175)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1308 *2 *3)) (-4 *2 (-861)) (-4 *3 (-1070)) (-4 *3 (-175))))) + (-12 (-4 *1 (-1307 *2 *3)) (-4 *2 (-860)) (-4 *3 (-1069)) (-4 *3 (-175))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-5 *2 (-661 (-1198))) (-5 *1 (-213)) (-5 *3 (-1198)))) + (-12 (-5 *4 (-790)) (-5 *2 (-660 (-1197))) (-5 *1 (-213)) (-5 *3 (-1197)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-791)) (-5 *2 (-661 (-1198))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-790)) (-5 *2 (-660 (-1197))) (-5 *1 (-278)))) ((*1 *2 *1) - (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-861)) (-4 *4 (-175)) (-5 *2 (-661 *3)))) + (-12 (-4 *1 (-387 *3 *4)) (-4 *3 (-860)) (-4 *4 (-175)) (-5 *2 (-660 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 *3)) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-841 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) + (-12 (-5 *2 (-660 *3)) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-840 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) ((*1 *2 *1) - (-12 (-4 *1 (-1308 *3 *4)) (-4 *3 (-861)) (-4 *4 (-1070)) (-5 *2 (-661 *3))))) + (-12 (-4 *1 (-1307 *3 *4)) (-4 *3 (-860)) (-4 *4 (-1069)) (-5 *2 (-660 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1233 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *3 (-861)) - (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1232 *4 *5 *3 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *3 (-860)) + (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-938)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-937)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-845 (-938))) (-5 *1 (-340 *3 *4)) + (-12 (-4 *4 (-376)) (-5 *2 (-844 (-937))) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-938)))) - ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-845 (-938)))))) + ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-937)))) + ((*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-844 (-937)))))) (((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2) (-12 (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-5 *2 (-791))))) + (-12 (-4 *4 (-376)) (-5 *2 (-790)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + ((*1 *2) (-12 (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-5 *2 (-790))))) (((*1 *2 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1264 *4)) - (-5 *1 (-797 *3 *4 *5 *2 *6)) (-4 *2 (-1264 *5)) (-14 *6 (-938)))) + (-12 (-4 *3 (-363)) (-4 *4 (-341 *3)) (-4 *5 (-1263 *4)) + (-5 *1 (-796 *3 *4 *5 *2 *6)) (-4 *2 (-1263 *5)) (-14 *6 (-937)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-1307 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) - ((*1 *1 *1) (-12 (-4 *1 (-1307 *2)) (-4 *2 (-376)) (-4 *2 (-381))))) + (-12 (-5 *2 (-790)) (-4 *1 (-1306 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + ((*1 *1 *1) (-12 (-4 *1 (-1306 *2)) (-4 *2 (-376)) (-4 *2 (-381))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-13 (-1070) (-737 (-419 (-558))))) (-4 *5 (-861)) - (-5 *1 (-1305 *4 *5 *2)) (-4 *2 (-1311 *5 *4))))) + (-12 (-5 *3 (-790)) (-4 *4 (-13 (-1069) (-736 (-419 (-558))))) (-4 *5 (-860)) + (-5 *1 (-1304 *4 *5 *2)) (-4 *2 (-1310 *5 *4))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1302 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1301 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) - (-4 *7 (-861)) (-5 *1 (-1302 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-114) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) + (-4 *7 (-860)) (-5 *1 (-1301 *5 *6 *7 *8))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1302 *3 *4 *5 *6)))) + (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1301 *3 *4 *5 *6)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) - (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) - (-4 *7 (-861)) (-5 *1 (-1302 *5 *6 *7 *8))))) + (|partial| -12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-114) *8 *8)) + (-5 *4 (-1 *8 *8 *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) + (-4 *7 (-860)) (-5 *1 (-1301 *5 *6 *7 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 (-1302 *4 *5 *6 *7))) - (-5 *1 (-1302 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 (-1301 *4 *5 *6 *7))) + (-5 *1 (-1301 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) - (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-861)) - (-5 *2 (-661 (-1302 *6 *7 *8 *9))) (-5 *1 (-1302 *6 *7 *8 *9))))) + (-12 (-5 *3 (-660 *9)) (-5 *4 (-1 (-114) *9 *9)) (-5 *5 (-1 *9 *9 *9)) + (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-860)) + (-5 *2 (-660 (-1301 *6 *7 *8 *9))) (-5 *1 (-1301 *6 *7 *8 *9))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-880 *4 *5 *6 *7)) - (-4 *4 (-1070)) (-14 *5 (-661 (-1198))) (-14 *6 (-661 *3)) (-14 *7 *3))) + (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-879 *4 *5 *6 *7)) + (-4 *4 (-1069)) (-14 *5 (-660 (-1197))) (-14 *6 (-660 *3)) (-14 *7 *3))) ((*1 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-1070)) (-4 *5 (-861)) (-4 *6 (-815)) - (-14 *8 (-661 *5)) (-5 *2 (-1294)) (-5 *1 (-1301 *4 *5 *6 *7 *8 *9 *10)) - (-4 *7 (-969 *4 *6 *5)) (-14 *9 (-661 *3)) (-14 *10 *3)))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529)))) + (-12 (-5 *3 (-790)) (-4 *4 (-1069)) (-4 *5 (-860)) (-4 *6 (-814)) + (-14 *8 (-660 *5)) (-5 *2 (-1293)) (-5 *1 (-1300 *4 *5 *6 *7 *8 *9 *10)) + (-4 *7 (-968 *4 *6 *5)) (-14 *9 (-660 *3)) (-14 *10 *3)))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1161 *3 *2)) - (-4 *3 (-13 (-1122) (-34))))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1300))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1299))))) + (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1160 *3 *2)) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1299))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1298))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1298))))) (((*1 *2 *3) - (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) - (-4 *4 (-1264 *3)) + (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) + (-4 *4 (-1263 *3)) (-5 *2 - (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-558)) (-4 *4 (-1264 *3)) + (-12 (-5 *3 (-558)) (-4 *4 (-1263 *3)) (-5 *2 - (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) - (-5 *1 (-788 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) + (-5 *1 (-787 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-12 (-4 *4 (-363)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 - (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) - (-5 *1 (-1006 *4 *3 *5 *6)) (-4 *6 (-744 *3 *5)))) + (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) + (-5 *1 (-1005 *4 *3 *5 *6)) (-4 *6 (-743 *3 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 *3)) + (-12 (-4 *4 (-363)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 *3)) (-5 *2 - (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) - (-5 *1 (-1298 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) + (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) + (-5 *1 (-1297 *4 *3 *5 *6)) (-4 *6 (-422 *3 *5))))) (((*1 *2) - (-12 (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)))) + (-12 (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) + (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) - (-4 *4 (-1264 *3)) + (-12 (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) + (-4 *4 (-1263 *3)) (-5 *2 - (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) + (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) (-5 *1 (-364 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-1264 (-558))) + (-12 (-4 *3 (-1263 (-558))) (-5 *2 - (-2 (|:| -2222 (-709 (-558))) (|:| |basisDen| (-558)) - (|:| |basisInv| (-709 (-558))))) - (-5 *1 (-788 *3 *4)) (-4 *4 (-422 (-558) *3)))) + (-2 (|:| -2221 (-708 (-558))) (|:| |basisDen| (-558)) + (|:| |basisInv| (-708 (-558))))) + (-5 *1 (-787 *3 *4)) (-4 *4 (-422 (-558) *3)))) ((*1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-12 (-4 *3 (-363)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 - (-2 (|:| -2222 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) - (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-744 *4 *5)))) + (-2 (|:| -2221 (-708 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-708 *4)))) + (-5 *1 (-1005 *3 *4 *5 *6)) (-4 *6 (-743 *4 *5)))) ((*1 *2) - (-12 (-4 *3 (-363)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 *4)) + (-12 (-4 *3 (-363)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 *4)) (-5 *2 - (-2 (|:| -2222 (-709 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-709 *4)))) - (-5 *1 (-1298 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) + (-2 (|:| -2221 (-708 *4)) (|:| |basisDen| *4) (|:| |basisInv| (-708 *4)))) + (-5 *1 (-1297 *3 *4 *5 *6)) (-4 *6 (-422 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-791)) (-4 *6 (-376)) (-5 *4 (-1231 *6)) - (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1297 *6)) (-5 *5 (-1176 *4))))) + (-12 (-5 *3 (-790)) (-4 *6 (-376)) (-5 *4 (-1230 *6)) + (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1296 *6)) (-5 *5 (-1175 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-4 *5 (-376)) (-5 *2 (-661 (-1231 *5))) - (-5 *1 (-1297 *5)) (-5 *4 (-1231 *5))))) + (-12 (-5 *3 (-1197)) (-4 *5 (-376)) (-5 *2 (-660 (-1230 *5))) + (-5 *1 (-1296 *5)) (-5 *4 (-1230 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-1 (-1192 (-965 *4)) (-965 *4))) - (-5 *1 (-1297 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 (-1191 (-964 *4)) (-964 *4))) + (-5 *1 (-1296 *4)) (-4 *4 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-4 *5 (-376)) (-5 *2 (-1176 (-1176 (-965 *5)))) - (-5 *1 (-1297 *5)) (-5 *4 (-1176 (-965 *5)))))) + (-12 (-5 *3 (-1197)) (-4 *5 (-376)) (-5 *2 (-1175 (-1175 (-964 *5)))) + (-5 *1 (-1296 *5)) (-5 *4 (-1175 (-964 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1176 (-965 *4)) (-1176 (-965 *4)))) - (-5 *1 (-1297 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-790)) (-5 *2 (-1 (-1175 (-964 *4)) (-1175 (-964 *4)))) + (-5 *1 (-1296 *4)) (-4 *4 (-376))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1 (-1176 (-965 *4)) (-1176 (-965 *4)))) - (-5 *1 (-1297 *4)) (-4 *4 (-376))))) + (-12 (-5 *3 (-790)) (-5 *2 (-1 (-1175 (-964 *4)) (-1175 (-964 *4)))) + (-5 *1 (-1296 *4)) (-4 *4 (-376))))) (((*1 *2) - (-12 (-14 *4 (-791)) (-4 *5 (-1238)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) + (-12 (-14 *4 (-790)) (-4 *5 (-1237)) (-5 *2 (-136)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2) (-12 (-4 *4 (-376)) (-5 *2 (-136)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) ((*1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-790)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-558)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-558)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) - (-5 *2 (-558)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1001 *3)) (-4 *3 (-1070)) (-5 *2 (-938)))) - ((*1 *2) (-12 (-4 *1 (-1296 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) -(((*1 *1) (-5 *1 (-1294)))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1293)))) - ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1293))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) - ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293))))) -(((*1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293)))) - ((*1 *2 *2) (-12 (-5 *2 (-888)) (-5 *1 (-1293))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292))))) -(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292)))) - ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1292))))) -(((*1 *1) (-5 *1 (-1292)))) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) + (-5 *2 (-558)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1000 *3)) (-4 *3 (-1069)) (-5 *2 (-937)))) + ((*1 *2) (-12 (-4 *1 (-1295 *3)) (-4 *3 (-376)) (-5 *2 (-136))))) +(((*1 *1) (-5 *1 (-1293)))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-1292)))) + ((*1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1292))))) +(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) + ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-660 (-790))) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-790))) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292))))) +(((*1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292)))) + ((*1 *2 *2) (-12 (-5 *2 (-887)) (-5 *1 (-1292))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291))))) +(((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291)))) + ((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1291))))) +(((*1 *1) (-5 *1 (-1291)))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1154 (-229))) (-5 *3 (-661 (-270))) (-5 *1 (-1292)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1154 (-229))) (-5 *3 (-1180)) (-5 *1 (-1292)))) - ((*1 *1 *1) (-5 *1 (-1292)))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-1186 3 *3)))) - ((*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-1292)))) - ((*1 *2 *1) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-1292))))) + (-12 (-5 *2 (-1153 (-229))) (-5 *3 (-660 (-270))) (-5 *1 (-1291)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1153 (-229))) (-5 *3 (-1179)) (-5 *1 (-1291)))) + ((*1 *1 *1) (-5 *1 (-1291)))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-1185 3 *3)))) + ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-1291)))) + ((*1 *2 *1) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-1291))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-791)) (-5 *3 (-962 *4)) (-4 *1 (-1155 *4)) (-4 *4 (-1070)))) + (-12 (-5 *2 (-790)) (-5 *3 (-961 *4)) (-4 *1 (-1154 *4)) (-4 *4 (-1069)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-962 (-229))) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1291)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1291)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1292)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-270))) (-5 *1 (-1292))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) + (-12 (-5 *3 (-790)) (-5 *4 (-961 (-229))) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1290)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1291)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-270))) (-5 *1 (-1291))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) (((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + (-12 (-5 *3 (-790)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290)))) ((*1 *2 *1 *3 *3 *4 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1292))))) + (-12 (-5 *3 (-790)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1291))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) (-5 *1 (-270)))) ((*1 *2 *3 *2) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *3 (-661 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) + (-5 *3 (-660 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) ((*1 *2 *1 *3 *3 *4 *4 *4) - (-12 (-5 *3 (-558)) (-5 *4 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) + (-12 (-5 *3 (-558)) (-5 *4 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) ((*1 *2 *1 *3) (-12 (-5 *3 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *2 (-1294)) (-5 *1 (-1292)))) + (-5 *2 (-1293)) (-5 *1 (-1291)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4277 (-229)) + (-2 (|:| |theta| (-229)) (|:| |phi| (-229)) (|:| -4276 (-229)) (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |scaleZ| (-229)) (|:| |deltaX| (-229)) (|:| |deltaY| (-229)))) - (-5 *1 (-1292)))) + (-5 *1 (-1291)))) ((*1 *2 *1 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) + (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-888)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + (-12 (-5 *3 (-937)) (-5 *4 (-887)) (-5 *2 (-1293)) (-5 *1 (-1290)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1292)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) - ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) + (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *1 *1 *2 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) + ((*1 *1 *1 *2 *2 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-391)) (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1292))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1294)) (-5 *1 (-1292))))) + (-12 (-5 *3 (-937)) (-5 *4 (-391)) (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1291))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-159)) (-5 *2 (-1293)) (-5 *1 (-1291))))) (((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1291)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1291)))) + (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1290)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1180)) (-5 *1 (-1292)))) - ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1292)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1292))))) + (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1179)) (-5 *1 (-1291)))) + ((*1 *2 *1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1291)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1291))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1291)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1292))))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1291))))) (((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1291)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1292))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-962 (-229)))) (-5 *1 (-1291))))) -(((*1 *1) (-5 *1 (-1291)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-661 (-270))) (-5 *1 (-1291)))) - ((*1 *1 *1) (-5 *1 (-1291)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1290)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1291))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-961 (-229)))) (-5 *1 (-1290))))) +(((*1 *1) (-5 *1 (-1290)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-480)) (-5 *3 (-660 (-270))) (-5 *1 (-1290)))) + ((*1 *1 *1) (-5 *1 (-1290)))) (((*1 *2 *1 *3 *4 *4 *4 *4 *5 *5 *5 *5 *6 *5 *6 *5) - (-12 (-5 *3 (-938)) (-5 *4 (-229)) (-5 *5 (-558)) (-5 *6 (-888)) - (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-937)) (-5 *4 (-229)) (-5 *5 (-558)) (-5 *6 (-887)) + (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1) (-12 (-5 *2 - (-1288 + (-1287 (-2 (|:| |scaleX| (-229)) (|:| |scaleY| (-229)) (|:| |deltaX| (-229)) - (|:| |deltaY| (-229)) (|:| -4280 (-558)) (|:| -4278 (-558)) - (|:| |spline| (-558)) (|:| -4309 (-558)) (|:| |axesColor| (-888)) - (|:| -4281 (-558)) (|:| |unitsColor| (-888)) (|:| |showing| (-558))))) - (-5 *1 (-1291))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) - ((*1 *2 *1) (-12 (-5 *2 (-1288 (-3 (-480) "undefined"))) (-5 *1 (-1291))))) + (|:| |deltaY| (-229)) (|:| -4279 (-558)) (|:| -4277 (-558)) + (|:| |spline| (-558)) (|:| -4308 (-558)) (|:| |axesColor| (-887)) + (|:| -4280 (-558)) (|:| |unitsColor| (-887)) (|:| |showing| (-558))))) + (-5 *1 (-1290))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) + ((*1 *2 *1) (-12 (-5 *2 (-1287 (-3 (-480) "undefined"))) (-5 *1 (-1290))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-938)) (-5 *2 (-480)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-937)) (-5 *2 (-480)) (-5 *1 (-1290))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-661 (-391))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-480)))) + (-12 (-5 *2 (-660 (-391))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-480)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-888)) (-5 *2 (-1294)) (-5 *1 (-1291)))) + (-12 (-5 *3 (-937)) (-5 *4 (-887)) (-5 *2 (-1293)) (-5 *1 (-1290)))) ((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) - ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) + ((*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) ((*1 *2 *1 *3 *4 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-391)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-937)) (-5 *4 (-391)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-937)) (-5 *4 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-480)) (-5 *4 (-938)) (-5 *2 (-1294)) (-5 *1 (-1291))))) + (-12 (-5 *3 (-480)) (-5 *4 (-937)) (-5 *2 (-1293)) (-5 *1 (-1290))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-888)) (-5 *5 (-938)) - (-5 *6 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-887)) (-5 *5 (-937)) + (-5 *6 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-1289)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-661 (-270))) - (-5 *2 (-1291)) (-5 *1 (-1290))))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-660 (-270))) + (-5 *2 (-1290)) (-5 *1 (-1289))))) (((*1 *2 *3 *4 *4 *5 *6) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-888)) (-5 *5 (-938)) - (-5 *6 (-661 (-270))) (-5 *2 (-480)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-887)) (-5 *5 (-937)) + (-5 *6 (-660 (-270))) (-5 *2 (-480)) (-5 *1 (-1289)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *2 (-480)) (-5 *1 (-1290)))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *2 (-480)) (-5 *1 (-1289)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-661 (-270))) (-5 *2 (-480)) - (-5 *1 (-1290))))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-660 (-270))) (-5 *2 (-480)) + (-5 *1 (-1289))))) (((*1 *1 *1) (-5 *1 (-48))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-58 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-59 *5 *2)))) ((*1 *2 *3 *1 *2 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (|has| *1 (-6 -4425)) - (-4 *1 (-153 *2)) (-4 *2 (-1238)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (|has| *1 (-6 -4424)) + (-4 *1 (-153 *2)) (-4 *2 (-1237)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) - (-4 *2 (-1238)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) + (-4 *2 (-1237)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) - (-4 *2 (-1238)))) + (-12 (-5 *3 (-1 *2 *2 *2)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) + (-4 *2 (-1237)))) ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-2 (|:| -2214 (-1192 *4)) (|:| |deg| (-938)))) - (-5 *1 (-225 *4 *5)) (-5 *3 (-1192 *4)) (-4 *5 (-569)))) + (-12 (-4 *4 (-1069)) (-5 *2 (-2 (|:| -2213 (-1191 *4)) (|:| |deg| (-937)))) + (-5 *1 (-225 *4 *5)) (-5 *3 (-1191 *4)) (-4 *5 (-569)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-791)) - (-4 *6 (-1238)) (-4 *2 (-1238)) (-5 *1 (-247 *5 *6 *2)))) + (-12 (-5 *3 (-1 *2 *6 *2)) (-5 *4 (-246 *5 *6)) (-14 *5 (-790)) + (-4 *6 (-1237)) (-4 *2 (-1237)) (-5 *1 (-247 *5 *6 *2)))) ((*1 *1 *2 *3) - (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1264 *4)) + (-12 (-4 *4 (-175)) (-5 *1 (-301 *4 *2 *3 *5 *6 *7)) (-4 *2 (-1263 *4)) (-4 *3 (-23)) (-14 *5 (-1 *2 *2 *3)) (-14 *6 (-1 (-3 *3 "failed") *3 *3)) (-14 *7 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-569)) (-4 *2 (-1122)))) + ((*1 *1 *1) (-12 (-5 *1 (-326 *2)) (-4 *2 (-569)) (-4 *2 (-1121)))) ((*1 *1 *1) - (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) + (-12 (-4 *1 (-349 *2 *3 *4 *5)) (-4 *2 (-376)) (-4 *3 (-1263 *2)) + (-4 *4 (-1263 (-419 *3))) (-4 *5 (-355 *2 *3 *4)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1238)) (-4 *2 (-1238)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1237)) (-4 *2 (-1237)) (-5 *1 (-386 *5 *4 *2 *6)) (-4 *4 (-385 *5)) (-4 *6 (-385 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1122)) (-4 *2 (-1122)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1121)) (-4 *2 (-1121)) (-5 *1 (-439 *5 *4 *2 *6)) (-4 *4 (-438 *5)) (-4 *6 (-438 *2)))) ((*1 *1 *1) (-5 *1 (-507))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-661 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) - (-5 *1 (-662 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-660 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) + (-5 *1 (-661 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1070)) (-4 *2 (-1070)) (-4 *6 (-385 *5)) + (-12 (-5 *3 (-1 *2 *5 *2)) (-4 *5 (-1069)) (-4 *2 (-1069)) (-4 *6 (-385 *5)) (-4 *7 (-385 *5)) (-4 *8 (-385 *2)) (-4 *9 (-385 *2)) - (-5 *1 (-707 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-706 *5 *6 *7)) - (-4 *10 (-706 *2 *8 *9)))) + (-5 *1 (-706 *5 *6 *7 *4 *2 *8 *9 *10)) (-4 *4 (-705 *5 *6 *7)) + (-4 *10 (-705 *2 *8 *9)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-730 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *1 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-731 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-376)) - (-4 *3 (-175)) (-4 *1 (-744 *3 *4)))) - ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-744 *3 *2)) (-4 *2 (-1264 *3)))) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-376)) + (-4 *3 (-175)) (-4 *1 (-743 *3 *4)))) + ((*1 *1 *2) (-12 (-4 *3 (-175)) (-4 *1 (-743 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-977 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) - (-5 *1 (-978 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-976 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) + (-5 *1 (-977 *5 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *2 (-969 *3 *4 *5)) (-14 *6 (-661 *2)))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *2 (-968 *3 *4 *5)) (-14 *6 (-660 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1070)) (-4 *2 (-1070)) (-14 *5 (-791)) - (-14 *6 (-791)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) + (-12 (-5 *3 (-1 *2 *7 *2)) (-4 *7 (-1069)) (-4 *2 (-1069)) (-14 *5 (-790)) + (-14 *6 (-790)) (-4 *8 (-245 *6 *7)) (-4 *9 (-245 *5 *7)) (-4 *10 (-245 *6 *2)) (-4 *11 (-245 *5 *2)) - (-5 *1 (-1076 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) - (-4 *4 (-1074 *5 *6 *7 *8 *9)) (-4 *12 (-1074 *5 *6 *2 *10 *11)))) + (-5 *1 (-1075 *5 *6 *7 *8 *9 *4 *2 *10 *11 *12)) + (-4 *4 (-1073 *5 *6 *7 *8 *9)) (-4 *12 (-1073 *5 *6 *2 *10 *11)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1176 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) - (-5 *1 (-1178 *5 *2)))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1175 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) + (-5 *1 (-1177 *5 *2)))) ((*1 *2 *2 *1 *3 *4) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *4 (-1 (-114) *2 *2)) - (-4 *1 (-1233 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *2 (-1086 *5 *6 *7)))) + (-4 *1 (-1232 *5 *6 *7 *2)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *2 (-1085 *5 *6 *7)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1288 *5)) (-4 *5 (-1238)) (-4 *2 (-1238)) - (-5 *1 (-1289 *5 *2))))) + (-12 (-5 *3 (-1 *2 *5 *2)) (-5 *4 (-1287 *5)) (-4 *5 (-1237)) (-4 *2 (-1237)) + (-5 *1 (-1288 *5 *2))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-58 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-5 *2 (-58 *5)) (-5 *1 (-59 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-791)) - (-4 *7 (-1238)) (-4 *5 (-1238)) (-5 *2 (-246 *6 *5)) + (-12 (-5 *3 (-1 *5 *7 *5)) (-5 *4 (-246 *6 *7)) (-14 *6 (-790)) + (-4 *7 (-1237)) (-4 *5 (-1237)) (-5 *2 (-246 *6 *5)) (-5 *1 (-247 *6 *7 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1238)) (-4 *5 (-1238)) (-4 *2 (-385 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1237)) (-4 *5 (-1237)) (-4 *2 (-385 *5)) (-5 *1 (-386 *6 *4 *5 *2)) (-4 *4 (-385 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1122)) (-4 *5 (-1122)) (-4 *2 (-438 *5)) + (-12 (-5 *3 (-1 *5 *6 *5)) (-4 *6 (-1121)) (-4 *5 (-1121)) (-4 *2 (-438 *5)) (-5 *1 (-439 *6 *4 *5 *2)) (-4 *4 (-438 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-661 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) - (-5 *2 (-661 *5)) (-5 *1 (-662 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-660 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) + (-5 *2 (-660 *5)) (-5 *1 (-661 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-977 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) - (-5 *2 (-977 *5)) (-5 *1 (-978 *6 *5)))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-976 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) + (-5 *2 (-976 *5)) (-5 *1 (-977 *6 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1176 *6)) (-4 *6 (-1238)) (-4 *3 (-1238)) - (-5 *2 (-1176 *3)) (-5 *1 (-1178 *6 *3)))) + (-12 (-5 *4 (-1 *3 *6 *3)) (-5 *5 (-1175 *6)) (-4 *6 (-1237)) (-4 *3 (-1237)) + (-5 *2 (-1175 *3)) (-5 *1 (-1177 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1288 *6)) (-4 *6 (-1238)) (-4 *5 (-1238)) - (-5 *2 (-1288 *5)) (-5 *1 (-1289 *6 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-1288 *3))))) + (-12 (-5 *3 (-1 *5 *6 *5)) (-5 *4 (-1287 *6)) (-4 *6 (-1237)) (-4 *5 (-1237)) + (-5 *2 (-1287 *5)) (-5 *1 (-1288 *6 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-1287 *3))))) (((*1 *1 *1 *1) (-4 *1 (-25))) ((*1 *1 *1 *1) (-5 *1 (-159))) ((*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) - (-15 -2175 ((-1294) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-133)))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) + (-15 -2174 ((-1293) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-25)) (-4 *2 (-1237)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-133)))) ((*1 *1 *2 *1) - (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1264 *3)))) + (-12 (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4)))) + (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4)))) ((*1 *1 *1 *1) (-5 *1 (-547))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-25))))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-25))))) (((*1 *1 *2 *2) - (-12 (-5 *2 (-791)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-790)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-1287 *3)) (-4 *3 (-23)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-790)) (-4 *1 (-1286 *3)) (-4 *3 (-23)) (-4 *3 (-1237))))) (((*1 *1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1) (-4 *1 (-21))) ((*1 *1 *1 *1) (|partial| -5 *1 (-136))) ((*1 *1 *1 *1) (-12 (-5 *1 (-217 *2)) (-4 *2 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) - (-15 -2175 ((-1294) $))))))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238)))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) + (-15 -2174 ((-1293) $))))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237)))) ((*1 *1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) ((*1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) - ((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-21)))) - ((*1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-21))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1238)) (-4 *2 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-962 (-229))) (-5 *2 (-229)) (-5 *1 (-1235)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) + ((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-21)))) + ((*1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-21))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-245 *3 *2)) (-4 *2 (-1237)) (-4 *2 (-1069)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-961 (-229))) (-5 *2 (-229)) (-5 *1 (-1234)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1069))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1287 *3)) (-4 *3 (-1238)) (-4 *3 (-1070)) (-5 *2 (-709 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1001 *2)) (-4 *2 (-1070)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1070))))) + (-12 (-4 *1 (-1286 *3)) (-4 *3 (-1237)) (-4 *3 (-1069)) (-5 *2 (-708 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1000 *2)) (-4 *2 (-1069)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1069))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) + (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-841 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-1016 *3)) (-4 *3 (-1238)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1236 *3)) (-4 *3 (-1238)))) + ((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-840 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-4 *1 (-1015 *3)) (-4 *3 (-1237)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1235 *3)) (-4 *3 (-1237)))) ((*1 *2 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) (-4 *2 (-1069))))) (((*1 *2 *1) - (-12 (-4 *1 (-1287 *2)) (-4 *2 (-1238)) (-4 *2 (-1023)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-861)))) + (-12 (-4 *1 (-1286 *2)) (-4 *2 (-1237)) (-4 *2 (-1022)) (-4 *2 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-277 *2)) (-4 *2 (-860)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-878 *3)) (-14 *3 (-661 *2)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1010)))) + (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-877 *3)) (-14 *3 (-660 *2)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1009)))) ((*1 *2 *1) - (-12 (-4 *4 (-1238)) (-5 *2 (-1198)) (-5 *1 (-1079 *3 *4)) - (-4 *3 (-1115 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) + (-12 (-4 *4 (-1237)) (-5 *2 (-1197)) (-5 *1 (-1078 *3 *4)) + (-4 *3 (-1114 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1112 *3)) (-4 *3 (-1237)))) ((*1 *2 *1) - (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1285 *3)) (-14 *3 *2)))) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1284 *3)) (-14 *3 *2)))) (((*1 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-569)) (-4 *4 (-1070)) - (-4 *2 (-1281 *4)) (-5 *1 (-1283 *4 *5 *6 *2)) (-4 *6 (-678 *5))))) + (-12 (-5 *3 (-419 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-569)) (-4 *4 (-1069)) + (-4 *2 (-1280 *4)) (-5 *1 (-1282 *4 *5 *6 *2)) (-4 *6 (-677 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-1264 *4)) (-5 *2 (-1 *6 (-661 *6))) - (-5 *1 (-1283 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-1281 *4))))) + (-12 (-4 *4 (-1069)) (-4 *5 (-1263 *4)) (-5 *2 (-1 *6 (-660 *6))) + (-5 *1 (-1282 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-1280 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-1070)) (-4 *2 (-1264 *5)) - (-5 *1 (-1283 *5 *2 *6 *3)) (-4 *6 (-678 *2)) (-4 *3 (-1281 *5))))) + (-12 (-5 *4 (-790)) (-4 *5 (-1069)) (-4 *2 (-1263 *5)) + (-5 *1 (-1282 *5 *2 *6 *3)) (-4 *6 (-677 *2)) (-4 *3 (-1280 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *3 (-1264 *4)) (-4 *2 (-1281 *4)) - (-5 *1 (-1283 *4 *3 *5 *2)) (-4 *5 (-678 *3))))) + (-12 (-4 *4 (-1069)) (-4 *3 (-1263 *4)) (-4 *2 (-1280 *4)) + (-5 *1 (-1282 *4 *3 *5 *2)) (-4 *5 (-677 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 (-1 *6 (-661 *6)))) - (-4 *5 (-38 (-419 (-558)))) (-4 *6 (-1281 *5)) (-5 *2 (-661 *6)) - (-5 *1 (-1282 *5 *6))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 (-1 *6 (-660 *6)))) + (-4 *5 (-38 (-419 (-558)))) (-4 *6 (-1280 *5)) (-5 *2 (-660 *6)) + (-5 *1 (-1281 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-661 *2))) (-5 *4 (-661 *5)) (-4 *5 (-38 (-419 (-558)))) - (-4 *2 (-1281 *5)) (-5 *1 (-1282 *5 *2))))) + (-12 (-5 *3 (-1 *2 (-660 *2))) (-5 *4 (-660 *5)) (-4 *5 (-38 (-419 (-558)))) + (-4 *2 (-1280 *5)) (-5 *1 (-1281 *5 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1281 *4)) (-5 *1 (-1282 *4 *2)) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-558))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1281 *4)) (-5 *1 (-1282 *4 *2)) + (-12 (-5 *3 (-1 *2 *2)) (-4 *2 (-1280 *4)) (-5 *1 (-1281 *4 *2)) (-4 *4 (-38 (-419 (-558))))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1282 *3 *2)) (-4 *2 (-1281 *3))))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1281 *3 *2)) (-4 *2 (-1280 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 (-661 *5))) (-4 *5 (-1281 *4)) (-4 *4 (-38 (-419 (-558)))) - (-5 *2 (-1 (-1176 *4) (-661 (-1176 *4)))) (-5 *1 (-1282 *4 *5))))) + (-12 (-5 *3 (-1 *5 (-660 *5))) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-1 (-1175 *4) (-660 (-1175 *4)))) (-5 *1 (-1281 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1281 *4)) (-4 *4 (-38 (-419 (-558)))) - (-5 *2 (-1 (-1176 *4) (-1176 *4) (-1176 *4))) (-5 *1 (-1282 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-1 (-1175 *4) (-1175 *4) (-1175 *4))) (-5 *1 (-1281 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1281 *4)) (-4 *4 (-38 (-419 (-558)))) - (-5 *2 (-1 (-1176 *4) (-1176 *4))) (-5 *1 (-1282 *4 *5))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1280 *4)) (-4 *4 (-38 (-419 (-558)))) + (-5 *2 (-1 (-1175 *4) (-1175 *4))) (-5 *1 (-1281 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) + (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) - (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-4 *6 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1255 (-558))) - (-4 *7 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1254 (-558))) + (-4 *7 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-558))) - (-4 *3 (-13 (-27) (-1224) (-433 *7))) - (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-558))) + (-4 *3 (-13 (-27) (-1223) (-433 *7))) + (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) - (-5 *5 (-1255 (-419 (-558)))) (-5 *6 (-419 (-558))) - (-4 *8 (-13 (-27) (-1224) (-433 *7))) - (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *5 (-1254 (-419 (-558)))) (-5 *6 (-419 (-558))) + (-4 *8 (-13 (-27) (-1223) (-433 *7))) + (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-419 (-558)))) - (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *8))) - (-4 *8 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-419 (-558)))) + (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *8))) + (-4 *8 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1070)) - (-5 *1 (-607 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-608 *3)))) + (-12 (-5 *2 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1069)) + (-5 *1 (-606 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-607 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1070)) - (-4 *1 (-1250 *3)))) + (-12 (-5 *2 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-4 *3 (-1069)) + (-4 *1 (-1249 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-791)) (-5 *3 (-1176 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))) - (-4 *4 (-1070)) (-4 *1 (-1271 *4)))) - ((*1 *1 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-4 *1 (-1281 *3)))) + (-12 (-5 *2 (-790)) (-5 *3 (-1175 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))) + (-4 *4 (-1069)) (-4 *1 (-1270 *4)))) + ((*1 *1 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-4 *1 (-1280 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-1176 (-2 (|:| |k| (-791)) (|:| |c| *3)))) (-4 *3 (-1070)) - (-4 *1 (-1281 *3))))) + (-12 (-5 *2 (-1175 (-2 (|:| |k| (-790)) (|:| |c| *3)))) (-4 *3 (-1069)) + (-4 *1 (-1280 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-661 *3)))) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-660 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-661 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-660 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 *3)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-661 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1281 *3)) (-4 *3 (-1070)) (-5 *2 (-1176 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1070))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1070)) (-5 *1 (-607 *3)))) + (-12 (-5 *2 (-660 *3)) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-660 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1280 *3)) (-4 *3 (-1069)) (-5 *2 (-1175 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1069))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 (-558))) (-4 *3 (-1069)) (-5 *1 (-606 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1250 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1249 *3)) (-4 *3 (-1069)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1281 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-1 *3 (-558))) (-4 *1 (-1280 *3)) (-4 *3 (-1069))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) - (-5 *2 (-965 *4)))) + (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-860)) + (-5 *2 (-964 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *5)) (-4 *4 (-1070)) (-4 *5 (-861)) - (-5 *2 (-965 *4)))) + (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *5)) (-4 *4 (-1069)) (-4 *5 (-860)) + (-5 *2 (-964 *4)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-1281 *4)) (-4 *4 (-1070)) (-5 *2 (-965 *4)))) + (-12 (-5 *3 (-790)) (-4 *1 (-1280 *4)) (-4 *4 (-1069)) (-5 *2 (-964 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-1281 *4)) (-4 *4 (-1070)) (-5 *2 (-965 *4))))) + (-12 (-5 *3 (-790)) (-4 *1 (-1280 *4)) (-4 *4 (-1069)) (-5 *2 (-964 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-558))) (-4 *4 (-1059 (-558))) (-4 *4 (-569)) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-1058 (-558))) (-4 *4 (-569)) (-5 *1 (-32 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *1 *1 *1) (-5 *1 (-136))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1 *2) (-12 (-4 *1 (-250)) (-5 *2 (-558)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1281 *4)) - (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1252 *4 *5)))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1280 *4)) + (-5 *1 (-289 *4 *5 *2)) (-4 *2 (-1251 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1250 *4)) - (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1273 *4 *5)) (-4 *6 (-1004 *5)))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-376)) (-4 *4 (-38 *3)) (-4 *5 (-1249 *4)) + (-5 *1 (-290 *4 *5 *2 *6)) (-4 *2 (-1272 *4 *5)) (-4 *6 (-1003 *5)))) ((*1 *1 *1 *1) (-4 *1 (-296))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1121)))) ((*1 *1 *1 *1) (-5 *1 (-391))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-399 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-399 *2)) (-4 *2 (-1121)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-4 *3 (-1133)))) + (-12 (-5 *2 (-790)) (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-4 *3 (-1132)))) ((*1 *1 *1 *2) (-12 (-4 *1 (-485)) (-5 *2 (-558)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-5 *2 (-790)) (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-547)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-547)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-547)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *4 (-1122)) (-5 *1 (-702 *4)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-790)) (-4 *4 (-1121)) (-5 *1 (-701 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-4 *3 (-376)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-790)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *1 (-710 *4)))) + (-12 (-5 *2 (-708 *4)) (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *1 (-709 *4)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-558)) (-4 *3 (-1070)) (-5 *1 (-734 *3 *4)) (-4 *4 (-668 *3)))) + (-12 (-5 *2 (-558)) (-4 *3 (-1069)) (-5 *1 (-733 *3 *4)) (-4 *4 (-667 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-734 *4 *5)) - (-4 *5 (-668 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-746)) (-5 *2 (-791)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-847 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-733 *4 *5)) + (-4 *5 (-667 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-937)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-790)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-745)) (-5 *2 (-790)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-846 *3)) (-4 *3 (-1069)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-5 *1 (-847 *4)) (-4 *4 (-1070)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-419 (-558))))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1133)) (-5 *2 (-938)))) + (-12 (-5 *2 (-115)) (-5 *3 (-558)) (-5 *1 (-846 *4)) (-4 *4 (-1069)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-419 (-558))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1132)) (-5 *2 (-937)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-558)) (-4 *1 (-1144 *3 *4 *5 *6)) (-4 *4 (-1070)) + (-12 (-5 *2 (-558)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4)) (-4 *4 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 *3))) (-4 *3 (-13 (-1224) (-979) (-29 *5))) - (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-1112 (-854 *3))) (-4 *3 (-13 (-1223) (-978) (-29 *5))) + (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-661 (-855 *3))) + (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-660 (-854 *3))) (|:| |fail| #1="failed") (|:| |pole| #2="potentialPole"))) (-5 *1 (-223 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-855 *3))) (-5 *5 (-1180)) - (-4 *3 (-13 (-1224) (-979) (-29 *6))) - (-4 *6 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-1112 (-854 *3))) (-5 *5 (-1179)) + (-4 *3 (-13 (-1223) (-978) (-29 *6))) + (-4 *6 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-661 (-855 *3))) (|:| |fail| #1#) + (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-660 (-854 *3))) (|:| |fail| #1#) (|:| |pole| #2#))) (-5 *1 (-223 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1113 (-855 (-326 *5)))) - (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1112 (-854 (-326 *5)))) + (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-661 (-855 (-326 *5)))) + (-3 (|:| |f1| (-854 (-326 *5))) (|:| |f2| (-660 (-854 (-326 *5)))) (|:| |fail| #3="failed") (|:| |pole| #4="potentialPole"))) (-5 *1 (-224 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-419 (-965 *6))) (-5 *4 (-1113 (-855 (-326 *6)))) - (-5 *5 (-1180)) (-4 *6 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *3 (-419 (-964 *6))) (-5 *4 (-1112 (-854 (-326 *6)))) + (-5 *5 (-1179)) (-4 *6 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-661 (-855 (-326 *6)))) + (-3 (|:| |f1| (-854 (-326 *6))) (|:| |f2| (-660 (-854 (-326 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-224 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-855 (-419 (-965 *5))))) (-5 *3 (-419 (-965 *5))) - (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-1112 (-854 (-419 (-964 *5))))) (-5 *3 (-419 (-964 *5))) + (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *5))) (|:| |f2| (-661 (-855 (-326 *5)))) + (-3 (|:| |f1| (-854 (-326 *5))) (|:| |f2| (-660 (-854 (-326 *5)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-224 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-855 (-419 (-965 *6))))) (-5 *5 (-1180)) - (-5 *3 (-419 (-965 *6))) - (-4 *6 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-1112 (-854 (-419 (-964 *6))))) (-5 *5 (-1179)) + (-5 *3 (-419 (-964 *6))) + (-4 *6 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (|:| |f1| (-855 (-326 *6))) (|:| |f2| (-661 (-855 (-326 *6)))) + (-3 (|:| |f1| (-854 (-326 *6))) (|:| |f2| (-660 (-854 (-326 *6)))) (|:| |fail| #3#) (|:| |pole| #4#))) (-5 *1 (-224 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-3 *3 (-661 *3))) (-5 *1 (-442 *5 *3)) - (-4 *3 (-13 (-1224) (-979) (-29 *5))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-3 *3 (-660 *3))) (-5 *1 (-442 *5 *3)) + (-4 *3 (-13 (-1223) (-978) (-29 *5))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-486 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-486 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *5 (-391)) - (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) - ((*1 *2 *3) (-12 (-5 *3 (-789)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *5 (-391)) + (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577)))) + ((*1 *2 *3) (-12 (-5 *3 (-788)) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *5 (-391)) - (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *5 (-391)) + (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *5 (-391)) - (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *5 (-391)) + (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1110 (-855 (-391)))) (-5 *2 (-1056)) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-1109 (-854 (-391)))) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) - (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) + (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) - (-5 *5 (-391)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) + (-5 *5 (-391)) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-1110 (-855 (-391))))) - (-5 *5 (-391)) (-5 *6 (-1084)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-1109 (-854 (-391))))) + (-5 *5 (-391)) (-5 *6 (-1083)) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1113 (-855 (-391)))) - (-5 *5 (-1180)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1112 (-854 (-391)))) + (-5 *5 (-1179)) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1113 (-855 (-391)))) - (-5 *5 (-1198)) (-5 *2 (-1056)) (-5 *1 (-577)))) + (|partial| -12 (-5 *3 (-326 (-391))) (-5 *4 (-1112 (-854 (-391)))) + (-5 *5 (-1197)) (-5 *2 (-1055)) (-5 *1 (-577)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) + (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) (-5 *2 (-595 (-419 *5))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-149)) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-3 (-326 *5) (-661 (-326 *5)))) (-5 *1 (-601 *5)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-149)) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-3 (-326 *5) (-660 (-326 *5)))) (-5 *1 (-601 *5)))) ((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070)))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-760 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-861)) + (-12 (-4 *1 (-759 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-860)) (-4 *3 (-38 (-419 (-558)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-965 *3)) (-4 *3 (-38 (-419 (-558)))) - (-4 *3 (-1070)))) + (-12 (-5 *2 (-1197)) (-5 *1 (-964 *3)) (-4 *3 (-38 (-419 (-558)))) + (-4 *3 (-1069)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-4 *2 (-861)) - (-5 *1 (-1147 *3 *2 *4)) (-4 *4 (-969 *3 (-543 *2) *2)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-4 *2 (-860)) + (-5 *1 (-1146 *3 *2 *4)) (-4 *4 (-968 *3 (-543 *2) *2)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) - (-5 *1 (-1182 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) + (-5 *1 (-1181 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1189 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1188 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1195 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1194 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1196 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1195 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *1 (-1231 *3)) (-4 *3 (-38 (-419 (-558)))) - (-4 *3 (-1070)))) + (-12 (-5 *2 (-1197)) (-5 *1 (-1230 *3)) (-4 *3 (-38 (-419 (-558)))) + (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1248 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1247 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3957 - (-12 (-5 *2 (-1198)) (-4 *1 (-1250 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-558))) (-4 *3 (-979)) (-4 *3 (-1224)) + (-3956 + (-12 (-5 *2 (-1197)) (-4 *1 (-1249 *3)) (-4 *3 (-1069)) + (-12 (-4 *3 (-29 (-558))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-558)))))) - (-12 (-5 *2 (-1198)) (-4 *1 (-1250 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -3484 ((-661 *2) *3))) - (|has| *3 (-15 -4242 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1249 *3)) (-4 *3 (-1069)) + (-12 (|has| *3 (-15 -3483 ((-660 *2) *3))) + (|has| *3 (-15 -4241 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1250 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558)))))) + (-12 (-4 *1 (-1249 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1) - (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558)))))) + (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1269 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1268 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3957 - (-12 (-5 *2 (-1198)) (-4 *1 (-1271 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-558))) (-4 *3 (-979)) (-4 *3 (-1224)) + (-3956 + (-12 (-5 *2 (-1197)) (-4 *1 (-1270 *3)) (-4 *3 (-1069)) + (-12 (-4 *3 (-29 (-558))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-558)))))) - (-12 (-5 *2 (-1198)) (-4 *1 (-1271 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -3484 ((-661 *2) *3))) - (|has| *3 (-15 -4242 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1270 *3)) (-4 *3 (-1069)) + (-12 (|has| *3 (-15 -3483 ((-660 *2) *3))) + (|has| *3 (-15 -4241 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1271 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558)))))) + (-12 (-4 *1 (-1270 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1285 *4)) (-14 *4 (-1198)) (-5 *1 (-1278 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070)) (-14 *5 *3))) + (-12 (-5 *2 (-1284 *4)) (-14 *4 (-1197)) (-5 *1 (-1277 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069)) (-14 *5 *3))) ((*1 *1 *1 *2) - (-3957 - (-12 (-5 *2 (-1198)) (-4 *1 (-1281 *3)) (-4 *3 (-1070)) - (-12 (-4 *3 (-29 (-558))) (-4 *3 (-979)) (-4 *3 (-1224)) + (-3956 + (-12 (-5 *2 (-1197)) (-4 *1 (-1280 *3)) (-4 *3 (-1069)) + (-12 (-4 *3 (-29 (-558))) (-4 *3 (-978)) (-4 *3 (-1223)) (-4 *3 (-38 (-419 (-558)))))) - (-12 (-5 *2 (-1198)) (-4 *1 (-1281 *3)) (-4 *3 (-1070)) - (-12 (|has| *3 (-15 -3484 ((-661 *2) *3))) - (|has| *3 (-15 -4242 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-1280 *3)) (-4 *3 (-1069)) + (-12 (|has| *3 (-15 -3483 ((-660 *2) *3))) + (|has| *3 (-15 -4241 (*3 *3 *2))) (-4 *3 (-38 (-419 (-558)))))))) ((*1 *1 *1) - (-12 (-4 *1 (-1281 *2)) (-4 *2 (-1070)) (-4 *2 (-38 (-419 (-558))))))) + (-12 (-4 *1 (-1280 *2)) (-4 *2 (-1069)) (-4 *2 (-38 (-419 (-558))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1196 *4 *5 *6)) - (-4 *4 (-1070)) (-14 *5 (-1198)) (-14 *6 *4))) + (-12 (-5 *3 (-790)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1195 *4 *5 *6)) + (-4 *4 (-1069)) (-14 *5 (-1197)) (-14 *6 *4))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1257 *5 *4)) (-5 *1 (-1278 *4 *5 *6)) - (-4 *4 (-1070)) (-14 *5 (-1198)) (-14 *6 *4)))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) + (-12 (-5 *3 (-790)) (-5 *2 (-1256 *5 *4)) (-5 *1 (-1277 *4 *5 *6)) + (-4 *4 (-1069)) (-14 *5 (-1197)) (-14 *6 *4)))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2)))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2)))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) + (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-558)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) + (-12 (-5 *2 (-558)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-1278 *2 *3 *4)) (-4 *2 (-1070)) (-14 *3 (-1198)) (-14 *4 *2)))) + (-12 (-5 *1 (-1277 *2 *3 *4)) (-4 *2 (-1069)) (-14 *3 (-1197)) (-14 *4 *2)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) + (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-558)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) + (-12 (-5 *2 (-558)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3)))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-1070)) (-5 *1 (-1182 *4)))) + (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-1069)) (-5 *1 (-1181 *4)))) ((*1 *1 *2 *2 *1) - (-12 (-5 *2 (-558)) (-5 *1 (-1278 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-1198)) + (-12 (-5 *2 (-558)) (-5 *1 (-1277 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-1197)) (-14 *5 *3)))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1056)) (-5 *1 (-315)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-1056))) (-5 *2 (-1056)) (-5 *1 (-315)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-671 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-5 *1 (-1084))) - ((*1 *2 *3) - (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1177 *4)) - (-4 *4 (-1238)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) (-4 *3 (-861)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *2 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-692 *3)) (-5 *1 (-908 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1055)) (-5 *1 (-315)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-1055))) (-5 *2 (-1055)) (-5 *1 (-315)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-670 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *1) (-5 *1 (-1083))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1176 *4)) + (-4 *4 (-1237)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) + (-12 (-4 *1 (-615 *3 *2)) (-4 *3 (-1121)) (-4 *3 (-860)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-886 *2 *3)) (-4 *3 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-691 *3)) (-5 *1 (-907 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-385 *2)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1238)))) + (-4 *5 (-385 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "right") (-4 *1 (-121 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "left") (-4 *1 (-121 *3)) (-4 *3 (-1237)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-661 (-558))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) - (-14 *4 (-558)) (-14 *5 (-791)))) + (-12 (-5 *3 (-660 (-558))) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) + (-14 *4 (-558)) (-14 *5 (-790)))) ((*1 *2 *1 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-791)))) + (-14 *5 (-790)))) ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-791)))) + (-14 *5 (-790)))) ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *2 (-175)) (-5 *1 (-137 *4 *5 *2)) (-14 *4 *3) - (-14 *5 (-791)))) + (-14 *5 (-790)))) ((*1 *2 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-791)))) + (-12 (-4 *2 (-175)) (-5 *1 (-137 *3 *4 *2)) (-14 *3 (-558)) (-14 *4 (-790)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-252 (-1180))) (-5 *1 (-217 *4)) + (-12 (-5 *3 (-1197)) (-5 *2 (-252 (-1179))) (-5 *1 (-217 *4)) (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ *3)) (-15 -4047 ((-1294) $)) - (-15 -2175 ((-1294) $))))))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ *3)) (-15 -4046 ((-1293) $)) + (-15 -2174 ((-1293) $))))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1010)) (-5 *1 (-217 *3)) + (-12 (-5 *2 (-1009)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 ((-1294) $)) - (-15 -2175 ((-1294) $))))))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 ((-1293) $)) + (-15 -2174 ((-1293) $))))))) ((*1 *2 *1 *3) - (-12 (-5 *3 "count") (-5 *2 (-791)) (-5 *1 (-252 *4)) (-4 *4 (-861)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-861)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1238)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) + (-12 (-5 *3 "count") (-5 *2 (-790)) (-5 *1 (-252 *4)) (-4 *4 (-860)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "sort") (-5 *1 (-252 *3)) (-4 *3 (-860)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "unique") (-5 *1 (-252 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-298 *3 *2)) (-4 *3 (-1237)) (-4 *2 (-1237)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-310)))) ((*1 *1 *2 *1 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *1 *2 *2) - (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1180)) (-5 *1 (-514)))) - ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1122)))) + (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1263 *2)) + (-4 *4 (-1263 (-419 *3))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1179)) (-5 *1 (-514)))) + ((*1 *2 *1 *3 *3 *3) (-12 (-5 *3 (-790)) (-5 *1 (-694 *2)) (-4 *2 (-1121)))) ((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) + (-12 (-5 *2 (-660 (-558))) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-661 (-905 *4))) (-5 *1 (-905 *4)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-115)) (-5 *3 (-660 (-904 *4))) (-5 *1 (-904 *4)) + (-4 *4 (-1121)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-921 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) + (-12 (-5 *3 (-790)) (-5 *2 (-920 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "value") (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) ((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *2 (-1070)) + (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *2 (-1069)) (-4 *6 (-245 *5 *2)) (-4 *7 (-245 *4 *2)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) - (-4 *7 (-245 *4 *2)) (-4 *2 (-1070)))) + (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) + (-4 *7 (-245 *4 *2)) (-4 *2 (-1069)))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-1122)) - (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))))) + (-12 (-5 *3 (-937)) (-4 *4 (-1121)) + (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1095 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))))) ((*1 *2 *1 *2 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-1122)) - (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1098 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))))) - ((*1 *1 *1 *1) (-4 *1 (-1165))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198)))) + (-12 (-5 *3 (-937)) (-4 *4 (-1121)) + (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1097 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))))) + ((*1 *1 *1 *1) (-4 *1 (-1164))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-419 *1)) (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) + (-12 (-5 *3 (-419 *1)) (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-569)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-841 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861)))) + (-12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-569)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "last") (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 "rest") (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) + ((*1 *2 *1 *3) (-12 (-5 *3 "first") (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-840 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1233 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) - (-4 *4 (-861)) (-4 *5 (-1086 *2 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1117)))) - ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1277 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) + (|partial| -12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) + (-4 *4 (-860)) (-4 *5 (-1085 *2 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1116)))) + ((*1 *2 *1) + (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1276 *3)) (-4 *3 (-1237)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) ((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) - ((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *2 (-1238)) (-5 *1 (-887 *3 *2)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1277 *3)) (-4 *3 (-1238)) (-5 *2 (-791))))) -(((*1 *1 *1) (-12 (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-251 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) + ((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *2 (-1237)) (-5 *1 (-886 *3 *2)) (-4 *3 (-1237)))) + ((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1276 *3)) (-4 *3 (-1237)) (-5 *2 (-790))))) +(((*1 *1 *1) (-12 (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-251 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-385 *2)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "right") (|has| *1 (-6 -4426)) (-4 *1 (-121 *3)) - (-4 *3 (-1238)))) + (-12 (-5 *2 "right") (|has| *1 (-6 -4425)) (-4 *1 (-121 *3)) + (-4 *3 (-1237)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "left") (|has| *1 (-6 -4426)) (-4 *1 (-121 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 "left") (|has| *1 (-6 -4425)) (-4 *1 (-121 *3)) (-4 *3 (-1237)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) - (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1198)) (-5 *1 (-649)))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1237)))) + ((*1 *2 *1 *3 *2) (-12 (-5 *2 (-51)) (-5 *3 (-1197)) (-5 *1 (-648)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-1255 (-558))) (|has| *1 (-6 -4426)) (-4 *1 (-671 *2)) - (-4 *2 (-1238)))) + (-12 (-5 *3 (-1254 (-558))) (|has| *1 (-6 -4425)) (-4 *1 (-670 *2)) + (-4 *2 (-1237)))) ((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-661 (-558))) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) + (-12 (-5 *2 (-660 (-558))) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "value") (|has| *1 (-6 -4426)) (-4 *1 (-1031 *2)) - (-4 *2 (-1238)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1215 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) + (-12 (-5 *3 "value") (|has| *1 (-6 -4425)) (-4 *1 (-1030 *2)) + (-4 *2 (-1237)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1 *3 *2) (-12 (-4 *1 (-1214 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "last") (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) - (-4 *2 (-1238)))) + (-12 (-5 *3 "last") (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) + (-4 *2 (-1237)))) ((*1 *1 *1 *2 *1) - (-12 (-5 *2 "rest") (|has| *1 (-6 -4426)) (-4 *1 (-1277 *3)) - (-4 *3 (-1238)))) + (-12 (-5 *2 "rest") (|has| *1 (-6 -4425)) (-4 *1 (-1276 *3)) + (-4 *3 (-1237)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *3 "first") (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) - (-4 *2 (-1238))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1176 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1277 *2)) (-4 *2 (-1238))))) + (-12 (-5 *3 "first") (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) + (-4 *2 (-1237))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1175 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1276 *2)) (-4 *2 (-1237))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-558)) (|has| *1 (-6 -4426)) (-4 *1 (-1277 *3)) - (-4 *3 (-1238))))) + (-12 (-5 *2 (-558)) (|has| *1 (-6 -4425)) (-4 *1 (-1276 *3)) + (-4 *3 (-1237))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-325 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1224) (-433 *3))) (-14 *5 (-1198)) (-14 *6 *4))) + (|partial| -12 (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) + (-5 *2 (-854 *4)) (-5 *1 (-325 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1223) (-433 *3))) (-14 *5 (-1197)) (-14 *6 *4))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) - (-5 *2 (-855 *4)) (-5 *1 (-1275 *3 *4 *5 *6)) - (-4 *4 (-13 (-27) (-1224) (-433 *3))) (-14 *5 (-1198)) (-14 *6 *4)))) + (|partial| -12 (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) + (-5 *2 (-854 *4)) (-5 *1 (-1274 *3 *4 *5 *6)) + (-4 *4 (-13 (-27) (-1223) (-433 *3))) (-14 *5 (-1197)) (-14 *6 *4)))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-13 (-1059 (-558)) (-658 (-558)) (-464))) + (|partial| -12 (-4 *3 (-13 (-1058 (-558)) (-657 (-558)) (-464))) (-5 *2 (-2 (|:| |%term| - (-2 (|:| |%coef| (-1269 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) - (|:| |%expTerms| (-661 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))))) - (|:| |%type| (-1180)))) - (-5 *1 (-1275 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1224) (-433 *3))) - (-14 *5 (-1198)) (-14 *6 *4)))) + (-2 (|:| |%coef| (-1268 *4 *5 *6)) (|:| |%expon| (-331 *4 *5 *6)) + (|:| |%expTerms| (-660 (-2 (|:| |k| (-419 (-558))) (|:| |c| *4)))))) + (|:| |%type| (-1179)))) + (-5 *1 (-1274 *3 *4 *5 *6)) (-4 *4 (-13 (-27) (-1223) (-433 *3))) + (-14 *5 (-1197)) (-14 *6 *4)))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) + (-12 (-5 *4 (-419 (-558))) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-305 *3)) (-5 *5 (-419 (-558))) - (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4 *5 *6) (-12 (-5 *3 (-1 *8 (-419 (-558)))) (-5 *4 (-305 *8)) - (-5 *5 (-1255 (-419 (-558)))) (-5 *6 (-419 (-558))) - (-4 *8 (-13 (-27) (-1224) (-433 *7))) - (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-5 *5 (-1254 (-419 (-558)))) (-5 *6 (-419 (-558))) + (-4 *8 (-13 (-27) (-1223) (-433 *7))) + (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *8)))) ((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-419 (-558)))) - (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1224) (-433 *8))) - (-4 *8 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-419 (-558)))) + (-5 *7 (-419 (-558))) (-4 *3 (-13 (-27) (-1223) (-433 *8))) + (-4 *8 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *8 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-419 (-558))) (-4 *4 (-1070)) (-4 *1 (-1273 *4 *3)) - (-4 *3 (-1250 *4))))) + (-12 (-5 *2 (-419 (-558))) (-4 *4 (-1069)) (-4 *1 (-1272 *4 *3)) + (-4 *3 (-1249 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1273 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1250 *3)) + (-12 (-4 *1 (-1272 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1249 *3)) (-5 *2 (-419 (-558)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1250 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1249 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-558)) (-4 *5 (-13 (-464) (-1059 *4) (-658 *4))) (-5 *2 (-51)) - (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) + (-12 (-5 *4 (-558)) (-4 *5 (-13 (-464) (-1058 *4) (-657 *4))) (-5 *2 (-51)) + (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-464) (-1059 *5) (-658 *5))) (-5 *5 (-558)) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-464) (-1058 *5) (-657 *5))) (-5 *5 (-558)) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1255 (-558))) - (-4 *7 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1254 (-558))) + (-4 *7 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-558))) - (-4 *3 (-13 (-27) (-1224) (-433 *7))) - (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-558))) + (-4 *3 (-13 (-27) (-1223) (-433 *7))) + (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-558)) (-4 *4 (-1070)) (-4 *1 (-1252 *4 *3)) - (-4 *3 (-1281 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1250 *3))))) + (-12 (-5 *2 (-558)) (-4 *4 (-1069)) (-4 *1 (-1251 *4 *3)) + (-4 *3 (-1280 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1249 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1273 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1250 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)))) + (|partial| -12 (-4 *1 (-1272 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1249 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1271 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-937)) (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1270 *3)) (-4 *3 (-1069))))) (((*1 *2 *2) (-12 (-5 *2 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *4) (|:| |xpnt| (-558)))) - (-4 *4 (-13 (-1264 *3) (-569) (-10 -8 (-15 -3562 ($ $ $))))) (-4 *3 (-569)) - (-5 *1 (-1268 *3 *4))))) + (-4 *4 (-13 (-1263 *3) (-569) (-10 -8 (-15 -3561 ($ $ $))))) (-4 *3 (-569)) + (-5 *1 (-1267 *3 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1) (-4 *1 (-1243))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *1)))) + (-4 *1 (-1091 *4 *5 *6 *3)))) + ((*1 *1 *1) (-4 *1 (-1242))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-1268 *3 *2)) - (-4 *2 (-13 (-1264 *3) (-569) (-10 -8 (-15 -3562 ($ $ $)))))))) + (-12 (-4 *3 (-569)) (-5 *1 (-1267 *3 *2)) + (-4 *2 (-13 (-1263 *3) (-569) (-10 -8 (-15 -3561 ($ $ $)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)) - (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 *4)))))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)) + (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 *4)))))) ((*1 *2 *1) - (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-864)) - (-5 *2 (-661 (-887 *4 *3))))) + (-12 (-4 *1 (-521 *3 *4)) (-4 *3 (-102)) (-4 *4 (-863)) + (-5 *2 (-660 (-886 *4 *3))))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| -4384 *3) (|:| -4368 *4)))) (-5 *1 (-755 *3 *4)) - (-4 *3 (-1070)) (-4 *4 (-746)))) + (-12 (-5 *2 (-660 (-2 (|:| -4383 *3) (|:| -4367 *4)))) (-5 *1 (-754 *3 *4)) + (-4 *3 (-1069)) (-4 *4 (-745)))) ((*1 *2 *1) - (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) - (-5 *2 (-1176 (-2 (|:| |k| *4) (|:| |c| *3))))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-558)) (-5 *1 (-248)))) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) + (-5 *2 (-1175 (-2 (|:| |k| *4) (|:| |c| *3))))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-558)) (-5 *1 (-248)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-661 (-1180))) (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *1 (-248)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070))))) + (-12 (-5 *2 (-660 (-1179))) (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *1 (-248)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) + (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-790)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-861)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-938)))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) + (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-860)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-937)))) ((*1 *2 *3) (-12 (-5 *3 (-346 *4 *5 *6 *7)) (-4 *4 (-13 (-381) (-376))) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) - (-5 *2 (-791)) (-5 *1 (-406 *4 *5 *6 *7)))) - ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-845 (-938))))) + (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *7 (-355 *4 *5 *6)) + (-5 *2 (-790)) (-5 *1 (-406 *4 *5 *6 *7)))) + ((*1 *2 *1) (-12 (-4 *1 (-414)) (-5 *2 (-844 (-937))))) ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-640 *3 *4)) (-4 *4 (-1264 *3)))) + (-12 (-4 *3 (-569)) (-5 *2 (-558)) (-5 *1 (-639 *3 *4)) (-4 *4 (-1263 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-760 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)))) + (-12 (-5 *2 (-790)) (-4 *1 (-759 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-860)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-760 *4 *3)) (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + (-12 (-4 *1 (-759 *4 *3)) (-4 *4 (-1069)) (-4 *3 (-860)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-791)) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) + (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-790)) + (-5 *1 (-929 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-558)))) (-4 *5 (-1264 (-419 *4))) - (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-791)) (-5 *1 (-931 *4 *5 *6)))) + (-4 *4 (-1263 (-419 (-558)))) (-4 *5 (-1263 (-419 *4))) + (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-790)) (-5 *1 (-930 *4 *5 *6)))) ((*1 *2 *3 *4 *5) (-12 (-5 *3 (-346 *6 *7 *4 *8)) (-5 *5 (-1 *9 *6)) (-4 *6 (-376)) - (-4 *7 (-1264 *6)) (-4 *4 (-1264 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) - (-4 *9 (-13 (-381) (-376))) (-5 *2 (-791)) (-5 *1 (-1039 *6 *7 *4 *8 *9)))) + (-4 *7 (-1263 *6)) (-4 *4 (-1263 (-419 *7))) (-4 *8 (-355 *6 *7 *4)) + (-4 *9 (-13 (-381) (-376))) (-5 *2 (-790)) (-5 *1 (-1038 *6 *7 *4 *8 *9)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-4 *3 (-569)) (-5 *2 (-791)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) - ((*1 *2 *1) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814))))) -(((*1 *1 *1) (-4 *1 (-1081))) - ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814))))) + (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-569)) (-5 *2 (-790)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) + ((*1 *2 *1) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813))))) +(((*1 *1 *1) (-4 *1 (-1080))) + ((*1 *1 *1 *2 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813))))) (((*1 *2 *1 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-119 *4)) (-14 *4 *3) (-5 *3 (-558)))) - ((*1 *2 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) + ((*1 *2 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) ((*1 *2 *1 *3) - (-12 (-5 *2 (-419 (-558))) (-5 *1 (-885 *4)) (-14 *4 *3) (-5 *3 (-558)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-884 *4)) (-14 *4 *3) (-5 *3 (-558)))) ((*1 *2 *1 *3) - (-12 (-14 *4 *3) (-5 *2 (-419 (-558))) (-5 *1 (-886 *4 *5)) (-5 *3 (-558)) - (-4 *5 (-884 *4)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1033)) (-5 *2 (-419 (-558))))) + (-12 (-14 *4 *3) (-5 *2 (-419 (-558))) (-5 *1 (-885 *4 *5)) (-5 *3 (-558)) + (-4 *5 (-883 *4)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1032)) (-5 *2 (-419 (-558))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-376))) (-4 *3 (-1264 *2)))) + (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-859) (-376))) (-4 *3 (-1263 *2)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1267 *2 *3)) (-4 *3 (-814)) (|has| *2 (-15 ** (*2 *2 *3))) - (|has| *2 (-15 -4376 (*2 (-1198)))) (-4 *2 (-1070))))) + (-12 (-4 *1 (-1266 *2 *3)) (-4 *3 (-813)) (|has| *2 (-15 ** (*2 *2 *3))) + (|has| *2 (-15 -4375 (*2 (-1197)))) (-4 *2 (-1069))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-177 *3)) (-4 *3 (-319)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-694 *3)) (-4 *3 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-693 *3)) (-4 *3 (-1237)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-760 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-861)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1001 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-790)) (-4 *1 (-759 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-860)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1000 *3)) (-4 *3 (-1069)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) + (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1267 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1266 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-1243)) (-4 *5 (-1264 *4)) - (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1264 *3)))) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-1242)) (-4 *5 (-1263 *4)) + (-5 *1 (-150 *4 *5 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1200 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) + (-12 (-5 *3 (-1199 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-709 (-326 (-229)))) (-5 *3 (-661 (-1198))) - (-5 *4 (-1288 (-326 (-229)))) (-5 *1 (-208)))) + (-12 (-5 *2 (-708 (-326 (-229)))) (-5 *3 (-660 (-1197))) + (-5 *4 (-1287 (-326 (-229)))) (-5 *1 (-208)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1122)) - (-4 *3 (-1238)) (-5 *1 (-305 *3)))) + (-12 (-5 *2 (-660 (-305 *3))) (-4 *3 (-321 *3)) (-4 *3 (-1121)) + (-4 *3 (-1237)) (-5 *1 (-305 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-321 *2)) (-4 *2 (-1122)) (-4 *2 (-1238)) (-5 *1 (-305 *2)))) + (-12 (-4 *2 (-321 *2)) (-4 *2 (-1121)) (-4 *2 (-1237)) (-5 *1 (-305 *2)))) ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) + (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-310)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 *1)) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1 *1 (-661 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1 *1 (-660 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-310)))) + (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-310)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-1 *1 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-1 *1 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-305 *3))) (-4 *1 (-321 *3)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *3)) (-4 *1 (-321 *3)) (-4 *3 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1200 (-419 (-558)))) (-5 *1 (-322 *2)) + (-12 (-5 *3 (-1 *2 (-558))) (-5 *4 (-1199 (-419 (-558)))) (-5 *1 (-322 *2)) (-4 *2 (-38 (-419 (-558)))))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-861)) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *1)) (-4 *1 (-387 *4 *5)) (-4 *4 (-860)) (-4 *5 (-175)))) - ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-861)) (-4 *3 (-175)))) + ((*1 *1 *1 *2 *1) (-12 (-4 *1 (-387 *2 *3)) (-4 *2 (-860)) (-4 *3 (-175)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-791)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) - (-4 *5 (-1122)) (-4 *5 (-1070)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-790)) (-5 *4 (-1 *1 *1)) (-4 *1 (-433 *5)) + (-4 *5 (-1121)) (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-791)) (-5 *4 (-1 *1 (-661 *1))) - (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-1070)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-790)) (-5 *4 (-1 *1 (-660 *1))) + (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-791))) - (-5 *4 (-661 (-1 *1 (-661 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1122)) - (-4 *5 (-1070)))) + (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-790))) + (-5 *4 (-660 (-1 *1 (-660 *1)))) (-4 *1 (-433 *5)) (-4 *5 (-1121)) + (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-661 (-791))) (-5 *4 (-661 (-1 *1 *1))) - (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-1070)))) + (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-660 (-790))) (-5 *4 (-660 (-1 *1 *1))) + (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-661 (-115))) (-5 *3 (-661 *1)) (-5 *4 (-1198)) - (-4 *1 (-433 *5)) (-4 *5 (-1122)) (-4 *5 (-631 (-547))))) + (-12 (-5 *2 (-660 (-115))) (-5 *3 (-660 *1)) (-5 *4 (-1197)) + (-4 *1 (-433 *5)) (-4 *5 (-1121)) (-4 *5 (-630 (-547))))) ((*1 *1 *1 *2 *1 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1198)) (-4 *1 (-433 *4)) (-4 *4 (-1122)) - (-4 *4 (-631 (-547))))) - ((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)) (-4 *2 (-631 (-547))))) + (-12 (-5 *2 (-115)) (-5 *3 (-1197)) (-4 *1 (-433 *4)) (-4 *4 (-1121)) + (-4 *4 (-630 (-547))))) + ((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)) (-4 *2 (-630 (-547))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-1198))) (-4 *1 (-433 *3)) (-4 *3 (-1122)) - (-4 *3 (-631 (-547))))) + (-12 (-5 *2 (-660 (-1197))) (-4 *1 (-433 *3)) (-4 *3 (-1121)) + (-4 *3 (-630 (-547))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)) - (-4 *3 (-631 (-547))))) - ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)) + (-4 *3 (-630 (-547))))) + ((*1 *1 *1 *2 *3) (-12 (-4 *1 (-526 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1237)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1122)) - (-4 *5 (-1238)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-845 *3)) (-4 *3 (-376)) (-5 *1 (-738 *3)))) - ((*1 *2 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 *5)) (-4 *1 (-526 *4 *5)) (-4 *4 (-1121)) + (-4 *5 (-1237)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-844 *3)) (-4 *3 (-376)) (-5 *1 (-737 *3)))) + ((*1 *2 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *3 *2) - (-12 (-5 *2 (-419 (-965 *4))) (-5 *3 (-1198)) (-4 *4 (-569)) - (-5 *1 (-1061 *4)))) + (-12 (-5 *2 (-419 (-964 *4))) (-5 *3 (-1197)) (-4 *4 (-569)) + (-5 *1 (-1060 *4)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-661 (-1198))) (-5 *4 (-661 (-419 (-965 *5)))) - (-5 *2 (-419 (-965 *5))) (-4 *5 (-569)) (-5 *1 (-1061 *5)))) + (-12 (-5 *3 (-660 (-1197))) (-5 *4 (-660 (-419 (-964 *5)))) + (-5 *2 (-419 (-964 *5))) (-4 *5 (-569)) (-5 *1 (-1060 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-305 (-419 (-965 *4)))) (-5 *2 (-419 (-965 *4))) (-4 *4 (-569)) - (-5 *1 (-1061 *4)))) + (-12 (-5 *3 (-305 (-419 (-964 *4)))) (-5 *2 (-419 (-964 *4))) (-4 *4 (-569)) + (-5 *1 (-1060 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-661 (-305 (-419 (-965 *4))))) (-5 *2 (-419 (-965 *4))) - (-4 *4 (-569)) (-5 *1 (-1061 *4)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3)))) + (-12 (-5 *3 (-660 (-305 (-419 (-964 *4))))) (-5 *2 (-419 (-964 *4))) + (-4 *4 (-569)) (-5 *1 (-1060 *4)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1267 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) - (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1176 *3))))) + (-12 (-4 *1 (-1266 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) + (|has| *3 (-15 ** (*3 *3 *4))) (-5 *2 (-1175 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-1264 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-1264 *3)) (-4 *3 (-1070)) (-5 *2 (-1192 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-1070)) (-4 *1 (-1264 *3))))) + (-12 (-5 *3 (-790)) (-4 *1 (-1263 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-5 *2 (-1191 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-1069)) (-4 *1 (-1263 *3))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) + (|partial| -12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-969 *4 *5 *3)))) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-968 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) - (-4 *1 (-1264 *3))))) + (-12 (-4 *3 (-1069)) (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) + (-4 *1 (-1263 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1264 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791)))) + (-12 (-5 *3 (-790)) (-4 *4 (-1069)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1263 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-790)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-790)) (-4 *1 (-274 *4)) (-4 *4 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1237)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))))) ((*1 *2 *1 *3) - (-12 (-4 *2 (-376)) (-4 *2 (-917 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1198)))) + (-12 (-4 *2 (-376)) (-4 *2 (-916 *3)) (-5 *1 (-595 *2)) (-5 *3 (-1197)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-595 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-877)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-876)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-919 *4)) - (-4 *4 (-1122)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-919 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1122)))) - ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1264 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-790))) (-4 *1 (-918 *4)) + (-4 *4 (-1121)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-918 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1121)))) + ((*1 *1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-1263 *3)) (-4 *3 (-1069))))) (((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-167 *3 *2)) (-4 *3 (-168 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1264 *2)) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *2 *4)) (-4 *4 (-1263 *2)) (-4 *2 (-175)))) ((*1 *2) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) + (-12 (-4 *4 (-1263 *2)) (-4 *2 (-175)) (-5 *1 (-421 *3 *2 *4)) (-4 *3 (-422 *2 *4)))) - ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-175)))) + ((*1 *2) (-12 (-4 *1 (-422 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-175)))) ((*1 *2) - (-12 (-4 *3 (-1264 *2)) (-5 *2 (-558)) (-5 *1 (-788 *3 *4)) + (-12 (-4 *3 (-1263 *2)) (-5 *2 (-558)) (-5 *1 (-787 *3 *4)) (-4 *4 (-422 *2 *3)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-175)))) - ((*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-175))))) + ((*1 *2 *3) (-12 (-4 *2 (-569)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-175))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-175)))) - ((*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2)))) + ((*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-175))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-175))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-569))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-569))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) ((*1 *2 *2 *1) - (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1264 *3)) (-4 *3 (-1070)) + (|partial| -12 (-5 *2 (-419 *1)) (-4 *1 (-1263 *3)) (-4 *3 (-1069)) (-4 *3 (-569)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-569))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1264 *2)) (-4 *2 (-1070)) (-4 *2 (-569))))) + (|partial| -12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-569))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1263 *2)) (-4 *2 (-1069)) (-4 *2 (-569))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4384 *4) (|:| -2184 *3) (|:| -3303 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4)))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -4383 *4) (|:| -2183 *3) (|:| -3302 *3))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-1086 *3 *4 *5)))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-1085 *3 *4 *5)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -4384 *3) (|:| -2184 *1) (|:| -3303 *1))) - (-4 *1 (-1264 *3))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| -4383 *3) (|:| -2183 *1) (|:| -3302 *1))) + (-4 *1 (-1263 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *4 (-569)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -1972 (-640 *4 *5)) (|:| -1971 (-419 *5)))) - (-5 *1 (-640 *4 *5)) (-5 *3 (-419 *5)))) + (-12 (-4 *4 (-376)) (-4 *4 (-569)) (-4 *5 (-1263 *4)) + (-5 *2 (-2 (|:| -1971 (-639 *4 *5)) (|:| -1970 (-419 *5)))) + (-5 *1 (-639 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1070)))) + (-12 (-5 *2 (-660 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) + (-4 *4 (-1069)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-464)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1264 *3))))) + (-12 (-4 *3 (-464)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| |primePart| *1) (|:| |commonPart| *1))) (-4 *1 (-1263 *3))))) (((*1 *2 *2 *2 *3 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *1 (-1262 *4 *2)) - (-4 *2 (-1264 *4))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-1262 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *1 (-1261 *4 *2)) + (-4 *2 (-1263 *4))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1263 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-1261 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) - (-5 *1 (-1261 *4 *3)) (-4 *3 (-1264 *4))))) + (|partial| -12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) + (-5 *1 (-1260 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-661 *3)) (-5 *1 (-1260 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 (-660 *3)) (-5 *1 (-1259 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *3) (|partial| -12 (-4 *4 (-13 (-569) (-149))) - (-5 *2 (-2 (|:| -3540 *3) (|:| -3539 *3))) (-5 *1 (-1260 *4 *3)) - (-4 *3 (-1264 *4))))) + (-5 *2 (-2 (|:| -3539 *3) (|:| -3538 *3))) (-5 *1 (-1259 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1260 *3 *2)) - (-4 *2 (-1264 *3))))) + (|partial| -12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1259 *3 *2)) + (-4 *2 (-1263 *3))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) - (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4))))) + (|partial| -12 (-5 *3 (-790)) (-4 *4 (-13 (-569) (-149))) + (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-791)) (-4 *4 (-13 (-569) (-149))) - (-5 *1 (-1260 *4 *2)) (-4 *2 (-1264 *4))))) + (|partial| -12 (-5 *3 (-790)) (-4 *4 (-13 (-569) (-149))) + (-5 *1 (-1259 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) + (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-144 *4 *5 *3)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) + (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-5 *2 (-2 (|:| |num| *6) (|:| |den| *4))) (-5 *1 (-515 *4 *5 *6 *3)) (-4 *6 (-385 *4)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-709 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |num| (-709 *4)) (|:| |den| *4))) (-5 *1 (-713 *4 *5)))) + (-12 (-5 *3 (-708 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-569)) + (-5 *2 (-2 (|:| |num| (-708 *4)) (|:| |den| *4))) (-5 *1 (-712 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) - (-5 *2 (-2 (|:| -3684 *7) (|:| |rh| (-661 (-419 *6))))) - (-5 *1 (-829 *5 *6 *7 *3)) (-5 *4 (-661 (-419 *6))) (-4 *7 (-678 *6)) - (-4 *3 (-678 (-419 *6))))) + (-12 (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) + (-5 *2 (-2 (|:| -3683 *7) (|:| |rh| (-660 (-419 *6))))) + (-5 *1 (-828 *5 *6 *7 *3)) (-5 *4 (-660 (-419 *6))) (-4 *7 (-677 *6)) + (-4 *3 (-677 (-419 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1259 *4 *5 *3)) - (-4 *3 (-1264 *5))))) + (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4))) (-5 *1 (-1258 *4 *5 *3)) + (-4 *3 (-1263 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *4 (-1012 *3)) (-5 *1 (-144 *3 *4 *2)) + (-12 (-4 *3 (-569)) (-4 *4 (-1011 *3)) (-5 *1 (-144 *3 *4 *2)) (-4 *2 (-385 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-1012 *4)) (-4 *2 (-385 *4)) + (-12 (-4 *4 (-569)) (-4 *5 (-1011 *4)) (-4 *2 (-385 *4)) (-5 *1 (-515 *4 *5 *2 *3)) (-4 *3 (-385 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-709 *5)) (-4 *5 (-1012 *4)) (-4 *4 (-569)) (-5 *2 (-709 *4)) - (-5 *1 (-713 *4 *5)))) + (-12 (-5 *3 (-708 *5)) (-4 *5 (-1011 *4)) (-4 *4 (-569)) (-5 *2 (-708 *4)) + (-5 *1 (-712 *4 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-4 *4 (-1012 *3)) (-5 *1 (-1259 *3 *4 *2)) - (-4 *2 (-1264 *4))))) + (-12 (-4 *3 (-569)) (-4 *4 (-1011 *3)) (-5 *1 (-1258 *3 *4 *2)) + (-4 *2 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-144 *2 *4 *3)) + (-12 (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-144 *2 *4 *3)) (-4 *3 (-385 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-515 *2 *4 *5 *3)) + (-12 (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-515 *2 *4 *5 *3)) (-4 *5 (-385 *2)) (-4 *3 (-385 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-709 *4)) (-4 *4 (-1012 *2)) (-4 *2 (-569)) - (-5 *1 (-713 *2 *4)))) + (-12 (-5 *3 (-708 *4)) (-4 *4 (-1011 *2)) (-4 *2 (-569)) + (-5 *1 (-712 *2 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-1012 *2)) (-4 *2 (-569)) (-5 *1 (-1259 *2 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-801 *3)) (-4 *3 (-1070)))) + (-12 (-4 *4 (-1011 *2)) (-4 *2 (-569)) (-5 *1 (-1258 *2 *4 *3)) + (-4 *3 (-1263 *4))))) +(((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-790)) (-5 *1 (-800 *3)) (-4 *3 (-1069)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *1 (-975 *3 *2)) (-4 *2 (-133)) (-4 *3 (-569)) (-4 *3 (-1070)) - (-4 *2 (-814)))) - ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-791)) (-5 *1 (-1192 *3)) (-4 *3 (-1070)))) + (-12 (-5 *1 (-974 *3 *2)) (-4 *2 (-133)) (-4 *3 (-569)) (-4 *3 (-1069)) + (-4 *2 (-813)))) + ((*1 *1 *1 *2 *3 *1) (-12 (-5 *2 (-790)) (-5 *1 (-1191 *3)) (-4 *3 (-1069)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-992)) (-4 *2 (-133)) (-5 *1 (-1200 *3)) (-4 *3 (-569)) - (-4 *3 (-1070)))) + (-12 (-5 *2 (-991)) (-4 *2 (-133)) (-5 *1 (-1199 *3)) (-4 *3 (-569)) + (-4 *3 (-1069)))) ((*1 *1 *1 *2 *3 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-1257 *4 *3)) (-14 *4 (-1198)) (-4 *3 (-1070))))) -(((*1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *2 (-1115 *3)) (-5 *1 (-1079 *2 *3)) (-4 *3 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1110 *3)) (-5 *1 (-1113 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) (-12 (-5 *1 (-1255 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1255 *3)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1256 *4 *3)) (-14 *4 (-1197)) (-4 *3 (-1069))))) +(((*1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *2 (-1114 *3)) (-5 *1 (-1078 *2 *3)) (-4 *3 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-1109 *3)) (-5 *1 (-1112 *3)) (-4 *3 (-1237)))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) (-12 (-5 *1 (-1254 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1254 *3)) (-4 *3 (-1237))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) - (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) + (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-5 *2 (-2 (|:| |contp| (-558)) - (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) - (-5 *1 (-1254 *3)) (-4 *3 (-1264 (-558)))))) + (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) + (-5 *1 (-1253 *3)) (-4 *3 (-1263 (-558)))))) (((*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) + (-4 *3 (-1263 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-660 (-790))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-660 (-790))) (-5 *5 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-558)))))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1264 (-558)))))) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1027 *3)) (-4 *3 (-1263 (-419 (-558)))))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1263 (-558)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) - (-4 *3 (-1264 (-48))))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) + (-12 (-5 *4 (-660 (-48))) (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) + (-4 *3 (-1263 (-48))))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-48))) (-4 *5 (-861)) (-4 *6 (-815)) (-5 *2 (-417 *3)) - (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-969 (-48) *6 *5)))) + (-12 (-5 *4 (-660 (-48))) (-4 *5 (-860)) (-4 *6 (-814)) (-5 *2 (-417 *3)) + (-5 *1 (-42 *5 *6 *3)) (-4 *3 (-968 (-48) *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-48))) (-4 *5 (-861)) (-4 *6 (-815)) - (-4 *7 (-969 (-48) *6 *5)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-42 *5 *6 *7)) - (-5 *3 (-1192 *7)))) + (-12 (-5 *4 (-660 (-48))) (-4 *5 (-860)) (-4 *6 (-814)) + (-4 *7 (-968 (-48) *6 *5)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-42 *5 *6 *7)) + (-5 *3 (-1191 *7)))) ((*1 *2 *3) (-12 (-4 *4 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-169 *4 *3)) - (-4 *3 (-1264 (-171 *4))))) + (-4 *3 (-1263 (-171 *4))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1264 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1263 (-171 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1264 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1263 (-171 *4))))) ((*1 *2 *3) (-12 (-4 *4 (-363)) (-5 *2 (-417 *3)) (-5 *1 (-220 *4 *3)) - (-4 *3 (-1264 *4)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) + (-4 *3 (-1263 *4)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-791))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-660 (-790))) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-661 (-791))) (-5 *5 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-660 (-790))) (-5 *5 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-791)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558))))) + (-12 (-5 *4 (-790)) (-5 *2 (-417 *3)) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558))))) ((*1 *2 *3) (-12 (-5 *2 (-417 (-171 (-558)))) (-5 *1 (-458)) (-5 *3 (-171 (-558))))) ((*1 *2 *3) (-12 (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198)))))) - (-4 *5 (-815)) (-4 *7 (-569)) (-5 *2 (-417 *3)) - (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-969 *7 *5 *4)))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197)))))) + (-4 *5 (-814)) (-4 *7 (-569)) (-5 *2 (-417 *3)) + (-5 *1 (-468 *4 *5 *6 *7 *3)) (-4 *6 (-569)) (-4 *3 (-968 *7 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1192 *4))) (-5 *1 (-470 *4)) - (-5 *3 (-1192 *4)))) + (-12 (-4 *4 (-319)) (-5 *2 (-417 (-1191 *4))) (-5 *1 (-470 *4)) + (-5 *3 (-1191 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) - (-4 *7 (-13 (-376) (-149) (-744 *5 *6))) (-5 *2 (-417 *3)) - (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1264 *7)))) + (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) + (-4 *7 (-13 (-376) (-149) (-743 *5 *6))) (-5 *2 (-417 *3)) + (-5 *1 (-506 *5 *6 *7 *3)) (-4 *3 (-1263 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-319) (-149))) - (-4 *5 (-861)) (-4 *6 (-815)) (-5 *2 (-417 *3)) (-5 *1 (-552 *5 *6 *7 *3)) - (-4 *3 (-969 *7 *6 *5)))) + (-12 (-5 *4 (-1 (-417 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-319) (-149))) + (-4 *5 (-860)) (-4 *6 (-814)) (-5 *2 (-417 *3)) (-5 *1 (-552 *5 *6 *7 *3)) + (-4 *3 (-968 *7 *6 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 (-1192 *7)) (-1192 *7))) (-4 *7 (-13 (-319) (-149))) - (-4 *5 (-861)) (-4 *6 (-815)) (-4 *8 (-969 *7 *6 *5)) - (-5 *2 (-417 (-1192 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1192 *8)))) + (-12 (-5 *4 (-1 (-417 (-1191 *7)) (-1191 *7))) (-4 *7 (-13 (-319) (-149))) + (-4 *5 (-860)) (-4 *6 (-814)) (-4 *8 (-968 *7 *6 *5)) + (-5 *2 (-417 (-1191 *8))) (-5 *1 (-552 *5 *6 *7 *8)) (-5 *3 (-1191 *8)))) ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-661 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *6 (-1264 *5)) (-5 *2 (-661 (-675 (-419 *6)))) (-5 *1 (-679 *5 *6)) - (-5 *3 (-675 (-419 *6))))) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *6 (-1263 *5)) (-5 *2 (-660 (-674 (-419 *6)))) (-5 *1 (-678 *5 *6)) + (-5 *3 (-674 (-419 *6))))) ((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *5 (-1264 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) - (-5 *3 (-675 (-419 *5))))) + (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *5 (-1263 *4)) (-5 *2 (-660 (-674 (-419 *5)))) (-5 *1 (-678 *4 *5)) + (-5 *3 (-674 (-419 *5))))) ((*1 *2 *3) - (-12 (-5 *3 (-841 *4)) (-4 *4 (-861)) (-5 *2 (-661 (-692 *4))) - (-5 *1 (-692 *4)))) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-860)) (-5 *2 (-660 (-691 *4))) + (-5 *1 (-691 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-558)) (-5 *2 (-661 *3)) (-5 *1 (-716 *3)) (-4 *3 (-1264 *4)))) + (-12 (-5 *4 (-558)) (-5 *2 (-660 *3)) (-5 *1 (-715 *3)) (-4 *3 (-1263 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-363)) (-5 *2 (-417 *3)) - (-5 *1 (-718 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) + (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-363)) (-5 *2 (-417 *3)) + (-5 *1 (-717 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-363)) (-4 *7 (-969 *6 *5 *4)) - (-5 *2 (-417 (-1192 *7))) (-5 *1 (-718 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-363)) (-4 *7 (-968 *6 *5 *4)) + (-5 *2 (-417 (-1191 *7))) (-5 *1 (-717 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) + (-12 (-4 *4 (-814)) (-4 *5 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ "failed") (-1198)))))) - (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-750 *4 *5 *6 *3)) - (-4 *3 (-969 (-965 *6) *4 *5)))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ "failed") (-1197)))))) + (-4 *6 (-319)) (-5 *2 (-417 *3)) (-5 *1 (-749 *4 *5 *6 *3)) + (-4 *3 (-968 (-964 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) - (-4 *6 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-752 *4 *5 *6 *3)) - (-4 *3 (-969 (-419 (-965 *6)) *4 *5)))) + (-12 (-4 *4 (-814)) (-4 *5 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) + (-4 *6 (-569)) (-5 *2 (-417 *3)) (-5 *1 (-751 *4 *5 *6 *3)) + (-4 *3 (-968 (-419 (-964 *6)) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-13 (-319) (-149))) - (-5 *2 (-417 *3)) (-5 *1 (-753 *4 *5 *6 *3)) - (-4 *3 (-969 (-419 *6) *4 *5)))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-13 (-319) (-149))) + (-5 *2 (-417 *3)) (-5 *1 (-752 *4 *5 *6 *3)) + (-4 *3 (-968 (-419 *6) *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) - (-5 *2 (-417 *3)) (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-969 *6 *5 *4)))) + (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-13 (-319) (-149))) + (-5 *2 (-417 *3)) (-5 *1 (-760 *4 *5 *6 *3)) (-4 *3 (-968 *6 *5 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-861)) (-4 *5 (-815)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-969 *6 *5 *4)) (-5 *2 (-417 (-1192 *7))) (-5 *1 (-761 *4 *5 *6 *7)) - (-5 *3 (-1192 *7)))) + (-12 (-4 *4 (-860)) (-4 *5 (-814)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-968 *6 *5 *4)) (-5 *2 (-417 (-1191 *7))) (-5 *1 (-760 *4 *5 *6 *7)) + (-5 *3 (-1191 *7)))) ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1028 *3)) (-4 *3 (-1264 (-419 (-558)))))) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1027 *3)) (-4 *3 (-1263 (-419 (-558)))))) ((*1 *2 *3) - (-12 (-5 *2 (-417 *3)) (-5 *1 (-1063 *3)) - (-4 *3 (-1264 (-419 (-965 (-558))))))) + (-12 (-5 *2 (-417 *3)) (-5 *1 (-1062 *3)) + (-4 *3 (-1263 (-419 (-964 (-558))))))) ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 (-558)))) - (-4 *5 (-13 (-376) (-149) (-744 (-419 (-558)) *4))) (-5 *2 (-417 *3)) - (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1264 *5)))) + (-12 (-4 *4 (-1263 (-419 (-558)))) + (-4 *5 (-13 (-376) (-149) (-743 (-419 (-558)) *4))) (-5 *2 (-417 *3)) + (-5 *1 (-1100 *4 *5 *3)) (-4 *3 (-1263 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 (-965 (-558))))) - (-4 *5 (-13 (-376) (-149) (-744 (-419 (-965 (-558))) *4))) (-5 *2 (-417 *3)) - (-5 *1 (-1102 *4 *5 *3)) (-4 *3 (-1264 *5)))) + (-12 (-4 *4 (-1263 (-419 (-964 (-558))))) + (-4 *5 (-13 (-376) (-149) (-743 (-419 (-964 (-558))) *4))) (-5 *2 (-417 *3)) + (-5 *1 (-1101 *4 *5 *3)) (-4 *3 (-1263 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-464)) (-4 *7 (-969 *6 *4 *5)) - (-5 *2 (-417 (-1192 (-419 *7)))) (-5 *1 (-1194 *4 *5 *6 *7)) - (-5 *3 (-1192 (-419 *7))))) - ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1243)))) - ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1254 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1281 *3))))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-464)) (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-417 (-1191 (-419 *7)))) (-5 *1 (-1193 *4 *5 *6 *7)) + (-5 *3 (-1191 (-419 *7))))) + ((*1 *2 *1) (-12 (-5 *2 (-417 *1)) (-4 *1 (-1242)))) + ((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-1253 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1280 *3))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-119 *3)) (-14 *3 *2))) ((*1 *1 *1) (-12 (-5 *1 (-119 *2)) (-14 *2 (-558)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-885 *3)) (-14 *3 *2))) - ((*1 *1 *1) (-12 (-5 *1 (-885 *2)) (-14 *2 (-558)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-884 *3)) (-14 *3 *2))) + ((*1 *1 *1) (-12 (-5 *1 (-884 *2)) (-14 *2 (-558)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-886 *3 *4)) (-4 *4 (-884 *3)))) - ((*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-886 *2 *3)) (-4 *3 (-884 *2)))) + (-12 (-5 *2 (-558)) (-14 *3 *2) (-5 *1 (-885 *3 *4)) (-4 *4 (-883 *3)))) + ((*1 *1 *1) (-12 (-14 *2 (-558)) (-5 *1 (-885 *2 *3)) (-4 *3 (-883 *2)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-558)) (-4 *1 (-1252 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-1281 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-1252 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-1281 *2))))) + (-12 (-5 *2 (-558)) (-4 *1 (-1251 *3 *4)) (-4 *3 (-1069)) + (-4 *4 (-1280 *3)))) + ((*1 *1 *1) (-12 (-4 *1 (-1251 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-1280 *2))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *4 *5)) (-4 *5 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) - (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) + (-5 *1 (-328 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) + (-12 (-5 *4 (-790)) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-51)) (-5 *1 (-328 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *5 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-305 *3)) (-5 *5 (-791)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-305 *3)) (-5 *5 (-790)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-328 *6 *3)))) ((*1 *2 *3 *4) (-12 (-5 *3 (-1 *6 (-558))) (-5 *4 (-305 *6)) - (-4 *6 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-4 *6 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1255 (-791))) - (-4 *7 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *3 (-1 *7 (-558))) (-5 *4 (-305 *7)) (-5 *5 (-1254 (-790))) + (-4 *7 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *5 (-305 *3)) (-5 *6 (-1255 (-791))) - (-4 *3 (-13 (-27) (-1224) (-433 *7))) - (-4 *7 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-51)) + (-12 (-5 *4 (-1197)) (-5 *5 (-305 *3)) (-5 *6 (-1254 (-790))) + (-4 *3 (-13 (-27) (-1223) (-433 *7))) + (-4 *7 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-51)) (-5 *1 (-471 *7 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1281 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1280 *3))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-1252 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1281 *3))))) + (|partial| -12 (-4 *1 (-1251 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1280 *3))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-1250 *4)) (-4 *4 (-1070)) (-4 *4 (-569)) - (-5 *2 (-419 (-965 *4))))) + (-12 (-5 *3 (-558)) (-4 *1 (-1249 *4)) (-4 *4 (-1069)) (-4 *4 (-569)) + (-5 *2 (-419 (-964 *4))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-1250 *4)) (-4 *4 (-1070)) (-4 *4 (-569)) - (-5 *2 (-419 (-965 *4)))))) + (-12 (-5 *3 (-558)) (-4 *1 (-1249 *4)) (-4 *4 (-1069)) (-4 *4 (-569)) + (-5 *2 (-419 (-964 *4)))))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-938)))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) - ((*1 *1 *1 *1) (-5 *1 (-1246))) ((*1 *1 *1 *1) (-5 *1 (-1247)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-937)))) + ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) + ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) (((*1 *1 *1 *1) (-5 *1 (-130))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-938)))) - ((*1 *1 *1 *1) (-5 *1 (-1244))) ((*1 *1 *1 *1) (-5 *1 (-1245))) - ((*1 *1 *1 *1) (-5 *1 (-1246))) ((*1 *1 *1 *1) (-5 *1 (-1247)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-937)))) + ((*1 *1 *1 *1) (-5 *1 (-1243))) ((*1 *1 *1 *1) (-5 *1 (-1244))) + ((*1 *1 *1 *1) (-5 *1 (-1245))) ((*1 *1 *1 *1) (-5 *1 (-1246)))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-130))) ((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) ((*1 *1) (-5 *1 (-559))) ((*1 *1) (-5 *1 (-560))) ((*1 *1) (-5 *1 (-561))) - ((*1 *1) (-5 *1 (-562))) ((*1 *1) (-4 *1 (-746))) ((*1 *1) (-5 *1 (-1198))) - ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-938)))) - ((*1 *1) (-12 (-5 *1 (-1205 *2)) (-14 *2 (-938)))) ((*1 *1) (-5 *1 (-1244))) - ((*1 *1) (-5 *1 (-1245))) ((*1 *1) (-5 *1 (-1246))) ((*1 *1) (-5 *1 (-1247)))) + ((*1 *1) (-5 *1 (-562))) ((*1 *1) (-4 *1 (-745))) ((*1 *1) (-5 *1 (-1197))) + ((*1 *1) (-12 (-5 *1 (-1203 *2)) (-14 *2 (-937)))) + ((*1 *1) (-12 (-5 *1 (-1204 *2)) (-14 *2 (-937)))) ((*1 *1) (-5 *1 (-1243))) + ((*1 *1) (-5 *1 (-1244))) ((*1 *1) (-5 *1 (-1245))) ((*1 *1) (-5 *1 (-1246)))) (((*1 *2 *3) (-12 (-5 *3 (-171 (-558))) (-5 *2 (-114)) (-5 *1 (-458)))) ((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) - (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-114)) + (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) + (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-981 *3)) (-4 *3 (-557)))) - ((*1 *2 *1) (-12 (-4 *1 (-1243)) (-5 *2 (-114))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1241))))) + ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-980 *3)) (-4 *3 (-557)))) + ((*1 *2 *1) (-12 (-4 *1 (-1242)) (-5 *2 (-114))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1240))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3646 (-661 (-1198))) (|:| -3647 (-661 (-1198))))) - (-5 *1 (-1241))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1241))))) + (-12 (-5 *2 (-2 (|:| -3645 (-660 (-1197))) (|:| -3646 (-660 (-1197))))) + (-5 *1 (-1240))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1240))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-1171 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) + (-12 (-5 *3 (-790)) (-4 *1 (-1170 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-1240 *3)) (-4 *3 (-861)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1239 *3)) (-4 *3 (-860)) (-4 *3 (-1121))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1240 *2)) - (-4 *2 (-1122)))) + (-12 (-5 *3 (-660 *2)) (-5 *4 (-1 (-114) *2 *2)) (-5 *1 (-1239 *2)) + (-4 *2 (-1121)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-861)) (-5 *1 (-1240 *2))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1240 *3)) (-4 *3 (-1122))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-860)) (-5 *1 (-1239 *2))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-1171 *4)) (-4 *4 (-1238)) (-5 *2 (-114)))) + (-12 (-5 *3 (-790)) (-4 *1 (-1170 *4)) (-4 *4 (-1237)) (-5 *2 (-114)))) ((*1 *2 *3 *3) - (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1240 *3)) (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-114)) (-5 *1 (-1239 *3)) (-4 *3 (-1121)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1122)) (-5 *2 (-114)) - (-5 *1 (-1240 *3))))) + (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *3 (-1121)) (-5 *2 (-114)) + (-5 *1 (-1239 *3))))) (((*1 *2) - (-12 (-5 *2 (-2 (|:| -3647 (-661 *3)) (|:| -3646 (-661 *3)))) - (-5 *1 (-1240 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-2 (|:| -3646 (-660 *3)) (|:| -3645 (-660 *3)))) + (-5 *1 (-1239 *3)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4)))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-1122)) (-5 *2 (-1294)) (-5 *1 (-1240 *4))))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1121)) (-5 *2 (-1293)) (-5 *1 (-1239 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-558)) (-4 *5 (-363)) (-5 *2 (-417 (-1192 (-1192 *5)))) - (-5 *1 (-1237 *5)) (-5 *3 (-1192 (-1192 *5)))))) + (-12 (-5 *4 (-558)) (-4 *5 (-363)) (-5 *2 (-417 (-1191 (-1191 *5)))) + (-5 *1 (-1236 *5)) (-5 *3 (-1191 (-1191 *5)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1192 (-1192 *4)))) (-5 *1 (-1237 *4)) - (-5 *3 (-1192 (-1192 *4)))))) + (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1191 (-1191 *4)))) (-5 *1 (-1236 *4)) + (-5 *3 (-1191 (-1191 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1192 (-1192 *4)))) (-5 *1 (-1237 *4)) - (-5 *3 (-1192 (-1192 *4)))))) + (-12 (-4 *4 (-363)) (-5 *2 (-417 (-1191 (-1191 *4)))) (-5 *1 (-1236 *4)) + (-5 *3 (-1191 (-1191 *4)))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *3)) - (-4 *3 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *3)) + (-4 *3 (-1237)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-693 *3)) (-4 *3 (-1237)))) ((*1 *2 *1 *3) - (|partial| -12 (-4 *1 (-1233 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *3 (-861)) (-4 *2 (-1086 *4 *5 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-1236 *2)) (-4 *2 (-1238))))) + (|partial| -12 (-4 *1 (-1232 *4 *5 *3 *2)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *3 (-860)) (-4 *2 (-1085 *4 *5 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-1235 *2)) (-4 *2 (-1237))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-661 (-661 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 (-962 *4))) - (-5 *1 (-1235)) (-5 *3 (-962 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-1235))))) + (-12 (-5 *5 (-660 (-660 (-229)))) (-5 *4 (-229)) (-5 *2 (-660 (-961 *4))) + (-5 *1 (-1234)) (-5 *3 (-961 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-660 (-660 (-229)))) (-5 *1 (-1234))))) (((*1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1070)) (-4 *4 (-1238)))) + (-12 (-5 *2 (-937)) (-4 *1 (-245 *3 *4)) (-4 *4 (-1069)) (-4 *4 (-1237)))) ((*1 *1 *2) - (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *5 (-245 (-4387 *3) (-791))) + (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *5 (-245 (-4386 *3) (-790))) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *5)) - (-2 (|:| -2631 *2) (|:| -2632 *5)))) - (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-861)) - (-4 *7 (-969 *4 *5 (-878 *3))))) - ((*1 *2 *2) (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235))))) + (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *5)) + (-2 (|:| -2630 *2) (|:| -2631 *5)))) + (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) (-4 *2 (-860)) + (-4 *7 (-968 *4 *5 (-877 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234))))) (((*1 *2 *1 *3 *4) - (-12 (-5 *3 (-962 (-229))) (-5 *4 (-888)) (-5 *2 (-1294)) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1070)) (-4 *1 (-1001 *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-962 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-962 *3)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *3 (-961 (-229))) (-5 *4 (-887)) (-5 *2 (-1293)) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1069)) (-4 *1 (-1000 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-961 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-961 *3)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) ((*1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-962 (-229))) (-5 *1 (-1235)) (-5 *3 (-229))))) + (-12 (-5 *2 (-961 (-229))) (-5 *1 (-1234)) (-5 *3 (-229))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-229)) (-5 *5 (-558)) (-5 *2 (-1234 *3)) (-5 *1 (-810 *3)) - (-4 *3 (-995)))) + (-12 (-5 *4 (-229)) (-5 *5 (-558)) (-5 *2 (-1233 *3)) (-5 *1 (-809 *3)) + (-4 *3 (-994)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *4 (-114)) (-5 *1 (-1234 *2)) - (-4 *2 (-995))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-995))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-995))))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *4 (-114)) (-5 *1 (-1233 *2)) + (-4 *2 (-994))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1233 *3)) (-4 *3 (-994))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1233 *3)) (-4 *3 (-994))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1234 *3)) (-4 *3 (-995))))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1233 *3)) (-4 *3 (-994))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-1234 *3)) (-4 *3 (-995))))) -(((*1 *2 *1) (-12 (-5 *1 (-1234 *2)) (-4 *2 (-995))))) + (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-1233 *3)) (-4 *3 (-994))))) +(((*1 *2 *1) (-12 (-5 *1 (-1233 *2)) (-4 *2 (-994))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114))))) (((*1 *2 *3 *4 *5) (|partial| -12 (-5 *4 (-1 (-114) *9)) (-5 *5 (-1 (-114) *9 *9)) - (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) (-4 *8 (-861)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3744 (-661 *9)))) (-5 *3 (-661 *9)) - (-4 *1 (-1233 *6 *7 *8 *9)))) + (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) (-4 *8 (-860)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3743 (-660 *9)))) (-5 *3 (-660 *9)) + (-4 *1 (-1232 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |bas| *1) (|:| -3744 (-661 *8)))) (-5 *3 (-661 *8)) - (-4 *1 (-1233 *5 *6 *7 *8))))) + (|partial| -12 (-5 *4 (-1 (-114) *8 *8)) (-4 *8 (-1085 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |bas| *1) (|:| -3743 (-660 *8)))) (-5 *3 (-660 *8)) + (-4 *1 (-1232 *5 *6 *7 *8))))) (((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *6))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-2 (|:| -4291 (-661 *6)) (|:| -1905 (-661 *6))))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-2 (|:| -4290 (-660 *6)) (|:| -1904 (-660 *6))))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) ((*1 *2 *3 *1 *4) - (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1233 *5 *6 *7 *3)) (-4 *5 (-569)) - (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) (-5 *2 (-114))))) + (-12 (-5 *4 (-1 (-114) *3 *3)) (-4 *1 (-1232 *5 *6 *7 *3)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *1)) (-4 *1 (-1086 *4 *5 *6)) (-4 *4 (-1070)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)))) + (-12 (-5 *3 (-660 *1)) (-4 *1 (-1085 *4 *5 *6)) (-4 *4 (-1069)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1233 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1232 *4 *5 *6 *3)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 (-114) *7 (-661 *7))) (-4 *1 (-1233 *4 *5 *6 *7)) - (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) + (-12 (-5 *3 (-1 (-114) *7 (-660 *7))) (-4 *1 (-1232 *4 *5 *6 *7)) + (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *2 *1 *3 *4) - (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) - (-4 *1 (-1233 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7))))) + (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 *8 *8 *8)) (-5 *4 (-1 (-114) *8 *8)) + (-4 *1 (-1232 *5 *6 *7 *8)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-1085 *5 *6 *7))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1233 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-815)) (-4 *4 (-861)) - (-4 *5 (-1086 *2 *3 *4))))) + (-12 (-4 *1 (-1232 *2 *3 *4 *5)) (-4 *2 (-569)) (-4 *3 (-814)) (-4 *4 (-860)) + (-4 *5 (-1085 *2 *3 *4))))) (((*1 *2 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 *10)) - (-5 *1 (-641 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1092 *5 *6 *7 *8)) - (-4 *10 (-1130 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 *10)) + (-5 *1 (-640 *5 *6 *7 *8 *9 *10)) (-4 *9 (-1091 *5 *6 *7 *8)) + (-4 *10 (-1129 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-645 *5 *6)))) + (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-644 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-661 (-1198))) - (-5 *2 (-661 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-800 *5 (-878 *6))))) - (-5 *1 (-645 *5 *6)))) + (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-660 (-1197))) + (-5 *2 (-660 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-799 *5 (-877 *6))))) + (-5 *1 (-644 *5 *6)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *8))) - (-5 *1 (-1048 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *8))) + (-5 *1 (-1047 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *8))) - (-5 *1 (-1048 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *8))) + (-5 *1 (-1047 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-1067 *5 *6)))) + (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-1066 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 *1)) - (-4 *1 (-1092 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 *1)) + (-4 *1 (-1091 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *8))) - (-5 *1 (-1167 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *8))) + (-5 *1 (-1166 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *8))) - (-5 *1 (-1167 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *8))) + (-5 *1 (-1166 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1233 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1232 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-661 (-2 (|:| -4291 *1) (|:| -1905 (-661 *7))))) (-5 *3 (-661 *7)) - (-4 *1 (-1233 *4 *5 *6 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| -4290 *1) (|:| -1904 (-660 *7))))) (-5 *3 (-660 *7)) + (-4 *1 (-1232 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *5))))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *5))))) (((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1233 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-4 *2 (-1086 *3 *4 *5))))) + (|partial| -12 (-4 *1 (-1232 *3 *4 *5 *2)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-4 *2 (-1085 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-1233 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-791))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) + (-12 (-4 *1 (-1232 *3 *4 *5 *6)) (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-4 *5 (-381)) (-5 *2 (-790))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) ((*1 *2 *1 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1198))))) + (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1197))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-661 (-938))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) - (-14 *4 (-938)) (-14 *5 (-1014 *4 *2)))) + (-12 (-5 *3 (-660 (-937))) (-4 *2 (-376)) (-5 *1 (-154 *4 *2 *5)) + (-14 *4 (-937)) (-14 *5 (-1013 *4 *2)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-661 (-1198))))) - ((*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-133)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1070)))) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) + (-14 *4 (-660 (-1197))))) + ((*1 *2 *3 *1) (-12 (-4 *1 (-335 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-133)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1069)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1264 *2)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) (-12 (-4 *2 (-1070)) (-5 *1 (-755 *2 *3)) (-4 *3 (-746)))) + (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-639 *2 *4)) (-4 *4 (-1263 *2)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-727 *2)) (-4 *2 (-1069)))) + ((*1 *2 *1 *3) (-12 (-4 *2 (-1069)) (-5 *1 (-754 *2 *3)) (-4 *3 (-745)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) - (-4 *4 (-1070)) (-4 *5 (-861)))) + (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-790))) (-4 *1 (-759 *4 *5)) + (-4 *4 (-1069)) (-4 *5 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-860)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-969 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)))) + (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-790))) (-4 *1 (-968 *4 *5 *6)) + (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-815)) - (-4 *2 (-861)))) + (-12 (-5 *3 (-790)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-814)) + (-4 *2 (-860)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *2 (-969 *4 (-543 *5) *5)) (-5 *1 (-1147 *4 *5 *2)) - (-4 *4 (-1070)) (-4 *5 (-861)))) + (-12 (-5 *3 (-790)) (-4 *2 (-968 *4 (-543 *5) *5)) (-5 *1 (-1146 *4 *5 *2)) + (-4 *4 (-1069)) (-4 *5 (-860)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-965 *4)) (-5 *1 (-1231 *4)) (-4 *4 (-1070))))) + (-12 (-5 *3 (-790)) (-5 *2 (-964 *4)) (-5 *1 (-1230 *4)) (-4 *4 (-1069))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1147 *4 *3 *5))) (-4 *4 (-38 (-419 (-558)))) - (-4 *4 (-1070)) (-4 *3 (-861)) (-5 *1 (-1147 *4 *3 *5)) - (-4 *5 (-969 *4 (-543 *3) *3)))) + (-12 (-5 *2 (-1 (-1146 *4 *3 *5))) (-4 *4 (-38 (-419 (-558)))) + (-4 *4 (-1069)) (-4 *3 (-860)) (-5 *1 (-1146 *4 *3 *5)) + (-4 *5 (-968 *4 (-543 *3) *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1 (-1231 *4))) (-5 *3 (-1198)) (-5 *1 (-1231 *4)) - (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1070))))) + (-12 (-5 *2 (-1 (-1230 *4))) (-5 *3 (-1197)) (-5 *1 (-1230 *4)) + (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1069))))) (((*1 *2 *2) - (-12 (-4 *3 (-631 (-905 *3))) (-4 *3 (-901 *3)) (-4 *3 (-464)) - (-5 *1 (-1230 *3 *2)) (-4 *2 (-631 (-905 *3))) (-4 *2 (-901 *3)) - (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-630 (-904 *3))) (-4 *3 (-900 *3)) (-4 *3 (-464)) + (-5 *1 (-1229 *3 *2)) (-4 *2 (-630 (-904 *3))) (-4 *2 (-900 *3)) + (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) -(((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1122)) (-5 *1 (-986 *3)))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) +(((*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1121)) (-5 *1 (-985 *3)))) ((*1 *1 *1) - (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-861)) - (-4 *4 (-815)) (-5 *1 (-1007 *2 *3 *4 *5)) (-4 *5 (-969 *2 *4 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-558))) (-5 *1 (-1140)))) + (-12 (-4 *2 (-149)) (-4 *2 (-319)) (-4 *2 (-464)) (-4 *3 (-860)) + (-4 *4 (-814)) (-5 *1 (-1006 *2 *3 *4 *5)) (-4 *5 (-968 *2 *4 *3)))) + ((*1 *2 *3) (-12 (-5 *3 (-48)) (-5 *2 (-326 (-558))) (-5 *1 (-1139)))) ((*1 *2 *2) - (-12 (-4 *3 (-464)) (-5 *1 (-1230 *3 *2)) (-4 *2 (-13 (-433 *3) (-1224)))))) + (-12 (-4 *3 (-464)) (-5 *1 (-1229 *3 *2)) (-4 *2 (-13 (-433 *3) (-1223)))))) (((*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) + (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) (((*1 *2 *2 *3) (-12 (-4 *3 (-569)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1229 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) + (-5 *1 (-1228 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-171 (-326 *4))) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-171 (-326 *4))) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-171 *3)) - (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4)))))) + (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-171 *3)) + (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-114)) (-5 *1 (-191 *4 *3)) + (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-114)) - (-5 *1 (-1228 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4)))))) + (-12 (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-114)) + (-5 *1 (-1227 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-326 *4)) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-326 *4)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3)))))) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3)))))) (((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-326 *4)) - (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 (-171 *4)))))) - ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-326 *4)) + (-5 *1 (-191 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 (-171 *4)))))) + ((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3)))))) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 (-171 *3)))))) + (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 (-171 *3)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3)))))) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 (-171 *3)))))) + (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 (-171 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *4 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 (-171 *4)))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *4 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3))))) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4)))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 (-171 *3)))))) + (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 (-171 *3)))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *1 (-191 *4 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 (-171 *4)))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *1 (-191 *4 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 (-171 *4)))))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1228 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3))))) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1227 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-1228 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4)))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-1227 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-861)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) - ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-861)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) + ((*1 *1 *2) (-12 (-5 *1 (-343 *2)) (-4 *2 (-860)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3)))) - ((*1 *1 *1) (-4 *1 (-1227)))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-1225 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + ((*1 *1 *1) (-4 *1 (-1226)))) +(((*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-1224 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-661 (-1225 *2))) (-5 *1 (-1225 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1) (-12 (-5 *1 (-1225 *2)) (-4 *2 (-1122))))) + (-12 (-5 *3 (-660 (-1224 *2))) (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1) (-12 (-5 *1 (-1224 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-660 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-1225 *3))) (-5 *1 (-1225 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-660 (-1224 *3))) (-5 *1 (-1224 *3)) (-4 *3 (-1121))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1023))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) + (-12 (-4 *2 (-13 (-433 *3) (-1022))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569)))) ((*1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) - ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1224)))) -(((*1 *2) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-1222))))) + ((*1 *1) (-5 *1 (-489))) ((*1 *1) (-4 *1 (-1223)))) +(((*1 *2) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-1221))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-558)) (-5 *1 (-1221 *4)) (-4 *4 (-1070))))) -(((*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1221 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-558)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) + (-12 (-5 *3 (-1179)) (-5 *2 (-558)) (-5 *1 (-1220 *4)) (-4 *4 (-1069))))) +(((*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1220 *3)) (-4 *3 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) + (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-558)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-1059 *2) (-658 *2) (-464))) - (-5 *2 (-558)) (-5 *1 (-1138 *4 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *4))))) + (|partial| -12 (-4 *4 (-13 (-569) (-1058 *2) (-657 *2) (-464))) + (-5 *2 (-558)) (-5 *1 (-1137 *4 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *4))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-855 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-569) (-1059 *2) (-658 *2) (-464))) (-5 *2 (-558)) - (-5 *1 (-1138 *6 *3)))) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-854 *3)) + (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-569) (-1058 *2) (-657 *2) (-464))) (-5 *2 (-558)) + (-5 *1 (-1137 *6 *3)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-1180)) - (-4 *6 (-13 (-569) (-1059 *2) (-658 *2) (-464))) (-5 *2 (-558)) - (-5 *1 (-1138 *6 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *6))))) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-1179)) + (-4 *6 (-13 (-569) (-1058 *2) (-657 *2) (-464))) (-5 *2 (-558)) + (-5 *1 (-1137 *6 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *6))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-464)) (-5 *2 (-558)) - (-5 *1 (-1139 *4)))) + (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-464)) (-5 *2 (-558)) + (-5 *1 (-1138 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-855 (-419 (-965 *6)))) - (-5 *3 (-419 (-965 *6))) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1139 *6)))) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-854 (-419 (-964 *6)))) + (-5 *3 (-419 (-964 *6))) (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1138 *6)))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-419 (-965 *6))) (-5 *4 (-1198)) (-5 *5 (-1180)) - (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1139 *6)))) - ((*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1221 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (|partial| -12 (-5 *2 (-1180)) (-5 *1 (-1220))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1220))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-877))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-877) (-661 (-877)))) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-877) (-661 (-877))))) (-5 *1 (-115)))) - ((*1 *2 *1) - (-12 (-5 *2 (-1294)) (-5 *1 (-217 *3)) + (|partial| -12 (-5 *3 (-419 (-964 *6))) (-5 *4 (-1197)) (-5 *5 (-1179)) + (-4 *6 (-464)) (-5 *2 (-558)) (-5 *1 (-1138 *6)))) + ((*1 *2 *3) (|partial| -12 (-5 *2 (-558)) (-5 *1 (-1220 *3)) (-4 *3 (-1069))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *1) (|partial| -12 (-5 *1 (-377 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1) (|partial| -12 (-5 *2 (-1179)) (-5 *1 (-1219))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1219))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-876))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-876) (-660 (-876)))) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-710 (-1 (-876) (-660 (-876))))) (-5 *1 (-115)))) + ((*1 *2 *1) + (-12 (-5 *2 (-1293)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 (*2 $)) - (-15 -2175 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-730)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1218)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 (*2 $)) + (-15 -2174 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514)))) + ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-729)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1217)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1217))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-791)) (-4 *3 (-1238)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-790)) (-4 *3 (-1237)) (-4 *1 (-57 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1) (-5 *1 (-174))) - ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1122)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-403)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) + ((*1 *1) (-12 (-5 *1 (-216 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1121)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-403)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) ((*1 *1) - (-12 (-4 *3 (-1122)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1122)) - (-4 *4 (-686 *3)))) - ((*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-1163 *3 *2)) (-14 *3 (-791)) (-4 *2 (-1070)))) - ((*1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070)))) - ((*1 *1 *1) (-5 *1 (-1198))) ((*1 *1) (-5 *1 (-1198))) - ((*1 *1) (-5 *1 (-1218)))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1218))))) -(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1217))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-51)) (-5 *1 (-1217))))) -(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-861)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-294 *2)) (-4 *2 (-1238)))) + (-12 (-4 *3 (-1121)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1121)) + (-4 *4 (-685 *3)))) + ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) + ((*1 *1 *2) (-12 (-5 *1 (-1162 *3 *2)) (-14 *3 (-790)) (-4 *2 (-1069)))) + ((*1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069)))) + ((*1 *1 *1) (-5 *1 (-1197))) ((*1 *1) (-5 *1 (-1197))) + ((*1 *1) (-5 *1 (-1217)))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1217))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1216))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-51)) (-5 *1 (-1216))))) +(((*1 *1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-860)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-128 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-294 *2)) (-4 *2 (-1237)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4290 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (|:| -4289 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2286 + (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -3760,3864 +3760,3864 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-229))) + (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1638 + (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))))) (-5 *1 (-572)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-791)) (-4 *1 (-715 *2)) (-4 *2 (-1122)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-790)) (-4 *1 (-714 *2)) (-4 *2 (-1121)))) ((*1 *1 *2) (-12 (-5 *2 (-2 - (|:| -4290 + (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2286 + (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))))) - (-5 *1 (-825)))) + (-5 *1 (-824)))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *2 *3) - (|partial| -12 (-4 *2 (-1122)) (-5 *1 (-1216 *3 *2)) (-4 *3 (-1122))))) + (|partial| -12 (-4 *2 (-1121)) (-5 *1 (-1215 *3 *2)) (-4 *3 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) - (-4 *5 (-1122))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) + (-4 *5 (-1121))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1216 *4 *5)) (-4 *4 (-1122)) - (-4 *5 (-1122))))) + (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1215 *4 *5)) (-4 *4 (-1121)) + (-4 *5 (-1121))))) (((*1 *2) - (-12 (-5 *2 (-1294)) (-5 *1 (-1216 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-1293)) (-5 *1 (-1215 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-2 (|:| -4290 *3) (|:| -2286 *4)))) (-4 *3 (-1122)) - (-4 *4 (-1122)) (-4 *1 (-1215 *3 *4)))) - ((*1 *1) (-12 (-4 *1 (-1215 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1213 *2)) (-4 *2 (-376))))) + (-12 (-5 *2 (-660 (-2 (|:| -4289 *3) (|:| -2285 *4)))) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *1 (-1214 *3 *4)))) + ((*1 *1) (-12 (-4 *1 (-1214 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-1212 *2)) (-4 *2 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-1192 *3)) (-5 *1 (-1213 *3)) (-4 *3 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-1213 *2)) (-4 *2 (-376))))) + (-12 (-5 *4 (-937)) (-5 *2 (-1191 *3)) (-5 *1 (-1212 *3)) (-4 *3 (-376))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-1212 *2)) (-4 *2 (-376))))) (((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-32 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-55)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-791)) (-5 *1 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-55)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-790)) (-5 *1 (-115)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-115)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-160 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-115)) (-5 *1 (-165)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-115)) (-5 *1 (-165)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-287 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1023))))) + (-4 *4 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-5 *1 (-309 *3)) (-4 *3 (-310)))) ((*1 *2 *2) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *4 (-1122)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) + (-12 (-5 *2 (-115)) (-4 *4 (-1121)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) ((*1 *2 *2) (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-443 *3 *4)) (-4 *4 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-5 *2 (-115)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) ((*1 *2 *2) - (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-646 *3 *4)) - (-4 *4 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1212 *2)) (-4 *2 (-1122))))) + (-12 (-5 *2 (-115)) (-4 *3 (-569)) (-5 *1 (-645 *3 *4)) + (-4 *4 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-55)) (-5 *1 (-1211 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-661 (-661 *3))))) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-660 (-660 *3))))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-661 (-661 *5))))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-661 *3))) (-5 *1 (-1211 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-1211 *3))))) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-660 (-660 *5))))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-660 *3))) (-5 *1 (-1210 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-1210 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) + (-12 (-4 *4 (-860)) (-5 *2 - (-2 (|:| |f1| (-661 *4)) (|:| |f2| (-661 (-661 (-661 *4)))) - (|:| |f3| (-661 (-661 *4))) (|:| |f4| (-661 (-661 (-661 *4)))))) - (-5 *1 (-1209 *4)) (-5 *3 (-661 (-661 (-661 *4))))))) + (-2 (|:| |f1| (-660 *4)) (|:| |f2| (-660 (-660 (-660 *4)))) + (|:| |f3| (-660 (-660 *4))) (|:| |f4| (-660 (-660 (-660 *4)))))) + (-5 *1 (-1208 *4)) (-5 *3 (-660 (-660 (-660 *4))))))) (((*1 *2 *3 *4 *5 *4 *4 *4) - (-12 (-4 *6 (-861)) (-5 *3 (-661 *6)) (-5 *5 (-661 *3)) + (-12 (-4 *6 (-860)) (-5 *3 (-660 *6)) (-5 *5 (-660 *3)) (-5 *2 - (-2 (|:| |f1| *3) (|:| |f2| (-661 *5)) (|:| |f3| *5) (|:| |f4| (-661 *5)))) - (-5 *1 (-1209 *6)) (-5 *4 (-661 *5))))) + (-2 (|:| |f1| *3) (|:| |f2| (-660 *5)) (|:| |f3| *5) (|:| |f4| (-660 *5)))) + (-5 *1 (-1208 *6)) (-5 *4 (-660 *5))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) ((*1 *2 *3) (|partial| -12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1012 *4)) (-4 *2 (-706 *7 *8 *9)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-706 *4 *5 *6)) + (-4 *7 (-1011 *4)) (-4 *2 (-705 *7 *8 *9)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) (-4 *3 (-705 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (|partial| -12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-376)))) ((*1 *2 *2) (|partial| -12 (-4 *3 (-376)) (-4 *3 (-175)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) - ((*1 *1 *1) (|partial| -12 (-5 *1 (-709 *2)) (-4 *2 (-376)) (-4 *2 (-1070)))) + (-4 *5 (-385 *3)) (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) + ((*1 *1 *1) (|partial| -12 (-5 *1 (-708 *2)) (-4 *2 (-376)) (-4 *2 (-1069)))) ((*1 *1 *1) - (|partial| -12 (-4 *1 (-1144 *2 *3 *4 *5)) (-4 *3 (-1070)) + (|partial| -12 (-4 *1 (-1143 *2 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-245 *2 *3)) (-4 *5 (-245 *2 *3)) (-4 *3 (-376)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-1209 *3))))) + ((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-1208 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-661 (-661 *4))) (-5 *1 (-1209 *4)) - (-5 *3 (-661 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-861)) (-5 *1 (-1209 *3))))) + (-12 (-4 *4 (-860)) (-5 *2 (-660 (-660 *4))) (-5 *1 (-1208 *4)) + (-5 *3 (-660 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-860)) (-5 *1 (-1208 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-1211 (-661 *4))) (-5 *1 (-1209 *4)) - (-5 *3 (-661 *4))))) + (-12 (-4 *4 (-860)) (-5 *2 (-1210 (-660 *4))) (-5 *1 (-1208 *4)) + (-5 *3 (-660 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-861)) (-5 *2 (-661 (-661 (-661 *4)))) (-5 *1 (-1209 *4)) - (-5 *3 (-661 (-661 *4)))))) + (-12 (-4 *4 (-860)) (-5 *2 (-660 (-660 (-660 *4)))) (-5 *1 (-1208 *4)) + (-5 *3 (-660 (-660 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1211 (-661 *4))) (-4 *4 (-861)) (-5 *2 (-661 (-661 *4))) - (-5 *1 (-1209 *4))))) + (-12 (-5 *3 (-1210 (-660 *4))) (-4 *4 (-860)) (-5 *2 (-660 (-660 *4))) + (-5 *1 (-1208 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) - (-5 *1 (-1209 *4)) (-4 *4 (-861))))) + (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) + (-5 *1 (-1208 *4)) (-4 *4 (-860))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 (-661 (-661 *4)))) (-5 *2 (-661 (-661 *4))) (-4 *4 (-861)) - (-5 *1 (-1209 *4))))) + (-12 (-5 *3 (-660 (-660 (-660 *4)))) (-5 *2 (-660 (-660 *4))) (-4 *4 (-860)) + (-5 *1 (-1208 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-661 *4)) (-4 *4 (-861)) - (-5 *1 (-1209 *4))))) + (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-660 *4)) (-4 *4 (-860)) + (-5 *1 (-1208 *4))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-1 (-114) *5 *5)) - (-5 *4 (-661 *5)) (-4 *5 (-861)) (-5 *1 (-1209 *5))))) + (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-1 (-114) *5 *5)) + (-5 *4 (-660 *5)) (-4 *5 (-860)) (-5 *1 (-1208 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-861)) (-5 *4 (-661 *6)) - (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-661 *4)))) - (-5 *1 (-1209 *6)) (-5 *5 (-661 *4))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) -(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1208))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-1208))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-1208))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) - (-5 *2 (-661 (-661 (-965 *5)))) (-5 *1 (-1207 *5))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-419 (-965 (-558))))) - (-5 *2 (-661 (-661 (-305 (-965 *4))))) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-860) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-305 (-419 (-965 (-558)))))) - (-5 *2 (-661 (-661 (-305 (-965 *4))))) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-860) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 (-558)))) (-5 *2 (-661 (-305 (-965 *4)))) - (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-965 (-558))))) (-5 *2 (-661 (-305 (-965 *4)))) - (-5 *1 (-393 *4)) (-4 *4 (-13 (-860) (-376))))) + (-12 (-5 *3 (-1 (-114) *6 *6)) (-4 *6 (-860)) (-5 *4 (-660 *6)) + (-5 *2 (-2 (|:| |fs| (-114)) (|:| |sd| *4) (|:| |td| (-660 *4)))) + (-5 *1 (-1208 *6)) (-5 *5 (-660 *4))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2) (-12 (-5 *2 (-132)) (-5 *1 (-1207))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-1207))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-1207))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-964 *5)))) (-5 *1 (-1206 *5))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-419 (-964 (-558))))) + (-5 *2 (-660 (-660 (-305 (-964 *4))))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-859) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-305 (-419 (-964 (-558)))))) + (-5 *2 (-660 (-660 (-305 (-964 *4))))) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-859) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-419 (-964 (-558)))) (-5 *2 (-660 (-305 (-964 *4)))) + (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-305 (-419 (-964 (-558))))) (-5 *2 (-660 (-305 (-964 *4)))) + (-5 *1 (-393 *4)) (-4 *4 (-13 (-859) (-376))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1198)) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-4 *4 (-13 (-29 *6) (-1224) (-979))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2222 (-661 *4)))) - (-5 *1 (-673 *6 *4 *3)) (-4 *3 (-678 *4)))) + (|partial| -12 (-5 *5 (-1197)) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-4 *4 (-13 (-29 *6) (-1223) (-978))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2221 (-660 *4)))) + (-5 *1 (-672 *6 *4 *3)) (-4 *3 (-677 *4)))) ((*1 *2 *3 *2 *4 *2 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-661 *2)) - (-4 *2 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *1 (-673 *6 *2 *3)) (-4 *3 (-678 *2)))) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-660 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *1 (-672 *6 *2 *3)) (-4 *3 (-677 *2)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4426)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2222 (-661 *4)))) - (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2221 (-660 *4)))) + (-5 *1 (-686 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) - (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4426)))) - (-5 *2 (-661 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2222 (-661 *7))))) - (-5 *1 (-687 *5 *6 *7 *3)) (-5 *4 (-661 *7)) (-4 *3 (-706 *5 *6 *7)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) + (-4 *7 (-13 (-385 *5) (-10 -7 (-6 -4425)))) + (-5 *2 (-660 (-2 (|:| |particular| (-3 *7 #1#)) (|:| -2221 (-660 *7))))) + (-5 *1 (-686 *5 *6 *7 *3)) (-5 *4 (-660 *7)) (-4 *3 (-705 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) + (-12 (-5 *3 (-708 *5)) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *5) #2="failed")) - (|:| -2222 (-661 (-1288 *5))))) - (-5 *1 (-688 *5)) (-5 *4 (-1288 *5)))) + (-2 (|:| |particular| (-3 (-1287 *5) #2="failed")) + (|:| -2221 (-660 (-1287 *5))))) + (-5 *1 (-687 *5)) (-5 *4 (-1287 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) + (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *5) #2#)) (|:| -2222 (-661 (-1288 *5))))) - (-5 *1 (-688 *5)) (-5 *4 (-1288 *5)))) + (-2 (|:| |particular| (-3 (-1287 *5) #2#)) (|:| -2221 (-660 (-1287 *5))))) + (-5 *1 (-687 *5)) (-5 *4 (-1287 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *5)) (-4 *5 (-376)) + (-12 (-5 *3 (-708 *5)) (-4 *5 (-376)) (-5 *2 - (-661 - (-2 (|:| |particular| (-3 (-1288 *5) #2#)) - (|:| -2222 (-661 (-1288 *5)))))) - (-5 *1 (-688 *5)) (-5 *4 (-661 (-1288 *5))))) + (-660 + (-2 (|:| |particular| (-3 (-1287 *5) #2#)) + (|:| -2221 (-660 (-1287 *5)))))) + (-5 *1 (-687 *5)) (-5 *4 (-660 (-1287 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-661 *5))) (-4 *5 (-376)) + (-12 (-5 *3 (-660 (-660 *5))) (-4 *5 (-376)) (-5 *2 - (-661 - (-2 (|:| |particular| (-3 (-1288 *5) #2#)) - (|:| -2222 (-661 (-1288 *5)))))) - (-5 *1 (-688 *5)) (-5 *4 (-661 (-1288 *5))))) + (-660 + (-2 (|:| |particular| (-3 (-1287 *5) #2#)) + (|:| -2221 (-660 (-1287 *5)))))) + (-5 *1 (-687 *5)) (-5 *4 (-660 (-1287 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-789 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-789 *4)))) ((*1 *2 *2 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1198)) - (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *1 (-792 *5 *2)) (-4 *2 (-13 (-29 *5) (-1224) (-979))))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-1197)) + (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *1 (-791 *5 *2)) (-4 *2 (-13 (-29 *5) (-1223) (-978))))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-709 *7)) (-5 *5 (-1198)) - (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2222 (-661 (-1288 *7))))) - (-5 *1 (-824 *6 *7)) (-5 *4 (-1288 *7)))) - ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-709 *6)) (-5 *4 (-1198)) - (-4 *6 (-13 (-29 *5) (-1224) (-979))) - (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-661 (-1288 *6))) (-5 *1 (-824 *5 *6)))) + (|partial| -12 (-5 *3 (-708 *7)) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -2221 (-660 (-1287 *7))))) + (-5 *1 (-823 *6 *7)) (-5 *4 (-1287 *7)))) + ((*1 *2 *3 *4) + (|partial| -12 (-5 *3 (-708 *6)) (-5 *4 (-1197)) + (-4 *6 (-13 (-29 *5) (-1223) (-978))) + (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-660 (-1287 *6))) (-5 *1 (-823 *5 *6)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-1198)) - (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2222 (-661 (-1288 *7))))) - (-5 *1 (-824 *6 *7)))) + (|partial| -12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -2221 (-660 (-1287 *7))))) + (-5 *1 (-823 *6 *7)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-1198)) - (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-2 (|:| |particular| (-1288 *7)) (|:| -2222 (-661 (-1288 *7))))) - (-5 *1 (-824 *6 *7)))) + (|partial| -12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-2 (|:| |particular| (-1287 *7)) (|:| -2221 (-660 (-1287 *7))))) + (-5 *1 (-823 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1198)) - (-4 *7 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2222 (-661 *7))) *7 #3="failed")) - (-5 *1 (-824 *6 *7)))) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-1197)) + (-4 *7 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-3 (-2 (|:| |particular| *7) (|:| -2221 (-660 *7))) *7 #3="failed")) + (-5 *1 (-823 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-115)) (-5 *5 (-1198)) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2222 (-661 *3))) *3 #3#)) - (-5 *1 (-824 *6 *3)) (-4 *3 (-13 (-29 *6) (-1224) (-979))))) + (-12 (-5 *4 (-115)) (-5 *5 (-1197)) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-3 (-2 (|:| |particular| *3) (|:| -2221 (-660 *3))) *3 #3#)) + (-5 *1 (-823 *6 *3)) (-4 *3 (-13 (-29 *6) (-1223) (-978))))) ((*1 *2 *3 *4 *3 *5) - (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-661 *2)) - (-4 *2 (-13 (-29 *6) (-1224) (-979))) (-5 *1 (-824 *6 *2)) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))))) + (|partial| -12 (-5 *3 (-305 *2)) (-5 *4 (-115)) (-5 *5 (-660 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) (-5 *1 (-823 *6 *2)) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))))) ((*1 *2 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-661 *2)) - (-4 *2 (-13 (-29 *6) (-1224) (-979))) - (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *1 (-824 *6 *2)))) - ((*1 *2 *3) (-12 (-5 *3 (-830)) (-5 *2 (-1056)) (-5 *1 (-827)))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-305 *2)) (-5 *5 (-660 *2)) + (-4 *2 (-13 (-29 *6) (-1223) (-978))) + (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *1 (-823 *6 *2)))) + ((*1 *2 *3) (-12 (-5 *3 (-829)) (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-829)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1288 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) - (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-1287 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) + (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *4 *5 *4) - (-12 (-5 *3 (-1288 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) - (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-1287 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) + (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *4 *5 *6 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-326 (-391))) + (-5 *4 (-391)) (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1288 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-661 *4)) - (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-1287 (-326 (-391)))) (-5 *4 (-391)) (-5 *5 (-660 *4)) + (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-326 (-391))) + (-5 *4 (-391)) (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *4 *5 *6 *5 *4 *4) - (-12 (-5 *3 (-1288 (-326 *4))) (-5 *5 (-661 (-391))) (-5 *6 (-326 (-391))) - (-5 *4 (-391)) (-5 *2 (-1056)) (-5 *1 (-827)))) + (-12 (-5 *3 (-1287 (-326 *4))) (-5 *5 (-660 (-391))) (-5 *6 (-326 (-391))) + (-5 *4 (-391)) (-5 *2 (-1055)) (-5 *1 (-826)))) ((*1 *2 *3 *4 *5) (|partial| -12 (-5 *5 - (-1 (-3 (-2 (|:| |particular| *6) (|:| -2222 (-661 *6))) "failed") *7 *6)) - (-4 *6 (-376)) (-4 *7 (-678 *6)) - (-5 *2 (-2 (|:| |particular| (-1288 *6)) (|:| -2222 (-709 *6)))) - (-5 *1 (-835 *6 *7)) (-5 *3 (-709 *6)) (-5 *4 (-1288 *6)))) - ((*1 *2 *3) (-12 (-5 *3 (-915)) (-5 *2 (-1056)) (-5 *1 (-914)))) + (-1 (-3 (-2 (|:| |particular| *6) (|:| -2221 (-660 *6))) "failed") *7 *6)) + (-4 *6 (-376)) (-4 *7 (-677 *6)) + (-5 *2 (-2 (|:| |particular| (-1287 *6)) (|:| -2221 (-708 *6)))) + (-5 *1 (-834 *6 *7)) (-5 *3 (-708 *6)) (-5 *4 (-1287 *6)))) + ((*1 *2 *3) (-12 (-5 *3 (-914)) (-5 *2 (-1055)) (-5 *1 (-913)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-915)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-914)))) + (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-913)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7 *8) - (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1180)) - (-5 *8 (-229)) (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1056)) - (-5 *1 (-914)))) + (-12 (-5 *4 (-790)) (-5 *6 (-660 (-660 (-326 *3)))) (-5 *7 (-1179)) + (-5 *8 (-229)) (-5 *5 (-660 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1055)) + (-5 *1 (-913)))) ((*1 *2 *3 *3 *3 *3 *4 *4 *5 *6 *7) - (-12 (-5 *4 (-791)) (-5 *6 (-661 (-661 (-326 *3)))) (-5 *7 (-1180)) - (-5 *5 (-661 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1056)) (-5 *1 (-914)))) + (-12 (-5 *4 (-790)) (-5 *6 (-660 (-660 (-326 *3)))) (-5 *7 (-1179)) + (-5 *5 (-660 (-326 (-391)))) (-5 *3 (-391)) (-5 *2 (-1055)) (-5 *1 (-913)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 (-419 (-558)))) (-5 *2 (-661 (-391))) (-5 *1 (-1044)) + (-12 (-5 *3 (-964 (-419 (-558)))) (-5 *2 (-660 (-391))) (-5 *1 (-1043)) (-5 *4 (-391)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 (-558))) (-5 *2 (-661 (-391))) (-5 *1 (-1044)) + (-12 (-5 *3 (-964 (-558))) (-5 *2 (-660 (-391))) (-5 *1 (-1043)) (-5 *4 (-391)))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1152 *4)) (-5 *3 (-326 *4)))) + (-12 (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-326 *4)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1152 *4)) + (-12 (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1151 *4)) (-5 *3 (-305 (-326 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1152 *5)) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1151 *5)) (-5 *3 (-305 (-326 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1152 *5)) (-5 *3 (-326 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-1198))) - (-4 *5 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-661 (-661 (-305 (-326 *5))))) (-5 *1 (-1152 *5)) - (-5 *3 (-661 (-305 (-326 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-1207 *5)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-1198))) (-4 *5 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-1207 *5)) - (-5 *3 (-661 (-305 (-419 (-965 *5))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-419 (-965 *4)))) (-4 *4 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-1207 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) - (-5 *1 (-1207 *4)) (-5 *3 (-661 (-305 (-419 (-965 *4))))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *5))))) - (-5 *1 (-1207 *5)) (-5 *3 (-419 (-965 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *5))))) - (-5 *1 (-1207 *5)) (-5 *3 (-305 (-419 (-965 *5)))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *4))))) (-5 *1 (-1207 *4)) - (-5 *3 (-419 (-965 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 (-305 (-419 (-965 *4))))) (-5 *1 (-1207 *4)) - (-5 *3 (-305 (-419 (-965 *4))))))) -(((*1 *2 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-877))))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-890)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-890)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-558)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1180)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-518)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-604)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-490)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-139)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-158)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1188)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-643)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1117)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1112)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1094)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-991)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-183)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1057)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-324)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-691)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-156)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1174)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-537)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1300)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1087)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-529)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-701)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-96)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1137)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-135)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-617)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-140)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-1299)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-696)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-222)))) - ((*1 *2 *1) (-12 (-4 *1 (-1158)) (-5 *2 (-536)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1203)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1203))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-1203)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-1203))) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1203))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1151 *5)) (-5 *3 (-326 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-1197))) + (-4 *5 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-660 (-660 (-305 (-326 *5))))) (-5 *1 (-1151 *5)) + (-5 *3 (-660 (-305 (-326 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-1206 *5)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-1197))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-1206 *5)) + (-5 *3 (-660 (-305 (-419 (-964 *5))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-419 (-964 *4)))) (-4 *4 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-1206 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) + (-5 *1 (-1206 *4)) (-5 *3 (-660 (-305 (-419 (-964 *4))))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *5))))) + (-5 *1 (-1206 *5)) (-5 *3 (-419 (-964 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1197)) (-4 *5 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *5))))) + (-5 *1 (-1206 *5)) (-5 *3 (-305 (-419 (-964 *5)))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *4))))) (-5 *1 (-1206 *4)) + (-5 *3 (-419 (-964 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-305 (-419 (-964 *4))))) (-5 *1 (-1206 *4)) + (-5 *3 (-305 (-419 (-964 *4))))))) +(((*1 *2 *1) (-12 (-5 *1 (-710 *2)) (-4 *2 (-629 (-876))))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-889)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-889)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-558)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1179)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-518)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-604)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-490)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-139)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-158)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1187)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-642)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1116)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1111)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1093)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-990)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-183)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1056)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-324)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-690)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-156)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1173)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-537)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1299)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1086)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-529)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-700)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-96)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1136)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-135)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-616)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-140)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-1298)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-695)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-222)))) + ((*1 *2 *1) (-12 (-4 *1 (-1157)) (-5 *2 (-536)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-229)) (-5 *1 (-1202)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-1202))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-1202)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-1202))) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1202))))) (((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291)))) ((*1 *2 *1) - (-12 (-5 *2 (-3 (-558) (-229) (-518) (-1180) (-1203))) (-5 *1 (-1203))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-661 (-291))) (-5 *1 (-291)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-1203))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1203))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3256)) (-5 *2 (-114)) (-5 *1 (-634)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2454)) (-5 *2 (-114)) (-5 *1 (-634)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3255)) (-5 *2 (-114)) (-5 *1 (-634)))) + (-12 (-5 *2 (-3 (-558) (-229) (-518) (-1179) (-1202))) (-5 *1 (-1202))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-660 (-291))) (-5 *1 (-291)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-1202))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1202))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3255)) (-5 *2 (-114)) (-5 *1 (-633)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -2453)) (-5 *2 (-114)) (-5 *1 (-633)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| -3254)) (-5 *2 (-114)) (-5 *1 (-633)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| -2584)) (-5 *2 (-114)) (-5 *1 (-711 *4)) - (-4 *4 (-630 (-877))))) + (-12 (-5 *3 (|[\|\|]| -2583)) (-5 *2 (-114)) (-5 *1 (-710 *4)) + (-4 *4 (-629 (-876))))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-630 (-877))) (-5 *2 (-114)) - (-5 *1 (-711 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-114)) (-5 *1 (-890)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-890)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)))) + (-12 (-5 *3 (|[\|\|]| *4)) (-4 *4 (-629 (-876))) (-5 *2 (-114)) + (-5 *1 (-710 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-114)) (-5 *1 (-889)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-889)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-604))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-490))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-139))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-158))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1188))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-643))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1187))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-642))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1117))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1116))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1112))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1111))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1094))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-991))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1093))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-990))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-183))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1057))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-691))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1056))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-324))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-690))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-156))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1174))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1173))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-537))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1300))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1087))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-701))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1086))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-529))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-700))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-96))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1137))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-617))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1136))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-135))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-616))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-140))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-1299))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-696))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-1158)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) + (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-1298))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-695))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-222))) (-5 *2 (-114)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-1157)) (-5 *3 (|[\|\|]| (-536))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (|[\|\|]| (-1180))) (-5 *2 (-114)) (-5 *1 (-1203)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1203)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1203)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)) (-5 *1 (-1203))))) -(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303))) ((*1 *1) (-5 *1 (-877))) + (-12 (-5 *3 (|[\|\|]| (-1179))) (-5 *2 (-114)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-518))) (-5 *2 (-114)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-229))) (-5 *2 (-114)) (-5 *1 (-1202)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (|[\|\|]| (-558))) (-5 *2 (-114)) (-5 *1 (-1202))))) +(((*1 *1) (-4 *1 (-34))) ((*1 *1) (-5 *1 (-303))) ((*1 *1) (-5 *1 (-876))) ((*1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-815)) (-5 *1 (-1007 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *4 *3)))) - ((*1 *1) (-5 *1 (-1106))) + (-12 (-4 *2 (-464)) (-4 *3 (-860)) (-4 *4 (-814)) (-5 *1 (-1006 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *4 *3)))) + ((*1 *1) (-5 *1 (-1105))) ((*1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))))) - ((*1 *1) (-5 *1 (-1201))) ((*1 *1) (-5 *1 (-1202)))) -(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1201)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1201)))) + (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1) (-5 *1 (-1200))) ((*1 *1) (-5 *1 (-1201)))) +(((*1 *2 *3 *2 *3) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1200)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1200)))) ((*1 *2 *3 *2 *4 *1) - (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1198))) (-5 *4 (-1198)) (-5 *1 (-1201)))) - ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1201)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1198)) (-5 *1 (-1202)))) - ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-661 (-1198))) (-5 *1 (-1202))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-448)) (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1202))))) + (-12 (-5 *2 (-448)) (-5 *3 (-660 (-1197))) (-5 *4 (-1197)) (-5 *1 (-1200)))) + ((*1 *2 *3 *2 *3 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1200)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-1197)) (-5 *1 (-1201)))) + ((*1 *2 *3 *2 *1) (-12 (-5 *2 (-448)) (-5 *3 (-660 (-1197))) (-5 *1 (-1201))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-448)) (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1201))))) (((*1 *2 *3 *1) (-12 (-5 *3 (-446)) (-5 *2 - (-661 - (-3 (|:| -3970 (-1198)) - (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558))))))))) - (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1202))))) + (-660 + (-3 (|:| -3969 (-1197)) + (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558))))))))) + (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1201))))) (((*1 *2 *1) (-12 (-5 *2 - (-661 - (-661 - (-3 (|:| -3970 (-1198)) - (|:| -3643 (-661 (-3 (|:| S (-1198)) (|:| P (-965 (-558)))))))))) - (-5 *1 (-1202))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-1202))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-1202))))) + (-660 + (-660 + (-3 (|:| -3969 (-1197)) + (|:| -3642 (-660 (-3 (|:| S (-1197)) (|:| P (-964 (-558)))))))))) + (-5 *1 (-1201))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-1201))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-1201))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 (-448))))) - (-5 *1 (-1202))))) -(((*1 *1) (-5 *1 (-1201)))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) -(((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201))))) -(((*1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1201))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) + (-12 (-5 *2 (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 (-448))))) + (-5 *1 (-1201))))) +(((*1 *1) (-5 *1 (-1200)))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) +(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1200))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *4 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) + (-12 (-5 *4 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) (((*1 *2 *3) - (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4340 #1="void"))) (-5 *2 (-1294)) - (-5 *1 (-1201)))) + (-12 (-5 *3 (-3 (|:| |fst| (-446)) (|:| -4339 #1="void"))) (-5 *2 (-1293)) + (-5 *1 (-1200)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) - (-5 *2 (-1294)) (-5 *1 (-1201)))) + (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) + (-5 *2 (-1293)) (-5 *1 (-1200)))) ((*1 *2 *3 *4 *1) - (-12 (-5 *3 (-1198)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) - (-5 *2 (-1294)) (-5 *1 (-1201))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1294)) (-5 *1 (-1201))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) + (-5 *2 (-1293)) (-5 *1 (-1200))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1293)) (-5 *1 (-1200))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1198)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 "void"))) - (-5 *1 (-1201))))) -(((*1 *2 *3 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1201)) (-5 *3 (-1198))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-1198)) (-5 *2 (-1202)) (-5 *1 (-1201))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 "void"))) + (-5 *1 (-1200))))) +(((*1 *2 *3 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1200)) (-5 *3 (-1197))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-1197)) (-5 *2 (-1201)) (-5 *1 (-1200))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-1070)) (-5 *2 (-1288 *4)) - (-5 *1 (-1199 *4)))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1069)) (-5 *2 (-1287 *4)) + (-5 *1 (-1198 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-1288 *3)) (-5 *1 (-1199 *3)) (-4 *3 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1198))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-96)))) + (-12 (-5 *4 (-937)) (-5 *2 (-1287 *3)) (-5 *1 (-1198 *3)) (-4 *3 (-1069))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1197))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-96)))) ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-450 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-450 *3)) (-14 *3 *2))) ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-495)))) - ((*1 *2 *1) (-12 (-4 *1 (-849 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-879)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-1097 *3)) (-14 *3 *2))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1137)))) ((*1 *1 *1) (-5 *1 (-1198)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1198))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) + ((*1 *2 *1) (-12 (-4 *1 (-848 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-878)))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-983)))) + ((*1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-1096 *3)) (-14 *3 *2))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1136)))) ((*1 *1 *1) (-5 *1 (-1197)))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) - (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) - (|:| |args| (-661 (-877))))) - (-5 *1 (-1198))))) + (-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) + (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) + (|:| |args| (-660 (-876))))) + (-5 *1 (-1197))))) (((*1 *1 *1 *2) (-12 (-5 *2 - (-2 (|:| -2983 (-661 (-877))) (|:| -2873 (-661 (-877))) - (|:| |presup| (-661 (-877))) (|:| -2981 (-661 (-877))) - (|:| |args| (-661 (-877))))) - (-5 *1 (-1198)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-661 (-877)))) (-5 *1 (-1198))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-1198))))) -(((*1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-1180)))) - ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1180)))) - ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1180)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1198))))) -(((*1 *1 *2) (-12 (-4 *1 (-686 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-1198))))) + (-2 (|:| -2982 (-660 (-876))) (|:| -2872 (-660 (-876))) + (|:| |presup| (-660 (-876))) (|:| -2980 (-660 (-876))) + (|:| |args| (-660 (-876))))) + (-5 *1 (-1197)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-660 (-876)))) (-5 *1 (-1197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-1197))))) +(((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-1179)))) + ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-1179)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1179)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1197))))) +(((*1 *1 *2) (-12 (-4 *1 (-685 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-1197))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *1 *2 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) -(((*1 *1 *1) (-5 *1 (-1197))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) +(((*1 *1 *1) (-5 *1 (-1196))) ((*1 *1 *2) (-12 (-5 *2 - (-3 (|:| I (-326 (-558))) (|:| -3495 (-326 (-391))) - (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1197)))) - (-5 *1 (-1197))))) + (-3 (|:| I (-326 (-558))) (|:| -3494 (-326 (-391))) + (|:| CF (-326 (-171 (-391)))) (|:| |switch| (-1196)))) + (-5 *1 (-1196))))) (((*1 *2 *1 *3 *3 *4) - (-12 (-5 *3 (-1 (-877) (-877) (-877))) (-5 *4 (-558)) (-5 *2 (-877)) - (-5 *1 (-669 *5 *6 *7)) (-4 *5 (-1122)) (-4 *6 (-23)) (-14 *7 *6))) + (-12 (-5 *3 (-1 (-876) (-876) (-876))) (-5 *4 (-558)) (-5 *2 (-876)) + (-5 *1 (-668 *5 *6 *7)) (-4 *5 (-1121)) (-4 *6 (-23)) (-14 *7 *6))) ((*1 *2 *1 *2) - (-12 (-5 *2 (-877)) (-5 *1 (-868 *3 *4 *5)) (-4 *3 (-1070)) (-14 *4 (-99 *3)) + (-12 (-5 *2 (-876)) (-5 *1 (-867 *3 *4 *5)) (-4 *3 (-1069)) (-14 *4 (-99 *3)) (-14 *5 (-1 *3 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-877)))) - ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-877)) (-5 *1 (-1192 *3)) (-4 *3 (-1070))))) + ((*1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-876)))) + ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-876)) (-5 *1 (-1191 *3)) (-4 *3 (-1069))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1110 *3)) (-4 *3 (-969 *7 *6 *4)) (-4 *6 (-815)) (-4 *4 (-861)) + (-12 (-5 *5 (-1109 *3)) (-4 *3 (-968 *7 *6 *4)) (-4 *6 (-814)) (-4 *4 (-860)) (-4 *7 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) - (-5 *1 (-606 *6 *4 *7 *3)))) + (-5 *1 (-605 *6 *4 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-569)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-606 *5 *4 *6 *3)) - (-4 *3 (-969 *6 *5 *4)))) - ((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-5 *1 (-877))) + (-12 (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-569)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| (-558)))) (-5 *1 (-605 *5 *4 *6 *3)) + (-4 *3 (-968 *6 *5 *4)))) + ((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-1190 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1224))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-1189 *4 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1223))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1224))) - (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-1190 *4 *2)))) + (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-433 *4) (-162) (-27) (-1223))) + (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-1189 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)))) - (-5 *2 (-419 (-965 *5))) (-5 *1 (-1191 *5)) (-5 *3 (-965 *5)))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)))) + (-5 *2 (-419 (-964 *5))) (-5 *1 (-1190 *5)) (-5 *3 (-964 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)))) - (-5 *2 (-3 (-419 (-965 *5)) (-326 *5))) (-5 *1 (-1191 *5)) - (-5 *3 (-419 (-965 *5))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)))) + (-5 *2 (-3 (-419 (-964 *5)) (-326 *5))) (-5 *1 (-1190 *5)) + (-5 *3 (-419 (-964 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-965 *5))) (-5 *3 (-965 *5)) - (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-419 *3)) (-5 *1 (-1191 *5)))) + (-12 (-5 *4 (-1112 (-964 *5))) (-5 *3 (-964 *5)) + (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-419 *3)) (-5 *1 (-1190 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-419 (-965 *5)))) (-5 *3 (-419 (-965 *5))) - (-4 *5 (-13 (-569) (-1059 (-558)))) (-5 *2 (-3 *3 (-326 *5))) - (-5 *1 (-1191 *5))))) + (-12 (-5 *4 (-1112 (-419 (-964 *5)))) (-5 *3 (-419 (-964 *5))) + (-4 *5 (-13 (-569) (-1058 (-558)))) (-5 *2 (-3 *3 (-326 *5))) + (-5 *1 (-1190 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-114) *5)) - (-5 *1 (-906 *4 *5)) (-4 *5 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1188))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-4 *1 (-153 *3)))) + (-12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-114) *5)) + (-5 *1 (-905 *4 *5)) (-4 *5 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1187))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-4 *1 (-153 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-2 (|:| -2632 (-791)) (|:| -4203 *4) (|:| |num| *4)))) - (-4 *4 (-1264 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) + (-12 (-5 *2 (-660 (-2 (|:| -2631 (-790)) (|:| -4202 *4) (|:| |num| *4)))) + (-4 *4 (-1263 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 #1="void"))) - (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-114)) (-5 *1 (-448)))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 #1="void"))) + (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-114)) (-5 *1 (-448)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 #1#))) (-5 *3 (-661 (-1198))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 #1#))) (-5 *3 (-660 (-1197))) (-5 *4 (-114)) (-5 *1 (-448)))) - ((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-613 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-652 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-612 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-651 *2)) (-4 *2 (-175)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-5 *1 (-683 *3 *4)) (-4 *4 (-175)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-5 *1 (-683 *3 *4)) (-4 *4 (-175)))) ((*1 *1 *2 *2) - (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-5 *1 (-684 *3 *4)) (-4 *4 (-175)))) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-5 *1 (-683 *3 *4)) (-4 *4 (-175)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-661 (-661 *3)))) (-4 *3 (-1122)) (-5 *1 (-695 *3)))) + (-12 (-5 *2 (-660 (-660 (-660 *3)))) (-4 *3 (-1121)) (-5 *1 (-694 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-733 *2 *3 *4)) (-4 *2 (-861)) (-4 *3 (-1122)) + (-12 (-5 *1 (-732 *2 *3 *4)) (-4 *2 (-860)) (-4 *3 (-1121)) (-14 *4 - (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *3)) - (-2 (|:| -2631 *2) (|:| -2632 *3)))))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-851)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238)))) + (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *3)) + (-2 (|:| -2630 *2) (|:| -2631 *3)))))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1135)) (-5 *1 (-850)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 *4)))) (-4 *4 (-1122)) - (-5 *1 (-903 *3 *4)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 *4)))) (-4 *4 (-1121)) + (-5 *1 (-902 *3 *4)) (-4 *3 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *5)) (-4 *5 (-13 (-1122) (-34))) - (-5 *2 (-661 (-1161 *3 *5))) (-5 *1 (-1161 *3 *5)) - (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-660 *5)) (-4 *5 (-13 (-1121) (-34))) + (-5 *2 (-660 (-1160 *3 *5))) (-5 *1 (-1160 *3 *5)) + (-4 *3 (-13 (-1121) (-34))))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| |val| *4) (|:| -1743 *5)))) - (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) - (-5 *2 (-661 (-1161 *4 *5))) (-5 *1 (-1161 *4 *5)))) + (-12 (-5 *3 (-660 (-2 (|:| |val| *4) (|:| -1742 *5)))) + (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) + (-5 *2 (-660 (-1160 *4 *5))) (-5 *1 (-1160 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1743 *4))) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1161 *3 *4)))) + (-12 (-5 *2 (-2 (|:| |val| *3) (|:| -1742 *4))) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1160 *3 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-114)) (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))))) ((*1 *1 *2 *3 *2 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)) - (-4 *2 (-13 (-1122) (-34))))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)) + (-4 *2 (-13 (-1121) (-34))))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-661 (-1161 *2 *3))) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34))) (-5 *1 (-1162 *2 *3)))) + (-12 (-5 *4 (-660 (-1160 *2 *3))) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34))) (-5 *1 (-1161 *2 *3)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *4 (-661 (-1162 *2 *3))) (-5 *1 (-1162 *2 *3)) - (-4 *2 (-13 (-1122) (-34))) (-4 *3 (-13 (-1122) (-34))))) - ((*1 *1 *2) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-1187 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-643)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))) - (-5 *1 (-1096 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *2 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-139)))) - ((*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-158)))) - ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-490)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-604)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-643)))) - ((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *2 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))) - (-5 *1 (-1096 *3 *4 *2)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))))) - ((*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-1187 *3 *2)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-114)))) - ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -(((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -(((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070))))) + (-12 (-5 *4 (-660 (-1161 *2 *3))) (-5 *1 (-1161 *2 *3)) + (-4 *2 (-13 (-1121) (-34))) (-4 *3 (-13 (-1121) (-34))))) + ((*1 *1 *2) + (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-1186 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-642)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))) + (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *2 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-139)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-158)))) + ((*1 *2 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-490)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-604)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-642)))) + ((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *2 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))) + (-5 *1 (-1095 *3 *4 *2)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))))) + ((*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-1186 *3 *2)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-114)))) + ((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +(((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +(((*1 *2 *1) + (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +(((*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -(((*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-661 *1)) (-4 *1 (-1031 *3)))) + (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +(((*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-660 *1)) (-4 *1 (-1030 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-660 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) + (-4 *4 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -(((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070))))) -(((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +(((*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069))))) +(((*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1237)) (-4 *2 (-860)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) - ((*1 *1 *2) - (-12 (-5 *2 (-661 (-1186 *3 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1070)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-860)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 (-1185 *3 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) + (-4 *4 (-1069)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *2 (-791)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938)))) + (-12 (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *2 (-790)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1070)))) + (-12 (-5 *2 (-660 (-790))) (-5 *3 (-790)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937)) (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-791))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-938))))) + (-12 (-5 *2 (-660 (-790))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-937))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-962 *4)) (-4 *4 (-1070)) (-5 *1 (-1186 *3 *4)) - (-14 *3 (-938))))) + (-12 (-5 *2 (-961 *4)) (-4 *4 (-1069)) (-5 *1 (-1185 *3 *4)) + (-14 *3 (-937))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-962 *5)) (-5 *3 (-791)) (-4 *5 (-1070)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938))))) + (-12 (-5 *2 (-961 *5)) (-5 *3 (-790)) (-4 *5 (-1069)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-791)) (-5 *3 (-962 *5)) (-4 *5 (-1070)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938)))) + (-12 (-5 *2 (-790)) (-5 *3 (-961 *5)) (-4 *5 (-1069)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-791))) (-5 *3 (-791)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1070)))) + (-12 (-5 *2 (-660 (-790))) (-5 *3 (-790)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937)) (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-791))) (-5 *3 (-962 *5)) (-4 *5 (-1070)) - (-5 *1 (-1186 *4 *5)) (-14 *4 (-938))))) + (-12 (-5 *2 (-660 (-790))) (-5 *3 (-961 *5)) (-4 *5 (-1069)) + (-5 *1 (-1185 *4 *5)) (-14 *4 (-937))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-791))) (-5 *3 (-114)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1070))))) + (-12 (-5 *2 (-660 (-790))) (-5 *3 (-114)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937)) (-4 *5 (-1069))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-791))) (-5 *3 (-174)) (-5 *1 (-1186 *4 *5)) - (-14 *4 (-938)) (-4 *5 (-1070))))) + (-12 (-5 *2 (-660 (-790))) (-5 *3 (-174)) (-5 *1 (-1185 *4 *5)) + (-14 *4 (-937)) (-4 *5 (-1069))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-791))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-660 (-790))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) + (-4 *4 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-962 *4)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-961 *4)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) + (-4 *4 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-174)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) + (-12 (-5 *2 (-174)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) (((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-324)))) ((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) (-4 *4 (-1070))))) -(((*1 *1 *1) (-12 (-5 *1 (-1186 *2 *3)) (-14 *2 (-938)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-790)) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) (-4 *4 (-1069))))) +(((*1 *1 *1) (-12 (-5 *1 (-1185 *2 *3)) (-14 *2 (-937)) (-4 *3 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-962 *4))) (-5 *1 (-1186 *3 *4)) (-14 *3 (-938)) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-660 (-961 *4))) (-5 *1 (-1185 *3 *4)) (-14 *3 (-937)) + (-4 *4 (-1069))))) (((*1 *1 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *2 (-464)))) + (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *2 (-464)))) ((*1 *1 *1) - (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1243)) (-4 *3 (-1264 *2)) - (-4 *4 (-1264 (-419 *3))))) - ((*1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) + (-12 (-4 *1 (-355 *2 *3 *4)) (-4 *2 (-1242)) (-4 *3 (-1263 *2)) + (-4 *4 (-1263 (-419 *3))))) + ((*1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-464)))) ((*1 *1 *1) - (-12 (-4 *1 (-969 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-968 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-1185 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-1184 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-977 *3)) (-5 *1 (-1185 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-976 *3)) (-5 *1 (-1184 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-35))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *1 *1) (-4 *1 (-505))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *1 *1 *1) (-5 *1 (-391))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *1 *1) (-4 *1 (-95))) ((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022))))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1281 *3)) (-5 *1 (-289 *3 *4 *2)) - (-4 *2 (-1252 *3 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1280 *3)) (-5 *1 (-289 *3 *4 *2)) + (-4 *2 (-1251 *3 *4)))) ((*1 *2 *2) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1250 *3)) - (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1273 *3 *4)) (-4 *5 (-1004 *4)))) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *4 (-1249 *3)) + (-5 *1 (-290 *3 *4 *2 *5)) (-4 *2 (-1272 *3 *4)) (-4 *5 (-1003 *4)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3)))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1182 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1184 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-38 (-419 (-558)))) (-5 *1 (-1183 *3))))) (((*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) - (-5 *2 (-2 (|:| -3910 (-1176 *4)) (|:| -3911 (-1176 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-1176 *4))))) + (-5 *2 (-2 (|:| -3909 (-1175 *4)) (|:| -3910 (-1175 *4)))) + (-5 *1 (-1182 *4)) (-5 *3 (-1175 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-38 (-419 (-558)))) - (-5 *2 (-2 (|:| -4068 (-1176 *4)) (|:| -4064 (-1176 *4)))) - (-5 *1 (-1183 *4)) (-5 *3 (-1176 *4))))) + (-5 *2 (-2 (|:| -4067 (-1175 *4)) (|:| -4063 (-1175 *4)))) + (-5 *1 (-1182 *4)) (-5 *3 (-1175 *4))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1176 *4))) (-4 *4 (-376)) - (-4 *4 (-1070)) (-5 *2 (-1176 *4)) (-5 *1 (-1182 *4))))) + (-12 (-5 *3 (-1 *4 (-558))) (-5 *5 (-1 (-1175 *4))) (-4 *4 (-376)) + (-4 *4 (-1069)) (-5 *2 (-1175 *4)) (-5 *1 (-1181 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-376)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-376)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1070)) - (-5 *3 (-419 (-558))) (-5 *1 (-1182 *4))))) + (-12 (-5 *2 (-1175 *4)) (-4 *4 (-38 *3)) (-4 *4 (-1069)) + (-5 *3 (-419 (-558))) (-5 *1 (-1181 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1182 *4)) - (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1070))))) + (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1181 *4)) + (-4 *4 (-38 (-419 (-558)))) (-4 *4 (-1069))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-1176 *3))) (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) - (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1070))))) + (-12 (-5 *4 (-1 (-1175 *3))) (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) + (-4 *3 (-38 (-419 (-558)))) (-4 *3 (-1069))))) (((*1 *2 *3) - (-12 (-5 *3 (-1176 (-1176 *4))) (-5 *2 (-1176 *4)) (-5 *1 (-1182 *4)) - (-4 *4 (-1070))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-909 *2 *3)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) + (-12 (-5 *3 (-1175 (-1175 *4))) (-5 *2 (-1175 *4)) (-5 *1 (-1181 *4)) + (-4 *4 (-1069))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-908 *2 *3)) (-4 *2 (-1263 *3)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1070)) - (-5 *1 (-1182 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) + (-12 (-5 *2 (-1175 *4)) (-5 *3 (-1 *4 (-558))) (-4 *4 (-1069)) + (-5 *1 (-1181 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979))))) - ((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *3) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-1182 *3)) (-4 *3 (-1070))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978))))) + ((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *3) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-1181 *3)) (-4 *3 (-1069))))) (((*1 *2 *3) - (-12 (-5 *2 (-1176 (-558))) (-5 *1 (-1182 *4)) (-4 *4 (-1070)) + (-12 (-5 *2 (-1175 (-558))) (-5 *1 (-1181 *4)) (-4 *4 (-1069)) (-5 *3 (-558))))) (((*1 *2 *3) - (-12 (-5 *2 (-1176 (-558))) (-5 *1 (-1182 *4)) (-4 *4 (-1070)) + (-12 (-5 *2 (-1175 (-558))) (-5 *1 (-1181 *4)) (-4 *4 (-1069)) (-5 *3 (-558))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-938)) (-4 *3 (-376)) - (-14 *4 (-1014 *2 *3)))) + (|partial| -12 (-5 *1 (-154 *2 *3 *4)) (-14 *2 (-937)) (-4 *3 (-376)) + (-14 *4 (-1013 *2 *3)))) ((*1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) ((*1 *1 *1) - (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) - ((*1 *1) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) - ((*1 *1 *1) (|partial| -4 *1 (-742))) ((*1 *1 *1) (|partial| -4 *1 (-746))) + ((*1 *1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) + ((*1 *1) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) + ((*1 *1 *1) (|partial| -4 *1 (-741))) ((*1 *1 *1) (|partial| -4 *1 (-745))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-796 *5 *6 *7 *3 *4)) - (-4 *4 (-1092 *5 *6 *7 *3)))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-2 (|:| |num| *3) (|:| |den| *3))) (-5 *1 (-795 *5 *6 *7 *3 *4)) + (-4 *4 (-1091 *5 *6 *7 *3)))) ((*1 *2 *2 *1) - (|partial| -12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-376))) - (-4 *2 (-1264 *3)))) + (|partial| -12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-859) (-376))) + (-4 *2 (-1263 *3)))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) (((*1 *1 *1 *2) (|partial| -12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)) + (|partial| -12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *2 (-569)))) ((*1 *1 *1 *1) (|partial| -4 *1 (-569))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (|partial| -12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (|partial| -5 *1 (-791))) + ((*1 *1 *1 *1) (|partial| -5 *1 (-790))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-569)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) + (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-569)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-569)) - (-5 *1 (-990 *3 *4)))) + (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-569)) + (-5 *1 (-989 *3 *4)))) ((*1 *1 *1 *2) - (|partial| -12 (-4 *1 (-1074 *3 *4 *2 *5 *6)) (-4 *2 (-1070)) + (|partial| -12 (-4 *1 (-1073 *3 *4 *2 *5 *6)) (-4 *2 (-1069)) (-4 *5 (-245 *4 *2)) (-4 *6 (-245 *3 *2)) (-4 *2 (-569)))) ((*1 *2 *2 *2) - (|partial| -12 (-5 *2 (-1176 *3)) (-4 *3 (-1070)) (-5 *1 (-1182 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3))))) + (|partial| -12 (-5 *2 (-1175 *3)) (-4 *3 (-1069)) (-5 *1 (-1181 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-1122)) (-4 *4 (-1238)) (-5 *2 (-114)) - (-5 *1 (-1176 *4))))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1121)) (-4 *4 (-1237)) (-5 *2 (-114)) + (-5 *1 (-1175 *4))))) (((*1 *2 *3 *1) (-12 - (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2994 (-791)) (|:| |period| (-791)))) - (-5 *1 (-1176 *4)) (-4 *4 (-1238)) (-5 *3 (-791))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-1176 *3))) (-5 *1 (-1176 *3)) (-4 *3 (-1238))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *1 (-1176 *2)) (-4 *2 (-1238))))) + (-5 *2 (-2 (|:| |cycle?| (-114)) (|:| -2993 (-790)) (|:| |period| (-790)))) + (-5 *1 (-1175 *4)) (-4 *4 (-1237)) (-5 *3 (-790))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-1175 *3))) (-5 *1 (-1175 *3)) (-4 *3 (-1237))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2 *1) (-12 (-5 *1 (-1175 *2)) (-4 *2 (-1237))))) (((*1 *1) (-5 *1 (-590))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-873)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-873)))) + ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-872)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-872)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-873)))) + (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-872)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1176 *4)) (-4 *4 (-1122)) - (-4 *4 (-1238))))) + (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1175 *4)) (-4 *4 (-1121)) + (-4 *4 (-1237))))) (((*1 *2 *1) - (-12 (-5 *2 (-877)) (-5 *1 (-1176 *3)) (-4 *3 (-1122)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-876)) (-5 *1 (-1175 *3)) (-4 *3 (-1121)) (-4 *3 (-1237))))) (((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1176 *3)) (-4 *3 (-1122)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1175 *3)) (-4 *3 (-1121)) (-4 *3 (-1237))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1288 (-661 (-558)))) (-5 *1 (-492)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + (-12 (-5 *3 (-790)) (-5 *2 (-1287 (-660 (-558)))) (-5 *1 (-492)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-613 *3)))) + (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-612 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1238)) (-5 *1 (-1176 *3))))) + (-12 (-5 *2 (-1 (-114) *3)) (-4 *3 (-1237)) (-5 *1 (-1175 *3))))) (((*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) (-5 *1 (-549 *4 *2)) - (-4 *2 (-1281 *4)))) + (-4 *2 (-1280 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) (-4 *5 (-1264 *4)) - (-4 *6 (-744 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1281 *6)))) + (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-630 *3))) (-4 *5 (-1263 *4)) + (-4 *6 (-743 *4 *5)) (-5 *1 (-553 *4 *5 *6 *2)) (-4 *2 (-1280 *6)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-631 *3))) - (-5 *1 (-554 *4 *2)) (-4 *2 (-1281 *4)))) + (-12 (-5 *3 (-558)) (-4 *4 (-13 (-376) (-381) (-630 *3))) + (-5 *1 (-554 *4 *2)) (-4 *2 (-1280 *4)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1176 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) - (-5 *1 (-1175 *4))))) + (-12 (-5 *2 (-1175 *4)) (-5 *3 (-558)) (-4 *4 (-13 (-569) (-149))) + (-5 *1 (-1174 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1281 *3)))) + (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1264 *3)) - (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1281 *5)))) + (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-4 *4 (-1263 *3)) + (-4 *5 (-743 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1281 *3)))) + (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1280 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1174 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1281 *3)))) + (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1264 *3)) - (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1281 *5)))) + (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-4 *4 (-1263 *3)) + (-4 *5 (-743 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1281 *3)))) + (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1280 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1174 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1281 *3)))) + (-12 (-4 *3 (-13 (-569) (-149))) (-5 *1 (-549 *3 *2)) (-4 *2 (-1280 *3)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-4 *4 (-1264 *3)) - (-4 *5 (-744 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1281 *5)))) + (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-4 *4 (-1263 *3)) + (-4 *5 (-743 *3 *4)) (-5 *1 (-553 *3 *4 *5 *2)) (-4 *2 (-1280 *5)))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-381) (-631 (-558)))) (-5 *1 (-554 *3 *2)) - (-4 *2 (-1281 *3)))) + (-12 (-4 *3 (-13 (-376) (-381) (-630 (-558)))) (-5 *1 (-554 *3 *2)) + (-4 *2 (-1280 *3)))) ((*1 *2 *2) - (-12 (-5 *2 (-1176 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1175 *3))))) + (-12 (-5 *2 (-1175 *3)) (-4 *3 (-13 (-569) (-149))) (-5 *1 (-1174 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-537)))) - ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-711 (-1156))) (-5 *1 (-1174))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1174))))) + ((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-710 (-1155))) (-5 *1 (-1173))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1173))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)))) - ((*1 *1) (-4 *1 (-1173)))) -(((*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-1173))))) -(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1238)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1171 *3)) (-4 *3 (-1238)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)))) + ((*1 *1) (-4 *1 (-1172)))) +(((*1 *2 *1) (-12 (-5 *2 (-710 *1)) (-4 *1 (-1172))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1237)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1170 *3)) (-4 *3 (-1237)) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-1171 *4)) (-4 *4 (-1238)) (-5 *2 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-1169 *3))))) + (-12 (-5 *3 (-790)) (-4 *1 (-1170 *4)) (-4 *4 (-1237)) (-5 *2 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-1168 *3))))) (((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-661 (-1048 *5 *6 *7 *3))) (-5 *1 (-1048 *5 *6 *7 *3)) - (-4 *3 (-1086 *5 *6 *7)))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-660 (-1047 *5 *6 *7 *3))) (-5 *1 (-1047 *5 *6 *7 *3)) + (-4 *3 (-1085 *5 *6 *7)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-661 *6)) (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)))) + (-12 (-5 *2 (-660 *6)) (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)))) ((*1 *1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *2 (-1086 *3 *4 *5)))) + (-12 (-4 *1 (-1091 *3 *4 *5 *2)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *2 (-1085 *3 *4 *5)))) ((*1 *2 *3 *1 *4 *4 *4 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-661 (-1167 *5 *6 *7 *3))) (-5 *1 (-1167 *5 *6 *7 *3)) - (-4 *3 (-1086 *5 *6 *7))))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-660 (-1166 *5 *6 *7 *3))) (-5 *1 (-1166 *5 *6 *7 *3)) + (-4 *3 (-1085 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1048 *5 *6 *7 *8))) - (-5 *1 (-1048 *5 *6 *7 *8)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1047 *5 *6 *7 *8))) + (-5 *1 (-1047 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-114)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-661 (-1167 *5 *6 *7 *8))) - (-5 *1 (-1167 *5 *6 *7 *8))))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-114)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-660 (-1166 *5 *6 *7 *8))) + (-5 *1 (-1166 *5 *6 *7 *8))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1048 *5 *6 *7 *8))))) - (-5 *1 (-1048 *5 *6 *7 *8)) (-5 *3 (-661 *8)))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-1085 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1047 *5 *6 *7 *8))))) + (-5 *1 (-1047 *5 *6 *7 *8)) (-5 *3 (-660 *8)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) - (-5 *2 (-2 (|:| |val| (-661 *8)) (|:| |towers| (-661 (-1167 *5 *6 *7 *8))))) - (-5 *1 (-1167 *5 *6 *7 *8)) (-5 *3 (-661 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *4 (-791)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-1294)) - (-5 *1 (-1090 *5 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *4 (-791)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-1294)) - (-5 *1 (-1166 *5 *6 *7 *8 *9))))) + (-12 (-5 *4 (-114)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-1085 *5 *6 *7)) + (-5 *2 (-2 (|:| |val| (-660 *8)) (|:| |towers| (-660 (-1166 *5 *6 *7 *8))))) + (-5 *1 (-1166 *5 *6 *7 *8)) (-5 *3 (-660 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *4 (-790)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-1293)) + (-5 *1 (-1089 *5 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *4 (-790)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-1293)) + (-5 *1 (-1165 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-661 *11)) - (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1743 *11)))))) - (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1743 *11)))) - (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1086 *7 *8 *9)) - (-4 *11 (-1092 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-861)) - (-5 *1 (-1090 *7 *8 *9 *10 *11)))) + (-2 (|:| |done| (-660 *11)) + (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -1742 *11)))))) + (-5 *6 (-790)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -1742 *11)))) + (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1085 *7 *8 *9)) + (-4 *11 (-1091 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-814)) (-4 *9 (-860)) + (-5 *1 (-1089 *7 *8 *9 *10 *11)))) ((*1 *2 *3 *4 *2 *5 *6) (-12 (-5 *5 - (-2 (|:| |done| (-661 *11)) - (|:| |todo| (-661 (-2 (|:| |val| *3) (|:| -1743 *11)))))) - (-5 *6 (-791)) (-5 *2 (-661 (-2 (|:| |val| (-661 *10)) (|:| -1743 *11)))) - (-5 *3 (-661 *10)) (-5 *4 (-661 *11)) (-4 *10 (-1086 *7 *8 *9)) - (-4 *11 (-1130 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-815)) (-4 *9 (-861)) - (-5 *1 (-1166 *7 *8 *9 *10 *11))))) + (-2 (|:| |done| (-660 *11)) + (|:| |todo| (-660 (-2 (|:| |val| *3) (|:| -1742 *11)))))) + (-5 *6 (-790)) (-5 *2 (-660 (-2 (|:| |val| (-660 *10)) (|:| -1742 *11)))) + (-5 *3 (-660 *10)) (-5 *4 (-660 *11)) (-4 *10 (-1085 *7 *8 *9)) + (-4 *11 (-1129 *7 *8 *9 *10)) (-4 *7 (-464)) (-4 *8 (-814)) (-4 *9 (-860)) + (-5 *1 (-1165 *7 *8 *9 *10 *11))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) + (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 - (-2 (|:| -2555 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) + (-2 (|:| -2554 (-425 *4 (-419 *4) *5 *6)) (|:| |principalPart| *6))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| |poly| *6) (|:| -3492 (-419 *6)) (|:| |special| (-419 *6)))) - (-5 *1 (-747 *5 *6)) (-5 *3 (-419 *6)))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| |poly| *6) (|:| -3491 (-419 *6)) (|:| |special| (-419 *6)))) + (-5 *1 (-746 *5 *6)) (-5 *3 (-419 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-913 *3 *4)) - (-4 *3 (-1264 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-660 *3)) (-5 *1 (-912 *3 *4)) + (-4 *3 (-1263 *4)))) ((*1 *2 *3 *4 *4) - (|partial| -12 (-5 *4 (-791)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3540 *3) (|:| -3539 *3))) (-5 *1 (-913 *3 *5)) - (-4 *3 (-1264 *5)))) + (|partial| -12 (-5 *4 (-790)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3539 *3) (|:| -3538 *3))) (-5 *1 (-912 *3 *5)) + (-4 *3 (-1263 *5)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4) - (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9)))) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1165 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *2 *4 *4 *4 *4 *4) - (-12 (-5 *2 (-661 *9)) (-5 *3 (-661 *8)) (-5 *4 (-114)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-660 *8)) (-5 *4 (-114)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) - (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-12 (-5 *5 (-790)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-814)) + (-4 *9 (-860)) (-4 *3 (-1085 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1090 *7 *8 *9 *3 *4)) (-4 *4 (-1092 *7 *8 *9 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1089 *7 *8 *9 *3 *4)) (-4 *4 (-1091 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) + (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-791)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-815)) - (-4 *9 (-861)) (-4 *3 (-1086 *7 *8 *9)) + (-12 (-5 *5 (-790)) (-5 *6 (-114)) (-4 *7 (-464)) (-4 *8 (-814)) + (-4 *9 (-860)) (-4 *3 (-1085 *7 *8 *9)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1166 *7 *8 *9 *3 *4)) (-4 *4 (-1130 *7 *8 *9 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1165 *7 *8 *9 *3 *4)) (-4 *4 (-1129 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) + (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) + (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1090 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1089 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-791)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) + (-12 (-5 *5 (-790)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1166 *6 *7 *8 *3 *4)) (-4 *4 (-1130 *6 *7 *8 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1165 *6 *7 *8 *3 *4)) (-4 *4 (-1129 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) + (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1090 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1089 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) (-5 *2 - (-2 (|:| |done| (-661 *4)) - (|:| |todo| (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))))) - (-5 *1 (-1166 *5 *6 *7 *3 *4)) (-4 *4 (-1130 *5 *6 *7 *3))))) + (-2 (|:| |done| (-660 *4)) + (|:| |todo| (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))))) + (-5 *1 (-1165 *5 *6 *7 *3 *4)) (-4 *4 (-1129 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-791)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) + (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-790)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-791)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) + (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-790)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-791)) (-5 *1 (-1090 *5 *6 *7 *8 *9)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) + (-4 *9 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-790)) (-5 *1 (-1089 *5 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *9)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *9 (-1130 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-791)) (-5 *1 (-1166 *5 *6 *7 *8 *9))))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *9)) (-4 *8 (-1085 *5 *6 *7)) + (-4 *9 (-1129 *5 *6 *7 *8)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-790)) (-5 *1 (-1165 *5 *6 *7 *8 *9))))) (((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *1 *1) (-4 *1 (-1165)))) + ((*1 *1 *1) (-4 *1 (-1164)))) +(((*1 *1 *1) (-4 *1 (-1164)))) (((*1 *1) (-5 *1 (-143))) ((*1 *1 *1) (-5 *1 (-146))) - ((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *1 *1) (-4 *1 (-1165)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-114))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-114))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-558)) (-5 *2 (-114))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1122)) (-4 *6 (-1238)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-663 *5 *6)))) + ((*1 *1 *1) (-4 *1 (-1164)))) +(((*1 *1 *1) (-4 *1 (-1164)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-114))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-114))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-558)) (-5 *2 (-114))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1121)) (-4 *6 (-1237)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-662 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1122)) (-4 *2 (-1238)) - (-5 *1 (-663 *5 *2)))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1121)) (-4 *2 (-1237)) + (-5 *1 (-662 *5 *2)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 *5)) (-4 *6 (-1122)) (-4 *5 (-1238)) - (-5 *2 (-1 *5 *6)) (-5 *1 (-663 *6 *5)))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 *5)) (-4 *6 (-1121)) (-4 *5 (-1237)) + (-5 *2 (-1 *5 *6)) (-5 *1 (-662 *6 *5)))) ((*1 *2 *3 *4 *5 *2) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-4 *5 (-1122)) (-4 *2 (-1238)) - (-5 *1 (-663 *5 *2)))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-4 *5 (-1121)) (-4 *2 (-1237)) + (-5 *1 (-662 *5 *2)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-661 *5)) (-5 *4 (-661 *6)) (-4 *5 (-1122)) - (-4 *6 (-1238)) (-5 *1 (-663 *5 *6)))) + (-12 (-5 *2 (-1 *6 *5)) (-5 *3 (-660 *5)) (-5 *4 (-660 *6)) (-4 *5 (-1121)) + (-4 *6 (-1237)) (-5 *1 (-662 *5 *6)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-661 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1122)) - (-4 *2 (-1238)) (-5 *1 (-663 *5 *2)))) - ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-146)) (-5 *2 (-791))))) -(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1165)) (-5 *3 (-146)) (-5 *2 (-114))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1165)) (-5 *2 (-1255 (-558)))))) -(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-791)))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-660 *2)) (-5 *6 (-1 *2 *5)) (-4 *5 (-1121)) + (-4 *2 (-1237)) (-5 *1 (-662 *5 *2)))) + ((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-146)) (-5 *2 (-790))))) +(((*1 *2 *1 *1 *3) (-12 (-4 *1 (-1164)) (-5 *3 (-146)) (-5 *2 (-114))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-1164)) (-5 *2 (-1254 (-558)))))) +(((*1 *2 *1) (-12 (-4 *1 (-134)) (-5 *2 (-790)))) ((*1 *2 *3 *1 *2) - (-12 (-5 *2 (-558)) (-4 *1 (-385 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-558)) (-4 *1 (-385 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-558)))) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-558)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1238)) + (-12 (-5 *3 (-1 (-114) *4)) (-4 *1 (-385 *4)) (-4 *4 (-1237)) (-5 *2 (-558)))) - ((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-541)))) - ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-558)) (-5 *3 (-143)))) - ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-558))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48))))) + ((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-541)))) + ((*1 *2 *3 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-558)) (-5 *3 (-143)))) + ((*1 *2 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48))))) ((*1 *2 *3 *1) (-12 (-5 *2 (-2 (|:| |less| (-123 *3)) (|:| |greater| (-123 *3)))) - (-5 *1 (-123 *3)) (-4 *3 (-861)))) - ((*1 *2 *2) - (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1224))) - (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-597 *3 *4)))) - ((*1 *2 *2) - (-12 (-5 *2 (-595 (-419 (-965 *3)))) - (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-601 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3492 *3) (|:| |special| *3))) (-5 *1 (-747 *5 *3)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 *5)) (-4 *5 (-376)) (-4 *5 (-1070)) - (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-661 (-709 *5))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1288 (-1288 *5))) (-4 *5 (-376)) (-4 *5 (-1070)) - (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-661 (-709 *5))))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-661 *1)) (-4 *1 (-1165)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-661 *1)) (-4 *1 (-1165))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-146))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-146))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-143)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1165)) (-5 *2 (-146))))) + (-5 *1 (-123 *3)) (-4 *3 (-860)))) + ((*1 *2 *2) + (-12 (-5 *2 (-595 *4)) (-4 *4 (-13 (-29 *3) (-1223))) + (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-597 *3 *4)))) + ((*1 *2 *2) + (-12 (-5 *2 (-595 (-419 (-964 *3)))) + (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-601 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3491 *3) (|:| |special| *3))) (-5 *1 (-746 *5 *3)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1287 *5)) (-4 *5 (-376)) (-4 *5 (-1069)) + (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-660 (-708 *5))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1287 (-1287 *5))) (-4 *5 (-376)) (-4 *5 (-1069)) + (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-660 (-708 *5))))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-143)) (-5 *2 (-660 *1)) (-4 *1 (-1164)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-146)) (-5 *2 (-660 *1)) (-4 *1 (-1164))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-146))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-146))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-143)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1164)) (-5 *2 (-146))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) + (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-790)) (-4 *5 (-175)))) ((*1 *1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175)))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175)))) ((*1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *2) - (-12 (-4 *3 (-1070)) (-4 *1 (-706 *3 *2 *4)) (-4 *2 (-385 *3)) + (-12 (-4 *3 (-1069)) (-4 *1 (-705 *3 *2 *4)) (-4 *2 (-385 *3)) (-4 *4 (-385 *3)))) - ((*1 *1 *1) (-12 (-5 *1 (-1163 *2 *3)) (-14 *2 (-791)) (-4 *3 (-1070))))) + ((*1 *1 *1) (-12 (-5 *1 (-1162 *2 *3)) (-14 *2 (-790)) (-4 *3 (-1069))))) (((*1 *1 *2) - (-12 (-5 *2 (-709 *4)) (-4 *4 (-1070)) (-5 *1 (-1163 *3 *4)) - (-14 *3 (-791))))) + (-12 (-5 *2 (-708 *4)) (-4 *4 (-1069)) (-5 *1 (-1162 *3 *4)) + (-14 *3 (-790))))) (((*1 *1 *1) - (|partial| -12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (|partial| -12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1162 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 *4)) (-5 *1 (-1162 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) + (-12 (-5 *2 (-660 *4)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) (-5 *1 (-1162 *3 *4)) - (-4 *3 (-13 (-1122) (-34))) (-4 *4 (-13 (-1122) (-34)))))) + (-12 (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) (-5 *1 (-1161 *3 *4)) + (-4 *3 (-13 (-1121) (-34))) (-4 *4 (-13 (-1121) (-34)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1161 *4 *5)) (-4 *4 (-13 (-1122) (-34))) - (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-114)) (-5 *1 (-1162 *4 *5))))) + (-12 (-5 *3 (-1160 *4 *5)) (-4 *4 (-13 (-1121) (-34))) + (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-114)) (-5 *1 (-1161 *4 *5))))) (((*1 *2 *3 *1 *4) - (-12 (-5 *3 (-1161 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) - (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-114)) - (-5 *1 (-1162 *5 *6))))) + (-12 (-5 *3 (-1160 *5 *6)) (-5 *4 (-1 (-114) *6 *6)) + (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-114)) + (-5 *1 (-1161 *5 *6))))) (((*1 *1 *2 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)) - (-4 *2 (-1122)))) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)) + (-4 *2 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-153 *3)) - (-4 *3 (-1238)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-694 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-153 *3)) + (-4 *3 (-1237)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-693 *3)) (-4 *3 (-1237)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1122)) - (-5 *1 (-756 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1122)))) + (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1121)) + (-5 *1 (-755 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-755 *2)) (-4 *2 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4))))) + (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-242 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-242 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)) (-4 *2 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-242 *3)) + (-4 *3 (-1121)))) + ((*1 *1 *2 *1) (-12 (|has| *1 (-6 -4424)) (-4 *1 (-242 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)) (-4 *2 (-1121)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) ((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122)))) + (|partial| -12 (-4 *1 (-626 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121)))) ((*1 *1 *2 *1 *3) - (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1122)) - (-5 *1 (-756 *4)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-756 *2)) (-4 *2 (-1122)))) + (-12 (-5 *2 (-1 (-114) *4)) (-5 *3 (-558)) (-4 *4 (-1121)) + (-5 *1 (-755 *4)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-755 *2)) (-4 *2 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4))))) + (-12 (-5 *2 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4))))) (((*1 *1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-1161 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) - (-4 *4 (-13 (-1122) (-34))) (-4 *5 (-13 (-1122) (-34))) - (-5 *1 (-1162 *4 *5)))) + (-12 (-5 *2 (-660 (-1160 *4 *5))) (-5 *3 (-1 (-114) *5 *5)) + (-4 *4 (-13 (-1121) (-34))) (-4 *5 (-13 (-1121) (-34))) + (-5 *1 (-1161 *4 *5)))) ((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-661 (-1161 *3 *4))) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34))) (-5 *1 (-1162 *3 *4))))) + (-12 (-5 *2 (-660 (-1160 *3 *4))) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34))) (-5 *1 (-1161 *3 *4))))) (((*1 *2 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *2 (-114)) - (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) + (-12 (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *2 (-114)) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) -(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-872)))) - ((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-984)))) - ((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-1010)))) - ((*1 *2 *1) (-12 (-4 *1 (-1031 *2)) (-4 *2 (-1238)))) + (-12 (-5 *2 (-114)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-871)))) + ((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-983)))) + ((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-1009)))) + ((*1 *2 *1) (-12 (-4 *1 (-1030 *2)) (-4 *2 (-1237)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-1122) (-34))) (-5 *1 (-1161 *2 *3)) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-4 *2 (-13 (-1121) (-34))) (-5 *1 (-1160 *2 *3)) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *2 (-114)) - (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4)))) + (|partial| -12 (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *2 (-114)) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) (((*1 *1 *1) (-4 *1 (-34))) ((*1 *1 *1) (-5 *1 (-115))) ((*1 *1 *1) (-5 *1 (-174))) ((*1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070)))) + ((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069)))) ((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-1161 *3 *2)) (-4 *3 (-13 (-1122) (-34))) - (-4 *2 (-13 (-1122) (-34)))))) + (-12 (-5 *1 (-1160 *3 *2)) (-4 *3 (-13 (-1121) (-34))) + (-4 *2 (-13 (-1121) (-34)))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-1161 *3 *4)) (-4 *3 (-13 (-1122) (-34))) - (-4 *4 (-13 (-1122) (-34)))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1160 *3 *4)) (-4 *3 (-13 (-1121) (-34))) + (-4 *4 (-13 (-1121) (-34)))))) (((*1 *1 *1) - (-12 (-5 *1 (-1161 *2 *3)) (-4 *2 (-13 (-1122) (-34))) - (-4 *3 (-13 (-1122) (-34)))))) + (-12 (-5 *1 (-1160 *2 *3)) (-4 *2 (-13 (-1121) (-34))) + (-4 *3 (-13 (-1121) (-34)))))) (((*1 *2 *1 *1 *3 *4) (-12 (-5 *3 (-1 (-114) *5 *5)) (-5 *4 (-1 (-114) *6 *6)) - (-4 *5 (-13 (-1122) (-34))) (-4 *6 (-13 (-1122) (-34))) (-5 *2 (-114)) - (-5 *1 (-1161 *5 *6))))) + (-4 *5 (-13 (-1121) (-34))) (-4 *6 (-13 (-1121) (-34))) (-5 *2 (-114)) + (-5 *1 (-1160 *5 *6))))) (((*1 *2 *1 *1 *3) - (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1122) (-34))) (-5 *2 (-114)) - (-5 *1 (-1161 *4 *5)) (-4 *4 (-13 (-1122) (-34)))))) + (-12 (-5 *3 (-1 (-114) *5 *5)) (-4 *5 (-13 (-1121) (-34))) (-5 *2 (-114)) + (-5 *1 (-1160 *4 *5)) (-4 *4 (-13 (-1121) (-34)))))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1 *1) (-4 *1 (-1159)))) (((*1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1160))) ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-791)) (-5 *1 (-230)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-791)) (-5 *1 (-230)))) + ((*1 *1 *1) (-4 *1 (-1159))) ((*1 *1 *1 *1) (-4 *1 (-1159)))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-229)) (-5 *3 (-790)) (-5 *1 (-230)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-171 (-229))) (-5 *3 (-790)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1 *1) (-4 *1 (-1159)))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-1160)))) + ((*1 *1 *1) (-4 *1 (-1159)))) (((*1 *1 *1 *1) (-5 *1 (-229))) ((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062)))) - ((*1 *1 *1 *1) (-4 *1 (-1160)))) -(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061)))) + ((*1 *1 *1 *1) (-4 *1 (-1159)))) +(((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3)))) - ((*1 *1 *1) (-4 *1 (-812))) - ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)) (-4 *2 (-1081)))) - ((*1 *1 *1) (-4 *1 (-1160)))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-877))) (-5 *2 (-1294)) (-5 *1 (-1159))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-877))) (-5 *2 (-1294)) (-5 *1 (-1159))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-63 *3)) (-14 *3 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-69 *3)) (-14 *3 (-1198)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-72 *3)) (-14 *3 (-1198)))) - ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1294)) (-5 *1 (-407)))) - ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1294)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-1159)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-877))) (-5 *2 (-1294)) (-5 *1 (-1159))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-661 (-1203))) (-5 *1 (-1157))))) -(((*1 *1 *2) (-12 (-5 *2 (-1186 3 *3)) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) - ((*1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) + ((*1 *1 *1) (-4 *1 (-811))) + ((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)) (-4 *2 (-1080)))) + ((*1 *1 *1) (-4 *1 (-1159)))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-876))) (-5 *2 (-1293)) (-5 *1 (-1158))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-876))) (-5 *2 (-1293)) (-5 *1 (-1158))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-63 *3)) (-14 *3 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-69 *3)) (-14 *3 (-1197)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-72 *3)) (-14 *3 (-1197)))) + ((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1293)) (-5 *1 (-407)))) + ((*1 *2 *1) (-12 (-4 *1 (-408)) (-5 *2 (-1293)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1179)) (-5 *4 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-1158)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-876))) (-5 *2 (-1293)) (-5 *1 (-1158))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-660 (-1202))) (-5 *1 (-1156))))) +(((*1 *1 *2) (-12 (-5 *2 (-1185 3 *3)) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) + ((*1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069))))) (((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) + (-5 *2 (-790)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-791))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-791))))) -(((*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-661 *1)) (-4 *1 (-1155 *3))))) -(((*1 *2 *1) (-12 (-4 *3 (-1070)) (-5 *2 (-661 *1)) (-4 *1 (-1155 *3))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-790))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-790))))) +(((*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-660 *1)) (-4 *1 (-1154 *3))))) +(((*1 *2 *1) (-12 (-4 *3 (-1069)) (-5 *2 (-660 *1)) (-4 *1 (-1154 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 (-962 *4))) (-4 *1 (-1155 *4)) (-4 *4 (-1070)) - (-5 *2 (-791))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-892 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-894 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + (-12 (-5 *3 (-660 (-961 *4))) (-4 *1 (-1154 *4)) (-4 *4 (-1069)) + (-5 *2 (-790))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-891 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2 *2 *2) (-12 (-5 *1 (-893 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + (-12 (-5 *2 (-660 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3))))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-962 *3))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + (-12 (-5 *2 (-660 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-961 *3))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-661 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-962 *3))) (-4 *1 (-1155 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114))))) + (-12 (-5 *2 (-660 (-961 *3))) (-4 *1 (-1154 *3)) (-4 *3 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-962 *3)))))) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-961 *3)))))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-661 (-661 (-962 *4)))) (-5 *3 (-114)) (-4 *4 (-1070)) - (-4 *1 (-1155 *4)))) + (-12 (-5 *2 (-660 (-660 (-961 *4)))) (-5 *3 (-114)) (-4 *4 (-1069)) + (-4 *1 (-1154 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-661 (-962 *3)))) (-4 *3 (-1070)) (-4 *1 (-1155 *3)))) + (-12 (-5 *2 (-660 (-660 (-961 *3)))) (-4 *3 (-1069)) (-4 *1 (-1154 *3)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-661 (-661 (-661 *4)))) (-5 *3 (-114)) (-4 *1 (-1155 *4)) - (-4 *4 (-1070)))) + (-12 (-5 *2 (-660 (-660 (-660 *4)))) (-5 *3 (-114)) (-4 *1 (-1154 *4)) + (-4 *4 (-1069)))) ((*1 *1 *1 *2 *3 *3) - (-12 (-5 *2 (-661 (-661 (-962 *4)))) (-5 *3 (-114)) (-4 *1 (-1155 *4)) - (-4 *4 (-1070)))) + (-12 (-5 *2 (-660 (-660 (-961 *4)))) (-5 *3 (-114)) (-4 *1 (-1154 *4)) + (-4 *4 (-1069)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-661 (-661 (-661 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) - (-4 *1 (-1155 *5)) (-4 *5 (-1070)))) + (-12 (-5 *2 (-660 (-660 (-660 *5)))) (-5 *3 (-660 (-174))) (-5 *4 (-174)) + (-4 *1 (-1154 *5)) (-4 *5 (-1069)))) ((*1 *1 *1 *2 *3 *4) - (-12 (-5 *2 (-661 (-661 (-962 *5)))) (-5 *3 (-661 (-174))) (-5 *4 (-174)) - (-4 *1 (-1155 *5)) (-4 *5 (-1070))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-962 *3)))))) + (-12 (-5 *2 (-660 (-660 (-961 *5)))) (-5 *3 (-660 (-174))) (-5 *4 (-174)) + (-4 *1 (-1154 *5)) (-4 *5 (-1069))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-961 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-661 (-791)))))))) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-660 (-790)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) - (-5 *2 (-661 (-661 (-661 (-962 *3)))))))) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) + (-5 *2 (-660 (-660 (-660 (-961 *3)))))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-661 (-174))))))) -(((*1 *2 *1) (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) (-5 *2 (-661 (-174)))))) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-660 (-174))))))) +(((*1 *2 *1) (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 (-660 (-174)))))) (((*1 *2 *1) - (-12 (-4 *1 (-1155 *3)) (-4 *3 (-1070)) + (-12 (-4 *1 (-1154 *3)) (-4 *3 (-1069)) (-5 *2 - (-2 (|:| -4280 (-791)) (|:| |curves| (-791)) (|:| |polygons| (-791)) - (|:| |constructs| (-791))))))) + (-2 (|:| -4279 (-790)) (|:| |curves| (-790)) (|:| |polygons| (-790)) + (|:| |constructs| (-790))))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 (-2 (|:| -4162 (-1192 *6)) (|:| -2632 (-558))))) - (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) - ((*1 *1 *1) (-12 (-4 *1 (-1155 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-660 (-2 (|:| -4161 (-1191 *6)) (|:| -2631 (-558))))) + (-4 *6 (-319)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-761 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) + ((*1 *1 *1) (-12 (-4 *1 (-1154 *2)) (-4 *2 (-1069))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) - (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) + (-4 *2 (-13 (-615 (-558) *4) (-10 -7 (-6 -4424) (-6 -4425)))))) ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4425) (-6 -4426))))))) + (-12 (-4 *3 (-860)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) + (-4 *2 (-13 (-615 (-558) *3) (-10 -7 (-6 -4424) (-6 -4425))))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-1153 *4 *2)) - (-4 *2 (-13 (-616 (-558) *4) (-10 -7 (-6 -4425) (-6 -4426)))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-1152 *4 *2)) + (-4 *2 (-13 (-615 (-558) *4) (-10 -7 (-6 -4424) (-6 -4425)))))) ((*1 *2 *2) - (-12 (-4 *3 (-861)) (-4 *3 (-1238)) (-5 *1 (-1153 *3 *2)) - (-4 *2 (-13 (-616 (-558) *3) (-10 -7 (-6 -4425) (-6 -4426))))))) + (-12 (-4 *3 (-860)) (-4 *3 (-1237)) (-5 *1 (-1152 *3 *2)) + (-4 *2 (-13 (-615 (-558) *3) (-10 -7 (-6 -4424) (-6 -4425))))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-1070)) (-4 *2 (-1264 *4)) + (-12 (-5 *3 (-1287 *4)) (-4 *4 (-1069)) (-4 *2 (-1263 *4)) (-5 *1 (-456 *4 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-419 (-1192 (-326 *5)))) (-5 *3 (-1288 (-326 *5))) - (-5 *4 (-558)) (-4 *5 (-569)) (-5 *1 (-1151 *5))))) + (-12 (-5 *2 (-419 (-1191 (-326 *5)))) (-5 *3 (-1287 (-326 *5))) + (-5 *4 (-558)) (-4 *5 (-569)) (-5 *1 (-1150 *5))))) (((*1 *2 *2 *2 *2) - (-12 (-5 *2 (-419 (-1192 (-326 *3)))) (-4 *3 (-569)) (-5 *1 (-1151 *3))))) + (-12 (-5 *2 (-419 (-1191 (-326 *3)))) (-4 *3 (-569)) (-5 *1 (-1150 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-965 *5)))) (-5 *4 (-1198)) + (-12 (-5 *3 (-305 (-419 (-964 *5)))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-1187 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) - (-5 *1 (-1150 *5)))) + (-5 *2 (-1186 (-660 (-326 *5)) (-660 (-305 (-326 *5))))) + (-5 *1 (-1149 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-1187 (-661 (-326 *5)) (-661 (-305 (-326 *5))))) - (-5 *1 (-1150 *5))))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-1186 (-660 (-326 *5)) (-660 (-305 (-326 *5))))) + (-5 *1 (-1149 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-661 (-326 *5))) (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-660 (-326 *5))) (-5 *1 (-1149 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-326 *5)))) - (-5 *1 (-1150 *5))))) + (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-326 *5)))) + (-5 *1 (-1149 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-661 (-305 (-326 *5)))) (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-660 (-305 (-326 *5)))) (-5 *1 (-1149 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1150 *4)))) + (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1149 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-965 *5)))) (-5 *4 (-1198)) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-305 (-326 *5)))) - (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-305 (-419 (-964 *5)))) (-5 *4 (-1197)) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-305 (-326 *5)))) + (-5 *1 (-1149 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-305 (-419 (-965 *4)))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-661 (-305 (-326 *4)))) (-5 *1 (-1150 *4)))) + (-12 (-5 *3 (-305 (-419 (-964 *4)))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-660 (-305 (-326 *4)))) (-5 *1 (-1149 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-419 (-965 *5)))) (-5 *4 (-661 (-1198))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) - (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-660 (-419 (-964 *5)))) (-5 *4 (-660 (-1197))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *5))))) + (-5 *1 (-1149 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-419 (-965 *4)))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1150 *4)))) + (-12 (-5 *3 (-660 (-419 (-964 *4)))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-660 (-660 (-305 (-326 *4))))) (-5 *1 (-1149 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-305 (-419 (-965 *5))))) (-5 *4 (-661 (-1198))) - (-4 *5 (-13 (-319) (-149))) (-5 *2 (-661 (-661 (-305 (-326 *5))))) - (-5 *1 (-1150 *5)))) + (-12 (-5 *3 (-660 (-305 (-419 (-964 *5))))) (-5 *4 (-660 (-1197))) + (-4 *5 (-13 (-319) (-149))) (-5 *2 (-660 (-660 (-305 (-326 *5))))) + (-5 *1 (-1149 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-305 (-419 (-965 *4))))) (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-661 (-661 (-305 (-326 *4))))) (-5 *1 (-1150 *4))))) + (-12 (-5 *3 (-660 (-305 (-419 (-964 *4))))) (-4 *4 (-13 (-319) (-149))) + (-5 *2 (-660 (-660 (-305 (-326 *4))))) (-5 *1 (-1149 *4))))) (((*1 *2 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) (((*1 *2 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) (((*1 *2 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) (((*1 *2 *2 *2) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) + (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) + (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) + (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) (((*1 *2 *3) (-12 (-4 *4 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *4)) (-5 *1 (-1149 *3 *4)) (-4 *3 (-1264 *4)))) + (-5 *2 (-660 *4)) (-5 *1 (-1148 *3 *4)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *3) (-12 (-4 *3 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *2 (-661 *3)) (-5 *1 (-1149 *4 *3)) (-4 *4 (-1264 *3))))) + (-5 *2 (-660 *3)) (-5 *1 (-1148 *4 *3)) (-4 *4 (-1263 *3))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-1 *5 *5)) (-4 *5 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) (-5 *2 - (-2 (|:| |solns| (-661 *5)) - (|:| |maps| (-661 (-2 (|:| |arg| *5) (|:| |res| *5)))))) - (-5 *1 (-1149 *3 *5)) (-4 *3 (-1264 *5))))) + (-2 (|:| |solns| (-660 *5)) + (|:| |maps| (-660 (-2 (|:| |arg| *5) (|:| |res| *5)))))) + (-5 *1 (-1148 *3 *5)) (-4 *3 (-1263 *5))))) (((*1 *2 *3 *2) - (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4426)))) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426)))) (-5 *1 (-687 *4 *5 *2 *3)) - (-4 *3 (-706 *4 *5 *2)))) + (|partial| -12 (-4 *4 (-376)) (-4 *5 (-13 (-385 *4) (-10 -7 (-6 -4425)))) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425)))) (-5 *1 (-686 *4 *5 *2 *3)) + (-4 *3 (-705 *4 *5 *2)))) ((*1 *2 *3 *2) - (|partial| -12 (-5 *2 (-1288 *4)) (-5 *3 (-709 *4)) (-4 *4 (-376)) - (-5 *1 (-688 *4)))) + (|partial| -12 (-5 *2 (-1287 *4)) (-5 *3 (-708 *4)) (-4 *4 (-376)) + (-5 *1 (-687 *4)))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *4 (-661 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) - (-5 *1 (-836 *2 *3)) (-4 *3 (-678 *2)))) + (|partial| -12 (-5 *4 (-660 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-376)) + (-5 *1 (-835 *2 *3)) (-4 *3 (-677 *2)))) ((*1 *2 *3) (-12 (-4 *2 (-13 (-376) (-10 -8 (-15 ** ($ $ (-419 (-558))))))) - (-5 *1 (-1149 *3 *2)) (-4 *3 (-1264 *2))))) + (-5 *1 (-1148 *3 *2)) (-4 *3 (-1263 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1176 *7))) (-4 *6 (-861)) - (-4 *7 (-969 *5 (-543 *6) *6)) (-4 *5 (-1070)) (-5 *2 (-1 (-1176 *7) *7)) - (-5 *1 (-1147 *5 *6 *7))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1175 *7))) (-4 *6 (-860)) + (-4 *7 (-968 *5 (-543 *6) *6)) (-4 *5 (-1069)) (-5 *2 (-1 (-1175 *7) *7)) + (-5 *1 (-1146 *5 *6 *7))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-319)) (-4 *6 (-385 *5)) (-4 *4 (-385 *5)) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2222 (-661 *4)))) - (-5 *1 (-1145 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2221 (-660 *4)))) + (-5 *1 (-1144 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-2 (|:| |Smith| *3) (|:| |leftEqMat| *3) (|:| |rightEqMat| *3))) - (-5 *1 (-1145 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6))))) + (-5 *1 (-1144 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) + (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) (((*1 *2 *3) (-12 (-4 *4 (-319)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1145 *4 *5 *6 *3)) - (-4 *3 (-706 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558)))) + (-5 *2 (-2 (|:| |Hermite| *3) (|:| |eqMat| *3))) (-5 *1 (-1144 *4 *5 *6 *3)) + (-4 *3 (-705 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558)))) ((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-1145 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) + (-5 *1 (-1144 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-791)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-790)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-4 *2 (-1070)) (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) + (-12 (-4 *2 (-1069)) (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 *1)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) + (-12 (-5 *2 (-660 *1)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 *3)) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-709 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-708 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 *4)) (-4 *4 (-1070)) (-4 *1 (-1144 *3 *4 *5 *6)) + (-12 (-5 *2 (-660 *4)) (-4 *4 (-1069)) (-4 *1 (-1143 *3 *4 *5 *6)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *4 *2 *5)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) + (-12 (-4 *1 (-1143 *3 *4 *2 *5)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *2 (-245 *3 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + (-12 (-5 *2 (-937)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-175)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-938)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-937)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (-4 *2 (-1070))))) + (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (-4 *2 (-1069))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 *2)) (-4 *4 (-1264 *2)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) + (-12 (-5 *3 (-708 *2)) (-4 *4 (-1263 *2)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-5 *1 (-511 *2 *4 *5)) (-4 *5 (-422 *2 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (-4 *2 (-1070))))) + (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (-4 *2 (-1069))))) (((*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-376)) - (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) + (-5 *1 (-533 *2 *4 *5 *3)) (-4 *3 (-705 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1070)))) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4426 "*"))) (-4 *2 (-1069)))) ((*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) - (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) + (-5 *1 (-707 *2 *4 *5 *3)) (-4 *3 (-705 *2 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1070))))) + (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (|has| *2 (-6 (-4426 "*"))) (-4 *2 (-1069))))) (((*1 *2 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1070)))) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) + (|has| *2 (-6 (-4426 "*"))) (-4 *2 (-1069)))) ((*1 *2 *3) (-12 (-4 *4 (-385 *2)) (-4 *5 (-385 *2)) (-4 *2 (-175)) - (-5 *1 (-708 *2 *4 *5 *3)) (-4 *3 (-706 *2 *4 *5)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1144 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) - (|has| *2 (-6 (-4427 "*"))) (-4 *2 (-1070))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1142 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-4 *1 (-1142 *3)) (-4 *3 (-1238)) (-5 *2 (-791))))) + (-5 *1 (-707 *2 *4 *5 *3)) (-4 *3 (-705 *2 *4 *5)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1143 *3 *2 *4 *5)) (-4 *4 (-245 *3 *2)) (-4 *5 (-245 *3 *2)) + (|has| *2 (-6 (-4426 "*"))) (-4 *2 (-1069))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1141 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-4 *1 (-1141 *3)) (-4 *3 (-1237)) (-5 *2 (-790))))) (((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125))) - ((*1 *1 *1 *1) (-5 *1 (-1141)))) + ((*1 *1 *1 *1) (-5 *1 (-1140)))) (((*1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) - ((*1 *1 *1) (-5 *1 (-1141)))) + ((*1 *1 *1) (-5 *1 (-1140)))) (((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) - ((*1 *1 *1 *1) (-5 *1 (-1141)))) + ((*1 *1 *1 *1) (-5 *1 (-1140)))) (((*1 *1 *1 *1) (-12 (-5 *1 (-512 *2)) (-14 *2 (-558)))) - ((*1 *1 *1 *1) (-5 *1 (-1141)))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1136)) (-5 *1 (-1137))))) -(((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-222)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-451)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-851)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1203))) (-5 *3 (-1203)) (-5 *1 (-1136)))) - ((*1 *2 *1) (-12 (-5 *2 (-1136)) (-5 *1 (-1137))))) -(((*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-701)))) - ((*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-991)))) - ((*1 *2 *1) (-12 (-5 *2 (-1239)) (-5 *1 (-1094)))) - ((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-1136))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-701)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-1136))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1198)) - (-5 *2 (-558)) (-5 *1 (-1135 *4 *5))))) + ((*1 *1 *1 *1) (-5 *1 (-1140)))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1135)) (-5 *1 (-1136))))) +(((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-222)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-451)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-850)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1202))) (-5 *3 (-1202)) (-5 *1 (-1135)))) + ((*1 *2 *1) (-12 (-5 *2 (-1135)) (-5 *1 (-1136))))) +(((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-700)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-990)))) + ((*1 *2 *1) (-12 (-5 *2 (-1238)) (-5 *1 (-1093)))) + ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-1135))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-700)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-1135))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-464)) (-4 *4 (-841)) (-14 *5 (-1197)) + (-5 *2 (-558)) (-5 *1 (-1134 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-464)) (-4 *4 (-842)) (-14 *5 (-1198)) - (-5 *2 (-558)) (-5 *1 (-1135 *4 *5))))) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-464)) (-4 *4 (-841)) (-14 *5 (-1197)) + (-5 *2 (-558)) (-5 *1 (-1134 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-558)) - (-5 *1 (-1135 *4 *5))))) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-558)) + (-5 *1 (-1134 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-558)) - (-5 *1 (-1135 *4 *5))))) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-558)) + (-5 *1 (-1134 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1257 *5 *4)) (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-661 *4)) - (-5 *1 (-1135 *4 *5))))) + (-12 (-5 *3 (-1256 *5 *4)) (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-660 *4)) + (-5 *1 (-1134 *4 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-661 (-1257 *5 *4))) - (-5 *1 (-1135 *4 *5)) (-5 *3 (-1257 *5 *4))))) + (-12 (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-660 (-1256 *5 *4))) + (-5 *1 (-1134 *4 *5)) (-5 *3 (-1256 *5 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-842)) (-14 *5 (-1198)) (-5 *2 (-661 (-1257 *5 *4))) - (-5 *1 (-1135 *4 *5)) (-5 *3 (-1257 *5 *4))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1131)) (-5 *3 (-558))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1131)) (-5 *3 (-558))))) -(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1131)) (-5 *3 (-558))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1131))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1288 (-558))) (-5 *3 (-558)) (-5 *1 (-1131)))) + (-12 (-4 *4 (-841)) (-14 *5 (-1197)) (-5 *2 (-660 (-1256 *5 *4))) + (-5 *1 (-1134 *4 *5)) (-5 *3 (-1256 *5 *4))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1130)) (-5 *3 (-558))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1130)) (-5 *3 (-558))))) +(((*1 *2 *3 *3 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1130)) (-5 *3 (-558))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1130))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-1287 (-558))) (-5 *3 (-558)) (-5 *1 (-1130)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-1288 (-558))) (-5 *3 (-661 (-558))) (-5 *4 (-558)) - (-5 *1 (-1131))))) + (-12 (-5 *2 (-1287 (-558))) (-5 *3 (-660 (-558))) (-5 *4 (-558)) + (-5 *1 (-1130))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-661 (-558))) (-5 *3 (-661 (-938))) (-5 *4 (-114)) - (-5 *1 (-1131))))) + (-12 (-5 *2 (-660 (-558))) (-5 *3 (-660 (-937))) (-5 *4 (-114)) + (-5 *1 (-1130))))) (((*1 *2 *3 *3 *2) - (-12 (-5 *2 (-709 (-558))) (-5 *3 (-661 (-558))) (-5 *1 (-1131))))) + (-12 (-5 *2 (-708 (-558))) (-5 *3 (-660 (-558))) (-5 *1 (-1130))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-938))) (-5 *4 (-661 (-558))) (-5 *2 (-709 (-558))) - (-5 *1 (-1131))))) + (-12 (-5 *3 (-660 (-937))) (-5 *4 (-660 (-558))) (-5 *2 (-708 (-558))) + (-5 *1 (-1130))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-938))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-1131))))) + (-12 (-5 *3 (-660 (-937))) (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-1130))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-661 (-558))) (-5 *3 (-709 (-558))) (-5 *1 (-1131))))) + (-12 (-5 *2 (-660 (-558))) (-5 *3 (-708 (-558))) (-5 *1 (-1130))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1131))))) + (-12 (-5 *3 (-660 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-1130))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) - (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) + (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-114)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-114)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) - (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) + (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 *4)) (-5 *1 (-1129 *5 *6 *7 *3 *4)) - (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 *4)) (-5 *1 (-1128 *5 *6 *7 *3 *4)) + (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1129 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1128 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *5 (-114)) - (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) - (-4 *7 (-815)) (-4 *4 (-861)) - (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1743 *9)))) - (-5 *1 (-1129 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *5 (-114)) + (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) (-4 *6 (-464)) + (-4 *7 (-814)) (-4 *4 (-860)) + (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -1742 *9)))) + (-5 *1 (-1128 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))) - (-5 *1 (-1129 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))) + (-5 *1 (-1128 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-1294)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-1293)) (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-1294)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1092 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-1294)) (-5 *1 (-1093 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-1293)) (-5 *1 (-1092 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-1294)) (-5 *1 (-1129 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-1293)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1093 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1092 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1129 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *4) (|:| |ineq| (-661 *9)))) - (-5 *1 (-1009 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) - (-4 *4 (-1092 *6 *7 *8 *9)))) + (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *9 (-1085 *6 *7 *8)) + (-5 *2 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *4) (|:| |ineq| (-660 *9)))) + (-5 *1 (-1008 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) + (-4 *4 (-1091 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *3 *5 *5 *5 *5 *5) - (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *9 (-1086 *6 *7 *8)) - (-5 *2 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *4) (|:| |ineq| (-661 *9)))) - (-5 *1 (-1128 *6 *7 *8 *9 *4)) (-5 *3 (-661 *9)) - (-4 *4 (-1092 *6 *7 *8 *9))))) + (|partial| -12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *9 (-1085 *6 *7 *8)) + (-5 *2 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *4) (|:| |ineq| (-660 *9)))) + (-5 *1 (-1127 *6 *7 *8 *9 *4)) (-5 *3 (-660 *9)) + (-4 *4 (-1091 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1092 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-12 (-5 *4 (-660 *10)) (-5 *5 (-114)) (-4 *10 (-1091 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 - (-661 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *10) (|:| |ineq| (-661 *9))))) - (-5 *1 (-1009 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9)))) + (-660 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *10) (|:| |ineq| (-660 *9))))) + (-5 *1 (-1008 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *4 (-661 *10)) (-5 *5 (-114)) (-4 *10 (-1092 *6 *7 *8 *9)) - (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-1086 *6 *7 *8)) + (-12 (-5 *4 (-660 *10)) (-5 *5 (-114)) (-4 *10 (-1091 *6 *7 *8 *9)) + (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-1085 *6 *7 *8)) (-5 *2 - (-661 (-2 (|:| -3684 (-661 *9)) (|:| -1743 *10) (|:| |ineq| (-661 *9))))) - (-5 *1 (-1128 *6 *7 *8 *9 *10)) (-5 *3 (-661 *9))))) + (-660 (-2 (|:| -3683 (-660 *9)) (|:| -1742 *10) (|:| |ineq| (-660 *9))))) + (-5 *1 (-1127 *6 *7 *8 *9 *10)) (-5 *3 (-660 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1743 *7)))) - (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -1742 *7)))) + (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1008 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-661 (-2 (|:| |val| (-661 *6)) (|:| -1743 *7)))) - (-4 *6 (-1086 *3 *4 *5)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-1128 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-660 (-2 (|:| |val| (-660 *6)) (|:| -1742 *7)))) + (-4 *6 (-1085 *3 *4 *5)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-1127 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-1009 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) + (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-1008 *4 *5 *6 *7 *8)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-2 (|:| |val| (-661 *7)) (|:| -1743 *8))) - (-4 *7 (-1086 *4 *5 *6)) (-4 *8 (-1092 *4 *5 *6 *7)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-1128 *4 *5 *6 *7 *8))))) -(((*1 *2 *2) - (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)))) - ((*1 *2 *2) - (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1128 *3 *4 *5 *6 *7))))) + (-12 (-5 *3 (-2 (|:| |val| (-660 *7)) (|:| -1742 *8))) + (-4 *7 (-1085 *4 *5 *6)) (-4 *8 (-1091 *4 *5 *6 *7)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-1127 *4 *5 *6 *7 *8))))) +(((*1 *2 *2) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *1 (-1008 *3 *4 *5 *6 *7)))) + ((*1 *2 *2) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *1 (-1127 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-114)) - (-5 *1 (-1009 *5 *6 *7 *8 *3)))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-114)) + (-5 *1 (-1008 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-1092 *5 *6 *7 *8)) (-4 *5 (-464)) - (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-114)) - (-5 *1 (-1128 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1091 *5 *6 *7 *8)) (-4 *5 (-464)) + (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-114)) + (-5 *1 (-1127 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) - (-4 *3 (-1092 *4 *5 *6 *7)))) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) + (-4 *3 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) - (-4 *3 (-1092 *4 *5 *6 *7))))) + (|partial| -12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) + (-4 *3 (-1091 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1009 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *1 (-1008 *3 *4 *5 *6 *7)))) ((*1 *2 *2) - (-12 (-5 *2 (-661 *7)) (-4 *7 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-1128 *3 *4 *5 *6 *7))))) + (-12 (-5 *2 (-660 *7)) (-4 *7 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *1 (-1127 *3 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1009 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1008 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-114)) (-5 *1 (-1128 *4 *5 *6 *7 *3)) (-4 *3 (-1092 *4 *5 *6 *7))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-114)) (-5 *1 (-1127 *4 *5 *6 *7 *3)) (-4 *3 (-1091 *4 *5 *6 *7))))) (((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-1294)) (-5 *1 (-1009 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6)))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-1293)) (-5 *1 (-1008 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *2 (-1294)) (-5 *1 (-1128 *3 *4 *5 *6 *7)) (-4 *7 (-1092 *3 *4 *5 *6))))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *2 (-1293)) (-5 *1 (-1127 *3 *4 *5 *6 *7)) (-4 *7 (-1091 *3 *4 *5 *6))))) (((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1009 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1008 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *3 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) (-5 *2 (-1294)) (-5 *1 (-1128 *4 *5 *6 *7 *8)) - (-4 *8 (-1092 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1179)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) (-5 *2 (-1293)) (-5 *1 (-1127 *4 *5 *6 *7 *8)) + (-4 *8 (-1091 *4 *5 *6 *7))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-446)) (-4 *5 (-1122)) (-5 *1 (-1127 *5 *4)) + (-12 (-5 *2 (-1197)) (-5 *3 (-446)) (-4 *5 (-1121)) (-5 *1 (-1126 *5 *4)) (-4 *4 (-433 *5))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1095)))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1094)))) ((*1 *2 *1 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) - ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-581 *3)) (-4 *3 (-1059 (-558))))) + ((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-581 *3)) (-4 *3 (-1058 (-558))))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *7)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *7 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *7)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *7 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| -4290 (-1198)) (|:| -2286 *4)))) - (-5 *1 (-903 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)))) + (-12 (-5 *2 (-660 (-2 (|:| -4289 (-1197)) (|:| -2285 *4)))) + (-5 *1 (-902 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)))) ((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *7 (-1122)) (-5 *2 (-661 *1)) (-4 *1 (-1125 *3 *4 *5 *6 *7))))) + (-12 (-4 *3 (-1121)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-4 *7 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-1124 *3 *4 *5 *6 *7))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *2 *4 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2)))) + (-12 (-4 *1 (-1124 *3 *2 *4 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *3) (-12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *2 *5 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-938)) (-4 *1 (-416)))) + (-12 (-4 *1 (-1124 *3 *4 *2 *5 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-937)) (-4 *1 (-416)))) ((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-4 *1 (-416)))) ((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *2 *6)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *2 *6)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-1125 *3 *4 *5 *6 *2)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-1122)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-1124 *3 *4 *5 *6 *2)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-1121)) (-4 *2 (-1121))))) (((*1 *1 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) - (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122))))) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) (((*1 *1 *1) - (-12 (-4 *1 (-1125 *2 *3 *4 *5 *6)) (-4 *2 (-1122)) (-4 *3 (-1122)) - (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122))))) + (-12 (-4 *1 (-1124 *2 *3 *4 *5 *6)) (-4 *2 (-1121)) (-4 *3 (-1121)) + (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121))))) (((*1 *1 *1 *2) - (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) + (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) (((*1 *1 *1 *2 *2) - (|partial| -12 (-5 *2 (-938)) (-5 *1 (-1123 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-691)))) + (|partial| -12 (-5 *2 (-937)) (-5 *1 (-1122 *3 *4)) (-14 *3 *2) (-14 *4 *2)))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-690)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938))))) + (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-937)) + (-14 *4 (-937))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-938))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938))))) + (-12 (-5 *2 (-660 (-937))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-937)) + (-14 *4 (-937))))) (((*1 *2) - (-12 (-5 *2 (-1288 (-1123 *3 *4))) (-5 *1 (-1123 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938))))) + (-12 (-5 *2 (-1287 (-1122 *3 *4))) (-5 *1 (-1122 *3 *4)) (-14 *3 (-937)) + (-14 *4 (-937))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1122)) (-5 *2 (-114)) (-5 *1 (-924 *4)))) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1121)) (-5 *2 (-114)) (-5 *1 (-923 *4)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-938)) (-5 *2 (-114)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-937)) (-5 *2 (-114)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-791)) (-5 *1 (-1123 *4 *5)) (-14 *4 *3) + (-12 (-5 *3 (-937)) (-5 *2 (-790)) (-5 *1 (-1122 *4 *5)) (-14 *4 *3) (-14 *5 *3)))) -(((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1141))))) -(((*1 *2 *1) (-12 (-4 *1 (-1122)) (-5 *2 (-1180))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) - ((*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-1120 *3)))) - ((*1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) +(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1140))))) +(((*1 *2 *1) (-12 (-4 *1 (-1121)) (-5 *2 (-1179))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) + ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-1119 *3)))) + ((*1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-5 *2 (-660 (-516 *3 *4 *5 *6))) (-4 *3 (-376)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4)))) + (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) + (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1120 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1119 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-661 (-628 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1122)) + (-12 (-5 *2 (-660 (-627 *4))) (-4 *4 (-433 *3)) (-4 *3 (-1121)) (-5 *1 (-585 *3 *4)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-1120 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) - ((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-135)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-140)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-164)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-222)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-696)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1040)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1087)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-1117))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1115 *3)) (-4 *3 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1115 *3)) (-4 *3 (-1238)) (-5 *2 (-558))))) -(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-1010)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-1119 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31)))) + ((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-135)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-140)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-164)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-222)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-695)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1039)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1086)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-1116))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1114 *3)) (-4 *3 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1114 *3)) (-4 *3 (-1237)) (-5 *2 (-558))))) +(((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-1009)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-4 *4 (-1238)) (-5 *1 (-1079 *3 *4)) - (-4 *3 (-1115 *4)))) + (-12 (-5 *2 (-1197)) (-4 *4 (-1237)) (-5 *1 (-1078 *3 *4)) + (-4 *3 (-1114 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1110 *4)) (-4 *4 (-1238)) (-5 *1 (-1113 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-1112))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-229)) (-962 (-229)))) (-5 *1 (-270)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1109 *4)) (-4 *4 (-1237)) (-5 *1 (-1112 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-1111))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-961 (-229)) (-961 (-229)))) (-5 *1 (-270)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1288 *3)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-341 *4)) (-4 *4 (-376)) (-5 *2 (-708 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1287 *3)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1288 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-1287 *4)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1264 *4)) (-5 *2 (-1288 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1263 *4)) (-5 *2 (-1287 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-422 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) - (-5 *2 (-1288 *3)))) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) + (-5 *2 (-1287 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1288 *3)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-430 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1287 *3)))) ((*1 *2 *1) - (-12 (-5 *2 (-1288 *3)) (-5 *1 (-657 *3 *4)) (-4 *3 (-376)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-1287 *3)) (-5 *1 (-656 *3 *4)) (-4 *3 (-376)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *1) - (-12 (-5 *2 (-1288 *3)) (-5 *1 (-659 *3 *4)) (-4 *3 (-376)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-1287 *3)) (-5 *1 (-658 *3 *4)) (-4 *3 (-376)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-709 *5))) (-5 *3 (-709 *5)) (-4 *5 (-376)) - (-5 *2 (-1288 *5)) (-5 *1 (-1107 *5))))) + (-12 (-5 *4 (-660 (-708 *5))) (-5 *3 (-708 *5)) (-4 *5 (-376)) + (-5 *2 (-1287 *5)) (-5 *1 (-1106 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) - (-5 *2 (-1288 (-709 *4))))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-1287 (-708 *4))))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1288 (-709 *4))) (-5 *1 (-429 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-1287 (-708 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1288 (-709 *3))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-1198))) (-4 *5 (-376)) - (-5 *2 (-1288 (-709 (-419 (-965 *5))))) (-5 *1 (-1107 *5)) - (-5 *4 (-709 (-419 (-965 *5)))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-1198))) (-4 *5 (-376)) (-5 *2 (-1288 (-709 (-965 *5)))) - (-5 *1 (-1107 *5)) (-5 *4 (-709 (-965 *5))))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-5 *2 (-1288 (-709 *4))) - (-5 *1 (-1107 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-178))) (-5 *1 (-1106))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-178)))) - ((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-109))) (-5 *1 (-1106))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1106))))) -(((*1 *1) (-5 *1 (-1106)))) -(((*1 *1) (-5 *1 (-1106)))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1105 *2)))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-1287 (-708 *3))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-1197))) (-4 *5 (-376)) + (-5 *2 (-1287 (-708 (-419 (-964 *5))))) (-5 *1 (-1106 *5)) + (-5 *4 (-708 (-419 (-964 *5)))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-1197))) (-4 *5 (-376)) (-5 *2 (-1287 (-708 (-964 *5)))) + (-5 *1 (-1106 *5)) (-5 *4 (-708 (-964 *5))))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-708 *4))) (-4 *4 (-376)) (-5 *2 (-1287 (-708 *4))) + (-5 *1 (-1106 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-178))) (-5 *1 (-1105))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-109))) (-5 *1 (-178)))) + ((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-109))) (-5 *1 (-1105))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-1105))))) +(((*1 *1) (-5 *1 (-1105)))) +(((*1 *1) (-5 *1 (-1105)))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-114) *2)) (-4 *2 (-134)) (-5 *1 (-1104 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1105 *2))))) -(((*1 *2) (-12 (-5 *2 (-661 *3)) (-5 *1 (-1105 *3)) (-4 *3 (-134))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-1105 *3)) (-4 *3 (-134))))) -(((*1 *1) (-5 *1 (-1103)))) + (-12 (-5 *3 (-1 (-558) *2 *2)) (-4 *2 (-134)) (-5 *1 (-1104 *2))))) +(((*1 *2) (-12 (-5 *2 (-660 *3)) (-5 *1 (-1104 *3)) (-4 *3 (-134))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-1104 *3)) (-4 *3 (-134))))) +(((*1 *1) (-5 *1 (-1102)))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-661 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) - (-4 *3 (-1130 *5 *6 *7 *8)))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-660 *3)) (-5 *1 (-603 *5 *6 *7 *8 *3)) + (-4 *3 (-1129 *5 *6 *7 *8)))) ((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) - (-5 *1 (-1099 *5 *6)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198))))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) + (-5 *1 (-1098 *5 *6)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197))))) ((*1 *2 *3) (-12 (-4 *4 (-13 (-319) (-149))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *4)) (|:| -3642 (-661 (-965 *4)))))) - (-5 *1 (-1099 *4 *5)) (-5 *3 (-661 (-965 *4))) (-14 *5 (-661 (-1198))))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *4)) (|:| -3641 (-660 (-964 *4)))))) + (-5 *1 (-1098 *4 *5)) (-5 *3 (-660 (-964 *4))) (-14 *5 (-660 (-1197))))) ((*1 *2 *3 *4 *4) (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-661 (-2 (|:| -1950 (-1192 *5)) (|:| -3642 (-661 (-965 *5)))))) - (-5 *1 (-1099 *5 *6)) (-5 *3 (-661 (-965 *5))) (-14 *6 (-661 (-1198)))))) + (-5 *2 (-660 (-2 (|:| -1949 (-1191 *5)) (|:| -3641 (-660 (-964 *5)))))) + (-5 *1 (-1098 *5 *6)) (-5 *3 (-660 (-964 *5))) (-14 *6 (-660 (-1197)))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-1096 *3 *4 *5))) (-4 *3 (-1122)) - (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) - (-4 *5 (-13 (-433 *4) (-901 *3) (-631 (-905 *3)))) - (-5 *1 (-1098 *3 *4 *5))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) - (-5 *2 (-661 (-1096 *3 *4 *5))) (-5 *1 (-1098 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-901 *3) (-631 (-905 *3))))))) + (-12 (-5 *2 (-660 (-1095 *3 *4 *5))) (-4 *3 (-1121)) + (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) + (-4 *5 (-13 (-433 *4) (-900 *3) (-630 (-904 *3)))) + (-5 *1 (-1097 *3 *4 *5))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) + (-5 *2 (-660 (-1095 *3 *4 *5))) (-5 *1 (-1097 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-900 *3) (-630 (-904 *3))))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-661 (-1198))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1096 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))))) + (-12 (-5 *3 (-660 (-1197))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1095 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))))) ((*1 *1 *2 *2) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) - (-5 *1 (-1096 *3 *4 *2)) - (-4 *2 (-13 (-433 *4) (-901 *3) (-631 (-905 *3))))))) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) + (-5 *1 (-1095 *3 *4 *2)) + (-4 *2 (-13 (-433 *4) (-900 *3) (-630 (-904 *3))))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1122)) (-4 *5 (-1238)) - (-5 *1 (-906 *4 *5)))) + (-12 (-5 *2 (-904 *4)) (-5 *3 (-1 (-114) *5)) (-4 *4 (-1121)) (-4 *5 (-1237)) + (-5 *1 (-905 *4 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-5 *3 (-661 (-1 (-114) *5))) (-4 *4 (-1122)) - (-4 *5 (-1238)) (-5 *1 (-906 *4 *5)))) + (-12 (-5 *2 (-904 *4)) (-5 *3 (-660 (-1 (-114) *5))) (-4 *4 (-1121)) + (-4 *5 (-1237)) (-5 *1 (-905 *4 *5)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-905 *5)) (-5 *3 (-661 (-1198))) (-5 *4 (-1 (-114) (-661 *6))) - (-4 *5 (-1122)) (-4 *6 (-1238)) (-5 *1 (-906 *5 *6)))) + (-12 (-5 *2 (-904 *5)) (-5 *3 (-660 (-1197))) (-5 *4 (-1 (-114) (-660 *6))) + (-4 *5 (-1121)) (-4 *6 (-1237)) (-5 *1 (-905 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1238)) - (-5 *2 (-326 (-558))) (-5 *1 (-956 *5)))) + (-12 (-5 *3 (-1197)) (-5 *4 (-1 (-114) *5)) (-4 *5 (-1237)) + (-5 *2 (-326 (-558))) (-5 *1 (-955 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-661 (-1 (-114) *5))) (-4 *5 (-1238)) - (-5 *2 (-326 (-558))) (-5 *1 (-956 *5)))) + (-12 (-5 *3 (-1197)) (-5 *4 (-660 (-1 (-114) *5))) (-4 *5 (-1237)) + (-5 *2 (-326 (-558))) (-5 *1 (-955 *5)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1238)) (-4 *4 (-1122)) - (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-1 (-114) *5)) (-4 *5 (-1237)) (-4 *4 (-1121)) + (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-433 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-661 (-1 (-114) *5))) (-4 *5 (-1238)) (-4 *4 (-1122)) - (-5 *1 (-957 *4 *2 *5)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-660 (-1 (-114) *5))) (-4 *5 (-1237)) (-4 *4 (-1121)) + (-5 *1 (-956 *4 *2 *5)) (-4 *2 (-433 *4)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-1 (-114) (-661 *6))) - (-4 *6 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-1096 *4 *5 *6))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 *2))) - (-5 *2 (-905 *3)) (-5 *1 (-1096 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-901 *3) (-631 *2)))))) -(((*1 *2 *1) - (-12 (-4 *3 (-1122)) (-4 *4 (-13 (-1070) (-901 *3) (-631 (-905 *3)))) - (-5 *2 (-661 (-1198))) (-5 *1 (-1096 *3 *4 *5)) - (-4 *5 (-13 (-433 *4) (-901 *3) (-631 (-905 *3))))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-183)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-324)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-991)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1015)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1057)))) - ((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-1094))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 *4)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) - (-4 *4 (-1092 *5 *6 *7 *3))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-114)) (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3)))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-1 (-114) (-660 *6))) + (-4 *6 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-1095 *4 *5 *6))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 *2))) + (-5 *2 (-904 *3)) (-5 *1 (-1095 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-900 *3) (-630 *2)))))) +(((*1 *2 *1) + (-12 (-4 *3 (-1121)) (-4 *4 (-13 (-1069) (-900 *3) (-630 (-904 *3)))) + (-5 *2 (-660 (-1197))) (-5 *1 (-1095 *3 *4 *5)) + (-4 *5 (-13 (-433 *4) (-900 *3) (-630 (-904 *3))))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-183)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-324)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-990)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1014)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1056)))) + ((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-1093))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 *4)) (-5 *1 (-1092 *5 *6 *7 *3 *4)) + (-4 *4 (-1091 *5 *6 *7 *3))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-114)) (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3)))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) + (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5 *5) - (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *3 (-1086 *6 *7 *8)) (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-1093 *6 *7 *8 *3 *4)) (-4 *4 (-1092 *6 *7 *8 *3)))) + (-12 (-5 *5 (-114)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *3 (-1085 *6 *7 *8)) (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-1092 *6 *7 *8 *3 *4)) (-4 *4 (-1091 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 (-2 (|:| |val| (-661 *8)) (|:| -1743 *9)))) (-5 *5 (-114)) - (-4 *8 (-1086 *6 *7 *4)) (-4 *9 (-1092 *6 *7 *4 *8)) (-4 *6 (-464)) - (-4 *7 (-815)) (-4 *4 (-861)) - (-5 *2 (-661 (-2 (|:| |val| *8) (|:| -1743 *9)))) - (-5 *1 (-1093 *6 *7 *4 *8 *9))))) + (-12 (-5 *3 (-660 (-2 (|:| |val| (-660 *8)) (|:| -1742 *9)))) (-5 *5 (-114)) + (-4 *8 (-1085 *6 *7 *4)) (-4 *9 (-1091 *6 *7 *4 *8)) (-4 *6 (-464)) + (-4 *7 (-814)) (-4 *4 (-860)) + (-5 *2 (-660 (-2 (|:| |val| *8) (|:| -1742 *9)))) + (-5 *1 (-1092 *6 *7 *4 *8 *9))))) (((*1 *2 *3 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-661 *3)) (|:| -1743 *4)))) - (-5 *1 (-1093 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-660 *3)) (|:| -1742 *4)))) + (-5 *1 (-1092 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-1092 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1091 *3 *4 *5 *6)) (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-3 (-114) (-661 *1))) (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-3 (-114) (-660 *1))) (-4 *1 (-1091 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *1)))) + (-4 *1 (-1091 *4 *5 *6 *3))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-3 *3 (-661 *1))) (-4 *1 (-1092 *4 *5 *6 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-569)) (-4 *2 (-1070)))) - ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-3 *3 (-660 *1))) (-4 *1 (-1091 *4 *5 *6 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-569)) (-4 *2 (-1069)))) + ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) ((*1 *2 *3 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *1)))) - (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *1)))) + (-4 *1 (-1091 *4 *5 *6 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-661 *1)) (-5 *3 (-661 *7)) (-4 *1 (-1092 *4 *5 *6 *7)) - (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)))) + (-12 (-5 *2 (-660 *1)) (-5 *3 (-660 *7)) (-4 *1 (-1091 *4 *5 *6 *7)) + (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *7)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *7)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)))) + (-12 (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)))) ((*1 *2 *3 *1) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-1086 *4 *5 *6)) - (-5 *2 (-661 *1)) (-4 *1 (-1092 *4 *5 *6 *3))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-1085 *4 *5 *6)) + (-5 *2 (-660 *1)) (-4 *1 (-1091 *4 *5 *6 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-23)) (-5 *2 (-114)))) ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) + (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-812)) (-5 *2 (-114)))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-811)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) + (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-814)) (-5 *2 (-114)))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-813)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-4 *1 (-1089 *4 *3)) (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) + (-12 (-4 *1 (-1088 *4 *3)) (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-114))))) (((*1 *2 *2) - (-12 (-4 *3 (-1059 (-558))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) + (-12 (-4 *3 (-1058 (-558))) (-4 *3 (-569)) (-5 *1 (-32 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1192 *4)) (-5 *1 (-167 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-1191 *4)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) - ((*1 *1 *1) (-12 (-4 *1 (-1070)) (-4 *1 (-310)))) - ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1192 *3)))) - ((*1 *2) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1264 *3)))) - ((*1 *2 *1) - (-12 (-4 *1 (-1089 *3 *2)) (-4 *3 (-13 (-860) (-376))) (-4 *2 (-1264 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-965 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-965 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-1033)) (-5 *2 (-661 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 (-558))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1192 (-419 (-558)))) (-5 *2 (-661 *1)) (-4 *1 (-1033)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-1033)) (-5 *2 (-661 *1)))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-860) (-376))) (-4 *3 (-1264 *4)) (-5 *2 (-661 *1)) - (-4 *1 (-1089 *4 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-1069)) (-4 *1 (-310)))) + ((*1 *2) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1191 *3)))) + ((*1 *2) (-12 (-4 *1 (-743 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1263 *3)))) + ((*1 *2 *1) + (-12 (-4 *1 (-1088 *3 *2)) (-4 *3 (-13 (-859) (-376))) (-4 *2 (-1263 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-964 (-558))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) + ((*1 *2 *3) + (-12 (-5 *3 (-964 (-419 (-558)))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) + ((*1 *2 *3) (-12 (-5 *3 (-964 *1)) (-4 *1 (-1032)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1191 (-558))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1191 (-419 (-558)))) (-5 *2 (-660 *1)) (-4 *1 (-1032)))) + ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-1032)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-859) (-376))) (-4 *3 (-1263 *4)) (-5 *2 (-660 *1)) + (-4 *1 (-1088 *4 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-964 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *2)) (-5 *4 (-1198)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) + (-12 (-5 *3 (-1191 *2)) (-5 *4 (-1197)) (-4 *2 (-433 *5)) (-5 *1 (-32 *5 *2)) (-4 *5 (-569)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-4 *1 (-1033)))) + (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-4 *1 (-1032)))) ((*1 *1 *2 *3 *4) - (|partial| -12 (-5 *2 (-1192 *1)) (-5 *3 (-938)) (-5 *4 (-877)) - (-4 *1 (-1033)))) + (|partial| -12 (-5 *2 (-1191 *1)) (-5 *3 (-937)) (-5 *4 (-876)) + (-4 *1 (-1032)))) ((*1 *1 *2 *3) - (|partial| -12 (-5 *3 (-938)) (-4 *4 (-13 (-860) (-376))) - (-4 *1 (-1089 *4 *2)) (-4 *2 (-1264 *4))))) + (|partial| -12 (-5 *3 (-937)) (-4 *4 (-13 (-859) (-376))) + (-4 *1 (-1088 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1045 *3)) - (-4 *3 (-13 (-860) (-376) (-1041))))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1044 *3)) + (-4 *3 (-13 (-859) (-376) (-1040))))) ((*1 *2 *3 *1 *2) - (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2)))) + (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2)))) ((*1 *2 *3 *1 *2) - (-12 (-4 *1 (-1089 *2 *3)) (-4 *2 (-13 (-860) (-376))) (-4 *3 (-1264 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-156)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1156))) (-5 *1 (-1087))))) + (-12 (-4 *1 (-1088 *2 *3)) (-4 *2 (-13 (-859) (-376))) (-4 *3 (-1263 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-156)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1155))) (-5 *1 (-1086))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) - (-4 *5 (-1086 *3 *4 *2)) (-4 *2 (-861)))) + (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) + (-4 *5 (-1085 *3 *4 *2)) (-4 *2 (-860)))) ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861))))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860))))) (((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-791))))) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-790))))) (((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-222)))) - ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-696)))) + ((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1) (-12 (-5 *2 (-495)) (-5 *1 (-695)))) ((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) - (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) + (-4 *1 (-1085 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) -(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) - ((*1 *2 *1) (-12 (-4 *2 (-1070)) (-5 *1 (-50 *2 *3)) (-14 *3 (-661 (-1198))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) +(((*1 *2 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) + ((*1 *2 *1) (-12 (-4 *2 (-1069)) (-5 *1 (-50 *2 *3)) (-14 *3 (-660 (-1197))))) ((*1 *2 *1) - (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-661 (-1198))))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1122)) (-4 *2 (-1070)))) + (-12 (-5 *2 (-326 *3)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) + (-14 *4 (-660 (-1197))))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *2 *3)) (-4 *3 (-1121)) (-4 *2 (-1069)))) ((*1 *2 *1) - (-12 (-14 *3 (-661 (-1198))) (-4 *5 (-245 (-4387 *3) (-791))) + (-12 (-14 *3 (-660 (-1197))) (-4 *5 (-245 (-4386 *3) (-790))) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *4) (|:| -2632 *5)) - (-2 (|:| -2631 *4) (|:| -2632 *5)))) - (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-861)) - (-4 *7 (-969 *2 *5 (-878 *3))))) - ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-864)) (-4 *2 (-102)))) - ((*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1264 *2)))) - ((*1 *2 *1) (-12 (-4 *1 (-728 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *2 (-1070)) (-5 *1 (-755 *2 *3)) (-4 *3 (-861)) (-4 *3 (-746)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *3 (-814)) (-4 *4 (-861)) (-4 *2 (-1070)))) + (-1 (-114) (-2 (|:| -2630 *4) (|:| -2631 *5)) + (-2 (|:| -2630 *4) (|:| -2631 *5)))) + (-4 *2 (-175)) (-5 *1 (-473 *3 *2 *4 *5 *6 *7)) (-4 *4 (-860)) + (-4 *7 (-968 *2 *5 (-877 *3))))) + ((*1 *2 *1) (-12 (-4 *1 (-521 *2 *3)) (-4 *3 (-863)) (-4 *2 (-102)))) + ((*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-639 *2 *3)) (-4 *3 (-1263 *2)))) + ((*1 *2 *1) (-12 (-4 *1 (-727 *2)) (-4 *2 (-1069)))) + ((*1 *2 *1) + (-12 (-4 *2 (-1069)) (-5 *1 (-754 *2 *3)) (-4 *3 (-860)) (-4 *3 (-745)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) + ((*1 *2 *1) + (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *3 (-813)) (-4 *4 (-860)) (-4 *2 (-1069)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861))))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1264 *4)))) + (-12 (-4 *4 (-1069)) (-5 *2 (-114)) (-5 *1 (-456 *4 *3)) (-4 *3 (-1263 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) - (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) + (-4 *1 (-1085 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) - (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) + (-4 *1 (-1085 *3 *4 *5))))) (((*1 *2 *1 *1) - (|partial| -12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *2 (-114))))) + (|partial| -12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) + (-12 (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *1 *1 *1 *2) - (-12 (-4 *1 (-1086 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)))) + (-12 (-4 *1 (-1085 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -3303 *1))) - (-4 *1 (-1086 *4 *5 *3)))) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -3302 *1))) + (-4 *1 (-1085 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -3303 *1))) - (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -3302 *1))) + (-4 *1 (-1085 *3 *4 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -4384 *3) (|:| |gap| (-791)) (|:| -2184 (-801 *3)) - (|:| -3303 (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-1070)))) + (-2 (|:| -4383 *3) (|:| |gap| (-790)) (|:| -2183 (-800 *3)) + (|:| -3302 (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-1069)))) ((*1 *2 *1 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) - (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -2184 *1) (|:| -3303 *1))) - (-4 *1 (-1086 *4 *5 *3)))) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) + (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -2183 *1) (|:| -3302 *1))) + (-4 *1 (-1085 *4 *5 *3)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -4384 *1) (|:| |gap| (-791)) (|:| -2184 *1) (|:| -3303 *1))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1070)))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -4383 *1) (|:| |gap| (-790)) (|:| -2183 *1) (|:| -3302 *1))) + (-4 *1 (-1085 *3 *4 *5))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1069)))) ((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861))))) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| |polnum| (-801 *3)) (|:| |polden| *3) (|:| -3901 (-791)))) - (-5 *1 (-801 *3)) (-4 *3 (-1070)))) + (-5 *2 (-2 (|:| |polnum| (-800 *3)) (|:| |polden| *3) (|:| -3900 (-790)))) + (-5 *1 (-800 *3)) (-4 *3 (-1069)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3901 (-791)))) - (-4 *1 (-1086 *3 *4 *5))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1238)))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| |polnum| *1) (|:| |polden| *1) (|:| -3900 (-790)))) + (-4 *1 (-1085 *3 *4 *5))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1237)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-965 (-391))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (|partial| -12 (-5 *2 (-964 (-391))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-965 (-391)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (|partial| -12 (-5 *2 (-419 (-964 (-391)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-965 (-558))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (|partial| -12 (-5 *2 (-964 (-558))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-419 (-965 (-558)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (|partial| -12 (-5 *2 (-419 (-964 (-558)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) - (-14 *4 (-661 *2)) (-4 *5 (-401)))) + (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 *2)) + (-14 *4 (-660 *2)) (-4 *5 (-401)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-709 (-419 (-965 (-558))))) (-4 *1 (-398)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-709 (-419 (-965 (-391))))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-965 (-558)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-965 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-965 (-558)))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-965 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-558))) (-4 *1 (-409)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-965 (-391))) (-4 *1 (-409)))) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-708 (-419 (-964 (-558))))) (-4 *1 (-398)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-708 (-419 (-964 (-391))))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-964 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-964 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-326 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-708 (-326 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-964 (-558)))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-419 (-964 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-558))) (-4 *1 (-409)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-964 (-391))) (-4 *1 (-409)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) ((*1 *1 *2) (|partial| -12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-419 (-965 (-558))))) (-4 *1 (-453)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-1288 (-419 (-965 (-391))))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-965 (-558)))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-965 (-391)))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-558)))) (-4 *1 (-453)))) - ((*1 *1 *2) (|partial| -12 (-5 *2 (-1288 (-326 (-391)))) (-4 *1 (-453)))) - ((*1 *2 *3) - (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1264 *5)) - (-5 *2 (-1192 (-1192 *4))) (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) - (-14 *7 (-938)))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *1) (|partial| -12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (|partial| -3957 - (-12 (-5 *2 (-965 *3)) - (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-2959 (-4 *3 (-38 (-558)))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2959 (-4 *3 (-557))) (-2959 (-4 *3 (-38 (-419 (-558))))) - (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2959 (-4 *3 (-1012 (-558)))) (-4 *3 (-38 (-419 (-558)))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))))) - ((*1 *1 *2) - (|partial| -3957 - (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861))))) - ((*1 *1 *2) - (|partial| -12 (-5 *2 (-965 (-419 (-558)))) (-4 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198))) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861))))) -(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-12 (-5 *2 (-965 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) - ((*1 *1 *2) - (-12 (-5 *2 (-419 (-965 (-391)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-391))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (|partial| -12 (-5 *2 (-1287 (-419 (-964 (-558))))) (-4 *1 (-453)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-1287 (-419 (-964 (-391))))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-964 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-964 (-391)))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (|partial| -12 (-5 *2 (-1287 (-326 (-391)))) (-4 *1 (-453)))) + ((*1 *2 *3) + (|partial| -12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1263 *5)) + (-5 *2 (-1191 (-1191 *4))) (-5 *1 (-796 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) + (-14 *7 (-937)))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *1 (-996 *3 *4 *5 *6)))) + ((*1 *2 *1) (|partial| -12 (-4 *1 (-1058 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) + (|partial| -3956 + (-12 (-5 *2 (-964 *3)) + (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-2958 (-4 *3 (-38 (-558)))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 *3)) + (-12 (-2958 (-4 *3 (-557))) (-2958 (-4 *3 (-38 (-419 (-558))))) + (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 *3)) + (-12 (-2958 (-4 *3 (-1011 (-558)))) (-4 *3 (-38 (-419 (-558)))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))))) + ((*1 *1 *2) + (|partial| -3956 + (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) + (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860))))) + ((*1 *1 *2) + (|partial| -12 (-5 *2 (-964 (-419 (-558)))) (-4 *1 (-1085 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197))) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860))))) +(((*1 *2 *3) (-12 (-5 *3 (-51)) (-5 *1 (-52 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) + (-12 (-5 *2 (-964 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) + ((*1 *1 *2) + (-12 (-5 *2 (-419 (-964 (-391)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1058 (-391))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-391))) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) + (-12 (-5 *2 (-326 (-391))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-391))) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-965 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) + (-12 (-5 *2 (-964 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-419 (-965 (-558)))) (-5 *1 (-352 *3 *4 *5)) - (-4 *5 (-1059 (-558))) (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) + (-12 (-5 *2 (-419 (-964 (-558)))) (-5 *1 (-352 *3 *4 *5)) + (-4 *5 (-1058 (-558))) (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1059 (-558))) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) + (-12 (-5 *2 (-326 (-558))) (-5 *1 (-352 *3 *4 *5)) (-4 *5 (-1058 (-558))) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *1 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 *2)) - (-14 *4 (-661 *2)) (-4 *5 (-401)))) + (-12 (-5 *2 (-1197)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 *2)) + (-14 *4 (-660 *2)) (-4 *5 (-401)))) ((*1 *1 *2) (-12 (-5 *2 (-326 *5)) (-4 *5 (-401)) (-5 *1 (-352 *3 *4 *5)) - (-14 *3 (-661 (-1198))) (-14 *4 (-661 (-1198))))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-965 (-558))))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-419 (-965 (-391))))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-965 (-558)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-965 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-709 (-326 (-391)))) (-4 *1 (-398)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-558)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-965 (-391)))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 (-558))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 (-391))) (-4 *1 (-409)))) + (-14 *3 (-660 (-1197))) (-14 *4 (-660 (-1197))))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-419 (-964 (-558))))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-419 (-964 (-391))))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-964 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-964 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-326 (-558)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-708 (-326 (-391)))) (-4 *1 (-398)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-558)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-964 (-391)))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-964 (-558))) (-4 *1 (-409)))) + ((*1 *1 *2) (-12 (-5 *2 (-964 (-391))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-4 *1 (-409)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-4 *1 (-409)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-965 (-558))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-419 (-965 (-391))))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-965 (-558)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-965 (-391)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-558)))) (-4 *1 (-453)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 (-326 (-391)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-964 (-558))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-419 (-964 (-391))))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-964 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-964 (-391)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-558)))) (-4 *1 (-453)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 (-326 (-391)))) (-4 *1 (-453)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |nia| - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (|:| |mdnia| - (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) - (-5 *1 (-789)))) + (-5 *1 (-788)))) ((*1 *2 *1) (-12 (-5 *2 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *1 (-830)))) + (-5 *1 (-829)))) ((*1 *2 *1) (-12 (-5 *2 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) - (-5 *1 (-854)))) + (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) + (-5 *1 (-853)))) ((*1 *2 *1) (-12 (-5 *2 - (-2 (|:| |pde| (-661 (-326 (-229)))) + (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| - (-661 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) - (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) - (|:| |dFinish| (-709 (-229)))))) - (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) + (-660 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) + (|:| |dFinish| (-708 (-229)))))) + (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) - (-5 *1 (-915)))) - ((*1 *1 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *1 (-997 *3 *4 *5 *6)))) - ((*1 *2 *1) (-12 (-4 *1 (-1059 *2)) (-4 *2 (-1238)))) - ((*1 *1 *2) - (-3957 - (-12 (-5 *2 (-965 *3)) - (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-2959 (-4 *3 (-38 (-558)))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2959 (-4 *3 (-557))) (-2959 (-4 *3 (-38 (-419 (-558))))) - (-4 *3 (-38 (-558))) (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 *3)) - (-12 (-2959 (-4 *3 (-1012 (-558)))) (-4 *3 (-38 (-419 (-558)))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *1 (-1086 *3 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-3957 - (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-2959 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) - (-4 *5 (-631 (-1198)))) - (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861))) - (-12 (-5 *2 (-965 (-558))) (-4 *1 (-1086 *3 *4 *5)) - (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198)))) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861))))) - ((*1 *1 *2) - (-12 (-5 *2 (-965 (-419 (-558)))) (-4 *1 (-1086 *3 *4 *5)) - (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-631 (-1198))) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861))))) + (-5 *1 (-914)))) + ((*1 *1 *2) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *1 (-996 *3 *4 *5 *6)))) + ((*1 *2 *1) (-12 (-4 *1 (-1058 *2)) (-4 *2 (-1237)))) + ((*1 *1 *2) + (-3956 + (-12 (-5 *2 (-964 *3)) + (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-2958 (-4 *3 (-38 (-558)))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 *3)) + (-12 (-2958 (-4 *3 (-557))) (-2958 (-4 *3 (-38 (-419 (-558))))) + (-4 *3 (-38 (-558))) (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 *3)) + (-12 (-2958 (-4 *3 (-1011 (-558)))) (-4 *3 (-38 (-419 (-558)))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *1 (-1085 *3 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860))))) + ((*1 *1 *2) + (-3956 + (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) + (-12 (-2958 (-4 *3 (-38 (-419 (-558))))) (-4 *3 (-38 (-558))) + (-4 *5 (-630 (-1197)))) + (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860))) + (-12 (-5 *2 (-964 (-558))) (-4 *1 (-1085 *3 *4 *5)) + (-12 (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197)))) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860))))) + ((*1 *1 *2) + (-12 (-5 *2 (-964 (-419 (-558)))) (-4 *1 (-1085 *3 *4 *5)) + (-4 *3 (-38 (-419 (-558)))) (-4 *5 (-630 (-1197))) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569))))) (((*1 *2 *1 *1) (-12 (-5 *2 - (-2 (|:| -3562 (-801 *3)) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) + (-2 (|:| -3561 (-800 *3)) (|:| |coef1| (-800 *3)) (|:| |coef2| (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3562 *1) (|:| |coef1| *1) (|:| |coef2| *1))) - (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -3561 *1) (|:| |coef1| *1) (|:| |coef2| *1))) + (-4 *1 (-1085 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3562 (-801 *3)) (|:| |coef1| (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-2 (|:| -3561 (-800 *3)) (|:| |coef1| (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3562 *1) (|:| |coef1| *1))) (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -3561 *1) (|:| |coef1| *1))) (-4 *1 (-1085 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -3562 (-801 *3)) (|:| |coef2| (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-2 (|:| -3561 (-800 *3)) (|:| |coef2| (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-2 (|:| -3562 *1) (|:| |coef2| *1))) (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-2 (|:| -3561 *1) (|:| |coef2| *1))) (-4 *1 (-1085 *3 *4 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-661 *1)) (-4 *1 (-1086 *3 *4 *5))))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-660 *1)) (-4 *1 (-1085 *3 *4 *5))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) - (-4 *5 (-861)) (-4 *3 (-569))))) + (-12 (-5 *2 (-790)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) + (-4 *5 (-860)) (-4 *3 (-569))))) (((*1 *1 *1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-1086 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) - (-4 *5 (-861)) (-4 *3 (-569))))) + (-12 (-5 *2 (-790)) (-4 *1 (-1085 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) + (-4 *5 (-860)) (-4 *3 (-569))))) (((*1 *1 *1 *1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-569))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-464)))) ((*1 *1 *1 *1) (-4 *1 (-464))) - ((*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-558))))) - ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1264 *3)))) - ((*1 *1 *1 *1) (-5 *1 (-791))) + ((*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-558))))) + ((*1 *2 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-715 *2)) (-4 *2 (-1263 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-790))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *2)) - (-4 *2 (-969 *5 *3 *4)))) + (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *2)) + (-4 *2 (-968 *5 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-934 *4 *5 *6 *2)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-861)) - (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1191 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-860)) + (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-1192 *7))) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) - (-5 *2 (-1192 *7)) (-5 *1 (-935 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5)))) - ((*1 *1 *1 *1) (-5 *1 (-938))) + (-12 (-5 *3 (-660 (-1191 *7))) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) + (-5 *2 (-1191 *7)) (-5 *1 (-934 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5)))) + ((*1 *1 *1 *1) (-5 *1 (-937))) ((*1 *2 *2 *2) - (-12 (-4 *3 (-464)) (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3)))) + (-12 (-4 *3 (-464)) (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *2 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464))))) (((*1 *1 *1) - (-12 (-4 *1 (-1086 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-815)) (-4 *4 (-861)) + (-12 (-4 *1 (-1085 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-464))))) -(((*1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1) (-5 *1 (-1084)))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-391)) (-5 *1 (-1084))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-391)) (-5 *1 (-1084))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-391)) (-5 *1 (-1084))))) -(((*1 *2 *1 *3) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-1084)) (-5 *3 (-1180))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1084))))) -(((*1 *1) (-5 *1 (-1084)))) +(((*1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1) (-5 *1 (-1083)))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-391)) (-5 *1 (-1083))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-391)) (-5 *1 (-1083))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-391)) (-5 *1 (-1083))))) +(((*1 *2 *1 *3) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-1083)) (-5 *3 (-1179))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1083))))) +(((*1 *1) (-5 *1 (-1083)))) (((*1 *2 *1 *2 *3) - (|partial| -12 (-5 *2 (-1180)) (-5 *3 (-558)) (-5 *1 (-1084))))) -(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1083)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-1083))))) -(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-12 (-5 *1 (-692 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-12 (-5 *1 (-697 *2)) (-4 *2 (-861)))) - ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) - ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) + (|partial| -12 (-5 *2 (-1179)) (-5 *3 (-558)) (-5 *1 (-1083))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1082)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-1082))))) +(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-121 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1) (-12 (-5 *1 (-691 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-12 (-5 *1 (-696 *2)) (-4 *2 (-860)))) + ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) + ((*1 *2 *1) + (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-790)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)) (-5 *2 (-791)))) + (-12 (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)) (-5 *2 (-790)))) ((*1 *2) - (-12 (-4 *4 (-376)) (-5 *2 (-791)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-374 *3)) (-4 *3 (-1122)))) - ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1122)) (-5 *2 (-791)))) + (-12 (-4 *4 (-376)) (-5 *2 (-790)) (-5 *1 (-340 *3 *4)) (-4 *3 (-341 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-374 *3)) (-4 *3 (-1121)))) + ((*1 *2) (-12 (-4 *1 (-381)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-399 *3)) (-4 *3 (-1121)) (-5 *2 (-790)))) ((*1 *2) - (-12 (-4 *4 (-1122)) (-5 *2 (-791)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))) + (-12 (-4 *4 (-1121)) (-5 *2 (-790)) (-5 *1 (-437 *3 *4)) (-4 *3 (-438 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) + (-12 (-5 *2 (-790)) (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4))) ((*1 *2) - (-12 (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-791)) (-5 *1 (-743 *3 *4 *5)) - (-4 *3 (-744 *4 *5)))) - ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027)))) + (-12 (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-790)) (-5 *1 (-742 *3 *4 *5)) + (-4 *3 (-743 *4 *5)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026)))) ((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *1) - (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-229)) (-5 *1 (-30)))) ((*1 *2 *2 *3) (-12 (-5 *3 (-1 (-417 *4) *4)) (-4 *4 (-569)) (-5 *2 (-417 *4)) (-5 *1 (-431 *4)))) - ((*1 *1 *1) (-5 *1 (-944))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) - ((*1 *1 *1) (-5 *1 (-946))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) + ((*1 *1 *1) (-5 *1 (-943))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) + ((*1 *1 *1) (-5 *1 (-945))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) - (-5 *4 (-419 (-558))) (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))))) + (-12 (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) + (-5 *4 (-419 (-558))) (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))))) + (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) - (-5 *4 (-419 (-558))) (-5 *1 (-1043 *3)) (-4 *3 (-1264 *4)))) + (-12 (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) + (-5 *4 (-419 (-558))) (-5 *1 (-1042 *3)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *2 *2) (|partial| -12 - (-5 *2 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) - (-5 *1 (-1043 *3)) (-4 *3 (-1264 (-419 (-558)))))) + (-5 *2 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1263 (-419 (-558)))))) ((*1 *1 *1) - (-12 (-4 *2 (-13 (-860) (-376))) (-5 *1 (-1082 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-4 *2 (-13 (-859) (-376))) (-5 *1 (-1081 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-13 (-860) (-376))) (-5 *2 (-114)) (-5 *1 (-1082 *4 *3)) - (-4 *3 (-1264 *4))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-48)))) (-5 *1 (-48)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-628 (-48))) (-5 *1 (-48)))) + (-12 (-4 *4 (-13 (-859) (-376))) (-5 *2 (-114)) (-5 *1 (-1081 *4 *3)) + (-4 *3 (-1263 *4))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-627 (-48)))) (-5 *1 (-48)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-48))) (-5 *1 (-48)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-661 (-628 (-48)))) (-5 *1 (-48)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-1192 (-48))) (-5 *3 (-628 (-48))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-660 (-627 (-48)))) (-5 *1 (-48)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-1191 (-48))) (-5 *3 (-627 (-48))) (-5 *1 (-48)))) ((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1264 (-171 *2))))) + (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1263 (-171 *2))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-938)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) + (-12 (-5 *2 (-937)) (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)))) ((*1 *2 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-376)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1264 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-383 *2 *3)) (-4 *3 (-1263 *2)) (-4 *2 (-175)))) ((*1 *2 *1) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-425 *3 *2 *4 *5)) - (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1059 *2))))) + (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-425 *3 *2 *4 *5)) + (-4 *3 (-319)) (-4 *5 (-13 (-422 *2 *4) (-1058 *2))))) ((*1 *2 *1) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1012 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) - (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1288 *5)))) + (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1011 *3)) (-5 *1 (-427 *3 *2 *4 *5 *6)) + (-4 *3 (-319)) (-4 *5 (-422 *2 *4)) (-14 *6 (-1287 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *5 (-1070)) - (-4 *2 (-13 (-416) (-1059 *5) (-376) (-1224) (-296))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-628 (-507)))) (-5 *1 (-507)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-628 (-507))) (-5 *1 (-507)))) + (-12 (-5 *4 (-937)) (-4 *5 (-1069)) + (-4 *2 (-13 (-416) (-1058 *5) (-376) (-1223) (-296))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-627 (-507)))) (-5 *1 (-507)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-627 (-507))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-661 (-628 (-507)))) (-5 *1 (-507)))) + (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-660 (-627 (-507)))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 (-507))) (-5 *3 (-628 (-507))) (-5 *1 (-507)))) + (-12 (-5 *2 (-1191 (-507))) (-5 *3 (-627 (-507))) (-5 *1 (-507)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-938)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) - ((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-744 *4 *2)) (-4 *2 (-1264 *4)) - (-5 *1 (-795 *4 *2 *5 *3)) (-4 *3 (-1264 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) - ((*1 *1 *1) (-4 *1 (-1081)))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-937)) (-4 *4 (-363)) (-5 *1 (-540 *4)))) + ((*1 *2 *3) + (-12 (-4 *4 (-464)) (-4 *5 (-743 *4 *2)) (-4 *2 (-1263 *4)) + (-5 *1 (-794 *4 *2 *5 *3)) (-4 *3 (-1263 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175)))) + ((*1 *1 *1) (-4 *1 (-1080)))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1080)))) +(((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-557)))) + ((*1 *1 *1) (-4 *1 (-1080)))) (((*1 *2 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-4 *1 (-1081)) (-5 *2 (-558))))) + ((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-4 *1 (-1080)) (-5 *2 (-558))))) (((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221)))) ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499)))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) - ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558)))) - ((*1 *1 *1) (-4 *1 (-1081)))) -(((*1 *1 *1) (-4 *1 (-1081)))) + ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569)) (-4 *2 (-319)))) + ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558)))) + ((*1 *1 *1) (-4 *1 (-1080)))) +(((*1 *1 *1) (-4 *1 (-1080)))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) + (-12 (-4 *4 (-175)) (-5 *2 (-790)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) ((*1 *2) - (-12 (-14 *4 *2) (-4 *5 (-1238)) (-5 *2 (-791)) (-5 *1 (-244 *3 *4 *5)) + (-12 (-14 *4 *2) (-4 *5 (-1237)) (-5 *2 (-790)) (-5 *1 (-244 *3 *4 *5)) (-4 *3 (-245 *4 *5)))) ((*1 *2) - (-12 (-4 *4 (-1122)) (-5 *2 (-791)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) - ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) - ((*1 *2) (-12 (-4 *1 (-783)) (-5 *2 (-791)))) + (-12 (-4 *4 (-1121)) (-5 *2 (-790)) (-5 *1 (-432 *3 *4)) (-4 *3 (-433 *4)))) + ((*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-556 *3)) (-4 *3 (-557)))) + ((*1 *2) (-12 (-4 *1 (-782)) (-5 *2 (-790)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-817 *3 *4)) (-4 *3 (-818 *4)))) + (-12 (-4 *4 (-175)) (-5 *2 (-790)) (-5 *1 (-816 *3 *4)) (-4 *3 (-817 *4)))) ((*1 *2) - (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-1011 *3 *4)) (-4 *3 (-1012 *4)))) + (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-1010 *3 *4)) (-4 *3 (-1011 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-791)) (-5 *1 (-1018 *3 *4)) (-4 *3 (-1019 *4)))) - ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1032 *3)) (-4 *3 (-1033)))) - ((*1 *2) (-12 (-4 *1 (-1070)) (-5 *2 (-791)))) - ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-1080 *3)) (-4 *3 (-1081))))) + (-12 (-4 *4 (-175)) (-5 *2 (-790)) (-5 *1 (-1017 *3 *4)) (-4 *3 (-1018 *4)))) + ((*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1031 *3)) (-4 *3 (-1032)))) + ((*1 *2) (-12 (-4 *1 (-1069)) (-5 *2 (-790)))) + ((*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-1079 *3)) (-4 *3 (-1080))))) (((*1 *1 *2) - (-12 (-5 *2 (-709 *5)) (-4 *5 (-1070)) (-5 *1 (-1075 *3 *4 *5)) - (-14 *3 (-791)) (-14 *4 (-791))))) + (-12 (-5 *2 (-708 *5)) (-4 *5 (-1069)) (-5 *1 (-1074 *3 *4 *5)) + (-14 *3 (-790)) (-14 *4 (-790))))) (((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-791)) (-5 *3 (-1 *4 (-558) (-558))) (-4 *4 (-1070)) - (-4 *1 (-706 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) + (-12 (-5 *2 (-790)) (-5 *3 (-1 *4 (-558) (-558))) (-4 *4 (-1069)) + (-4 *1 (-705 *4 *5 *6)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1070)) (-4 *1 (-706 *3 *4 *5)) + (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1069)) (-4 *1 (-705 *3 *4 *5)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-877)))) (-5 *1 (-877)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-876)))) (-5 *1 (-876)))) ((*1 *2 *1) - (-12 (-5 *2 (-1163 *3 *4)) (-5 *1 (-1014 *3 *4)) (-14 *3 (-938)) + (-12 (-5 *2 (-1162 *3 *4)) (-5 *1 (-1013 *3 *4)) (-14 *3 (-937)) (-4 *4 (-376)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 (-661 *5))) (-4 *5 (-1070)) (-4 *1 (-1074 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-660 (-660 *5))) (-4 *5 (-1069)) (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) (-5 *2 (-558)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) (-4 *7 (-245 *3 *5)) (-5 *2 (-558))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-791)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-791))))) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-790))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-791)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-5 *2 (-791))))) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-5 *2 (-790))))) (((*1 *2 *1 *3 *3) (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *4 (-385 *2)) - (-4 *5 (-385 *2)) (-4 *2 (-1238)))) + (-4 *5 (-385 *2)) (-4 *2 (-1237)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-791)) (-4 *2 (-1122)) (-5 *1 (-216 *4 *2)) (-14 *4 (-938)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1238)))) + (-12 (-5 *3 (-790)) (-4 *2 (-1121)) (-5 *1 (-216 *4 *2)) (-14 *4 (-937)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1237)))) ((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) - (-4 *7 (-245 *4 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *2 *6 *7)) (-4 *6 (-245 *5 *2)) + (-4 *7 (-245 *4 *2)) (-4 *2 (-1069))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1238)) (-4 *5 (-385 *4)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *2 *5)) (-4 *4 (-1237)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *6 *2 *7)) (-4 *6 (-1070)) + (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *6 *2 *7)) (-4 *6 (-1069)) (-4 *7 (-245 *4 *6)) (-4 *2 (-245 *5 *6))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1238)) (-4 *5 (-385 *4)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *4 *5 *2)) (-4 *4 (-1237)) (-4 *5 (-385 *4)) (-4 *2 (-385 *4)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-1074 *4 *5 *6 *7 *2)) (-4 *6 (-1070)) + (-12 (-5 *3 (-558)) (-4 *1 (-1073 *4 *5 *6 *7 *2)) (-4 *6 (-1069)) (-4 *7 (-245 *5 *6)) (-4 *2 (-245 *4 *6))))) (((*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1012 *4)) - (-4 *2 (-706 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) - (-4 *3 (-706 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) + (-12 (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-4 *7 (-1011 *4)) + (-4 *2 (-705 *7 *8 *9)) (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *2)) + (-4 *3 (-705 *4 *5 *6)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)))) ((*1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)) (-4 *2 (-319)))) ((*1 *2 *2) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5)))) - ((*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3)))) + (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5)))) + ((*1 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3)))) ((*1 *1 *1) - (-12 (-4 *1 (-1074 *2 *3 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-245 *3 *4)) + (-12 (-4 *1 (-1073 *2 *3 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-245 *3 *4)) (-4 *6 (-245 *2 *4)) (-4 *4 (-319))))) (((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) + (-12 (-5 *2 (-790)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) (-14 *4 *2) (-4 *5 (-175)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-938)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) - ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-938)))) + (-12 (-4 *4 (-175)) (-5 *2 (-937)) (-5 *1 (-167 *3 *4)) (-4 *3 (-168 *4)))) + ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-937)))) ((*1 *2) - (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-938)))) + (-12 (-4 *1 (-383 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-937)))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) - (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) + (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-790)) + (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-791)) - (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-5 *2 (-790)) + (-5 *1 (-686 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-376)) (-5 *2 (-791)) - (-5 *1 (-688 *5)))) + (-12 (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-376)) (-5 *2 (-790)) + (-5 *1 (-687 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-790)))) ((*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) + (-5 *2 (-790)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791))))) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-790))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-791)) - (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) + (-12 (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) (-5 *2 (-790)) + (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-791)))) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-790)))) ((*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-791)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) + (-5 *2 (-790)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-791))))) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-790))))) (((*1 *2 *3) - (-12 (|has| *6 (-6 -4426)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-661 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) + (-12 (|has| *6 (-6 -4425)) (-4 *4 (-376)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-5 *2 (-660 *6)) (-5 *1 (-533 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) ((*1 *2 *3) - (-12 (|has| *9 (-6 -4426)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-4 *7 (-1012 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-661 *6)) - (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-706 *4 *5 *6)) - (-4 *10 (-706 *7 *8 *9)))) + (-12 (|has| *9 (-6 -4425)) (-4 *4 (-569)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) + (-4 *7 (-1011 *4)) (-4 *8 (-385 *7)) (-4 *9 (-385 *7)) (-5 *2 (-660 *6)) + (-5 *1 (-534 *4 *5 *6 *3 *7 *8 *9 *10)) (-4 *3 (-705 *4 *5 *6)) + (-4 *10 (-705 *7 *8 *9)))) ((*1 *2 *1) - (-12 (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-661 *5)))) + (-12 (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-4 *3 (-569)) (-5 *2 (-660 *5)))) ((*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-661 *6)) (-5 *1 (-708 *4 *5 *6 *3)) (-4 *3 (-706 *4 *5 *6)))) + (-5 *2 (-660 *6)) (-5 *1 (-707 *4 *5 *6 *3)) (-4 *3 (-705 *4 *5 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-1074 *3 *4 *5 *6 *7)) (-4 *5 (-1070)) (-4 *6 (-245 *4 *5)) - (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-661 *7))))) + (-12 (-4 *1 (-1073 *3 *4 *5 *6 *7)) (-4 *5 (-1069)) (-4 *6 (-245 *4 *5)) + (-4 *7 (-245 *3 *5)) (-4 *5 (-569)) (-5 *2 (-660 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1257 *4 *5)) (-5 *3 (-661 *5)) (-14 *4 (-1198)) (-4 *5 (-376)) - (-5 *1 (-941 *4 *5)))) + (-12 (-5 *2 (-1256 *4 *5)) (-5 *3 (-660 *5)) (-14 *4 (-1197)) (-4 *5 (-376)) + (-5 *1 (-940 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *5)) (-4 *5 (-376)) (-5 *2 (-1192 *5)) (-5 *1 (-941 *4 *5)) - (-14 *4 (-1198)))) + (-12 (-5 *3 (-660 *5)) (-4 *5 (-376)) (-5 *2 (-1191 *5)) (-5 *1 (-940 *4 *5)) + (-14 *4 (-1197)))) ((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-791)) (-4 *6 (-376)) (-5 *2 (-419 (-965 *6))) - (-5 *1 (-1071 *5 *6)) (-14 *5 (-1198))))) -(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1068))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-790)) (-4 *6 (-376)) (-5 *2 (-419 (-964 *6))) + (-5 *1 (-1070 *5 *6)) (-14 *5 (-1197))))) +(((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1067))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1068))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1067))))) (((*1 *2 *3) - (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1068))))) + (-12 (-5 *3 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1067))))) (((*1 *1 *1 *1) (-4 *1 (-145))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) + ((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *2 *3 *4) - (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1068)) + (-12 (-5 *4 |RationalNumber|) (-5 *2 (-1 (-558))) (-5 *1 (-1067)) (-5 *3 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 (-1118 *4)) (-4 *4 (-1122)) (-5 *2 (-1 *4)) (-5 *1 (-1038 *4)))) - ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1062)) (-5 *3 (-391)))) - ((*1 *2 *3) (-12 (-5 *3 (-1110 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1068))))) -(((*1 *1) (-12 (-4 *1 (-1066 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) -(((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-965 *4)))) - (-5 *1 (-1064 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1 (-391))) (-5 *1 (-1062))))) + (-12 (-5 *3 (-1117 *4)) (-4 *4 (-1121)) (-5 *2 (-1 *4)) (-5 *1 (-1037 *4)))) + ((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1061)) (-5 *3 (-391)))) + ((*1 *2 *3) (-12 (-5 *3 (-1109 (-558))) (-5 *2 (-1 (-558))) (-5 *1 (-1067))))) +(((*1 *1) (-12 (-4 *1 (-1065 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(((*1 *1) (-5 *1 (-159))) ((*1 *2 *1) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(((*1 *2) (-12 (-4 *1 (-1064 *2)) (-4 *2 (-23))))) +(((*1 *2 *3) + (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-319)) (-5 *2 (-419 (-417 (-964 *4)))) + (-5 *1 (-1063 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1 (-391))) (-5 *1 (-1061))))) (((*1 *1 *2) - (-12 (-5 *2 (-1269 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1198)) (-14 *5 *3) + (-12 (-5 *2 (-1268 *3 *4 *5)) (-4 *3 (-376)) (-14 *4 (-1197)) (-14 *5 *3) (-5 *1 (-331 *3 *4 *5)))) - ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1062)) (-5 *3 (-391))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1062)) (-5 *3 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-391)) (-5 *1 (-1062))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1062))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1062))))) -(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1062))))) + ((*1 *2 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1061)) (-5 *3 (-391))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1 (-391))) (-5 *1 (-1061)) (-5 *3 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-391)) (-5 *1 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1061))))) +(((*1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-1061))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1192 (-419 (-1192 *2)))) (-5 *4 (-628 *2)) - (-4 *2 (-13 (-433 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1122)))) + (-12 (-5 *3 (-1191 (-419 (-1191 *2)))) (-5 *4 (-627 *2)) + (-4 *2 (-13 (-433 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *1 (-573 *5 *2 *6)) (-4 *6 (-1121)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 *1)) (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1070)) - (-4 *5 (-815)) (-4 *3 (-861)))) + (-12 (-5 *2 (-1191 *1)) (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1069)) + (-4 *5 (-814)) (-4 *3 (-860)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1192 *4)) (-4 *4 (-1070)) (-4 *1 (-969 *4 *5 *3)) - (-4 *5 (-815)) (-4 *3 (-861)))) + (-12 (-5 *2 (-1191 *4)) (-4 *4 (-1069)) (-4 *1 (-968 *4 *5 *3)) + (-4 *5 (-814)) (-4 *3 (-860)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1192 *2))) (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-1070)) + (-12 (-5 *3 (-419 (-1191 *2))) (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-1069)) (-4 *2 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) - (-5 *1 (-970 *5 *4 *6 *7 *2)) (-4 *7 (-969 *6 *5 *4)))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))) + (-5 *1 (-969 *5 *4 *6 *7 *2)) (-4 *7 (-968 *6 *5 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-1192 (-419 (-965 *5))))) (-5 *4 (-1198)) - (-5 *2 (-419 (-965 *5))) (-5 *1 (-1061 *5)) (-4 *5 (-569))))) + (-12 (-5 *3 (-419 (-1191 (-419 (-964 *5))))) (-5 *4 (-1197)) + (-5 *2 (-419 (-964 *5))) (-5 *1 (-1060 *5)) (-4 *5 (-569))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-628 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1122)) (-4 *4 (-569)) - (-5 *2 (-419 (-1192 *1))))) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1121)) (-4 *4 (-569)) + (-5 *2 (-419 (-1191 *1))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-1192 (-419 (-1192 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1192 *3)) - (-4 *7 (-1122)))) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-1191 (-419 (-1191 *3)))) (-5 *1 (-573 *6 *3 *7)) (-5 *5 (-1191 *3)) + (-4 *7 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1285 *5)) (-14 *5 (-1198)) (-4 *6 (-1070)) - (-5 *2 (-1257 *5 (-965 *6))) (-5 *1 (-967 *5 *6)) (-5 *3 (-965 *6)))) + (-12 (-5 *4 (-1284 *5)) (-14 *5 (-1197)) (-4 *6 (-1069)) + (-5 *2 (-1256 *5 (-964 *6))) (-5 *1 (-966 *5 *6)) (-5 *3 (-964 *6)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-1192 *3)))) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-1191 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-5 *2 (-1192 *1)) - (-4 *1 (-969 *4 *5 *3)))) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-5 *2 (-1191 *1)) + (-4 *1 (-968 *4 *5 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *5 *4)) - (-5 *2 (-419 (-1192 *3))) (-5 *1 (-970 *5 *4 *6 *7 *3)) + (-12 (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *5 *4)) + (-5 *2 (-419 (-1191 *3))) (-5 *1 (-969 *5 *4 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-1192 *3)) + (-12 (-5 *2 (-1191 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))) - (-4 *7 (-969 *6 *5 *4)) (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-1070)) - (-5 *1 (-970 *5 *4 *6 *7 *3)))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))) + (-4 *7 (-968 *6 *5 *4)) (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-1069)) + (-5 *1 (-969 *5 *4 *6 *7 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-569)) (-5 *2 (-419 (-1192 (-419 (-965 *5))))) - (-5 *1 (-1061 *5)) (-5 *3 (-419 (-965 *5)))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-569)) (-5 *2 (-419 (-1191 (-419 (-964 *5))))) + (-5 *1 (-1060 *5)) (-5 *3 (-419 (-964 *5)))))) (((*1 *2 *1) - (|partial| -12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) - (-4 *2 (-861)))) + (|partial| -12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) + (-4 *2 (-860)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-815)) (-4 *5 (-1070)) (-4 *6 (-969 *5 *4 *2)) - (-4 *2 (-861)) (-5 *1 (-970 *4 *2 *5 *6 *3)) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-1069)) (-4 *6 (-968 *5 *4 *2)) + (-4 *2 (-860)) (-5 *1 (-969 *4 *2 *5 *6 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *6)) (-15 -3399 (*6 $)) (-15 -3398 (*6 $))))))) + (-10 -8 (-15 -4375 ($ *6)) (-15 -3398 (*6 $)) (-15 -3397 (*6 $))))))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-5 *2 (-1198)) - (-5 *1 (-1061 *4))))) + (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-5 *2 (-1197)) + (-5 *1 (-1060 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) - (-5 *2 (-661 (-1198))) (-5 *1 (-278)))) + (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) + (-5 *2 (-660 (-1197))) (-5 *1 (-278)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1070)) (-5 *2 (-661 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) + (-12 (-5 *3 (-1191 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1069)) (-5 *2 (-660 *5)) (-5 *1 (-333 *4 *5 *6 *7)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-352 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-401)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-5 *2 (-661 (-1198))))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-5 *2 (-660 (-1197))))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-661 *5)))) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-660 *5)))) ((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) (-4 *7 (-969 *6 *4 *5)) - (-5 *2 (-661 *5)) (-5 *1 (-970 *4 *5 *6 *7 *3)) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) (-4 *7 (-968 *6 *4 *5)) + (-5 *2 (-660 *5)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $))))))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-814)) (-4 *5 (-861)) - (-5 *2 (-661 *5)))) + (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-813)) (-4 *5 (-860)) + (-5 *2 (-660 *5)))) ((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *5)))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-5 *2 (-661 (-1198))) - (-5 *1 (-1061 *4))))) + (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-5 *2 (-660 (-1197))) + (-5 *1 (-1060 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *6))) (-5 *4 (-661 (-1198))) - (-4 *6 (-13 (-569) (-1059 *5))) (-4 *5 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *6)))))) (-5 *1 (-1060 *5 *6))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1056))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1056))))) + (-12 (-5 *3 (-660 (-964 *6))) (-5 *4 (-660 (-1197))) + (-4 *6 (-13 (-569) (-1058 *5))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *6)))))) (-5 *1 (-1059 *5 *6))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1055))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-1055))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-628 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-1192 (-419 (-1192 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1192 *6)) - (-4 *7 (-1122)))) - ((*1 *2 *1) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1070)))) - ((*1 *2 *1) (-12 (-4 *1 (-744 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1264 *3)))) + (-12 (-5 *4 (-627 *6)) (-4 *6 (-13 (-433 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-1191 (-419 (-1191 *6)))) (-5 *1 (-573 *5 *6 *7)) (-5 *3 (-1191 *6)) + (-4 *7 (-1121)))) + ((*1 *2 *1) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1069)))) + ((*1 *2 *1) (-12 (-4 *1 (-743 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1263 *3)))) ((*1 *2 *3 *4 *4 *5 *6 *7 *8) - (|partial| -12 (-5 *4 (-1192 *11)) (-5 *6 (-661 *10)) (-5 *7 (-661 (-791))) - (-5 *8 (-661 *11)) (-4 *10 (-861)) (-4 *11 (-319)) (-4 *9 (-815)) - (-4 *5 (-969 *11 *9 *10)) (-5 *2 (-661 (-1192 *5))) - (-5 *1 (-762 *9 *10 *11 *5)) (-5 *3 (-1192 *5)))) + (|partial| -12 (-5 *4 (-1191 *11)) (-5 *6 (-660 *10)) (-5 *7 (-660 (-790))) + (-5 *8 (-660 *11)) (-4 *10 (-860)) (-4 *11 (-319)) (-4 *9 (-814)) + (-4 *5 (-968 *11 *9 *10)) (-5 *2 (-660 (-1191 *5))) + (-5 *1 (-761 *9 *10 *11 *5)) (-5 *3 (-1191 *5)))) ((*1 *2 *1) - (-12 (-4 *2 (-969 *3 *4 *5)) (-5 *1 (-1055 *3 *4 *5 *2 *6)) (-4 *3 (-376)) - (-4 *4 (-815)) (-4 *5 (-861)) (-14 *6 (-661 *2))))) + (-12 (-4 *2 (-968 *3 *4 *5)) (-5 *1 (-1054 *3 *4 *5 *2 *6)) (-4 *3 (-376)) + (-4 *4 (-814)) (-4 *5 (-860)) (-14 *6 (-660 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-938)) (-5 *1 (-1053 *2)) - (-4 *2 (-13 (-1122) (-10 -8 (-15 * ($ $ $)))))))) + (-12 (-5 *3 (-937)) (-5 *1 (-1052 *2)) + (-4 *2 (-13 (-1121) (-10 -8 (-15 * ($ $ $)))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-938)) (-5 *1 (-1052 *2)) - (-4 *2 (-13 (-1122) (-10 -8 (-15 -4269 ($ $ $)))))))) + (-12 (-5 *3 (-937)) (-5 *1 (-1051 *2)) + (-4 *2 (-13 (-1121) (-10 -8 (-15 -4268 ($ $ $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-1288 *5))) (-5 *4 (-558)) (-5 *2 (-1288 *5)) - (-5 *1 (-1051 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1070))))) + (-12 (-5 *3 (-660 (-1287 *5))) (-5 *4 (-558)) (-5 *2 (-1287 *5)) + (-5 *1 (-1050 *5)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1069))))) (((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-114)) (-5 *5 (-558)) (-4 *6 (-376)) (-4 *6 (-381)) - (-4 *6 (-1070)) (-5 *2 (-661 (-661 (-709 *6)))) (-5 *1 (-1051 *6)) - (-5 *3 (-661 (-709 *6))))) + (-4 *6 (-1069)) (-5 *2 (-660 (-660 (-708 *6)))) (-5 *1 (-1050 *6)) + (-5 *3 (-660 (-708 *6))))) ((*1 *2 *3) - (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1070)) - (-5 *2 (-661 (-661 (-709 *4)))) (-5 *1 (-1051 *4)) - (-5 *3 (-661 (-709 *4))))) + (-12 (-4 *4 (-376)) (-4 *4 (-381)) (-4 *4 (-1069)) + (-5 *2 (-660 (-660 (-708 *4)))) (-5 *1 (-1050 *4)) + (-5 *3 (-660 (-708 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1070)) - (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-661 (-709 *5))))) + (-12 (-5 *4 (-114)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1069)) + (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-660 (-708 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1070)) - (-5 *2 (-661 (-661 (-709 *5)))) (-5 *1 (-1051 *5)) - (-5 *3 (-661 (-709 *5)))))) + (-12 (-5 *4 (-937)) (-4 *5 (-376)) (-4 *5 (-381)) (-4 *5 (-1069)) + (-5 *2 (-660 (-660 (-708 *5)))) (-5 *1 (-1050 *5)) + (-5 *3 (-660 (-708 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-4 *5 (-376)) (-4 *5 (-1070)) - (-5 *2 (-114)) (-5 *1 (-1051 *5)))) + (-12 (-5 *3 (-660 (-708 *5))) (-5 *4 (-558)) (-4 *5 (-376)) (-4 *5 (-1069)) + (-5 *2 (-114)) (-5 *1 (-1050 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-709 *4))) (-4 *4 (-376)) (-4 *4 (-1070)) (-5 *2 (-114)) - (-5 *1 (-1051 *4))))) + (-12 (-5 *3 (-660 (-708 *4))) (-4 *4 (-376)) (-4 *4 (-1069)) (-5 *2 (-114)) + (-5 *1 (-1050 *4))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-661 (-709 *6))) (-5 *4 (-114)) (-5 *5 (-558)) (-5 *2 (-709 *6)) - (-5 *1 (-1051 *6)) (-4 *6 (-376)) (-4 *6 (-1070)))) + (-12 (-5 *3 (-660 (-708 *6))) (-5 *4 (-114)) (-5 *5 (-558)) (-5 *2 (-708 *6)) + (-5 *1 (-1050 *6)) (-4 *6 (-376)) (-4 *6 (-1069)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-5 *1 (-1051 *4)) - (-4 *4 (-376)) (-4 *4 (-1070)))) + (-12 (-5 *3 (-660 (-708 *4))) (-5 *2 (-708 *4)) (-5 *1 (-1050 *4)) + (-4 *4 (-376)) (-4 *4 (-1069)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-558)) (-5 *2 (-709 *5)) - (-5 *1 (-1051 *5)) (-4 *5 (-376)) (-4 *5 (-1070))))) + (-12 (-5 *3 (-660 (-708 *5))) (-5 *4 (-558)) (-5 *2 (-708 *5)) + (-5 *1 (-1050 *5)) (-4 *5 (-376)) (-4 *5 (-1069))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-709 *5))) (-5 *4 (-1288 *5)) (-4 *5 (-319)) - (-4 *5 (-1070)) (-5 *2 (-709 *5)) (-5 *1 (-1051 *5))))) + (-12 (-5 *3 (-660 (-708 *5))) (-5 *4 (-1287 *5)) (-4 *5 (-319)) + (-4 *5 (-1069)) (-5 *2 (-708 *5)) (-5 *1 (-1050 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-709 *5))) (-4 *5 (-319)) (-4 *5 (-1070)) - (-5 *2 (-1288 (-1288 *5))) (-5 *1 (-1051 *5)) (-5 *4 (-1288 *5))))) + (-12 (-5 *3 (-660 (-708 *5))) (-4 *5 (-319)) (-4 *5 (-1069)) + (-5 *2 (-1287 (-1287 *5))) (-5 *1 (-1050 *5)) (-5 *4 (-1287 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-661 (-709 *4))) (-5 *2 (-709 *4)) (-4 *4 (-1070)) - (-5 *1 (-1051 *4))))) + (-12 (-5 *3 (-660 (-708 *4))) (-5 *2 (-708 *4)) (-4 *4 (-1069)) + (-5 *1 (-1050 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-1288 *4))) (-4 *4 (-1070)) (-5 *2 (-709 *4)) - (-5 *1 (-1051 *4))))) + (-12 (-5 *3 (-1287 (-1287 *4))) (-4 *4 (-1069)) (-5 *2 (-708 *4)) + (-5 *1 (-1050 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-921 (-558))) (-5 *4 (-558)) (-5 *2 (-709 *4)) - (-5 *1 (-1050 *5)) (-4 *5 (-1070)))) + (-12 (-5 *3 (-920 (-558))) (-5 *4 (-558)) (-5 *2 (-708 *4)) + (-5 *1 (-1049 *5)) (-4 *5 (-1069)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-558))) (-5 *2 (-709 (-558))) (-5 *1 (-1050 *4)) - (-4 *4 (-1070)))) + (-12 (-5 *3 (-660 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-1049 *4)) + (-4 *4 (-1069)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-921 (-558)))) (-5 *4 (-558)) (-5 *2 (-661 (-709 *4))) - (-5 *1 (-1050 *5)) (-4 *5 (-1070)))) + (-12 (-5 *3 (-660 (-920 (-558)))) (-5 *4 (-558)) (-5 *2 (-660 (-708 *4))) + (-5 *1 (-1049 *5)) (-4 *5 (-1069)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-661 (-558)))) (-5 *2 (-661 (-709 (-558)))) - (-5 *1 (-1050 *4)) (-4 *4 (-1070))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) + (-12 (-5 *3 (-660 (-660 (-558)))) (-5 *2 (-660 (-708 (-558)))) + (-5 *1 (-1049 *4)) (-4 *4 (-1069))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-1050 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-709 *3))) (-4 *3 (-1070)) (-5 *1 (-1050 *3))))) + (-12 (-5 *2 (-660 (-708 *3))) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-1049 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-708 *3))) (-4 *3 (-1069)) (-5 *1 (-1049 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-709 *4)) (-5 *3 (-938)) (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) + (-12 (-5 *2 (-708 *4)) (-5 *3 (-937)) (-4 *4 (-1069)) (-5 *1 (-1049 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-938)) (-4 *4 (-1070)) - (-5 *1 (-1050 *4))))) + (-12 (-5 *2 (-660 (-708 *4))) (-5 *3 (-937)) (-4 *4 (-1069)) + (-5 *1 (-1049 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-709 (-965 *4))) (-5 *1 (-1050 *4)) - (-4 *4 (-1070))))) + (-12 (-5 *3 (-790)) (-5 *2 (-708 (-964 *4))) (-5 *1 (-1049 *4)) + (-4 *4 (-1069))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-709 *4)) (-5 *3 (-938)) (|has| *4 (-6 (-4427 "*"))) - (-4 *4 (-1070)) (-5 *1 (-1050 *4)))) + (-12 (-5 *2 (-708 *4)) (-5 *3 (-937)) (|has| *4 (-6 (-4426 "*"))) + (-4 *4 (-1069)) (-5 *1 (-1049 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-661 (-709 *4))) (-5 *3 (-938)) (|has| *4 (-6 (-4427 "*"))) - (-4 *4 (-1070)) (-5 *1 (-1050 *4))))) + (-12 (-5 *2 (-660 (-708 *4))) (-5 *3 (-937)) (|has| *4 (-6 (-4426 "*"))) + (-4 *4 (-1069)) (-5 *1 (-1049 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) - (-5 *1 (-1049))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 (-709 (-326 (-558))))) (-5 *1 (-1049))))) -(((*1 *2 *2) (-12 (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1049))))) + (-12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-708 (-326 (-558))))) + (-5 *1 (-1048))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-708 (-326 (-558))))) (-5 *1 (-1048))))) +(((*1 *2 *2) (-12 (-5 *2 (-708 (-326 (-558)))) (-5 *1 (-1048))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-709 (-419 (-965 (-558))))) - (-5 *2 (-709 (-326 (-558)))) (-5 *1 (-1049))))) + (|partial| -12 (-5 *3 (-708 (-419 (-964 (-558))))) + (-5 *2 (-708 (-326 (-558)))) (-5 *1 (-1048))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-326 (-558)))) - (-5 *1 (-1049))))) + (-12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-326 (-558)))) + (-5 *1 (-1048))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-709 (-419 (-965 (-558))))) (-5 *2 (-661 (-709 (-326 (-558))))) - (-5 *1 (-1049)) (-5 *3 (-326 (-558)))))) + (-12 (-5 *4 (-708 (-419 (-964 (-558))))) (-5 *2 (-660 (-708 (-326 (-558))))) + (-5 *1 (-1048)) (-5 *3 (-326 (-558)))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 (-419 (-965 (-558))))) + (-12 (-5 *3 (-708 (-419 (-964 (-558))))) (-5 *2 - (-661 + (-660 (-2 (|:| |radval| (-326 (-558))) (|:| |radmult| (-558)) - (|:| |radvect| (-661 (-709 (-326 (-558)))))))) - (-5 *1 (-1049))))) -(((*1 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1 *2) (-12 (-5 *1 (-1047 *2)) (-4 *2 (-1238))))) + (|:| |radvect| (-660 (-708 (-326 (-558)))))))) + (-5 *1 (-1048))))) +(((*1 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1 *2) (-12 (-5 *1 (-1046 *2)) (-4 *2 (-1237))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) - ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238)))) + ((*1 *1 *2 *2) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237)))) ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1047 *3)) (-4 *3 (-1238))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1046 *3 *2)) (-4 *2 (-678 *3)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-1046 *3)) (-4 *3 (-1237))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-1045 *3 *2)) (-4 *2 (-677 *3)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3684 *3) (|:| -2909 (-661 *5)))) - (-5 *1 (-1046 *5 *3)) (-5 *4 (-661 *5)) (-4 *3 (-678 *5))))) + (-12 (-4 *5 (-376)) (-5 *2 (-2 (|:| -3683 *3) (|:| -2908 (-660 *5)))) + (-5 *1 (-1045 *5 *3)) (-5 *4 (-660 *5)) (-4 *3 (-677 *5))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1082 (-1045 *4) (-1192 (-1045 *4)))) (-5 *3 (-877)) - (-5 *1 (-1045 *4)) (-4 *4 (-13 (-860) (-376) (-1041)))))) + (-12 (-5 *2 (-1081 (-1044 *4) (-1191 (-1044 *4)))) (-5 *3 (-876)) + (-5 *1 (-1044 *4)) (-4 *4 (-13 (-859) (-376) (-1040)))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-1082 (-1045 *3) (-1192 (-1045 *3)))) - (-5 *1 (-1045 *3)) (-4 *3 (-13 (-860) (-376) (-1041)))))) + (|partial| -12 (-5 *2 (-1081 (-1044 *3) (-1191 (-1044 *3)))) + (-5 *1 (-1044 *3)) (-4 *3 (-13 (-859) (-376) (-1040)))))) (((*1 *2 *3) - (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))))) + (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))) - (-5 *4 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))))) + (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))) + (-5 *4 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))) (-5 *4 (-419 (-558))))) + (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))) (-5 *4 (-419 (-558))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3540 *5) (|:| -3539 *5)))) - (-5 *1 (-1042 *3)) (-4 *3 (-1264 (-558))) - (-5 *4 (-2 (|:| -3540 *5) (|:| -3539 *5))))) + (-12 (-5 *5 (-419 (-558))) (-5 *2 (-660 (-2 (|:| -3539 *5) (|:| -3538 *5)))) + (-5 *1 (-1041 *3)) (-4 *3 (-1263 (-558))) + (-5 *4 (-2 (|:| -3539 *5) (|:| -3538 *5))))) ((*1 *2 *3) - (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *1 (-1043 *3)) (-4 *3 (-1264 (-419 (-558)))))) + (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1263 (-419 (-558)))))) ((*1 *2 *3 *4) - (-12 (-5 *2 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *1 (-1043 *3)) (-4 *3 (-1264 (-419 (-558)))) - (-5 *4 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))))) + (-12 (-5 *2 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *1 (-1042 *3)) (-4 *3 (-1263 (-419 (-558)))) + (-5 *4 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3540 *4) (|:| -3539 *4)))) - (-5 *1 (-1043 *3)) (-4 *3 (-1264 *4)))) + (-12 (-5 *4 (-419 (-558))) (-5 *2 (-660 (-2 (|:| -3539 *4) (|:| -3538 *4)))) + (-5 *1 (-1042 *3)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-419 (-558))) (-5 *2 (-661 (-2 (|:| -3540 *5) (|:| -3539 *5)))) - (-5 *1 (-1043 *3)) (-4 *3 (-1264 *5)) - (-5 *4 (-2 (|:| -3540 *5) (|:| -3539 *5)))))) + (-12 (-5 *5 (-419 (-558))) (-5 *2 (-660 (-2 (|:| -3539 *5) (|:| -3538 *5)))) + (-5 *1 (-1042 *3)) (-4 *3 (-1263 *5)) + (-5 *4 (-2 (|:| -3539 *5) (|:| -3538 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *2 (-661 (-419 (-558)))) (-5 *1 (-1042 *4)) (-4 *4 (-1264 (-558)))))) + (-12 (-5 *3 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *2 (-660 (-419 (-558)))) (-5 *1 (-1041 *4)) (-4 *4 (-1263 (-558)))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558))))) - (-5 *2 (-419 (-558))) (-5 *1 (-1042 *4)) (-4 *4 (-1264 (-558)))))) + (-12 (-5 *3 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558))))) + (-5 *2 (-419 (-558))) (-5 *1 (-1041 *4)) (-4 *4 (-1263 (-558)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1288 *6)) (-5 *4 (-1288 (-558))) (-5 *5 (-558)) (-4 *6 (-1122)) - (-5 *2 (-1 *6)) (-5 *1 (-1038 *6))))) + (-12 (-5 *3 (-1287 *6)) (-5 *4 (-1287 (-558))) (-5 *5 (-558)) (-4 *6 (-1121)) + (-5 *2 (-1 *6)) (-5 *1 (-1037 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| -3822 *4) (|:| -1654 (-558))))) (-4 *4 (-1122)) - (-5 *2 (-1 *4)) (-5 *1 (-1038 *4))))) + (-12 (-5 *3 (-660 (-2 (|:| -3821 *4) (|:| -1653 (-558))))) (-4 *4 (-1121)) + (-5 *2 (-1 *4)) (-5 *1 (-1037 *4))))) (((*1 *2 *3 *3 *3) - (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) - (-5 *2 (-661 (-419 *5))) (-5 *1 (-1037 *4 *5)) (-5 *3 (-419 *5))))) + (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) + (-5 *2 (-660 (-419 *5))) (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)))) (-5 *2 (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |h| *6) (|:| |c1| (-419 *6)) - (|:| |c2| (-419 *6)) (|:| -3496 *6))) - (-5 *1 (-1037 *5 *6)) (-5 *3 (-419 *6))))) + (|:| |c2| (-419 *6)) (|:| -3495 *6))) + (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *3 *3 *4 *5) - (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1264 *6)) - (-4 *6 (-13 (-376) (-149) (-1059 *4))) (-5 *4 (-558)) + (-12 (-5 *5 (-1 *3 *3)) (-4 *3 (-1263 *6)) + (-4 *6 (-13 (-376) (-149) (-1058 *4))) (-5 *4 (-558)) (-5 *2 (-3 (|:| |ans| (-2 (|:| |ans| *3) (|:| |nosol| (-114)))) - (|:| -3684 + (|:| -3683 (-2 (|:| |b| *3) (|:| |c| *3) (|:| |m| *4) (|:| |alpha| *3) (|:| |beta| *3))))) - (-5 *1 (-1036 *6 *3))))) + (-5 *1 (-1035 *6 *3))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) + (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |ans| (-419 *5)) (|:| |nosol| (-114)))) - (-5 *1 (-1036 *4 *5)) (-5 *3 (-419 *5))))) + (-5 *1 (-1035 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)))) (-5 *2 - (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3496 *6))) - (-5 *1 (-1036 *5 *6)) (-5 *3 (-419 *6))))) + (-2 (|:| |a| *6) (|:| |b| (-419 *6)) (|:| |c| (-419 *6)) (|:| -3495 *6))) + (-5 *1 (-1035 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *4 *4 *4 *5 *6 *7) - (|partial| -12 (-5 *5 (-1198)) + (|partial| -12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-661 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1224) (-27) (-433 *8))) - (-4 *8 (-13 (-464) (-149) (-1059 *3) (-658 *3))) (-5 *3 (-558)) - (-5 *2 (-661 *4)) (-5 *1 (-1035 *8 *4))))) + *4 (-660 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2350 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1223) (-27) (-433 *8))) + (-4 *8 (-13 (-464) (-149) (-1058 *3) (-657 *3))) (-5 *3 (-558)) + (-5 *2 (-660 *4)) (-5 *1 (-1034 *8 *4))))) (((*1 *2 *3 *4 *4 *5 *6 *7) - (-12 (-5 *5 (-1198)) + (-12 (-5 *5 (-1197)) (-5 *6 (-1 (-3 (-2 (|:| |mainpart| *4) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *4) (|:| |logand| *4))))) "failed") - *4 (-661 *4))) - (-5 *7 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4 *4)) - (-4 *4 (-13 (-1224) (-27) (-433 *8))) - (-4 *8 (-13 (-464) (-149) (-1059 *3) (-658 *3))) (-5 *3 (-558)) - (-5 *2 (-2 (|:| |ans| *4) (|:| -3539 *4) (|:| |sol?| (-114)))) - (-5 *1 (-1034 *8 *4))))) + *4 (-660 *4))) + (-5 *7 (-1 (-3 (-2 (|:| -2350 *4) (|:| |coeff| *4)) "failed") *4 *4)) + (-4 *4 (-13 (-1223) (-27) (-433 *8))) + (-4 *8 (-13 (-464) (-149) (-1058 *3) (-657 *3))) (-5 *3 (-558)) + (-5 *2 (-2 (|:| |ans| *4) (|:| -3538 *4) (|:| |sol?| (-114)))) + (-5 *1 (-1033 *8 *4))))) (((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558)))) - ((*1 *1 *1) (-4 *1 (-1023))) ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1033)))) - ((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1033)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-938)))) - ((*1 *1 *1) (-4 *1 (-1033)))) -(((*1 *2 *1) (|partial| -12 (-4 *1 (-1033)) (-5 *2 (-877))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1033))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1192 *1)) (-4 *1 (-1033))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-877))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-1033)) (-5 *2 (-877))))) -(((*1 *2 *1) (-12 (-4 *3 (-1238)) (-5 *2 (-661 *1)) (-4 *1 (-1031 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-661 *3))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-5 *2 (-558))))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558)))) + ((*1 *1 *1) (-4 *1 (-1022))) ((*1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-1032)))) + ((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-4 *1 (-1032)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-937)))) + ((*1 *1 *1) (-4 *1 (-1032)))) +(((*1 *2 *1) (|partial| -12 (-4 *1 (-1032)) (-5 *2 (-876))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1032))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1191 *1)) (-4 *1 (-1032))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-876))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-1032)) (-5 *2 (-876))))) +(((*1 *2 *1) (-12 (-4 *3 (-1237)) (-5 *2 (-660 *1)) (-4 *1 (-1030 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-660 *3))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-5 *2 (-558))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-1031 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-1030 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-661 *1)) (|has| *1 (-6 -4426)) (-4 *1 (-1031 *3)) - (-4 *3 (-1238))))) -(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-1031 *2)) (-4 *2 (-1238))))) + (-12 (-5 *2 (-660 *1)) (|has| *1 (-6 -4425)) (-4 *1 (-1030 *3)) + (-4 *3 (-1237))))) +(((*1 *2 *1 *2) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-1030 *2)) (-4 *2 (-1237))))) (((*1 *2 *1) (|partial| -12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) @@ -7626,3913 +7626,3913 @@ (-4 *3 (-569)))) ((*1 *2 *1) (|partial| -12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) + (|partial| -12 (-4 *1 (-817 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-845 *3)) (-4 *3 (-557)) - (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-844 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-855 *3)) (-4 *3 (-557)) - (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) + (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-1019 *3)) (-4 *3 (-175)) (-4 *3 (-557)) + (|partial| -12 (-4 *1 (-1018 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *3) - (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) + (|partial| -12 (-5 *2 (-419 (-558))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2))))) (((*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) + (-12 (-4 *1 (-817 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-114)) (-5 *1 (-844 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) + (-12 (-4 *1 (-1018 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *2 (-114)) (-5 *1 (-1029 *3)) (-4 *3 (-1059 (-419 (-558))))))) + (-12 (-5 *2 (-114)) (-5 *1 (-1028 *3)) (-4 *3 (-1058 (-419 (-558))))))) (((*1 *2 *1) (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-417 *3)) (-4 *3 (-557)) (-4 *3 (-569)))) ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (-12 (-4 *1 (-818 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) + (-12 (-4 *1 (-817 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-558))) (-5 *1 (-845 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-844 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-5 *2 (-419 (-558))) (-5 *1 (-855 *3)) (-4 *3 (-557)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-854 *3)) (-4 *3 (-557)) (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-1019 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) - ((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1029 *3)) (-4 *3 (-1059 *2))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027))))) -(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-1027))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027)))) - ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1027))))) + (-12 (-4 *1 (-1018 *3)) (-4 *3 (-175)) (-4 *3 (-557)) (-5 *2 (-419 (-558))))) + ((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-1028 *3)) (-4 *3 (-1058 *2))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026))))) +(((*1 *2 *3) (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-1026))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-1026))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-558))) (-5 *4 (-558)) (-5 *2 (-51)) (-5 *1 (-1026))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-1025 *3)) (-14 *3 (-558))))) + (-12 (-5 *3 (-419 (-558))) (-5 *4 (-558)) (-5 *2 (-51)) (-5 *1 (-1025))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-1024 *3)) (-14 *3 (-558))))) (((*1 *2 *3 *4) (-12 (-5 *3 (-417 *5)) (-4 *5 (-569)) - (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *5) (|:| |radicand| (-661 *5)))) - (-5 *1 (-332 *5)) (-5 *4 (-791)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-1023)) (-5 *2 (-558))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-1021 *3))))) + (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *5) (|:| |radicand| (-660 *5)))) + (-5 *1 (-332 *5)) (-5 *4 (-790)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-1022)) (-5 *2 (-558))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-1020 *3))))) (((*1 *1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)))) ((*1 *1 *1 *1) (-4 *1 (-485))) - ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-898)))) - ((*1 *1 *1) (-5 *1 (-992))) - ((*1 *1 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *2 *1) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175))))) -(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1019 *2)) (-4 *2 (-175))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-1016 *2)) (-4 *2 (-1238))))) + ((*1 *1 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-897)))) + ((*1 *1 *1) (-5 *1 (-991))) + ((*1 *1 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *2 *1) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175))))) +(((*1 *1 *2 *2 *2 *2) (-12 (-4 *1 (-1018 *2)) (-4 *2 (-175))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-1015 *2)) (-4 *2 (-1237))))) (((*1 *1 *2) - (-12 (-5 *2 (-1163 *3 *4)) (-14 *3 (-938)) (-4 *4 (-376)) - (-5 *1 (-1014 *3 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-48)))) (-5 *1 (-48)))) + (-12 (-5 *2 (-1162 *3 *4)) (-14 *3 (-937)) (-4 *4 (-376)) + (-5 *1 (-1013 *3 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) - (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1059 *4))))) + (-12 (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) + (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1058 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *3 (-1122)) (-5 *2 (-1146 *3 (-628 *1))) + (-12 (-4 *3 (-1069)) (-4 *3 (-1121)) (-5 *2 (-1145 *3 (-627 *1))) (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-507)))) (-5 *1 (-507)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-507)))) (-5 *1 (-507)))) ((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-636 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-746) *3)))) + (-12 (-4 *3 (-175)) (-4 *2 (-38 *3)) (-5 *1 (-635 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-745) *3)))) ((*1 *2 *1) - (-12 (-4 *3 (-175)) (-4 *2 (-737 *3)) (-5 *1 (-672 *2 *3 *4)) - (-4 *4 (|SubsetCategory| (-746) *3)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-48)))) (-5 *1 (-48)))) + (-12 (-4 *3 (-175)) (-4 *2 (-736 *3)) (-5 *1 (-671 *2 *3 *4)) + (-4 *4 (|SubsetCategory| (-745) *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-48)))) (-5 *1 (-48)))) ((*1 *2 *1) - (-12 (-4 *3 (-1012 *2)) (-4 *4 (-1264 *3)) (-4 *2 (-319)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1059 *3))))) + (-12 (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) (-4 *2 (-319)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1058 *3))))) ((*1 *2 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1122)) (-5 *2 (-1146 *3 (-628 *1))) + (-12 (-4 *3 (-569)) (-4 *3 (-1121)) (-5 *2 (-1145 *3 (-627 *1))) (-4 *1 (-433 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1146 (-558) (-628 (-507)))) (-5 *1 (-507)))) + ((*1 *2 *1) (-12 (-5 *2 (-1145 (-558) (-627 (-507)))) (-5 *1 (-507)))) ((*1 *2 *1) - (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) - (-5 *1 (-636 *3 *4 *2)) (-4 *3 (-38 *4)))) + (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-745) *4)) + (-5 *1 (-635 *3 *4 *2)) (-4 *3 (-38 *4)))) ((*1 *2 *1) - (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-746) *4)) - (-5 *1 (-672 *3 *4 *2)) (-4 *3 (-737 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)) (-4 *2 (-1070)))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569))))) -(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122)) (-4 *2 (-569)))) - ((*1 *1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-569))))) + (-12 (-4 *4 (-175)) (-4 *2 (|SubsetCategory| (-745) *4)) + (-5 *1 (-671 *3 *4 *2)) (-4 *3 (-736 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)) (-4 *2 (-1069)))) + ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569))))) +(((*1 *1 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121)) (-4 *2 (-569)))) + ((*1 *1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363)))) ((*1 *1) (-4 *1 (-381))) ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-937)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) ((*1 *1 *1) (-4 *1 (-557))) ((*1 *1) (-4 *1 (-557))) - ((*1 *1 *1) (-5 *1 (-791))) - ((*1 *2 *1) (-12 (-5 *2 (-921 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122)))) + ((*1 *1 *1) (-5 *1 (-790))) + ((*1 *2 *1) (-12 (-5 *2 (-920 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-5 *2 (-921 *4)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) - ((*1 *1) (-12 (-4 *1 (-1012 *2)) (-4 *2 (-557)) (-4 *2 (-569))))) + (-12 (-5 *3 (-558)) (-5 *2 (-920 *4)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) + ((*1 *1) (-12 (-4 *1 (-1011 *2)) (-4 *2 (-557)) (-4 *2 (-569))))) (((*1 *2 *2) (-12 (-5 *2 - (-1007 (-419 (-558)) (-878 *3) (-246 *4 (-791)) (-255 *3 (-419 (-558))))) - (-14 *3 (-661 (-1198))) (-14 *4 (-791)) (-5 *1 (-1008 *3 *4))))) + (-1006 (-419 (-558)) (-877 *3) (-246 *4 (-790)) (-255 *3 (-419 (-558))))) + (-14 *3 (-660 (-1197))) (-14 *4 (-790)) (-5 *1 (-1007 *3 *4))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-661 *3)) (-4 *3 (-969 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-861)) - (-4 *6 (-815)) (-5 *1 (-1007 *4 *5 *6 *3))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-968 *4 *6 *5)) (-4 *4 (-464)) (-4 *5 (-860)) + (-4 *6 (-814)) (-5 *1 (-1006 *4 *5 *6 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-861)) - (-4 *5 (-815)) (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4))))) + (-12 (-5 *2 (-3 (-114) "failed")) (-4 *3 (-464)) (-4 *4 (-860)) + (-4 *5 (-814)) (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *3 (-464)) (-4 *4 (-861)) (-4 *5 (-815)) (-5 *2 (-661 *6)) - (-5 *1 (-1007 *3 *4 *5 *6)) (-4 *6 (-969 *3 *5 *4))))) + (-12 (-4 *3 (-464)) (-4 *4 (-860)) (-4 *5 (-814)) (-5 *2 (-660 *6)) + (-5 *1 (-1006 *3 *4 *5 *6)) (-4 *6 (-968 *3 *5 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-1007 *3 *4 *5 *2)) (-4 *3 (-464)) - (-4 *4 (-861)) (-4 *5 (-815))))) + (-12 (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-1006 *3 *4 *5 *2)) (-4 *3 (-464)) + (-4 *4 (-860)) (-4 *5 (-814))))) (((*1 *1 *1) - (-12 (-4 *2 (-464)) (-4 *3 (-861)) (-4 *4 (-815)) (-5 *1 (-1007 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *4 *3))))) + (-12 (-4 *2 (-464)) (-4 *3 (-860)) (-4 *4 (-814)) (-5 *1 (-1006 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *4 *3))))) (((*1 *2 *3) - (-12 (-4 *3 (-1264 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-1006 *4 *2 *3 *5)) - (-4 *4 (-363)) (-4 *5 (-744 *2 *3))))) + (-12 (-4 *3 (-1263 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-1005 *4 *2 *3 *5)) + (-4 *4 (-363)) (-4 *5 (-743 *2 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-815)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) - (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) - (-4 *2 (-969 (-419 (-965 *5)) *4 *3)))) + (-12 (-4 *4 (-814)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) + (-4 *5 (-569)) (-5 *1 (-751 *4 *3 *5 *2)) + (-4 *2 (-968 (-419 (-964 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) - (-15 -4261 ((-3 $ #1="failed") (-1198)))))) - (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-969 (-965 *4) *5 *3)))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) + (-15 -4260 ((-3 $ #1="failed") (-1197)))))) + (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-968 (-964 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *6)) + (-12 (-5 *3 (-660 *6)) (-4 *6 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1#) (-1198)))))) - (-4 *4 (-1070)) (-4 *5 (-815)) (-5 *1 (-1005 *4 *5 *6 *2)) - (-4 *2 (-969 (-965 *4) *5 *6))))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1#) (-1197)))))) + (-4 *4 (-1069)) (-4 *5 (-814)) (-5 *1 (-1004 *4 *5 *6 *2)) + (-4 *2 (-968 (-964 *4) *5 *6))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-815)) (-4 *3 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) - (-4 *5 (-569)) (-5 *1 (-752 *4 *3 *5 *2)) - (-4 *2 (-969 (-419 (-965 *5)) *4 *3)))) + (-12 (-4 *4 (-814)) (-4 *3 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) + (-4 *5 (-569)) (-5 *1 (-751 *4 *3 *5 *2)) + (-4 *2 (-968 (-419 (-964 *5)) *4 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) - (-15 -4261 ((-3 $ #1="failed") (-1198)))))) - (-5 *1 (-1005 *4 *5 *3 *2)) (-4 *2 (-969 (-965 *4) *5 *3)))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) + (-15 -4260 ((-3 $ #1="failed") (-1197)))))) + (-5 *1 (-1004 *4 *5 *3 *2)) (-4 *2 (-968 (-964 *4) *5 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *6)) + (-12 (-5 *3 (-660 *6)) (-4 *6 - (-13 (-861) - (-10 -8 (-15 -4402 ((-1198) $)) (-15 -4261 ((-3 $ #1#) (-1198)))))) - (-4 *4 (-1070)) (-4 *5 (-815)) (-5 *1 (-1005 *4 *5 *6 *2)) - (-4 *2 (-969 (-965 *4) *5 *6))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *2) (|partial| -12 (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) + (-13 (-860) + (-10 -8 (-15 -4401 ((-1197) $)) (-15 -4260 ((-3 $ #1#) (-1197)))))) + (-4 *4 (-1069)) (-4 *5 (-814)) (-5 *1 (-1004 *4 *5 *6 *2)) + (-4 *2 (-968 (-964 *4) *5 *6))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *2) (|partial| -12 (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-791)) (-4 *1 (-1004 *2)) (-4 *2 (-1224))))) -(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) + (|partial| -12 (-5 *3 (-790)) (-4 *1 (-1003 *2)) (-4 *2 (-1223))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-887)))) + ((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) (((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) - ((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-888)))) - ((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) + ((*1 *2 *1) (-12 (-5 *2 (-159)) (-5 *1 (-887)))) + ((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) (((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-159)))) - ((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) -(((*1 *2 *3) (-12 (-5 *3 (-962 *2)) (-5 *1 (-1003 *2)) (-4 *2 (-1070))))) + ((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +(((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +(((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +(((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +(((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +(((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) +(((*1 *2 *3) (-12 (-5 *3 (-961 *2)) (-5 *1 (-1002 *2)) (-4 *2 (-1069))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-376)) - (-5 *2 (-661 (-2 (|:| C (-709 *5)) (|:| |g| (-1288 *5))))) (-5 *1 (-999 *5)) - (-5 *3 (-709 *5)) (-5 *4 (-1288 *5))))) -(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-938)) (-5 *1 (-719)))) + (-5 *2 (-660 (-2 (|:| C (-708 *5)) (|:| |g| (-1287 *5))))) (-5 *1 (-998 *5)) + (-5 *3 (-708 *5)) (-5 *4 (-1287 *5))))) +(((*1 *1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-937)) (-5 *1 (-718)))) ((*1 *2 *2 *2 *3 *4) - (-12 (-5 *2 (-709 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) - (-5 *1 (-999 *5))))) + (-12 (-5 *2 (-708 *5)) (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) + (-5 *1 (-998 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *2)))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-376)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *2)))) ((*1 *2 *3 *4 *5) (-12 (-5 *4 (-99 *6)) (-5 *5 (-1 *6 *6)) (-4 *6 (-376)) - (-5 *2 (-2 (|:| R (-709 *6)) (|:| A (-709 *6)) (|:| |Ainv| (-709 *6)))) - (-5 *1 (-999 *6)) (-5 *3 (-709 *6))))) + (-5 *2 (-2 (|:| R (-708 *6)) (|:| A (-708 *6)) (|:| |Ainv| (-708 *6)))) + (-5 *1 (-998 *6)) (-5 *3 (-708 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) - (-4 *3 (-569)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-149)) (-4 *3 (-319)) + (-4 *3 (-569)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) - (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-464)) (-4 *3 (-569)) + (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-464)) - (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-114)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-464)) + (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-5 *2 (-661 *3)) (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-5 *2 (-660 *3)) (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-661 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) - (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *1 (-998 *5 *6 *7 *8))))) + (-12 (-5 *2 (-660 *8)) (-5 *3 (-1 (-114) *8 *8)) (-5 *4 (-1 *8 *8 *8)) + (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *1 (-997 *5 *6 *7 *8))))) (((*1 *2 *2 *3 *4 *5) - (-12 (-5 *2 (-661 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) - (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1086 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-815)) - (-4 *8 (-861)) (-5 *1 (-998 *6 *7 *8 *9))))) + (-12 (-5 *2 (-660 *9)) (-5 *3 (-1 (-114) *9)) (-5 *4 (-1 (-114) *9 *9)) + (-5 *5 (-1 *9 *9 *9)) (-4 *9 (-1085 *6 *7 *8)) (-4 *6 (-569)) (-4 *7 (-814)) + (-4 *8 (-860)) (-5 *1 (-997 *6 *7 *8 *9))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3744 (-661 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) + (|partial| -12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-2 (|:| |bas| (-488 *4 *5 *6 *7)) (|:| -3743 (-660 *7)))) + (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *2))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *2))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-114)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-114)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278)))) ((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278)))) ((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-1086 *4 *5 *6)) - (-5 *2 (-2 (|:| |goodPols| (-661 *7)) (|:| |badPols| (-661 *7)))) - (-5 *1 (-998 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-1085 *4 *5 *6)) + (-5 *2 (-2 (|:| |goodPols| (-660 *7)) (|:| |badPols| (-660 *7)))) + (-5 *1 (-997 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) + (-12 (-5 *3 (-660 (-1 (-114) *8))) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) + (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-1 (-114) *8))) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) + (-12 (-5 *3 (-660 (-1 (-114) *8))) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) + (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1086 *5 *6 *7)) (-4 *5 (-569)) - (-4 *6 (-815)) (-4 *7 (-861)) - (-5 *2 (-2 (|:| |goodPols| (-661 *8)) (|:| |badPols| (-661 *8)))) - (-5 *1 (-998 *5 *6 *7 *8)) (-5 *4 (-661 *8))))) + (-12 (-5 *3 (-1 (-114) *8)) (-4 *8 (-1085 *5 *6 *7)) (-4 *5 (-569)) + (-4 *6 (-814)) (-4 *7 (-860)) + (-5 *2 (-2 (|:| |goodPols| (-660 *8)) (|:| |badPols| (-660 *8)))) + (-5 *1 (-997 *5 *6 *7 *8)) (-5 *4 (-660 *8))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-1086 *5 *6 *7)) - (-4 *5 (-569)) (-4 *6 (-815)) (-4 *7 (-861)) (-5 *2 (-114)) - (-5 *1 (-998 *5 *6 *7 *8))))) + (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-1085 *5 *6 *7)) + (-4 *5 (-569)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *2 (-114)) + (-5 *1 (-997 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-114)) (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-997 *4 *5 *6 *7))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6)))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *3)) + (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-661 *3)) (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *1 (-998 *4 *5 *6 *3)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *1 (-997 *4 *5 *6 *3)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 (-661 *7) (-661 *7))) (-5 *2 (-661 *7)) - (-4 *7 (-1086 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) - (-5 *1 (-998 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1 (-660 *7) (-660 *7))) (-5 *2 (-660 *7)) + (-4 *7 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) + (-5 *1 (-997 *4 *5 *6 *7))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-661 *3)) - (-5 *1 (-998 *4 *5 *6 *3)) (-4 *3 (-1086 *4 *5 *6))))) + (-12 (-4 *4 (-569)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-660 *3)) + (-5 *1 (-997 *4 *5 *6 *3)) (-4 *3 (-1085 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-998 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-997 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-661 *5))))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-660 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *3 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) - (-4 *6 (-1086 *4 *5 *3)) (-5 *2 (-114))))) + (-12 (-4 *1 (-996 *4 *5 *3 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) + (-4 *6 (-1085 *4 *5 *3)) (-5 *2 (-114))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) - (-4 *5 (-1086 *3 *4 *2))))) + (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) + (-4 *5 (-1085 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) - (-4 *5 (-1086 *3 *4 *2))))) + (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) + (-4 *5 (-1085 *3 *4 *2))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-997 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) - (-4 *5 (-1086 *3 *4 *2))))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + (-12 (-4 *1 (-996 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) + (-4 *5 (-1085 *3 *4 *2))))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1237)) (-4 *2 (-860)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1238)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-921 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-385 *3)) (-4 *3 (-1237)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-920 *3)) (-4 *3 (-1121)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) (-4 *6 (-1086 *4 *5 *3)) - (-5 *2 (-2 (|:| |under| *1) (|:| -3532 *1) (|:| |upper| *1))) - (-4 *1 (-997 *4 *5 *3 *6))))) + (-12 (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) (-4 *6 (-1085 *4 *5 *3)) + (-5 *2 (-2 (|:| |under| *1) (|:| -3531 *1) (|:| |upper| *1))) + (-4 *1 (-996 *4 *5 *3 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *1 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-569)) + (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |num| *3) (|:| |den| *4)))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-997 *4 *5 *6 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *3 (-1086 *4 *5 *6)) (-4 *4 (-569)) + (-12 (-4 *1 (-996 *4 *5 *6 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *3 (-1085 *4 *5 *6)) (-4 *4 (-569)) (-5 *2 (-2 (|:| |rnum| *4) (|:| |polnum| *3) (|:| |den| *4)))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-661 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569))))) + (-12 (-5 *2 (-660 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569))))) (((*1 *2 *2 *1) - (-12 (-5 *2 (-661 *6)) (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569))))) -(((*1 *2 *1) - (-12 (-4 *1 (-997 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1086 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-661 (-661 (-962 (-229))))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-661 (-661 (-962 (-229)))))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1110 (-229))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1110 (-229)))))) -(((*1 *2 *1) (-12 (-4 *1 (-974)) (-5 *2 (-1110 (-229))))) - ((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1110 (-229)))))) -(((*1 *2 *1) (-12 (-4 *1 (-995)) (-5 *2 (-1110 (-229)))))) -(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) - ((*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-1122)))) - ((*1 *2 *1) - (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *6 (-245 (-4387 *3) (-791))) + (-12 (-5 *2 (-660 *6)) (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569))))) +(((*1 *2 *1) + (-12 (-4 *1 (-996 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1085 *3 *4 *5)) (-4 *3 (-569)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-660 (-660 (-961 (-229))))))) + ((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-660 (-660 (-961 (-229)))))))) +(((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1109 (-229))))) + ((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1109 (-229)))))) +(((*1 *2 *1) (-12 (-4 *1 (-973)) (-5 *2 (-1109 (-229))))) + ((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1109 (-229)))))) +(((*1 *2 *1) (-12 (-4 *1 (-994)) (-5 *2 (-1109 (-229)))))) +(((*1 *1 *1) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) + ((*1 *2 *1) (-12 (-4 *1 (-397 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-1121)))) + ((*1 *2 *1) + (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *6 (-245 (-4386 *3) (-790))) (-14 *7 - (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *6)) - (-2 (|:| -2631 *5) (|:| -2632 *6)))) - (-5 *2 (-733 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-861)) - (-4 *8 (-969 *4 *6 (-878 *3))))) + (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *6)) + (-2 (|:| -2630 *5) (|:| -2631 *6)))) + (-5 *2 (-732 *5 *6 *7)) (-5 *1 (-473 *3 *4 *5 *6 *7 *8)) (-4 *5 (-860)) + (-4 *8 (-968 *4 *6 (-877 *3))))) ((*1 *2 *1) - (-12 (-4 *2 (-746)) (-4 *2 (-861)) (-5 *1 (-755 *3 *2)) (-4 *3 (-1070)))) + (-12 (-4 *2 (-745)) (-4 *2 (-860)) (-5 *1 (-754 *3 *2)) (-4 *3 (-1069)))) ((*1 *1 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *4 (-861))))) -(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814)))) + (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *4 (-860))))) +(((*1 *1 *2 *3) (-12 (-4 *1 (-47 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-661 (-938))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-938)) - (-4 *2 (-376)) (-14 *5 (-1014 *4 *2)))) + (-12 (-5 *3 (-660 (-937))) (-5 *1 (-154 *4 *2 *5)) (-14 *4 (-937)) + (-4 *2 (-376)) (-14 *5 (-1013 *4 *2)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-733 *5 *6 *7)) (-4 *5 (-861)) (-4 *6 (-245 (-4387 *4) (-791))) + (-12 (-5 *3 (-732 *5 *6 *7)) (-4 *5 (-860)) (-4 *6 (-245 (-4386 *4) (-790))) (-14 *7 - (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *6)) - (-2 (|:| -2631 *5) (|:| -2632 *6)))) - (-14 *4 (-661 (-1198))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) - (-4 *8 (-969 *2 *6 (-878 *4))))) - ((*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-864)))) + (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *6)) + (-2 (|:| -2630 *5) (|:| -2631 *6)))) + (-14 *4 (-660 (-1197))) (-4 *2 (-175)) (-5 *1 (-473 *4 *2 *5 *6 *7 *8)) + (-4 *8 (-968 *2 *6 (-877 *4))))) + ((*1 *1 *2 *3) (-12 (-4 *1 (-521 *2 *3)) (-4 *2 (-102)) (-4 *3 (-863)))) ((*1 *1 *2 *3) - (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-640 *2 *4)) (-4 *4 (-1264 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-728 *2)) (-4 *2 (-1070)))) - ((*1 *1 *2 *3) (-12 (-5 *1 (-755 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-746)))) + (-12 (-5 *3 (-558)) (-4 *2 (-569)) (-5 *1 (-639 *2 *4)) (-4 *4 (-1263 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-727 *2)) (-4 *2 (-1069)))) + ((*1 *1 *2 *3) (-12 (-5 *1 (-754 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-745)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *5)) (-5 *3 (-661 (-791))) (-4 *1 (-760 *4 *5)) - (-4 *4 (-1070)) (-4 *5 (-861)))) + (-12 (-5 *2 (-660 *5)) (-5 *3 (-660 (-790))) (-4 *1 (-759 *4 *5)) + (-4 *4 (-1069)) (-4 *5 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-760 *4 *2)) (-4 *4 (-1070)) (-4 *2 (-861)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-5 *3 (-790)) (-4 *1 (-759 *4 *2)) (-4 *4 (-1069)) (-4 *2 (-860)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-865 *2)) (-4 *2 (-1069)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 (-791))) (-4 *1 (-969 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *6 (-861)))) + (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 (-790))) (-4 *1 (-968 *4 *5 *6)) + (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-791)) (-4 *1 (-969 *4 *5 *2)) (-4 *4 (-1070)) (-4 *5 (-815)) - (-4 *2 (-861)))) + (-12 (-5 *3 (-790)) (-4 *1 (-968 *4 *5 *2)) (-4 *4 (-1069)) (-4 *5 (-814)) + (-4 *2 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *6)) (-5 *3 (-661 *5)) (-4 *1 (-994 *4 *5 *6)) - (-4 *4 (-1070)) (-4 *5 (-814)) (-4 *6 (-861)))) + (-12 (-5 *2 (-660 *6)) (-5 *3 (-660 *5)) (-4 *1 (-993 *4 *5 *6)) + (-4 *4 (-1069)) (-4 *5 (-813)) (-4 *6 (-860)))) ((*1 *1 *1 *2 *3) - (-12 (-4 *1 (-994 *4 *3 *2)) (-4 *4 (-1070)) (-4 *3 (-814)) (-4 *2 (-861))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-608 *3)) (-4 *3 (-1070)))) + (-12 (-4 *1 (-993 *4 *3 *2)) (-4 *4 (-1069)) (-4 *3 (-813)) (-4 *2 (-860))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-4 *1 (-994 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-814)) (-4 *5 (-861)) + (-12 (-4 *1 (-993 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-813)) (-4 *5 (-860)) (-5 *2 (-114))))) (((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319)))) - ((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193)))) - ((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-4 *1 (-884 *2))) + ((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193)))) + ((*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1) (-4 *1 (-883 *2))) ((*1 *1 *1) - (-12 (-4 *1 (-994 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-814)) (-4 *4 (-861))))) + (-12 (-4 *1 (-993 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-813)) (-4 *4 (-860))))) (((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-992))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-991))))) (((*1 *2 *1) - (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *2 (-661 *3)))) + (-12 (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) + (-4 *5 (-385 *3)) (-5 *2 (-660 *3)))) ((*1 *2 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-5 *2 (-661 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-938))) (-5 *1 (-992))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1176 (-992))) (-5 *1 (-992))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-887 (-938) (-938)))) (-5 *1 (-992))))) -(((*1 *2 *1) (-12 (-5 *2 (-938)) (-5 *1 (-992))))) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) + (-5 *2 (-660 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-937))) (-5 *1 (-991))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1175 (-991))) (-5 *1 (-991))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-886 (-937) (-937)))) (-5 *1 (-991))))) +(((*1 *2 *1) (-12 (-5 *2 (-937)) (-5 *1 (-991))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4186 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4185 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4186 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4185 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) +(((*1 *2 *3 *3) (-12 (-4 *2 (-569)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *2 *2 *2 *3) - (-12 (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *2 *3 *3 *4) - (-12 (-5 *4 (-791)) (-4 *3 (-569)) (-5 *1 (-990 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-5 *4 (-790)) (-4 *3 (-569)) (-5 *1 (-989 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *2 (-569)) (-5 *1 (-990 *2 *4)) (-4 *4 (-1264 *2))))) + (-12 (-5 *3 (-790)) (-4 *2 (-569)) (-5 *1 (-989 *2 *4)) (-4 *4 (-1263 *2))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-319)))) + (-12 (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-319)))) ((*1 *2 *1 *1) - (|partial| -12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) + (|partial| -12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -2184 (-791)) (|:| -3303 (-791)))) (-5 *1 (-791)))) + (-12 (-5 *2 (-2 (|:| -2183 (-790)) (|:| -3302 (-790)))) (-5 *1 (-790)))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| -3277 *4))) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) + (-5 *2 (-2 (|:| |coef2| *3) (|:| -3276 *4))) (-5 *1 (-989 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-464)) (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3277 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3276 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *2 (-569)) (-4 *2 (-464)) (-5 *1 (-990 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-4 *2 (-569)) (-4 *2 (-464)) (-5 *1 (-989 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 (-791))) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 (-790))) (-5 *1 (-989 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-990 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-989 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4187 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4186 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4187 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4186 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3562 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -3561 *3))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3562 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -3561 *3))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3562 *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -3561 *3))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) - (-4 *3 (-1264 *5))))) + (-12 (-5 *4 (-790)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) + (-4 *3 (-1263 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-569)) + (-12 (-5 *4 (-790)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) + (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-790)) (-4 *4 (-569)) (-5 *1 (-989 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-569)) - (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-990 *5 *3)) - (-4 *3 (-1264 *5))))) + (-12 (-5 *4 (-790)) (-4 *5 (-569)) + (-5 *2 (-2 (|:| |coef2| *3) (|:| |subResultant| *3))) (-5 *1 (-989 *5 *3)) + (-4 *3 (-1263 *5))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-569)) + (-12 (-5 *4 (-790)) (-4 *5 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| |subResultant| *3))) - (-5 *1 (-990 *5 *3)) (-4 *3 (-1264 *5))))) + (-5 *1 (-989 *5 *3)) (-4 *3 (-1263 *5))))) (((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-569)) (-5 *1 (-990 *4 *2)) (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-790)) (-4 *4 (-569)) (-5 *1 (-989 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4186 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef1| *3) (|:| -4185 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4186 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-2 (|:| |coef2| *3) (|:| -4185 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-569)) - (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4186 *4))) - (-5 *1 (-990 *4 *3)) (-4 *3 (-1264 *4))))) + (-5 *2 (-2 (|:| |coef1| *3) (|:| |coef2| *3) (|:| -4185 *4))) + (-5 *1 (-989 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2959 (|has| *1 (-6 -4416))) - (-2959 (|has| *1 (-6 -4408))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1122)) (-4 *2 (-861)))) - ((*1 *1) (-4 *1 (-857))) ((*1 *1 *1 *1) (-4 *1 (-864))) - ((*1 *2 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + (-12 (-4 *1 (-416)) (-2958 (|has| *1 (-6 -4415))) + (-2958 (|has| *1 (-6 -4407))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1121)) (-4 *2 (-860)))) + ((*1 *1) (-4 *1 (-856))) ((*1 *1 *1 *1) (-4 *1 (-863))) + ((*1 *2 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-860))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)) (-4 *2 (-860)))) ((*1 *1 *2 *1 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-989 *2)) (-4 *2 (-861))))) -(((*1 *1) (-4 *1 (-988)))) -(((*1 *1) (-4 *1 (-988)))) -(((*1 *1 *1 *1) (-4 *1 (-988)))) -(((*1 *1 *1 *1) (-4 *1 (-988)))) -(((*1 *1 *2) (-12 (-5 *2 (-655 *3)) (-14 *3 (-661 (-1198))) (-5 *1 (-218 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-661 (-1198))) (-5 *1 (-655 *3)))) - ((*1 *2 *2) (-12 (-5 *2 (-985 *3)) (-4 *3 (-1122)) (-5 *1 (-986 *3))))) -(((*1 *2 *1) - (-12 (-4 *4 (-1122)) (-5 *2 (-903 *3 *4)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1122)) (-4 *5 (-686 *4)))) - ((*1 *2 *3) - (-12 (-5 *3 (-985 *4)) (-4 *4 (-1122)) (-5 *2 (-1118 *4)) (-5 *1 (-986 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-711 *3)) (-5 *1 (-985 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-711 (-985 *3))) (-5 *1 (-985 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-711 (-887 (-985 *3) (-985 *3)))) (-5 *1 (-985 *3)) - (-4 *3 (-1122))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-985 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-793))) (-5 *1 (-115)))) - ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-793)) (-5 *1 (-115)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-984))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-983 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-983 *2 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *2 (-1122)) (-5 *1 (-983 *3 *2)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-877)))) - ((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1294)) (-5 *1 (-982))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-661 *3)) (-5 *1 (-981 *3)) (-4 *3 (-557))))) -(((*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557))))) -(((*1 *2 *2) (-12 (-5 *1 (-981 *2)) (-4 *2 (-557))))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-988 *2)) (-4 *2 (-860))))) +(((*1 *1) (-4 *1 (-987)))) +(((*1 *1) (-4 *1 (-987)))) +(((*1 *1 *1 *1) (-4 *1 (-987)))) +(((*1 *1 *1 *1) (-4 *1 (-987)))) +(((*1 *1 *2) (-12 (-5 *2 (-654 *3)) (-14 *3 (-660 (-1197))) (-5 *1 (-218 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-218 *3)) (-14 *3 (-660 (-1197))) (-5 *1 (-654 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-984 *3)) (-4 *3 (-1121)) (-5 *1 (-985 *3))))) +(((*1 *2 *1) + (-12 (-4 *4 (-1121)) (-5 *2 (-902 *3 *4)) (-5 *1 (-899 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-685 *4)))) + ((*1 *2 *3) + (-12 (-5 *3 (-984 *4)) (-4 *4 (-1121)) (-5 *2 (-1117 *4)) (-5 *1 (-985 *4))))) +(((*1 *2 *1) (-12 (-5 *2 (-710 *3)) (-5 *1 (-984 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-710 (-984 *3))) (-5 *1 (-984 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) + (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-710 (-886 (-984 *3) (-984 *3)))) (-5 *1 (-984 *3)) + (-4 *3 (-1121))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-984 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-792))) (-5 *1 (-115)))) + ((*1 *2 *1 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-792)) (-5 *1 (-115)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-983))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-982 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-982 *2 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *2 (-1121)) (-5 *1 (-982 *3 *2)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-876)))) + ((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1293)) (-5 *1 (-981))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-660 *3)) (-5 *1 (-980 *3)) (-4 *3 (-557))))) +(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) +(((*1 *2 *2) (-12 (-5 *1 (-980 *2)) (-4 *2 (-557))))) (((*1 *1) (-4 *1 (-363))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-569) (-149))) + (-12 (-5 *3 (-660 *5)) (-4 *5 (-433 *4)) (-4 *4 (-13 (-569) (-149))) (-5 *2 - (-2 (|:| |primelt| *5) (|:| |poly| (-661 (-1192 *5))) - (|:| |prim| (-1192 *5)))) + (-2 (|:| |primelt| *5) (|:| |poly| (-660 (-1191 *5))) + (|:| |prim| (-1191 *5)))) (-5 *1 (-444 *4 *5)))) ((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-569) (-149))) (-5 *2 - (-2 (|:| |primelt| *3) (|:| |pol1| (-1192 *3)) (|:| |pol2| (-1192 *3)) - (|:| |prim| (-1192 *3)))) + (-2 (|:| |primelt| *3) (|:| |pol1| (-1191 *3)) (|:| |pol2| (-1191 *3)) + (|:| |prim| (-1191 *3)))) (-5 *1 (-444 *4 *3)) (-4 *3 (-27)) (-4 *3 (-433 *4)))) ((*1 *2 *3 *4 *3 *4) - (-12 (-5 *3 (-965 *5)) (-5 *4 (-1198)) (-4 *5 (-13 (-376) (-149))) + (-12 (-5 *3 (-964 *5)) (-5 *4 (-1197)) (-4 *5 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1192 *5)))) - (-5 *1 (-980 *5)))) + (-2 (|:| |coef1| (-558)) (|:| |coef2| (-558)) (|:| |prim| (-1191 *5)))) + (-5 *1 (-979 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-661 (-1198))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-660 (-1197))) (-4 *5 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 *5))) - (|:| |prim| (-1192 *5)))) - (-5 *1 (-980 *5)))) + (-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 *5))) + (|:| |prim| (-1191 *5)))) + (-5 *1 (-979 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 (-965 *6))) (-5 *4 (-661 (-1198))) (-5 *5 (-1198)) + (-12 (-5 *3 (-660 (-964 *6))) (-5 *4 (-660 (-1197))) (-5 *5 (-1197)) (-4 *6 (-13 (-376) (-149))) (-5 *2 - (-2 (|:| -4384 (-661 (-558))) (|:| |poly| (-661 (-1192 *6))) - (|:| |prim| (-1192 *6)))) - (-5 *1 (-980 *6))))) + (-2 (|:| -4383 (-660 (-558))) (|:| |poly| (-660 (-1191 *6))) + (|:| |prim| (-1191 *6)))) + (-5 *1 (-979 *6))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *1 (-595 *2)) (-4 *2 (-1059 *3)) (-4 *2 (-376)))) + (-12 (-5 *3 (-1197)) (-5 *1 (-595 *2)) (-4 *2 (-1058 *3)) (-4 *2 (-376)))) ((*1 *1 *2 *2) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-646 *4 *2)) - (-4 *2 (-13 (-433 *4) (-1023) (-1224))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-645 *4 *2)) + (-4 *2 (-13 (-433 *4) (-1022) (-1223))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-13 (-433 *4) (-1023) (-1224))) - (-4 *4 (-569)) (-5 *1 (-646 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-979)) (-5 *2 (-1198)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-979))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-938)) (-4 *5 (-569)) (-5 *2 (-709 *5)) - (-5 *1 (-976 *5 *3)) (-4 *3 (-678 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-973))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-569)) (-4 *3 (-969 *7 *5 *6)) - (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *3) (|:| |radicand| (-661 *3)))) - (-5 *1 (-972 *5 *6 *7 *3 *8)) (-5 *4 (-791)) + (-12 (-5 *3 (-1112 *2)) (-4 *2 (-13 (-433 *4) (-1022) (-1223))) + (-4 *4 (-569)) (-5 *1 (-645 *4 *2)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-978)) (-5 *2 (-1197)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-978))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-937)) (-4 *5 (-569)) (-5 *2 (-708 *5)) + (-5 *1 (-975 *5 *3)) (-4 *3 (-677 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-972))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-569)) (-4 *3 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *3) (|:| |radicand| (-660 *3)))) + (-5 *1 (-971 *5 *6 *7 *3 *8)) (-5 *4 (-790)) (-4 *8 (-13 (-376) - (-10 -8 (-15 -4376 ($ *3)) (-15 -3399 (*3 $)) (-15 -3398 (*3 $)))))))) + (-10 -8 (-15 -4375 ($ *3)) (-15 -3398 (*3 $)) (-15 -3397 (*3 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *7 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-569)) - (-4 *8 (-969 *7 *5 *6)) - (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *3) (|:| |radicand| *3))) - (-5 *1 (-972 *5 *6 *7 *8 *3)) (-5 *4 (-791)) + (-12 (-4 *7 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-569)) + (-4 *8 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *3) (|:| |radicand| *3))) + (-5 *1 (-971 *5 *6 *7 *8 *3)) (-5 *4 (-790)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $)))))))) + (-10 -8 (-15 -4375 ($ *8)) (-15 -3398 (*8 $)) (-15 -3397 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-558))) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-569)) - (-4 *8 (-969 *7 *5 *6)) - (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *9) (|:| |radicand| *9))) - (-5 *1 (-972 *5 *6 *7 *8 *9)) (-5 *4 (-791)) + (-12 (-5 *3 (-419 (-558))) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-569)) + (-4 *8 (-968 *7 *5 *6)) + (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *9) (|:| |radicand| *9))) + (-5 *1 (-971 *5 *6 *7 *8 *9)) (-5 *4 (-790)) (-4 *9 (-13 (-376) - (-10 -8 (-15 -4376 ($ *8)) (-15 -3399 (*8 $)) (-15 -3398 (*8 $)))))))) + (-10 -8 (-15 -4375 ($ *8)) (-15 -3398 (*8 $)) (-15 -3397 (*8 $)))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-815)) (-4 *6 (-861)) (-4 *3 (-569)) (-4 *7 (-969 *3 *5 *6)) - (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *8) (|:| |radicand| *8))) - (-5 *1 (-972 *5 *6 *3 *7 *8)) (-5 *4 (-791)) + (-12 (-4 *5 (-814)) (-4 *6 (-860)) (-4 *3 (-569)) (-4 *7 (-968 *3 *5 *6)) + (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *8) (|:| |radicand| *8))) + (-5 *1 (-971 *5 *6 *3 *7 *8)) (-5 *4 (-790)) (-4 *8 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *3 (-1122)) - (-5 *2 (-2 (|:| |val| *1) (|:| -2632 (-558)))) (-4 *1 (-433 *3)))) + (|partial| -12 (-4 *3 (-1069)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |val| *1) (|:| -2631 (-558)))) (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2632 (-905 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2631 (-904 *3)))) + (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2632 (-558)))) - (-5 *1 (-970 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |val| *3) (|:| -2631 (-558)))) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-1198)) (-4 *4 (-1070)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2632 (-558)))) (-4 *1 (-433 *4)))) + (|partial| -12 (-5 *3 (-1197)) (-4 *4 (-1069)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |var| (-627 *1)) (|:| -2631 (-558)))) (-4 *1 (-433 *4)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1070)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2632 (-558)))) (-4 *1 (-433 *4)))) + (|partial| -12 (-5 *3 (-115)) (-4 *4 (-1069)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| |var| (-627 *1)) (|:| -2631 (-558)))) (-4 *1 (-433 *4)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1122)) - (-5 *2 (-2 (|:| |var| (-628 *1)) (|:| -2632 (-558)))) (-4 *1 (-433 *3)))) + (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| |var| (-627 *1)) (|:| -2631 (-558)))) (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |val| (-905 *3)) (|:| -2632 (-791)))) - (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-2 (|:| |val| (-904 *3)) (|:| -2631 (-790)))) + (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *2 (-2 (|:| |var| *5) (|:| -2632 (-791)))))) + (|partial| -12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-790)))))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2632 (-558)))) - (-5 *1 (-970 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-2 (|:| |var| *5) (|:| -2631 (-558)))) + (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-1133)) (-4 *3 (-1122)) (-5 *2 (-661 *1)) + (|partial| -12 (-4 *3 (-1132)) (-4 *3 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-661 *1)) (-4 *1 (-969 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-660 *1)) (-4 *1 (-968 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) (-5 *2 (-661 *1)) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-433 *3)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1) - (|partial| -12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-661 *1)) (-4 *1 (-969 *3 *4 *5)))) + (|partial| -12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-660 *1)) (-4 *1 (-968 *3 *4 *5)))) ((*1 *2 *3) - (|partial| -12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1070)) - (-4 *7 (-969 *6 *4 *5)) (-5 *2 (-661 *3)) (-5 *1 (-970 *4 *5 *6 *7 *3)) + (|partial| -12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1069)) + (-4 *7 (-968 *6 *4 *5)) (-5 *2 (-660 *3)) (-5 *1 (-969 *4 *5 *6 *7 *3)) (-4 *3 (-13 (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-661 *1)) (-4 *1 (-397 *3 *4)))) + (-12 (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-660 *1)) (-4 *1 (-397 *3 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-755 *3 *4))) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) - (-4 *4 (-746)))) + (-12 (-5 *2 (-660 (-754 *3 *4))) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) + (-4 *4 (-745)))) ((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) - (-4 *1 (-969 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1070)) (-4 *2 (-814)))) - ((*1 *2 *1) (-12 (-4 *1 (-728 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *3)) (-4 *3 (-1070)) (-5 *2 (-791)))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) + (-4 *1 (-968 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-4 *1 (-338 *3 *2)) (-4 *3 (-1069)) (-4 *2 (-813)))) + ((*1 *2 *1) (-12 (-4 *1 (-727 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *3)) (-4 *3 (-1069)) (-5 *2 (-790)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-661 (-791))))) + (-12 (-5 *3 (-660 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-660 (-790))))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-969 *4 *5 *3)) (-4 *4 (-1070)) (-4 *5 (-815)) (-4 *3 (-861)) - (-5 *2 (-791))))) + (-12 (-4 *1 (-968 *4 *5 *3)) (-4 *4 (-1069)) (-4 *5 (-814)) (-4 *3 (-860)) + (-5 *2 (-790))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *6)) (-4 *1 (-969 *4 *5 *6)) (-4 *4 (-1070)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-791)))) + (-12 (-5 *3 (-660 *6)) (-4 *1 (-968 *4 *5 *6)) (-4 *4 (-1069)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-969 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-791))))) + (-12 (-4 *1 (-968 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-790))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *1)) - (-4 *1 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *1)) + (-4 *1 (-968 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)) (-4 *2 (-464)))) + (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)) (-4 *2 (-464)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-1264 (-558))) (-5 *2 (-661 (-558))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-1263 (-558))) (-5 *2 (-660 (-558))) (-5 *1 (-498 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-464)))) + ((*1 *2 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-464)))) ((*1 *1 *1 *2) - (-12 (-4 *1 (-969 *3 *4 *2)) (-4 *3 (-1070)) (-4 *4 (-815)) (-4 *2 (-861)) + (-12 (-4 *1 (-968 *3 *4 *2)) (-4 *3 (-1069)) (-4 *4 (-814)) (-4 *2 (-860)) (-4 *3 (-464))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-558)) (-4 *5 (-860)) (-4 *5 (-376)) - (-5 *2 (-791)) (-5 *1 (-964 *5 *6)) (-4 *6 (-1264 *5))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-558)) (-4 *5 (-859)) (-4 *5 (-376)) + (-5 *2 (-790)) (-5 *1 (-963 *5 *6)) (-4 *6 (-1263 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-860)) (-4 *4 (-376)) (-5 *2 (-791)) - (-5 *1 (-964 *4 *5)) (-4 *5 (-1264 *4))))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-859)) (-4 *4 (-376)) (-5 *2 (-790)) + (-5 *1 (-963 *4 *5)) (-4 *5 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *2 (-376)) (-4 *2 (-860)) (-5 *1 (-964 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-4 *2 (-376)) (-4 *2 (-859)) (-5 *1 (-963 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-376)) (-5 *2 (-660 *3)) (-5 *1 (-963 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-661 *3)) (-5 *1 (-964 *4 *3)) - (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-376)) (-5 *2 (-660 *3)) (-5 *1 (-963 *4 *3)) + (-4 *3 (-1263 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-965 *5)) (-4 *5 (-1070)) (-5 *2 (-255 *4 *5)) - (-5 *1 (-963 *4 *5)) (-14 *4 (-661 (-1198)))))) + (-12 (-5 *3 (-964 *5)) (-4 *5 (-1069)) (-5 *2 (-255 *4 *5)) + (-5 *1 (-962 *4 *5)) (-14 *4 (-660 (-1197)))))) (((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) - (-5 *2 (-965 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) + (-5 *2 (-964 *5)) (-5 *1 (-962 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) - (-5 *2 (-965 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) + (-5 *2 (-964 *5)) (-5 *1 (-962 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-965 *5)) (-4 *5 (-1070)) (-5 *2 (-493 *4 *5)) - (-5 *1 (-963 *4 *5)) (-14 *4 (-661 (-1198)))))) + (-12 (-5 *3 (-964 *5)) (-4 *5 (-1069)) (-5 *2 (-493 *4 *5)) + (-5 *1 (-962 *4 *5)) (-14 *4 (-660 (-1197)))))) (((*1 *2 *3) - (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) - (-5 *2 (-255 *4 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-5 *3 (-493 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) + (-5 *2 (-255 *4 *5)) (-5 *1 (-962 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-1070)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-963 *4 *5))))) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-1069)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-962 *4 *5))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-961)) (-5 *3 (-558))))) -(((*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558))))) -(((*1 *2 *3) (-12 (-5 *3 (-1192 (-558))) (-5 *2 (-558)) (-5 *1 (-961))))) + ((*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-960)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *3 (-1191 (-558))) (-5 *2 (-558)) (-5 *1 (-960))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-961)) (-5 *3 (-558))))) -(((*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-194)) (-5 *3 (-558)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *1 (-961)) (-5 *3 (-558))))) + ((*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-960)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-194)) (-5 *3 (-558)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-802 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) + ((*1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *1 (-960)) (-5 *3 (-558))))) (((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558)))) - ((*1 *2 *3) (-12 (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-961)) (-5 *3 (-558))))) + ((*1 *2 *3) (-12 (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-960)) (-5 *3 (-558))))) (((*1 *2 *3 *4 *2 *5) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-905 *6))) - (-5 *5 (-1 (-903 *6 *8) *8 (-905 *6) (-903 *6 *8))) (-4 *6 (-1122)) - (-4 *8 (-13 (-1070) (-631 (-905 *6)) (-1059 *7))) (-5 *2 (-903 *6 *8)) - (-4 *7 (-1070)) (-5 *1 (-960 *6 *7 *8))))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-904 *6))) + (-5 *5 (-1 (-902 *6 *8) *8 (-904 *6) (-902 *6 *8))) (-4 *6 (-1121)) + (-4 *8 (-13 (-1069) (-630 (-904 *6)) (-1058 *7))) (-5 *2 (-902 *6 *8)) + (-4 *7 (-1069)) (-5 *1 (-959 *6 *7 *8))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *3 (-168 *6)) - (-4 (-965 *6) (-901 *5)) (-4 *6 (-13 (-901 *5) (-175))) + (-12 (-5 *2 (-902 *5 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *3 (-168 *6)) + (-4 (-964 *6) (-900 *5)) (-4 *6 (-13 (-900 *5) (-175))) (-5 *1 (-181 *5 *6 *3)))) ((*1 *2 *1 *3 *2) - (-12 (-5 *2 (-903 *4 *1)) (-5 *3 (-905 *4)) (-4 *1 (-901 *4)) - (-4 *4 (-1122)))) + (-12 (-5 *2 (-902 *4 *1)) (-5 *3 (-904 *4)) (-4 *1 (-900 *4)) + (-4 *4 (-1121)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) - (-4 *6 (-13 (-1122) (-1059 *3))) (-4 *3 (-901 *5)) (-5 *1 (-950 *5 *3 *6)))) + (-12 (-5 *2 (-902 *5 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1121) (-1058 *3))) (-4 *3 (-900 *5)) (-5 *1 (-949 *5 *3 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1122)) - (-4 *3 (-13 (-433 *6) (-631 *4) (-901 *5) (-1059 (-628 $)))) - (-5 *4 (-905 *5)) (-4 *6 (-13 (-569) (-901 *5))) (-5 *1 (-951 *5 *6 *3)))) + (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1121)) + (-4 *3 (-13 (-433 *6) (-630 *4) (-900 *5) (-1058 (-627 $)))) + (-5 *4 (-904 *5)) (-4 *6 (-13 (-569) (-900 *5))) (-5 *1 (-950 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 (-558) *3)) (-5 *4 (-905 (-558))) (-4 *3 (-557)) - (-5 *1 (-952 *3)))) + (-12 (-5 *2 (-902 (-558) *3)) (-5 *4 (-904 (-558))) (-4 *3 (-557)) + (-5 *1 (-951 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *6)) (-5 *3 (-628 *6)) (-4 *5 (-1122)) - (-4 *6 (-13 (-1122) (-1059 (-628 $)) (-631 *4) (-901 *5))) (-5 *4 (-905 *5)) - (-5 *1 (-953 *5 *6)))) + (-12 (-5 *2 (-902 *5 *6)) (-5 *3 (-627 *6)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1121) (-1058 (-627 $)) (-630 *4) (-900 *5))) (-5 *4 (-904 *5)) + (-5 *1 (-952 *5 *6)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-900 *5 *6 *3)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) - (-4 *6 (-901 *5)) (-4 *3 (-686 *6)) (-5 *1 (-954 *5 *6 *3)))) + (-12 (-5 *2 (-899 *5 *6 *3)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) + (-4 *6 (-900 *5)) (-4 *3 (-685 *6)) (-5 *1 (-953 *5 *6 *3)))) ((*1 *2 *3 *4 *2 *5) - (-12 (-5 *5 (-1 (-903 *6 *3) *8 (-905 *6) (-903 *6 *3))) (-4 *8 (-861)) - (-5 *2 (-903 *6 *3)) (-5 *4 (-905 *6)) (-4 *6 (-1122)) - (-4 *3 (-13 (-969 *9 *7 *8) (-631 *4))) (-4 *7 (-815)) - (-4 *9 (-13 (-1070) (-901 *6))) (-5 *1 (-955 *6 *7 *8 *9 *3)))) + (-12 (-5 *5 (-1 (-902 *6 *3) *8 (-904 *6) (-902 *6 *3))) (-4 *8 (-860)) + (-5 *2 (-902 *6 *3)) (-5 *4 (-904 *6)) (-4 *6 (-1121)) + (-4 *3 (-13 (-968 *9 *7 *8) (-630 *4))) (-4 *7 (-814)) + (-4 *9 (-13 (-1069) (-900 *6))) (-5 *1 (-954 *6 *7 *8 *9 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1122)) - (-4 *3 (-13 (-969 *8 *6 *7) (-631 *4))) (-5 *4 (-905 *5)) (-4 *7 (-901 *5)) - (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-13 (-1070) (-901 *5))) - (-5 *1 (-955 *5 *6 *7 *8 *3)))) + (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1121)) + (-4 *3 (-13 (-968 *8 *6 *7) (-630 *4))) (-5 *4 (-904 *5)) (-4 *7 (-900 *5)) + (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-13 (-1069) (-900 *5))) + (-5 *1 (-954 *5 *6 *7 *8 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 *3)) (-4 *5 (-1122)) (-4 *3 (-1012 *6)) - (-4 *6 (-13 (-569) (-901 *5) (-631 *4))) (-5 *4 (-905 *5)) - (-5 *1 (-958 *5 *6 *3)))) + (-12 (-5 *2 (-902 *5 *3)) (-4 *5 (-1121)) (-4 *3 (-1011 *6)) + (-4 *6 (-13 (-569) (-900 *5) (-630 *4))) (-5 *4 (-904 *5)) + (-5 *1 (-957 *5 *6 *3)))) ((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-903 *5 (-1198))) (-5 *3 (-1198)) (-5 *4 (-905 *5)) - (-4 *5 (-1122)) (-5 *1 (-959 *5)))) + (-12 (-5 *2 (-902 *5 (-1197))) (-5 *3 (-1197)) (-5 *4 (-904 *5)) + (-4 *5 (-1121)) (-5 *1 (-958 *5)))) ((*1 *2 *3 *4 *5 *2 *6) - (-12 (-5 *4 (-661 (-905 *7))) (-5 *5 (-1 *9 (-661 *9))) - (-5 *6 (-1 (-903 *7 *9) *9 (-905 *7) (-903 *7 *9))) (-4 *7 (-1122)) - (-4 *9 (-13 (-1070) (-631 (-905 *7)) (-1059 *8))) (-5 *2 (-903 *7 *9)) - (-5 *3 (-661 *9)) (-4 *8 (-1070)) (-5 *1 (-960 *7 *8 *9))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1122) (-1059 *5))) - (-4 *5 (-901 *4)) (-4 *4 (-1122)) (-5 *2 (-1 (-114) *5)) - (-5 *1 (-950 *4 *5 *6))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) - ((*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-433 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1198)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) - ((*1 *2 *2) (-12 (-4 *3 (-1122)) (-5 *1 (-949 *3 *2)) (-4 *2 (-433 *3))))) + (-12 (-5 *4 (-660 (-904 *7))) (-5 *5 (-1 *9 (-660 *9))) + (-5 *6 (-1 (-902 *7 *9) *9 (-904 *7) (-902 *7 *9))) (-4 *7 (-1121)) + (-4 *9 (-13 (-1069) (-630 (-904 *7)) (-1058 *8))) (-5 *2 (-902 *7 *9)) + (-5 *3 (-660 *9)) (-4 *8 (-1069)) (-5 *1 (-959 *7 *8 *9))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1 (-114) *6)) (-4 *6 (-13 (-1121) (-1058 *5))) + (-4 *5 (-900 *4)) (-4 *4 (-1121)) (-5 *2 (-1 (-114) *5)) + (-5 *1 (-949 *4 *5 *6))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) + ((*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-433 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1197)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) + ((*1 *2 *2) (-12 (-4 *3 (-1121)) (-5 *1 (-948 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-518)) (-5 *2 (-326 (-558))) (-5 *1 (-948)))) + (-12 (-5 *3 (-1197)) (-5 *4 (-518)) (-5 *2 (-326 (-558))) (-5 *1 (-947)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-518)) (-4 *4 (-1122)) (-5 *1 (-949 *4 *2)) (-4 *2 (-433 *4))))) + (-12 (-5 *3 (-518)) (-4 *4 (-1121)) (-5 *1 (-948 *4 *2)) (-4 *2 (-433 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *2 (-661 (-1110 (-229)))) - (-5 *1 (-947))))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *2 (-660 (-1109 (-229)))) + (-5 *1 (-946))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) - (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) + (-5 *1 (-943)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) - (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) + (-5 *1 (-943)))) ((*1 *1 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) - (-5 *1 (-946)))) + (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) + (-5 *1 (-945)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-962 (-229)) (-229))) (-5 *3 (-1110 (-229))) - (-5 *1 (-946))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-961 (-229)) (-229))) (-5 *3 (-1109 (-229))) + (-5 *1 (-945))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) ((*1 *1 *2 *2 *3 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1110 (-229))) - (-5 *1 (-944)))) + (-12 (-5 *2 (-660 (-1 (-229) (-229)))) (-5 *3 (-1109 (-229))) + (-5 *1 (-943)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-661 (-1 (-229) (-229)))) (-5 *3 (-1110 (-229))) - (-5 *1 (-944)))) + (-12 (-5 *2 (-660 (-1 (-229) (-229)))) (-5 *3 (-1109 (-229))) + (-5 *1 (-943)))) ((*1 *1 *2 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-1110 (-229))) (-5 *2 (-944)) (-5 *1 (-945 *3)) - (-4 *3 (-631 (-547))))) + (-12 (-5 *4 (-1197)) (-5 *5 (-1109 (-229))) (-5 *2 (-943)) (-5 *1 (-944 *3)) + (-4 *3 (-630 (-547))))) ((*1 *2 *3 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-1110 (-229))) (-5 *2 (-944)) (-5 *1 (-945 *3)) - (-4 *3 (-631 (-547))))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946)))) + (-12 (-5 *4 (-1197)) (-5 *5 (-1109 (-229))) (-5 *2 (-943)) (-5 *1 (-944 *3)) + (-4 *3 (-630 (-547))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945)))) ((*1 *1 *2 *2 *2 *2 *3 *3 *3 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-946)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-945)))) ((*1 *1 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-944)))) - ((*1 *2 *1) (-12 (-5 *2 (-1110 (-229))) (-5 *1 (-946))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-229)))) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-946))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-946))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-946))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-945))))) +(((*1 *2 *1) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-943)))) + ((*1 *2 *1) (-12 (-5 *2 (-1109 (-229))) (-5 *1 (-945))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-229)))) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-945))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-945))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-945))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-943)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1110 (-229))) (-5 *1 (-944)))) + (-12 (-5 *2 (-1 (-229) (-229))) (-5 *3 (-1109 (-229))) (-5 *1 (-943)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1198)) (-5 *5 (-1110 (-229))) (-5 *2 (-944)) (-5 *1 (-945 *3)) - (-4 *3 (-631 (-547))))) + (-12 (-5 *4 (-1197)) (-5 *5 (-1109 (-229))) (-5 *2 (-943)) (-5 *1 (-944 *3)) + (-4 *3 (-630 (-547))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-944)) (-5 *1 (-945 *3)) (-4 *3 (-631 (-547)))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) + (-12 (-5 *4 (-1197)) (-5 *2 (-943)) (-5 *1 (-944 *3)) (-4 *3 (-630 (-547)))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-943))))) (((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) (((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) (((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-479)))) - ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-944))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-944))))) -(((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-114)) - (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-114)) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) -(((*1 *2 *2) - (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-861) (-631 (-1198)))) - (-4 *5 (-815)) (-5 *1 (-943 *3 *4 *5 *2)) (-4 *2 (-969 *3 *5 *4))))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-943))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-943))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-943))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-114)) + (-5 *1 (-942 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-114)) + (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) +(((*1 *2 *2) + (-12 (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-860) (-630 (-1197)))) + (-4 *5 (-814)) (-5 *1 (-942 *3 *4 *5 *2)) (-4 *2 (-968 *3 *5 *4))))) (((*1 *2 *3 *4 *5 *6 *7 *7 *8) (-12 (-5 *3 - (-2 (|:| |det| *12) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) - (-5 *4 (-709 *12)) (-5 *5 (-661 (-419 (-965 *9)))) (-5 *6 (-661 (-661 *12))) - (-5 *7 (-791)) (-5 *8 (-558)) (-4 *9 (-13 (-319) (-149))) - (-4 *12 (-969 *9 *11 *10)) (-4 *10 (-13 (-861) (-631 (-1198)))) - (-4 *11 (-815)) - (-5 *2 - (-2 (|:| |eqzro| (-661 *12)) (|:| |neqzro| (-661 *12)) - (|:| |wcond| (-661 (-965 *9))) + (-2 (|:| |det| *12) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) + (-5 *4 (-708 *12)) (-5 *5 (-660 (-419 (-964 *9)))) (-5 *6 (-660 (-660 *12))) + (-5 *7 (-790)) (-5 *8 (-558)) (-4 *9 (-13 (-319) (-149))) + (-4 *12 (-968 *9 *11 *10)) (-4 *10 (-13 (-860) (-630 (-1197)))) + (-4 *11 (-814)) + (-5 *2 + (-2 (|:| |eqzro| (-660 *12)) (|:| |neqzro| (-660 *12)) + (|:| |wcond| (-660 (-964 *9))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *9)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *9))))))))) - (-5 *1 (-943 *9 *10 *11 *12))))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *9)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *9))))))))) + (-5 *1 (-942 *9 *10 *11 *12))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-709 *7)) (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *6 *5)) - (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815)) (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *8)) (-5 *4 (-791)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) - (-4 *7 (-815)) - (-5 *2 - (-661 - (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) - (|:| |cols| (-661 (-558)))))) - (-5 *1 (-943 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-661 *8))) (-5 *3 (-661 *8)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) - (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-943 *5 *6 *7 *8))))) + (-12 (-5 *2 (-708 *7)) (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *6 *5)) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814)) (-5 *1 (-942 *4 *5 *6 *7))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-708 *8)) (-5 *4 (-790)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) + (-4 *7 (-814)) + (-5 *2 + (-660 + (-2 (|:| |det| *8) (|:| |rows| (-660 (-558))) + (|:| |cols| (-660 (-558)))))) + (-5 *1 (-942 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-660 *8))) (-5 *3 (-660 *8)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) + (-4 *7 (-814)) (-5 *2 (-114)) (-5 *1 (-942 *5 *6 *7 *8))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815)) (-5 *2 (-661 (-661 (-558)))) (-5 *1 (-943 *4 *5 *6 *7)) - (-5 *3 (-558)) (-4 *7 (-969 *4 *6 *5))))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814)) (-5 *2 (-660 (-660 (-558)))) (-5 *1 (-942 *4 *5 *6 *7)) + (-5 *3 (-558)) (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 (-661 *6))) (-4 *6 (-969 *3 *5 *4)) - (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-861) (-631 (-1198)))) - (-4 *5 (-815)) (-5 *1 (-943 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 (-660 *6))) (-4 *6 (-968 *3 *5 *4)) + (-4 *3 (-13 (-319) (-149))) (-4 *4 (-13 (-860) (-630 (-1197)))) + (-4 *5 (-814)) (-5 *1 (-942 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-661 - (-2 (|:| -3511 (-791)) + (-660 + (-2 (|:| -3510 (-790)) (|:| |eqns| - (-661 - (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) - (|:| |cols| (-661 (-558)))))) - (|:| |fgb| (-661 *7))))) - (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-791)) - (-5 *1 (-943 *4 *5 *6 *7))))) + (-660 + (-2 (|:| |det| *7) (|:| |rows| (-660 (-558))) + (|:| |cols| (-660 (-558)))))) + (|:| |fgb| (-660 *7))))) + (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-790)) + (-5 *1 (-942 *4 *5 *6 *7))))) (((*1 *2 *3) (-12 (-5 *3 - (-661 - (-2 (|:| -3511 (-791)) + (-660 + (-2 (|:| -3510 (-790)) (|:| |eqns| - (-661 - (-2 (|:| |det| *7) (|:| |rows| (-661 (-558))) - (|:| |cols| (-661 (-558)))))) - (|:| |fgb| (-661 *7))))) - (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) (-5 *2 (-791)) - (-5 *1 (-943 *4 *5 *6 *7))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815)) (-5 *2 (-661 *3)) (-5 *1 (-943 *4 *5 *6 *3)) - (-4 *3 (-969 *4 *6 *5))))) + (-660 + (-2 (|:| |det| *7) (|:| |rows| (-660 (-558))) + (|:| |cols| (-660 (-558)))))) + (|:| |fgb| (-660 *7))))) + (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 (-790)) + (-5 *1 (-942 *4 *5 *6 *7))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814)) (-5 *2 (-660 *3)) (-5 *1 (-942 *4 *5 *6 *3)) + (-4 *3 (-968 *4 *6 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -1783 (-709 (-419 (-965 *4)))) (|:| |vec| (-661 (-419 (-965 *4)))) - (|:| -3511 (-791)) (|:| |rows| (-661 (-558))) (|:| |cols| (-661 (-558))))) - (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815)) - (-5 *2 - (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *4))))))) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) + (-2 (|:| -1782 (-708 (-419 (-964 *4)))) (|:| |vec| (-660 (-419 (-964 *4)))) + (|:| -3510 (-790)) (|:| |rows| (-660 (-558))) (|:| |cols| (-660 (-558))))) + (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814)) + (-5 *2 + (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *4))))))) + (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *2 *3) (-12 (-5 *2 - (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *4))))))) - (-5 *3 (-661 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-969 *4 *6 *5)) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) - (-5 *1 (-943 *4 *5 *6 *7))))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *4))))))) + (-5 *3 (-660 *7)) (-4 *4 (-13 (-319) (-149))) (-4 *7 (-968 *4 *6 *5)) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) + (-5 *1 (-942 *4 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) - (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) + (-12 (-5 *3 (-708 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) + (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 - (-661 - (-2 (|:| -3511 (-791)) + (-660 + (-2 (|:| -3510 (-790)) (|:| |eqns| - (-661 - (-2 (|:| |det| *8) (|:| |rows| (-661 (-558))) - (|:| |cols| (-661 (-558)))))) - (|:| |fgb| (-661 *8))))) - (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-791))))) + (-660 + (-2 (|:| |det| *8) (|:| |rows| (-660 (-558))) + (|:| |cols| (-660 (-558)))))) + (|:| |fgb| (-660 *8))))) + (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-790))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815)) (-4 *7 (-969 *4 *6 *5)) - (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-661 *7)) (|:| |n0| (-661 *7)))) - (-5 *1 (-943 *4 *5 *6 *7)) (-5 *3 (-661 *7))))) -(((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-969 *4 *6 *5)) - (-5 *1 (-943 *4 *5 *6 *2)) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815))))) -(((*1 *2 *3) - (-12 (-5 *3 (-661 (-1198))) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) - (-5 *2 (-661 (-419 (-965 *4)))) (-5 *1 (-943 *4 *5 *6 *7)) - (-4 *7 (-969 *4 *6 *5))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-861) (-631 (-1198)))) - (-4 *6 (-815)) (-5 *2 (-419 (-965 *4))) (-5 *1 (-943 *4 *5 *6 *3)) - (-4 *3 (-969 *4 *6 *5)))) - ((*1 *2 *3) - (-12 (-5 *3 (-709 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) - (-5 *2 (-709 (-419 (-965 *4)))) (-5 *1 (-943 *4 *5 *6 *7)))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) - (-5 *2 (-661 (-419 (-965 *4)))) (-5 *1 (-943 *4 *5 *6 *7))))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814)) (-4 *7 (-968 *4 *6 *5)) + (-5 *2 (-2 (|:| |sysok| (-114)) (|:| |z0| (-660 *7)) (|:| |n0| (-660 *7)))) + (-5 *1 (-942 *4 *5 *6 *7)) (-5 *3 (-660 *7))))) +(((*1 *2 *3) + (-12 (-5 *3 (-964 *4)) (-4 *4 (-13 (-319) (-149))) (-4 *2 (-968 *4 *6 *5)) + (-5 *1 (-942 *4 *5 *6 *2)) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814))))) +(((*1 *2 *3) + (-12 (-5 *3 (-660 (-1197))) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) + (-5 *2 (-660 (-419 (-964 *4)))) (-5 *1 (-942 *4 *5 *6 *7)) + (-4 *7 (-968 *4 *6 *5))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-13 (-860) (-630 (-1197)))) + (-4 *6 (-814)) (-5 *2 (-419 (-964 *4))) (-5 *1 (-942 *4 *5 *6 *3)) + (-4 *3 (-968 *4 *6 *5)))) + ((*1 *2 *3) + (-12 (-5 *3 (-708 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) + (-5 *2 (-708 (-419 (-964 *4)))) (-5 *1 (-942 *4 *5 *6 *7)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) + (-5 *2 (-660 (-419 (-964 *4)))) (-5 *1 (-942 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-709 *11)) (-5 *4 (-661 (-419 (-965 *8)))) (-5 *5 (-791)) - (-5 *6 (-1180)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-969 *8 *10 *9)) - (-4 *9 (-13 (-861) (-631 (-1198)))) (-4 *10 (-815)) + (-12 (-5 *3 (-708 *11)) (-5 *4 (-660 (-419 (-964 *8)))) (-5 *5 (-790)) + (-5 *6 (-1179)) (-4 *8 (-13 (-319) (-149))) (-4 *11 (-968 *8 *10 *9)) + (-4 *9 (-13 (-860) (-630 (-1197)))) (-4 *10 (-814)) (-5 *2 (-2 (|:| |rgl| - (-661 - (-2 (|:| |eqzro| (-661 *11)) (|:| |neqzro| (-661 *11)) - (|:| |wcond| (-661 (-965 *8))) + (-660 + (-2 (|:| |eqzro| (-660 *11)) (|:| |neqzro| (-660 *11)) + (|:| |wcond| (-660 (-964 *8))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *8)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *8)))))))))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *8)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *8)))))))))) (|:| |rgsz| (-558)))) - (-5 *1 (-943 *8 *9 *10 *11)) (-5 *7 (-558))))) + (-5 *1 (-942 *8 *9 *10 *11)) (-5 *7 (-558))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) + (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) - (|:| |wcond| (-661 (-965 *4))) + (-660 + (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) + (|:| |wcond| (-660 (-964 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *4)))))))))) - (-5 *1 (-943 *4 *5 *6 *7)) (-4 *7 (-969 *4 *6 *5))))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *4)))))))))) + (-5 *1 (-942 *4 *5 *6 *7)) (-4 *7 (-968 *4 *6 *5))))) (((*1 *2 *3 *4) (-12 (-5 *3 - (-661 - (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) - (|:| |wcond| (-661 (-965 *5))) + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) - (-5 *4 (-1180)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-969 *5 *7 *6)) - (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) (-5 *2 (-558)) - (-5 *1 (-943 *5 *6 *7 *8))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *8)) (-4 *8 (-969 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) - (-4 *6 (-13 (-861) (-631 (-1198)))) (-4 *7 (-815)) - (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) - (|:| |wcond| (-661 (-965 *5))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) + (-5 *4 (-1179)) (-4 *5 (-13 (-319) (-149))) (-4 *8 (-968 *5 *7 *6)) + (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) (-5 *2 (-558)) + (-5 *1 (-942 *5 *6 *7 *8))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-708 *8)) (-4 *8 (-968 *5 *7 *6)) (-4 *5 (-13 (-319) (-149))) + (-4 *6 (-13 (-860) (-630 (-1197)))) (-4 *7 (-814)) + (-5 *2 + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)) (-5 *4 (-661 *8)))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) + (-5 *1 (-942 *5 *6 *7 *8)) (-5 *4 (-660 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *8)) (-5 *4 (-661 (-1198))) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) - (-4 *7 (-815)) + (-12 (-5 *3 (-708 *8)) (-5 *4 (-660 (-1197))) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) + (-4 *7 (-814)) (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) - (|:| |wcond| (-661 (-965 *5))) + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-709 *7)) (-4 *7 (-969 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) - (-4 *5 (-13 (-861) (-631 (-1198)))) (-4 *6 (-815)) + (-12 (-5 *3 (-708 *7)) (-4 *7 (-968 *4 *6 *5)) (-4 *4 (-13 (-319) (-149))) + (-4 *5 (-13 (-860) (-630 (-1197)))) (-4 *6 (-814)) (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *7)) (|:| |neqzro| (-661 *7)) - (|:| |wcond| (-661 (-965 *4))) + (-660 + (-2 (|:| |eqzro| (-660 *7)) (|:| |neqzro| (-660 *7)) + (|:| |wcond| (-660 (-964 *4))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *4)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *4)))))))))) - (-5 *1 (-943 *4 *5 *6 *7)))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *4)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *4)))))))))) + (-5 *1 (-942 *4 *5 *6 *7)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *9)) (-5 *5 (-938)) (-4 *9 (-969 *6 *8 *7)) - (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) - (-4 *8 (-815)) + (-12 (-5 *3 (-708 *9)) (-5 *5 (-937)) (-4 *9 (-968 *6 *8 *7)) + (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) + (-4 *8 (-814)) (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) - (|:| |wcond| (-661 (-965 *6))) + (-660 + (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) + (|:| |wcond| (-660 (-964 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *6)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *6)))))))))) - (-5 *1 (-943 *6 *7 *8 *9)) (-5 *4 (-661 *9)))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *6)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *6)))))))))) + (-5 *1 (-942 *6 *7 *8 *9)) (-5 *4 (-660 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1198))) (-5 *5 (-938)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) + (-12 (-5 *3 (-708 *9)) (-5 *4 (-660 (-1197))) (-5 *5 (-937)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *9)) (|:| |neqzro| (-661 *9)) - (|:| |wcond| (-661 (-965 *6))) + (-660 + (-2 (|:| |eqzro| (-660 *9)) (|:| |neqzro| (-660 *9)) + (|:| |wcond| (-660 (-964 *6))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *6)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *6)))))))))) - (-5 *1 (-943 *6 *7 *8 *9)))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *6)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *6)))))))))) + (-5 *1 (-942 *6 *7 *8 *9)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *8)) (-5 *4 (-938)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) - (-4 *7 (-815)) + (-12 (-5 *3 (-708 *8)) (-5 *4 (-937)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) + (-4 *7 (-814)) (-5 *2 - (-661 - (-2 (|:| |eqzro| (-661 *8)) (|:| |neqzro| (-661 *8)) - (|:| |wcond| (-661 (-965 *5))) + (-660 + (-2 (|:| |eqzro| (-660 *8)) (|:| |neqzro| (-660 *8)) + (|:| |wcond| (-660 (-964 *5))) (|:| |bsoln| - (-2 (|:| |partsol| (-1288 (-419 (-965 *5)))) - (|:| -2222 (-661 (-1288 (-419 (-965 *5)))))))))) - (-5 *1 (-943 *5 *6 *7 *8)))) + (-2 (|:| |partsol| (-1287 (-419 (-964 *5)))) + (|:| -2221 (-660 (-1287 (-419 (-964 *5)))))))))) + (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 *9)) (-5 *5 (-1180)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-558)) - (-5 *1 (-943 *6 *7 *8 *9)))) + (-12 (-5 *3 (-708 *9)) (-5 *4 (-660 *9)) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-558)) + (-5 *1 (-942 *6 *7 *8 *9)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *9)) (-5 *4 (-661 (-1198))) (-5 *5 (-1180)) - (-4 *9 (-969 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) - (-4 *7 (-13 (-861) (-631 (-1198)))) (-4 *8 (-815)) (-5 *2 (-558)) - (-5 *1 (-943 *6 *7 *8 *9)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *8)) (-5 *4 (-1180)) (-4 *8 (-969 *5 *7 *6)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-861) (-631 (-1198)))) - (-4 *7 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *5 *6 *7 *8)))) + (-12 (-5 *3 (-708 *9)) (-5 *4 (-660 (-1197))) (-5 *5 (-1179)) + (-4 *9 (-968 *6 *8 *7)) (-4 *6 (-13 (-319) (-149))) + (-4 *7 (-13 (-860) (-630 (-1197)))) (-4 *8 (-814)) (-5 *2 (-558)) + (-5 *1 (-942 *6 *7 *8 *9)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-708 *8)) (-5 *4 (-1179)) (-4 *8 (-968 *5 *7 *6)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-13 (-860) (-630 (-1197)))) + (-4 *7 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *5 *6 *7 *8)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 *10)) (-5 *5 (-938)) (-5 *6 (-1180)) - (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) - (-4 *8 (-13 (-861) (-631 (-1198)))) (-4 *9 (-815)) (-5 *2 (-558)) - (-5 *1 (-943 *7 *8 *9 *10)))) + (-12 (-5 *3 (-708 *10)) (-5 *4 (-660 *10)) (-5 *5 (-937)) (-5 *6 (-1179)) + (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) + (-4 *8 (-13 (-860) (-630 (-1197)))) (-4 *9 (-814)) (-5 *2 (-558)) + (-5 *1 (-942 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-709 *10)) (-5 *4 (-661 (-1198))) (-5 *5 (-938)) (-5 *6 (-1180)) - (-4 *10 (-969 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) - (-4 *8 (-13 (-861) (-631 (-1198)))) (-4 *9 (-815)) (-5 *2 (-558)) - (-5 *1 (-943 *7 *8 *9 *10)))) + (-12 (-5 *3 (-708 *10)) (-5 *4 (-660 (-1197))) (-5 *5 (-937)) (-5 *6 (-1179)) + (-4 *10 (-968 *7 *9 *8)) (-4 *7 (-13 (-319) (-149))) + (-4 *8 (-13 (-860) (-630 (-1197)))) (-4 *9 (-814)) (-5 *2 (-558)) + (-5 *1 (-942 *7 *8 *9 *10)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *9)) (-5 *4 (-938)) (-5 *5 (-1180)) (-4 *9 (-969 *6 *8 *7)) - (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-861) (-631 (-1198)))) - (-4 *8 (-815)) (-5 *2 (-558)) (-5 *1 (-943 *6 *7 *8 *9))))) + (-12 (-5 *3 (-708 *9)) (-5 *4 (-937)) (-5 *5 (-1179)) (-4 *9 (-968 *6 *8 *7)) + (-4 *6 (-13 (-319) (-149))) (-4 *7 (-13 (-860) (-630 (-1197)))) + (-4 *8 (-814)) (-5 *2 (-558)) (-5 *1 (-942 *6 *7 *8 *9))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-4 *2 (-1264 *4)) - (-5 *1 (-942 *4 *2))))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-376)) (-4 *2 (-1263 *4)) + (-5 *1 (-941 *4 *2))))) (((*1 *2 *3) - (-12 (-4 *1 (-940)) (-5 *2 (-2 (|:| -4384 (-661 *1)) (|:| -2640 *1))) - (-5 *3 (-661 *1))))) + (-12 (-4 *1 (-939)) (-5 *2 (-2 (|:| -4383 (-660 *1)) (|:| -2639 *1))) + (-5 *3 (-660 *1))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-940)) (-5 *2 (-711 (-661 *1))) (-5 *3 (-661 *1))))) + (-12 (-4 *1 (-939)) (-5 *2 (-710 (-660 *1))) (-5 *3 (-660 *1))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-661 (-965 *4))) (-5 *3 (-661 (-1198))) (-4 *4 (-464)) - (-5 *1 (-937 *4))))) + (-12 (-5 *2 (-660 (-964 *4))) (-5 *3 (-660 (-1197))) (-4 *4 (-464)) + (-5 *1 (-936 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-661 (-965 *4))) (-5 *3 (-661 (-1198))) (-4 *4 (-464)) - (-5 *1 (-937 *4))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-992)) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2) (-12 (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-924 (-558))) (-5 *1 (-936)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-558))) (-5 *2 (-924 (-558))) (-5 *1 (-936))))) + (-12 (-5 *2 (-660 (-964 *4))) (-5 *3 (-660 (-1197))) (-4 *4 (-464)) + (-5 *1 (-936 *4))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-991)) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2) (-12 (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-923 (-558))) (-5 *1 (-935)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-558))) (-5 *2 (-923 (-558))) (-5 *1 (-935))))) (((*1 *2 *2 *2) - (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *2)) - (-4 *2 (-969 *5 *3 *4)))) + (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *2)) + (-4 *2 (-968 *5 *3 *4)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-861)) - (-4 *5 (-319)) (-5 *1 (-935 *3 *4 *5 *6)))) + (-12 (-5 *2 (-1191 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-860)) + (-4 *5 (-319)) (-5 *1 (-934 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *6 *4 *5)) (-5 *1 (-935 *4 *5 *6 *2)) - (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-933 *2)))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *6 *4 *5)) (-5 *1 (-934 *4 *5 *6 *2)) + (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-417 *2)) (-4 *2 (-319)) (-5 *1 (-932 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149))) - (-5 *2 (-51)) (-5 *1 (-934 *5)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149))) + (-5 *2 (-51)) (-5 *1 (-933 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-417 (-965 *6))) (-5 *5 (-1198)) (-5 *3 (-965 *6)) - (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-934 *6))))) -(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-933 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-933 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-933 *3)) (-4 *3 (-319))))) -(((*1 *2 *3 *3) (-12 (-5 *2 (-1192 *3)) (-5 *1 (-933 *3)) (-4 *3 (-319))))) -(((*1 *1 *1) (-12 (-5 *1 (-933 *2)) (-4 *2 (-319))))) + (-12 (-5 *4 (-417 (-964 *6))) (-5 *5 (-1197)) (-5 *3 (-964 *6)) + (-4 *6 (-13 (-319) (-149))) (-5 *2 (-51)) (-5 *1 (-933 *6))))) +(((*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-417 *3)) (-5 *1 (-932 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-932 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-932 *3)) (-4 *3 (-319))))) +(((*1 *2 *3 *3) (-12 (-5 *2 (-1191 *3)) (-5 *1 (-932 *3)) (-4 *3 (-319))))) +(((*1 *1 *1) (-12 (-5 *1 (-932 *2)) (-4 *2 (-319))))) (((*1 *2 *2) - (-12 (-4 *3 (-1264 (-419 (-558)))) (-5 *1 (-932 *3 *2)) - (-4 *2 (-1264 (-419 *3)))))) + (-12 (-4 *3 (-1263 (-419 (-558)))) (-5 *1 (-931 *3 *2)) + (-4 *2 (-1263 (-419 *3)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-932 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) + (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-931 *4 *3)) + (-4 *3 (-1263 (-419 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) - (-4 *4 (-1264 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-932 *4 *5)) - (-4 *5 (-1264 (-419 *4)))))) + (-12 (-5 *3 (-660 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558))))) + (-4 *4 (-1263 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-931 *4 *5)) + (-4 *5 (-1263 (-419 *4)))))) (((*1 *2 *3) - (-12 (-4 *3 (-1264 (-419 (-558)))) - (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-932 *3 *4)) - (-4 *4 (-1264 (-419 *3))))) + (-12 (-4 *3 (-1263 (-419 (-558)))) + (-5 *2 (-2 (|:| |den| (-558)) (|:| |gcdnum| (-558)))) (-5 *1 (-931 *3 *4)) + (-4 *4 (-1263 (-419 *3))))) ((*1 *2 *3) - (-12 (-4 *4 (-1264 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-932 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) + (-12 (-4 *4 (-1263 (-419 *2))) (-5 *2 (-558)) (-5 *1 (-931 *4 *3)) + (-4 *3 (-1263 (-419 *4)))))) (((*1 *2 *3) - (-12 (-5 *3 (-558)) (-4 *4 (-1264 (-419 *3))) (-5 *2 (-938)) - (-5 *1 (-932 *4 *5)) (-4 *5 (-1264 (-419 *4)))))) + (-12 (-5 *3 (-558)) (-4 *4 (-1263 (-419 *3))) (-5 *2 (-937)) + (-5 *1 (-931 *4 *5)) (-4 *5 (-1263 (-419 *4)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-569) (-1059 (-558)))) - (-5 *2 (-2 (|:| -4202 (-791)) (|:| -2614 *8))) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) + (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1058 (-558)))) + (-5 *2 (-2 (|:| -4201 (-790)) (|:| -2613 *8))) + (-5 *1 (-929 *4 *5 *6 *7 *8)))) ((*1 *2 *3) (|partial| -12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) - (-4 *4 (-1264 (-419 (-558)))) (-4 *5 (-1264 (-419 *4))) + (-4 *4 (-1263 (-419 (-558)))) (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) - (-5 *2 (-2 (|:| -4202 (-791)) (|:| -2614 *6))) (-5 *1 (-931 *4 *5 *6))))) + (-5 *2 (-2 (|:| -4201 (-790)) (|:| -2613 *6))) (-5 *1 (-930 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) - (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-114)) - (-5 *1 (-930 *4 *5 *6 *7 *8)))) + (-12 (-5 *3 (-346 *5 *6 *7 *8)) (-4 *5 (-433 *4)) (-4 *6 (-1263 *5)) + (-4 *7 (-1263 (-419 *6))) (-4 *8 (-355 *5 *6 *7)) + (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-114)) + (-5 *1 (-929 *4 *5 *6 *7 *8)))) ((*1 *2 *3) - (-12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1264 (-419 (-558)))) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-114)) - (-5 *1 (-931 *4 *5 *6))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-464)))) + (-12 (-5 *3 (-346 (-419 (-558)) *4 *5 *6)) (-4 *4 (-1263 (-419 (-558)))) + (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 (-419 (-558)) *4 *5)) (-5 *2 (-114)) + (-5 *1 (-930 *4 *5 *6))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-464)))) ((*1 *2 *2 *2) - (-12 (-5 *2 (-1192 *6)) (-4 *6 (-969 *5 *3 *4)) (-4 *3 (-815)) (-4 *4 (-861)) - (-4 *5 (-929)) (-5 *1 (-469 *3 *4 *5 *6)))) - ((*1 *2 *2 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-929))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) - (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1122)))) - ((*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-417 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *2 *3) - (-12 (-5 *2 (-417 (-1192 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1192 *1)) - (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1122)))) - ((*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-417 (-1192 *1))) (-5 *3 (-1192 *1))))) -(((*1 *2 *3) (-12 (-4 *1 (-929)) (-5 *2 (-417 (-1192 *1))) (-5 *3 (-1192 *1))))) + (-12 (-5 *2 (-1191 *6)) (-4 *6 (-968 *5 *3 *4)) (-4 *3 (-814)) (-4 *4 (-860)) + (-4 *5 (-928)) (-5 *1 (-469 *3 *4 *5 *6)))) + ((*1 *2 *2 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-928))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) + (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1121)))) + ((*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-417 (-1191 *1))) (-5 *3 (-1191 *1))))) +(((*1 *2 *3) + (-12 (-5 *2 (-417 (-1191 *1))) (-5 *1 (-326 *4)) (-5 *3 (-1191 *1)) + (-4 *4 (-464)) (-4 *4 (-569)) (-4 *4 (-1121)))) + ((*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-417 (-1191 *1))) (-5 *3 (-1191 *1))))) +(((*1 *2 *3) (-12 (-4 *1 (-928)) (-5 *2 (-417 (-1191 *1))) (-5 *3 (-1191 *1))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-1192 *5))) (-5 *3 (-1192 *5)) (-4 *5 (-168 *4)) + (|partial| -12 (-5 *2 (-660 (-1191 *5))) (-5 *3 (-1191 *5)) (-4 *5 (-168 *4)) (-4 *4 (-557)) (-5 *1 (-151 *4 *5)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-1264 *4)) + (|partial| -12 (-5 *2 (-660 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-363)) (-5 *1 (-371 *4 *5 *3)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-1192 (-558)))) (-5 *3 (-1192 (-558))) + (|partial| -12 (-5 *2 (-660 (-1191 (-558)))) (-5 *3 (-1191 (-558))) (-5 *1 (-584)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-1192 *1))) (-5 *3 (-1192 *1)) (-4 *1 (-929))))) + (|partial| -12 (-5 *2 (-660 (-1191 *1))) (-5 *3 (-1191 *1)) (-4 *1 (-928))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-363)) (-5 *2 (-1288 *1)))) + (|partial| -12 (-5 *3 (-708 *1)) (-4 *1 (-363)) (-5 *2 (-1287 *1)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-709 *1)) (-4 *1 (-147)) (-4 *1 (-929)) - (-5 *2 (-1288 *1))))) -(((*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147)))) + (|partial| -12 (-5 *3 (-708 *1)) (-4 *1 (-147)) (-4 *1 (-928)) + (-5 *2 (-1287 *1))))) +(((*1 *2 *1) (-12 (-5 *2 (-710 *1)) (-4 *1 (-147)))) ((*1 *1 *1) (-4 *1 (-363))) - ((*1 *2 *1) (-12 (-5 *2 (-711 *1)) (-4 *1 (-147)) (-4 *1 (-929))))) + ((*1 *2 *1) (-12 (-5 *2 (-710 *1)) (-4 *1 (-147)) (-4 *1 (-928))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-861)) (-4 *5 (-929)) (-4 *6 (-815)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-417 (-1192 *8))) (-5 *1 (-926 *5 *6 *7 *8)) - (-5 *4 (-1192 *8)))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-860)) (-4 *5 (-928)) (-4 *6 (-814)) + (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-417 (-1191 *8))) (-5 *1 (-925 *5 *6 *7 *8)) + (-5 *4 (-1191 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-1264 *4)) (-5 *2 (-417 (-1192 *5))) - (-5 *1 (-927 *4 *5)) (-5 *3 (-1192 *5))))) + (-12 (-4 *4 (-928)) (-4 *5 (-1263 *4)) (-5 *2 (-417 (-1191 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1191 *5))))) (((*1 *2) - (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-929)) (-5 *1 (-469 *3 *4 *2 *5)) - (-4 *5 (-969 *2 *3 *4)))) + (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-928)) (-5 *1 (-469 *3 *4 *2 *5)) + (-4 *5 (-968 *2 *3 *4)))) ((*1 *2) - (-12 (-4 *3 (-815)) (-4 *4 (-861)) (-4 *2 (-929)) (-5 *1 (-926 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4)))) - ((*1 *2) (-12 (-4 *2 (-929)) (-5 *1 (-927 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-4 *3 (-814)) (-4 *4 (-860)) (-4 *2 (-928)) (-5 *1 (-925 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4)))) + ((*1 *2) (-12 (-4 *2 (-928)) (-5 *1 (-926 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-417 (-1192 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-12 (-4 *4 (-928)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) + (-5 *2 (-417 (-1191 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-1264 *4)) (-5 *2 (-417 (-1192 *5))) - (-5 *1 (-927 *4 *5)) (-5 *3 (-1192 *5))))) + (-12 (-4 *4 (-928)) (-4 *5 (-1263 *4)) (-5 *2 (-417 (-1191 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1191 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-969 *4 *5 *6)) - (-5 *2 (-417 (-1192 *7))) (-5 *1 (-926 *4 *5 *6 *7)) (-5 *3 (-1192 *7)))) + (-12 (-4 *4 (-928)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-968 *4 *5 *6)) + (-5 *2 (-417 (-1191 *7))) (-5 *1 (-925 *4 *5 *6 *7)) (-5 *3 (-1191 *7)))) ((*1 *2 *3) - (-12 (-4 *4 (-929)) (-4 *5 (-1264 *4)) (-5 *2 (-417 (-1192 *5))) - (-5 *1 (-927 *4 *5)) (-5 *3 (-1192 *5))))) + (-12 (-4 *4 (-928)) (-4 *5 (-1263 *4)) (-5 *2 (-417 (-1191 *5))) + (-5 *1 (-926 *4 *5)) (-5 *3 (-1191 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-1192 *7))) (-5 *3 (-1192 *7)) - (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-929)) (-4 *5 (-815)) (-4 *6 (-861)) - (-5 *1 (-926 *4 *5 *6 *7)))) + (|partial| -12 (-5 *2 (-660 (-1191 *7))) (-5 *3 (-1191 *7)) + (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-928)) (-4 *5 (-814)) (-4 *6 (-860)) + (-5 *1 (-925 *4 *5 *6 *7)))) ((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-1192 *5))) (-5 *3 (-1192 *5)) - (-4 *5 (-1264 *4)) (-4 *4 (-929)) (-5 *1 (-927 *4 *5))))) + (|partial| -12 (-5 *2 (-660 (-1191 *5))) (-5 *3 (-1191 *5)) + (-4 *5 (-1263 *4)) (-4 *4 (-928)) (-5 *1 (-926 *4 *5))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *2 (-661 (-1192 *7))) (-5 *3 (-1192 *7)) - (-4 *7 (-969 *5 *6 *4)) (-4 *5 (-929)) (-4 *6 (-815)) (-4 *4 (-861)) - (-5 *1 (-926 *5 *6 *4 *7))))) -(((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-661 *6)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-31)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) ((*1 *1) (-4 *1 (-557))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-719)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-921 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-661 (-661 (-791)))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-921 *3))) (-4 *3 (-1122)) (-5 *1 (-924 *3))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1118 *3)))) + (|partial| -12 (-5 *2 (-660 (-1191 *7))) (-5 *3 (-1191 *7)) + (-4 *7 (-968 *5 *6 *4)) (-4 *5 (-928)) (-4 *6 (-814)) (-4 *4 (-860)) + (-5 *1 (-925 *5 *6 *4 *7))))) +(((*1 *2 *1) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-660 *6)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-31)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) ((*1 *1) (-4 *1 (-557))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-718)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-920 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-660 (-790)))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-920 *3))) (-4 *3 (-1121)) (-5 *1 (-923 *3))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1117 *3)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1122)) (-5 *2 (-1118 (-661 *4))) (-5 *1 (-924 *4)) - (-5 *3 (-661 *4)))) + (-12 (-4 *4 (-1121)) (-5 *2 (-1117 (-660 *4))) (-5 *1 (-923 *4)) + (-5 *3 (-660 *4)))) ((*1 *2 *1 *3) - (-12 (-4 *4 (-1122)) (-5 *2 (-1118 (-1118 *4))) (-5 *1 (-924 *4)) - (-5 *3 (-1118 *4)))) - ((*1 *2 *1 *3) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) + (-12 (-4 *4 (-1121)) (-5 *2 (-1117 (-1117 *4))) (-5 *1 (-923 *4)) + (-5 *3 (-1117 *4)))) + ((*1 *2 *1 *3) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-1118 (-1118 *3))) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-1117 (-1117 *3))) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1122)) (-5 *2 (-661 (-791))) - (-5 *1 (-924 *4))))) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1121)) (-5 *2 (-660 (-790))) + (-5 *1 (-923 *4))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-921 *4)) (-4 *4 (-1122)) (-5 *2 (-661 (-791))) - (-5 *1 (-924 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-1118 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-1118 *3)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1 *1) (-12 (-4 *1 (-923 *3)) (-4 *3 (-1122)) (-5 *2 (-114)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) + (-12 (-5 *3 (-920 *4)) (-4 *4 (-1121)) (-5 *2 (-660 (-790))) + (-5 *1 (-923 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-1117 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-1117 *3)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1 *1) (-12 (-4 *1 (-922 *3)) (-4 *3 (-1121)) (-5 *2 (-114)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-558)) (-5 *2 (-1294)) (-5 *1 (-924 *4)) (-4 *4 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-924 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-923 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-4 *1 (-923 *3))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1163 *4 *2)) (-14 *4 (-938)) - (-4 *2 (-13 (-1070) (-10 -7 (-6 (-4427 "*"))))) (-5 *1 (-922 *4 *2))))) -(((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |preimage| (-661 *3)) (|:| |image| (-661 *3)))) - (-5 *1 (-921 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-921 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-661 *3))) (-4 *3 (-1122)) (-5 *1 (-921 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-992)) (-5 *1 (-921 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-921 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-1059 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) + (-12 (-5 *3 (-558)) (-5 *2 (-1293)) (-5 *1 (-923 *4)) (-4 *4 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-923 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-4 *1 (-922 *3))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1162 *4 *2)) (-14 *4 (-937)) + (-4 *2 (-13 (-1069) (-10 -7 (-6 (-4426 "*"))))) (-5 *1 (-921 *4 *2))))) +(((*1 *2 *1) + (-12 (-5 *2 (-2 (|:| |preimage| (-660 *3)) (|:| |image| (-660 *3)))) + (-5 *1 (-920 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-920 *3))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-660 *3))) (-4 *3 (-1121)) (-5 *1 (-920 *3))))) +(((*1 *2 *1) (-12 (-5 *2 (-991)) (-5 *1 (-920 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-920 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1058 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-921 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-1059 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-920 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-1058 (-558))) (-4 *1 (-310)) (-5 *2 (-114)))) ((*1 *2 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-921 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (-12 (-5 *2 (-1118 *3)) (-5 *1 (-921 *3)) (-4 *3 (-381)) (-4 *3 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-921 *3))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-920 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-791)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-920 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (-12 (-5 *2 (-1117 *3)) (-5 *1 (-920 *3)) (-4 *3 (-381)) (-4 *3 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-920 *3))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *1 (-919 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-236 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-239)) (-5 *2 (-790)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-791)) (-4 *1 (-274 *4)) (-4 *4 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1238)))) - ((*1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-911 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1238)))) + (-12 (-5 *2 (-1 *4 *4)) (-5 *3 (-790)) (-4 *1 (-274 *4)) (-4 *4 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-274 *3)) (-4 *3 (-1237)))) + ((*1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-910 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1237)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 *4)) (-5 *3 (-661 (-791))) (-4 *1 (-919 *4)) - (-4 *4 (-1122)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-919 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *1 (-919 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-660 *4)) (-5 *3 (-660 (-790))) (-4 *1 (-918 *4)) + (-4 *4 (-1121)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-918 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *1 (-918 *3)) (-4 *3 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-789)) + (-12 (-5 *3 (-788)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-789)) (-5 *4 (-1084)) + (-12 (-5 *3 (-788)) (-5 *4 (-1083)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) (-5 *1 (-577)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-807)) (-5 *3 (-1084)) + (-12 (-4 *1 (-806)) (-5 *3 (-1083)) (-5 *4 - (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) - (|:| |extra| (-1056)))))) + (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) + (|:| |extra| (-1055)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-807)) (-5 *3 (-1084)) + (-12 (-4 *1 (-806)) (-5 *3 (-1083)) (-5 *4 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)) - (|:| |extra| (-1056)))))) + (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)) + (|:| |extra| (-1055)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-822)) (-5 *3 (-1084)) + (-12 (-4 *1 (-821)) (-5 *3 (-1083)) (-5 *4 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) + (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) ((*1 *2 *3) - (-12 (-5 *3 (-830)) + (-12 (-5 *3 (-829)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *1 (-827)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *1 (-826)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-830)) (-5 *4 (-1084)) + (-12 (-5 *3 (-829)) (-5 *4 (-1083)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *1 (-827)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *1 (-826)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-852)) (-5 *3 (-1084)) - (-5 *4 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) - (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) + (-12 (-4 *1 (-851)) (-5 *3 (-1083)) + (-5 *4 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) + (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-852)) (-5 *3 (-1084)) + (-12 (-4 *1 (-851)) (-5 *3 (-1083)) (-5 *4 - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) - (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) + (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) ((*1 *2 *3) - (-12 (-5 *3 (-854)) + (-12 (-5 *3 (-853)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *1 (-853)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *1 (-852)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1084)) + (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *1 (-853)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *1 (-852)))) ((*1 *2 *3 *4) - (-12 (-4 *1 (-912)) (-5 *3 (-1084)) + (-12 (-4 *1 (-911)) (-5 *3 (-1083)) (-5 *4 - (-2 (|:| |pde| (-661 (-326 (-229)))) + (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| - (-661 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) - (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) - (|:| |dFinish| (-709 (-229)))))) - (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) + (-660 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) + (|:| |dFinish| (-708 (-229)))))) + (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) - (-5 *2 (-2 (|:| -3069 (-391)) (|:| |explanations| (-1180)))))) + (-5 *2 (-2 (|:| -3068 (-391)) (|:| |explanations| (-1179)))))) ((*1 *2 *3) - (-12 (-5 *3 (-915)) + (-12 (-5 *3 (-914)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *1 (-914)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *1 (-913)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-915)) (-5 *4 (-1084)) + (-12 (-5 *3 (-914)) (-5 *4 (-1083)) (-5 *2 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *1 (-914))))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *1 (-913))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-5 *1 (-913 *2 *4)) (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-790)) (-4 *4 (-376)) (-5 *1 (-912 *2 *4)) (-4 *2 (-1263 *4))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-5 *1 (-913 *2 *3)) (-4 *2 (-1264 *3))))) + (|partial| -12 (-4 *3 (-376)) (-5 *1 (-912 *2 *3)) (-4 *2 (-1263 *3))))) (((*1 *2 *3) - (-12 (-4 *1 (-912)) + (-12 (-4 *1 (-911)) (-5 *3 - (-2 (|:| |pde| (-661 (-326 (-229)))) + (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| - (-661 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) - (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) - (|:| |dFinish| (-709 (-229)))))) - (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) + (-660 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) + (|:| |dFinish| (-708 (-229)))))) + (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) - (-5 *2 (-1056))))) + (-5 *2 (-1055))))) (((*1 *1) (-12 (-4 *1 (-477 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-4 *1 (-742))) ((*1 *1) (-4 *1 (-746))) - ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122)))) - ((*1 *1) (-12 (-5 *1 (-908 *2)) (-4 *2 (-861))))) + ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-4 *1 (-741))) ((*1 *1) (-4 *1 (-745))) + ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121)))) + ((*1 *1) (-12 (-5 *1 (-907 *2)) (-4 *2 (-860))))) (((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) - (-5 *2 (-661 (-2 (|:| |k| *4) (|:| |c| *3)))))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) + (-5 *2 (-660 (-2 (|:| |k| *4) (|:| |c| *3)))))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |k| (-908 *3)) (|:| |c| *4)))) - (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-692 *3))) (-5 *1 (-908 *3)) (-4 *3 (-861))))) + (-12 (-5 *2 (-660 (-2 (|:| |k| (-907 *3)) (|:| |c| *4)))) + (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-691 *3))) (-5 *1 (-907 *3)) (-4 *3 (-860))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *3) - (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1238)))) + (-12 (-5 *3 (-51)) (-5 *2 (-114)) (-5 *1 (-52 *4)) (-4 *4 (-1237)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-661 (-1198))))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-908 *3)) (-4 *3 (-861))))) + (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) + (-14 *4 (-660 (-1197))))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-907 *3)) (-4 *3 (-860))))) (((*1 *2 *3) - (-12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-5 *2 (-661 *5)) (-5 *1 (-906 *4 *5)) - (-4 *5 (-1238))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (-12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-5 *2 (-660 *5)) (-5 *1 (-905 *4 *5)) + (-4 *5 (-1237))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-51)) (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-906 *4 *3)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-905 *4 *3)) (-4 *3 (-1237))))) (((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-5 *2 (-114)) - (-5 *1 (-903 *4 *5)) (-4 *5 (-1122)))) + (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-5 *2 (-114)) + (-5 *1 (-902 *4 *5)) (-4 *5 (-1121)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-906 *5 *3)) - (-4 *3 (-1238)))) + (-12 (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-905 *5 *3)) + (-4 *3 (-1237)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-905 *5)) (-4 *5 (-1122)) (-4 *6 (-1238)) - (-5 *2 (-114)) (-5 *1 (-906 *5 *6))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-904 *5)) (-4 *5 (-1121)) (-4 *6 (-1237)) + (-5 *2 (-114)) (-5 *1 (-905 *5 *6))))) (((*1 *1) (-4 *1 (-23))) ((*1 *1) (-12 (-4 *1 (-482 *2 *3)) (-4 *2 (-175)) (-4 *3 (-23)))) - ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122))))) + ((*1 *1) (-5 *1 (-547))) ((*1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| -2909 (-115)) (|:| |arg| (-661 (-905 *3))))) - (-5 *1 (-905 *3)) (-4 *3 (-1122)))) + (|partial| -12 (-5 *2 (-2 (|:| -2908 (-115)) (|:| |arg| (-660 (-904 *3))))) + (-5 *1 (-904 *3)) (-4 *3 (-1121)))) ((*1 *2 *1 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-905 *4))) (-5 *1 (-905 *4)) - (-4 *4 (-1122))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-904 *4))) (-5 *1 (-904 *4)) + (-4 *4 (-1121))))) (((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-315)))) ((*1 *2 *1) - (|partial| -12 (-5 *2 (-2 (|:| |num| (-905 *3)) (|:| |den| (-905 *3)))) - (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) - (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) + (|partial| -12 (-5 *2 (-2 (|:| |num| (-904 *3)) (|:| |den| (-904 *3)))) + (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) + (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) (((*1 *1 *2 *3 *3 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-114)) (-5 *1 (-905 *4)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-1197)) (-5 *3 (-114)) (-5 *1 (-904 *4)) (-4 *4 (-1121))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-51)) (-5 *1 (-905 *4)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-51)) (-5 *1 (-904 *4)) (-4 *4 (-1121))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| |var| (-661 (-1198))) (|:| |pred| (-51)))) - (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1) (-12 (-5 *1 (-905 *2)) (-4 *2 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-51))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-2 (|:| |var| (-660 (-1197))) (|:| |pred| (-51)))) + (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1) (-12 (-5 *1 (-904 *2)) (-4 *2 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-51))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-661 (-905 *3))) (-5 *1 (-905 *3)) (-4 *3 (-1122))))) + (|partial| -12 (-5 *2 (-660 (-904 *3))) (-5 *1 (-904 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-4 *4 (-1122)) (-5 *2 (-114)) (-5 *1 (-900 *3 *4 *5)) (-4 *3 (-1122)) - (-4 *5 (-686 *4)))) + (-12 (-4 *4 (-1121)) (-5 *2 (-114)) (-5 *1 (-899 *3 *4 *5)) (-4 *3 (-1121)) + (-4 *5 (-685 *4)))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-903 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-114)) (-5 *1 (-902 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *1) - (-12 (-4 *3 (-1122)) (-5 *1 (-900 *2 *3 *4)) (-4 *2 (-1122)) - (-4 *4 (-686 *3)))) - ((*1 *1) (-12 (-5 *1 (-903 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + (-12 (-4 *3 (-1121)) (-5 *1 (-899 *2 *3 *4)) (-4 *2 (-1121)) + (-4 *4 (-685 *3)))) + ((*1 *1) (-12 (-5 *1 (-902 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-905 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) - (-5 *1 (-903 *4 *2))))) + (|partial| -12 (-5 *3 (-904 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-902 *4 *2))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1121))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1121))))) (((*1 *1 *2 *3 *1 *3) - (-12 (-5 *2 (-905 *4)) (-4 *4 (-1122)) (-5 *1 (-903 *4 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-904 *4)) (-4 *4 (-1121)) (-5 *1 (-902 *4 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *6 (-901 *5)) (-5 *2 (-900 *5 *6 (-661 *6))) - (-5 *1 (-902 *5 *6 *4)) (-5 *3 (-661 *6)) (-4 *4 (-631 (-905 *5))))) + (-12 (-4 *5 (-1121)) (-4 *6 (-900 *5)) (-5 *2 (-899 *5 *6 (-660 *6))) + (-5 *1 (-901 *5 *6 *4)) (-5 *3 (-660 *6)) (-4 *4 (-630 (-904 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-661 (-305 *3))) (-5 *1 (-902 *5 *3 *4)) - (-4 *3 (-1059 (-1198))) (-4 *3 (-901 *5)) (-4 *4 (-631 (-905 *5))))) + (-12 (-4 *5 (-1121)) (-5 *2 (-660 (-305 *3))) (-5 *1 (-901 *5 *3 *4)) + (-4 *3 (-1058 (-1197))) (-4 *3 (-900 *5)) (-4 *4 (-630 (-904 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-661 (-305 (-965 *3)))) (-5 *1 (-902 *5 *3 *4)) - (-4 *3 (-1070)) (-2959 (-4 *3 (-1059 (-1198)))) (-4 *3 (-901 *5)) - (-4 *4 (-631 (-905 *5))))) + (-12 (-4 *5 (-1121)) (-5 *2 (-660 (-305 (-964 *3)))) (-5 *1 (-901 *5 *3 *4)) + (-4 *3 (-1069)) (-2958 (-4 *3 (-1058 (-1197)))) (-4 *3 (-900 *5)) + (-4 *4 (-630 (-904 *5))))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-903 *5 *3)) (-5 *1 (-902 *5 *3 *4)) - (-2959 (-4 *3 (-1059 (-1198)))) (-2959 (-4 *3 (-1070))) (-4 *3 (-901 *5)) - (-4 *4 (-631 (-905 *5)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1198)) (-5 *2 (-114)))) + (-12 (-4 *5 (-1121)) (-5 *2 (-902 *5 *3)) (-5 *1 (-901 *5 *3 *4)) + (-2958 (-4 *3 (-1058 (-1197)))) (-2958 (-4 *3 (-1069))) (-4 *3 (-900 *5)) + (-4 *4 (-630 (-904 *5)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1197)) (-5 *2 (-114)))) ((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1122)))) + (-12 (-5 *3 (-1197)) (-5 *2 (-114)) (-5 *1 (-627 *4)) (-4 *4 (-1121)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-628 *4)) (-4 *4 (-1122)))) - ((*1 *2 *1 *3) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1122)) (-5 *2 (-114)))) + (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-627 *4)) (-4 *4 (-1121)))) + ((*1 *2 *1 *3) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1121)) (-5 *2 (-114)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-902 *5 *3 *4)) (-4 *3 (-901 *5)) - (-4 *4 (-631 (-905 *5))))) + (-12 (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-901 *5 *3 *4)) (-4 *3 (-900 *5)) + (-4 *4 (-630 (-904 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *6)) (-4 *6 (-901 *5)) (-4 *5 (-1122)) (-5 *2 (-114)) - (-5 *1 (-902 *5 *6 *4)) (-4 *4 (-631 (-905 *5)))))) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-900 *5)) (-4 *5 (-1121)) (-5 *2 (-114)) + (-5 *1 (-901 *5 *6 *4)) (-4 *4 (-630 (-904 *5)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-903 *4 *5)) (-5 *3 (-903 *4 *6)) (-4 *4 (-1122)) - (-4 *5 (-1122)) (-4 *6 (-686 *5)) (-5 *1 (-900 *4 *5 *6))))) + (-12 (-5 *2 (-902 *4 *5)) (-5 *3 (-902 *4 *6)) (-4 *4 (-1121)) + (-4 *5 (-1121)) (-4 *6 (-685 *5)) (-5 *1 (-899 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *4 (-1122)) (-5 *2 (-903 *3 *5)) (-5 *1 (-900 *3 *4 *5)) - (-4 *3 (-1122)) (-4 *5 (-686 *4))))) -(((*1 *2 *3) (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-558))))) + (-12 (-4 *4 (-1121)) (-5 *2 (-902 *3 *5)) (-5 *1 (-899 *3 *4 *5)) + (-4 *3 (-1121)) (-4 *5 (-685 *4))))) +(((*1 *2 *3) (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-558))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-661 (-558))))) + (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-660 (-558))))) ((*1 *2 *3) - (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-661 (-558)))))) + (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-660 (-558)))))) (((*1 *2 *3 *2) - (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *3 (-661 (-558))) (-5 *1 (-898))))) + (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *3 (-660 (-558))) (-5 *1 (-897))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1176 (-661 (-558)))) (-5 *1 (-898)) (-5 *3 (-661 (-558)))))) -(((*1 *2 *2) (-12 (-5 *2 (-1176 (-661 (-938)))) (-5 *1 (-898))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-892 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-894 *2)) (-4 *2 (-1238)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-897 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-661 (-1203))) (-5 *1 (-895))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888))))) -(((*1 *2 *3) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-248)) (-5 *3 (-1180)))) - ((*1 *2 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-248)))) - ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888))))) -(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-888))))) -(((*1 *1 *2 *3) (-12 (-5 *1 (-887 *2 *3)) (-4 *2 (-1238)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-1175 (-660 (-558)))) (-5 *1 (-897)) (-5 *3 (-660 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-1175 (-660 (-937)))) (-5 *1 (-897))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-891 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-893 *2)) (-4 *2 (-1237)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *1 (-896 *2)) (-4 *2 (-1237))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *1 (-896 *2)) (-4 *2 (-1237))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-660 (-1202))) (-5 *1 (-894))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887))))) +(((*1 *2 *3) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-248)) (-5 *3 (-1179)))) + ((*1 *2 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-248)))) + ((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887))))) +(((*1 *1 *2) (-12 (-5 *2 (-159)) (-5 *1 (-887))))) +(((*1 *1 *2 *3) (-12 (-5 *1 (-886 *2 *3)) (-4 *2 (-1237)) (-4 *3 (-1237))))) (((*1 *2 *1) (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-119 *3)) (-14 *3 (-558)))) - ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) + ((*1 *1 *2 *3 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2)))) ((*1 *1 *2) (-12 (-5 *2 (-419 *3)) (-4 *3 (-319)) (-5 *1 (-177 *3)))) - ((*1 *2 *3) (-12 (-5 *2 (-177 (-558))) (-5 *1 (-785 *3)) (-4 *3 (-416)))) + ((*1 *2 *3) (-12 (-5 *2 (-177 (-558))) (-5 *1 (-784 *3)) (-4 *3 (-416)))) ((*1 *2 *1) - (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-885 *3)) (-14 *3 (-558)))) + (-12 (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-884 *3)) (-14 *3 (-558)))) ((*1 *2 *1) - (-12 (-14 *3 (-558)) (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-886 *3 *4)) - (-4 *4 (-884 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4416)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) - ((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-1176 (-558)))))) + (-12 (-14 *3 (-558)) (-5 *2 (-177 (-419 (-558)))) (-5 *1 (-885 *3 *4)) + (-4 *4 (-883 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-415 *3)) (-4 *3 (-416)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4415)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) + ((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-1175 (-558)))))) (((*1 *2 *1) (-12 (-4 *3 (-175)) (-4 *2 (-23)) (-5 *1 (-301 *3 *4 *2 *5 *6 *7)) - (-4 *4 (-1264 *3)) (-14 *5 (-1 *4 *4 *2)) + (-4 *4 (-1263 *3)) (-14 *5 (-1 *4 *4 *2)) (-14 *6 (-1 (-3 *2 "failed") *2 *2)) (-14 *7 (-1 (-3 *4 "failed") *4 *4 *2)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-731 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-12 (-4 *2 (-23)) (-5 *1 (-730 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *2 (-1264 *3)) (-5 *1 (-732 *3 *2)) (-4 *3 (-1070)))) + ((*1 *2) (-12 (-4 *2 (-1263 *3)) (-5 *1 (-731 *3 *2)) (-4 *3 (-1069)))) ((*1 *2 *1) - (-12 (-4 *2 (-23)) (-5 *1 (-735 *3 *2 *4 *5 *6)) (-4 *3 (-175)) + (-12 (-4 *2 (-23)) (-5 *1 (-734 *3 *2 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-1 *3 *3 *2)) (-14 *5 (-1 (-3 *2 "failed") *2 *2)) (-14 *6 (-1 (-3 *3 "failed") *3 *3 *2)))) - ((*1 *2) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-884 *3)) (-5 *2 (-558))))) -(((*1 *1 *1) (-4 *1 (-884 *2)))) -(((*1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1192 (-558))) (-5 *3 (-558)) (-4 *1 (-884 *4))))) + ((*1 *2) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-883 *3)) (-5 *2 (-558))))) +(((*1 *1 *1) (-4 *1 (-883 *2)))) +(((*1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1191 (-558))) (-5 *3 (-558)) (-4 *1 (-883 *4))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-419 *6)) - (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1281 *5)) (-4 *6 (-1264 *5)))) + (|partial| -12 (-5 *3 (-790)) (-4 *5 (-376)) (-5 *2 (-419 *6)) + (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1263 *5)))) ((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-376)) - (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1257 *6 *5))) - (-5 *1 (-882 *5 *6 *7)))) + (|partial| -12 (-5 *3 (-790)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-376)) + (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1256 *6 *5))) + (-5 *1 (-881 *5 *6 *7)))) ((*1 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-791)) (-5 *4 (-1278 *5 *6 *7)) (-4 *5 (-376)) - (-14 *6 (-1198)) (-14 *7 *5) (-5 *2 (-419 (-1257 *6 *5))) - (-5 *1 (-882 *5 *6 *7))))) + (|partial| -12 (-5 *3 (-790)) (-5 *4 (-1277 *5 *6 *7)) (-4 *5 (-376)) + (-14 *6 (-1197)) (-14 *7 *5) (-5 *2 (-419 (-1256 *6 *5))) + (-5 *1 (-881 *5 *6 *7))))) (((*1 *2 *3 *3 *4 *4) - (|partial| -12 (-5 *3 (-791)) (-4 *5 (-376)) (-5 *2 (-177 *6)) - (-5 *1 (-881 *5 *4 *6)) (-4 *4 (-1281 *5)) (-4 *6 (-1264 *5))))) -(((*1 *2 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) - (-5 *2 (-661 *3)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-756 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-451))) (-5 *1 (-879))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-877))))) -(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) - ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1238)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-791)))) - ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) - ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-877))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) -(((*1 *1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-877))))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) - ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) + (|partial| -12 (-5 *3 (-790)) (-4 *5 (-376)) (-5 *2 (-177 *6)) + (-5 *1 (-880 *5 *4 *6)) (-4 *4 (-1280 *5)) (-4 *6 (-1263 *5))))) +(((*1 *2 *1) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) + (-5 *2 (-660 *3)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-755 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-451))) (-5 *1 (-878))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-876))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-876))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *3)) (-4 *3 (-1237)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-790)))) + ((*1 *2 *3) + (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) + ((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) +(((*1 *1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-876))))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-310)))) + ((*1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-171 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-391))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-391))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-558))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-558))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-171 (-391))))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-171 (-391))))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-558)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-558)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-171 (-391))))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-171 (-391))))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-391)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-558)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-558)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-558))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-171 (-391)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-391))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-558))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-714))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-713))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-719))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-718))) (-5 *1 (-342)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-965 (-558)))) (-5 *4 (-326 (-721))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-964 (-558)))) (-5 *4 (-326 (-720))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-714)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-713)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-719)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-718)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-326 (-721)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-326 (-720)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-714)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-713)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-719)))) (-5 *1 (-342)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-718)))) (-5 *1 (-342)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-326 (-721)))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-714))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-714))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-709 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-714))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-719))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-326 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-1180)) (-5 *1 (-342)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) -(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1 *1) (-5 *1 (-877))) ((*1 *1 *1 *1) (-5 *1 (-877))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-310)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-326 (-720)))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-713))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-718))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-720))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-713))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-718))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-708 (-720))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-713))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-718))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-326 (-720))) (-5 *1 (-342)))) + ((*1 *1 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-1179)) (-5 *1 (-342)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) +(((*1 *1) (-5 *1 (-146))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1 *1) (-5 *1 (-876))) ((*1 *1 *1 *1) (-5 *1 (-876))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-310)))) ((*1 *1 *1) (-4 *1 (-310))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877)))) - ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1180)) (-5 *1 (-195)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-877))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876)))) + ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1179)) (-5 *1 (-195)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-876))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *2 *1 *1) (-12 (-4 *1 (-864)) (-5 *2 (-114)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *2 *1 *1) (-12 (-4 *1 (-863)) (-5 *2 (-114)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) (((*1 *2 *1 *1) - (|partial| -12 (-5 *2 (-2 (|:| |lm| (-841 *3)) (|:| |rm| (-841 *3)))) - (-5 *1 (-841 *3)) (-4 *3 (-861)))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-791))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-791))) - ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-877)))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-876)))) - ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-876))))) + (|partial| -12 (-5 *2 (-2 (|:| |lm| (-840 *3)) (|:| |rm| (-840 *3)))) + (-5 *1 (-840 *3)) (-4 *3 (-860)))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-4 *1 (-319))) ((*1 *1 *1 *1) (-5 *1 (-790))) + ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *1) (-4 *1 (-113))) ((*1 *1 *1) (-5 *1 (-876)))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-875)))) + ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-875))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541)))) ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-589)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-876))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-711 (-130))) (-5 *3 (-130))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-711 (-562))) (-5 *3 (-562))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *2 (-711 (-1247))) (-5 *3 (-1247))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-875)) (-5 *3 (-131)) (-5 *2 (-791))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-51))) (-5 *2 (-1294)) (-5 *1 (-873))))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-875))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-710 (-130))) (-5 *3 (-130))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-710 (-562))) (-5 *3 (-562))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *2 (-710 (-1246))) (-5 *3 (-1246))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-874)) (-5 *3 (-131)) (-5 *2 (-790))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-51))) (-5 *2 (-1293)) (-5 *1 (-872))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-38 (-419 (-558)))) + (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175)))) - ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-791)) (-5 *1 (-870 *2)) (-4 *2 (-175))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175)))) + ((*1 *2 *3 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-790)) (-5 *1 (-869 *2)) (-4 *2 (-175))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) + (-12 (-4 *3 (-376)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1069)) + (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) + (-4 *3 (-865 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) - (-5 *1 (-786 *3 *4)) (-4 *3 (-728 *4)))) + (-12 (-4 *4 (-376)) (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) + (-5 *1 (-785 *3 *4)) (-4 *3 (-727 *4)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) + (-12 (-4 *3 (-376)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-376)) (-4 *5 (-1069)) + (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) + (-4 *3 (-865 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1069)) + (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) + (-4 *3 (-865 *5))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-569)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| -2184 *1) (|:| -3303 *1))) (-4 *1 (-866 *3)))) + (-12 (-4 *3 (-569)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| -2183 *1) (|:| -3302 *1))) (-4 *1 (-865 *3)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-867 *5 *3)) - (-4 *3 (-866 *5))))) + (-12 (-5 *4 (-99 *5)) (-4 *5 (-569)) (-4 *5 (-1069)) + (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-866 *5 *3)) + (-4 *3 (-865 *5))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-668 *5)) (-4 *5 (-1070)) - (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-866 *5)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-709 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175)))) - ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *2 (-667 *5)) (-4 *5 (-1069)) + (-5 *1 (-53 *5 *2 *3)) (-4 *3 (-865 *5)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-708 *3)) (-4 *1 (-430 *3)) (-4 *3 (-175)))) + ((*1 *2 *1 *2 *2) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)))) ((*1 *2 *3 *2 *2 *4 *5) - (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1070)) (-5 *1 (-867 *2 *3)) - (-4 *3 (-866 *2))))) + (-12 (-5 *4 (-99 *2)) (-5 *5 (-1 *2 *2)) (-4 *2 (-1069)) (-5 *1 (-866 *2 *3)) + (-4 *3 (-865 *2))))) (((*1 *2 *2 *2 *3 *4) - (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1070)) (-5 *1 (-867 *5 *2)) - (-4 *2 (-866 *5))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) + (-12 (-5 *3 (-99 *5)) (-5 *4 (-1 *5 *5)) (-4 *5 (-1069)) (-5 *1 (-866 *5 *2)) + (-4 *2 (-865 *5))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) (((*1 *2 *2 *2) - (|partial| -12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) + (|partial| -12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) + (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2640 *1))) - (-4 *1 (-866 *3))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) + (-12 (-4 *3 (-376)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2639 *1))) + (-4 *1 (-865 *3))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) (((*1 *1 *1 *1) - (|partial| -12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) + (|partial| -12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *3 (-1070)) - (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2640 *1))) - (-4 *1 (-866 *3))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-786 *2 *3)) (-4 *2 (-728 *3)))) - ((*1 *1 *1 *1) (-12 (-4 *1 (-866 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) + (-12 (-4 *3 (-376)) (-4 *3 (-1069)) + (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2639 *1))) + (-4 *1 (-865 *3))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-376)) (-5 *1 (-785 *2 *3)) (-4 *2 (-727 *3)))) + ((*1 *1 *1 *1) (-12 (-4 *1 (-865 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) (((*1 *1) - (-12 (-4 *1 (-416)) (-2959 (|has| *1 (-6 -4416))) - (-2959 (|has| *1 (-6 -4408))))) - ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1122)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-4 *1 (-844 *2)) (-4 *2 (-861)))) ((*1 *1) (-4 *1 (-857))) - ((*1 *1 *1 *1) (-4 *1 (-864)))) + (-12 (-4 *1 (-416)) (-2958 (|has| *1 (-6 -4415))) + (-2958 (|has| *1 (-6 -4407))))) + ((*1 *2 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1121)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-4 *1 (-843 *2)) (-4 *2 (-860)))) ((*1 *1) (-4 *1 (-856))) + ((*1 *1 *1 *1) (-4 *1 (-863)))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-858 *4 *5)) - (-14 *4 (-791))))) + (-12 (-5 *3 (-1287 *5)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-857 *4 *5)) + (-14 *4 (-790))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-858 *4 *5)) - (-14 *4 (-791))))) + (-12 (-5 *3 (-1287 *5)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-857 *4 *5)) + (-14 *4 (-790))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-814)) (-5 *2 (-114)) (-5 *1 (-858 *4 *5)) - (-14 *4 (-791))))) -(((*1 *2) (-12 (-5 *2 (-855 (-558))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1122))))) -(((*1 *2) (-12 (-5 *2 (-855 (-558))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-855 *2)) (-4 *2 (-1122))))) + (-12 (-5 *3 (-1287 *5)) (-4 *5 (-813)) (-5 *2 (-114)) (-5 *1 (-857 *4 *5)) + (-14 *4 (-790))))) +(((*1 *2) (-12 (-5 *2 (-854 (-558))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1121))))) +(((*1 *2) (-12 (-5 *2 (-854 (-558))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-854 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-845 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-855 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-845 *3)) (-4 *3 (-1122)))) - ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-855 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1141)) (-5 *1 (-855 *3)) (-4 *3 (-1122))))) -(((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1056)) (-5 *1 (-853)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1056)) - (-5 *1 (-853))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-854)) (-5 *4 (-1084)) (-5 *2 (-1056)) (-5 *1 (-853)))) - ((*1 *2 *3) (-12 (-5 *3 (-854)) (-5 *2 (-1056)) (-5 *1 (-853)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-844 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-844 *3)) (-4 *3 (-1121)))) + ((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-854 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1140)) (-5 *1 (-854 *3)) (-4 *3 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-660 (-326 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1055)) + (-5 *1 (-852))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-853)) (-5 *4 (-1083)) (-5 *2 (-1055)) (-5 *1 (-852)))) + ((*1 *2 *3) (-12 (-5 *3 (-853)) (-5 *2 (-1055)) (-5 *1 (-852)))) ((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-661 (-391))) (-5 *5 (-661 (-855 (-391)))) - (-5 *6 (-661 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1056)) - (-5 *1 (-853)))) + (-12 (-5 *4 (-660 (-391))) (-5 *5 (-660 (-854 (-391)))) + (-5 *6 (-660 (-326 (-391)))) (-5 *3 (-326 (-391))) (-5 *2 (-1055)) + (-5 *1 (-852)))) ((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *5 (-661 (-855 (-391)))) - (-5 *2 (-1056)) (-5 *1 (-853)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-391))) (-5 *5 (-660 (-854 (-391)))) + (-5 *2 (-1055)) (-5 *1 (-852)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-391))) (-5 *4 (-661 (-391))) (-5 *2 (-1056)) - (-5 *1 (-853)))) + (-12 (-5 *3 (-326 (-391))) (-5 *4 (-660 (-391))) (-5 *2 (-1055)) + (-5 *1 (-852)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-326 (-391)))) (-5 *4 (-661 (-391))) (-5 *2 (-1056)) - (-5 *1 (-853))))) + (-12 (-5 *3 (-660 (-326 (-391)))) (-5 *4 (-660 (-391))) (-5 *2 (-1055)) + (-5 *1 (-852))))) (((*1 *2 *3) - (-12 (-4 *1 (-852)) + (-12 (-4 *1 (-851)) (-5 *3 - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) - (-5 *2 (-1056)))) - ((*1 *2 *3) - (-12 (-4 *1 (-852)) - (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) - (-5 *2 (-1056))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-217 (-514))) (-5 *1 (-850))))) -(((*1 *2 *1) (-12 (-4 *1 (-849 *3)) (-4 *3 (-1122)) (-5 *2 (-55))))) -(((*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) + (-5 *2 (-1055)))) + ((*1 *2 *3) + (-12 (-4 *1 (-851)) + (-5 *3 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) + (-5 *2 (-1055))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-217 (-514))) (-5 *1 (-849))))) +(((*1 *2 *1) (-12 (-4 *1 (-848 *3)) (-4 *3 (-1121)) (-5 *2 (-55))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)))) ((*1 *2 *3) (-12 (-4 *4 (-569)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-708 *4 *5 *6 *3)) - (-4 *3 (-706 *4 *5 *6)))) + (-5 *2 (-2 (|:| |adjMat| *3) (|:| |detMat| *4))) (-5 *1 (-707 *4 *5 *6 *3)) + (-4 *3 (-705 *4 *5 *6)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-175)) (-4 *2 (-1070)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) + (-12 (-4 *2 (-175)) (-4 *2 (-1069)) (-5 *1 (-733 *2 *3)) (-4 *3 (-667 *2)))) ((*1 *1 *1) - (-12 (-4 *2 (-175)) (-4 *2 (-1070)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-175)) (-4 *2 (-1070)))) - ((*1 *1 *1) (-12 (-5 *1 (-847 *2)) (-4 *2 (-175)) (-4 *2 (-1070))))) + (-12 (-4 *2 (-175)) (-4 *2 (-1069)) (-5 *1 (-733 *2 *3)) (-4 *3 (-667 *2)))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-175)) (-4 *2 (-1069)))) + ((*1 *1 *1) (-12 (-5 *1 (-846 *2)) (-4 *2 (-175)) (-4 *2 (-1069))))) (((*1 *2 *2) - (-12 (-4 *2 (-175)) (-4 *2 (-1070)) (-5 *1 (-734 *2 *3)) (-4 *3 (-668 *2)))) - ((*1 *2 *2) (-12 (-5 *1 (-847 *2)) (-4 *2 (-175)) (-4 *2 (-1070))))) + (-12 (-4 *2 (-175)) (-4 *2 (-1069)) (-5 *1 (-733 *2 *3)) (-4 *3 (-667 *2)))) + ((*1 *2 *2) (-12 (-5 *1 (-846 *2)) (-4 *2 (-175)) (-4 *2 (-1069))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-115)) (-5 *4 (-661 *2)) (-5 *1 (-116 *2)) - (-4 *2 (-1122)))) + (|partial| -12 (-5 *3 (-115)) (-5 *4 (-660 *2)) (-5 *1 (-116 *2)) + (-4 *2 (-1121)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-661 *4))) (-4 *4 (-1122)) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 (-660 *4))) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-661 *4))) (-5 *1 (-116 *4)) - (-4 *4 (-1122)))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-1 *4 (-660 *4))) (-5 *1 (-116 *4)) + (-4 *4 (-1121)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1070)) - (-5 *1 (-734 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-847 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-667 *3)) (-4 *3 (-1069)) + (-5 *1 (-733 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-846 *3))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-668 *3)) (-4 *3 (-1070)) - (-5 *1 (-734 *3 *4)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-847 *3))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-667 *3)) (-4 *3 (-1069)) + (-5 *1 (-733 *3 *4)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-846 *3))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-115)) (-4 *4 (-1070)) (-5 *1 (-734 *4 *2)) (-4 *2 (-668 *4)))) - ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-847 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-115)) (-4 *4 (-1069)) (-5 *1 (-733 *4 *2)) (-4 *2 (-667 *4)))) + ((*1 *2 *3 *2) (-12 (-5 *3 (-115)) (-5 *1 (-846 *2)) (-4 *2 (-1069))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1070)) (-5 *1 (-734 *2 *4)) - (-4 *4 (-668 *2)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-847 *2)) (-4 *2 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-845 (-558))) (-5 *1 (-546)))) - ((*1 *1) (-12 (-5 *1 (-845 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-843 *2 *3)) (-4 *2 (-728 *3))))) -(((*1 *2 *1) (-12 (-4 *2 (-728 *3)) (-5 *1 (-843 *2 *3)) (-4 *3 (-1070))))) -(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-692 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-697 *3)) (-4 *3 (-861)))) - ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-841 *3)) (-4 *3 (-861))))) + (-12 (-5 *3 (-374 (-115))) (-4 *2 (-1069)) (-5 *1 (-733 *2 *4)) + (-4 *4 (-667 *2)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-374 (-115))) (-5 *1 (-846 *2)) (-4 *2 (-1069))))) +(((*1 *2) (-12 (-5 *2 (-844 (-558))) (-5 *1 (-546)))) + ((*1 *1) (-12 (-5 *1 (-844 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-842 *2 *3)) (-4 *2 (-727 *3))))) +(((*1 *2 *1) (-12 (-4 *2 (-727 *3)) (-5 *1 (-842 *2 *3)) (-4 *3 (-1069))))) +(((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-691 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-696 *3)) (-4 *3 (-860)))) + ((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-840 *3)) (-4 *3 (-860))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-1288 *4)) - (-5 *1 (-836 *4 *3)) (-4 *3 (-678 *4))))) + (|partial| -12 (-5 *5 (-660 *4)) (-4 *4 (-376)) (-5 *2 (-1287 *4)) + (-5 *1 (-835 *4 *3)) (-4 *3 (-677 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-376)) (-5 *2 (-709 *4)) (-5 *1 (-836 *4 *5)) - (-4 *5 (-678 *4)))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-376)) (-5 *2 (-708 *4)) (-5 *1 (-835 *4 *5)) + (-4 *5 (-677 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-376)) (-5 *2 (-709 *5)) - (-5 *1 (-836 *5 *6)) (-4 *6 (-678 *5))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-790)) (-4 *5 (-376)) (-5 *2 (-708 *5)) + (-5 *1 (-835 *5 *6)) (-4 *6 (-677 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-965 *5))) (-5 *4 (-661 (-1198))) (-4 *5 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *5)))))) (-5 *1 (-790 *5)))) + (-12 (-5 *3 (-660 (-964 *5))) (-5 *4 (-660 (-1197))) (-4 *5 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *5)))))) (-5 *1 (-789 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-569)) - (-5 *2 (-661 (-661 (-305 (-419 (-965 *4)))))) (-5 *1 (-790 *4)))) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-569)) + (-5 *2 (-660 (-660 (-305 (-419 (-964 *4)))))) (-5 *1 (-789 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *7)) + (-12 (-5 *3 (-708 *7)) (-5 *5 - (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2222 (-661 *6))) *7 *6)) - (-4 *6 (-376)) (-4 *7 (-678 *6)) + (-1 (-2 (|:| |particular| (-3 *6 "failed")) (|:| -2221 (-660 *6))) *7 *6)) + (-4 *6 (-376)) (-4 *7 (-677 *6)) (-5 *2 - (-2 (|:| |particular| (-3 (-1288 *6) "failed")) - (|:| -2222 (-661 (-1288 *6))))) - (-5 *1 (-835 *6 *7)) (-5 *4 (-1288 *6))))) + (-2 (|:| |particular| (-3 (-1287 *6) "failed")) + (|:| -2221 (-660 (-1287 *6))))) + (-5 *1 (-834 *6 *7)) (-5 *4 (-1287 *6))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-5 *2 - (-2 (|:| A (-709 *5)) + (-2 (|:| A (-708 *5)) (|:| |eqs| - (-661 - (-2 (|:| C (-709 *5)) (|:| |g| (-1288 *5)) (|:| -3684 *6) + (-660 + (-2 (|:| C (-708 *5)) (|:| |g| (-1287 *5)) (|:| -3683 *6) (|:| |rh| *5)))))) - (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)) - (-4 *6 (-678 *5)))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)) + (-4 *6 (-677 *5)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-678 *5)) - (-5 *2 (-2 (|:| -1783 (-709 *6)) (|:| |vec| (-1288 *5)))) - (-5 *1 (-835 *5 *6)) (-5 *3 (-709 *6)) (-5 *4 (-1288 *5))))) + (-12 (-4 *5 (-376)) (-4 *6 (-677 *5)) + (-5 *2 (-2 (|:| -1782 (-708 *6)) (|:| |vec| (-1287 *5)))) + (-5 *1 (-834 *5 *6)) (-5 *3 (-708 *6)) (-5 *4 (-1287 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *6 (-1264 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) + (-12 (-5 *3 (-674 (-419 *6))) (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *6 (-1263 *5)) (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-675 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) + (-12 (-5 *3 (-674 (-419 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) - (-4 *6 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *7 (-1264 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) + (-4 *6 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *7 (-1263 *6)) (-5 *2 (-660 (-419 *7))) (-5 *1 (-833 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-661 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *6 (-1264 *5)) (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) + (-12 (-5 *3 (-675 *6 (-419 *6))) (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *6 (-1263 *5)) (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-676 *7 (-419 *7))) (-5 *4 (-1 (-661 *6) *7)) + (-12 (-5 *3 (-675 *7 (-419 *7))) (-5 *4 (-1 (-660 *6) *7)) (-5 *5 (-1 (-417 *7) *7)) - (-4 *6 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *7 (-1264 *6)) (-5 *2 (-661 (-419 *7))) (-5 *1 (-834 *6 *7)))) + (-4 *6 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *7 (-1263 *6)) (-5 *2 (-660 (-419 *7))) (-5 *1 (-833 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-675 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) + (-12 (-5 *3 (-674 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-660 (-419 *5))) (-5 *1 (-833 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) + (-12 (-5 *3 (-674 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6)))) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6)))) ((*1 *2 *3) - (-12 (-5 *3 (-676 *5 (-419 *5))) (-4 *5 (-1264 *4)) (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-661 (-419 *5))) (-5 *1 (-834 *4 *5)))) + (-12 (-5 *3 (-675 *5 (-419 *5))) (-4 *5 (-1263 *4)) (-4 *4 (-27)) + (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-660 (-419 *5))) (-5 *1 (-833 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) + (-12 (-5 *3 (-675 *6 (-419 *6))) (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) (-4 *5 (-27)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-661 (-419 *6))) (-5 *1 (-834 *5 *6))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-661 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) - (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3684 *3)))) - (-5 *1 (-831 *5 *6 *3 *7)) (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-661 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *6 (-1264 *5)) - (-5 *2 (-661 (-2 (|:| |poly| *6) (|:| -3684 (-676 *6 (-419 *6)))))) - (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6)))))) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-660 (-419 *6))) (-5 *1 (-833 *5 *6))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) + (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3683 *3)))) + (-5 *1 (-830 *5 *6 *3 *7)) (-4 *3 (-677 *6)) (-4 *7 (-677 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *6 (-1263 *5)) + (-5 *2 (-660 (-2 (|:| |poly| *6) (|:| -3683 (-675 *6 (-419 *6)))))) + (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-419 *6)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 (-661 *7) *7 (-1192 *7))) (-5 *5 (-1 (-417 *7) *7)) - (-4 *7 (-1264 *6)) (-4 *6 (-13 (-376) (-149) (-1059 (-419 (-558))))) - (-5 *2 (-661 (-2 (|:| |frac| (-419 *7)) (|:| -3684 *3)))) - (-5 *1 (-831 *6 *7 *3 *8)) (-4 *3 (-678 *7)) (-4 *8 (-678 (-419 *7))))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-661 (-2 (|:| |frac| (-419 *6)) (|:| -3684 (-676 *6 (-419 *6)))))) - (-5 *1 (-834 *5 *6)) (-5 *3 (-676 *6 (-419 *6)))))) -(((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *7 (-1264 *5)) (-4 *4 (-744 *5 *7)) - (-5 *2 (-2 (|:| -1783 (-709 *6)) (|:| |vec| (-1288 *5)))) - (-5 *1 (-833 *5 *6 *7 *4 *3)) (-4 *6 (-678 *5)) (-4 *3 (-678 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-675 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-832 *4 *2)) - (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))))) - ((*1 *2 *3) - (-12 (-5 *3 (-676 *2 (-419 *2))) (-4 *2 (-1264 *4)) (-5 *1 (-832 *4 *2)) - (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558)))))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-675 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2222 (-661 *4)))) - (-5 *1 (-832 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-675 (-419 *6))) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-2 (|:| -2222 (-661 (-419 *6))) (|:| -1783 (-709 *5)))) - (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6))))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-676 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2222 (-661 *4)))) - (-5 *1 (-832 *5 *6)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-676 *6 (-419 *6))) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-2 (|:| -2222 (-661 (-419 *6))) (|:| -1783 (-709 *5)))) - (-5 *1 (-832 *5 *6)) (-5 *4 (-661 (-419 *6)))))) + (-12 (-5 *4 (-1 (-660 *7) *7 (-1191 *7))) (-5 *5 (-1 (-417 *7) *7)) + (-4 *7 (-1263 *6)) (-4 *6 (-13 (-376) (-149) (-1058 (-419 (-558))))) + (-5 *2 (-660 (-2 (|:| |frac| (-419 *7)) (|:| -3683 *3)))) + (-5 *1 (-830 *6 *7 *3 *8)) (-4 *3 (-677 *7)) (-4 *8 (-677 (-419 *7))))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-660 (-2 (|:| |frac| (-419 *6)) (|:| -3683 (-675 *6 (-419 *6)))))) + (-5 *1 (-833 *5 *6)) (-5 *3 (-675 *6 (-419 *6)))))) +(((*1 *2 *3 *4) + (-12 (-4 *5 (-376)) (-4 *7 (-1263 *5)) (-4 *4 (-743 *5 *7)) + (-5 *2 (-2 (|:| -1782 (-708 *6)) (|:| |vec| (-1287 *5)))) + (-5 *1 (-832 *5 *6 *7 *4 *3)) (-4 *6 (-677 *5)) (-4 *3 (-677 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-674 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-831 *4 *2)) + (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))))) + ((*1 *2 *3) + (-12 (-5 *3 (-675 *2 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-831 *4 *2)) + (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558)))))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-674 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2221 (-660 *4)))) + (-5 *1 (-831 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-674 (-419 *6))) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-2 (|:| -2221 (-660 (-419 *6))) (|:| -1782 (-708 *5)))) + (-5 *1 (-831 *5 *6)) (-5 *4 (-660 (-419 *6))))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *6 (-419 *6))) (-5 *4 (-419 *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2221 (-660 *4)))) + (-5 *1 (-831 *5 *6)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-675 *6 (-419 *6))) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-2 (|:| -2221 (-660 (-419 *6))) (|:| -1782 (-708 *5)))) + (-5 *1 (-831 *5 *6)) (-5 *4 (-660 (-419 *6)))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-1264 *4)) - (-5 *1 (-831 *4 *3 *2 *5)) (-4 *2 (-678 *3)) (-4 *5 (-678 (-419 *3))))) + (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-1263 *4)) + (-5 *1 (-830 *4 *3 *2 *5)) (-4 *2 (-677 *3)) (-4 *5 (-677 (-419 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) - (-4 *5 (-1264 *4)) (-5 *1 (-831 *4 *5 *2 *6)) (-4 *2 (-678 *5)) - (-4 *6 (-678 *3))))) -(((*1 *2 *3 *4) - (-12 (-5 *4 (-1 (-661 *5) *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *6 (-1264 *5)) - (-5 *2 (-661 (-2 (|:| -4382 *5) (|:| -3684 *3)))) (-5 *1 (-831 *5 *6 *3 *7)) - (-4 *3 (-678 *6)) (-4 *7 (-678 (-419 *6)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) - (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -3684 *5)))) - (-5 *1 (-831 *4 *5 *3 *6)) (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5)))))) -(((*1 *2 *3) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-831 *4 *2 *3 *5)) - (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) - (-4 *5 (-678 (-419 *2)))))) -(((*1 *2 *3 *4) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-829 *4 *2 *3 *5)) - (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) - (-4 *5 (-678 (-419 *2))))) - ((*1 *2 *3 *4) - (-12 (-4 *2 (-1264 *4)) (-5 *1 (-829 *4 *2 *5 *3)) - (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-678 *2)) - (-4 *3 (-678 (-419 *2)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) - (-5 *2 (-661 (-2 (|:| -4203 *5) (|:| -3644 *5)))) (-5 *1 (-829 *4 *5 *3 *6)) - (-4 *3 (-678 *5)) (-4 *6 (-678 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *4 (-1264 *5)) - (-5 *2 (-661 (-2 (|:| -4203 *4) (|:| -3644 *4)))) (-5 *1 (-829 *5 *4 *3 *6)) - (-4 *3 (-678 *4)) (-4 *6 (-678 (-419 *4))))) - ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *5 (-1264 *4)) - (-5 *2 (-661 (-2 (|:| -4203 *5) (|:| -3644 *5)))) (-5 *1 (-829 *4 *5 *6 *3)) - (-4 *6 (-678 *5)) (-4 *3 (-678 (-419 *5))))) - ((*1 *2 *3 *4) - (-12 (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *4 (-1264 *5)) - (-5 *2 (-661 (-2 (|:| -4203 *4) (|:| -3644 *4)))) (-5 *1 (-829 *5 *4 *6 *3)) - (-4 *6 (-678 *4)) (-4 *3 (-678 (-419 *4)))))) -(((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-829 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) - (-4 *3 (-678 *2)) (-4 *6 (-678 *4)))) - ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-419 *2))) (-4 *2 (-1264 *5)) (-5 *1 (-829 *5 *2 *3 *6)) - (-4 *5 (-13 (-376) (-149) (-1059 (-419 (-558))))) (-4 *3 (-678 *2)) - (-4 *6 (-678 (-419 *2)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-675 *4)) (-4 *4 (-355 *5 *6 *7)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *6 (-1264 *5)) (-4 *7 (-1264 (-419 *6))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2222 (-661 *4)))) - (-5 *1 (-828 *5 *6 *7 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *2 (-1 *5 *5)) (-5 *1 (-826 *4 *5)) - (-4 *5 (-13 (-29 *4) (-1224) (-979)))))) + (-12 (-5 *3 (-419 *5)) (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) + (-4 *5 (-1263 *4)) (-5 *1 (-830 *4 *5 *2 *6)) (-4 *2 (-677 *5)) + (-4 *6 (-677 *3))))) +(((*1 *2 *3 *4) + (-12 (-5 *4 (-1 (-660 *5) *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *6 (-1263 *5)) + (-5 *2 (-660 (-2 (|:| -4381 *5) (|:| -3683 *3)))) (-5 *1 (-830 *5 *6 *3 *7)) + (-4 *3 (-677 *6)) (-4 *7 (-677 (-419 *6)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) + (-5 *2 (-660 (-2 (|:| |deg| (-790)) (|:| -3683 *5)))) + (-5 *1 (-830 *4 *5 *3 *6)) (-4 *3 (-677 *5)) (-4 *6 (-677 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-4 *2 (-1263 *4)) (-5 *1 (-830 *4 *2 *3 *5)) + (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) + (-4 *5 (-677 (-419 *2)))))) +(((*1 *2 *3 *4) + (-12 (-4 *2 (-1263 *4)) (-5 *1 (-828 *4 *2 *3 *5)) + (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) + (-4 *5 (-677 (-419 *2))))) + ((*1 *2 *3 *4) + (-12 (-4 *2 (-1263 *4)) (-5 *1 (-828 *4 *2 *5 *3)) + (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-677 *2)) + (-4 *3 (-677 (-419 *2)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) + (-5 *2 (-660 (-2 (|:| -4202 *5) (|:| -3643 *5)))) (-5 *1 (-828 *4 *5 *3 *6)) + (-4 *3 (-677 *5)) (-4 *6 (-677 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *4 (-1263 *5)) + (-5 *2 (-660 (-2 (|:| -4202 *4) (|:| -3643 *4)))) (-5 *1 (-828 *5 *4 *3 *6)) + (-4 *3 (-677 *4)) (-4 *6 (-677 (-419 *4))))) + ((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *5 (-1263 *4)) + (-5 *2 (-660 (-2 (|:| -4202 *5) (|:| -3643 *5)))) (-5 *1 (-828 *4 *5 *6 *3)) + (-4 *6 (-677 *5)) (-4 *3 (-677 (-419 *5))))) + ((*1 *2 *3 *4) + (-12 (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *4 (-1263 *5)) + (-5 *2 (-660 (-2 (|:| -4202 *4) (|:| -3643 *4)))) (-5 *1 (-828 *5 *4 *6 *3)) + (-4 *6 (-677 *4)) (-4 *3 (-677 (-419 *4)))))) +(((*1 *2 *3 *4) + (|partial| -12 (-5 *4 (-419 *2)) (-4 *2 (-1263 *5)) + (-5 *1 (-828 *5 *2 *3 *6)) (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) + (-4 *3 (-677 *2)) (-4 *6 (-677 *4)))) + ((*1 *2 *3 *4) + (-12 (-5 *4 (-660 (-419 *2))) (-4 *2 (-1263 *5)) (-5 *1 (-828 *5 *2 *3 *6)) + (-4 *5 (-13 (-376) (-149) (-1058 (-419 (-558))))) (-4 *3 (-677 *2)) + (-4 *6 (-677 (-419 *2)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-674 *4)) (-4 *4 (-355 *5 *6 *7)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *6 (-1263 *5)) (-4 *7 (-1263 (-419 *6))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2221 (-660 *4)))) + (-5 *1 (-827 *5 *6 *7 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *2 (-1 *5 *5)) (-5 *1 (-825 *4 *5)) + (-4 *5 (-13 (-29 *4) (-1223) (-978)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-5 *1 (-826 *4 *2)) (-4 *2 (-13 (-29 *4) (-1224) (-979)))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-5 *1 (-825 *4 *2)) (-4 *2 (-13 (-29 *4) (-1223) (-978)))))) (((*1 *2 *3) (|partial| -12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) - (-5 *1 (-825))))) + (-5 *1 (-824))))) (((*1 *1 *2) (-12 (-5 *2 - (-661 + (-660 (-2 - (|:| -4290 + (|:| -4289 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2286 + (|:| -2285 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391))))))) - (-5 *1 (-825))))) + (-5 *1 (-824))))) (((*1 *2 *1) (-12 (-5 *2 - (-661 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-660 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-661 *3)))) + (-12 (-4 *1 (-626 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-660 *3)))) ((*1 *2 *1) (-12 (-5 *2 - (-661 + (-660 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))) - (-5 *1 (-825))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-825))))) -(((*1 *1) (-5 *1 (-825)))) + (-5 *1 (-824))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-824))))) +(((*1 *1) (-5 *1 (-824)))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-1198)) (-4 *6 (-13 (-319) (-1059 (-558)) (-658 (-558)) (-149))) - (-4 *4 (-13 (-29 *6) (-1224) (-979))) - (-5 *2 (-2 (|:| |particular| *4) (|:| -2222 (-661 *4)))) - (-5 *1 (-823 *6 *4 *3)) (-4 *3 (-678 *4))))) + (-12 (-5 *5 (-1197)) (-4 *6 (-13 (-319) (-1058 (-558)) (-657 (-558)) (-149))) + (-4 *4 (-13 (-29 *6) (-1223) (-978))) + (-5 *2 (-2 (|:| |particular| *4) (|:| -2221 (-660 *4)))) + (-5 *1 (-822 *6 *4 *3)) (-4 *3 (-677 *4))))) (((*1 *2 *3) - (-12 (-4 *1 (-822)) + (-12 (-4 *1 (-821)) (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-1056))))) -(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1017 *3)) (-4 *3 (-175)) (-5 *1 (-820 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175))))) + (-5 *2 (-1055))))) +(((*1 *1 *2 *2 *2 *2 *2 *2 *2 *2) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1016 *3)) (-4 *3 (-175)) (-5 *1 (-819 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175))))) +(((*1 *2 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175))))) (((*1 *1 *1) (-4 *1 (-250))) ((*1 *1 *1) - (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *2)) + (-12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1) - (-3957 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1238))) - (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1238))))) + (-3956 (-12 (-5 *1 (-305 *2)) (-4 *2 (-376)) (-4 *2 (-1237))) + (-12 (-5 *1 (-305 *2)) (-4 *2 (-485)) (-4 *2 (-1237))))) ((*1 *1 *1) (-4 *1 (-485))) - ((*1 *2 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) + ((*1 *2 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-363)) (-5 *1 (-540 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (-12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) - ((*1 *1 *1) (-12 (-4 *1 (-818 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) - ((*1 *1 *1 *1) (-4 *1 (-815)))) + ((*1 *1 *1) (-12 (-4 *1 (-817 *2)) (-4 *2 (-175)) (-4 *2 (-376))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *1 *1 *1) (-4 *1 (-814)))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *5) (-12 (-5 *3 (-1 (-391) (-391))) (-5 *4 (-391)) (-5 *2 - (-2 (|:| -3822 *4) (|:| -1739 *4) (|:| |totalpts| (-558)) + (-2 (|:| -3821 *4) (|:| -1738 *4) (|:| |totalpts| (-558)) (|:| |success| (-114)))) - (-5 *1 (-809)) (-5 *5 (-558))))) + (-5 *1 (-808)) (-5 *5 (-558))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) - (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808))))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) + (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807))))) (((*1 *2 *3 *4 *5 *6 *5 *3 *7) (-12 (-5 *4 (-558)) - (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391)))) - (-5 *7 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) - (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) + (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391)))) + (-5 *7 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) + (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) ((*1 *2 *3 *4 *5 *6 *5 *3 *7 *3 *3 *3 *3 *3 *3 *3) (-12 (-5 *4 (-558)) - (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1607 (-391)))) - (-5 *7 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) (-5 *3 (-1288 (-391))) - (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808))))) + (-5 *6 (-2 (|:| |tryValue| (-391)) (|:| |did| (-391)) (|:| -1606 (-391)))) + (-5 *7 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) (-5 *3 (-1287 (-391))) + (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *4 *6) - (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) - (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808))))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) + (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) - (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808)))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) + (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807)))) ((*1 *2 *3 *4 *5 *5 *6 *3 *3 *3 *3) - (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1294) (-1288 *5) (-1288 *5) (-391))) - (-5 *3 (-1288 (-391))) (-5 *5 (-391)) (-5 *2 (-1294)) (-5 *1 (-808))))) + (-12 (-5 *4 (-558)) (-5 *6 (-1 (-1293) (-1287 *5) (-1287 *5) (-391))) + (-5 *3 (-1287 (-391))) (-5 *5 (-391)) (-5 *2 (-1293)) (-5 *1 (-807))))) (((*1 *2 *3 *2) - (-12 (-4 *1 (-807)) (-5 *2 (-1056)) + (-12 (-4 *1 (-806)) (-5 *2 (-1055)) (-5 *3 - (-2 (|:| |fn| (-326 (-229))) (|:| -1638 (-661 (-1110 (-855 (-229))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -1637 (-660 (-1109 (-854 (-229))))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))))) ((*1 *2 *3 *2) - (-12 (-4 *1 (-807)) (-5 *2 (-1056)) + (-12 (-4 *1 (-806)) (-5 *2 (-1055)) (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229))))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-806))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-806))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-938)) (-5 *1 (-806))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1180)) (-5 *1 (-806))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-938)) (-5 *1 (-806))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1180)) (-5 *1 (-806))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-937)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1179)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-937)) (-5 *1 (-805))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1179)) (-5 *1 (-805))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-964 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-175)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-964 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-175)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-965 (-171 *4)))) (-4 *4 (-569)) - (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-419 (-964 (-171 *4)))) (-4 *4 (-569)) + (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-965 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-569)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-419 (-964 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-569)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) - (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) + (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-861)) - (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-860)) + (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-569)) - (-4 *5 (-861)) (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) - (-5 *1 (-805 *5))))) + (|partial| -12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-569)) + (-4 *5 (-860)) (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) + (-5 *1 (-804 *5))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 *2)) - (-5 *2 (-391)) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 *2)) + (-5 *2 (-391)) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) - (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) + (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) - (-5 *2 (-391)) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 *2)) + (-5 *2 (-391)) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) - (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5)))) + (|partial| -12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) + (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) - (-4 *4 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *4)))) + (|partial| -12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) + (-4 *4 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) - (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5))))) + (|partial| -12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) + (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) (-4 *3 (-631 (-391))))) + (-12 (-5 *2 (-171 (-391))) (-5 *1 (-804 *3)) (-4 *3 (-630 (-391))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-171 (-391))) (-5 *1 (-805 *3)) - (-4 *3 (-631 (-391))))) + (-12 (-5 *4 (-937)) (-5 *2 (-171 (-391))) (-5 *1 (-804 *3)) + (-4 *3 (-630 (-391))))) ((*1 *2 *3) - (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-171 *4)) (-4 *4 (-175)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-171 *5)) (-5 *4 (-938)) (-4 *5 (-175)) (-4 *5 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-171 *5)) (-5 *4 (-937)) (-4 *5 (-175)) (-4 *5 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-964 (-171 *4))) (-4 *4 (-175)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-175)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-964 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-175)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *5 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *5 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-419 (-964 (-171 *4)))) (-4 *4 (-569)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 (-171 *5)))) (-5 *4 (-938)) (-4 *5 (-569)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-419 (-964 (-171 *5)))) (-5 *4 (-937)) (-4 *5 (-569)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 (-391))) - (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 (-391))) + (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-861)) - (-4 *4 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-326 (-171 *4))) (-4 *4 (-569)) (-4 *4 (-860)) + (-4 *4 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) - (-4 *5 (-631 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-805 *5))))) -(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2)))) + (-12 (-5 *3 (-326 (-171 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) + (-4 *5 (-630 (-391))) (-5 *2 (-171 (-391))) (-5 *1 (-804 *5))))) +(((*1 *2 *3) (-12 (-5 *2 (-391)) (-5 *1 (-804 *3)) (-4 *3 (-630 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-5 *2 (-391)) (-5 *1 (-805 *3)) (-4 *3 (-631 *2)))) + (-12 (-5 *4 (-937)) (-5 *2 (-391)) (-5 *1 (-804 *3)) (-4 *3 (-630 *2)))) ((*1 *2 *3) - (-12 (-5 *3 (-965 *4)) (-4 *4 (-1070)) (-4 *4 (-631 *2)) (-5 *2 (-391)) - (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-964 *4)) (-4 *4 (-1069)) (-4 *4 (-630 *2)) (-5 *2 (-391)) + (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 *5)) (-5 *4 (-938)) (-4 *5 (-1070)) (-4 *5 (-631 *2)) - (-5 *2 (-391)) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-964 *5)) (-5 *4 (-937)) (-4 *5 (-1069)) (-4 *5 (-630 *2)) + (-5 *2 (-391)) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-419 (-965 *4))) (-4 *4 (-569)) (-4 *4 (-631 *2)) (-5 *2 (-391)) - (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-419 (-964 *4))) (-4 *4 (-569)) (-4 *4 (-630 *2)) (-5 *2 (-391)) + (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-631 *2)) - (-5 *2 (-391)) (-5 *1 (-805 *5)))) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-630 *2)) + (-5 *2 (-391)) (-5 *1 (-804 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-861)) (-4 *4 (-631 *2)) - (-5 *2 (-391)) (-5 *1 (-805 *4)))) + (-12 (-5 *3 (-326 *4)) (-4 *4 (-569)) (-4 *4 (-860)) (-4 *4 (-630 *2)) + (-5 *2 (-391)) (-5 *1 (-804 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-326 *5)) (-5 *4 (-938)) (-4 *5 (-569)) (-4 *5 (-861)) - (-4 *5 (-631 *2)) (-5 *2 (-391)) (-5 *1 (-805 *5))))) + (-12 (-5 *3 (-326 *5)) (-5 *4 (-937)) (-4 *5 (-569)) (-4 *5 (-860)) + (-4 *5 (-630 *2)) (-5 *2 (-391)) (-5 *1 (-804 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) + (-12 (-5 *3 (-790)) (-5 *1 (-802 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-791)) (-5 *1 (-803 *2)) (-4 *2 (-38 (-419 (-558)))) + (-12 (-5 *3 (-790)) (-5 *1 (-802 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-175))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-801 *2)) (-4 *2 (-1070))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1069))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-800 *2)) (-4 *2 (-1069))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-661 (-801 *3))) (-5 *1 (-801 *3)) (-4 *3 (-569)) - (-4 *3 (-1070))))) + (-12 (-5 *2 (-660 (-800 *3))) (-5 *1 (-800 *3)) (-4 *3 (-569)) + (-4 *3 (-1069))))) (((*1 *2 *1 *1) (-12 - (-5 *2 (-2 (|:| -4186 *3) (|:| |coef1| (-801 *3)) (|:| |coef2| (-801 *3)))) - (-5 *1 (-801 *3)) (-4 *3 (-569)) (-4 *3 (-1070))))) + (-5 *2 (-2 (|:| -4185 *3) (|:| |coef1| (-800 *3)) (|:| |coef2| (-800 *3)))) + (-5 *1 (-800 *3)) (-4 *3 (-569)) (-4 *3 (-1069))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4186 *3) (|:| |coef1| (-801 *3)))) (-5 *1 (-801 *3)) - (-4 *3 (-569)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| |coef1| (-800 *3)))) (-5 *1 (-800 *3)) + (-4 *3 (-569)) (-4 *3 (-1069))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| -4186 *3) (|:| |coef2| (-801 *3)))) (-5 *1 (-801 *3)) - (-4 *3 (-569)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-2 (|:| -4185 *3) (|:| |coef2| (-800 *3)))) (-5 *1 (-800 *3)) + (-4 *3 (-569)) (-4 *3 (-1069))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-419 (-558)))) + (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *2 - (-661 + (-660 (-2 (|:| |outval| *4) (|:| |outmult| (-558)) - (|:| |outvect| (-661 (-709 *4)))))) - (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-860)))))) + (|:| |outvect| (-660 (-708 *4)))))) + (-5 *1 (-798 *4)) (-4 *4 (-13 (-376) (-859)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-799 *4)) - (-4 *4 (-13 (-376) (-860)))))) -(((*1 *2 *3 *2) (-12 (-5 *3 (-709 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))) + (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *2 (-660 *4)) (-5 *1 (-798 *4)) + (-4 *4 (-13 (-376) (-859)))))) +(((*1 *2 *3 *2) (-12 (-5 *3 (-708 *2)) (-4 *2 (-175)) (-5 *1 (-148 *2)))) ((*1 *2 *3) - (-12 (-4 *4 (-175)) (-4 *2 (-1264 *4)) (-5 *1 (-180 *4 *2 *3)) - (-4 *3 (-744 *4 *2)))) + (-12 (-4 *4 (-175)) (-4 *2 (-1263 *4)) (-5 *1 (-180 *4 *2 *3)) + (-4 *3 (-743 *4 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-419 (-965 *5)))) (-5 *4 (-1198)) (-5 *2 (-965 *5)) + (-12 (-5 *3 (-708 (-419 (-964 *5)))) (-5 *4 (-1197)) (-5 *2 (-964 *5)) (-5 *1 (-304 *5)) (-4 *5 (-464)))) ((*1 *2 *3) - (-12 (-5 *3 (-709 (-419 (-965 *4)))) (-5 *2 (-965 *4)) (-5 *1 (-304 *4)) + (-12 (-5 *3 (-708 (-419 (-964 *4)))) (-5 *2 (-964 *4)) (-5 *1 (-304 *4)) (-4 *4 (-464)))) - ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1264 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *2 (-1263 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-965 (-171 (-419 (-558))))) - (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *2 (-964 (-171 (-419 (-558))))) + (-5 *1 (-783 *4)) (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *4 (-1198)) - (-5 *2 (-965 (-171 (-419 (-558))))) (-5 *1 (-784 *5)) - (-4 *5 (-13 (-376) (-860))))) + (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *4 (-1197)) + (-5 *2 (-964 (-171 (-419 (-558))))) (-5 *1 (-783 *5)) + (-4 *5 (-13 (-376) (-859))))) ((*1 *2 *3) - (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *2 (-965 (-419 (-558)))) - (-5 *1 (-799 *4)) (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *2 (-964 (-419 (-558)))) + (-5 *1 (-798 *4)) (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-419 (-558)))) (-5 *4 (-1198)) - (-5 *2 (-965 (-419 (-558)))) (-5 *1 (-799 *5)) (-4 *5 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-708 (-419 (-558)))) (-5 *4 (-1197)) + (-5 *2 (-964 (-419 (-558)))) (-5 *1 (-798 *5)) (-4 *5 (-13 (-376) (-859)))))) (((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-661 (-791))) - (-5 *1 (-798 *3 *4 *5 *6 *7)) (-4 *3 (-1264 *6)) (-4 *7 (-969 *6 *4 *5))))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-660 (-790))) + (-5 *1 (-797 *3 *4 *5 *6 *7)) (-4 *3 (-1263 *6)) (-4 *7 (-968 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-4 *6 (-1264 *9)) (-4 *7 (-815)) (-4 *8 (-861)) (-4 *9 (-319)) - (-4 *10 (-969 *9 *7 *8)) + (-12 (-4 *6 (-1263 *9)) (-4 *7 (-814)) (-4 *8 (-860)) (-4 *9 (-319)) + (-4 *10 (-968 *9 *7 *8)) (-5 *2 - (-2 (|:| |deter| (-661 (-1192 *10))) - (|:| |dterm| (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| *10))))) - (|:| |nfacts| (-661 *6)) (|:| |nlead| (-661 *10)))) - (-5 *1 (-798 *6 *7 *8 *9 *10)) (-5 *3 (-1192 *10)) (-5 *4 (-661 *6)) - (-5 *5 (-661 *10))))) + (-2 (|:| |deter| (-660 (-1191 *10))) + (|:| |dterm| (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| *10))))) + (|:| |nfacts| (-660 *6)) (|:| |nlead| (-660 *10)))) + (-5 *1 (-797 *6 *7 *8 *9 *10)) (-5 *3 (-1191 *10)) (-5 *4 (-660 *6)) + (-5 *5 (-660 *10))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1264 *5)) (-5 *2 (-661 *3)) - (-5 *1 (-797 *4 *5 *6 *3 *7)) (-4 *3 (-1264 *6)) (-14 *7 (-938))))) + (-12 (-4 *4 (-363)) (-4 *5 (-341 *4)) (-4 *6 (-1263 *5)) (-5 *2 (-660 *3)) + (-5 *1 (-796 *4 *5 *6 *3 *7)) (-4 *3 (-1263 *6)) (-14 *7 (-937))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| (-114)) (|:| -1743 *4)))) - (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| (-114)) (|:| -1742 *4)))) + (-5 *1 (-795 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-1180)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) - (-4 *4 (-1086 *6 *7 *8)) (-5 *2 (-1294)) (-5 *1 (-796 *6 *7 *8 *4 *5)) - (-4 *5 (-1092 *6 *7 *8 *4))))) + (-12 (-5 *3 (-1179)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) + (-4 *4 (-1085 *6 *7 *8)) (-5 *2 (-1293)) (-5 *1 (-795 *6 *7 *8 *4 *5)) + (-4 *5 (-1091 *6 *7 *8 *4))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3))))) + (-12 (-4 *3 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *3 (-1086 *5 *6 *7)) - (-5 *2 (-661 (-2 (|:| |val| *3) (|:| -1743 *4)))) - (-5 *1 (-796 *5 *6 *7 *3 *4)) (-4 *4 (-1092 *5 *6 *7 *3))))) + (-12 (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *3 (-1085 *5 *6 *7)) + (-5 *2 (-660 (-2 (|:| |val| *3) (|:| -1742 *4)))) + (-5 *1 (-795 *5 *6 *7 *3 *4)) (-4 *4 (-1091 *5 *6 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *2 (-1086 *4 *5 *6)) - (-5 *1 (-796 *4 *5 *6 *2 *3)) (-4 *3 (-1092 *4 *5 *6 *2))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *2 (-1085 *4 *5 *6)) + (-5 *1 (-795 *4 *5 *6 *2 *3)) (-4 *3 (-1091 *4 *5 *6 *2))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-391)))) ((*1 *1 *1 *1) (-4 *1 (-557))) - ((*1 *1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) - ((*1 *1 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-791))))) + ((*1 *1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) + ((*1 *1 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-790))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-503)) (-5 *4 (-973)) (-5 *2 (-711 (-545))) (-5 *1 (-545)))) + (-12 (-5 *3 (-503)) (-5 *4 (-972)) (-5 *2 (-710 (-545))) (-5 *1 (-545)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-973)) (-4 *3 (-1122)) (-5 *2 (-711 *1)) (-4 *1 (-787 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-787 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) + (-12 (-5 *4 (-972)) (-4 *3 (-1121)) (-5 *2 (-710 *1)) (-4 *1 (-786 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-786 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-171 (-419 (-558))))) + (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *2 - (-661 + (-660 (-2 (|:| |outval| (-171 *4)) (|:| |outmult| (-558)) - (|:| |outvect| (-661 (-709 (-171 *4))))))) - (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-860)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-709 (-171 (-419 (-558))))) (-5 *2 (-661 (-171 *4))) - (-5 *1 (-784 *4)) (-4 *4 (-13 (-376) (-860)))))) -(((*1 *1 *1 *1 *1) (-4 *1 (-781)))) -(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-781)))) -(((*1 *1 *1 *1) (-4 *1 (-781)))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-779))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-779))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-965 (-558)))) (-5 *1 (-448)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-709 (-229))) (-5 *2 (-1124)) (-5 *1 (-779)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-709 (-558))) (-5 *2 (-1124)) (-5 *1 (-779))))) -(((*1 *2 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-779))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-779))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-779))))) + (|:| |outvect| (-660 (-708 (-171 *4))))))) + (-5 *1 (-783 *4)) (-4 *4 (-13 (-376) (-859)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-708 (-171 (-419 (-558))))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-783 *4)) (-4 *4 (-13 (-376) (-859)))))) +(((*1 *1 *1 *1 *1) (-4 *1 (-780)))) +(((*1 *1 *1 *1) (-4 *1 (-485))) ((*1 *1 *1 *1) (-4 *1 (-780)))) +(((*1 *1 *1 *1) (-4 *1 (-780)))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-778))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-778))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-964 (-558)))) (-5 *1 (-448)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-708 (-229))) (-5 *2 (-1123)) (-5 *1 (-778)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1197)) (-5 *4 (-708 (-558))) (-5 *2 (-1123)) (-5 *1 (-778))))) +(((*1 *2 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-778))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-778))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-778))))) (((*1 *2 *3 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) + (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) + (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4 *5 *3 *6 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-171 (-229))) (-5 *6 (-1180)) (-5 *4 (-229)) - (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-558)) (-5 *5 (-171 (-229))) (-5 *6 (-1179)) (-5 *4 (-229)) + (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1056)) - (-5 *1 (-778))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1055)) + (-5 *1 (-777))))) (((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1056)) - (-5 *1 (-778))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *2 (-1055)) + (-5 *1 (-777))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) + (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4 *5 *6 *5) - (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1180)) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *4 (-171 (-229))) (-5 *5 (-558)) (-5 *6 (-1179)) (-5 *3 (-229)) + (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-171 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-778))))) + (-12 (-5 *3 (-171 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-777))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-777))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-776))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-777))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-776))))) (((*1 *2 *3 *4 *4 *5 *4 *6 *4 *5) - (-12 (-5 *3 (-1180)) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) - (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-777))))) + (-12 (-5 *3 (-1179)) (-5 *5 (-708 (-229))) (-5 *6 (-708 (-558))) + (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-776))))) (((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-777))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-776))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3 *3 *3 *3 *5 *3 *6) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-70 APROD)))) (-5 *4 (-229)) - (-5 *2 (-1056)) (-5 *1 (-776))))) + (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *4 *5 *3 *4 *3 *3 *3 *3) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) - (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) + (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *5 *6 *3 *3 *3 *3 *6 *3 *7 *8) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 APROD)))) - (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1056)) - (-5 *1 (-776))))) + (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-73 MSOLVE)))) (-5 *2 (-1055)) + (-5 *1 (-775))))) (((*1 *2 *3 *3 *4 *3 *5 *3 *5 *4 *5 *5 *4 *4 *5 *3) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) - (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) + (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-775))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *5 *5 *3 *5 *4) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) - (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) + (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *4 *4 *4) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-775))))) (((*1 *2 *3 *4 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1056)) - (-5 *1 (-776))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-171 (-229)))) (-5 *2 (-1055)) + (-5 *1 (-775))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-171 (-229)))) - (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-708 (-171 (-229)))) + (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *3 *4 *3 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-114)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-774))))) (((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *4 (-229)) - (-5 *2 (-1056)) (-5 *1 (-775)))) + (-5 *2 (-1055)) (-5 *1 (-774)))) ((*1 *2 *3 *3 *4 *3 *3 *3 *3 *3 *3 *3 *5 *3 *6 *7 *8) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-67 DOT)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-68 IMAGE)))) (-5 *8 (-402)) - (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6 *6 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) (-5 *4 (-229)) - (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-708 (-229))) (-5 *4 (-229)) + (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *4 *4 *3 *3 *5 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-774))))) (((*1 *2 *3 *4 *3 *4 *4 *4 *4 *4) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-775))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-774))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) - (-5 *2 (-1056)) (-5 *1 (-774))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-171 (-229)))) + (-5 *2 (-1055)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-171 (-229)))) - (-5 *2 (-1056)) (-5 *1 (-774))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-171 (-229)))) + (-5 *2 (-1055)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-171 (-229)))) (-5 *2 (-1056)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-171 (-229)))) (-5 *2 (-1055)) + (-5 *1 (-773))))) (((*1 *2 *3 *4 *4 *4 *4 *5 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-773))))) (((*1 *2 *3 *3 *4 *4 *5 *4 *5 *4 *4 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-774))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-774))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-773))))) (((*1 *2 *3 *4 *3 *5 *3) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *3 (-558)) - (-5 *2 (-1056)) (-5 *1 (-774))))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *3 (-558)) + (-5 *2 (-1055)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *6 *6 *7 *7 *3) - (-12 (-5 *4 (-661 (-114))) (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) - (-5 *7 (-229)) (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-774))))) + (-12 (-5 *4 (-660 (-114))) (-5 *5 (-708 (-229))) (-5 *6 (-708 (-558))) + (-5 *7 (-229)) (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *5 *6 *5 *4 *7 *3) - (-12 (-5 *4 (-709 (-558))) (-5 *5 (-114)) (-5 *7 (-709 (-229))) - (-5 *3 (-558)) (-5 *6 (-229)) (-5 *2 (-1056)) (-5 *1 (-774))))) + (-12 (-5 *4 (-708 (-558))) (-5 *5 (-114)) (-5 *7 (-708 (-229))) + (-5 *3 (-558)) (-5 *6 (-229)) (-5 *2 (-1055)) (-5 *1 (-773))))) (((*1 *2 *3 *3 *3 *3 *4 *5 *5 *6 *7 *8 *8 *3) - (-12 (-5 *6 (-661 (-114))) (-5 *7 (-709 (-229))) (-5 *8 (-709 (-558))) - (-5 *3 (-558)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1056)) - (-5 *1 (-774))))) -(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) + (-12 (-5 *6 (-660 (-114))) (-5 *7 (-708 (-229))) (-5 *8 (-708 (-558))) + (-5 *3 (-558)) (-5 *4 (-229)) (-5 *5 (-114)) (-5 *2 (-1055)) (-5 *1 (-773))))) +(((*1 *2 *3 *3 *3 *4 *5 *3 *5 *3) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *3 *3 *5 *6 *3 *6 *6 *5 *6 *6 *6 *6 *5 *3 *3 *3 *3 *3 *6 *6 *6 *3 *3 *3 *3 *3 *7 *4 *4 *4 *4 *3 *8 *9) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) - (-5 *7 (-709 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-114)) (-5 *6 (-229)) + (-5 *7 (-708 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-80 CONFUN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *3 (-558)) - (-5 *2 (-1056)) (-5 *1 (-773))))) + (-5 *2 (-1055)) (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *3 *3 *4 *5 *5 *5 *5 *5 *5 *6 *6 *6 *3 *3 *5 *7 *3 *8) - (-12 (-5 *5 (-709 (-229))) (-5 *6 (-114)) (-5 *7 (-709 (-558))) + (-12 (-5 *5 (-708 (-229))) (-5 *6 (-114)) (-5 *7 (-708 (-558))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-65 QPHESS)))) (-5 *3 (-558)) - (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-773))))) + (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *3 *3 *4 *4 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-114)) (-5 *2 (-1056)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-114)) (-5 *2 (-1055)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *3 *5) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1056)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-66 FUNCT1)))) (-5 *2 (-1055)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1056)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-64 LSFUN2)))) (-5 *2 (-1055)) + (-5 *1 (-772))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1056)) - (-5 *1 (-773))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-79 LSFUN1)))) (-5 *2 (-1055)) + (-5 *1 (-772))))) (((*1 *2 *3 *4 *4 *3 *4 *5 *4 *4 *3 *3 *3 *3 *6 *3 *7) - (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-709 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-114)) (-5 *6 (-708 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-78 OBJFUN)))) (-5 *4 (-229)) - (-5 *2 (-1056)) (-5 *1 (-773))))) + (-5 *2 (-1055)) (-5 *1 (-772))))) (((*1 *2 *3 *3 *4 *4 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *5 *5 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *4) - (-12 (-5 *3 (-1180)) (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) - (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-1179)) (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-229)) + (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *5 *4 *5 *5 *6 *4 *4 *4 *4 *4 *5 *4 *5 *5 *7 *4) - (-12 (-5 *3 (-1180)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) - (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-1179)) (-5 *5 (-708 (-229))) (-5 *6 (-229)) + (-5 *7 (-708 (-558))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *4 *4 *5 *3 *3 *3 *6 *4 *3) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) - (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *6 (-229)) + (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *5 *5 *5 *6 *4 *4 *4 *5 *4 *5 *7) - (-12 (-5 *3 (-1180)) (-5 *5 (-709 (-229))) (-5 *6 (-229)) - (-5 *7 (-709 (-558))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-1179)) (-5 *5 (-708 (-229))) (-5 *6 (-229)) + (-5 *7 (-708 (-558))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *5 *3 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *3 *4 *4 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *4 *3 *3 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *5 *3 *3 *3 *3 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *3 *3 *4 *4 *5 *5 *5 *3 *5 *5 *3 *6 *3 *3 *3) - (-12 (-5 *5 (-709 (-229))) (-5 *6 (-709 (-558))) (-5 *3 (-558)) - (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *5 (-708 (-229))) (-5 *6 (-708 (-558))) (-5 *3 (-558)) + (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) - (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) + (-5 *1 (-771))))) (((*1 *2 *3 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-772))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-771))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) - (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) + (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *4 *3 *3 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) - (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) + (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *4 *5 *4 *6 *6 *3) - (-12 (-5 *4 (-709 (-229))) (-5 *5 (-709 (-558))) (-5 *6 (-229)) - (-5 *3 (-558)) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *4 (-708 (-229))) (-5 *5 (-708 (-558))) (-5 *6 (-229)) + (-5 *3 (-558)) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *3 *4 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *4 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) (-5 *2 (-1056)) - (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) (-5 *2 (-1055)) + (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *4 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *4 *4 *3 *3 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-771))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-770))))) (((*1 *2 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *3 *4 *4 *5 *5 *3 *4 *4 *4 *6 *4) - (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) (-5 *6 (-695 (-229))) - (-5 *3 (-229)) (-5 *2 (-1056)) (-5 *1 (-770))))) + (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-694 (-229))) + (-5 *3 (-229)) (-5 *2 (-1055)) (-5 *1 (-769))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-1180)) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *5 (-1179)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-83 PDEF)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1056)) - (-5 *1 (-770))))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-84 BNDY)))) (-5 *2 (-1055)) + (-5 *1 (-769))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *5 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) (-5 *4 (-229)) (-5 *2 (-1056)) - (-5 *1 (-770))))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *4 (-229)) (-5 *2 (-1055)) + (-5 *1 (-769))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *3 *3 *3 *3 *5 *5 *4 *3 *6 *7) - (-12 (-5 *3 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *3 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-76 FCN JACOBF JACEPS)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-77 G JACOBG JACGEP)))) - (-5 *4 (-229)) (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *4 (-229)) (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) - (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1056)) - (-5 *1 (-769)))) + (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *2 (-1055)) + (-5 *1 (-768)))) ((*1 *2 *3 *4 *4 *5 *4 *4 *5 *5 *3 *4 *4 *6 *7 *8 *8) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-62 COEFFN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-88 BDYVAL)))) (-5 *8 (-402)) - (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *5 *5 *5 *5 *4 *4 *6 *7) - (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-85 FCNF)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-86 FCNG)))) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *4 *4 *4 *3 *4 *4 *6) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-769))))) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *2 (-1055)) + (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *5 *4 *3 *6 *3 *4 *7 *8 *9 *10) - (-12 (-5 *4 (-558)) (-5 *5 (-1180)) (-5 *6 (-709 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-1179)) (-5 *6 (-708 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-71 PEDERV)))) (-5 *10 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *6 *4 *7 *8 *9) - (-12 (-5 *4 (-558)) (-5 *5 (-1180)) (-5 *6 (-709 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-1179)) (-5 *6 (-708 (-229))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *8 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *9 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *3 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-89 G)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *4 *3 *5 *3 *4 *6 *7) - (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) + (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-82 FCN)))) (-5 *7 (-3 (|:| |fn| (-402)) (|:| |fp| (-87 OUTPUT)))) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-769))))) + (-5 *2 (-1055)) (-5 *1 (-768))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *4 *3 *6) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *4) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-768))))) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-767))))) (((*1 *2 *3 *4 *4 *3 *5 *3 *3 *3 *6) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-75 FUNCTN)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *4 *4 *4) - (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1056)) (-5 *1 (-768))))) + (-12 (-5 *3 (-229)) (-5 *4 (-558)) (-5 *2 (-1055)) (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *3 *4 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 G)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *4 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *5 *3 *3 *4 *4 *4 *6) - (-12 (-5 *4 (-558)) (-5 *5 (-709 (-229))) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *3 (-229)) - (-5 *2 (-1056)) (-5 *1 (-768))))) + (-12 (-5 *4 (-558)) (-5 *5 (-708 (-229))) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *3 (-229)) + (-5 *2 (-1055)) (-5 *1 (-767))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *3 *3 *4 *4 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) - (-5 *1 (-768))))) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) + (-5 *1 (-767))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *5 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *5 *5 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-1180)) (-5 *5 (-709 (-229))) (-5 *2 (-1056)) - (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-1179)) (-5 *5 (-708 (-229))) (-5 *2 (-1055)) + (-5 *1 (-766))))) (((*1 *2 *3 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *4 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *4 *3) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *2 (-1056)) (-5 *1 (-767))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *2 (-1055)) (-5 *1 (-766))))) (((*1 *2 *3 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-766))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-74 FCN)))) (-5 *2 (-1055)) + (-5 *1 (-765))))) (((*1 *2 *3 *3 *4 *5 *3 *6) - (-12 (-5 *3 (-558)) (-5 *4 (-709 (-229))) (-5 *5 (-229)) - (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1056)) - (-5 *1 (-766))))) + (-12 (-5 *3 (-558)) (-5 *4 (-708 (-229))) (-5 *5 (-229)) + (-5 *6 (-3 (|:| |fn| (-402)) (|:| |fp| (-81 FCN)))) (-5 *2 (-1055)) + (-5 *1 (-765))))) (((*1 *2 *3 *3 *3 *3 *4 *5) (-12 (-5 *3 (-229)) (-5 *4 (-558)) - (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3495)))) (-5 *2 (-1056)) - (-5 *1 (-766))))) -(((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1056)) + (-5 *5 (-3 (|:| |fn| (-402)) (|:| |fp| (-61 -3494)))) (-5 *2 (-1055)) (-5 *1 (-765))))) (((*1 *2 *3 *4 *5 *4) - (-12 (-5 *3 (-709 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1056)) - (-5 *1 (-765))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-764 *3)) (-4 *3 (-175))))) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1055)) + (-5 *1 (-764))))) +(((*1 *2 *3 *4 *5 *4) + (-12 (-5 *3 (-708 (-229))) (-5 *4 (-558)) (-5 *5 (-114)) (-5 *2 (-1055)) + (-5 *1 (-764))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-763 *3)) (-4 *3 (-175))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 *6)) (-5 *3 (-558)) (-4 *6 (-319)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) + (-12 (-5 *2 (-1191 *6)) (-5 *3 (-558)) (-4 *6 (-319)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-761 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-661 *7)) (-4 *7 (-861)) - (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-815)) (-4 *8 (-319)) (-5 *2 (-661 (-791))) - (-5 *1 (-762 *6 *7 *8 *9)) (-5 *5 (-791))))) + (-12 (-5 *3 (-1191 *9)) (-5 *4 (-660 *7)) (-4 *7 (-860)) + (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-814)) (-4 *8 (-319)) (-5 *2 (-660 (-790))) + (-5 *1 (-761 *6 *7 *8 *9)) (-5 *5 (-790))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-969 *7 *5 *6)) - (-5 *1 (-762 *5 *6 *7 *2)) (-4 *5 (-815)) (-4 *6 (-861)) (-4 *7 (-319))))) + (-12 (-5 *3 (-558)) (-5 *4 (-417 *2)) (-4 *2 (-968 *7 *5 *6)) + (-5 *1 (-761 *5 *6 *7 *2)) (-4 *5 (-814)) (-4 *6 (-860)) (-4 *7 (-319))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) - (-4 *7 (-861)) (-4 *8 (-319)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-815)) + (-12 (-5 *3 (-1191 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) + (-4 *7 (-860)) (-4 *8 (-319)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 - (-2 (|:| |upol| (-1192 *8)) (|:| |Lval| (-661 *8)) - (|:| |Lfact| (-661 (-2 (|:| -4162 (-1192 *8)) (|:| -2632 (-558))))) + (-2 (|:| |upol| (-1191 *8)) (|:| |Lval| (-660 *8)) + (|:| |Lfact| (-660 (-2 (|:| -4161 (-1191 *8)) (|:| -2631 (-558))))) (|:| |ctpol| *8))) - (-5 *1 (-762 *6 *7 *8 *9))))) + (-5 *1 (-761 *6 *7 *8 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-661 *7)) (-5 *5 (-661 (-661 *8))) (-4 *7 (-861)) (-4 *8 (-319)) - (-4 *6 (-815)) (-4 *9 (-969 *8 *6 *7)) + (-12 (-5 *4 (-660 *7)) (-5 *5 (-660 (-660 *8))) (-4 *7 (-860)) (-4 *8 (-319)) + (-4 *6 (-814)) (-4 *9 (-968 *8 *6 *7)) (-5 *2 (-2 (|:| |unitPart| *9) - (|:| |suPart| (-661 (-2 (|:| -4162 (-1192 *9)) (|:| -2632 (-558))))))) - (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1192 *9))))) + (|:| |suPart| (-660 (-2 (|:| -4161 (-1191 *9)) (|:| -2631 (-558))))))) + (-5 *1 (-761 *6 *7 *8 *9)) (-5 *3 (-1191 *9))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-558)) (-4 *6 (-815)) (-4 *7 (-861)) (-4 *8 (-319)) - (-4 *9 (-969 *8 *6 *7)) - (-5 *2 (-2 (|:| -2214 (-1192 *9)) (|:| |polval| (-1192 *8)))) - (-5 *1 (-762 *6 *7 *8 *9)) (-5 *3 (-1192 *9)) (-5 *4 (-1192 *8))))) + (-12 (-5 *5 (-558)) (-4 *6 (-814)) (-4 *7 (-860)) (-4 *8 (-319)) + (-4 *9 (-968 *8 *6 *7)) + (-5 *2 (-2 (|:| -2213 (-1191 *9)) (|:| |polval| (-1191 *8)))) + (-5 *1 (-761 *6 *7 *8 *9)) (-5 *3 (-1191 *9)) (-5 *4 (-1191 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-815)) (-4 *4 (-861)) (-4 *6 (-319)) (-5 *2 (-417 *3)) - (-5 *1 (-762 *5 *4 *6 *3)) (-4 *3 (-969 *6 *5 *4))))) + (-12 (-4 *5 (-814)) (-4 *4 (-860)) (-4 *6 (-319)) (-5 *2 (-417 *3)) + (-5 *1 (-761 *5 *4 *6 *3)) (-4 *3 (-968 *6 *5 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| -4162 (-1192 *6)) (|:| -2632 (-558))))) - (-4 *6 (-319)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-558)) - (-5 *1 (-762 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) + (-12 (-5 *3 (-660 (-2 (|:| -4161 (-1191 *6)) (|:| -2631 (-558))))) + (-4 *6 (-319)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-558)) + (-5 *1 (-761 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-319)) (-5 *2 (-417 *3)) - (-5 *1 (-762 *4 *5 *6 *3)) (-4 *3 (-969 *6 *4 *5))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-759 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-758))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-756 *3)))) - ((*1 *1 *2) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1122)))) - ((*1 *1) (-12 (-5 *1 (-756 *2)) (-4 *2 (-1122))))) + (-12 (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-319)) (-5 *2 (-417 *3)) + (-5 *1 (-761 *4 *5 *6 *3)) (-4 *3 (-968 *6 *4 *5))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-758 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-757))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-755 *3)))) + ((*1 *1 *2) (-12 (-5 *1 (-755 *2)) (-4 *2 (-1121)))) + ((*1 *1) (-12 (-5 *1 (-755 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-791)))) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) (-5 *2 (-791)))) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-755 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-746))))) + (-12 (-5 *2 (-790)) (-5 *1 (-754 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-745))))) (((*1 *2 *3 *4) - (-12 (-4 *6 (-569)) (-4 *2 (-969 *3 *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) - (-5 *3 (-419 (-965 *6))) (-4 *5 (-815)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)))))))) + (-12 (-4 *6 (-569)) (-4 *2 (-968 *3 *5 *4)) (-5 *1 (-751 *5 *4 *6 *2)) + (-5 *3 (-419 (-964 *6))) (-4 *5 (-814)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 (-965 *6))) (-4 *6 (-569)) - (-4 *2 (-969 (-419 (-965 *6)) *5 *4)) (-5 *1 (-752 *5 *4 *6 *2)) - (-4 *5 (-815)) (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $)))))))) + (-12 (-5 *3 (-1191 (-964 *6))) (-4 *6 (-569)) + (-4 *2 (-968 (-419 (-964 *6)) *5 *4)) (-5 *1 (-751 *5 *4 *6 *2)) + (-4 *5 (-814)) (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $)))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *2)) (-4 *2 (-969 (-419 (-965 *6)) *5 *4)) - (-5 *1 (-752 *5 *4 *6 *2)) (-4 *5 (-815)) - (-4 *4 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) (-4 *6 (-569))))) + (-12 (-5 *3 (-1191 *2)) (-4 *2 (-968 (-419 (-964 *6)) *5 *4)) + (-5 *1 (-751 *5 *4 *6 *2)) (-4 *5 (-814)) + (-4 *4 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) (-4 *6 (-569))))) (((*1 *2 *3) - (-12 (-4 *4 (-815)) (-4 *5 (-13 (-861) (-10 -8 (-15 -4402 ((-1198) $))))) - (-4 *6 (-569)) (-5 *2 (-2 (|:| -2873 (-965 *6)) (|:| -2268 (-965 *6)))) - (-5 *1 (-752 *4 *5 *6 *3)) (-4 *3 (-969 (-419 (-965 *6)) *4 *5))))) + (-12 (-4 *4 (-814)) (-4 *5 (-13 (-860) (-10 -8 (-15 -4401 ((-1197) $))))) + (-4 *6 (-569)) (-5 *2 (-2 (|:| -2872 (-964 *6)) (|:| -2267 (-964 *6)))) + (-5 *1 (-751 *4 *5 *6 *3)) (-4 *3 (-968 (-419 (-964 *6)) *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) - (-14 *6 (-791)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-137 *5 *6 *7)) (-14 *5 (-558)) + (-14 *6 (-790)) (-4 *7 (-175)) (-4 *8 (-175)) (-5 *2 (-137 *5 *6 *8)) (-5 *1 (-138 *5 *6 *7 *8)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *9)) (-4 *9 (-1070)) (-4 *5 (-861)) (-4 *6 (-815)) - (-4 *8 (-1070)) (-4 *2 (-969 *9 *7 *5)) (-5 *1 (-748 *5 *6 *7 *8 *9 *4 *2)) - (-4 *7 (-815)) (-4 *4 (-969 *8 *6 *5))))) + (-12 (-5 *3 (-660 *9)) (-4 *9 (-1069)) (-4 *5 (-860)) (-4 *6 (-814)) + (-4 *8 (-1069)) (-4 *2 (-968 *9 *7 *5)) (-5 *1 (-747 *5 *6 *7 *8 *9 *4 *2)) + (-4 *7 (-814)) (-4 *4 (-968 *8 *6 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1264 *5)) - (-5 *1 (-747 *5 *2)) (-4 *5 (-376))))) + (-12 (-5 *3 (-419 *2)) (-5 *4 (-1 *2 *2)) (-4 *2 (-1263 *5)) + (-5 *1 (-746 *5 *2)) (-4 *5 (-376))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -3492 (-417 *3)) (|:| |special| (-417 *3)))) - (-5 *1 (-747 *5 *3))))) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -3491 (-417 *3)) (|:| |special| (-417 *3)))) + (-5 *1 (-746 *5 *3))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-55)))) ((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) - ((*1 *2 *1) (-12 (-4 *1 (-742)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-746)) (-5 *2 (-114))))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) + ((*1 *2 *1) (-12 (-4 *1 (-741)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-745)) (-5 *2 (-114))))) (((*1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-790)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) + (-14 *4 (-660 (-1197))))) ((*1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-790)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) + (-14 *4 (-660 (-1197))))) ((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) ((*1 *2 *1) - (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) + (|partial| -12 (-4 *1 (-349 *3 *4 *5 *2)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-4 *2 (-355 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) + (-12 (-5 *2 (-790)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 *2) (-14 *4 *2) (-4 *5 (-175)))) - ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-744 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) - (-4 *1 (-744 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1264 *5)) (-5 *2 (-709 *5))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-740)) (-5 *2 (-938)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-742)) (-5 *2 (-791))))) + ((*1 *1) (-12 (-4 *2 (-175)) (-4 *1 (-743 *2 *3)) (-4 *3 (-1263 *2))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-1287 *1)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) + (-4 *1 (-743 *5 *6)) (-4 *5 (-175)) (-4 *6 (-1263 *5)) (-5 *2 (-708 *5))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-937)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-790))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-739)) (-5 *2 (-937)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-741)) (-5 *2 (-790))))) (((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) - ((*1 *1 *1) (|partial| -4 *1 (-742)))) + ((*1 *1 *1) (|partial| -4 *1 (-741)))) (((*1 *1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-175)) (-4 *2 (-569)))) - ((*1 *1 *1) (|partial| -4 *1 (-742)))) -(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-738 *2)) (-4 *2 (-376))))) + ((*1 *1 *1) (|partial| -4 *1 (-741)))) +(((*1 *1 *2 *2 *2 *2) (-12 (-5 *1 (-737 *2)) (-4 *2 (-376))))) (((*1 *1 *1 *1) (|partial| -12 (-4 *2 (-175)) (-5 *1 (-301 *2 *3 *4 *5 *6 *7)) - (-4 *3 (-1264 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) + (-4 *3 (-1263 *2)) (-4 *4 (-23)) (-14 *5 (-1 *3 *3 *4)) (-14 *6 (-1 (-3 *4 "failed") *4 *4)) (-14 *7 (-1 (-3 *3 "failed") *3 *3 *4)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-731 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-730 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3)))) ((*1 *1 *1 *1) - (|partial| -12 (-5 *1 (-735 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) + (|partial| -12 (-5 *1 (-734 *2 *3 *4 *5 *6)) (-4 *2 (-175)) (-4 *3 (-23)) (-14 *4 (-1 *2 *2 *3)) (-14 *5 (-1 (-3 *3 "failed") *3 *3)) (-14 *6 (-1 (-3 *2 "failed") *2 *2 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-1269 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) - (-14 *4 (-1198)) (-14 *5 *3))) + (-12 (-5 *2 (-1268 *3 *4 *5)) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) + (-14 *4 (-1197)) (-14 *5 *3))) ((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) ((*1 *2 *1) - (-12 (-4 *2 (-1122)) (-5 *1 (-733 *3 *2 *4)) (-4 *3 (-861)) + (-12 (-4 *2 (-1121)) (-5 *1 (-732 *3 *2 *4)) (-4 *3 (-860)) (-14 *4 - (-1 (-114) (-2 (|:| -2631 *3) (|:| -2632 *2)) - (-2 (|:| -2631 *3) (|:| -2632 *2))))))) -(((*1 *1 *2) (-12 (-5 *2 (-938)) (-4 *1 (-381)))) + (-1 (-114) (-2 (|:| -2630 *3) (|:| -2631 *2)) + (-2 (|:| -2630 *3) (|:| -2631 *2))))))) +(((*1 *1 *2) (-12 (-5 *2 (-937)) (-4 *1 (-381)))) ((*1 *2 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) + (-12 (-5 *3 (-937)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363)))) ((*1 *2 *1) - (-12 (-4 *2 (-861)) (-5 *1 (-733 *2 *3 *4)) (-4 *3 (-1122)) + (-12 (-4 *2 (-860)) (-5 *1 (-732 *2 *3 *4)) (-4 *3 (-1121)) (-14 *4 - (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *3)) - (-2 (|:| -2631 *2) (|:| -2632 *3))))))) -(((*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-732 *3 *2)) (-4 *2 (-1264 *3))))) + (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *3)) + (-2 (|:| -2630 *2) (|:| -2631 *3))))))) +(((*1 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-731 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-732 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-731 *3 *4)) + (-4 *4 (-1263 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1070)) (-5 *1 (-732 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1069)) (-5 *1 (-731 *3 *4)) + (-4 *4 (-1263 *3))))) (((*1 *2 *1) - (-12 (-4 *3 (-1070)) (-5 *2 (-1288 *3)) (-5 *1 (-732 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-4 *3 (-1069)) (-5 *2 (-1287 *3)) (-5 *1 (-731 *3 *4)) + (-4 *4 (-1263 *3))))) (((*1 *2) - (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) + (-4 *4 (-1263 *3))))) (((*1 *2) - (-12 (-4 *3 (-1070)) (-5 *2 (-977 (-732 *3 *4))) (-5 *1 (-732 *3 *4)) - (-4 *4 (-1264 *3))))) + (-12 (-4 *3 (-1069)) (-5 *2 (-976 (-731 *3 *4))) (-5 *1 (-731 *3 *4)) + (-4 *4 (-1263 *3))))) (((*1 *1 *1) - (-12 (-4 *2 (-363)) (-4 *2 (-1070)) (-5 *1 (-732 *2 *3)) (-4 *3 (-1264 *2))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730))))) -(((*1 *2 *3) (-12 (-5 *3 (-877)) (-5 *2 (-1180)) (-5 *1 (-730))))) + (-12 (-4 *2 (-363)) (-4 *2 (-1069)) (-5 *1 (-731 *2 *3)) (-4 *3 (-1263 *2))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729))))) +(((*1 *2 *3) (-12 (-5 *3 (-876)) (-5 *2 (-1179)) (-5 *1 (-729))))) (((*1 *2 *3 *4 *2 *5 *6 *7 *8 *9 *10) - (|partial| -12 (-5 *2 (-661 (-1192 *13))) (-5 *3 (-1192 *13)) - (-5 *4 (-661 *12)) (-5 *5 (-661 *10)) (-5 *6 (-661 *13)) - (-5 *7 (-661 (-661 (-2 (|:| -3479 (-791)) (|:| |pcoef| *13))))) - (-5 *8 (-661 (-791))) (-5 *9 (-1288 (-661 (-1192 *10)))) (-4 *12 (-861)) - (-4 *10 (-319)) (-4 *13 (-969 *10 *11 *12)) (-4 *11 (-815)) - (-5 *1 (-727 *11 *12 *10 *13))))) + (|partial| -12 (-5 *2 (-660 (-1191 *13))) (-5 *3 (-1191 *13)) + (-5 *4 (-660 *12)) (-5 *5 (-660 *10)) (-5 *6 (-660 *13)) + (-5 *7 (-660 (-660 (-2 (|:| -3478 (-790)) (|:| |pcoef| *13))))) + (-5 *8 (-660 (-790))) (-5 *9 (-1287 (-660 (-1191 *10)))) (-4 *12 (-860)) + (-4 *10 (-319)) (-4 *13 (-968 *10 *11 *12)) (-4 *11 (-814)) + (-5 *1 (-726 *11 *12 *10 *13))))) (((*1 *2 *3 *4 *5 *6 *7 *8 *9) - (|partial| -12 (-5 *4 (-661 *11)) (-5 *5 (-661 (-1192 *9))) (-5 *6 (-661 *9)) - (-5 *7 (-661 *12)) (-5 *8 (-661 (-791))) (-4 *11 (-861)) (-4 *9 (-319)) - (-4 *12 (-969 *9 *10 *11)) (-4 *10 (-815)) (-5 *2 (-661 (-1192 *12))) - (-5 *1 (-727 *10 *11 *9 *12)) (-5 *3 (-1192 *12))))) + (|partial| -12 (-5 *4 (-660 *11)) (-5 *5 (-660 (-1191 *9))) (-5 *6 (-660 *9)) + (-5 *7 (-660 *12)) (-5 *8 (-660 (-790))) (-4 *11 (-860)) (-4 *9 (-319)) + (-4 *12 (-968 *9 *10 *11)) (-4 *10 (-814)) (-5 *2 (-660 (-1191 *12))) + (-5 *1 (-726 *10 *11 *9 *12)) (-5 *3 (-1191 *12))))) (((*1 *2 *3 *4 *5 *6 *2 *7 *8) - (|partial| -12 (-5 *2 (-661 (-1192 *11))) (-5 *3 (-1192 *11)) - (-5 *4 (-661 *10)) (-5 *5 (-661 *8)) (-5 *6 (-661 (-791))) - (-5 *7 (-1288 (-661 (-1192 *8)))) (-4 *10 (-861)) (-4 *8 (-319)) - (-4 *11 (-969 *8 *9 *10)) (-4 *9 (-815)) (-5 *1 (-727 *9 *10 *8 *11))))) + (|partial| -12 (-5 *2 (-660 (-1191 *11))) (-5 *3 (-1191 *11)) + (-5 *4 (-660 *10)) (-5 *5 (-660 *8)) (-5 *6 (-660 (-790))) + (-5 *7 (-1287 (-660 (-1191 *8)))) (-4 *10 (-860)) (-4 *8 (-319)) + (-4 *11 (-968 *8 *9 *10)) (-4 *9 (-814)) (-5 *1 (-726 *9 *10 *8 *11))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *3 *5 *6 *7)) - (-4 *3 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238)))) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-721 *3 *5 *6 *7)) + (-4 *3 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *3 *5 *6)) - (-4 *3 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238))))) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-725 *3 *5 *6)) + (-4 *3 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-1 *6 *5)) (-5 *1 (-726 *4 *5 *6)) - (-4 *4 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 *6 *5)) (-5 *1 (-725 *4 *5 *6)) + (-4 *4 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-725 *3 *4)) - (-4 *3 (-1238)) (-4 *4 (-1238))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-661 (-1198))) (-5 *3 (-1198)) (-5 *1 (-547)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) + (-12 (-5 *2 (-2 (|:| |part1| *3) (|:| |part2| *4))) (-5 *1 (-724 *3 *4)) + (-4 *3 (-1237)) (-4 *4 (-1237))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-660 (-1197))) (-5 *3 (-1197)) (-5 *1 (-547)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547))))) ((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) + (-12 (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547))))) ((*1 *2 *3 *2 *2 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-724 *3)) (-4 *3 (-631 (-547))))) + (-12 (-5 *2 (-1197)) (-5 *1 (-723 *3)) (-4 *3 (-630 (-547))))) ((*1 *2 *3 *2 *4) - (-12 (-5 *4 (-661 (-1198))) (-5 *2 (-1198)) (-5 *1 (-724 *3)) - (-4 *3 (-631 (-547)))))) + (-12 (-5 *4 (-660 (-1197))) (-5 *2 (-1197)) (-5 *1 (-723 *3)) + (-4 *3 (-630 (-547)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-723 *3)) - (-4 *3 (-631 (-547))))) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-229) (-229))) (-5 *1 (-722 *3)) + (-4 *3 (-630 (-547))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1198)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-723 *3)) - (-4 *3 (-631 (-547)))))) + (-12 (-5 *4 (-1197)) (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-722 *3)) + (-4 *3 (-630 (-547)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-722 *4 *5 *6 *7)) - (-4 *4 (-631 (-547))) (-4 *5 (-1238)) (-4 *6 (-1238)) (-4 *7 (-1238))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-721)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-721))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-1 *7 *5 *6)) (-5 *1 (-721 *4 *5 *6 *7)) + (-4 *4 (-630 (-547))) (-4 *5 (-1237)) (-4 *6 (-1237)) (-4 *7 (-1237))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-720)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-720))))) (((*1 *2 *3 *3) (-12 (-4 *3 (-319)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-708 *3 *4 *5 *6)) - (-4 *6 (-706 *3 *4 *5)))) + (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-707 *3 *4 *5 *6)) + (-4 *6 (-705 *3 *4 *5)))) ((*1 *2 *3 *3) - (-12 (-5 *2 (-2 (|:| -2184 *3) (|:| -3303 *3))) (-5 *1 (-720 *3)) + (-12 (-5 *2 (-2 (|:| -2183 *3) (|:| -3302 *3))) (-5 *1 (-719 *3)) (-4 *3 (-319))))) -(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-319)) (-5 *1 (-720 *3))))) +(((*1 *2 *2 *3 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-319)) (-5 *1 (-719 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-416)) (-5 *2 (-558)))) - ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-719))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4416)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-719)))) - ((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-719))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) - ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719))))) -(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719)))) - ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-719))))) + ((*1 *2 *1) (-12 (-5 *2 (-558)) (-5 *1 (-718))))) +(((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4415)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-718)))) + ((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-718))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718))))) +(((*1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718)))) + ((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-718))))) (((*1 *2 *3 *3 *3 *4) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1 (-229) (-229) (-229) (-229))) - (-5 *2 (-1 (-962 (-229)) (-229) (-229))) (-5 *1 (-717))))) + (-5 *2 (-1 (-961 (-229)) (-229) (-229))) (-5 *1 (-716))))) (((*1 *2 *3 *3 *3 *4 *5 *6) - (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) - (-5 *6 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-717))))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) + (-5 *6 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-716))))) (((*1 *2 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) - (-5 *5 (-1110 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1154 (-229))) - (-5 *1 (-717))))) + (-5 *5 (-1109 (-229))) (-5 *6 (-660 (-270))) (-5 *2 (-1153 (-229))) + (-5 *1 (-716))))) (((*1 *2 *3 *3 *3 *4 *5 *5 *6) (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-3 (-1 (-229) (-229) (-229) (-229)) "undefined")) - (-5 *5 (-1110 (-229))) (-5 *6 (-661 (-270))) (-5 *2 (-1154 (-229))) - (-5 *1 (-717)))) + (-5 *5 (-1109 (-229))) (-5 *6 (-660 (-270))) (-5 *2 (-1153 (-229))) + (-5 *1 (-716)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-229))) - (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-717)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-229))) + (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-716)))) ((*1 *2 *2 *3 *4 *4 *5) - (-12 (-5 *2 (-1154 (-229))) (-5 *3 (-1 (-962 (-229)) (-229) (-229))) - (-5 *4 (-1110 (-229))) (-5 *5 (-661 (-270))) (-5 *1 (-717))))) + (-12 (-5 *2 (-1153 (-229))) (-5 *3 (-1 (-961 (-229)) (-229) (-229))) + (-5 *4 (-1109 (-229))) (-5 *5 (-660 (-270))) (-5 *1 (-716))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1264 *4)))) + (-12 (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1263 *4)))) ((*1 *2 *2 *3 *2 *3) - (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1264 *3))))) + (-12 (-5 *3 (-558)) (-5 *1 (-715 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| |deg| (-791)) (|:| -2974 *5)))) (-4 *5 (-1264 *4)) - (-4 *4 (-363)) (-5 *2 (-661 *5)) (-5 *1 (-220 *4 *5)))) + (-12 (-5 *3 (-660 (-2 (|:| |deg| (-790)) (|:| -2973 *5)))) (-4 *5 (-1263 *4)) + (-4 *4 (-363)) (-5 *2 (-660 *5)) (-5 *1 (-220 *4 *5)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-2 (|:| -4162 *5) (|:| -4378 (-558))))) (-5 *4 (-558)) - (-4 *5 (-1264 *4)) (-5 *2 (-661 *5)) (-5 *1 (-716 *5))))) + (-12 (-5 *3 (-660 (-2 (|:| -4161 *5) (|:| -4377 (-558))))) (-5 *4 (-558)) + (-4 *5 (-1263 *4)) (-5 *2 (-660 *5)) (-5 *1 (-715 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-558)) (-5 *2 (-661 (-2 (|:| -4162 *3) (|:| -4378 *4)))) - (-5 *1 (-716 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-716 *2)) (-4 *2 (-1264 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1238)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-12 (-4 *1 (-715 *2)) (-4 *2 (-1122))))) + (-12 (-5 *4 (-558)) (-5 *2 (-660 (-2 (|:| -4161 *3) (|:| -4377 *4)))) + (-5 *1 (-715 *3)) (-4 *3 (-1263 *4))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-715 *2)) (-4 *2 (-1263 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-294 *2)) (-4 *2 (-1237)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-12 (-4 *1 (-714 *2)) (-4 *2 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-715 *3)) (-4 *3 (-1122)) - (-5 *2 (-661 (-2 (|:| -2286 *3) (|:| -2157 (-791)))))))) + (-12 (-4 *1 (-714 *3)) (-4 *3 (-1121)) + (-5 *2 (-660 (-2 (|:| -2285 *3) (|:| -2156 (-790)))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *5 (-791)) (-4 *6 (-1122)) (-4 *7 (-917 *6)) (-5 *2 (-709 *7)) - (-5 *1 (-712 *6 *7 *3 *4)) (-4 *3 (-385 *7)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4425))))))) + (-12 (-5 *5 (-790)) (-4 *6 (-1121)) (-4 *7 (-916 *6)) (-5 *2 (-708 *7)) + (-5 *1 (-711 *6 *7 *3 *4)) (-4 *3 (-385 *7)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4424))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *4 (-661 (-1198))) - (-5 *2 (-709 (-326 (-229)))) (-5 *1 (-208)))) + (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *4 (-660 (-1197))) + (-5 *2 (-708 (-326 (-229)))) (-5 *1 (-208)))) ((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *6 (-917 *5)) (-5 *2 (-709 *6)) - (-5 *1 (-712 *5 *6 *3 *4)) (-4 *3 (-385 *6)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425))))))) + (-12 (-4 *5 (-1121)) (-4 *6 (-916 *5)) (-5 *2 (-708 *6)) + (-5 *1 (-711 *5 *6 *3 *4)) (-4 *3 (-385 *6)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424))))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-791)) (-4 *6 (-1122)) (-4 *3 (-917 *6)) (-5 *2 (-709 *3)) - (-5 *1 (-712 *6 *3 *7 *4)) (-4 *7 (-385 *3)) - (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4425))))))) + (-12 (-5 *5 (-790)) (-4 *6 (-1121)) (-4 *3 (-916 *6)) (-5 *2 (-708 *3)) + (-5 *1 (-711 *6 *3 *7 *4)) (-4 *7 (-385 *3)) + (-4 *4 (-13 (-385 *6) (-10 -7 (-6 -4424))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *3 (-917 *5)) (-5 *2 (-709 *3)) - (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425))))))) + (-12 (-4 *5 (-1121)) (-4 *3 (-916 *5)) (-5 *2 (-708 *3)) + (-5 *1 (-711 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424))))))) (((*1 *2 *2 *3) - (-12 (-4 *4 (-1122)) (-4 *2 (-917 *4)) (-5 *1 (-712 *4 *2 *5 *3)) - (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4425))))))) + (-12 (-4 *4 (-1121)) (-4 *2 (-916 *4)) (-5 *1 (-711 *4 *2 *5 *3)) + (-4 *5 (-385 *2)) (-4 *3 (-13 (-385 *4) (-10 -7 (-6 -4424))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *2 (-917 *5)) (-5 *1 (-712 *5 *2 *3 *4)) - (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425))))))) + (-12 (-4 *5 (-1121)) (-4 *2 (-916 *5)) (-5 *1 (-711 *5 *2 *3 *4)) + (-4 *3 (-385 *2)) (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424))))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-1122)) (-4 *3 (-917 *5)) (-5 *2 (-1288 *3)) - (-5 *1 (-712 *5 *3 *6 *4)) (-4 *6 (-385 *3)) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425))))))) -(((*1 *1 *2) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-877)))))) -(((*1 *1) (-12 (-5 *1 (-711 *2)) (-4 *2 (-630 (-877)))))) + (-12 (-4 *5 (-1121)) (-4 *3 (-916 *5)) (-5 *2 (-1287 *3)) + (-5 *1 (-711 *5 *3 *6 *4)) (-4 *6 (-385 *3)) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4424))))))) +(((*1 *1 *2) (-12 (-5 *1 (-710 *2)) (-4 *2 (-629 (-876)))))) +(((*1 *1) (-12 (-5 *1 (-710 *2)) (-4 *2 (-629 (-876)))))) (((*1 *2 *2 *2 *2 *2 *3) - (-12 (-5 *2 (-709 *4)) (-5 *3 (-791)) (-4 *4 (-1070)) (-5 *1 (-710 *4))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) -(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) -(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3)))) - ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) -(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-709 *3)) (-4 *3 (-1070)) (-5 *1 (-710 *3))))) + (-12 (-5 *2 (-708 *4)) (-5 *3 (-790)) (-4 *4 (-1069)) (-5 *1 (-709 *4))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) +(((*1 *2 *2 *2 *3) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) +(((*1 *2 *2 *3 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3)))) + ((*1 *2 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) +(((*1 *2 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-708 *3)) (-4 *3 (-1069)) (-5 *1 (-709 *3))))) (((*1 *2 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) - (-4 *5 (-385 *3)) (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) + (-4 *5 (-385 *3)) (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-4 *3 (-175)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-708 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) + (-5 *1 (-707 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) (((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) - (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6))))) + (-5 *1 (-707 *3 *5 *6 *2)) (-4 *2 (-705 *3 *5 *6))))) (((*1 *2 *2 *3 *4 *4) (-12 (-5 *4 (-558)) (-4 *3 (-175)) (-4 *5 (-385 *3)) (-4 *6 (-385 *3)) - (-5 *1 (-708 *3 *5 *6 *2)) (-4 *2 (-706 *3 *5 *6))))) + (-5 *1 (-707 *3 *5 *6 *2)) (-4 *2 (-705 *3 *5 *6))))) (((*1 *2 *2 *3 *3) (-12 (-5 *3 (-558)) (-4 *4 (-175)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4)) - (-5 *1 (-708 *4 *5 *6 *2)) (-4 *2 (-706 *4 *5 *6))))) + (-5 *1 (-707 *4 *5 *6 *2)) (-4 *2 (-705 *4 *5 *6))))) (((*1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-706 *2 *3 *4)) (-4 *2 (-1070)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-705 *2 *3 *4)) (-4 *2 (-1069)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *1 *1 *2 *2 *2 *2) - (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *1 *1 *2 *2 *1) - (-12 (-5 *2 (-558)) (-4 *1 (-706 *3 *4 *5)) (-4 *3 (-1070)) (-4 *4 (-385 *3)) + (-12 (-5 *2 (-558)) (-4 *1 (-705 *3 *4 *5)) (-4 *3 (-1069)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-704 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *5 *4)) (-5 *1 (-703 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-704 *4 *5 *6)) (-4 *4 (-1122))))) + (-12 (-5 *3 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-703 *4 *5 *6)) (-4 *4 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1122)) (-4 *6 (-1122)) (-5 *2 (-1 *6 *4 *5)) - (-5 *1 (-704 *4 *5 *6)) (-4 *5 (-1122))))) + (-12 (-5 *3 (-1 *6 *4)) (-4 *4 (-1121)) (-4 *6 (-1121)) (-5 *2 (-1 *6 *4 *5)) + (-5 *1 (-703 *4 *5 *6)) (-4 *5 (-1121))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *4 *5 *6))))) + (-12 (-5 *3 (-1 *6 *4 *5)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *4 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1122)) (-4 *4 (-1122)) (-4 *6 (-1122)) - (-5 *2 (-1 *6 *5)) (-5 *1 (-704 *5 *4 *6))))) + (-12 (-5 *3 (-1 *6 *5 *4)) (-4 *5 (-1121)) (-4 *4 (-1121)) (-4 *6 (-1121)) + (-5 *2 (-1 *6 *5)) (-5 *1 (-703 *5 *4 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5 *4)) - (-5 *1 (-703 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5 *4)) + (-5 *1 (-702 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1122)) (-4 *5 (-1122)) (-5 *2 (-1 *5)) - (-5 *1 (-703 *4 *5))))) + (-12 (-5 *3 (-1 *5 *4)) (-4 *4 (-1121)) (-4 *5 (-1121)) (-5 *2 (-1 *5)) + (-5 *1 (-702 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-703 *4 *3)) (-4 *4 (-1122)) - (-4 *3 (-1122))))) + (-12 (-5 *2 (-1 *3 *4)) (-5 *1 (-702 *4 *3)) (-4 *4 (-1121)) + (-4 *3 (-1121))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 (-791) *2)) (-5 *4 (-791)) (-4 *2 (-1122)) - (-5 *1 (-698 *2)))) - ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-791) *3)) (-4 *3 (-1122)) (-5 *1 (-702 *3))))) -(((*1 *2 *2) (-12 (-5 *1 (-702 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-702 *2)) (-4 *2 (-1122)))) - ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-661 *5) (-661 *5))) (-5 *4 (-558)) (-5 *2 (-661 *5)) - (-5 *1 (-702 *5)) (-4 *5 (-1122))))) -(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-702 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-661 (-1239))) (-5 *3 (-1239)) (-5 *1 (-701))))) + (-12 (-5 *3 (-1 *2 (-790) *2)) (-5 *4 (-790)) (-4 *2 (-1121)) + (-5 *1 (-697 *2)))) + ((*1 *2 *2) (-12 (-5 *2 (-1 *3 (-790) *3)) (-4 *3 (-1121)) (-5 *1 (-701 *3))))) +(((*1 *2 *2) (-12 (-5 *1 (-701 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3) (-12 (-5 *3 (-1 *2 *2)) (-5 *1 (-701 *2)) (-4 *2 (-1121)))) + ((*1 *2 *3 *4) + (-12 (-5 *3 (-1 (-660 *5) (-660 *5))) (-5 *4 (-558)) (-5 *2 (-660 *5)) + (-5 *1 (-701 *5)) (-4 *5 (-1121))))) +(((*1 *2 *3) (-12 (-5 *2 (-1 *3)) (-5 *1 (-701 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-660 (-1238))) (-5 *3 (-1238)) (-5 *1 (-700))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1122)) (-4 *6 (-1122)) - (-4 *2 (-1122)) (-5 *1 (-700 *5 *6 *2))))) -(((*1 *2 *3 *2) (-12 (-5 *1 (-699 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *2 *3) (-12 (-5 *1 (-699 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + (-12 (-5 *3 (-1 *2 *6)) (-5 *4 (-1 *6 *5)) (-4 *5 (-1121)) (-4 *6 (-1121)) + (-4 *2 (-1121)) (-5 *1 (-699 *5 *6 *2))))) +(((*1 *2 *3 *2) (-12 (-5 *1 (-698 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *2 *3) (-12 (-5 *1 (-698 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-791)) (-4 *2 (-1122)) (-5 *1 (-698 *2))))) + (-12 (-5 *3 (-1 *2 *2)) (-5 *4 (-790)) (-4 *2 (-1121)) (-5 *1 (-697 *2))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) + (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-1113 (-965 (-558)))) (-5 *2 (-342)) + (-12 (-5 *3 (-1197)) (-5 *4 (-1112 (-964 (-558)))) (-5 *2 (-342)) (-5 *1 (-344)))) ((*1 *1 *2 *2 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1070)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-790)) (-5 *1 (-694 *3)) (-4 *3 (-1069)) (-4 *3 (-1121))))) (((*1 *1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-695 *3)) (-4 *3 (-1070)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-790)) (-5 *1 (-694 *3)) (-4 *3 (-1069)) (-4 *3 (-1121))))) (((*1 *1 *1 *1) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) ((*1 *1 *2 *3 *1) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3))) - ((*1 *1 *1 *1) (-12 (-5 *1 (-695 *2)) (-4 *2 (-1070)) (-4 *2 (-1122))))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3))) + ((*1 *1 *1 *1) (-12 (-5 *1 (-694 *2)) (-4 *2 (-1069)) (-4 *2 (-1121))))) (((*1 *2 *1 *3 *3 *3 *2) - (-12 (-5 *3 (-791)) (-5 *1 (-695 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-1288 (-791))) (-5 *1 (-695 *3)) (-4 *3 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-114))))) -(((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-4 *1 (-694 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-694 *3)) (-4 *3 (-1238)) (-5 *2 (-791))))) -(((*1 *2 *3) - (-12 (-5 *3 (-841 *4)) (-4 *4 (-861)) (-5 *2 (-114)) (-5 *1 (-692 *4))))) -(((*1 *1 *2) (-12 (-5 *2 (-841 *3)) (-4 *3 (-861)) (-5 *1 (-692 *3))))) + (-12 (-5 *3 (-790)) (-5 *1 (-694 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-1287 (-790))) (-5 *1 (-694 *3)) (-4 *3 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-114))))) +(((*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-4 *1 (-693 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-693 *3)) (-4 *3 (-1237)) (-5 *2 (-790))))) +(((*1 *2 *3) + (-12 (-5 *3 (-840 *4)) (-4 *4 (-860)) (-5 *2 (-114)) (-5 *1 (-691 *4))))) +(((*1 *1 *2) (-12 (-5 *2 (-840 *3)) (-4 *3 (-860)) (-5 *1 (-691 *3))))) (((*1 *1 *2) - (|partial| -12 (-5 *2 (-841 *3)) (-4 *3 (-861)) (-5 *1 (-692 *3))))) + (|partial| -12 (-5 *2 (-840 *3)) (-4 *3 (-860)) (-5 *1 (-691 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-938)) (-4 *5 (-861)) - (-5 *2 (-58 (-661 (-692 *5)))) (-5 *1 (-692 *5))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-937)) (-4 *5 (-860)) + (-5 *2 (-58 (-660 (-691 *5)))) (-5 *1 (-691 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *5)) (-5 *4 (-938)) (-4 *5 (-861)) (-5 *2 (-661 (-692 *5))) - (-5 *1 (-692 *5))))) + (-12 (-5 *3 (-660 *5)) (-5 *4 (-937)) (-4 *5 (-860)) (-5 *2 (-660 (-691 *5))) + (-5 *1 (-691 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 *7)) (-4 *7 (-861)) - (-4 *8 (-969 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-815)) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 *7)) (-4 *7 (-860)) + (-4 *8 (-968 *5 *6 *7)) (-4 *5 (-569)) (-4 *6 (-814)) (-5 *2 - (-2 (|:| |particular| (-3 (-1288 (-419 *8)) "failed")) - (|:| -2222 (-661 (-1288 (-419 *8)))))) - (-5 *1 (-689 *5 *6 *7 *8))))) + (-2 (|:| |particular| (-3 (-1287 (-419 *8)) "failed")) + (|:| -2221 (-660 (-1287 (-419 *8)))))) + (-5 *1 (-688 *5 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4426)))) - (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4426)))) (-5 *2 (-114)) - (-5 *1 (-687 *5 *6 *4 *3)) (-4 *3 (-706 *5 *6 *4)))) + (-12 (-4 *5 (-376)) (-4 *6 (-13 (-385 *5) (-10 -7 (-6 -4425)))) + (-4 *4 (-13 (-385 *5) (-10 -7 (-6 -4425)))) (-5 *2 (-114)) + (-5 *1 (-686 *5 *6 *4 *3)) (-4 *3 (-705 *5 *6 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *5)) (-5 *4 (-1288 *5)) (-4 *5 (-376)) (-5 *2 (-114)) - (-5 *1 (-688 *5))))) + (-12 (-5 *3 (-708 *5)) (-5 *4 (-1287 *5)) (-4 *5 (-376)) (-5 *2 (-114)) + (-5 *1 (-687 *5))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-1192 *4))) (-5 *3 (-1192 *4)) (-4 *4 (-929)) - (-5 *1 (-683 *4))))) -(((*1 *1 *1) (-4 *1 (-682)))) -(((*1 *1 *1 *1) (-4 *1 (-682)))) -(((*1 *1 *1 *1) (-4 *1 (-682)))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) + (|partial| -12 (-5 *2 (-660 (-1191 *4))) (-5 *3 (-1191 *4)) (-4 *4 (-928)) + (-5 *1 (-682 *4))))) +(((*1 *1 *1) (-4 *1 (-681)))) +(((*1 *1 *1 *1) (-4 *1 (-681)))) +(((*1 *1 *1 *1) (-4 *1 (-681)))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) - (-4 *2 (-678 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-679 *4 *2)) + (-4 *2 (-677 *4))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-678 *3)) (-4 *3 (-1070)) (-4 *3 (-376)))) + (-12 (-5 *2 (-790)) (-4 *1 (-677 *3)) (-4 *3 (-1069)) (-4 *3 (-376)))) ((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-680 *5 *2)) - (-4 *2 (-678 *5))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)) (-4 *2 (-376)))) + (-12 (-5 *3 (-790)) (-5 *4 (-1 *5 *5)) (-4 *5 (-376)) (-5 *1 (-679 *5 *2)) + (-4 *2 (-677 *5))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)) (-4 *2 (-376)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-680 *4 *2)) - (-4 *2 (-678 *4))))) + (-12 (-5 *3 (-1 *4 *4)) (-4 *4 (-376)) (-5 *1 (-679 *4 *2)) + (-4 *2 (-677 *4))))) (((*1 *2 *3) (-12 (-4 *4 (-27)) - (-4 *4 (-13 (-376) (-149) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *5 (-1264 *4)) (-5 *2 (-661 (-675 (-419 *5)))) (-5 *1 (-679 *4 *5)) - (-5 *3 (-675 (-419 *5)))))) -(((*1 *1 *1) (-12 (-4 *1 (-678 *2)) (-4 *2 (-1070)) (-4 *2 (-376))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-558))) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1238))))) -(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-671 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-671 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 *4)))) - (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) (-14 *5 *4)))) + (-4 *4 (-13 (-376) (-149) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *5 (-1263 *4)) (-5 *2 (-660 (-674 (-419 *5)))) (-5 *1 (-678 *4 *5)) + (-5 *3 (-674 (-419 *5)))))) +(((*1 *1 *1) (-12 (-4 *1 (-677 *2)) (-4 *2 (-1069)) (-4 *2 (-376))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-558))) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-670 *3)) (-4 *3 (-1237))))) +(((*1 *1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-670 *3)) (-4 *3 (-1237)))) + ((*1 *1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-670 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) + (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 *4)))) + (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *3) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2) - (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 *4)))) (-4 *3 (-1122)) - (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-374 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 *4)))) (-4 *3 (-1121)) + (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-668 *3 *4 *5))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-374 *3)) (-4 *3 (-1121)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-399 *4)) (-4 *4 (-1122)) (-5 *2 (-791)))) + (-12 (-5 *3 (-558)) (-4 *1 (-399 *4)) (-4 *4 (-1121)) (-5 *2 (-790)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-669 *4 *2 *5)) (-4 *4 (-1122)) + (-12 (-5 *3 (-558)) (-4 *2 (-23)) (-5 *1 (-668 *4 *2 *5)) (-4 *4 (-1121)) (-14 *5 *2)))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1122)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *2)) (-4 *2 (-1122)))) + (-12 (-5 *3 (-558)) (-4 *1 (-335 *2 *4)) (-4 *4 (-133)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-374 *2)) (-4 *2 (-1121)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-4 *1 (-399 *2)) (-4 *2 (-1121)))) ((*1 *2 *1 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *2 (-1122)) (-5 *1 (-669 *2 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *3 (-558)) (-4 *2 (-1121)) (-5 *1 (-668 *2 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1238)))) - ((*1 *2 *2) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-385 *2)) (-4 *2 (-1237)))) + ((*1 *2 *2) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *1 *1) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3)))) -(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238)))) - ((*1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-385 *2)) (-4 *2 (-1238)))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) +(((*1 *1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237)))) + ((*1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-385 *2)) (-4 *2 (-1237)))) ((*1 *1 *1) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *1 *2 *1) - (-12 (-5 *1 (-669 *2 *3 *4)) (-4 *2 (-1122)) (-4 *3 (-23)) (-14 *4 *3)))) + (-12 (-5 *1 (-668 *2 *3 *4)) (-4 *2 (-1121)) (-4 *3 (-23)) (-14 *4 *3)))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-669 *3 *4 *5)) (-4 *3 (-1122)) (-4 *4 (-23)) + (-12 (-5 *2 (-114)) (-5 *1 (-668 *3 *4 *5)) (-4 *3 (-1121)) (-4 *4 (-23)) (-14 *5 *4)))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-374 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1 (-558) (-558))) (-5 *1 (-374 *3)) (-4 *3 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-791) (-791))) (-4 *1 (-399 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1 (-790) (-790))) (-4 *1 (-399 *3)) (-4 *3 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-669 *3 *4 *5)) - (-4 *3 (-1122))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *4 (-23)) (-14 *5 *4) (-5 *1 (-668 *3 *4 *5)) + (-4 *3 (-1121))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-374 *3)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1122)))) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-374 *3)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-399 *3)) (-4 *3 (-1121)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-669 *3 *4 *5)) (-4 *4 (-23)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-668 *3 *4 *5)) (-4 *4 (-23)) (-14 *5 *4)))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-667 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-667 *2)) (-4 *2 (-1122))))) -(((*1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-661 *3)) (-4 *3 (-1238))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-661 *2)) (-4 *2 (-1122)) (-4 *2 (-1238))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-666 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *2 *1) (-12 (-5 *1 (-666 *2)) (-4 *2 (-1121))))) +(((*1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-660 *3)) (-4 *3 (-1237))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-660 *2)) (-4 *2 (-1121)) (-4 *2 (-1237))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-659 *3 *4)) - (-14 *4 (-661 (-1198)))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-376)) (-5 *1 (-658 *3 *4)) + (-14 *4 (-660 (-1197)))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1070)) - (-5 *2 (-2 (|:| -1783 (-709 *4)) (|:| |vec| (-1288 *4)))))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-657 *4)) (-4 *4 (-1069)) + (-5 *2 (-2 (|:| -1782 (-708 *4)) (|:| |vec| (-1287 *4)))))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1070)) (-5 *2 (-709 *4))))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-657 *4)) (-4 *4 (-1069)) (-5 *2 (-708 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-709 *1)) (-5 *4 (-1288 *1)) (-4 *1 (-658 *5)) (-4 *5 (-1070)) - (-5 *2 (-2 (|:| -1783 (-709 *5)) (|:| |vec| (-1288 *5)))))) + (-12 (-5 *3 (-708 *1)) (-5 *4 (-1287 *1)) (-4 *1 (-657 *5)) (-4 *5 (-1069)) + (-5 *2 (-2 (|:| -1782 (-708 *5)) (|:| |vec| (-1287 *5)))))) ((*1 *2 *3) - (-12 (-5 *3 (-709 *1)) (-4 *1 (-658 *4)) (-4 *4 (-1070)) (-5 *2 (-709 *4))))) + (-12 (-5 *3 (-708 *1)) (-4 *1 (-657 *4)) (-4 *4 (-1069)) (-5 *2 (-708 *4))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 *3)) (-4 *3 (-376)) (-5 *1 (-657 *3 *4)) - (-14 *4 (-661 (-1198)))))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-376)) (-5 *1 (-656 *3 *4)) + (-14 *4 (-660 (-1197)))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 *5))) - (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-1288 *5)) (-5 *1 (-656 *5 *4)))) + (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 *5))) + (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 (-1287 *5)) (-5 *1 (-655 *5 *4)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1288 *4)) (-4 *4 (-13 (-1070) (-658 *5))) - (-2959 (-4 *5 (-376))) (-4 *5 (-569)) (-5 *2 (-1288 (-419 *5))) - (-5 *1 (-656 *5 *4))))) + (|partial| -12 (-5 *3 (-1287 *4)) (-4 *4 (-13 (-1069) (-657 *5))) + (-2958 (-4 *5 (-376))) (-4 *5 (-569)) (-5 *2 (-1287 (-419 *5))) + (-5 *1 (-655 *5 *4))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-658 *4))) - (-4 *4 (-569)) (-5 *2 (-1288 *4)) (-5 *1 (-656 *4 *5))))) + (|partial| -12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-657 *4))) + (-4 *4 (-569)) (-5 *2 (-1287 *4)) (-5 *1 (-655 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *5)) (-4 *5 (-13 (-1070) (-658 *4))) (-4 *4 (-569)) - (-5 *2 (-114)) (-5 *1 (-656 *4 *5))))) + (-12 (-5 *3 (-1287 *5)) (-4 *5 (-13 (-1069) (-657 *4))) (-4 *4 (-569)) + (-5 *2 (-114)) (-5 *1 (-655 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-855 *3))) (-4 *3 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-305 (-854 *3))) (-4 *3 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) #1="failed")) - (|:| |rightHandLimit| (-3 (-855 *3) #1#))) + (-3 (-854 *3) + (-2 (|:| |leftHandLimit| (-3 (-854 *3) #1="failed")) + (|:| |rightHandLimit| (-3 (-854 *3) #1#))) "failed")) - (-5 *1 (-653 *5 *3)))) + (-5 *1 (-652 *5 *3)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1180)) - (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-855 *3)) - (-5 *1 (-653 *6 *3)))) + (|partial| -12 (-5 *4 (-305 *3)) (-5 *5 (-1179)) + (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-854 *3)) + (-5 *1 (-652 *6 *3)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-855 (-965 *5)))) (-4 *5 (-464)) + (-12 (-5 *4 (-305 (-854 (-964 *5)))) (-4 *5 (-464)) (-5 *2 - (-3 (-855 (-419 (-965 *5))) - (-2 (|:| |leftHandLimit| (-3 (-855 (-419 (-965 *5))) #2="failed")) - (|:| |rightHandLimit| (-3 (-855 (-419 (-965 *5))) #2#))) + (-3 (-854 (-419 (-964 *5))) + (-2 (|:| |leftHandLimit| (-3 (-854 (-419 (-964 *5))) #2="failed")) + (|:| |rightHandLimit| (-3 (-854 (-419 (-964 *5))) #2#))) #3="failed")) - (-5 *1 (-654 *5)) (-5 *3 (-419 (-965 *5))))) + (-5 *1 (-653 *5)) (-5 *3 (-419 (-964 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-419 (-965 *5)))) (-5 *3 (-419 (-965 *5))) (-4 *5 (-464)) + (-12 (-5 *4 (-305 (-419 (-964 *5)))) (-5 *3 (-419 (-964 *5))) (-4 *5 (-464)) (-5 *2 - (-3 (-855 *3) - (-2 (|:| |leftHandLimit| (-3 (-855 *3) #2#)) - (|:| |rightHandLimit| (-3 (-855 *3) #2#))) + (-3 (-854 *3) + (-2 (|:| |leftHandLimit| (-3 (-854 *3) #2#)) + (|:| |rightHandLimit| (-3 (-854 *3) #2#))) #3#)) - (-5 *1 (-654 *5)))) + (-5 *1 (-653 *5)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-305 (-419 (-965 *6)))) (-5 *5 (-1180)) - (-5 *3 (-419 (-965 *6))) (-4 *6 (-464)) (-5 *2 (-855 *3)) - (-5 *1 (-654 *6))))) + (|partial| -12 (-5 *4 (-305 (-419 (-964 *6)))) (-5 *5 (-1179)) + (-5 *3 (-419 (-964 *6))) (-4 *6 (-464)) (-5 *2 (-854 *3)) + (-5 *1 (-653 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-305 (-845 *3))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-845 *3)) - (-5 *1 (-653 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) + (|partial| -12 (-5 *4 (-305 (-844 *3))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-844 *3)) + (-5 *1 (-652 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-845 (-965 *5)))) (-4 *5 (-464)) - (-5 *2 (-845 (-419 (-965 *5)))) (-5 *1 (-654 *5)) (-5 *3 (-419 (-965 *5))))) + (-12 (-5 *4 (-305 (-844 (-964 *5)))) (-4 *5 (-464)) + (-5 *2 (-844 (-419 (-964 *5)))) (-5 *1 (-653 *5)) (-5 *3 (-419 (-964 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-305 (-419 (-965 *5)))) (-5 *3 (-419 (-965 *5))) (-4 *5 (-464)) - (-5 *2 (-845 *3)) (-5 *1 (-654 *5))))) -(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-649))))) -(((*1 *1 *1) (-12 (-5 *1 (-625 *2)) (-4 *2 (-1122)))) - ((*1 *1 *1) (-5 *1 (-649)))) + (-12 (-5 *4 (-305 (-419 (-964 *5)))) (-5 *3 (-419 (-964 *5))) (-4 *5 (-464)) + (-5 *2 (-844 *3)) (-5 *1 (-653 *5))))) +(((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-648))))) +(((*1 *1 *1) (-12 (-5 *1 (-624 *2)) (-4 *2 (-1121)))) + ((*1 *1 *1) (-5 *1 (-648)))) (((*1 *2 *3) - (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) - (-5 *2 (-493 *4 *5)) (-5 *1 (-648 *4 *5))))) + (-12 (-5 *3 (-255 *4 *5)) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) + (-5 *2 (-493 *4 *5)) (-5 *1 (-647 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-661 (-1198))) - (-4 *5 (-464)) (-5 *1 (-648 *4 *5))))) + (-12 (-5 *3 (-660 (-255 *4 *5))) (-5 *2 (-255 *4 *5)) (-14 *4 (-660 (-1197))) + (-4 *5 (-464)) (-5 *1 (-647 *4 *5))))) (((*1 *2 *3 *2 *2) - (-12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-878 *4)) (-14 *4 (-661 (-1198))) - (-4 *5 (-464)) (-5 *1 (-648 *4 *5))))) + (-12 (-5 *2 (-660 (-493 *4 *5))) (-5 *3 (-877 *4)) (-14 *4 (-660 (-1197))) + (-4 *5 (-464)) (-5 *1 (-647 *4 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-255 *5 *6))) (-4 *6 (-464)) - (-5 *2 (-255 *5 *6)) (-14 *5 (-661 (-1198))) (-5 *1 (-648 *5 *6))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 (-962 (-229)) (-962 (-229)))) (-5 *1 (-270)))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-255 *5 *6))) (-4 *6 (-464)) + (-5 *2 (-255 *5 *6)) (-14 *5 (-660 (-1197))) (-5 *1 (-647 *5 *6))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 (-961 (-229)) (-961 (-229)))) (-5 *1 (-270)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-1 (-962 (-229)) (-962 (-229)))) (-5 *3 (-661 (-270))) + (-12 (-5 *2 (-1 (-961 (-229)) (-961 (-229)))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-661 (-1198))) - (-4 *6 (-464)) (-5 *2 (-1288 *6)) (-5 *1 (-648 *5 *6))))) + (-12 (-5 *4 (-660 (-493 *5 *6))) (-5 *3 (-493 *5 *6)) (-14 *5 (-660 (-1197))) + (-4 *6 (-464)) (-5 *2 (-1287 *6)) (-5 *1 (-647 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 (-493 *3 *4))) (-14 *3 (-661 (-1198))) (-4 *4 (-464)) - (-5 *1 (-648 *3 *4))))) + (-12 (-5 *2 (-660 (-493 *3 *4))) (-14 *3 (-660 (-1197))) (-4 *4 (-464)) + (-5 *1 (-647 *3 *4))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-661 (-1198))) - (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464)))) + (-12 (-5 *3 (-660 (-493 *5 *6))) (-5 *4 (-877 *5)) (-14 *5 (-660 (-1197))) + (-5 *2 (-493 *5 *6)) (-5 *1 (-647 *5 *6)) (-4 *6 (-464)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-493 *5 *6))) (-5 *4 (-878 *5)) (-14 *5 (-661 (-1198))) - (-5 *2 (-493 *5 *6)) (-5 *1 (-648 *5 *6)) (-4 *6 (-464))))) + (-12 (-5 *3 (-660 (-493 *5 *6))) (-5 *4 (-877 *5)) (-14 *5 (-660 (-1197))) + (-5 *2 (-493 *5 *6)) (-5 *1 (-647 *5 *6)) (-4 *6 (-464))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) - (-5 *2 (-661 (-255 *4 *5))) (-5 *1 (-648 *4 *5))))) + (-12 (-5 *3 (-660 (-493 *4 *5))) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) + (-5 *2 (-660 (-255 *4 *5))) (-5 *1 (-647 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-661 (-1198))) (-4 *5 (-464)) - (-5 *2 (-2 (|:| |glbase| (-661 (-255 *4 *5))) (|:| |glval| (-661 (-558))))) - (-5 *1 (-648 *4 *5)) (-5 *3 (-661 (-255 *4 *5)))))) + (-12 (-14 *4 (-660 (-1197))) (-4 *5 (-464)) + (-5 *2 (-2 (|:| |glbase| (-660 (-255 *4 *5))) (|:| |glval| (-660 (-558))))) + (-5 *1 (-647 *4 *5)) (-5 *3 (-660 (-255 *4 *5)))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-493 *4 *5))) (-14 *4 (-661 (-1198))) (-4 *5 (-464)) - (-5 *2 (-2 (|:| |gblist| (-661 (-255 *4 *5))) (|:| |gvlist| (-661 (-558))))) - (-5 *1 (-648 *4 *5))))) + (-12 (-5 *3 (-660 (-493 *4 *5))) (-14 *4 (-660 (-1197))) (-4 *5 (-464)) + (-5 *2 (-2 (|:| |gblist| (-660 (-255 *4 *5))) (|:| |gvlist| (-660 (-558))))) + (-5 *1 (-647 *4 *5))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *1 *1) (-4 *1 (-647)))) + (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *1 *1) (-4 *1 (-646)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *1 *1) (-4 *1 (-647)))) + (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *1 *1) (-4 *1 (-646)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *1 *1) (-4 *1 (-647)))) + (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *1 *1) (-4 *1 (-646)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *1 *1) (-4 *1 (-647)))) + (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *1 *1) (-4 *1 (-646)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *1 *1) (-4 *1 (-647)))) + (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *1 *1) (-4 *1 (-646)))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-646 *3 *2)) - (-4 *2 (-13 (-433 *3) (-1023) (-1224))))) - ((*1 *1 *1) (-4 *1 (-647)))) + (-12 (-4 *3 (-569)) (-5 *1 (-645 *3 *2)) + (-4 *2 (-13 (-433 *3) (-1022) (-1223))))) + ((*1 *1 *1) (-4 *1 (-646)))) (((*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-32 *4 *5)) (-4 *5 (-433 *4)))) @@ -11541,156 +11541,156 @@ (-4 *5 (-433 *4)))) ((*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *5)) - (-4 *5 (-13 (-433 *4) (-1023))))) + (-4 *5 (-13 (-433 *4) (-1022))))) ((*1 *2 *3) (-12 (-5 *3 (-115)) (-5 *2 (-114)) (-5 *1 (-309 *4)) (-4 *4 (-310)))) ((*1 *2 *3) (-12 (-4 *1 (-310)) (-5 *3 (-115)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *5 (-1122)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) + (-12 (-5 *3 (-115)) (-4 *5 (-1121)) (-5 *2 (-114)) (-5 *1 (-432 *4 *5)) (-4 *4 (-433 *5)))) ((*1 *2 *3) (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-443 *4 *5)) (-4 *5 (-433 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-646 *4 *5)) - (-4 *5 (-13 (-433 *4) (-1023) (-1224)))))) + (-12 (-5 *3 (-115)) (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-645 *4 *5)) + (-4 *5 (-13 (-433 *4) (-1022) (-1223)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-661 (-1198))) - (-5 *2 (-661 (-1167 *5 (-543 (-878 *6)) (-878 *6) (-800 *5 (-878 *6))))) - (-5 *1 (-645 *5 *6))))) + (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-660 (-1197))) + (-5 *2 (-660 (-1166 *5 (-543 (-877 *6)) (-877 *6) (-799 *5 (-877 *6))))) + (-5 *1 (-644 *5 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-800 *5 (-878 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) - (-14 *6 (-661 (-1198))) (-5 *2 (-661 (-1067 *5 *6))) (-5 *1 (-645 *5 *6))))) + (-12 (-5 *3 (-660 (-799 *5 (-877 *6)))) (-5 *4 (-114)) (-4 *5 (-464)) + (-14 *6 (-660 (-1197))) (-5 *2 (-660 (-1066 *5 *6))) (-5 *1 (-644 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 (-965 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-660 (-964 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-459 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-459 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-459 *4 *5 *6 *7)))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-459 *4 *5 *6 *7)))) ((*1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4)))) + (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4)))) ((*1 *2 *2) - (-12 (-5 *2 (-661 (-800 *3 (-878 *4)))) (-4 *3 (-464)) - (-14 *4 (-661 (-1198))) (-5 *1 (-645 *3 *4))))) + (-12 (-5 *2 (-660 (-799 *3 (-877 *4)))) (-4 *3 (-464)) + (-14 *4 (-660 (-1197))) (-5 *1 (-644 *3 *4))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-661 (-965 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) - (-14 *4 (-661 (-1198))))) + (|partial| -12 (-5 *2 (-660 (-964 *3))) (-4 *3 (-464)) (-5 *1 (-373 *3 *4)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *2) - (|partial| -12 (-5 *2 (-661 (-800 *3 (-878 *4)))) (-4 *3 (-464)) - (-14 *4 (-661 (-1198))) (-5 *1 (-645 *3 *4))))) + (|partial| -12 (-5 *2 (-660 (-799 *3 (-877 *4)))) (-4 *3 (-464)) + (-14 *4 (-660 (-1197))) (-5 *1 (-644 *3 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-965 *4))) (-4 *4 (-464)) (-5 *2 (-114)) - (-5 *1 (-373 *4 *5)) (-14 *5 (-661 (-1198))))) + (-12 (-5 *3 (-660 (-964 *4))) (-4 *4 (-464)) (-5 *2 (-114)) + (-5 *1 (-373 *4 *5)) (-14 *5 (-660 (-1197))))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-800 *4 (-878 *5)))) (-4 *4 (-464)) - (-14 *5 (-661 (-1198))) (-5 *2 (-114)) (-5 *1 (-645 *4 *5))))) + (-12 (-5 *3 (-660 (-799 *4 (-877 *5)))) (-4 *4 (-464)) + (-14 *5 (-660 (-1197))) (-5 *2 (-114)) (-5 *1 (-644 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *4)) (-4 *4 (-861)) (-5 *2 (-661 (-684 *4 *5))) - (-5 *1 (-644 *4 *5 *6)) (-4 *5 (-13 (-175) (-737 (-419 (-558))))) - (-14 *6 (-938))))) + (-12 (-5 *3 (-660 *4)) (-4 *4 (-860)) (-5 *2 (-660 (-683 *4 *5))) + (-5 *1 (-643 *4 *5 *6)) (-4 *5 (-13 (-175) (-736 (-419 (-558))))) + (-14 *6 (-937))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |k| (-692 *3)) (|:| |c| *4)))) - (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938))))) + (-12 (-5 *2 (-660 (-2 (|:| |k| (-691 *3)) (|:| |c| *4)))) + (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-661 (-305 *4))) (-5 *1 (-644 *3 *4 *5)) (-4 *3 (-861)) - (-4 *4 (-13 (-175) (-737 (-419 (-558))))) (-14 *5 (-938))))) + (-12 (-5 *2 (-660 (-305 *4))) (-5 *1 (-643 *3 *4 *5)) (-4 *3 (-860)) + (-4 *4 (-13 (-175) (-736 (-419 (-558))))) (-14 *5 (-937))))) (((*1 *2 *3 *4 *5 *6 *7 *6) (|partial| -12 (-5 *5 (-2 (|:| |contp| *3) - (|:| -1987 (-661 (-2 (|:| |irr| *10) (|:| -2626 (-558))))))) - (-5 *6 (-661 *3)) (-5 *7 (-661 *8)) (-4 *8 (-861)) (-4 *3 (-319)) - (-4 *10 (-969 *3 *9 *8)) (-4 *9 (-815)) + (|:| -1986 (-660 (-2 (|:| |irr| *10) (|:| -2625 (-558))))))) + (-5 *6 (-660 *3)) (-5 *7 (-660 *8)) (-4 *8 (-860)) (-4 *3 (-319)) + (-4 *10 (-968 *3 *9 *8)) (-4 *9 (-814)) (-5 *2 - (-2 (|:| |polfac| (-661 *10)) (|:| |correct| *3) - (|:| |corrfact| (-661 (-1192 *3))))) - (-5 *1 (-642 *8 *9 *3 *10)) (-5 *4 (-661 (-1192 *3)))))) + (-2 (|:| |polfac| (-660 *10)) (|:| |correct| *3) + (|:| |corrfact| (-660 (-1191 *3))))) + (-5 *1 (-641 *8 *9 *3 *10)) (-5 *4 (-660 (-1191 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-791)) (-5 *5 (-661 *3)) (-4 *3 (-319)) (-4 *6 (-861)) - (-4 *7 (-815)) (-5 *2 (-114)) (-5 *1 (-642 *6 *7 *3 *8)) - (-4 *8 (-969 *3 *7 *6))))) -(((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *6 (-1086 *3 *4 *5)) - (-5 *1 (-641 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1092 *3 *4 *5 *6)) - (-4 *2 (-1130 *3 *4 *5 *6))))) -(((*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-640 *2 *3)) (-4 *3 (-1264 *2))))) + (-12 (-5 *4 (-790)) (-5 *5 (-660 *3)) (-4 *3 (-319)) (-4 *6 (-860)) + (-4 *7 (-814)) (-5 *2 (-114)) (-5 *1 (-641 *6 *7 *3 *8)) + (-4 *8 (-968 *3 *7 *6))))) +(((*1 *2 *2) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *6 (-1085 *3 *4 *5)) + (-5 *1 (-640 *3 *4 *5 *6 *7 *2)) (-4 *7 (-1091 *3 *4 *5 *6)) + (-4 *2 (-1129 *3 *4 *5 *6))))) +(((*1 *2 *1) (-12 (-4 *2 (-569)) (-5 *1 (-639 *2 *3)) (-4 *3 (-1263 *2))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-639 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-29 *4)))))) -(((*1 *1) (-5 *1 (-634)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-638 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-29 *4)))))) +(((*1 *1) (-5 *1 (-633)))) (((*1 *2 *3 *3 *3) (|partial| -12 - (-4 *4 (-13 (-149) (-27) (-1059 (-558)) (-1059 (-419 (-558))))) - (-4 *5 (-1264 *4)) (-5 *2 (-1192 (-419 *5))) (-5 *1 (-632 *4 *5)) + (-4 *4 (-13 (-149) (-27) (-1058 (-558)) (-1058 (-419 (-558))))) + (-4 *5 (-1263 *4)) (-5 *2 (-1191 (-419 *5))) (-5 *1 (-631 *4 *5)) (-5 *3 (-419 *5)))) ((*1 *2 *3 *3 *3 *4) - (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-149) (-27) (-1059 (-558)) (-1059 (-419 (-558))))) - (-5 *2 (-1192 (-419 *6))) (-5 *1 (-632 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *3) - (|partial| -12 (-5 *3 (-628 *4)) (-4 *4 (-1122)) (-4 *2 (-1122)) - (-5 *1 (-629 *2 *4))))) -(((*1 *2 *3) - (-12 (-5 *2 (-628 *4)) (-5 *1 (-629 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) -(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1224)))) - ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-861)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 *3)) (-5 *1 (-628 *3)) (-4 *3 (-1122))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-661 *1)) (-4 *1 (-310)))) + (|partial| -12 (-5 *4 (-1 (-417 *6) *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-149) (-27) (-1058 (-558)) (-1058 (-419 (-558))))) + (-5 *2 (-1191 (-419 *6))) (-5 *1 (-631 *5 *6)) (-5 *3 (-419 *6))))) +(((*1 *2 *3) + (|partial| -12 (-5 *3 (-627 *4)) (-4 *4 (-1121)) (-4 *2 (-1121)) + (-5 *1 (-628 *2 *4))))) +(((*1 *2 *3) + (-12 (-5 *2 (-627 *4)) (-5 *1 (-628 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) +(((*1 *2 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175)) (-4 *2 (-1223)))) + ((*1 *2 *1) (-12 (-5 *1 (-343 *2)) (-4 *2 (-860)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 *3)) (-5 *1 (-627 *3)) (-4 *3 (-1121))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-115)) (-5 *3 (-660 *1)) (-4 *1 (-310)))) ((*1 *1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-115)))) - ((*1 *1 *2) (-12 (-5 *2 (-1198)) (-5 *1 (-628 *3)) (-4 *3 (-1122)))) + ((*1 *1 *2) (-12 (-5 *2 (-1197)) (-5 *1 (-627 *3)) (-4 *3 (-1121)))) ((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-115)) (-5 *3 (-661 *5)) (-5 *4 (-791)) (-4 *5 (-1122)) - (-5 *1 (-628 *5))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1198)) (-5 *1 (-628 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-115)) (-5 *3 (-660 *5)) (-5 *4 (-790)) (-4 *5 (-1121)) + (-5 *1 (-627 *5))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1197)) (-5 *1 (-627 *3)) (-4 *3 (-1121))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-627 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-114))))) + (-12 (-4 *1 (-626 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-627 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-622))) ((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-620))) ((*1 *1) (-5 *1 (-623)))) -(((*1 *1) (-5 *1 (-623)))) + (|partial| -12 (-4 *1 (-626 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *1) (-5 *1 (-619))) ((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-619))) ((*1 *1) (-5 *1 (-621))) ((*1 *1) (-5 *1 (-622)))) (((*1 *1) (-5 *1 (-622)))) (((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-619))) ((*1 *1) (-5 *1 (-622)))) +(((*1 *1) (-5 *1 (-622)))) (((*1 *1) (-5 *1 (-621)))) (((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) -(((*1 *1) (-5 *1 (-621)))) (((*1 *1) (-5 *1 (-620)))) (((*1 *1) (-5 *1 (-620)))) -(((*1 *2 *1) (-12 (-5 *2 (-977 (-187 (-141)))) (-5 *1 (-345)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-617))))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-620)))) +(((*1 *1) (-5 *1 (-619)))) +(((*1 *1) (-5 *1 (-619)))) +(((*1 *2 *1) (-12 (-5 *2 (-976 (-187 (-141)))) (-5 *1 (-345)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-616))))) (((*1 *2 *1) (-12 (-5 *2 - (-661 + (-660 (-2 - (|:| -4290 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (|:| -4289 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2286 + (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -11703,10 +11703,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-229))) + (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1638 + (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -11715,407 +11715,407 @@ (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572)))) ((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-661 *4))))) + (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-660 *4))))) (((*1 *2 *3 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-114))))) + (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1238)) (-5 *2 (-661 *3))))) + (-12 (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1237)) (-5 *2 (-660 *3))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-616 *4 *3)) (-4 *4 (-1122)) - (-4 *3 (-1238)) (-4 *3 (-1122)) (-5 *2 (-114))))) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-615 *4 *3)) (-4 *4 (-1121)) + (-4 *3 (-1237)) (-4 *3 (-1121)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1122)) (-4 *2 (-861))))) + (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1121)) (-4 *2 (-860))))) (((*1 *2 *1) - (-12 (-4 *1 (-616 *2 *3)) (-4 *3 (-1238)) (-4 *2 (-1122)) (-4 *2 (-861))))) + (-12 (-4 *1 (-615 *2 *3)) (-4 *3 (-1237)) (-4 *2 (-1121)) (-4 *2 (-860))))) (((*1 *1 *1 *2) - (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1238)) (-4 *3 (-385 *2)) + (-12 (-4 *1 (-57 *2 *3 *4)) (-4 *2 (-1237)) (-4 *3 (-385 *2)) (-4 *4 (-385 *2)))) ((*1 *1 *1 *2) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-616 *3 *2)) (-4 *3 (-1122)) - (-4 *2 (-1238))))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-615 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1237))))) (((*1 *2 *1 *3 *3) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-616 *3 *4)) (-4 *3 (-1122)) - (-4 *4 (-1238)) (-5 *2 (-1294))))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-615 *3 *4)) (-4 *3 (-1121)) + (-4 *4 (-1237)) (-5 *2 (-1293))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-661 (-1198))) - (-4 *2 (-13 (-433 (-171 *5)) (-1023) (-1224))) (-4 *5 (-569)) - (-5 *1 (-612 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1023) (-1224)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-612 *4 *5 *3)) - (-4 *5 (-13 (-433 *4) (-1023) (-1224))) - (-4 *3 (-13 (-433 (-171 *4)) (-1023) (-1224)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1023) (-1224))) - (-5 *1 (-612 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1023) (-1224)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 *4) (-1023) (-1224))) - (-5 *1 (-612 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1023) (-1224)))))) -(((*1 *2 *3) - (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1023) (-1224))) (-4 *4 (-569)) - (-4 *2 (-13 (-433 (-171 *4)) (-1023) (-1224))) (-5 *1 (-612 *4 *5 *2))))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1) (-5 *1 (-609)))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-609))) (-5 *1 (-609))))) + (-12 (-5 *3 (-660 (-627 *2))) (-5 *4 (-660 (-1197))) + (-4 *2 (-13 (-433 (-171 *5)) (-1022) (-1223))) (-4 *5 (-569)) + (-5 *1 (-611 *5 *6 *2)) (-4 *6 (-13 (-433 *5) (-1022) (-1223)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-5 *2 (-171 *5)) (-5 *1 (-611 *4 *5 *3)) + (-4 *5 (-13 (-433 *4) (-1022) (-1223))) + (-4 *3 (-13 (-433 (-171 *4)) (-1022) (-1223)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 (-171 *4)) (-1022) (-1223))) + (-5 *1 (-611 *4 *3 *2)) (-4 *3 (-13 (-433 *4) (-1022) (-1223)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-569)) (-4 *2 (-13 (-433 *4) (-1022) (-1223))) + (-5 *1 (-611 *4 *2 *3)) (-4 *3 (-13 (-433 (-171 *4)) (-1022) (-1223)))))) +(((*1 *2 *3) + (-12 (-5 *3 (-171 *5)) (-4 *5 (-13 (-433 *4) (-1022) (-1223))) (-4 *4 (-569)) + (-4 *2 (-13 (-433 (-171 *4)) (-1022) (-1223))) (-5 *1 (-611 *4 *5 *2))))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *1) (-5 *1 (-608)))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-608))) (-5 *1 (-608))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1047 (-855 (-558)))) - (-5 *3 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1070)) - (-5 *1 (-607 *4))))) + (-12 (-5 *2 (-1046 (-854 (-558)))) + (-5 *3 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *4)))) (-4 *4 (-1069)) + (-5 *1 (-606 *4))))) (((*1 *2 *1) - (-12 (-5 *2 (-1047 (-855 (-558)))) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-1046 (-854 (-558)))) (-5 *1 (-606 *3)) (-4 *3 (-1069))))) (((*1 *2 *1) - (-12 (-5 *2 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-607 *3)) - (-4 *3 (-1070))))) + (-12 (-5 *2 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *3)))) (-5 *1 (-606 *3)) + (-4 *3 (-1069))))) (((*1 *1 *1 *1 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *1 (-607 *3)) (-4 *3 (-1070))))) -(((*1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-607 *2)) (-4 *2 (-1070))))) + (|partial| -12 (-5 *2 (-114)) (-5 *1 (-606 *3)) (-4 *3 (-1069))))) +(((*1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1069))))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-606 *2)) (-4 *2 (-1069))))) (((*1 *2 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-1176 (-2 (|:| |k| (-558)) (|:| |c| *6)))) - (-5 *4 (-1047 (-855 (-558)))) (-5 *5 (-1198)) (-5 *7 (-419 (-558))) - (-4 *6 (-1070)) (-5 *2 (-877)) (-5 *1 (-607 *6))))) + (-12 (-5 *3 (-1175 (-2 (|:| |k| (-558)) (|:| |c| *6)))) + (-5 *4 (-1046 (-854 (-558)))) (-5 *5 (-1197)) (-5 *7 (-419 (-558))) + (-4 *6 (-1069)) (-5 *2 (-876)) (-5 *1 (-606 *6))))) (((*1 *1 *1 *2) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-419 (-558))) (-5 *1 (-607 *3)) (-4 *3 (-38 *2)) - (-4 *3 (-1070))))) + (-12 (-5 *2 (-419 (-558))) (-5 *1 (-606 *3)) (-4 *3 (-38 *2)) + (-4 *3 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *1 *1) - (-12 (-5 *1 (-607 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1070))))) + (-12 (-5 *1 (-606 *2)) (-4 *2 (-38 (-419 (-558)))) (-4 *2 (-1069))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-1130 *5 *6 *7 *8)) - (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-1086 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-603 *5 *6 *7 *8 *3))))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1129 *5 *6 *7 *8)) + (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-1085 *5 *6 *7)) (-5 *2 (-114)) (-5 *1 (-603 *5 *6 *7 *8 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-938))) (-5 *4 (-921 (-558))) (-5 *2 (-709 (-558))) + (-12 (-5 *3 (-660 (-937))) (-5 *4 (-920 (-558))) (-5 *2 (-708 (-558))) (-5 *1 (-602)))) ((*1 *2 *3) - (-12 (-5 *3 (-661 (-938))) (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602)))) + (-12 (-5 *3 (-660 (-937))) (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-602)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-938))) (-5 *4 (-661 (-921 (-558)))) - (-5 *2 (-661 (-709 (-558)))) (-5 *1 (-602))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-938))) (-5 *2 (-791)) (-5 *1 (-602))))) + (-12 (-5 *3 (-660 (-937))) (-5 *4 (-660 (-920 (-558)))) + (-5 *2 (-660 (-708 (-558)))) (-5 *1 (-602))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-937))) (-5 *2 (-790)) (-5 *1 (-602))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1224) (-29 *4))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-440 *4 *2)) (-4 *2 (-13 (-1223) (-29 *4))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 *5))) (-5 *4 (-1198)) (-4 *5 (-149)) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-326 *5)) + (-12 (-5 *3 (-419 (-964 *5))) (-5 *4 (-1197)) (-4 *5 (-149)) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-326 *5)) (-5 *1 (-601 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1224))) (-5 *1 (-597 *4 *2)) - (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))))) + (-12 (-5 *3 (-595 *2)) (-4 *2 (-13 (-29 *4) (-1223))) (-5 *1 (-597 *4 *2)) + (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))))) ((*1 *2 *3) - (-12 (-5 *3 (-595 (-419 (-965 *4)))) - (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *2 (-326 *4)) + (-12 (-5 *3 (-595 (-419 (-964 *4)))) + (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-326 *4)) (-5 *1 (-601 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-600 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-600 *4)) (-4 *4 (-363))))) (((*1 *2 *2) (-12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) (((*1 *2 *2) (|partial| -12 (-5 *1 (-599 *2)) (-4 *2 (-557))))) (((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-790)) (-5 *1 (-599 *2)) (-4 *2 (-557))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-791)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) + (|partial| -12 (-5 *3 (-790)) (-5 *1 (-599 *2)) (-4 *2 (-557)))) ((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -3095 *3) (|:| -2632 (-791)))) (-5 *1 (-599 *3)) + (-12 (-5 *2 (-2 (|:| -3094 *3) (|:| -2631 (-790)))) (-5 *1 (-599 *3)) (-4 *3 (-557))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-609)) (-5 *1 (-598))))) + (-12 (-5 *4 (-790)) (-5 *2 (-114)) (-5 *1 (-599 *3)) (-4 *3 (-557))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-608)) (-5 *1 (-598))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-608)) (-5 *1 (-598))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-608)) (-5 *1 (-598))))) (((*1 *1 *2 *3 *4) (-12 (-5 *3 - (-661 - (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 *2)) - (|:| |logand| (-1192 *2))))) - (-5 *4 (-661 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) + (-660 + (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 *2)) + (|:| |logand| (-1191 *2))))) + (-5 *4 (-660 (-2 (|:| |integrand| *2) (|:| |intvar| *2)))) (-4 *2 (-376)) (-5 *1 (-595 *2))))) (((*1 *2 *1) (-12 (-5 *1 (-595 *2)) (-4 *2 (-376))))) (((*1 *2 *1) (-12 (-5 *2 - (-661 - (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1192 *3)) - (|:| |logand| (-1192 *3))))) + (-660 + (-2 (|:| |scalar| (-419 (-558))) (|:| |coeff| (-1191 *3)) + (|:| |logand| (-1191 *3))))) (-5 *1 (-595 *3)) (-4 *3 (-376))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) + (-12 (-5 *2 (-660 (-2 (|:| |integrand| *3) (|:| |intvar| *3)))) (-5 *1 (-595 *3)) (-4 *3 (-376))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-595 *3)) (-4 *3 (-376))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-594))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-591))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-594))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-591))))) (((*1 *2 *1) (-12 (-5 *2 (-216 4 (-130))) (-5 *1 (-591))))) -(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-711 (-591))) (-5 *1 (-591))))) -(((*1 *2 *1) (-12 (-5 *2 (-711 (-1 (-547) (-661 (-547))))) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-661 (-547)))) (-5 *1 (-115)))) +(((*1 *2 *3) (-12 (-5 *3 (-503)) (-5 *2 (-710 (-591))) (-5 *1 (-591))))) +(((*1 *2 *1) (-12 (-5 *2 (-710 (-1 (-547) (-660 (-547))))) (-5 *1 (-115)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-547) (-660 (-547)))) (-5 *1 (-115)))) ((*1 *1) (-5 *1 (-590)))) (((*1 *1) (-5 *1 (-590)))) (((*1 *1) (-5 *1 (-590)))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-589)))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-589)))) ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-589))))) (((*1 *2 *2 *3 *3) - (|partial| -12 (-5 *3 (-1198)) - (-4 *4 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1224) (-979) (-1160) (-29 *4)))))) + (|partial| -12 (-5 *3 (-1197)) + (-4 *4 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-587 *4 *2)) (-4 *2 (-13 (-1223) (-978) (-1159) (-29 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-376)) + (-12 (-5 *4 (-1 *3 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |answer| *3) (|:| |polypart| *3))) (-5 *1 (-586 *5 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-5 *2 (-2 (|:| |ir| (-595 (-419 *6))) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-640 *4 *5)) + (|partial| -12 (-5 *2 (-639 *4 *5)) (-5 *3 - (-1 (-2 (|:| |ans| *4) (|:| -3539 *4) (|:| |sol?| (-114))) (-558) *4)) - (-4 *4 (-376)) (-4 *5 (-1264 *4)) (-5 *1 (-586 *4 *5))))) + (-1 (-2 (|:| |ans| *4) (|:| -3538 *4) (|:| |sol?| (-114))) (-558) *4)) + (-4 *4 (-376)) (-4 *5 (-1263 *4)) (-5 *1 (-586 *4 *5))))) (((*1 *2 *2 *3 *4) (|partial| -12 - (-5 *3 (-1 (-3 (-2 (|:| -2351 *4) (|:| |coeff| *4)) "failed") *4)) - (-4 *4 (-376)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1264 *4))))) + (-5 *3 (-1 (-3 (-2 (|:| -2350 *4) (|:| |coeff| *4)) "failed") *4)) + (-4 *4 (-376)) (-5 *1 (-586 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-661 (-419 *7))) (-4 *7 (-1264 *6)) + (|partial| -12 (-5 *4 (-1 *7 *7)) (-5 *5 (-660 (-419 *7))) (-4 *7 (-1263 *6)) (-5 *3 (-419 *7)) (-4 *6 (-376)) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-586 *6 *7))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) - (-5 *2 (-2 (|:| -2351 (-419 *6)) (|:| |coeff| (-419 *6)))) + (|partial| -12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) + (-5 *2 (-2 (|:| -2350 (-419 *6)) (|:| |coeff| (-419 *6)))) (-5 *1 (-586 *5 *6)) (-5 *3 (-419 *6))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) (-5 *5 - (-1 (-2 (|:| |ans| *7) (|:| -3539 *7) (|:| |sol?| (-114))) (-558) *7)) - (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) + (-1 (-2 (|:| |ans| *7) (|:| -3538 *7) (|:| |sol?| (-114))) (-558) *7)) + (-5 *6 (-660 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8))))) (((*1 *2 *3 *4 *5 *6) (|partial| -12 (-5 *4 (-1 *8 *8)) - (-5 *5 (-1 (-3 (-2 (|:| -2351 *7) (|:| |coeff| *7)) "failed") *7)) - (-5 *6 (-661 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1264 *7)) (-5 *3 (-419 *8)) + (-5 *5 (-1 (-3 (-2 (|:| -2350 *7) (|:| |coeff| *7)) "failed") *7)) + (-5 *6 (-660 (-419 *8))) (-4 *7 (-376)) (-4 *8 (-1263 *7)) (-5 *3 (-419 *8)) (-5 *2 (-2 (|:| |answer| (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (|:| |a0| *7))) (-5 *1 (-586 *7 *8))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3539 *6) (|:| |sol?| (-114))) (-558) *6)) - (-4 *6 (-376)) (-4 *7 (-1264 *6)) + (-1 (-2 (|:| |ans| *6) (|:| -3538 *6) (|:| |sol?| (-114))) (-558) *6)) + (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -2351 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-2 (|:| -2350 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-376)) (-4 *7 (-1264 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2350 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-3 (-2 (|:| |answer| (-419 *7)) (|:| |a0| *6)) - (-2 (|:| -2351 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) + (-2 (|:| -2350 (-419 *7)) (|:| |coeff| (-419 *7))) "failed")) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-661 *6) "failed") (-558) *6 *6)) - (-4 *6 (-376)) (-4 *7 (-1264 *6)) + (-12 (-5 *4 (-1 *7 *7)) (-5 *5 (-1 (-3 (-660 *6) "failed") (-558) *6 *6)) + (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) (-5 *5 - (-1 (-2 (|:| |ans| *6) (|:| -3539 *6) (|:| |sol?| (-114))) (-558) *6)) - (-4 *6 (-376)) (-4 *7 (-1264 *6)) + (-1 (-2 (|:| |ans| *6) (|:| -3538 *6) (|:| |sol?| (-114))) (-558) *6)) + (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5) (-12 (-5 *4 (-1 *7 *7)) - (-5 *5 (-1 (-3 (-2 (|:| -2351 *6) (|:| |coeff| *6)) "failed") *6)) - (-4 *6 (-376)) (-4 *7 (-1264 *6)) + (-5 *5 (-1 (-3 (-2 (|:| -2350 *6) (|:| |coeff| *6)) "failed") *6)) + (-4 *6 (-376)) (-4 *7 (-1263 *6)) (-5 *2 (-2 (|:| |answer| (-595 (-419 *7))) (|:| |a0| *6))) (-5 *1 (-586 *6 *7)) (-5 *3 (-419 *7))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-1 (-595 *3) *3 (-1198))) + (-12 (-5 *5 (-1 (-595 *3) *3 (-1197))) (-5 *6 - (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1198))) - (-4 *3 (-296)) (-4 *3 (-647)) (-4 *3 (-1059 *4)) (-4 *3 (-433 *7)) - (-5 *4 (-1198)) (-4 *7 (-631 (-905 (-558)))) (-4 *7 (-464)) - (-4 *7 (-901 (-558))) (-4 *7 (-1122)) (-5 *2 (-595 *3)) + (-1 (-3 (-2 (|:| |special| *3) (|:| |integrand| *3)) "failed") *3 (-1197))) + (-4 *3 (-296)) (-4 *3 (-646)) (-4 *3 (-1058 *4)) (-4 *3 (-433 *7)) + (-5 *4 (-1197)) (-4 *7 (-630 (-904 (-558)))) (-4 *7 (-464)) + (-4 *7 (-900 (-558))) (-4 *7 (-1121)) (-5 *2 (-595 *3)) (-5 *1 (-585 *7 *3))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-464)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) + (-12 (-5 *3 (-1197)) (-4 *4 (-464)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-296)) (-4 *2 (-433 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-4 *4 (-1122)) (-5 *1 (-585 *4 *2)) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-4 *4 (-1121)) (-5 *1 (-585 *4 *2)) (-4 *2 (-433 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-1198)) (-4 *6 (-433 *5)) (-4 *5 (-1122)) - (-5 *2 (-661 (-628 *6))) (-5 *1 (-585 *5 *6))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-1197)) (-4 *6 (-433 *5)) (-4 *5 (-1121)) + (-5 *2 (-660 (-627 *6))) (-5 *1 (-585 *5 *6))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *3 (-661 (-628 *6))) (-5 *4 (-1198)) (-5 *2 (-628 *6)) - (-4 *6 (-433 *5)) (-4 *5 (-1122)) (-5 *1 (-585 *5 *6))))) + (-12 (-5 *3 (-660 (-627 *6))) (-5 *4 (-1197)) (-5 *2 (-627 *6)) + (-4 *6 (-433 *5)) (-4 *5 (-1121)) (-5 *1 (-585 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-628 *5))) (-4 *4 (-1122)) (-5 *2 (-628 *5)) + (-12 (-5 *3 (-660 (-627 *5))) (-4 *4 (-1121)) (-5 *2 (-627 *5)) (-5 *1 (-585 *4 *5)) (-4 *5 (-433 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-661 (-628 *5))) (-5 *3 (-1198)) (-4 *5 (-433 *4)) - (-4 *4 (-1122)) (-5 *1 (-585 *4 *5))))) + (-12 (-5 *2 (-660 (-627 *5))) (-5 *3 (-1197)) (-4 *5 (-433 *4)) + (-4 *4 (-1121)) (-5 *1 (-585 *4 *5))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)) (-149))) - (-5 *2 (-2 (|:| -2351 (-419 (-965 *5))) (|:| |coeff| (-419 (-965 *5))))) - (-5 *1 (-582 *5)) (-5 *3 (-419 (-965 *5)))))) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)) (-149))) + (-5 *2 (-2 (|:| -2350 (-419 (-964 *5))) (|:| |coeff| (-419 (-964 *5))))) + (-5 *1 (-582 *5)) (-5 *3 (-419 (-964 *5)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-661 (-419 (-965 *6)))) - (-5 *3 (-419 (-965 *6))) (-4 *6 (-13 (-569) (-1059 (-558)) (-149))) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-660 (-419 (-964 *6)))) + (-5 *3 (-419 (-964 *6))) (-4 *6 (-13 (-569) (-1058 (-558)) (-149))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-582 *6))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-419 (-965 *4))) (-5 *3 (-1198)) - (-4 *4 (-13 (-569) (-1059 (-558)) (-149))) (-5 *1 (-582 *4))))) + (|partial| -12 (-5 *2 (-419 (-964 *4))) (-5 *3 (-1197)) + (-4 *4 (-13 (-569) (-1058 (-558)) (-149))) (-5 *1 (-582 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)) (-149))) - (-5 *2 (-595 (-419 (-965 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-965 *5)))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)) (-149))) + (-5 *2 (-595 (-419 (-964 *5)))) (-5 *1 (-582 *5)) (-5 *3 (-419 (-964 *5)))))) (((*1 *2 *3) - (|partial| -12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1059 *2))))) + (|partial| -12 (-5 *2 (-558)) (-5 *1 (-581 *3)) (-4 *3 (-1058 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-661 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-376) (-149) (-1059 (-558)))) + (|partial| -12 (-5 *4 (-660 (-419 *6))) (-5 *3 (-419 *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-376) (-149) (-1058 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-580 *5 *6))))) (((*1 *2 *3 *3) - (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1059 (-558)))) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -2351 (-419 *5)) (|:| |coeff| (-419 *5)))) + (|partial| -12 (-4 *4 (-13 (-376) (-149) (-1058 (-558)))) (-4 *5 (-1263 *4)) + (-5 *2 (-2 (|:| -2350 (-419 *5)) (|:| |coeff| (-419 *5)))) (-5 *1 (-580 *4 *5)) (-5 *3 (-419 *5))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) - (-4 *3 (-13 (-376) (-149) (-1059 (-558)))) (-5 *1 (-580 *3 *4))))) + (|partial| -12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) + (-4 *3 (-13 (-376) (-149) (-1058 (-558)))) (-5 *1 (-580 *3 *4))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-631 (-905 (-558)))) - (-4 *5 (-901 (-558))) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-630 (-904 (-558)))) + (-4 *5 (-900 (-558))) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1224) (-433 *5))))) + (-4 *3 (-646)) (-4 *3 (-13 (-27) (-1223) (-433 *5))))) ((*1 *2 *2 *3 *4 *4) - (|partial| -12 (-5 *3 (-1198)) (-5 *4 (-855 *2)) (-4 *2 (-1160)) - (-4 *2 (-13 (-27) (-1224) (-433 *5))) (-4 *5 (-631 (-905 (-558)))) - (-4 *5 (-901 (-558))) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) + (|partial| -12 (-5 *3 (-1197)) (-5 *4 (-854 *2)) (-4 *2 (-1159)) + (-4 *2 (-13 (-27) (-1223) (-433 *5))) (-4 *5 (-630 (-904 (-558)))) + (-4 *5 (-900 (-558))) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *1 (-579 *5 *2))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *4 (-1198)) (-4 *5 (-631 (-905 (-558)))) - (-4 *5 (-901 (-558))) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) + (|partial| -12 (-5 *4 (-1197)) (-4 *5 (-630 (-904 (-558)))) + (-4 *5 (-900 (-558))) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) (-5 *2 (-2 (|:| |special| *3) (|:| |integrand| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-647)) (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) + (-4 *3 (-646)) (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-1059 (-558)) (-464) (-658 (-558)))) - (-5 *2 (-2 (|:| -2557 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-1058 (-558)) (-464) (-657 (-558)))) + (-5 *2 (-2 (|:| -2556 *3) (|:| |nconst| *3))) (-5 *1 (-579 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *5 (-628 *4)) (-5 *6 (-1198)) (-4 *4 (-13 (-433 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2222 (-661 *4)))) - (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1122))))) + (-12 (-5 *5 (-627 *4)) (-5 *6 (-1197)) (-4 *4 (-13 (-433 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 "failed")) (|:| -2221 (-660 *4)))) + (-5 *1 (-578 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1121))))) (((*1 *2 *2 *2 *2 *3 *3 *4) - (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1198))) - (-4 *2 (-13 (-433 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1122))))) + (|partial| -12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-3 *2 "failed") *2 *2 (-1197))) + (-4 *2 (-13 (-433 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *1 (-578 *5 *2 *6)) (-4 *6 (-1121))))) (((*1 *2 *3 *4 *4 *5) - (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) + (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-660 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1122))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-578 *6 *3 *7)) (-4 *7 (-1121))))) (((*1 *2 *3 *4 *4 *3) - (|partial| -12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) - (-4 *6 (-1122))))) + (|partial| -12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-578 *5 *3 *6)) + (-4 *6 (-1121))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-628 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1224))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) - (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1122))))) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-13 (-433 *5) (-27) (-1223))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-595 *3)) + (-5 *1 (-578 *5 *3 *6)) (-4 *6 (-1121))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) - (-4 *7 (-1264 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2350 *3))) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) + (-4 *7 (-1263 (-419 *6))) (-5 *2 (-2 (|:| |answer| *3) (|:| -2349 *3))) (-5 *1 (-575 *5 *6 *7 *3)) (-4 *3 (-355 *5 *6 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-376)) + (-12 (-5 *4 (-1 *6 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-376)) (-5 *2 - (-2 (|:| |answer| (-419 *6)) (|:| -2350 (-419 *6)) + (-2 (|:| |answer| (-419 *6)) (|:| -2349 (-419 *6)) (|:| |specpart| (-419 *6)) (|:| |polypart| *6))) (-5 *1 (-576 *5 *6)) (-5 *3 (-419 *6))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-791)) (-5 *1 (-574))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-558)) (-5 *3 (-790)) (-5 *1 (-574))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) @@ -12123,88 +12123,88 @@ (((*1 *2 *3) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) -(((*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) +(((*1 *2 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-574)) (-5 *3 (-558))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-182 *2)) (-4 *2 (-319)))) ((*1 *2 *3 *2) - (-12 (-5 *3 (-661 (-661 *4))) (-5 *2 (-661 *4)) (-4 *4 (-319)) + (-12 (-5 *3 (-660 (-660 *4))) (-5 *2 (-660 *4)) (-4 *4 (-319)) (-5 *1 (-182 *4)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 *8)) + (-12 (-5 *3 (-660 *8)) (-5 *4 - (-661 - (-2 (|:| -2222 (-709 *7)) (|:| |basisDen| *7) - (|:| |basisInv| (-709 *7))))) - (-5 *5 (-791)) (-4 *8 (-1264 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-363)) + (-660 + (-2 (|:| -2221 (-708 *7)) (|:| |basisDen| *7) + (|:| |basisInv| (-708 *7))))) + (-5 *5 (-790)) (-4 *8 (-1263 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-363)) (-5 *2 - (-2 (|:| -2222 (-709 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-709 *7)))) + (-2 (|:| -2221 (-708 *7)) (|:| |basisDen| *7) (|:| |basisInv| (-708 *7)))) (-5 *1 (-510 *6 *7 *8)))) ((*1 *2 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-574))))) (((*1 *2 *3 *4 *5 *5 *4 *6) - (-12 (-5 *5 (-628 *4)) (-5 *6 (-1192 *4)) - (-4 *4 (-13 (-433 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2222 (-661 *4)))) - (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1122)))) + (-12 (-5 *5 (-627 *4)) (-5 *6 (-1191 *4)) + (-4 *4 (-13 (-433 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1="failed")) (|:| -2221 (-660 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1121)))) ((*1 *2 *3 *4 *5 *5 *5 *4 *6) - (-12 (-5 *5 (-628 *4)) (-5 *6 (-419 (-1192 *4))) - (-4 *4 (-13 (-433 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2222 (-661 *4)))) - (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-678 *4)) (-4 *3 (-1122))))) + (-12 (-5 *5 (-627 *4)) (-5 *6 (-419 (-1191 *4))) + (-4 *4 (-13 (-433 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-2 (|:| |particular| (-3 *4 #1#)) (|:| -2221 (-660 *4)))) + (-5 *1 (-573 *7 *4 *3)) (-4 *3 (-677 *4)) (-4 *3 (-1121))))) (((*1 *2 *2 *2 *3 *3 *4 *2 *5) - (|partial| -12 (-5 *3 (-628 *2)) - (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1198))) (-5 *5 (-1192 *2)) - (-4 *2 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1122)))) + (|partial| -12 (-5 *3 (-627 *2)) + (-5 *4 (-1 (-3 *2 #1="failed") *2 *2 (-1197))) (-5 *5 (-1191 *2)) + (-4 *2 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1121)))) ((*1 *2 *2 *2 *3 *3 *4 *3 *2 *5) - (|partial| -12 (-5 *3 (-628 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1198))) - (-5 *5 (-419 (-1192 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1122))))) + (|partial| -12 (-5 *3 (-627 *2)) (-5 *4 (-1 (-3 *2 #1#) *2 *2 (-1197))) + (-5 *5 (-419 (-1191 *2))) (-4 *2 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *1 (-573 *6 *2 *7)) (-4 *7 (-1121))))) (((*1 *2 *3 *4 *4 *5 *3 *6) - (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-1192 *3)) - (-4 *3 (-13 (-433 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) + (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-660 *3)) (-5 *6 (-1191 *3)) + (-4 *3 (-13 (-433 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1122)))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1121)))) ((*1 *2 *3 *4 *4 *5 *4 *3 *6) - (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-661 *3)) (-5 *6 (-419 (-1192 *3))) - (-4 *3 (-13 (-433 *7) (-27) (-1224))) - (-4 *7 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) + (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-660 *3)) (-5 *6 (-419 (-1191 *3))) + (-4 *3 (-13 (-433 *7) (-27) (-1223))) + (-4 *7 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) - (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1122))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (-5 *1 (-573 *7 *3 *8)) (-4 *8 (-1121))))) (((*1 *2 *3 *4 *4 *3 *3 *5) - (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-1192 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) - (-4 *7 (-1122)))) + (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-1191 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) + (-4 *7 (-1121)))) ((*1 *2 *3 *4 *4 *3 *4 *3 *5) - (|partial| -12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1192 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) - (-4 *7 (-1122))))) + (|partial| -12 (-5 *4 (-627 *3)) (-5 *5 (-419 (-1191 *3))) + (-4 *3 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) + (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-573 *6 *3 *7)) + (-4 *7 (-1121))))) (((*1 *2 *3 *4 *4 *3 *5) - (-12 (-5 *4 (-628 *3)) (-5 *5 (-1192 *3)) - (-4 *3 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) - (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1122)))) + (-12 (-5 *4 (-627 *3)) (-5 *5 (-1191 *3)) + (-4 *3 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-595 *3)) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1121)))) ((*1 *2 *3 *4 *4 *4 *3 *5) - (-12 (-5 *4 (-628 *3)) (-5 *5 (-419 (-1192 *3))) - (-4 *3 (-13 (-433 *6) (-27) (-1224))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-149) (-658 (-558)))) (-5 *2 (-595 *3)) - (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1122))))) + (-12 (-5 *4 (-627 *3)) (-5 *5 (-419 (-1191 *3))) + (-4 *3 (-13 (-433 *6) (-27) (-1223))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-149) (-657 (-558)))) (-5 *2 (-595 *3)) + (-5 *1 (-573 *6 *3 *7)) (-4 *7 (-1121))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 @@ -12217,9 +12217,9 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-229))) + (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1638 + (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -12229,8 +12229,8 @@ (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 @@ -12243,9 +12243,9 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-229))) + (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1638 + (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -12255,13 +12255,13 @@ (((*1 *1 *2) (-12 (-5 *2 - (-661 + (-660 (-2 - (|:| -4290 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (|:| -4289 + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (|:| -2286 + (|:| -2285 (-2 (|:| |endPointContinuity| (-3 (|:| |continuous| "Continuous at the end points") @@ -12274,10 +12274,10 @@ (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-229))) + (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1638 + (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") @@ -12285,68 +12285,68 @@ "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated")))))))) (-5 *1 (-572))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-572))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-572))))) (((*1 *1) (-5 *1 (-572)))) (((*1 *2 *2) (|partial| -12 (-5 *1 (-571 *2)) (-4 *2 (-557))))) (((*1 *2 *3) (-12 (-5 *2 (-417 *3)) (-5 *1 (-571 *3)) (-4 *3 (-557))))) (((*1 *2 *3 *4 *5 *6) - (|partial| -12 (-5 *4 (-1198)) (-5 *6 (-661 (-628 *3))) (-5 *5 (-628 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 *7))) - (-4 *7 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3))))) + (|partial| -12 (-5 *4 (-1197)) (-5 *6 (-660 (-627 *3))) (-5 *5 (-627 *3)) + (-4 *3 (-13 (-27) (-1223) (-433 *7))) + (-4 *7 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-570 *7 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-595 *3)) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) + (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1198)) - (-4 *4 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4)))))) + (|partial| -12 (-5 *3 (-1197)) + (-4 *4 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-570 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *4 (-1198)) (-5 *5 (-661 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 *6))) - (-4 *6 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) + (|partial| -12 (-5 *4 (-1197)) (-5 *5 (-660 *3)) + (-4 *3 (-13 (-27) (-1223) (-433 *6))) + (-4 *6 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-2 (|:| |mainpart| *3) - (|:| |limitedlogs| (-661 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) + (|:| |limitedlogs| (-660 (-2 (|:| |coeff| *3) (|:| |logand| *3)))))) (-5 *1 (-570 *6 *3))))) (((*1 *2 *3 *4 *3) - (|partial| -12 (-5 *4 (-1198)) - (-4 *5 (-13 (-464) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-2 (|:| -2351 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) - (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) + (|partial| -12 (-5 *4 (-1197)) + (-4 *5 (-13 (-464) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-2 (|:| -2350 *3) (|:| |coeff| *3))) (-5 *1 (-570 *5 *3)) + (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) (((*1 *2 *1) - (-12 (-5 *2 (-2 (|:| -1980 *1) (|:| -4412 *1) (|:| |associate| *1))) + (-12 (-5 *2 (-2 (|:| -1979 *1) (|:| -4411 *1) (|:| |associate| *1))) (-4 *1 (-569))))) (((*1 *1 *1) (-4 *1 (-569)))) (((*1 *2 *1 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) (((*1 *2 *1) (-12 (-4 *1 (-569)) (-5 *2 (-114))))) (((*1 *1 *2) - (-12 (-5 *2 (-419 (-558))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))))) - ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224))))) - ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224)))))) -(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224)))))) -(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1224)))))) + (-12 (-5 *2 (-419 (-558))) (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))))) + ((*1 *1 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223))))) + ((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *1 *2 *2) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223)))))) +(((*1 *2 *1) (-12 (-4 *1 (-567 *2)) (-4 *2 (-13 (-416) (-1223)))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1224))) (-5 *2 (-114))))) + (-12 (-4 *1 (-567 *3)) (-4 *3 (-13 (-416) (-1223))) (-5 *2 (-114))))) (((*1 *2 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-566))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-566))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1264 *5)) - (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-569) (-1059 (-558)))) - (-4 *7 (-1264 (-419 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) + (|partial| -12 (-5 *3 (-1 *6 *6)) (-4 *6 (-1263 *5)) + (-4 *5 (-13 (-27) (-433 *4))) (-4 *4 (-13 (-569) (-1058 (-558)))) + (-4 *7 (-1263 (-419 *6))) (-5 *1 (-565 *4 *5 *6 *7 *2)) (-4 *2 (-355 *5 *6 *7))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-433 *5))) - (-4 *5 (-13 (-569) (-1059 (-558)))) (-4 *8 (-1264 (-419 *7))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-433 *5))) + (-4 *5 (-13 (-569) (-1058 (-558)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1264 *6)) (-4 *6 (-13 (-27) (-433 *5))) - (-4 *5 (-13 (-569) (-1059 (-558)))) (-4 *8 (-1264 (-419 *7))) + (-12 (-5 *4 (-1 *7 *7)) (-4 *7 (-1263 *6)) (-4 *6 (-13 (-27) (-433 *5))) + (-4 *5 (-13 (-569) (-1058 (-558)))) (-4 *8 (-1263 (-419 *7))) (-5 *2 (-595 *3)) (-5 *1 (-565 *5 *6 *7 *8 *3)) (-4 *3 (-355 *6 *7 *8))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-628 *3)) (-5 *5 (-1 (-1192 *3) (-1192 *3))) + (-12 (-5 *4 (-627 *3)) (-5 *5 (-1 (-1191 *3) (-1191 *3))) (-4 *3 (-13 (-27) (-433 *6))) (-4 *6 (-569)) (-5 *2 (-595 *3)) (-5 *1 (-564 *6 *3))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-557)) (-5 *2 (-114))))) @@ -12361,426 +12361,426 @@ (((*1 *1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *1 *1 *1) (-4 *1 (-557)))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *4 (-1 (-3 (-558) #1="failed") *5)) (-4 *5 (-1070)) - (-5 *2 (-558)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1264 *5)))) + (|partial| -12 (-5 *4 (-1 (-3 (-558) #1="failed") *5)) (-4 *5 (-1069)) + (-5 *2 (-558)) (-5 *1 (-555 *5 *3)) (-4 *3 (-1263 *5)))) ((*1 *2 *3 *4 *2 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1070)) (-5 *2 (-558)) - (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4)))) + (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1069)) (-5 *2 (-558)) + (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1070)) (-5 *2 (-558)) - (-5 *1 (-555 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1264 *3)))) - ((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1264 *3)))) + (|partial| -12 (-5 *5 (-1 (-3 (-558) #1#) *4)) (-4 *4 (-1069)) (-5 *2 (-558)) + (-5 *1 (-555 *4 *3)) (-4 *3 (-1263 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-467 *3 *2)) (-4 *2 (-1263 *3)))) + ((*1 *2 *2 *3) (-12 (-4 *3 (-319)) (-5 *1 (-472 *3 *2)) (-4 *2 (-1263 *3)))) ((*1 *2 *2 *3) - (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-791))) - (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1264 *3))))) + (-12 (-4 *3 (-319)) (-14 *4 *3) (-14 *5 (-1 *3 *3 (-790))) + (-5 *1 (-551 *3 *2 *4 *5)) (-4 *2 (-1263 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791)))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-790)))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-1264 *4)) (-5 *1 (-551 *4 *2 *5 *6)) - (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-791)))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-1263 *4)) (-5 *1 (-551 *4 *2 *5 *6)) + (-4 *4 (-319)) (-14 *5 *4) (-14 *6 (-1 *4 *4 (-790)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 *6)) (-5 *4 (-661 (-1198))) (-4 *6 (-376)) - (-5 *2 (-661 (-305 (-965 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) - (-4 *7 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-660 *6)) (-5 *4 (-660 (-1197))) (-4 *6 (-376)) + (-5 *2 (-660 (-305 (-964 *6)))) (-5 *1 (-550 *5 *6 *7)) (-4 *5 (-464)) + (-4 *7 (-13 (-376) (-859)))))) (((*1 *2 *3 *3 *4 *5) - (-12 (-5 *3 (-661 (-965 *6))) (-5 *4 (-661 (-1198))) (-4 *6 (-464)) - (-5 *2 (-661 (-661 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-376)) - (-4 *5 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-660 (-964 *6))) (-5 *4 (-660 (-1197))) (-4 *6 (-464)) + (-5 *2 (-660 (-660 *7))) (-5 *1 (-550 *6 *7 *5)) (-4 *7 (-376)) + (-4 *5 (-13 (-376) (-859)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-1191 *5)) (-4 *5 (-464)) (-5 *2 (-660 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-965 *5)) (-4 *5 (-464)) (-5 *2 (-661 *6)) - (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-964 *5)) (-4 *5 (-464)) (-5 *2 (-660 *6)) + (-5 *1 (-550 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-859)))))) (((*1 *2 *1) (-12 (-5 *2 (-51)) (-5 *1 (-547)))) - ((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-548 *2)) (-4 *2 (-1238))))) + ((*1 *2 *3) (-12 (-5 *3 (-547)) (-5 *1 (-548 *2)) (-4 *2 (-1237))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-5 *2 (-547)) (-5 *1 (-548 *4)) (-4 *4 (-1238))))) + (-12 (-5 *3 (-1197)) (-5 *2 (-547)) (-5 *1 (-548 *4)) (-4 *4 (-1237))))) (((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-108)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-547))) (-5 *1 (-547))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-547))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-547))) (-5 *1 (-547))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-547))))) (((*1 *1 *1) (-5 *1 (-547)))) -(((*1 *2 *1) (-12 (-5 *2 (-1180)) (-5 *1 (-547))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-547))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-547))) (-5 *2 (-1198)) (-5 *1 (-547))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1198)) (-5 *3 (-661 (-547))) (-5 *1 (-547))))) +(((*1 *2 *1) (-12 (-5 *2 (-1179)) (-5 *1 (-547))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-547))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-547))) (-5 *2 (-1197)) (-5 *1 (-547))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1197)) (-5 *3 (-660 (-547))) (-5 *1 (-547))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-709 *6)) (-5 *5 (-1 (-417 (-1192 *6)) (-1192 *6))) + (-12 (-5 *3 (-708 *6)) (-5 *5 (-1 (-417 (-1191 *6)) (-1191 *6))) (-4 *6 (-376)) (-5 *2 - (-661 + (-660 (-2 (|:| |outval| *7) (|:| |outmult| (-558)) - (|:| |outvect| (-661 (-709 *7)))))) - (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-860)))))) + (|:| |outvect| (-660 (-708 *7)))))) + (-5 *1 (-544 *6 *7 *4)) (-4 *7 (-376)) (-4 *4 (-13 (-376) (-859)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *5)) (-4 *5 (-376)) (-5 *2 (-661 *6)) - (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-1191 *5)) (-4 *5 (-376)) (-5 *2 (-660 *6)) + (-5 *1 (-544 *5 *6 *4)) (-4 *6 (-376)) (-4 *4 (-13 (-376) (-859)))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 *4)) (-4 *4 (-376)) (-5 *2 (-1192 *4)) - (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-708 *4)) (-4 *4 (-376)) (-5 *2 (-1191 *4)) + (-5 *1 (-544 *4 *5 *6)) (-4 *5 (-376)) (-4 *6 (-13 (-376) (-859)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25)))))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-745) (-25)))))) (((*1 *2) - (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-746) (-25)))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-541)))) + (-12 (-5 *2 (-1 *3 *3)) (-5 *1 (-542 *3)) (-4 *3 (-13 (-745) (-25)))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-541)))) ((*1 *1 *2) (-12 (-5 *2 (-402)) (-5 *1 (-541))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-541))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-541))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-541))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1192 *1)) + (-12 (-5 *3 (-937)) (-4 *4 (-381)) (-4 *4 (-376)) (-5 *2 (-1191 *1)) (-4 *1 (-341 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1192 *3)))) + ((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-5 *2 (-1191 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1264 *3)))) + (-12 (-4 *1 (-383 *3 *2)) (-4 *3 (-175)) (-4 *3 (-376)) (-4 *2 (-1263 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4))))) + (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4))))) (((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376)))) ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1288 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1287 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-569)) + (-12 (-5 *2 (-1287 *4)) (-4 *4 (-430 *3)) (-4 *3 (-319)) (-4 *3 (-569)) (-5 *1 (-43 *3 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-4 *4 (-376)) (-5 *2 (-1288 *1)) (-4 *1 (-341 *4)))) - ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1288 *1)) (-4 *1 (-341 *3)))) + (-12 (-5 *3 (-937)) (-4 *4 (-376)) (-5 *2 (-1287 *1)) (-4 *1 (-341 *4)))) + ((*1 *2) (-12 (-4 *3 (-376)) (-5 *2 (-1287 *1)) (-4 *1 (-341 *3)))) ((*1 *2) - (-12 (-4 *3 (-175)) (-4 *4 (-1264 *3)) (-5 *2 (-1288 *1)) + (-12 (-4 *3 (-175)) (-4 *4 (-1263 *3)) (-5 *2 (-1287 *1)) (-4 *1 (-422 *3 *4)))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) - (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1059 *4))))) + (-12 (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) + (-5 *1 (-425 *3 *4 *5 *6)) (-4 *6 (-13 (-422 *4 *5) (-1058 *4))))) ((*1 *2 *1) - (-12 (-4 *3 (-319)) (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-5 *2 (-1288 *6)) + (-12 (-4 *3 (-319)) (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-5 *2 (-1287 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-4 *6 (-422 *4 *5)) (-14 *7 *2))) - ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1288 *1)) (-4 *1 (-430 *3)))) + ((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1287 *1)) (-4 *1 (-430 *3)))) ((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1288 (-1288 *4))) (-5 *1 (-540 *4)) + (-12 (-5 *3 (-937)) (-5 *2 (-1287 (-1287 *4))) (-5 *1 (-540 *4)) (-4 *4 (-363))))) (((*1 *2 *1) (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-938)))) + (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-381)) (-5 *2 (-937)))) ((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-938)) (-5 *1 (-540 *4))))) + (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-937)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-558)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1141)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1140)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-540 *4))))) (((*1 *2 *2 *3 *4) - (-12 (-5 *2 (-1288 *5)) (-5 *3 (-791)) (-5 *4 (-1141)) (-4 *5 (-363)) + (-12 (-5 *2 (-1287 *5)) (-5 *3 (-790)) (-5 *4 (-1140)) (-4 *5 (-363)) (-5 *1 (-540 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-790)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *4)) (-4 *4 (-363)) (-5 *2 (-1192 *4)) (-5 *1 (-540 *4))))) + (-12 (-5 *3 (-1287 *4)) (-4 *4 (-363)) (-5 *2 (-1191 *4)) (-5 *1 (-540 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) - (-4 *4 (-363)) (-5 *2 (-1294)) (-5 *1 (-540 *4))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-130)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-562)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1247)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-559)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1244)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-560)))))) -(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-711 (-1245)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-131)) (-5 *2 (-791))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-537))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1239))) (-5 *1 (-536))))) + (-12 (-5 *3 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) + (-4 *4 (-363)) (-5 *2 (-1293)) (-5 *1 (-540 *4))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-130)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-562)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-1246)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-559)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-1243)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-560)))))) +(((*1 *2 *1) (-12 (-4 *1 (-539)) (-5 *2 (-710 (-1244)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-539)) (-5 *3 (-131)) (-5 *2 (-790))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-537))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1238))) (-5 *1 (-536))))) (((*1 *2 *2) (-12 (-4 *3 (-376)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)) - (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-706 *3 *4 *5))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(((*1 *2 *1) (-12 (-5 *2 (-1156)) (-5 *1 (-529))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-339 *3)))) + (-5 *1 (-533 *3 *4 *5 *2)) (-4 *2 (-705 *3 *4 *5))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))) +(((*1 *2 *1) (-12 (-5 *2 (-1155)) (-5 *1 (-529))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-339 *3)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-528 *3 *4)) (-14 *4 (-558))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-339 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-528 *3 *4)) (-14 *4 (-558))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-339 *3)) (-4 *3 (-1237)))) ((*1 *2 *1) - (-12 (-5 *2 (-791)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-558))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-339 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-790)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-558))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-339 *3)) (-4 *3 (-1237)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-558)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 *2)))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1238)))) + (-12 (-5 *2 (-558)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 *2)))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-339 *3)) (-4 *3 (-1237)))) ((*1 *2 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1238)) (-14 *4 (-558))))) -(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-864))))) + (-12 (-5 *2 (-114)) (-5 *1 (-528 *3 *4)) (-4 *3 (-1237)) (-14 *4 (-558))))) +(((*1 *2 *1) (-12 (-4 *1 (-521 *3 *2)) (-4 *3 (-102)) (-4 *2 (-863))))) (((*1 *1) (-5 *1 (-518)))) (((*1 *1 *1 *2 *2) - (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) + (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-790)) (-4 *5 (-175)))) ((*1 *1 *1 *2 *1 *2) - (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-791)) + (-12 (-5 *2 (-558)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 *2) (-14 *4 (-790)) (-4 *5 (-175)))) ((*1 *2 *2 *3) (-12 (-5 *2 - (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) - (-5 *3 (-661 (-878 *4))) (-14 *4 (-661 (-1198))) (-14 *5 (-791)) + (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) + (-5 *3 (-660 (-877 *4))) (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *1 (-517 *4 *5))))) (((*1 *2 *3) - (-12 (-14 *4 (-661 (-1198))) (-14 *5 (-791)) + (-12 (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 - (-661 - (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558)))))) + (-660 + (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558)))))) (-5 *1 (-517 *4 *5)) (-5 *3 - (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558)))))))) + (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558)))))))) (((*1 *2 *2) (-12 (-5 *2 - (-516 (-419 (-558)) (-246 *4 (-791)) (-878 *3) (-255 *3 (-419 (-558))))) - (-14 *3 (-661 (-1198))) (-14 *4 (-791)) (-5 *1 (-517 *3 *4))))) + (-516 (-419 (-558)) (-246 *4 (-790)) (-877 *3) (-255 *3 (-419 (-558))))) + (-14 *3 (-660 (-1197))) (-14 *4 (-790)) (-5 *1 (-517 *3 *4))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) - (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-114)) + (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) + (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-516 (-419 (-558)) (-246 *5 (-791)) (-878 *4) (-255 *4 (-419 (-558))))) - (-14 *4 (-661 (-1198))) (-14 *5 (-791)) (-5 *2 (-114)) + (-516 (-419 (-558)) (-246 *5 (-790)) (-877 *4) (-255 *4 (-419 (-558))))) + (-14 *4 (-660 (-1197))) (-14 *5 (-790)) (-5 *2 (-114)) (-5 *1 (-517 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-376)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-314 *4 *5)) (-14 *4 *3) (-14 *5 *3))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1110 (-855 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) + (-12 (-5 *4 (-1109 (-854 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-315)))) ((*1 *2 *1 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) (((*1 *2 *3 *1) - (-12 (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-376)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) - (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) + (-5 *2 (-114)) (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) (((*1 *1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) - (-4 *2 (-969 *3 *4 *5)))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *2)) + (-4 *2 (-968 *3 *4 *5)))) ((*1 *1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4))))) + (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) (-5 *2 - (-2 (|:| |mval| (-709 *4)) (|:| |invmval| (-709 *4)) + (-2 (|:| |mval| (-708 *4)) (|:| |invmval| (-708 *4)) (|:| |genIdeal| (-516 *4 *5 *6 *7)))) - (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) + (-5 *1 (-516 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) (((*1 *1 *2) (-12 (-5 *2 - (-2 (|:| |mval| (-709 *3)) (|:| |invmval| (-709 *3)) + (-2 (|:| |mval| (-708 *3)) (|:| |invmval| (-708 *3)) (|:| |genIdeal| (-516 *3 *4 *5 *6)))) - (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6)) - (-4 *6 (-969 *3 *4 *5))))) + (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6)) + (-4 *6 (-968 *3 *4 *5))))) (((*1 *1 *1) - (-12 (-4 *2 (-376)) (-4 *3 (-815)) (-4 *4 (-861)) (-5 *1 (-516 *2 *3 *4 *5)) - (-4 *5 (-969 *2 *3 *4))))) + (-12 (-4 *2 (-376)) (-4 *3 (-814)) (-4 *4 (-860)) (-5 *1 (-516 *2 *3 *4 *5)) + (-4 *5 (-968 *2 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) + (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-425 *4 (-419 *4) *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *6)) (-4 *6 (-13 (-422 *4 *5) (-1059 *4))) - (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-4 *3 (-319)) + (-12 (-5 *2 (-1287 *6)) (-4 *6 (-13 (-422 *4 *5) (-1058 *4))) + (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *3 (-319)) (-5 *1 (-425 *3 *4 *5 *6)))) ((*1 *1 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-376)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-516 *3 *4 *5 *6)) (-4 *6 (-968 *3 *4 *5))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-661 *6)) (-4 *6 (-861)) (-4 *4 (-376)) (-4 *5 (-815)) - (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-969 *4 *5 *6)))) + (-12 (-5 *3 (-660 *6)) (-4 *6 (-860)) (-4 *4 (-376)) (-4 *5 (-814)) + (-5 *1 (-516 *4 *5 *6 *2)) (-4 *2 (-968 *4 *5 *6)))) ((*1 *1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-516 *3 *4 *5 *2)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-516 *3 *4 *5 *2)) + (-4 *2 (-968 *3 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *6 (-631 (-1198))) - (-4 *4 (-376)) (-4 *5 (-815)) (-4 *6 (-861)) - (-5 *2 (-1187 (-661 (-965 *4)) (-661 (-305 (-965 *4))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *6 (-630 (-1197))) + (-4 *4 (-376)) (-4 *5 (-814)) (-4 *6 (-860)) + (-5 *2 (-1186 (-660 (-964 *4)) (-660 (-305 (-964 *4))))) (-5 *1 (-516 *4 *5 *6 *7))))) (((*1 *2 *1 *3 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1294)) (-5 *1 (-217 *4)) + (-12 (-5 *3 (-937)) (-5 *2 (-1293)) (-5 *1 (-217 *4)) (-4 *4 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 (*2 $)) - (-15 -2175 (*2 $))))))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 (*2 $)) + (-15 -2174 (*2 $))))))) ((*1 *2 *1) - (-12 (-5 *2 (-1294)) (-5 *1 (-217 *3)) + (-12 (-5 *2 (-1293)) (-5 *1 (-217 *3)) (-4 *3 - (-13 (-861) - (-10 -8 (-15 -4230 ((-1180) $ (-1198))) (-15 -4047 (*2 $)) - (-15 -2175 (*2 $))))))) - ((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-514))))) + (-13 (-860) + (-10 -8 (-15 -4229 ((-1179) $ (-1197))) (-15 -4046 (*2 $)) + (-15 -2174 (*2 $))))))) + ((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-514))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *6 (-1264 *5)) - (-5 *2 (-1192 (-1192 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1264 *6))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *6 (-1263 *5)) + (-5 *2 (-1191 (-1191 *7))) (-5 *1 (-513 *5 *6 *4 *7)) (-4 *4 (-1263 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-709 (-1192 *8))) - (-4 *5 (-1070)) (-4 *8 (-1070)) (-4 *6 (-1264 *5)) (-5 *2 (-709 *6)) - (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1264 *6))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *8)) (-5 *4 (-708 (-1191 *8))) + (-4 *5 (-1069)) (-4 *8 (-1069)) (-4 *6 (-1263 *5)) (-5 *2 (-708 *6)) + (-5 *1 (-513 *5 *6 *7 *8)) (-4 *7 (-1263 *6))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1192 *7)) - (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *2 (-1264 *5)) - (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2))))) + (|partial| -12 (-5 *3 (-1 (-3 *5 "failed") *7)) (-5 *4 (-1191 *7)) + (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *2 (-1263 *5)) + (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1192 *7)) (-4 *5 (-1070)) (-4 *7 (-1070)) - (-4 *2 (-1264 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1264 *2)))) + (-12 (-5 *3 (-1 *5 *7)) (-5 *4 (-1191 *7)) (-4 *5 (-1069)) (-4 *7 (-1069)) + (-4 *2 (-1263 *5)) (-5 *1 (-513 *5 *2 *6 *7)) (-4 *6 (-1263 *2)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1070)) (-4 *7 (-1070)) (-4 *4 (-1264 *5)) - (-5 *2 (-1192 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1264 *4))))) + (-12 (-5 *3 (-1 *7 *5)) (-4 *5 (-1069)) (-4 *7 (-1069)) (-4 *4 (-1263 *5)) + (-5 *2 (-1191 *7)) (-5 *1 (-513 *5 *4 *6 *7)) (-4 *6 (-1263 *4))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-2 (|:| -2222 (-709 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-709 *3)))) - (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *4 (-1264 *3)) + (-2 (|:| -2221 (-708 *3)) (|:| |basisDen| *3) (|:| |basisInv| (-708 *3)))) + (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-12 (-5 *2 (-708 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) + (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) + (-12 (-5 *2 (-708 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) + (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4)))) ((*1 *2 *2 *2 *3) - (-12 (-5 *2 (-709 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-12 (-5 *2 (-708 *3)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) + (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *2 *2) - (-12 (-5 *2 (-791)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) - (-4 *4 (-1264 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) + (-12 (-5 *2 (-790)) (-4 *3 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) + (-4 *4 (-1263 *3)) (-5 *1 (-511 *3 *4 *5)) (-4 *5 (-422 *3 *4))))) (((*1 *2 *3 *3 *2 *4) - (-12 (-5 *3 (-709 *2)) (-5 *4 (-558)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *5 (-1264 *2)) + (-12 (-5 *3 (-708 *2)) (-5 *4 (-558)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-709 *2)) (-5 *4 (-791)) - (-4 *2 (-13 (-319) (-10 -8 (-15 -4401 ((-417 $) $))))) (-4 *5 (-1264 *2)) + (-12 (-5 *3 (-708 *2)) (-5 *4 (-790)) + (-4 *2 (-13 (-319) (-10 -8 (-15 -4400 ((-417 $) $))))) (-4 *5 (-1263 *2)) (-5 *1 (-511 *2 *5 *6)) (-4 *6 (-422 *2 *5))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-363)) (-4 *6 (-1264 *5)) + (-12 (-5 *4 (-790)) (-4 *5 (-363)) (-4 *6 (-1263 *5)) (-5 *2 - (-661 - (-2 (|:| -2222 (-709 *6)) (|:| |basisDen| *6) - (|:| |basisInv| (-709 *6))))) + (-660 + (-2 (|:| -2221 (-708 *6)) (|:| |basisDen| *6) + (|:| |basisInv| (-708 *6))))) (-5 *1 (-510 *5 *6 *7)) (-5 *3 - (-2 (|:| -2222 (-709 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-709 *6)))) - (-4 *7 (-1264 *6))))) + (-2 (|:| -2221 (-708 *6)) (|:| |basisDen| *6) (|:| |basisInv| (-708 *6)))) + (-4 *7 (-1263 *6))))) (((*1 *2 *1) (-12 (-5 *2 - (-661 + (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *3) (|:| |xpnt| (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569)))) ((*1 *2 *3 *4 *4 *4) - (-12 (-5 *4 (-791)) (-4 *3 (-363)) (-4 *5 (-1264 *3)) - (-5 *2 (-661 (-1192 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1264 *5))))) + (-12 (-5 *4 (-790)) (-4 *3 (-363)) (-4 *5 (-1263 *3)) + (-5 *2 (-660 (-1191 *3))) (-5 *1 (-510 *3 *5 *6)) (-4 *6 (-1263 *5))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-114)) (-5 *1 (-507))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-503))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-503))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1238)) + (-12 (-5 *2 (-1 *3 *3)) (-4 *1 (-57 *3 *4 *5)) (-4 *3 (-1237)) (-4 *4 (-385 *3)) (-4 *5 (-385 *3)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-501 *3)) - (-4 *3 (-1238))))) + (-12 (-5 *2 (-1 *3 *3)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) + (-4 *3 (-1237))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *4)) + (-4 *4 (-1237)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-114))))) + (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *4)) + (-4 *4 (-1237)) (-5 *2 (-114))))) (((*1 *2 *3 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-501 *3)) (-4 *3 (-1238)) (-4 *3 (-1122)) - (-5 *2 (-791)))) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-501 *3)) (-4 *3 (-1237)) (-4 *3 (-1121)) + (-5 *2 (-790)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4425)) (-4 *1 (-501 *4)) - (-4 *4 (-1238)) (-5 *2 (-791))))) + (-12 (-5 *3 (-1 (-114) *4)) (|has| *1 (-6 -4424)) (-4 *1 (-501 *4)) + (-4 *4 (-1237)) (-5 *2 (-790))))) (((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-499))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-558))) (-5 *2 (-558)) (-5 *1 (-498 *4)) - (-4 *4 (-1264 *2))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1264 (-558))) (-5 *1 (-498 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1264 (-558))) (-5 *1 (-498 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1264 (-558)))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-496 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-890))) (-5 *1 (-495))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-518))) (-5 *1 (-49)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-890))) (-5 *1 (-495))))) + (-12 (-5 *3 (-660 (-558))) (-5 *2 (-558)) (-5 *1 (-498 *4)) + (-4 *4 (-1263 *2))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1263 (-558))) (-5 *1 (-498 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1263 (-558))) (-5 *1 (-498 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 *2)) (-5 *1 (-498 *2)) (-4 *2 (-1263 (-558)))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-496 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-889))) (-5 *1 (-495))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-518))) (-5 *1 (-49)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-889))) (-5 *1 (-495))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-558))) (-5 *1 (-255 *3 *4)) (-14 *3 (-661 (-1198))) - (-4 *4 (-1070)))) + (-12 (-5 *2 (-660 (-558))) (-5 *1 (-255 *3 *4)) (-14 *3 (-660 (-1197))) + (-4 *4 (-1069)))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-558))) (-14 *3 (-661 (-1198))) (-5 *1 (-466 *3 *4 *5)) - (-4 *4 (-1070)) (-4 *5 (-245 (-4387 *3) (-791))))) + (-12 (-5 *2 (-660 (-558))) (-14 *3 (-660 (-1197))) (-5 *1 (-466 *3 *4 *5)) + (-4 *4 (-1069)) (-4 *5 (-245 (-4386 *3) (-790))))) ((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-558))) (-5 *1 (-493 *3 *4)) (-14 *3 (-661 (-1198))) - (-4 *4 (-1070))))) + (-12 (-5 *2 (-660 (-558))) (-5 *1 (-493 *3 *4)) (-14 *3 (-660 (-1197))) + (-4 *4 (-1069))))) (((*1 *2 *3 *3 *3 *3) (-12 (-5 *3 (-558)) (-5 *2 (-114)) (-5 *1 (-492))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-492))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-878 *5))) (-14 *5 (-661 (-1198))) (-4 *6 (-464)) - (-5 *2 (-2 (|:| |dpolys| (-661 (-255 *5 *6))) (|:| |coords| (-661 (-558))))) - (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464))))) + (-12 (-5 *4 (-660 (-877 *5))) (-14 *5 (-660 (-1197))) (-4 *6 (-464)) + (-5 *2 (-2 (|:| |dpolys| (-660 (-255 *5 *6))) (|:| |coords| (-660 (-558))))) + (-5 *1 (-483 *5 *6 *7)) (-5 *3 (-660 (-255 *5 *6))) (-4 *7 (-464))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *2 (-661 (-493 *4 *5))) (-5 *3 (-661 (-878 *4))) - (-14 *4 (-661 (-1198))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) + (|partial| -12 (-5 *2 (-660 (-493 *4 *5))) (-5 *3 (-660 (-877 *4))) + (-14 *4 (-660 (-1197))) (-4 *5 (-464)) (-5 *1 (-483 *4 *5 *6)) (-4 *6 (-464))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-878 *5))) (-14 *5 (-661 (-1198))) (-4 *6 (-464)) - (-5 *2 (-661 (-661 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) - (-5 *3 (-661 (-255 *5 *6))) (-4 *7 (-464))))) + (-12 (-5 *4 (-660 (-877 *5))) (-14 *5 (-660 (-1197))) (-4 *6 (-464)) + (-5 *2 (-660 (-660 (-255 *5 *6)))) (-5 *1 (-483 *5 *6 *7)) + (-5 *3 (-660 (-255 *5 *6))) (-4 *7 (-464))))) (((*1 *1) (-5 *1 (-480)))) (((*1 *1 *2 *3 *3 *4 *5) - (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *3 (-661 (-888))) - (-5 *4 (-661 (-938))) (-5 *5 (-661 (-270))) (-5 *1 (-480)))) + (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *3 (-660 (-887))) + (-5 *4 (-660 (-937))) (-5 *5 (-660 (-270))) (-5 *1 (-480)))) ((*1 *1 *2 *3 *3 *4) - (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *3 (-661 (-888))) - (-5 *4 (-661 (-938))) (-5 *1 (-480)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-480)))) + (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *3 (-660 (-887))) + (-5 *4 (-660 (-937))) (-5 *1 (-480)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-480)))) ((*1 *1 *1) (-5 *1 (-480)))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *1 (-480))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-270)))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *1 (-480))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-270)))) ((*1 *2 *3 *2) - (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) - ((*1 *2 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-480)))) - ((*1 *2 *1) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-480))))) + (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) + ((*1 *2 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-480)))) + ((*1 *2 *1) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-480))))) (((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-962 (-229))) (-5 *4 (-888)) (-5 *5 (-938)) (-5 *2 (-1294)) + (-12 (-5 *3 (-961 (-229))) (-5 *4 (-887)) (-5 *5 (-937)) (-5 *2 (-1293)) (-5 *1 (-480)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-962 (-229))) (-5 *2 (-1294)) (-5 *1 (-480)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-961 (-229))) (-5 *2 (-1293)) (-5 *1 (-480)))) ((*1 *2 *1 *3 *4 *4 *5) - (-12 (-5 *3 (-661 (-962 (-229)))) (-5 *4 (-888)) (-5 *5 (-938)) - (-5 *2 (-1294)) (-5 *1 (-480))))) -(((*1 *2 *1 *3) (-12 (-5 *3 (-962 (-229))) (-5 *2 (-1294)) (-5 *1 (-480))))) + (-12 (-5 *3 (-660 (-961 (-229)))) (-5 *4 (-887)) (-5 *5 (-937)) + (-5 *2 (-1293)) (-5 *1 (-480))))) +(((*1 *2 *1 *3) (-12 (-5 *3 (-961 (-229))) (-5 *2 (-1293)) (-5 *1 (-480))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-661 (-661 (-962 (-229))))) (-5 *3 (-661 (-888))) + (-12 (-5 *2 (-660 (-660 (-961 (-229))))) (-5 *3 (-660 (-887))) (-5 *1 (-480))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-661 (-962 (-229))))) (-5 *2 (-661 (-229))) + (-12 (-5 *3 (-660 (-660 (-961 (-229))))) (-5 *2 (-660 (-229))) (-5 *1 (-480))))) (((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-660 (-270))) (-5 *1 (-271)))) ((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) (((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) @@ -12788,429 +12788,429 @@ (((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479)))) ((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-479))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1288 (-1288 (-558)))) (-5 *1 (-478))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1287 (-1287 (-558)))) (-5 *1 (-478))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1288 (-1288 (-558)))) (-5 *3 (-938)) (-5 *1 (-478))))) + (-12 (-5 *2 (-1287 (-1287 (-558)))) (-5 *3 (-937)) (-5 *1 (-478))))) (((*1 *2 *2 *3 *4) - (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-861)) (-4 *5 (-815)) (-4 *6 (-569)) - (-4 *7 (-969 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) + (|partial| -12 (-5 *4 (-1 *3)) (-4 *3 (-860)) (-4 *5 (-814)) (-4 *6 (-569)) + (-4 *7 (-968 *6 *5 *3)) (-5 *1 (-474 *5 *3 *6 *7 *2)) (-4 *2 - (-13 (-1059 (-419 (-558))) (-376) - (-10 -8 (-15 -4376 ($ *7)) (-15 -3399 (*7 $)) (-15 -3398 (*7 $)))))))) + (-13 (-1058 (-419 (-558))) (-376) + (-10 -8 (-15 -4375 ($ *7)) (-15 -3398 (*7 $)) (-15 -3397 (*7 $)))))))) (((*1 *2 *1) - (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) + (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *2)) - (-2 (|:| -2631 *5) (|:| -2632 *2)))) - (-4 *2 (-245 (-4387 *3) (-791))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) - (-4 *5 (-861)) (-4 *7 (-969 *4 *2 (-878 *3)))))) + (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *2)) + (-2 (|:| -2630 *5) (|:| -2631 *2)))) + (-4 *2 (-245 (-4386 *3) (-790))) (-5 *1 (-473 *3 *4 *5 *2 *6 *7)) + (-4 *5 (-860)) (-4 *7 (-968 *4 *2 (-877 *3)))))) (((*1 *2 *1) - (-12 (-14 *3 (-661 (-1198))) (-4 *4 (-175)) (-4 *5 (-245 (-4387 *3) (-791))) + (-12 (-14 *3 (-660 (-1197))) (-4 *4 (-175)) (-4 *5 (-245 (-4386 *3) (-790))) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *2) (|:| -2632 *5)) - (-2 (|:| -2631 *2) (|:| -2632 *5)))) - (-4 *2 (-861)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) - (-4 *7 (-969 *4 *5 (-878 *3)))))) + (-1 (-114) (-2 (|:| -2630 *2) (|:| -2631 *5)) + (-2 (|:| -2630 *2) (|:| -2631 *5)))) + (-4 *2 (-860)) (-5 *1 (-473 *3 *4 *2 *5 *6 *7)) + (-4 *7 (-968 *4 *5 (-877 *3)))))) (((*1 *1 *2 *3 *4) - (-12 (-14 *5 (-661 (-1198))) (-4 *2 (-175)) (-4 *4 (-245 (-4387 *5) (-791))) + (-12 (-14 *5 (-660 (-1197))) (-4 *2 (-175)) (-4 *4 (-245 (-4386 *5) (-790))) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *3) (|:| -2632 *4)) - (-2 (|:| -2631 *3) (|:| -2632 *4)))) - (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-861)) - (-4 *7 (-969 *2 *4 (-878 *5)))))) + (-1 (-114) (-2 (|:| -2630 *3) (|:| -2631 *4)) + (-2 (|:| -2630 *3) (|:| -2631 *4)))) + (-5 *1 (-473 *5 *2 *3 *4 *6 *7)) (-4 *3 (-860)) + (-4 *7 (-968 *2 *4 (-877 *5)))))) (((*1 *1 *2 *3 *1) - (-12 (-14 *4 (-661 (-1198))) (-4 *2 (-175)) (-4 *3 (-245 (-4387 *4) (-791))) + (-12 (-14 *4 (-660 (-1197))) (-4 *2 (-175)) (-4 *3 (-245 (-4386 *4) (-790))) (-14 *6 - (-1 (-114) (-2 (|:| -2631 *5) (|:| -2632 *3)) - (-2 (|:| -2631 *5) (|:| -2632 *3)))) - (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-861)) - (-4 *7 (-969 *2 *3 (-878 *4)))))) + (-1 (-114) (-2 (|:| -2630 *5) (|:| -2631 *3)) + (-2 (|:| -2630 *5) (|:| -2631 *3)))) + (-5 *1 (-473 *4 *2 *5 *3 *6 *7)) (-4 *5 (-860)) + (-4 *7 (-968 *2 *3 (-877 *4)))))) (((*1 *2 *3 *2 *4 *5) - (-12 (-5 *2 (-661 *3)) (-5 *5 (-938)) (-4 *3 (-1264 *4)) (-4 *4 (-319)) + (-12 (-5 *2 (-660 *3)) (-5 *5 (-937)) (-4 *3 (-1263 *4)) (-4 *4 (-319)) (-5 *1 (-472 *4 *3))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *6 (-938)) (-4 *5 (-319)) (-4 *3 (-1264 *5)) - (-5 *2 (-2 (|:| |plist| (-661 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) - (-5 *4 (-661 *3))))) + (-12 (-5 *6 (-937)) (-4 *5 (-319)) (-4 *3 (-1263 *5)) + (-5 *2 (-2 (|:| |plist| (-660 *3)) (|:| |modulo| *5))) (-5 *1 (-472 *5 *3)) + (-5 *4 (-660 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *5)) (-4 *5 (-1264 *3)) (-4 *3 (-319)) (-5 *2 (-114)) + (-12 (-5 *4 (-660 *5)) (-4 *5 (-1263 *3)) (-4 *3 (-319)) (-5 *2 (-114)) (-5 *1 (-467 *3 *5))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *5 (-1288 (-661 *3))) (-4 *4 (-319)) (-5 *2 (-661 *3)) - (-5 *1 (-467 *4 *3)) (-4 *3 (-1264 *4))))) + (|partial| -12 (-5 *5 (-1287 (-660 *3))) (-4 *4 (-319)) (-5 *2 (-660 *3)) + (-5 *1 (-467 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *4 *5) - (|partial| -12 (-5 *3 (-791)) (-4 *4 (-319)) (-4 *6 (-1264 *4)) - (-5 *2 (-1288 (-661 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-661 *6))))) + (|partial| -12 (-5 *3 (-790)) (-4 *4 (-319)) (-4 *6 (-1263 *4)) + (-5 *2 (-1287 (-660 *6))) (-5 *1 (-467 *4 *6)) (-5 *5 (-660 *6))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-319)) (-5 *2 (-791)) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-319)) (-5 *2 (-790)) (-5 *1 (-467 *5 *3))))) (((*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2222 (-661 *1)))) (-4 *1 (-380 *3)))) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2221 (-660 *1)))) (-4 *1 (-380 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -2222 (-661 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) - (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3)))))) + (|:| -2221 (-660 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) + (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3)))))) (((*1 *2) (|partial| -12 (-4 *3 (-569)) (-4 *3 (-175)) - (-5 *2 (-2 (|:| |particular| *1) (|:| -2222 (-661 *1)))) (-4 *1 (-380 *3)))) + (-5 *2 (-2 (|:| |particular| *1) (|:| -2221 (-660 *1)))) (-4 *1 (-380 *3)))) ((*1 *2) (|partial| -12 (-5 *2 (-2 (|:| |particular| (-465 *3 *4 *5 *6)) - (|:| -2222 (-661 (-465 *3 *4 *5 *6))))) - (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-938)) - (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3)))))) + (|:| -2221 (-660 (-465 *3 *4 *5 *6))))) + (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) (-14 *4 (-937)) + (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 (-1198))) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-938)) - (-14 *6 (-661 (-1198))) (-14 *7 (-1288 (-709 *4))))) + (-12 (-5 *2 (-1287 (-1197))) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-937)) + (-14 *6 (-660 (-1197))) (-14 *7 (-1287 (-708 *4))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-1288 (-465 *4 *5 *6 *7))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-938)) (-14 *6 (-661 *2)) - (-14 *7 (-1288 (-709 *4))))) + (-12 (-5 *2 (-1197)) (-5 *3 (-1287 (-465 *4 *5 *6 *7))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-175)) (-14 *5 (-937)) (-14 *6 (-660 *2)) + (-14 *7 (-1287 (-708 *4))))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3))))) + (-12 (-5 *2 (-1287 (-465 *3 *4 *5 *6))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 (-1198))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) - (-14 *4 (-938)) (-14 *5 (-661 (-1198))) (-14 *6 (-1288 (-709 *3))))) + (-12 (-5 *2 (-1287 (-1197))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-937)) (-14 *5 (-660 (-1197))) (-14 *6 (-1287 (-708 *3))))) ((*1 *1 *2) - (-12 (-5 *2 (-1198)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) - (-14 *4 (-938)) (-14 *5 (-661 *2)) (-14 *6 (-1288 (-709 *3))))) + (-12 (-5 *2 (-1197)) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-175)) + (-14 *4 (-937)) (-14 *5 (-660 *2)) (-14 *6 (-1287 (-708 *3))))) ((*1 *1) - (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-938)) - (-14 *4 (-661 (-1198))) (-14 *5 (-1288 (-709 *2)))))) + (-12 (-5 *1 (-465 *2 *3 *4 *5)) (-4 *2 (-175)) (-14 *3 (-937)) + (-14 *4 (-660 (-1197))) (-14 *5 (-1287 (-708 *2)))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1192 (-965 *4))) (-5 *1 (-429 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-1191 (-964 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) - (-5 *2 (-1192 (-965 *3))))) + (-5 *2 (-1191 (-964 *3))))) ((*1 *2) - (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-1192 (-965 *4))) (-5 *1 (-429 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-1191 (-964 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-4 *3 (-376)) - (-5 *2 (-1192 (-965 *3))))) + (-5 *2 (-1191 (-964 *3))))) ((*1 *2) - (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-1192 (-419 (-965 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) - (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-1191 (-419 (-964 *3)))) (-5 *1 (-465 *3 *4 *5 *6)) + (-4 *3 (-569)) (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *1 *1) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2) - (-12 (-5 *2 (-419 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3)))))) + (-12 (-5 *2 (-419 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) - (-5 *2 (-661 (-965 *4))))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) + (-5 *2 (-660 (-964 *4))))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-661 (-965 *4))) (-5 *1 (-429 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-660 (-964 *4))) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-661 (-965 *3))))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-660 (-964 *3))))) ((*1 *2) - (-12 (-5 *2 (-661 (-965 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) - (-4 *3 (-175)) (-14 *4 (-938)) (-14 *5 (-661 (-1198))) - (-14 *6 (-1288 (-709 *3))))) - ((*1 *2 *3) - (-12 (-5 *3 (-1288 (-465 *4 *5 *6 *7))) (-5 *2 (-661 (-965 *4))) - (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-175)) (-14 *5 (-938)) - (-14 *6 (-661 (-1198))) (-14 *7 (-1288 (-709 *4)))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *1)) (-4 *1 (-464)))) + (-12 (-5 *2 (-660 (-964 *3))) (-5 *1 (-465 *3 *4 *5 *6)) (-4 *3 (-569)) + (-4 *3 (-175)) (-14 *4 (-937)) (-14 *5 (-660 (-1197))) + (-14 *6 (-1287 (-708 *3))))) + ((*1 *2 *3) + (-12 (-5 *3 (-1287 (-465 *4 *5 *6 *7))) (-5 *2 (-660 (-964 *4))) + (-5 *1 (-465 *4 *5 *6 *7)) (-4 *4 (-569)) (-4 *4 (-175)) (-14 *5 (-937)) + (-14 *6 (-660 (-1197))) (-14 *7 (-1287 (-708 *4)))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *1)) (-4 *1 (-464)))) ((*1 *1 *1 *1) (-4 *1 (-464)))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-791)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-790)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-2 (|:| |totdeg| (-791)) (|:| -2214 *4))) (-5 *5 (-791)) - (-4 *4 (-969 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-815)) (-4 *8 (-861)) + (-12 (-5 *3 (-2 (|:| |totdeg| (-790)) (|:| -2213 *4))) (-5 *5 (-790)) + (-4 *4 (-968 *6 *7 *8)) (-4 *6 (-464)) (-4 *7 (-814)) (-4 *8 (-860)) (-5 *2 (-2 (|:| |lcmfij| *7) (|:| |totdeg| *5) (|:| |poli| *4) (|:| |polj| *4))) (-5 *1 (-462 *6 *7 *8 *4))))) (((*1 *2 *3 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-815)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-4 *5 (-814)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-558)) (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) - (-5 *2 (-1294)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-969 *4 *5 *6))))) + (-12 (-5 *3 (-558)) (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) + (-5 *2 (-1293)) (-5 *1 (-462 *4 *5 *6 *7)) (-4 *7 (-968 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *7)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *2 (-1294)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-5 *3 (-660 *7)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *2 (-1293)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *4 *2 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-790)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-815)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) + (-4 *6 (-814)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-860)) (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *3 *4 *4 *2 *2 *2) (-12 (-5 *2 (-558)) (-5 *3 - (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-791)) (|:| |poli| *4) + (-2 (|:| |lcmfij| *6) (|:| |totdeg| (-790)) (|:| |poli| *4) (|:| |polj| *4))) - (-4 *6 (-815)) (-4 *4 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-861)) + (-4 *6 (-814)) (-4 *4 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *7 (-860)) (-5 *1 (-462 *5 *6 *7 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-1294)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-1293)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-4 *4 (-464)) (-4 *5 (-815)) (-4 *6 (-861)) (-5 *2 (-558)) - (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-969 *4 *5 *6))))) + (-12 (-4 *4 (-464)) (-4 *5 (-814)) (-4 *6 (-860)) (-5 *2 (-558)) + (-5 *1 (-462 *4 *5 *6 *3)) (-4 *3 (-968 *4 *5 *6))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *6))))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *2 *2) (-12 (-5 *2 - (-661 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) + (-660 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-790)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-815)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) + (-4 *4 (-814)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *2) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *2) (|:| |polj| *2))) - (-4 *5 (-815)) (-4 *2 (-969 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) - (-4 *4 (-464)) (-4 *6 (-861))))) + (-4 *5 (-814)) (-4 *2 (-968 *4 *5 *6)) (-5 *1 (-462 *4 *5 *6 *2)) + (-4 *4 (-464)) (-4 *6 (-860))))) (((*1 *2 *3 *4 *2) - (-12 (-5 *2 (-661 (-2 (|:| |totdeg| (-791)) (|:| -2214 *3)))) (-5 *4 (-791)) - (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) (-4 *7 (-861)) + (-12 (-5 *2 (-660 (-2 (|:| |totdeg| (-790)) (|:| -2213 *3)))) (-5 *4 (-790)) + (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) (-4 *7 (-860)) (-5 *1 (-462 *5 *6 *7 *3))))) (((*1 *2 *2) - (-12 (-4 *3 (-464)) (-4 *4 (-815)) (-4 *5 (-861)) (-5 *1 (-462 *3 *4 *5 *2)) - (-4 *2 (-969 *3 *4 *5))))) + (-12 (-4 *3 (-464)) (-4 *4 (-814)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *2)) + (-4 *2 (-968 *3 *4 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-969 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-815)) - (-4 *7 (-861)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-968 *5 *6 *7)) (-4 *5 (-464)) (-4 *6 (-814)) + (-4 *7 (-860)) (-5 *2 (-2 (|:| |poly| *3) (|:| |mult| *5))) (-5 *1 (-462 *5 *6 *7 *3))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-661 - (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-791)) (|:| |poli| *6) + (-660 + (-2 (|:| |lcmfij| *3) (|:| |totdeg| (-790)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *3 (-815)) (-4 *6 (-969 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-861)) + (-4 *3 (-814)) (-4 *6 (-968 *4 *3 *5)) (-4 *4 (-464)) (-4 *5 (-860)) (-5 *1 (-462 *4 *3 *5 *6))))) (((*1 *2 *2) (-12 (-5 *2 - (-661 - (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-791)) (|:| |poli| *6) + (-660 + (-2 (|:| |lcmfij| *4) (|:| |totdeg| (-790)) (|:| |poli| *6) (|:| |polj| *6)))) - (-4 *4 (-815)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-861)) + (-4 *4 (-814)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-464)) (-4 *5 (-860)) (-5 *1 (-462 *3 *4 *5 *6))))) (((*1 *2 *3 *2) (-12 (-5 *2 - (-661 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *3) + (-660 + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *3) (|:| |polj| *3)))) - (-4 *5 (-815)) (-4 *3 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-4 *5 (-814)) (-4 *3 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *3))))) (((*1 *2 *3 *3 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5))))) + (-12 (-4 *4 (-464)) (-4 *3 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-464)) (-4 *3 (-815)) (-4 *5 (-861)) (-5 *2 (-114)) - (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-969 *4 *3 *5))))) + (-12 (-4 *4 (-464)) (-4 *3 (-814)) (-4 *5 (-860)) (-5 *2 (-114)) + (-5 *1 (-462 *4 *3 *5 *6)) (-4 *6 (-968 *4 *3 *5))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-791)) (|:| |poli| *7) + (-2 (|:| |lcmfij| *5) (|:| |totdeg| (-790)) (|:| |poli| *7) (|:| |polj| *7))) - (-4 *5 (-815)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-861)) + (-4 *5 (-814)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *6 (-860)) (-5 *2 (-114)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-558)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-464)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *7))))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-558)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-464)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *2))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *1 (-462 *4 *5 *6 *2))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-464)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *1 (-462 *4 *5 *6 *2))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) - (-5 *3 (-661 *7)))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) + (-5 *3 (-660 *7)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) - (-5 *3 (-661 *8)))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) + (-5 *3 (-660 *8)))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) - (-5 *3 (-661 *7)))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) + (-5 *3 (-660 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) - (-5 *3 (-661 *8))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) + (-5 *3 (-660 *8))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-815)) (-4 *6 (-861)) - (-4 *7 (-969 *4 *5 *6)) (-5 *2 (-661 (-661 *7))) (-5 *1 (-461 *4 *5 *6 *7)) - (-5 *3 (-661 *7)))) + (-12 (-4 *4 (-13 (-319) (-149))) (-4 *5 (-814)) (-4 *6 (-860)) + (-4 *7 (-968 *4 *5 *6)) (-5 *2 (-660 (-660 *7))) (-5 *1 (-461 *4 *5 *6 *7)) + (-5 *3 (-660 *7)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-815)) (-4 *7 (-861)) - (-4 *8 (-969 *5 *6 *7)) (-5 *2 (-661 (-661 *8))) (-5 *1 (-461 *5 *6 *7 *8)) - (-5 *3 (-661 *8))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-319) (-149))) (-4 *6 (-814)) (-4 *7 (-860)) + (-4 *8 (-968 *5 *6 *7)) (-5 *2 (-660 (-660 *8))) (-5 *1 (-461 *5 *6 *7 *8)) + (-5 *3 (-660 *8))))) (((*1 *2 *2) - (-12 (-5 *2 (-661 *6)) (-4 *6 (-969 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-815)) - (-4 *5 (-861)) (-5 *1 (-460 *3 *4 *5 *6)))) + (-12 (-5 *2 (-660 *6)) (-4 *6 (-968 *3 *4 *5)) (-4 *3 (-319)) (-4 *4 (-814)) + (-4 *5 (-860)) (-5 *1 (-460 *3 *4 *5 *6)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-319)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *7)))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-319)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7)))) ((*1 *2 *2 *3 *3) - (-12 (-5 *2 (-661 *7)) (-5 *3 (-1180)) (-4 *7 (-969 *4 *5 *6)) (-4 *4 (-319)) - (-4 *5 (-815)) (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *7))))) + (-12 (-5 *2 (-660 *7)) (-5 *3 (-1179)) (-4 *7 (-968 *4 *5 *6)) (-4 *4 (-319)) + (-4 *5 (-814)) (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *7))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-969 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-815)) - (-4 *6 (-861)) (-5 *1 (-460 *4 *5 *6 *2))))) -(((*1 *2 *3) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-458)) (-5 *3 (-558))))) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-968 *4 *5 *6)) (-4 *4 (-319)) (-4 *5 (-814)) + (-4 *6 (-860)) (-5 *1 (-460 *4 *5 *6 *2))))) +(((*1 *2 *3) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-458)) (-5 *3 (-558))))) (((*1 *2 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070)))) + (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069)))) ((*1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069))))) (((*1 *2 *3) - (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069))))) (((*1 *2 *3) - (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) -(((*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1070)))) - ((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-457 *3)) (-4 *3 (-1070))))) + (-12 (-5 *2 (-558)) (-5 *1 (-457 *3)) (-4 *3 (-416)) (-4 *3 (-1069))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-457 *3)) (-4 *3 (-1069))))) +(((*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-1069))))) +(((*1 *2 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-1069)))) + ((*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-457 *3)) (-4 *3 (-1069))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-558)) (-5 *1 (-457 *2)) (-4 *2 (-1070))))) + (-12 (-5 *3 (-790)) (-5 *4 (-558)) (-5 *1 (-457 *2)) (-4 *2 (-1069))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-417 *6)) (-4 *6 (-1264 *5)) (-4 *5 (-1070)) - (-5 *2 (-661 *6)) (-5 *1 (-456 *5 *6))))) + (-12 (-5 *3 (-937)) (-5 *4 (-417 *6)) (-4 *6 (-1263 *5)) (-4 *5 (-1069)) + (-5 *2 (-660 *6)) (-5 *1 (-456 *5 *6))))) (((*1 *2 *3 *2) - (|partial| -12 (-5 *3 (-938)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) + (|partial| -12 (-5 *3 (-937)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-791)) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-558))))) + (|partial| -12 (-5 *3 (-937)) (-5 *4 (-790)) (-5 *1 (-454 *2)) + (-4 *2 (-1263 (-558))))) ((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-661 (-791))) (-5 *1 (-454 *2)) - (-4 *2 (-1264 (-558))))) + (|partial| -12 (-5 *3 (-937)) (-5 *4 (-660 (-790))) (-5 *1 (-454 *2)) + (-4 *2 (-1263 (-558))))) ((*1 *2 *3 *2 *4 *5) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) - (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) + (|partial| -12 (-5 *3 (-937)) (-5 *4 (-660 (-790))) (-5 *5 (-790)) + (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) ((*1 *2 *3 *2 *4 *5 *6) - (|partial| -12 (-5 *3 (-938)) (-5 *4 (-661 (-791))) (-5 *5 (-791)) - (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1264 (-558))))) + (|partial| -12 (-5 *3 (-937)) (-5 *4 (-660 (-790))) (-5 *5 (-790)) + (-5 *6 (-114)) (-5 *1 (-454 *2)) (-4 *2 (-1263 (-558))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-938)) (-5 *4 (-417 *2)) (-4 *2 (-1264 *5)) (-5 *1 (-456 *5 *2)) - (-4 *5 (-1070))))) + (-12 (-5 *3 (-937)) (-5 *4 (-417 *2)) (-4 *2 (-1263 *5)) (-5 *1 (-456 *5 *2)) + (-4 *5 (-1069))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| -4162 *4) (|:| -4378 (-558))))) - (-4 *4 (-1264 (-558))) (-5 *2 (-756 (-791))) (-5 *1 (-454 *4)))) + (-12 (-5 *3 (-660 (-2 (|:| -4161 *4) (|:| -4377 (-558))))) + (-4 *4 (-1263 (-558))) (-5 *2 (-755 (-790))) (-5 *1 (-454 *4)))) ((*1 *2 *3) - (-12 (-5 *3 (-417 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1070)) - (-5 *2 (-756 (-791))) (-5 *1 (-456 *4 *5))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-1070)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1264 *3))))) + (-12 (-5 *3 (-417 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1069)) + (-5 *2 (-755 (-790))) (-5 *1 (-456 *4 *5))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-1069)) (-5 *1 (-456 *3 *2)) (-4 *2 (-1263 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-791)) (-4 *5 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *5 *3 *6)) - (-4 *3 (-1264 *5)) (-4 *6 (-13 (-416) (-1059 *5) (-376) (-1224) (-296))))) + (-12 (-5 *4 (-790)) (-4 *5 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *5 *3 *6)) + (-4 *3 (-1263 *5)) (-4 *6 (-13 (-416) (-1058 *5) (-376) (-1223) (-296))))) ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-376) (-1224) (-296)))))) + (-12 (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-376) (-1223) (-296)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-376) (-1224) (-296)))))) + (-12 (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-376) (-1223) (-296)))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-13 (-416) (-1059 *4) (-376) (-1224) (-296))) - (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1264 *4)))) + (-12 (-4 *4 (-1069)) (-4 *2 (-13 (-416) (-1058 *4) (-376) (-1223) (-296))) + (-5 *1 (-455 *4 *3 *2)) (-4 *3 (-1263 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-938)) (-4 *5 (-1070)) - (-4 *2 (-13 (-416) (-1059 *5) (-376) (-1224) (-296))) - (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1264 *5))))) + (-12 (-5 *4 (-937)) (-4 *5 (-1069)) + (-4 *2 (-13 (-416) (-1058 *5) (-376) (-1223) (-296))) + (-5 *1 (-455 *5 *3 *2)) (-4 *3 (-1263 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) - (-4 *3 (-1264 *4)) (-4 *5 (-13 (-416) (-1059 *4) (-376) (-1224) (-296)))))) + (-12 (-4 *4 (-1069)) (-5 *2 (-558)) (-5 *1 (-455 *4 *3 *5)) + (-4 *3 (-1263 *4)) (-4 *5 (-13 (-416) (-1058 *4) (-376) (-1223) (-296)))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-114)) (-5 *5 (-1118 (-791))) (-5 *6 (-791)) + (-12 (-5 *4 (-114)) (-5 *5 (-1117 (-790))) (-5 *6 (-790)) (-5 *2 (-2 (|:| |contp| (-558)) - (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) - (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *3) - (-12 (-5 *2 (-2 (|:| -2977 (-558)) (|:| -1987 (-661 *3)))) (-5 *1 (-454 *3)) - (-4 *3 (-1264 (-558)))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) - ((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| -4162 *4) (|:| -4378 (-558))))) - (-4 *4 (-1264 (-558))) (-5 *2 (-791)) (-5 *1 (-454 *4))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558))))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-454 *3)) (-4 *3 (-1264 (-558)))))) + (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) + (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *3) + (-12 (-5 *2 (-2 (|:| -2976 (-558)) (|:| -1986 (-660 *3)))) (-5 *1 (-454 *3)) + (-4 *3 (-1263 (-558)))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-417 *3)) (-4 *3 (-569)))) + ((*1 *2 *3) + (-12 (-5 *3 (-660 (-2 (|:| -4161 *4) (|:| -4377 (-558))))) + (-4 *4 (-1263 (-558))) (-5 *2 (-790)) (-5 *1 (-454 *4))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558))))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-454 *3)) (-4 *3 (-1263 (-558)))))) (((*1 *1 *2 *3) (-12 (-5 *3 - (-661 + (-660 (-2 (|:| |flg| (-3 "nil" "sqfr" "irred" "prime")) (|:| |fctr| *2) (|:| |xpnt| (-558))))) (-4 *2 (-569)) (-5 *1 (-417 *2)))) @@ -13218,15 +13218,15 @@ (-12 (-5 *3 (-2 (|:| |contp| (-558)) - (|:| -1987 (-661 (-2 (|:| |irr| *4) (|:| -2626 (-558))))))) - (-4 *4 (-1264 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) + (|:| -1986 (-660 (-2 (|:| |irr| *4) (|:| -2625 (-558))))))) + (-4 *4 (-1263 (-558))) (-5 *2 (-417 *4)) (-5 *1 (-454 *4))))) (((*1 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-402)) (-5 *1 (-449))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-449))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-449))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-449))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-449))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-449))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-449))))) (((*1 *2 *1) - (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4340 "void"))) (-5 *1 (-448))))) + (-12 (-5 *2 (-3 (|:| |fst| (-446)) (|:| -4339 "void"))) (-5 *1 (-448))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-448))))) (((*1 *1) (-5 *1 (-448)))) (((*1 *1) (-5 *1 (-448)))) @@ -13236,185 +13236,185 @@ (((*1 *1) (-5 *1 (-448)))) (((*1 *1) (-5 *1 (-448)))) (((*1 *2 *3) - (|partial| -12 (-4 *5 (-1059 (-48))) (-4 *4 (-13 (-569) (-1059 (-558)))) - (-4 *5 (-433 *4)) (-5 *2 (-417 (-1192 (-48)))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1264 *5))))) + (|partial| -12 (-4 *5 (-1058 (-48))) (-4 *4 (-13 (-569) (-1058 (-558)))) + (-4 *5 (-433 *4)) (-5 *2 (-417 (-1191 (-48)))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1263 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) (-5 *2 - (-3 (|:| |overq| (-1192 (-419 (-558)))) (|:| |overan| (-1192 (-48))) - (|:| -3038 (-114)))) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) + (-3 (|:| |overq| (-1191 (-419 (-558)))) (|:| |overan| (-1191 (-48))) + (|:| -3037 (-114)))) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) (((*1 *2 *3) - (|partial| -12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) - (-5 *2 (-417 (-1192 (-419 (-558))))) (-5 *1 (-447 *4 *5 *3)) - (-4 *3 (-1264 *5))))) + (|partial| -12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) + (-5 *2 (-417 (-1191 (-419 (-558))))) (-5 *1 (-447 *4 *5 *3)) + (-4 *3 (-1263 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) - (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1264 *5))))) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-4 *5 (-433 *4)) (-5 *2 (-417 *3)) + (-5 *1 (-447 *4 *5 *3)) (-4 *3 (-1263 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-446))))) (((*1 *2) - (-12 (-4 *3 (-13 (-569) (-1059 (-558)))) (-5 *2 (-1294)) (-5 *1 (-445 *3 *4)) + (-12 (-4 *3 (-13 (-569) (-1058 (-558)))) (-5 *2 (-1293)) (-5 *1 (-445 *3 *4)) (-4 *4 (-433 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-569) (-1059 (-558)))) (-5 *2 (-419 (-558))) + (-12 (-4 *4 (-13 (-569) (-1058 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-445 *4 *3)) (-4 *3 (-433 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-628 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-569) (-1059 (-558)))) - (-5 *2 (-1192 (-419 (-558)))) (-5 *1 (-445 *5 *3))))) + (-12 (-5 *4 (-627 *3)) (-4 *3 (-433 *5)) (-4 *5 (-13 (-569) (-1058 (-558)))) + (-5 *2 (-1191 (-419 (-558)))) (-5 *1 (-445 *5 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-443 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) - (-4 *2 (-13 (-861) (-21)))))) + (-4 *2 (-13 (-860) (-21)))))) (((*1 *1 *2 *3) (-12 (-5 *1 (-441 *3 *2)) (-4 *3 (-13 (-175) (-38 (-419 (-558))))) - (-4 *2 (-13 (-861) (-21)))))) + (-4 *2 (-13 (-860) (-21)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1224) (-29 *5)))))) -(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1122)) (-5 *2 (-791))))) -(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1122)) (-4 *2 (-381))))) -(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1122))))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-595 *3)) (-5 *1 (-440 *5 *3)) (-4 *3 (-13 (-1223) (-29 *5)))))) +(((*1 *2 *1) (-12 (-4 *1 (-438 *3)) (-4 *3 (-1121)) (-5 *2 (-790))))) +(((*1 *1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-1121)) (-4 *2 (-381))))) +(((*1 *1) (-12 (-4 *1 (-438 *2)) (-4 *2 (-381)) (-4 *2 (-1121))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1224) (-433 *3))) - (-14 *4 (-1198)) (-14 *5 *2))) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-435 *3 *2 *4 *5)) (-4 *2 (-13 (-27) (-1223) (-433 *3))) + (-14 *4 (-1197)) (-14 *5 *2))) ((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-4 *2 (-13 (-27) (-1224) (-433 *3) (-10 -8 (-15 -4376 ($ *4))))) - (-4 *4 (-860)) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-4 *2 (-13 (-27) (-1223) (-433 *3) (-10 -8 (-15 -4375 ($ *4))))) + (-4 *4 (-859)) (-4 *5 - (-13 (-1267 *2 *4) (-376) (-1224) - (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $))))) - (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1004 *5)) (-14 *7 (-1198))))) + (-13 (-1266 *2 *4) (-376) (-1223) + (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $))))) + (-5 *1 (-436 *3 *2 *4 *5 *6 *7)) (-4 *6 (-1003 *5)) (-14 *7 (-1197))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-4 *3 (-13 (-27) (-1224) (-433 *6) (-10 -8 (-15 -4376 ($ *7))))) - (-4 *7 (-860)) + (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-4 *3 (-13 (-27) (-1223) (-433 *6) (-10 -8 (-15 -4375 ($ *7))))) + (-4 *7 (-859)) (-4 *8 - (-13 (-1267 *3 *7) (-376) (-1224) - (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $))))) + (-13 (-1266 *3 *7) (-376) (-1223) + (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) - (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1004 *8)) - (-14 *10 (-1198))))) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1003 *8)) + (-14 *10 (-1197))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-4 *3 (-13 (-27) (-1224) (-433 *6) (-10 -8 (-15 -4376 ($ *7))))) - (-4 *7 (-860)) + (-12 (-5 *4 (-114)) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-4 *3 (-13 (-27) (-1223) (-433 *6) (-10 -8 (-15 -4375 ($ *7))))) + (-4 *7 (-859)) (-4 *8 - (-13 (-1267 *3 *7) (-376) (-1224) - (-10 -8 (-15 -4188 ($ $)) (-15 -4242 ($ $))))) + (-13 (-1266 *3 *7) (-376) (-1223) + (-10 -8 (-15 -4187 ($ $)) (-15 -4241 ($ $))))) (-5 *2 (-3 (|:| |%series| *8) - (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) - (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1180)) (-4 *9 (-1004 *8)) - (-14 *10 (-1198))))) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-436 *6 *3 *7 *8 *9 *10)) (-5 *5 (-1179)) (-4 *9 (-1003 *8)) + (-14 *10 (-1197))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *2 (-3 (|:| |%expansion| (-325 *5 *3 *6 *7)) - (|:| |%problem| (-2 (|:| |func| (-1180)) (|:| |prob| (-1180)))))) - (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1224) (-433 *5))) - (-14 *6 (-1198)) (-14 *7 *3)))) -(((*1 *2 *1) - (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) (-5 *2 (-114)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1122)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-814)) (-4 *2 (-1070)))) - ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1122))))) + (|:| |%problem| (-2 (|:| |func| (-1179)) (|:| |prob| (-1179)))))) + (-5 *1 (-435 *5 *3 *6 *7)) (-4 *3 (-13 (-27) (-1223) (-433 *5))) + (-14 *6 (-1197)) (-14 *7 *3)))) +(((*1 *2 *1) + (-12 (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-5 *2 (-114)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *3)) (-4 *3 (-1121)) (-5 *2 (-114))))) +(((*1 *2 *1) (-12 (-4 *1 (-338 *2 *3)) (-4 *3 (-813)) (-4 *2 (-1069)))) + ((*1 *2 *1) (-12 (-4 *1 (-433 *2)) (-4 *2 (-1121))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1198)) (-5 *3 (-661 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1122)))) + (-12 (-5 *2 (-1197)) (-5 *3 (-660 *1)) (-4 *1 (-433 *4)) (-4 *4 (-1121)))) ((*1 *1 *2 *1 *1 *1 *1) - (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1198)) (-4 *1 (-433 *3)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-4 *1 (-433 *3)) (-4 *3 (-1121))))) (((*1 *2 *1) - (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1122)) - (-5 *2 (-2 (|:| -4384 (-558)) (|:| |var| (-628 *1)))) (-4 *1 (-433 *3))))) + (|partial| -12 (-4 *3 (-25)) (-4 *3 (-1121)) + (-5 *2 (-2 (|:| -4383 (-558)) (|:| |var| (-627 *1)))) (-4 *1 (-433 *3))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-417 *3)) (-4 *3 (-569)) (-5 *1 (-431 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) +(((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-376)) (-4 *1 (-341 *3)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1243)) - (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1264 (-419 *3))))) + (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1242)) + (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1263 (-419 *3))))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-175)) (-4 *1 (-380 *4)))) ((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *4)) (-5 *3 (-1288 *1)) (-4 *4 (-175)) - (-4 *1 (-383 *4 *5)) (-4 *5 (-1264 *4)))) + (-12 (-5 *2 (-1287 *4)) (-5 *3 (-1287 *1)) (-4 *4 (-175)) + (-4 *1 (-383 *4 *5)) (-4 *5 (-1263 *4)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) - (-4 *4 (-1264 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1288 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) + (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-422 *3 *4)) + (-4 *4 (-1263 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1287 *3)) (-4 *3 (-175)) (-4 *1 (-430 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175))))) -(((*1 *2 *3) (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) +(((*1 *2 *3) (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *2)) (-4 *2 (-175)))) ((*1 *2) (-12 (-4 *2 (-175)) (-5 *1 (-429 *3 *2)) (-4 *3 (-430 *2)))) ((*1 *2) (-12 (-4 *1 (-430 *2)) (-4 *2 (-175))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-708 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-709 *4)) (-5 *1 (-429 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-708 *4)) (-5 *1 (-429 *3 *4)) (-4 *3 (-430 *4)))) - ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) + ((*1 *2) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-709 *4)))) - ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-709 *3))))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-380 *4)) (-4 *4 (-175)) (-5 *2 (-708 *4)))) + ((*1 *2 *1) (-12 (-4 *1 (-430 *3)) (-4 *3 (-175)) (-5 *2 (-708 *3))))) (((*1 *1 *2) - (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1059 *4)) (-4 *3 (-319)) - (-4 *4 (-1012 *3)) (-4 *5 (-1264 *4)) (-4 *6 (-422 *4 *5)) - (-14 *7 (-1288 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) + (-12 (-5 *2 (-425 *3 *4 *5 *6)) (-4 *6 (-1058 *4)) (-4 *3 (-319)) + (-4 *4 (-1011 *3)) (-4 *5 (-1263 *4)) (-4 *6 (-422 *4 *5)) + (-14 *7 (-1287 *6)) (-5 *1 (-427 *3 *4 *5 *6 *7)))) ((*1 *1 *2) - (-12 (-5 *2 (-1288 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1012 *3)) - (-4 *5 (-1264 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) + (-12 (-5 *2 (-1287 *6)) (-4 *6 (-422 *4 *5)) (-4 *4 (-1011 *3)) + (-4 *5 (-1263 *4)) (-4 *3 (-319)) (-5 *1 (-427 *3 *4 *5 *6 *7)) (-14 *7 *2)))) (((*1 *1 *1) - (-12 (-4 *2 (-319)) (-4 *3 (-1012 *2)) (-4 *4 (-1264 *3)) - (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1059 *3)))))) + (-12 (-4 *2 (-319)) (-4 *3 (-1011 *2)) (-4 *4 (-1263 *3)) + (-5 *1 (-425 *2 *3 *4 *5)) (-4 *5 (-13 (-422 *3 *4) (-1058 *3)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-791)) (-5 *4 (-1288 *2)) (-4 *5 (-319)) (-4 *6 (-1012 *5)) - (-4 *2 (-13 (-422 *6 *7) (-1059 *6))) (-5 *1 (-425 *5 *6 *7 *2)) - (-4 *7 (-1264 *6))))) + (-12 (-5 *3 (-790)) (-5 *4 (-1287 *2)) (-4 *5 (-319)) (-4 *6 (-1011 *5)) + (-4 *2 (-13 (-422 *6 *7) (-1058 *6))) (-5 *1 (-425 *5 *6 *7 *2)) + (-4 *7 (-1263 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) ((*1 *2) - (-12 (-4 *4 (-175)) (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)) + (-12 (-4 *4 (-175)) (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)) (-5 *1 (-421 *3 *4 *5)) (-4 *3 (-422 *4 *5)))) ((*1 *2) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) - (-5 *2 (-709 *3))))) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) + (-5 *2 (-708 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1288 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) - (-4 *5 (-1264 *4)) (-5 *2 (-709 *4)))) + (-12 (-5 *3 (-1287 *1)) (-4 *1 (-383 *4 *5)) (-4 *4 (-175)) + (-4 *5 (-1263 *4)) (-5 *2 (-708 *4)))) ((*1 *2 *1) - (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1264 *3)) - (-5 *2 (-709 *3))))) + (-12 (-4 *1 (-422 *3 *4)) (-4 *3 (-175)) (-4 *4 (-1263 *3)) + (-5 *2 (-708 *3))))) (((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 (-558))))) (-5 *1 (-374 *3)) - (-4 *3 (-1122)))) + (-12 (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 (-558))))) (-5 *1 (-374 *3)) + (-4 *3 (-1121)))) ((*1 *2 *1) - (-12 (-4 *1 (-399 *3)) (-4 *3 (-1122)) - (-5 *2 (-661 (-2 (|:| |gen| *3) (|:| -4373 (-791))))))) + (-12 (-4 *1 (-399 *3)) (-4 *3 (-1121)) + (-5 *2 (-660 (-2 (|:| |gen| *3) (|:| -4372 (-790))))))) ((*1 *2 *1) - (-12 (-5 *2 (-661 (-2 (|:| -4162 *3) (|:| -2632 (-558))))) (-5 *1 (-417 *3)) + (-12 (-5 *2 (-660 (-2 (|:| -4161 *3) (|:| -2631 (-558))))) (-5 *1 (-417 *3)) (-4 *3 (-569))))) (((*1 *1 *2 *3) (-12 (-5 *3 (-558)) (-5 *1 (-417 *2)) (-4 *2 (-569))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-417 *3)) (-4 *3 (-569))))) @@ -13426,147 +13426,147 @@ (((*1 *1 *2 *3 *4) (-12 (-5 *3 (-558)) (-5 *4 (-3 "nil" "sqfr" "irred" "prime")) (-5 *1 (-417 *2)) (-4 *2 (-569))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-391))) (-5 *1 (-270)))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-391))) (-5 *1 (-270)))) ((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175)))) ((*1 *2 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569))))) (((*1 *1 *1) (-12 (-5 *1 (-417 *2)) (-4 *2 (-569))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *3 (-114)) (-5 *1 (-110)))) - ((*1 *2 *2) (-12 (-5 *2 (-938)) (|has| *1 (-6 -4416)) (-4 *1 (-416)))) - ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-938))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *3 (-114)) (-5 *1 (-110)))) + ((*1 *2 *2) (-12 (-5 *2 (-937)) (|has| *1 (-6 -4415)) (-4 *1 (-416)))) + ((*1 *2) (-12 (-4 *1 (-416)) (-5 *2 (-937))))) (((*1 *2 *3) - (-12 (-5 *3 (-558)) (|has| *1 (-6 -4416)) (-4 *1 (-416)) (-5 *2 (-938))))) + (-12 (-5 *3 (-558)) (|has| *1 (-6 -4415)) (-4 *1 (-416)) (-5 *2 (-937))))) (((*1 *2 *3) - (-12 (-5 *3 (-558)) (|has| *1 (-6 -4416)) (-4 *1 (-416)) (-5 *2 (-938))))) -(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-791)))) - ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-791))))) -(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-791)))) + (-12 (-5 *3 (-558)) (|has| *1 (-6 -4415)) (-4 *1 (-416)) (-5 *2 (-937))))) +(((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-790)))) + ((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-414)) (-5 *2 (-790))))) +(((*1 *1 *1 *2) (-12 (-4 *1 (-414)) (-5 *2 (-790)))) ((*1 *1 *1) (-4 *1 (-414)))) (((*1 *1 *2) - (-12 (-5 *2 (-419 *4)) (-4 *4 (-1264 *3)) (-4 *3 (-13 (-376) (-149))) + (-12 (-5 *2 (-419 *4)) (-4 *4 (-1263 *3)) (-4 *3 (-13 (-376) (-149))) (-5 *1 (-411 *3 *4))))) (((*1 *2 *1) - (-12 (-4 *2 (-1264 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149)))))) + (-12 (-4 *2 (-1263 *3)) (-5 *1 (-411 *3 *2)) (-4 *3 (-13 (-376) (-149)))))) (((*1 *2 *1) (-12 (-4 *3 (-13 (-376) (-149))) - (-5 *2 (-661 (-2 (|:| -2632 (-791)) (|:| -4203 *4) (|:| |num| *4)))) - (-5 *1 (-411 *3 *4)) (-4 *4 (-1264 *3))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-407))))) + (-5 *2 (-660 (-2 (|:| -2631 (-790)) (|:| -4202 *4) (|:| |num| *4)))) + (-5 *1 (-411 *3 *4)) (-4 *4 (-1263 *3))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-407))))) (((*1 *2 *3 *4 *5 *6) - (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1198))))) - (-5 *6 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1124)) (-5 *1 (-407)))) + (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1197))))) + (-5 *6 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1123)) (-5 *1 (-407)))) ((*1 *2 *3 *4 *5 *6 *3) - (-12 (-5 *5 (-661 (-661 (-3 (|:| |array| *6) (|:| |scalar| *3))))) - (-5 *4 (-661 (-3 (|:| |array| (-661 *3)) (|:| |scalar| (-1198))))) - (-5 *6 (-661 (-1198))) (-5 *3 (-1198)) (-5 *2 (-1124)) (-5 *1 (-407)))) + (-12 (-5 *5 (-660 (-660 (-3 (|:| |array| *6) (|:| |scalar| *3))))) + (-5 *4 (-660 (-3 (|:| |array| (-660 *3)) (|:| |scalar| (-1197))))) + (-5 *6 (-660 (-1197))) (-5 *3 (-1197)) (-5 *2 (-1123)) (-5 *1 (-407)))) ((*1 *2 *3 *4 *5 *4) - (-12 (-5 *4 (-661 (-1198))) (-5 *5 (-1201)) (-5 *3 (-1198)) (-5 *2 (-1124)) + (-12 (-5 *4 (-660 (-1197))) (-5 *5 (-1200)) (-5 *3 (-1197)) (-5 *2 (-1123)) (-5 *1 (-407))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-405))))) -(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1294)) (-5 *1 (-405)))) - ((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-405))))) -(((*1 *2) (-12 (-5 *2 (-1169 (-1180))) (-5 *1 (-405))))) -(((*1 *2 *1) - (-12 (-5 *2 (-877)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-405))))) +(((*1 *2 *3) (-12 (-5 *3 (-402)) (-5 *2 (-1293)) (-5 *1 (-405)))) + ((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-405))))) +(((*1 *2) (-12 (-5 *2 (-1168 (-1179))) (-5 *1 (-405))))) +(((*1 *2 *1) + (-12 (-5 *2 (-876)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-790)) (-14 *4 (-790)) (-4 *5 (-175))))) (((*1 *2 *1) - (-12 (-5 *2 (-877)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-791)) (-14 *4 (-791)) + (-12 (-5 *2 (-876)) (-5 *1 (-404 *3 *4 *5)) (-14 *3 (-790)) (-14 *4 (-790)) (-4 *5 (-175))))) -(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1180)) (-4 *1 (-403))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1180))))) -(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1180))))) +(((*1 *1 *2 *2 *2) (-12 (-5 *2 (-1179)) (-4 *1 (-403))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1179))))) +(((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-1179))))) (((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) (((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) (((*1 *2 *1) (-12 (-4 *1 (-403)) (-5 *2 (-114))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122))))) -(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1122))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121))))) +(((*1 *1 *1 *1) (-12 (-4 *1 (-399 *2)) (-4 *2 (-1121))))) (((*1 *2 *1 *1) - (-12 (-4 *3 (-1122)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) + (-12 (-4 *3 (-1121)) (-5 *2 (-2 (|:| |lm| *1) (|:| |mm| *1) (|:| |rm| *1))) (-4 *1 (-399 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-1122)) + (-12 (-4 *1 (-397 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-1121)) (-5 *2 (-2 (|:| |k| *4) (|:| |c| *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 (-419 (-965 (-558))))) (-5 *4 (-661 (-1198))) - (-5 *2 (-661 (-661 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-860) (-376))))) + (-12 (-5 *3 (-660 (-419 (-964 (-558))))) (-5 *4 (-660 (-1197))) + (-5 *2 (-660 (-660 *5))) (-5 *1 (-393 *5)) (-4 *5 (-13 (-859) (-376))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 (-558)))) (-5 *2 (-661 *4)) (-5 *1 (-393 *4)) - (-4 *4 (-13 (-860) (-376)))))) + (-12 (-5 *3 (-419 (-964 (-558)))) (-5 *2 (-660 *4)) (-5 *1 (-393 *4)) + (-4 *4 (-13 (-859) (-376)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 (-171 (-558))))) (-5 *2 (-661 (-171 *4))) - (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-419 (-964 (-171 (-558))))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-392 *4)) (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-661 (-419 (-965 (-171 (-558)))))) (-5 *4 (-661 (-1198))) - (-5 *2 (-661 (-661 (-171 *5)))) (-5 *1 (-392 *5)) - (-4 *5 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-660 (-419 (-964 (-171 (-558)))))) (-5 *4 (-660 (-1197))) + (-5 *2 (-660 (-660 (-171 *5)))) (-5 *1 (-392 *5)) + (-4 *5 (-13 (-376) (-859)))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-419 (-965 (-171 (-558)))))) - (-5 *2 (-661 (-661 (-305 (-965 (-171 *4)))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-660 (-419 (-964 (-171 (-558)))))) + (-5 *2 (-660 (-660 (-305 (-964 (-171 *4)))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-305 (-419 (-965 (-171 (-558))))))) - (-5 *2 (-661 (-661 (-305 (-965 (-171 *4)))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-660 (-305 (-419 (-964 (-171 (-558))))))) + (-5 *2 (-660 (-660 (-305 (-964 (-171 *4)))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-419 (-965 (-171 (-558))))) - (-5 *2 (-661 (-305 (-965 (-171 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *3 (-419 (-964 (-171 (-558))))) + (-5 *2 (-660 (-305 (-964 (-171 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-305 (-419 (-965 (-171 (-558)))))) - (-5 *2 (-661 (-305 (-965 (-171 *4))))) (-5 *1 (-392 *4)) - (-4 *4 (-13 (-376) (-860)))))) + (-12 (-5 *3 (-305 (-419 (-964 (-171 (-558)))))) + (-5 *2 (-660 (-305 (-964 (-171 *4))))) (-5 *1 (-392 *4)) + (-4 *4 (-13 (-376) (-859)))))) (((*1 *2 *1 *1) (-12 (-5 *2 (-558)) (-5 *1 (-391))))) -(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) - ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-791)) (-5 *2 (-419 (-558))) (-5 *1 (-391))))) +(((*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-229)))) + ((*1 *2 *1 *3 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-391)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-790)) (-5 *2 (-419 (-558))) (-5 *1 (-391))))) (((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) (((*1 *1 *1) (-5 *1 (-229))) ((*1 *1 *1) - (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-661 (-1198))) (-14 *3 (-661 (-1198))) + (-12 (-5 *1 (-352 *2 *3 *4)) (-14 *2 (-660 (-1197))) (-14 *3 (-660 (-1197))) (-4 *4 (-401)))) ((*1 *1 *1) (-5 *1 (-391))) ((*1 *1) (-5 *1 (-391)))) (((*1 *1) (-5 *1 (-229))) ((*1 *1) (-5 *1 (-391)))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391)))) - ((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-391))))) -(((*1 *2 *3) (-12 (-5 *3 (-791)) (-5 *2 (-1294)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391)))) + ((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-391))))) +(((*1 *2 *3) (-12 (-5 *3 (-790)) (-5 *2 (-1293)) (-5 *1 (-391))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426))))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426))))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1238)) (-5 *1 (-388 *4 *2)) - (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4426))))))) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *4 (-1237)) (-5 *1 (-388 *4 *2)) + (-4 *2 (-13 (-385 *4) (-10 -7 (-6 -4425))))))) (((*1 *1 *2) - (-12 (-5 *2 (-692 *3)) (-4 *3 (-861)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175))))) + (-12 (-5 *2 (-691 *3)) (-4 *3 (-860)) (-4 *1 (-387 *3 *4)) (-4 *4 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-385 *3)) (-4 *3 (-1238)) (-4 *3 (-861)) (-5 *2 (-114)))) + (-12 (-4 *1 (-385 *3)) (-4 *3 (-1237)) (-4 *3 (-860)) (-5 *2 (-114)))) ((*1 *2 *3 *1) - (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1238)) + (-12 (-5 *3 (-1 (-114) *4 *4)) (-4 *1 (-385 *4)) (-4 *4 (-1237)) (-5 *2 (-114))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-558)) (|has| *1 (-6 -4426)) (-4 *1 (-385 *3)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-558)) (|has| *1 (-6 -4425)) (-4 *1 (-385 *3)) (-4 *3 (-1237))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-385 *2)) (-4 *2 (-1238)) (-4 *2 (-861)))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-385 *2)) (-4 *2 (-1237)) (-4 *2 (-860)))) ((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4426)) (-4 *1 (-385 *3)) - (-4 *3 (-1238))))) -(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1288 *1)) (-4 *1 (-380 *3))))) + (-12 (-5 *2 (-1 (-114) *3 *3)) (|has| *1 (-6 -4425)) (-4 *1 (-385 *3)) + (-4 *3 (-1237))))) +(((*1 *2) (-12 (-4 *3 (-175)) (-5 *2 (-1287 *1)) (-4 *1 (-380 *3))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) (((*1 *2 *1) (-12 (-4 *1 (-380 *2)) (-4 *2 (-175))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1192 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1192 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1191 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-1191 *3))))) (((*1 *2) (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) @@ -13611,327 +13611,327 @@ (-12 (-4 *4 (-175)) (-5 *2 (-114)) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *4 (-175)) (-5 *2 (-661 (-1288 *4))) (-5 *1 (-379 *3 *4)) + (-12 (-4 *4 (-175)) (-5 *2 (-660 (-1287 *4))) (-5 *1 (-379 *3 *4)) (-4 *3 (-380 *4)))) ((*1 *2) (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) - (-5 *2 (-661 (-1288 *3)))))) + (-5 *2 (-660 (-1287 *3)))))) (((*1 *2 *1) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1192 *3))))) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1191 *3))))) (((*1 *2 *1) - (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1192 *3))))) + (-12 (-4 *1 (-380 *3)) (-4 *3 (-175)) (-4 *3 (-569)) (-5 *2 (-1191 *3))))) (((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) (((*1 *1) (|partial| -12 (-4 *1 (-380 *2)) (-4 *2 (-569)) (-4 *2 (-175))))) (((*1 *1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1122)) (-4 *4 (-1122)))) - ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + (-12 (-5 *3 (-1179)) (-4 *1 (-378 *2 *4)) (-4 *2 (-1121)) (-4 *4 (-1121)))) + ((*1 *1 *2) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1180)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122))))) + (-12 (-5 *2 (-1179)) (-4 *1 (-378 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121))))) (((*1 *1 *1) (-4 *1 (-176))) - ((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-1122))))) + ((*1 *1 *1) (-12 (-4 *1 (-378 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-1121))))) (((*1 *2 *1) - (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) (-5 *2 (-1180))))) -(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) -(((*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1122)) (-4 *2 (-1122))))) + (-12 (-4 *1 (-378 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) (-5 *2 (-1179))))) +(((*1 *2 *1) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) +(((*1 *2 *1 *2) (-12 (-4 *1 (-378 *3 *2)) (-4 *3 (-1121)) (-4 *2 (-1121))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-4 *2 (-13 (-414) - (-10 -7 (-15 -4376 (*2 *4)) (-15 -2220 ((-938) *2)) - (-15 -2222 ((-1288 *2) (-938))) (-15 -4358 (*2 *2))))) + (-10 -7 (-15 -4375 (*2 *4)) (-15 -2219 ((-937) *2)) + (-15 -2221 ((-1287 *2) (-937))) (-15 -4357 (*2 *2))))) (-5 *1 (-370 *2 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-977 (-1192 *4))) (-5 *1 (-369 *4)) - (-5 *3 (-1192 *4))))) -(((*1 *2 *2) (-12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (-12 (-4 *4 (-363)) (-5 *2 (-976 (-1191 *4))) (-5 *1 (-369 *4)) + (-5 *3 (-1191 *4))))) +(((*1 *2 *2) (-12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *2) - (|partial| -12 (-5 *2 (-1192 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) + (|partial| -12 (-5 *2 (-1191 *3)) (-4 *3 (-363)) (-5 *1 (-369 *3))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) (-5 *2 (-1192 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) -(((*1 *2 *2) (-12 (-5 *2 (-938)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) + (-12 (-5 *3 (-937)) (-5 *2 (-1191 *4)) (-5 *1 (-369 *4)) (-4 *4 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) +(((*1 *2 *2) (-12 (-5 *2 (-937)) (-5 *1 (-369 *3)) (-4 *3 (-363))))) (((*1 *2 *1) (-12 (-4 *1 (-363)) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-369 *4))))) (((*1 *2) - (-12 (-5 *2 (-1288 (-661 (-2 (|:| -3822 (-925 *3)) (|:| -2631 (-1141)))))) - (-5 *1 (-365 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) + (-12 (-5 *2 (-1287 (-660 (-2 (|:| -3821 (-924 *3)) (|:| -2630 (-1140)))))) + (-5 *1 (-365 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) ((*1 *2) - (-12 (-5 *2 (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141)))))) - (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1192 *3) *2)))) + (-12 (-5 *2 (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140)))))) + (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 (-3 (-1191 *3) *2)))) ((*1 *2) - (-12 (-5 *2 (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141)))))) - (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938))))) + (-12 (-5 *2 (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140)))))) + (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937))))) (((*1 *2) - (-12 (-5 *2 (-709 (-925 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938)))) + (-12 (-5 *2 (-708 (-924 *3))) (-5 *1 (-365 *3 *4)) (-14 *3 (-937)) + (-14 *4 (-937)))) ((*1 *2) - (-12 (-5 *2 (-709 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) + (-12 (-5 *2 (-708 *3)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 - (-3 (-1192 *3) (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141))))))))) + (-3 (-1191 *3) (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140))))))))) ((*1 *2) - (-12 (-5 *2 (-709 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938))))) + (-12 (-5 *2 (-708 *3)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) - (-4 *4 (-363)) (-5 *2 (-791)) (-5 *1 (-360 *4)))) + (-12 (-5 *3 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) + (-4 *4 (-363)) (-5 *2 (-790)) (-5 *1 (-360 *4)))) ((*1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-365 *3 *4)) (-14 *3 (-938)) (-14 *4 (-938)))) + (-12 (-5 *2 (-790)) (-5 *1 (-365 *3 *4)) (-14 *3 (-937)) (-14 *4 (-937)))) ((*1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) + (-12 (-5 *2 (-790)) (-5 *1 (-366 *3 *4)) (-4 *3 (-363)) (-14 *4 - (-3 (-1192 *3) (-1288 (-661 (-2 (|:| -3822 *3) (|:| -2631 (-1141))))))))) + (-3 (-1191 *3) (-1287 (-660 (-2 (|:| -3821 *3) (|:| -2630 (-1140))))))))) ((*1 *2) - (-12 (-5 *2 (-791)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-938))))) + (-12 (-5 *2 (-790)) (-5 *1 (-367 *3 *4)) (-4 *3 (-363)) (-14 *4 (-937))))) (((*1 *2) (-12 (-4 *1 (-363)) - (-5 *2 (-661 (-2 (|:| -4162 (-558)) (|:| -2632 (-558)))))))) -(((*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-558)) (-5 *2 (-1210 (-938) (-791)))))) + (-5 *2 (-660 (-2 (|:| -4161 (-558)) (|:| -2631 (-558)))))))) +(((*1 *2 *3) (-12 (-4 *1 (-363)) (-5 *3 (-558)) (-5 *2 (-1209 (-937) (-790)))))) (((*1 *1) (-4 *1 (-363)))) (((*1 *2) (-12 (-4 *1 (-363)) (-5 *2 (-3 "prime" "polynomial" "normal" "cyclic"))))) (((*1 *2 *3) - (-12 (-5 *3 (-938)) + (-12 (-5 *3 (-937)) (-5 *2 - (-3 (-1192 *4) (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141))))))) + (-3 (-1191 *4) (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140))))))) (-5 *1 (-360 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (|partial| -12 (-5 *3 (-938)) - (-5 *2 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) + (|partial| -12 (-5 *3 (-937)) + (-5 *2 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-5 *1 (-360 *4)) (-4 *4 (-363))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) - (-4 *4 (-363)) (-5 *2 (-709 *4)) (-5 *1 (-360 *4))))) + (-12 (-5 *3 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) + (-4 *4 (-363)) (-5 *2 (-708 *4)) (-5 *1 (-360 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) - (-5 *2 (-1288 (-661 (-2 (|:| -3822 *4) (|:| -2631 (-1141)))))) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) + (-5 *2 (-1287 (-660 (-2 (|:| -3821 *4) (|:| -2630 (-1140)))))) (-5 *1 (-360 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *4)) (-4 *4 (-363)) (-5 *2 (-977 (-1141))) + (-12 (-5 *3 (-1191 *4)) (-4 *4 (-363)) (-5 *2 (-976 (-1140))) (-5 *1 (-360 *4))))) (((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-357 *3 *4)) (-14 *3 (-938)) - (-14 *4 (-938)))) + (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-357 *3 *4)) (-14 *3 (-937)) + (-14 *4 (-937)))) ((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) - (-14 *4 (-1192 *3)))) + (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-358 *3 *4)) (-4 *3 (-363)) + (-14 *4 (-1191 *3)))) ((*1 *2) - (-12 (-5 *2 (-977 (-1141))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) - (-14 *4 (-938))))) + (-12 (-5 *2 (-976 (-1140))) (-5 *1 (-359 *3 *4)) (-4 *3 (-363)) + (-14 *4 (-937))))) (((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-791)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) + (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) + (-5 *2 (-790)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-791))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-790))))) (((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) + (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3 *3) - (-12 (-4 *3 (-1243)) (-4 *5 (-1264 *3)) (-4 *6 (-1264 (-419 *5))) + (-12 (-4 *3 (-1242)) (-4 *5 (-1263 *3)) (-4 *6 (-1263 (-419 *5))) (-5 *2 (-114)) (-5 *1 (-354 *4 *3 *5 *6)) (-4 *4 (-355 *3 *5 *6)))) ((*1 *2 *3 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) + (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) + (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) + (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2) - (-12 (-4 *3 (-1243)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-1242)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) + (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1243)) (-4 *3 (-1264 *4)) - (-4 *5 (-1264 (-419 *3))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *4 *3 *5)) (-4 *4 (-1242)) (-4 *3 (-1263 *4)) + (-4 *5 (-1263 (-419 *3))) (-5 *2 (-114)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114)))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114)))) ((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-114))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-114))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) + (-12 (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) + (-12 (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) (((*1 *2 *2) - (-12 (-5 *2 (-1288 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) - (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4)))))) + (-12 (-5 *2 (-1287 *1)) (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) + (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4)))))) (((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-5 *2 (-709 (-419 *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-5 *2 (-708 (-419 *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4)))))) (((*1 *2 *1) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-2 (|:| |num| (-1288 *4)) (|:| |den| *4)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) + (-5 *2 (-2 (|:| |num| (-1287 *4)) (|:| |den| *4)))))) (((*1 *1 *2 *3) - (-12 (-5 *2 (-1288 *3)) (-4 *3 (-1264 *4)) (-4 *4 (-1243)) - (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1264 (-419 *3)))))) + (-12 (-5 *2 (-1287 *3)) (-4 *3 (-1263 *4)) (-4 *4 (-1242)) + (-4 *1 (-355 *4 *3 *5)) (-4 *5 (-1263 (-419 *3)))))) (((*1 *2 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1243)) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-2 (|:| |num| (-709 *5)) (|:| |den| *5)))))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1242)) + (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) + (-5 *2 (-2 (|:| |num| (-708 *5)) (|:| |den| *5)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022))))) ((*1 *2) - (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1243)) - (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) + (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1242)) + (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3))))) (((*1 *2) - (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1264 (-419 *2))) (-4 *2 (-1264 *4)) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1263 (-419 *2))) (-4 *2 (-1263 *4)) (-5 *1 (-354 *3 *4 *2 *5)) (-4 *3 (-355 *4 *2 *5)))) ((*1 *2) - (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1243)) - (-4 *4 (-1264 (-419 *2))) (-4 *2 (-1264 *3))))) + (|partial| -12 (-4 *1 (-355 *3 *2 *4)) (-4 *3 (-1242)) + (-4 *4 (-1263 (-419 *2))) (-4 *2 (-1263 *3))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1264 *4)) (-4 *4 (-1243)) - (-4 *6 (-1264 (-419 *5))) + (-12 (-5 *3 (-1 *5 *5)) (-4 *5 (-1263 *4)) (-4 *4 (-1242)) + (-4 *6 (-1263 (-419 *5))) (-5 *2 (-2 (|:| |num| *1) (|:| |den| *5) (|:| |derivden| *5) (|:| |gd| *5))) (-4 *1 (-355 *4 *5 *6))))) (((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *5 (-1243)) (-4 *6 (-1264 *5)) - (-4 *7 (-1264 (-419 *6))) (-5 *2 (-661 (-965 *5))) + (-12 (-5 *3 (-1197)) (-4 *5 (-1242)) (-4 *6 (-1263 *5)) + (-4 *7 (-1263 (-419 *6))) (-5 *2 (-660 (-964 *5))) (-5 *1 (-354 *4 *5 *6 *7)) (-4 *4 (-355 *5 *6 *7)))) ((*1 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1243)) - (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) (-4 *4 (-376)) - (-5 *2 (-661 (-965 *4)))))) + (-12 (-5 *3 (-1197)) (-4 *1 (-355 *4 *5 *6)) (-4 *4 (-1242)) + (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) (-4 *4 (-376)) + (-5 *2 (-660 (-964 *4)))))) (((*1 *2) - (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) (-4 *6 (-1264 (-419 *5))) - (-5 *2 (-661 (-661 *4))) (-5 *1 (-354 *3 *4 *5 *6)) + (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-4 *6 (-1263 (-419 *5))) + (-5 *2 (-660 (-660 *4))) (-5 *1 (-354 *3 *4 *5 *6)) (-4 *3 (-355 *4 *5 *6)))) ((*1 *2) - (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1243)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-661 (-661 *3)))))) + (-12 (-4 *1 (-355 *3 *4 *5)) (-4 *3 (-1242)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-4 *3 (-381)) (-5 *2 (-660 (-660 *3)))))) (((*1 *2 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) - (-14 *4 (-661 (-1198))) (-4 *5 (-401)))) + (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) + (-14 *4 (-660 (-1197))) (-4 *5 (-401)))) ((*1 *2) - (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-661 (-1198))) - (-14 *4 (-661 (-1198))) (-4 *5 (-401))))) + (-12 (-5 *2 (-114)) (-5 *1 (-352 *3 *4 *5)) (-14 *3 (-660 (-1197))) + (-14 *4 (-660 (-1197))) (-4 *5 (-401))))) (((*1 *1 *2 *3 *3 *3 *4) - (-12 (-4 *4 (-376)) (-4 *3 (-1264 *4)) (-4 *5 (-1264 (-419 *3))) + (-12 (-4 *4 (-376)) (-4 *3 (-1263 *4)) (-4 *5 (-1263 (-419 *3))) (-4 *1 (-349 *4 *3 *5 *2)) (-4 *2 (-355 *4 *3 *5)))) ((*1 *1 *2 *2 *3) - (-12 (-5 *3 (-558)) (-4 *2 (-376)) (-4 *4 (-1264 *2)) - (-4 *5 (-1264 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) + (-12 (-5 *3 (-558)) (-4 *2 (-376)) (-4 *4 (-1263 *2)) + (-4 *5 (-1263 (-419 *4))) (-4 *1 (-349 *2 *4 *5 *6)) (-4 *6 (-355 *2 *4 *5)))) ((*1 *1 *2 *2) - (-12 (-4 *2 (-376)) (-4 *3 (-1264 *2)) (-4 *4 (-1264 (-419 *3))) + (-12 (-4 *2 (-376)) (-4 *3 (-1263 *2)) (-4 *4 (-1263 (-419 *3))) (-4 *1 (-349 *2 *3 *4 *5)) (-4 *5 (-355 *2 *3 *4)))) ((*1 *1 *2) - (-12 (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) + (-12 (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) (-4 *1 (-349 *3 *4 *5 *2)) (-4 *2 (-355 *3 *4 *5)))) ((*1 *1 *2) - (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) + (-12 (-5 *2 (-425 *4 (-419 *4) *5 *6)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-4 *3 (-376)) (-4 *1 (-349 *3 *4 *5 *6))))) (((*1 *2 *1) - (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1264 *3)) - (-4 *5 (-1264 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114))))) + (-12 (-4 *1 (-349 *3 *4 *5 *6)) (-4 *3 (-376)) (-4 *4 (-1263 *3)) + (-4 *5 (-1263 (-419 *4))) (-4 *6 (-355 *3 *4 *5)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) + (-5 *2 (-1287 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) (((*1 *2 *1) - (-12 (-4 *3 (-376)) (-4 *4 (-1264 *3)) (-4 *5 (-1264 (-419 *4))) - (-5 *2 (-1288 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) + (-12 (-4 *3 (-376)) (-4 *4 (-1263 *3)) (-4 *5 (-1263 (-419 *4))) + (-5 *2 (-1287 *6)) (-5 *1 (-346 *3 *4 *5 *6)) (-4 *6 (-355 *3 *4 *5))))) (((*1 *2 *1) (-12 (-5 *2 (-258)) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-887 (-1203) (-791)))) (-5 *1 (-345))))) -(((*1 *2 *1) (-12 (-5 *2 (-977 (-791))) (-5 *1 (-345))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-886 (-1202) (-790)))) (-5 *1 (-345))))) +(((*1 *2 *1) (-12 (-5 *2 (-976 (-790))) (-5 *1 (-345))))) (((*1 *2 *1) (-12 (-5 *2 (-518)) (-5 *1 (-345))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1198)) (-5 *4 (-965 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) -(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-861))))) + (-12 (-5 *3 (-1197)) (-5 *4 (-964 (-558))) (-5 *2 (-342)) (-5 *1 (-344))))) +(((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-343 *3)) (-4 *3 (-860))))) (((*1 *1 *2 *3 *1) - (-12 (-5 *2 (-1113 (-965 (-558)))) (-5 *3 (-965 (-558))) (-5 *1 (-342)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1113 (-965 (-558)))) (-5 *1 (-342))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342))))) -(((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-1180))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-342))))) + (-12 (-5 *2 (-1112 (-964 (-558)))) (-5 *3 (-964 (-558))) (-5 *1 (-342)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1112 (-964 (-558)))) (-5 *1 (-342))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342))))) +(((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-1179))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-342))))) (((*1 *1 *2) (-12 (-5 *2 (-326 (-171 (-391)))) (-5 *1 (-342)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-558))) (-5 *1 (-342)))) ((*1 *1 *2) (-12 (-5 *2 (-326 (-391))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-714))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-721))) (-5 *1 (-342)))) - ((*1 *1 *2) (-12 (-5 *2 (-326 (-719))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-713))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-720))) (-5 *1 (-342)))) + ((*1 *1 *2) (-12 (-5 *2 (-326 (-718))) (-5 *1 (-342)))) ((*1 *1) (-5 *1 (-342)))) -(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1197)) (-5 *1 (-342))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-342))) (-5 *1 (-342))))) +(((*1 *1 *2 *1 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1196)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-342))) (-5 *1 (-342))))) (((*1 *1) (-5 *1 (-342)))) (((*1 *1) (-5 *1 (-342)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-877))) (-5 *1 (-342))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-661 (-1198))) (-5 *2 (-1198)) (-5 *1 (-342))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-876))) (-5 *1 (-342))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-660 (-1197))) (-5 *2 (-1197)) (-5 *1 (-342))))) (((*1 *2 *1) (-12 (-5 *2 @@ -13948,149 +13948,149 @@ (-5 *2 (-3 (|:| |nullBranch| "null") (|:| |assignmentBranch| - (-2 (|:| |var| (-1198)) (|:| |arrayIndex| (-661 (-965 (-558)))) - (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) + (-2 (|:| |var| (-1197)) (|:| |arrayIndex| (-660 (-964 (-558)))) + (|:| |rand| (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) (|:| |arrayAssignmentBranch| - (-2 (|:| |var| (-1198)) (|:| |rand| (-877)) + (-2 (|:| |var| (-1197)) (|:| |rand| (-876)) (|:| |ints2Floats?| (-114)))) (|:| |conditionalBranch| - (-2 (|:| |switch| (-1197)) (|:| |thenClause| (-342)) + (-2 (|:| |switch| (-1196)) (|:| |thenClause| (-342)) (|:| |elseClause| (-342)))) (|:| |returnBranch| - (-2 (|:| -3823 (-114)) - (|:| -3822 (-2 (|:| |ints2Floats?| (-114)) (|:| -3671 (-877)))))) - (|:| |blockBranch| (-661 (-342))) (|:| |commentBranch| (-661 (-1180))) - (|:| |callBranch| (-1180)) + (-2 (|:| -3822 (-114)) + (|:| -3821 (-2 (|:| |ints2Floats?| (-114)) (|:| -3670 (-876)))))) + (|:| |blockBranch| (-660 (-342))) (|:| |commentBranch| (-660 (-1179))) + (|:| |callBranch| (-1179)) (|:| |forBranch| - (-2 (|:| -1638 (-1113 (-965 (-558)))) (|:| |span| (-965 (-558))) - (|:| -3651 (-342)))) - (|:| |labelBranch| (-1141)) - (|:| |loopBranch| (-2 (|:| |switch| (-1197)) (|:| -3651 (-342)))) + (-2 (|:| -1637 (-1112 (-964 (-558)))) (|:| |span| (-964 (-558))) + (|:| -3650 (-342)))) + (|:| |labelBranch| (-1140)) + (|:| |loopBranch| (-2 (|:| |switch| (-1196)) (|:| -3650 (-342)))) (|:| |commonBranch| - (-2 (|:| -3970 (-1198)) (|:| |contents| (-661 (-1198))))) - (|:| |printBranch| (-661 (-877))))) + (-2 (|:| -3969 (-1197)) (|:| |contents| (-660 (-1197))))) + (|:| |printBranch| (-660 (-876))))) (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-342))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-342))))) -(((*1 *2 *2) (-12 (-5 *2 (-1141)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-342))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-342))))) +(((*1 *2 *2) (-12 (-5 *2 (-1140)) (-5 *1 (-342))))) (((*1 *1) (-12 (-4 *1 (-341 *2)) (-4 *2 (-381)) (-4 *2 (-376))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-1192 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376))))) + (-12 (-5 *2 (-1191 *3)) (-4 *3 (-381)) (-4 *1 (-341 *3)) (-4 *3 (-376))))) (((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1192 *3))))) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1191 *3))))) (((*1 *2 *1 *1) (|partial| -12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) - (-5 *2 (-1192 *3)))) + (-5 *2 (-1191 *3)))) ((*1 *2 *1) - (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1192 *3))))) + (-12 (-4 *1 (-341 *3)) (-4 *3 (-376)) (-4 *3 (-381)) (-5 *2 (-1191 *3))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813))))) (((*1 *1 *1 *2 *3 *1) - (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1070)) (-4 *3 (-814))))) + (-12 (-4 *1 (-338 *2 *3)) (-4 *2 (-1069)) (-4 *3 (-813))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-791)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1070)) (-4 *4 (-814)) + (-12 (-5 *2 (-790)) (-4 *1 (-338 *3 *4)) (-4 *3 (-1069)) (-4 *4 (-813)) (-4 *3 (-175))))) (((*1 *2 *1 *3) - (-12 (-5 *3 (-558)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1122)) (-4 *2 (-133))))) + (-12 (-5 *3 (-558)) (-4 *1 (-335 *4 *2)) (-4 *4 (-1121)) (-4 *2 (-133))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-133))))) + (-12 (-5 *2 (-1 *4 *4)) (-4 *1 (-335 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-133))))) (((*1 *1 *1 *1) - (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1122)) (-4 *3 (-133)) (-4 *3 (-814))))) + (-12 (-4 *1 (-335 *2 *3)) (-4 *2 (-1121)) (-4 *3 (-133)) (-4 *3 (-813))))) (((*1 *2 *3) - (-12 (-5 *3 (-558)) (-4 *4 (-815)) (-4 *5 (-861)) (-4 *2 (-1070)) - (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-969 *2 *4 *5))))) + (-12 (-5 *3 (-558)) (-4 *4 (-814)) (-4 *5 (-860)) (-4 *2 (-1069)) + (-5 *1 (-333 *4 *5 *2 *6)) (-4 *6 (-968 *2 *4 *5))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1192 *7)) (-5 *3 (-558)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-815)) - (-4 *5 (-861)) (-4 *6 (-1070)) (-5 *1 (-333 *4 *5 *6 *7))))) + (-12 (-5 *2 (-1191 *7)) (-5 *3 (-558)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-814)) + (-4 *5 (-860)) (-4 *6 (-1069)) (-5 *1 (-333 *4 *5 *6 *7))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *6)) (-4 *6 (-1070)) (-4 *4 (-815)) (-4 *5 (-861)) - (-5 *2 (-1192 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-969 *6 *4 *5))))) + (-12 (-5 *3 (-1191 *6)) (-4 *6 (-1069)) (-4 *4 (-814)) (-4 *5 (-860)) + (-5 *2 (-1191 *7)) (-5 *1 (-333 *4 *5 *6 *7)) (-4 *7 (-968 *6 *4 *5))))) (((*1 *2 *3) - (-12 (-5 *3 (-1192 *7)) (-4 *7 (-969 *6 *4 *5)) (-4 *4 (-815)) (-4 *5 (-861)) - (-4 *6 (-1070)) (-5 *2 (-1192 *6)) (-5 *1 (-333 *4 *5 *6 *7))))) + (-12 (-5 *3 (-1191 *7)) (-4 *7 (-968 *6 *4 *5)) (-4 *4 (-814)) (-4 *5 (-860)) + (-4 *6 (-1069)) (-5 *2 (-1191 *6)) (-5 *1 (-333 *4 *5 *6 *7))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1192 *9)) (-5 *4 (-661 *7)) (-5 *5 (-661 *8)) (-4 *7 (-861)) - (-4 *8 (-1070)) (-4 *9 (-969 *8 *6 *7)) (-4 *6 (-815)) (-5 *2 (-1192 *8)) + (-12 (-5 *3 (-1191 *9)) (-5 *4 (-660 *7)) (-5 *5 (-660 *8)) (-4 *7 (-860)) + (-4 *8 (-1069)) (-4 *9 (-968 *8 *6 *7)) (-4 *6 (-814)) (-5 *2 (-1191 *8)) (-5 *1 (-333 *6 *7 *8 *9))))) (((*1 *2 *1) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-331 *3 *4 *5)) (-4 *3 (-376)) - (-14 *4 (-1198)) (-14 *5 *3)))) + (-14 *4 (-1197)) (-14 *5 *3)))) (((*1 *2 *3 *3 *3 *4 *5 *4 *6) - (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) - (-5 *6 (-558)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) + (-5 *6 (-558)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) ((*1 *2 *3 *3 *3 *4 *5 *4 *6 *7) - (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) - (-5 *6 (-558)) (-5 *7 (-1180)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) + (-5 *6 (-558)) (-5 *7 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7) - (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) - (-5 *6 (-229)) (-5 *7 (-558)) (-5 *2 (-1234 (-946))) (-5 *1 (-330)))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) + (-5 *6 (-229)) (-5 *7 (-558)) (-5 *2 (-1233 (-945))) (-5 *1 (-330)))) ((*1 *2 *3 *3 *3 *4 *5 *6 *7 *8) - (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1110 (-229))) - (-5 *6 (-229)) (-5 *7 (-558)) (-5 *8 (-1180)) (-5 *2 (-1234 (-946))) + (-12 (-5 *3 (-326 (-558))) (-5 *4 (-1 (-229) (-229))) (-5 *5 (-1109 (-229))) + (-5 *6 (-229)) (-5 *7 (-558)) (-5 *8 (-1179)) (-5 *2 (-1233 (-945))) (-5 *1 (-330))))) (((*1 *2 *3) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-330)) (-5 *3 (-229))))) (((*1 *2 *3 *4 *3 *3) (-12 (-5 *3 (-305 *6)) (-5 *4 (-115)) (-4 *6 (-433 *5)) - (-4 *5 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))) + (-4 *5 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *5 *6)))) ((*1 *2 *3 *4 *3 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-661 *7)) (-4 *7 (-433 *6)) - (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-115)) (-5 *5 (-660 *7)) (-4 *7 (-433 *6)) + (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-661 (-305 *7))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) + (-12 (-5 *3 (-660 (-305 *7))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-661 (-305 *8))) (-5 *4 (-661 (-115))) (-5 *5 (-305 *8)) - (-5 *6 (-661 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-569) (-631 (-547)))) + (-12 (-5 *3 (-660 (-305 *8))) (-5 *4 (-660 (-115))) (-5 *5 (-305 *8)) + (-5 *6 (-660 *8)) (-4 *8 (-433 *7)) (-4 *7 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) ((*1 *2 *3 *4 *5 *3) - (-12 (-5 *3 (-661 *7)) (-5 *4 (-661 (-115))) (-5 *5 (-305 *7)) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) + (-12 (-5 *3 (-660 *7)) (-5 *4 (-660 (-115))) (-5 *5 (-305 *7)) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *7)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *3 (-661 *8)) (-5 *4 (-661 (-115))) (-5 *6 (-661 (-305 *8))) - (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-631 (-547)))) + (-12 (-5 *3 (-660 *8)) (-5 *4 (-660 (-115))) (-5 *6 (-660 (-305 *8))) + (-4 *8 (-433 *7)) (-5 *5 (-305 *8)) (-4 *7 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *8)))) ((*1 *2 *3 *4 *3 *5) (-12 (-5 *3 (-305 *5)) (-5 *4 (-115)) (-4 *5 (-433 *6)) - (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) + (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *5)))) ((*1 *2 *3 *4 *5 *3) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) + (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) ((*1 *2 *3 *4 *5 *5) (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-4 *3 (-433 *6)) - (-4 *6 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) + (-4 *6 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *6 *3)))) ((*1 *2 *3 *4 *5 *6) - (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-661 *3)) (-4 *3 (-433 *7)) - (-4 *7 (-13 (-569) (-631 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3))))) + (-12 (-5 *4 (-115)) (-5 *5 (-305 *3)) (-5 *6 (-660 *3)) (-4 *3 (-433 *7)) + (-4 *7 (-13 (-569) (-630 (-547)))) (-5 *2 (-51)) (-5 *1 (-329 *7 *3))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-114)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1121))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1122))))) + (-12 (-5 *2 (-558)) (-5 *1 (-326 *3)) (-4 *3 (-569)) (-4 *3 (-1121))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-319)) (-5 *2 (-114))))) -(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-791))))) +(((*1 *2 *1) (-12 (-4 *1 (-319)) (-5 *2 (-790))))) (((*1 *2 *1 *1 *1) (|partial| -12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1))) (-4 *1 (-319)))) ((*1 *2 *1 *1) - (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2640 *1))) + (-12 (-5 *2 (-2 (|:| |coef1| *1) (|:| |coef2| *1) (|:| -2639 *1))) (-4 *1 (-319))))) -(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-661 *1)) (-4 *1 (-319))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-860)) (-5 *1 (-316 *3))))) +(((*1 *2 *2 *1) (|partial| -12 (-5 *2 (-660 *1)) (-4 *1 (-319))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-859)) (-5 *1 (-316 *3))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-229))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) + (-12 (-5 *3 (-660 (-229))) (-5 *4 (-790)) (-5 *2 (-708 (-229))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-419 (-558))) (-5 *2 (-229)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-965 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-965 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-964 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-964 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |stiffness| (-391)) (|:| |stability| (-391)) (|:| |expense| (-391)) (|:| |accuracy| (-391)) (|:| |intermediateResults| (-391)))) - (-5 *2 (-1056)) (-5 *1 (-315))))) + (-5 *2 (-1055)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 @@ -14104,793 +14104,793 @@ (|:| |bothSingular| "There are singularities at both end points") (|:| |notEvaluated| "End point continuity not yet evaluated"))) (|:| |singularitiesStream| - (-3 (|:| |str| (-1176 (-229))) + (-3 (|:| |str| (-1175 (-229))) (|:| |notEvaluated| "Internal singularities not yet evaluated"))) - (|:| -1638 + (|:| -1637 (-3 (|:| |finite| "The range is finite") (|:| |lowerInfinite| "The bottom of range is infinite") (|:| |upperInfinite| "The top of range is infinite") (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))))) - (-5 *2 (-1056)) (-5 *1 (-315))))) + (-5 *2 (-1055)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))))) - (-5 *2 (-1056)) (-5 *1 (-315)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))))) + (-5 *2 (-1055)) (-5 *1 (-315)))) ((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| -3069 (-391)) (|:| -3970 (-1180)) - (|:| |explanations| (-661 (-1180))) (|:| |extra| (-1056)))) - (-5 *2 (-1056)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1180)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-1110 (-855 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1176 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-195)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1176 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-313)))) - ((*1 *2 *3) - (-12 (-5 *3 (-1176 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-661 (-1180))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1180)) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1180)) (-5 *1 (-195)))) - ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1180)) (-5 *1 (-313)))) - ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1180)) (-5 *1 (-315))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *2 (-1288 (-326 (-391)))) + (-2 (|:| -3068 (-391)) (|:| -3969 (-1179)) + (|:| |explanations| (-660 (-1179))) (|:| |extra| (-1055)))) + (-5 *2 (-1055)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-1109 (-854 (-229)))) (-5 *2 (-229)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1175 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-195)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-313)))) + ((*1 *2 *3) + (-12 (-5 *3 (-1175 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-660 (-1179))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1179)) (-5 *1 (-195)))) + ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1179)) (-5 *1 (-313)))) + ((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-1179)) (-5 *1 (-315))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *2 (-1287 (-326 (-391)))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-391))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1288 (-719))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-719)) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-1287 (-718))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-718)) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-2 (|:| -3540 (-419 (-558))) (|:| -3539 (-419 (-558)))))) - (-5 *2 (-661 (-229))) (-5 *1 (-315))))) -(((*1 *2 *2) (-12 (-5 *2 (-1110 (-855 (-229)))) (-5 *1 (-315))))) + (-12 (-5 *3 (-660 (-2 (|:| -3539 (-419 (-558))) (|:| -3538 (-419 (-558)))))) + (-5 *2 (-660 (-229))) (-5 *1 (-315))))) +(((*1 *2 *2) (-12 (-5 *2 (-1109 (-854 (-229)))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-326 (-419 (-558)))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-1288 (-326 (-229)))) + (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *2 (-2 (|:| |additions| (-558)) (|:| |multiplications| (-558)) (|:| |exponentiations| (-558)) (|:| |functionCalls| (-558)))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))) + (-12 (-5 *3 (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))) (-5 *2 (-391)) (-5 *1 (-278)))) - ((*1 *2 *3) (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315))))) + ((*1 *2 *3) (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-229)) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-419 (-558))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-229)) (-5 *2 (-419 (-558))) (-5 *1 (-315))))) (((*1 *2 *3) - (-12 (-5 *3 (-1110 (-855 (-391)))) (-5 *2 (-1110 (-855 (-229)))) + (-12 (-5 *3 (-1109 (-854 (-391)))) (-5 *2 (-1109 (-854 (-229)))) (-5 *1 (-315))))) -(((*1 *2 *3) (-12 (-5 *3 (-855 (-391))) (-5 *2 (-855 (-229))) (-5 *1 (-315))))) +(((*1 *2 *3) (-12 (-5 *3 (-854 (-391))) (-5 *2 (-854 (-229))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-391))) (-5 *2 (-326 (-229))) (-5 *1 (-315))))) (((*1 *2 *3) (-12 (-5 *3 (-391)) (-5 *2 (-229)) (-5 *1 (-315))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-965 (-419 (-558)))) (-5 *4 (-1198)) - (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-661 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-964 (-419 (-558)))) (-5 *4 (-1197)) + (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-660 (-229))) (-5 *1 (-313))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-1176 (-229))) (-5 *1 (-195)))) + (-5 *2 (-1175 (-229))) (-5 *1 (-195)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1198))) - (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-313)))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-660 (-1197))) + (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-313)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1288 (-326 (-229)))) (-5 *4 (-661 (-1198))) - (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-1287 (-326 (-229)))) (-5 *4 (-660 (-1197))) + (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-313))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) + (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-964 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-661 (-1198))) - (-5 *5 (-1110 (-855 (-229)))) (-5 *2 (-1176 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-660 (-1197))) + (-5 *5 (-1109 (-854 (-229)))) (-5 *2 (-1175 (-229))) (-5 *1 (-313))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1198)) (-5 *5 (-1110 (-855 (-229)))) - (-5 *2 (-661 (-229))) (-5 *1 (-195)))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1197)) (-5 *5 (-1109 (-854 (-229)))) + (-5 *2 (-660 (-229))) (-5 *1 (-195)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1198)) (-5 *5 (-1110 (-855 (-229)))) - (-5 *2 (-661 (-229))) (-5 *1 (-313))))) + (-12 (-5 *3 (-326 (-229))) (-5 *4 (-1197)) (-5 *5 (-1109 (-854 (-229)))) + (-5 *2 (-660 (-229))) (-5 *1 (-313))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-114)) (-5 *1 (-313))))) -(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1238)))) +(((*1 *1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-310)) (-4 *2 (-1237)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-661 (-628 *1))) (-5 *3 (-661 *1)) (-4 *1 (-310)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-661 (-305 *1))) (-4 *1 (-310)))) + (-12 (-5 *2 (-660 (-627 *1))) (-5 *3 (-660 *1)) (-4 *1 (-310)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-660 (-305 *1))) (-4 *1 (-310)))) ((*1 *1 *1 *2) (-12 (-5 *2 (-305 *1)) (-4 *1 (-310))))) (((*1 *1 *1 *1) (-4 *1 (-310))) ((*1 *1 *1) (-4 *1 (-310)))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-628 *1)) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-628 *1))) (-4 *1 (-310))))) -(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-661 (-115)))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1198)) (-5 *2 (-114)))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-627 *1)) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-627 *1))) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-627 *1))) (-4 *1 (-310))))) +(((*1 *2 *1) (-12 (-4 *1 (-310)) (-5 *2 (-660 (-115)))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-310)) (-5 *3 (-1197)) (-5 *2 (-114)))) ((*1 *2 *1 *1) (-12 (-4 *1 (-310)) (-5 *2 (-114))))) (((*1 *2 *3) - (-12 (-5 *3 (-628 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1059 (-558))) - (-4 *4 (-569)) (-5 *2 (-1192 *5)) (-5 *1 (-32 *4 *5)))) + (-12 (-5 *3 (-627 *5)) (-4 *5 (-433 *4)) (-4 *4 (-1058 (-558))) + (-4 *4 (-569)) (-5 *2 (-1191 *5)) (-5 *1 (-32 *4 *5)))) ((*1 *2 *3) - (-12 (-5 *3 (-628 *1)) (-4 *1 (-1070)) (-4 *1 (-310)) (-5 *2 (-1192 *1))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-323)) (-5 *1 (-308)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-323)) (-5 *1 (-308)))) + (-12 (-5 *3 (-627 *1)) (-4 *1 (-1069)) (-4 *1 (-310)) (-5 *2 (-1191 *1))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-323)) (-5 *1 (-308)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-323)) (-5 *1 (-308)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-323)) (-5 *1 (-308)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 (-1180))) (-5 *3 (-1180)) (-5 *2 (-323)) (-5 *1 (-308))))) + (-12 (-5 *4 (-660 (-1179))) (-5 *3 (-1179)) (-5 *2 (-323)) (-5 *1 (-308))))) (((*1 *2 *2) - (-12 (-4 *3 (-1070)) (-4 *4 (-1264 *3)) (-5 *1 (-166 *3 *4 *2)) - (-4 *2 (-1264 *4)))) - ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1238))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1238))))) -(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-746)) (-4 *2 (-1238))))) + (-12 (-4 *3 (-1069)) (-4 *4 (-1263 *3)) (-5 *1 (-166 *3 *4 *2)) + (-4 *2 (-1263 *4)))) + ((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-5 *1 (-305 *2)) (-4 *2 (-21)) (-4 *2 (-1237))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-745)) (-4 *2 (-1237))))) +(((*1 *1 *1) (|partial| -12 (-5 *1 (-305 *2)) (-4 *2 (-745)) (-4 *2 (-1237))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) - (-4 *3 (-1238))))) + (-12 (-5 *2 (-660 (-305 *3))) (-5 *1 (-305 *3)) (-4 *3 (-569)) + (-4 *3 (-1237))))) (((*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 - (-661 - (-2 (|:| |eigval| (-3 (-419 (-965 *4)) (-1187 (-1198) (-965 *4)))) - (|:| |eigmult| (-791)) (|:| |eigvec| (-661 (-709 (-419 (-965 *4)))))))) - (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-965 *4))))))) + (-660 + (-2 (|:| |eigval| (-3 (-419 (-964 *4)) (-1186 (-1197) (-964 *4)))) + (|:| |eigmult| (-790)) (|:| |eigvec| (-660 (-708 (-419 (-964 *4)))))))) + (-5 *1 (-304 *4)) (-5 *3 (-708 (-419 (-964 *4))))))) (((*1 *2 *3) (-12 (-4 *4 (-464)) (-5 *2 - (-661 - (-2 (|:| |eigval| (-3 (-419 (-965 *4)) (-1187 (-1198) (-965 *4)))) - (|:| |geneigvec| (-661 (-709 (-419 (-965 *4)))))))) - (-5 *1 (-304 *4)) (-5 *3 (-709 (-419 (-965 *4))))))) + (-660 + (-2 (|:| |eigval| (-3 (-419 (-964 *4)) (-1186 (-1197) (-964 *4)))) + (|:| |geneigvec| (-660 (-708 (-419 (-964 *4)))))))) + (-5 *1 (-304 *4)) (-5 *3 (-708 (-419 (-964 *4))))))) (((*1 *2 *3 *4 *5 *5) - (-12 (-5 *3 (-3 (-419 (-965 *6)) (-1187 (-1198) (-965 *6)))) (-5 *5 (-791)) - (-4 *6 (-464)) (-5 *2 (-661 (-709 (-419 (-965 *6))))) (-5 *1 (-304 *6)) - (-5 *4 (-709 (-419 (-965 *6)))))) + (-12 (-5 *3 (-3 (-419 (-964 *6)) (-1186 (-1197) (-964 *6)))) (-5 *5 (-790)) + (-4 *6 (-464)) (-5 *2 (-660 (-708 (-419 (-964 *6))))) (-5 *1 (-304 *6)) + (-5 *4 (-708 (-419 (-964 *6)))))) ((*1 *2 *3 *4) (-12 (-5 *3 - (-2 (|:| |eigval| (-3 (-419 (-965 *5)) (-1187 (-1198) (-965 *5)))) - (|:| |eigmult| (-791)) (|:| |eigvec| (-661 *4)))) - (-4 *5 (-464)) (-5 *2 (-661 (-709 (-419 (-965 *5))))) (-5 *1 (-304 *5)) - (-5 *4 (-709 (-419 (-965 *5))))))) + (-2 (|:| |eigval| (-3 (-419 (-964 *5)) (-1186 (-1197) (-964 *5)))) + (|:| |eigmult| (-790)) (|:| |eigvec| (-660 *4)))) + (-4 *5 (-464)) (-5 *2 (-660 (-708 (-419 (-964 *5))))) (-5 *1 (-304 *5)) + (-5 *4 (-708 (-419 (-964 *5))))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-3 (-419 (-965 *5)) (-1187 (-1198) (-965 *5)))) (-4 *5 (-464)) - (-5 *2 (-661 (-709 (-419 (-965 *5))))) (-5 *1 (-304 *5)) - (-5 *4 (-709 (-419 (-965 *5))))))) + (-12 (-5 *3 (-3 (-419 (-964 *5)) (-1186 (-1197) (-964 *5)))) (-4 *5 (-464)) + (-5 *2 (-660 (-708 (-419 (-964 *5))))) (-5 *1 (-304 *5)) + (-5 *4 (-708 (-419 (-964 *5))))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 (-419 (-965 *4)))) (-4 *4 (-464)) - (-5 *2 (-661 (-3 (-419 (-965 *4)) (-1187 (-1198) (-965 *4))))) + (-12 (-5 *3 (-708 (-419 (-964 *4)))) (-4 *4 (-464)) + (-5 *2 (-660 (-3 (-419 (-964 *4)) (-1186 (-1197) (-964 *4))))) (-5 *1 (-304 *4))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1106))) (-5 *1 (-303))))) -(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-1124))) (-5 *1 (-303))))) -(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1124)) (-5 *1 (-303))))) -(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-661 (-984))) (-5 *1 (-303))))) -(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-984))) (-5 *1 (-303))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1105))) (-5 *1 (-303))))) +(((*1 *2 *3 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-1123))) (-5 *1 (-303))))) +(((*1 *1 *2 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-1123)) (-5 *1 (-303))))) +(((*1 *2 *3 *1) (-12 (-5 *3 (-518)) (-5 *2 (-660 (-983))) (-5 *1 (-303))))) +(((*1 *1 *2 *3 *1) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-983))) (-5 *1 (-303))))) (((*1 *1) (-5 *1 (-303)))) (((*1 *1) (-5 *1 (-303)))) (((*1 *1) (-5 *1 (-303)))) (((*1 *2 *1 *3 *3 *2) - (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1238)) (-4 *4 (-385 *2)) + (-12 (-5 *3 (-558)) (-4 *1 (-57 *2 *4 *5)) (-4 *2 (-1237)) (-4 *4 (-385 *2)) (-4 *5 (-385 *2)))) ((*1 *2 *1 *3 *2) - (-12 (|has| *1 (-6 -4426)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1122)) - (-4 *2 (-1238))))) -(((*1 *2 *3 *4) - (-12 (-4 *4 (-376)) (-5 *2 (-661 (-1176 *4))) (-5 *1 (-297 *4 *5)) - (-5 *3 (-1176 *4)) (-4 *5 (-1281 *4))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1281 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1281 *3))))) -(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1281 *3))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-1255 (-558))) (-4 *1 (-294 *3)) (-4 *3 (-1238)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1238))))) + (-12 (|has| *1 (-6 -4425)) (-4 *1 (-300 *3 *2)) (-4 *3 (-1121)) + (-4 *2 (-1237))))) +(((*1 *2 *3 *4) + (-12 (-4 *4 (-376)) (-5 *2 (-660 (-1175 *4))) (-5 *1 (-297 *4 *5)) + (-5 *3 (-1175 *4)) (-4 *5 (-1280 *4))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1280 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1280 *3))))) +(((*1 *2 *2 *3) (-12 (-4 *3 (-376)) (-5 *1 (-297 *3 *2)) (-4 *2 (-1280 *3))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-1254 (-558))) (-4 *1 (-294 *3)) (-4 *3 (-1237)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-558)) (-4 *1 (-294 *3)) (-4 *3 (-1237))))) (((*1 *1 *2 *1) - (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4425)) (-4 *1 (-242 *3)) - (-4 *3 (-1122)))) - ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1238))))) + (-12 (-5 *2 (-1 (-114) *3)) (|has| *1 (-6 -4424)) (-4 *1 (-242 *3)) + (-4 *3 (-1121)))) + ((*1 *1 *2 *1) (-12 (-5 *2 (-1 (-114) *3)) (-4 *1 (-294 *3)) (-4 *3 (-1237))))) (((*1 *1 *2 *3 *4) - (-12 (-5 *2 (-598)) (-5 *3 (-609)) (-5 *4 (-303)) (-5 *1 (-292))))) + (-12 (-5 *2 (-598)) (-5 *3 (-608)) (-5 *4 (-303)) (-5 *1 (-292))))) (((*1 *2 *1) (-12 (-5 *2 (-598)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-609)) (-5 *1 (-292))))) +(((*1 *2 *1) (-12 (-5 *2 (-608)) (-5 *1 (-292))))) (((*1 *2 *1) (-12 (-5 *2 (-303)) (-5 *1 (-292))))) -(((*1 *2 *1) (-12 (-5 *2 (-1203)) (-5 *1 (-291))))) -(((*1 *2 *1) (|partial| -12 (-5 *2 (-1124)) (-5 *1 (-291))))) +(((*1 *2 *1) (-12 (-5 *2 (-1202)) (-5 *1 (-291))))) +(((*1 *2 *1) (|partial| -12 (-5 *2 (-1123)) (-5 *1 (-291))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))) (((*1 *2 *1) (|partial| -12 (-5 *2 (-518)) (-5 *1 (-291))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-291))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-419 (-558))) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4)))))) + (-12 (-5 *3 (-419 (-558))) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-628 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4))) - (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *4 *2))))) + (-12 (-5 *3 (-627 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4))) + (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *4 *2))))) (((*1 *2 *3 *2 *4) - (|partial| -12 (-5 *3 (-661 (-628 *2))) (-5 *4 (-1198)) - (-4 *2 (-13 (-27) (-1224) (-433 *5))) - (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *5 *2))))) + (|partial| -12 (-5 *3 (-660 (-627 *2))) (-5 *4 (-1197)) + (-4 *2 (-13 (-27) (-1223) (-433 *5))) + (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *5 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-569) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-288 *3 *2)) - (-4 *2 (-13 (-27) (-1224) (-433 *3))))) + (-12 (-4 *3 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-288 *3 *2)) + (-4 *2 (-13 (-27) (-1223) (-433 *3))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-13 (-569) (-1059 (-558)) (-658 (-558)))) - (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1224) (-433 *4)))))) + (-12 (-5 *3 (-1197)) (-4 *4 (-13 (-569) (-1058 (-558)) (-657 (-558)))) + (-5 *1 (-288 *4 *2)) (-4 *2 (-13 (-27) (-1223) (-433 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1198)) (-4 *5 (-13 (-569) (-1059 (-558)) (-658 (-558)))) + (-12 (-5 *4 (-1197)) (-4 *5 (-13 (-569) (-1058 (-558)) (-657 (-558)))) (-5 *2 - (-2 (|:| |func| *3) (|:| |kers| (-661 (-628 *3))) (|:| |vals| (-661 *3)))) - (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1224) (-433 *5)))))) + (-2 (|:| |func| *3) (|:| |kers| (-660 (-627 *3))) (|:| |vals| (-660 *3)))) + (-5 *1 (-288 *5 *3)) (-4 *3 (-13 (-27) (-1223) (-433 *5)))))) (((*1 *2 *3) (-12 (-4 *4 (-569)) (-5 *2 (-114)) (-5 *1 (-287 *4 *3)) - (-4 *3 (-13 (-433 *4) (-1023)))))) + (-4 *3 (-13 (-433 *4) (-1022)))))) (((*1 *2 *2 *3) - (|partial| -12 (-5 *3 (-661 (-2 (|:| |func| *2) (|:| |pole| (-114))))) - (-4 *2 (-13 (-433 *4) (-1023))) (-4 *4 (-569)) (-5 *1 (-287 *4 *2))))) + (|partial| -12 (-5 *3 (-660 (-2 (|:| |func| *2) (|:| |pole| (-114))))) + (-4 *2 (-13 (-433 *4) (-1022))) (-4 *4 (-569)) (-5 *1 (-287 *4 *2))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2 *2) - (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1023)))))) + (-12 (-4 *3 (-569)) (-5 *1 (-287 *3 *2)) (-4 *2 (-13 (-433 *3) (-1022)))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1023))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569))))) + (-12 (-4 *2 (-13 (-433 *3) (-1022))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569))))) (((*1 *2) - (-12 (-4 *2 (-13 (-433 *3) (-1023))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-558))) (-5 *1 (-286))))) -(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-286))))) + (-12 (-4 *2 (-13 (-433 *3) (-1022))) (-5 *1 (-287 *3 *2)) (-4 *3 (-569))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-558))) (-5 *1 (-286))))) +(((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-286))))) (((*1 *2 *3) (-12 (-5 *3 (-3 (|:| |noa| - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) (|:| |lsa| - (-2 (|:| |lfn| (-661 (-326 (-229)))) (|:| -3866 (-661 (-229))))))) - (-5 *2 (-661 (-1180))) (-5 *1 (-278))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1198)) (-5 *1 (-278))))) + (-2 (|:| |lfn| (-660 (-326 (-229)))) (|:| -3865 (-660 (-229))))))) + (-5 *2 (-660 (-1179))) (-5 *1 (-278))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1197)) (-5 *1 (-278))))) (((*1 *2 *3) (-12 (-5 *3 (-326 (-229))) (-5 *2 (-114)) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278))))) -(((*1 *2 *2) (-12 (-5 *2 (-661 (-326 (-229)))) (-5 *1 (-278))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-326 (-229)))) (-5 *1 (-278))))) +(((*1 *2 *2) (-12 (-5 *2 (-660 (-326 (-229)))) (-5 *1 (-278))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *4 (-791)) (-5 *2 (-709 (-229))) + (-12 (-5 *3 (-660 (-326 (-229)))) (-5 *4 (-790)) (-5 *2 (-708 (-229))) (-5 *1 (-278))))) -(((*1 *2 *3) (-12 (-5 *3 (-661 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))) +(((*1 *2 *3) (-12 (-5 *3 (-660 (-326 (-229)))) (-5 *2 (-114)) (-5 *1 (-278))))) (((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-278))))) (((*1 *2 *2) (|partial| -12 (-5 *2 (-326 (-229))) (-5 *1 (-278))))) (((*1 *2 *2) (-12 (-5 *2 - (-2 (|:| |fn| (-326 (-229))) (|:| -3866 (-661 (-229))) - (|:| |lb| (-661 (-855 (-229)))) (|:| |cf| (-661 (-326 (-229)))) - (|:| |ub| (-661 (-855 (-229)))))) + (-2 (|:| |fn| (-326 (-229))) (|:| -3865 (-660 (-229))) + (|:| |lb| (-660 (-854 (-229)))) (|:| |cf| (-660 (-326 (-229)))) + (|:| |ub| (-660 (-854 (-229)))))) (-5 *1 (-278))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-855 (-229)))) (-5 *4 (-229)) (-5 *2 (-661 *4)) + (-12 (-5 *3 (-660 (-854 (-229)))) (-5 *4 (-229)) (-5 *2 (-660 *4)) (-5 *1 (-278))))) (((*1 *2 *1) - (-12 (-4 *3 (-240)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-277 *4)) - (-4 *6 (-815)) (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *3 *4 *5 *6)))) + (-12 (-4 *3 (-240)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-277 *4)) + (-4 *6 (-814)) (-5 *2 (-1 *1 (-790))) (-4 *1 (-262 *3 *4 *5 *6)))) ((*1 *2 *3) - (-12 (-4 *4 (-1070)) (-4 *3 (-861)) (-4 *5 (-277 *3)) (-4 *6 (-815)) - (-5 *2 (-1 *1 (-791))) (-4 *1 (-262 *4 *3 *5 *6)))) - ((*1 *1 *2 *3) (-12 (-5 *3 (-791)) (-4 *1 (-277 *2)) (-4 *2 (-861))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) - ((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-115)))) + (-12 (-4 *4 (-1069)) (-4 *3 (-860)) (-4 *5 (-277 *3)) (-4 *6 (-814)) + (-5 *2 (-1 *1 (-790))) (-4 *1 (-262 *4 *3 *5 *6)))) + ((*1 *1 *2 *3) (-12 (-5 *3 (-790)) (-4 *1 (-277 *2)) (-4 *2 (-860))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-115)))) + ((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-115)))) ((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-791)))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) + (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-790)))) ((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-791)))) - ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-861)) (-5 *2 (-791))))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) + (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-790)))) + ((*1 *2 *1) (-12 (-4 *1 (-277 *3)) (-4 *3 (-860)) (-5 *2 (-790))))) (((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1198)) (-5 *2 (-51)) + (|partial| -12 (-5 *3 (-660 (-270))) (-5 *4 (-1197)) (-5 *2 (-51)) (-5 *1 (-270)))) ((*1 *2 *3 *4) - (|partial| -12 (-5 *3 (-661 (-270))) (-5 *4 (-1198)) (-5 *1 (-272 *2)) - (-4 *2 (-1238))))) + (|partial| -12 (-5 *3 (-660 (-270))) (-5 *4 (-1197)) (-5 *1 (-272 *2)) + (-4 *2 (-1237))))) (((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) (((*1 *1) (-5 *1 (-146))) - ((*1 *1 *2) (-12 (-5 *2 (-1154 (-229))) (-5 *1 (-270)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-938)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-888)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) + ((*1 *1 *2) (-12 (-5 *2 (-1153 (-229))) (-5 *1 (-270)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-937)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-887)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) (((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-270)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-661 (-270))) (-5 *1 (-271))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-270)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *3 (-660 (-270))) (-5 *1 (-271))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) + (-12 (-5 *3 (-943)) (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) - (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) + (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) + (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-419 (-558))) + (-12 (-5 *3 (-943)) (-5 *4 (-419 (-558))) (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) - (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) + (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) + (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) - (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) - (-5 *1 (-155)) (-5 *3 (-661 (-962 (-229)))))) + (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) + (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) + (-5 *1 (-155)) (-5 *3 (-660 (-961 (-229)))))) ((*1 *2 *3) (-12 (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) - (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) - (-5 *1 (-155)) (-5 *3 (-661 (-661 (-962 (-229))))))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-270)))) + (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) + (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) + (-5 *1 (-155)) (-5 *3 (-660 (-660 (-961 (-229))))))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) +(((*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-888)) (-5 *1 (-270)))) +(((*1 *1 *2) (-12 (-5 *2 (-887)) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-391)) (-5 *1 (-270))))) (((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229) (-229))) (-5 *1 (-270)))) ((*1 *1 *2) (-12 (-5 *2 (-1 (-229) (-229))) (-5 *1 (-270))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-419 (-558))))) (-5 *1 (-270)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 (-1110 (-391)))) (-5 *1 (-270))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-419 (-558))))) (-5 *1 (-270)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 (-1109 (-391)))) (-5 *1 (-270))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-270))) (-5 *4 (-1198)) (-5 *2 (-114)) (-5 *1 (-270))))) + (-12 (-5 *3 (-660 (-270))) (-5 *4 (-1197)) (-5 *2 (-114)) (-5 *1 (-270))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1291)) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) + (-12 (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1290)) + (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-1113 (-391))) (-5 *2 (-1291)) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-631 (-547)) (-1122))))) + (-12 (-5 *4 (-1112 (-391))) (-5 *2 (-1290)) (-5 *1 (-264 *3)) + (-4 *3 (-13 (-630 (-547)) (-1121))))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) - (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-891 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) + (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 *5)) (-5 *4 (-1113 (-391))) - (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1291)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-891 *5)) (-5 *4 (-1112 (-391))) + (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1290)) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) - (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) + (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-391))) - (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-391))) + (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1292)) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) + (-12 (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1291)) + (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1113 (-391))) (-5 *2 (-1292)) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-631 (-547)) (-1122))))) + (-12 (-5 *4 (-1112 (-391))) (-5 *2 (-1291)) (-5 *1 (-264 *3)) + (-4 *3 (-13 (-630 (-547)) (-1121))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) - (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *6)))) + (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) + (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-391))) - (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1292)) (-5 *1 (-264 *5)))) + (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-391))) + (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1291)) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *5 (-661 (-270))) - (-5 *2 (-1291)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *5 (-660 (-270))) + (-5 *2 (-1290)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1291)) + (-12 (-5 *3 (-1 (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) + (-12 (-5 *3 (-891 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-892 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1291)) + (-12 (-5 *3 (-891 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1290)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) + (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) + (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) (-5 *2 (-1292)) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1292)) (-5 *1 (-265)))) + (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1291)) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-305 *7)) (-5 *4 (-1198)) (-5 *5 (-661 (-270))) - (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-861) (-1059 (-558)))) (-5 *2 (-1291)) + (-12 (-5 *3 (-305 *7)) (-5 *4 (-1197)) (-5 *5 (-660 (-270))) + (-4 *7 (-433 *6)) (-4 *6 (-13 (-569) (-860) (-1058 (-558)))) (-5 *2 (-1290)) (-5 *1 (-266 *6 *7)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1291)) (-5 *1 (-269)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-1290)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *4) - (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1291)) + (-12 (-5 *3 (-660 (-229))) (-5 *4 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-269)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-962 (-229)))) (-5 *2 (-1291)) (-5 *1 (-269)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-961 (-229)))) (-5 *2 (-1290)) (-5 *1 (-269)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-661 (-962 (-229)))) (-5 *4 (-661 (-270))) (-5 *2 (-1291)) + (-12 (-5 *3 (-660 (-961 (-229)))) (-5 *4 (-660 (-270))) (-5 *2 (-1290)) (-5 *1 (-269)))) - ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-661 (-229))) (-5 *2 (-1292)) (-5 *1 (-269)))) + ((*1 *2 *3 *3 *3) (-12 (-5 *3 (-660 (-229))) (-5 *2 (-1291)) (-5 *1 (-269)))) ((*1 *2 *3 *3 *3 *4) - (-12 (-5 *3 (-661 (-229))) (-5 *4 (-661 (-270))) (-5 *2 (-1292)) + (-12 (-5 *3 (-660 (-229))) (-5 *4 (-660 (-270))) (-5 *2 (-1291)) (-5 *1 (-269))))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-267))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267))))) (((*1 *2 *2) (-12 (-5 *2 (-558)) (-5 *1 (-267))))) (((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1110 (-229))) - (-5 *2 (-1292)) (-5 *1 (-267))))) + (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1109 (-229))) + (-5 *2 (-1291)) (-5 *1 (-267))))) (((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1110 (-229))) - (-5 *5 (-114)) (-5 *2 (-1292)) (-5 *1 (-267))))) + (-12 (-5 *3 (-1 (-171 (-229)) (-171 (-229)))) (-5 *4 (-1109 (-229))) + (-5 *5 (-114)) (-5 *2 (-1291)) (-5 *1 (-267))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-1 (-962 (-229)) (-229) (-229))) + (-12 (-5 *2 (-1 (-961 (-229)) (-229) (-229))) (-5 *3 (-1 (-229) (-229) (-229) (-229))) (-5 *1 (-265))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) - (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) + (-12 (-5 *3 (-893 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) + (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 *5)) (-5 *4 (-1113 (-391))) - (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) + (-12 (-5 *3 (-893 *5)) (-5 *4 (-1112 (-391))) + (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) - (-5 *1 (-264 *3)) (-4 *3 (-13 (-631 (-547)) (-1122))))) + (-12 (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) + (-5 *1 (-264 *3)) (-4 *3 (-13 (-630 (-547)) (-1121))))) ((*1 *2 *3 *4 *4) - (-12 (-5 *4 (-1113 (-391))) (-5 *2 (-1154 (-229))) (-5 *1 (-264 *3)) - (-4 *3 (-13 (-631 (-547)) (-1122))))) + (-12 (-5 *4 (-1112 (-391))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *3)) + (-4 *3 (-13 (-630 (-547)) (-1121))))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 *6)) (-5 *4 (-1113 (-391))) (-5 *5 (-661 (-270))) - (-4 *6 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) + (-12 (-5 *3 (-896 *6)) (-5 *4 (-1112 (-391))) (-5 *5 (-660 (-270))) + (-4 *6 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *6)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 *5)) (-5 *4 (-1113 (-391))) - (-4 *5 (-13 (-631 (-547)) (-1122))) (-5 *2 (-1154 (-229))) + (-12 (-5 *3 (-896 *5)) (-5 *4 (-1112 (-391))) + (-4 *5 (-13 (-630 (-547)) (-1121))) (-5 *2 (-1153 (-229))) (-5 *1 (-264 *5)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-894 (-1 (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-893 (-1 (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *5) - (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4) - (-12 (-5 *3 (-1 (-962 (-229)) (-229))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-229) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-1 (-962 (-229)) (-229) (-229))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-1 (-961 (-229)) (-229) (-229))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4 *5) - (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *5 (-661 (-270))) (-5 *2 (-1154 (-229))) (-5 *1 (-265)))) + (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *5 (-660 (-270))) (-5 *2 (-1153 (-229))) (-5 *1 (-265)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-897 (-1 (-229) (-229) (-229)))) (-5 *4 (-1110 (-391))) - (-5 *2 (-1154 (-229))) (-5 *1 (-265))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-226 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-4 *1 (-263 *3)))) - ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 *4))))) + (-12 (-5 *3 (-896 (-1 (-229) (-229) (-229)))) (-5 *4 (-1109 (-391))) + (-5 *2 (-1153 (-229))) (-5 *1 (-265))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-226 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-4 *1 (-263 *3)))) + ((*1 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-263 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) + (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-660 *4))))) (((*1 *2 *1 *3) - (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1070)) (-4 *3 (-861)) - (-4 *5 (-277 *3)) (-4 *6 (-815)) (-5 *2 (-661 (-791))))) + (-12 (-4 *1 (-262 *4 *3 *5 *6)) (-4 *4 (-1069)) (-4 *3 (-860)) + (-4 *5 (-277 *3)) (-4 *6 (-814)) (-5 *2 (-660 (-790))))) ((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-661 (-791)))))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) + (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-660 (-790)))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1070)) (-4 *4 (-861)) - (-4 *5 (-277 *4)) (-4 *6 (-815)) (-5 *2 (-114))))) + (-12 (-4 *1 (-262 *3 *4 *5 *6)) (-4 *3 (-1069)) (-4 *4 (-860)) + (-4 *5 (-277 *4)) (-4 *6 (-814)) (-5 *2 (-114))))) (((*1 *2 *1) - (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1070)) (-4 *4 (-861)) (-4 *5 (-815)) + (-12 (-4 *1 (-262 *3 *4 *2 *5)) (-4 *3 (-1069)) (-4 *4 (-860)) (-4 *5 (-814)) (-4 *2 (-277 *4))))) (((*1 *1 *1) - (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) - (-4 *4 (-277 *3)) (-4 *5 (-815))))) + (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-860)) + (-4 *4 (-277 *3)) (-4 *5 (-814))))) (((*1 *1 *1) - (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1070)) (-4 *3 (-861)) - (-4 *4 (-277 *3)) (-4 *5 (-815))))) + (-12 (-4 *1 (-262 *2 *3 *4 *5)) (-4 *2 (-1069)) (-4 *3 (-860)) + (-4 *4 (-277 *3)) (-4 *5 (-814))))) (((*1 *2 *1) (-12 (-5 *2 (-345)) (-5 *1 (-257))))) (((*1 *2 *1) (-12 (-5 *2 (-141)) (-5 *1 (-142)))) ((*1 *2 *1) (-12 (-5 *1 (-187 *2)) (-4 *2 (-189)))) ((*1 *2 *1) (-12 (-5 *2 (-257)) (-5 *1 (-256))))) (((*1 *2 *1) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256))))) (((*1 *1 *2) (-12 (-5 *2 (-187 (-257))) (-5 *1 (-256))))) -(((*1 *2 *1) (-12 (-5 *2 (-1294)) (-5 *1 (-256))))) +(((*1 *2 *1) (-12 (-5 *2 (-1293)) (-5 *1 (-256))))) (((*1 *2 *3 *3 *2) - (|partial| -12 (-5 *2 (-791)) - (-4 *3 (-13 (-746) (-381) (-10 -7 (-15 ** (*3 *3 (-558)))))) + (|partial| -12 (-5 *2 (-790)) + (-4 *3 (-13 (-745) (-381) (-10 -7 (-15 ** (*3 *3 (-558)))))) (-5 *1 (-253 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-252 *3))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-251 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-251 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-558)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-558)) (-5 *1 (-248))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-1294)) (-5 *1 (-248)))) - ((*1 *2 *3) (-12 (-5 *3 (-661 (-1180))) (-5 *2 (-1294)) (-5 *1 (-248))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-1180)) (-5 *3 (-558)) (-5 *1 (-248))))) -(((*1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-248))))) -(((*1 *1 *2) (-12 (-5 *2 (-1288 *4)) (-4 *4 (-1238)) (-4 *1 (-245 *3 *4))))) -(((*1 *2 *3) - (-12 (-5 *3 (-305 (-965 (-558)))) - (-5 *2 - (-2 (|:| |varOrder| (-661 (-1198))) - (|:| |inhom| (-3 (-661 (-1288 (-791))) "failed")) - (|:| |hom| (-661 (-1288 (-791)))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-252 *3))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1) (-12 (-4 *1 (-251 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-251 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-251 *2)) (-4 *2 (-1237))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-558)) (-5 *1 (-248)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-558)) (-5 *1 (-248))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-1293)) (-5 *1 (-248)))) + ((*1 *2 *3) (-12 (-5 *3 (-660 (-1179))) (-5 *2 (-1293)) (-5 *1 (-248))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-1179)) (-5 *3 (-558)) (-5 *1 (-248))))) +(((*1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-248))))) +(((*1 *1 *2) (-12 (-5 *2 (-1287 *4)) (-4 *4 (-1237)) (-4 *1 (-245 *3 *4))))) +(((*1 *2 *3) + (-12 (-5 *3 (-305 (-964 (-558)))) + (-5 *2 + (-2 (|:| |varOrder| (-660 (-1197))) + (|:| |inhom| (-3 (-660 (-1287 (-790))) "failed")) + (|:| |hom| (-660 (-1287 (-790)))))) (-5 *1 (-243))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-4 *1 (-242 *3)))) - ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1122))))) -(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224)))))) -(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1224)))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-4 *1 (-242 *3)))) + ((*1 *1) (-12 (-4 *1 (-242 *2)) (-4 *2 (-1121))))) +(((*1 *1) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223)))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223)))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223)))))) +(((*1 *1 *2) (-12 (-5 *1 (-231 *2)) (-4 *2 (-13 (-376) (-1223)))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))) (((*1 *2 *2) (-12 (-5 *2 (-229)) (-5 *1 (-230)))) ((*1 *2 *2) (-12 (-5 *2 (-171 (-229))) (-5 *1 (-230))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-229))))) (((*1 *2 *3 *4 *5 *5 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *3 (-965 *6)) (-5 *4 (-1198)) - (-5 *5 (-855 *7)) (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-4 *7 (-13 (-1224) (-29 *6))) (-5 *1 (-228 *6 *7)))) + (|partial| -12 (-5 *2 (-114)) (-5 *3 (-964 *6)) (-5 *4 (-1197)) + (-5 *5 (-854 *7)) (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-4 *7 (-13 (-1223) (-29 *6))) (-5 *1 (-228 *6 *7)))) ((*1 *2 *3 *4 *4 *2) - (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1192 *6)) (-5 *4 (-855 *6)) - (-4 *6 (-13 (-1224) (-29 *5))) - (-4 *5 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-228 *5 *6))))) + (|partial| -12 (-5 *2 (-114)) (-5 *3 (-1191 *6)) (-5 *4 (-854 *6)) + (-4 *6 (-13 (-1223) (-29 *5))) + (-4 *5 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-228 *5 *6))))) (((*1 *2 *3 *4 *2 *2 *5) - (|partial| -12 (-5 *2 (-855 *4)) (-5 *3 (-628 *4)) (-5 *5 (-114)) - (-4 *4 (-13 (-1224) (-29 *6))) - (-4 *6 (-13 (-464) (-1059 (-558)) (-658 (-558)))) (-5 *1 (-228 *6 *4))))) + (|partial| -12 (-5 *2 (-854 *4)) (-5 *3 (-627 *4)) (-5 *5 (-114)) + (-4 *4 (-13 (-1223) (-29 *6))) + (-4 *6 (-13 (-464) (-1058 (-558)) (-657 (-558)))) (-5 *1 (-228 *6 *4))))) (((*1 *2 *3) - (-12 (-5 *3 (-1180)) (-4 *4 (-13 (-464) (-1059 (-558)) (-658 (-558)))) - (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1224) (-29 *4)))))) -(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1070)) (-14 *3 (-661 (-1198))))) + (-12 (-5 *3 (-1179)) (-4 *4 (-13 (-464) (-1058 (-558)) (-657 (-558)))) + (-5 *2 (-114)) (-5 *1 (-228 *4 *5)) (-4 *5 (-13 (-1223) (-29 *4)))))) +(((*1 *1 *1) (-12 (-5 *1 (-50 *2 *3)) (-4 *2 (-1069)) (-14 *3 (-660 (-1197))))) ((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-661 (-1198)))))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1069) (-860))) + (-14 *3 (-660 (-1197)))))) (((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1070)) - (-14 *4 (-661 (-1198))))) + (-12 (-5 *2 (-114)) (-5 *1 (-50 *3 *4)) (-4 *3 (-1069)) + (-14 *4 (-660 (-1197))))) ((*1 *2 *1) - (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1070) (-861))) - (-14 *4 (-661 (-1198)))))) + (-12 (-5 *2 (-114)) (-5 *1 (-227 *3 *4)) (-4 *3 (-13 (-1069) (-860))) + (-14 *4 (-660 (-1197)))))) (((*1 *1 *2) - (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1070) (-861))) (-5 *1 (-227 *3 *4)) - (-14 *4 (-661 (-1198)))))) + (-12 (-5 *2 (-326 *3)) (-4 *3 (-13 (-1069) (-860))) (-5 *1 (-227 *3 *4)) + (-14 *4 (-660 (-1197)))))) (((*1 *1 *1) - (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1070) (-861))) - (-14 *3 (-661 (-1198)))))) + (-12 (-5 *1 (-227 *2 *3)) (-4 *2 (-13 (-1069) (-860))) + (-14 *3 (-660 (-1197)))))) (((*1 *2 *3 *4 *5 *5 *6) - (-12 (-5 *4 (-1198)) (-5 *6 (-114)) - (-4 *7 (-13 (-319) (-149) (-1059 (-558)) (-658 (-558)))) - (-4 *3 (-13 (-1224) (-979) (-29 *7))) + (-12 (-5 *4 (-1197)) (-5 *6 (-114)) + (-4 *7 (-13 (-319) (-149) (-1058 (-558)) (-657 (-558)))) + (-4 *3 (-13 (-1223) (-978) (-29 *7))) (-5 *2 - (-3 (|:| |f1| (-855 *3)) (|:| |f2| (-661 (-855 *3))) (|:| |fail| "failed") + (-3 (|:| |f1| (-854 *3)) (|:| |f2| (-660 (-854 *3))) (|:| |fail| "failed") (|:| |pole| "potentialPole"))) - (-5 *1 (-223 *7 *3)) (-5 *5 (-855 *3))))) + (-5 *1 (-223 *7 *3)) (-5 *5 (-854 *3))))) (((*1 *1 *2) (-12 (-5 *2 (-419 (-558))) (-5 *1 (-221))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-363)) (-5 *2 (-114)) (-5 *1 (-220 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *2 *3 *2) - (-12 (-5 *3 (-791)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1264 *4))))) + (-12 (-5 *3 (-790)) (-4 *4 (-363)) (-5 *1 (-220 *4 *2)) (-4 *2 (-1263 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-363)) (-5 *2 (-661 (-2 (|:| |deg| (-791)) (|:| -2974 *3)))) - (-5 *1 (-220 *4 *3)) (-4 *3 (-1264 *4))))) + (-12 (-4 *4 (-363)) (-5 *2 (-660 (-2 (|:| |deg| (-790)) (|:| -2973 *3)))) + (-5 *1 (-220 *4 *3)) (-4 *3 (-1263 *4))))) (((*1 *2 *3 *4) (-12 (-5 *4 (-114)) (-4 *5 (-363)) (-5 *2 (-2 (|:| |cont| *5) - (|:| -1987 (-661 (-2 (|:| |irr| *3) (|:| -2626 (-558))))))) - (-5 *1 (-220 *5 *3)) (-4 *3 (-1264 *5))))) + (|:| -1986 (-660 (-2 (|:| |irr| *3) (|:| -2625 (-558))))))) + (-5 *1 (-220 *5 *3)) (-4 *3 (-1263 *5))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1264 (-419 *2))) - (-4 *2 (-1264 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) + (-12 (-5 *4 (-1 *2 *2)) (-4 *5 (-376)) (-4 *6 (-1263 (-419 *2))) + (-4 *2 (-1263 *5)) (-5 *1 (-219 *5 *2 *6 *3)) (-4 *3 (-355 *5 *2 *6))))) (((*1 *2 *1 *3 *2) - (-12 (-5 *3 (-791)) (-5 *1 (-216 *4 *2)) (-14 *4 (-938)) (-4 *2 (-1122))))) + (-12 (-5 *3 (-790)) (-5 *1 (-216 *4 *2)) (-14 *4 (-937)) (-4 *2 (-1121))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |pde| (-661 (-326 (-229)))) + (-2 (|:| |pde| (-660 (-326 (-229)))) (|:| |constraints| - (-661 - (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-791)) - (|:| |boundaryType| (-558)) (|:| |dStart| (-709 (-229))) - (|:| |dFinish| (-709 (-229)))))) - (|:| |f| (-661 (-661 (-326 (-229))))) (|:| |st| (-1180)) + (-660 + (-2 (|:| |start| (-229)) (|:| |finish| (-229)) (|:| |grid| (-790)) + (|:| |boundaryType| (-558)) (|:| |dStart| (-708 (-229))) + (|:| |dFinish| (-708 (-229)))))) + (|:| |f| (-660 (-660 (-326 (-229))))) (|:| |st| (-1179)) (|:| |tol| (-229)))) (-5 *2 (-114)) (-5 *1 (-213))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-661 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) + (-12 (-5 *4 (-660 (-326 (-229)))) (-5 *3 (-229)) (-5 *2 (-114)) (-5 *1 (-213))))) (((*1 *2 *2) (-12 (-5 *2 (-326 (-229))) (-5 *1 (-213))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 (-2 (|:| |xinit| (-229)) (|:| |xend| (-229)) - (|:| |fn| (-1288 (-326 (-229)))) (|:| |yinit| (-661 (-229))) - (|:| |intvals| (-661 (-229))) (|:| |g| (-326 (-229))) + (|:| |fn| (-1287 (-326 (-229)))) (|:| |yinit| (-660 (-229))) + (|:| |intvals| (-660 (-229))) (|:| |g| (-326 (-229))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208))))) (((*1 *2 *3) - (-12 (-5 *3 (-709 (-326 (-229)))) + (-12 (-5 *3 (-708 (-326 (-229)))) (-5 *2 (-2 (|:| |stiffnessFactor| (-391)) (|:| |stabilityFactor| (-391)))) (-5 *1 (-208))))) -(((*1 *2 *3) (-12 (-5 *3 (-709 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) +(((*1 *2 *3) (-12 (-5 *3 (-708 (-326 (-229)))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-208)))) - ((*1 *2 *2 *3) (-12 (-5 *3 (-661 (-391))) (-5 *2 (-391)) (-5 *1 (-208))))) + ((*1 *2 *2 *3) (-12 (-5 *3 (-660 (-391))) (-5 *2 (-391)) (-5 *1 (-208))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-558)) (-5 *1 (-207))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-661 (-229))) (-5 *1 (-207))))) + (-5 *2 (-660 (-229))) (-5 *1 (-207))))) (((*1 *2 *3) (|partial| -12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) - (-5 *2 (-2 (|:| -2909 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1056)) (-5 *3 (-1198)) (-5 *1 (-195))))) + (-5 *2 (-2 (|:| -2908 (-115)) (|:| |w| (-229)))) (-5 *1 (-207))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-1055)) (-5 *3 (-1197)) (-5 *1 (-195))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-391)) (-5 *1 (-195))))) (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |continuous| "Continuous at the end points") @@ -14902,8 +14902,8 @@ (((*1 *2 *3) (-12 (-5 *3 - (-2 (|:| |var| (-1198)) (|:| |fn| (-326 (-229))) - (|:| -1638 (-1110 (-855 (-229)))) (|:| |abserr| (-229)) + (-2 (|:| |var| (-1197)) (|:| |fn| (-326 (-229))) + (|:| -1637 (-1109 (-854 (-229)))) (|:| |abserr| (-229)) (|:| |relerr| (-229)))) (-5 *2 (-3 (|:| |finite| "The range is finite") @@ -14912,242 +14912,242 @@ (|:| |bothInfinite| "Both top and bottom points are infinite") (|:| |notEvaluated| "Range not yet evaluated"))) (-5 *1 (-195))))) -(((*1 *2 *3) (-12 (-5 *2 (-417 (-1192 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) -(((*1 *2 *3) (-12 (-5 *2 (-661 (-1192 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-417 (-1191 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) +(((*1 *2 *3) (-12 (-5 *2 (-660 (-1191 (-558)))) (-5 *1 (-194)) (-5 *3 (-558))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-661 (-558))) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) + (-12 (-5 *3 (-660 (-558))) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 (-938))) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *2 *2) (-12 (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) + (-12 (-5 *3 (-660 (-937))) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *2 *2) (-12 (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) (((*1 *2 *3 *3) - (-12 (-5 *3 (-1200 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *3) (-12 (-5 *3 (-938)) (-5 *2 (-1200 (-419 (-558)))) (-5 *1 (-193))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1288 (-709 *4))) (-4 *4 (-175)) - (-5 *2 (-1288 (-709 (-965 *4)))) (-5 *1 (-192 *4))))) + (-12 (-5 *3 (-1199 (-419 (-558)))) (-5 *2 (-419 (-558))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) (-12 (-5 *3 (-937)) (-5 *2 (-1199 (-419 (-558)))) (-5 *1 (-193))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1287 (-708 *4))) (-4 *4 (-175)) + (-5 *2 (-1287 (-708 (-964 *4)))) (-5 *1 (-192 *4))))) (((*1 *1) (-5 *1 (-190)))) (((*1 *1) (-5 *1 (-190)))) (((*1 *1) (-5 *1 (-190)))) (((*1 *2 *1) (-12 (-5 *2 (-190)) (-5 *1 (-140)))) ((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-190))))) -(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-114)))))) -(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-661 (-879)))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-1203))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) -(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-711 (-186))) (-5 *1 (-186))))) -(((*1 *2 *2 *2) (-12 (-4 *3 (-1238)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-660 (-114)))))) +(((*1 *2 *1) (-12 (-4 *1 (-189)) (-5 *2 (-660 (-878)))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-1202))) (-5 *1 (-187 *3)) (-4 *3 (-189))))) +(((*1 *2 *3) (-12 (-5 *3 (-518)) (-5 *2 (-710 (-186))) (-5 *1 (-186))))) +(((*1 *2 *2 *2) (-12 (-4 *3 (-1237)) (-5 *1 (-185 *3 *2)) (-4 *2 (-693 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-1238)) (-5 *2 (-791)) (-5 *1 (-185 *4 *3)) (-4 *3 (-694 *4))))) + (-12 (-4 *4 (-1237)) (-5 *2 (-790)) (-5 *1 (-185 *4 *3)) (-4 *3 (-693 *4))))) (((*1 *2 *2) - (|partial| -12 (-4 *3 (-1238)) (-5 *1 (-185 *3 *2)) (-4 *2 (-694 *3))))) + (|partial| -12 (-4 *3 (-1237)) (-5 *1 (-185 *3 *2)) (-4 *2 (-693 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-860))) - (-5 *2 (-2 (|:| |start| *3) (|:| -1987 (-417 *3)))) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1264 (-171 *4)))))) + (-12 (-4 *4 (-13 (-376) (-859))) + (-5 *2 (-2 (|:| |start| *3) (|:| -1986 (-417 *3)))) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1263 (-171 *4)))))) (((*1 *2 *2) - (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1264 (-171 *2)))))) + (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1263 (-171 *2)))))) (((*1 *2 *3) - (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-860))) - (-4 *3 (-1264 *2))))) + (-12 (-5 *2 (-171 *4)) (-5 *1 (-184 *4 *3)) (-4 *4 (-13 (-376) (-859))) + (-4 *3 (-1263 *2))))) (((*1 *2 *3 *2) - (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1264 (-171 *2))))) + (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1263 (-171 *2))))) ((*1 *2 *3) - (-12 (-4 *2 (-13 (-376) (-860))) (-5 *1 (-184 *2 *3)) - (-4 *3 (-1264 (-171 *2)))))) + (-12 (-4 *2 (-13 (-376) (-859))) (-5 *1 (-184 *2 *3)) + (-4 *3 (-1263 (-171 *2)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-860))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-1264 (-171 *3)))))) + (-12 (-4 *3 (-13 (-376) (-859))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-1263 (-171 *3)))))) (((*1 *2 *3 *4 *5) - (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-5 *5 (-114)) (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) - (-4 *3 (-1264 (-171 *4)))))) + (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-417 *3)) (-5 *1 (-184 *4 *3)) + (-4 *3 (-1263 (-171 *4)))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-376) (-860))) (-5 *1 (-184 *3 *2)) - (-4 *2 (-1264 (-171 *3)))))) + (-12 (-4 *3 (-13 (-376) (-859))) (-5 *1 (-184 *3 *2)) + (-4 *2 (-1263 (-171 *3)))))) (((*1 *2 *3 *3 *4) - (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-860))) - (-5 *2 (-661 (-2 (|:| -1987 (-661 *3)) (|:| -1739 *5)))) - (-5 *1 (-184 *5 *3)) (-4 *3 (-1264 (-171 *5))))) + (-12 (-5 *4 (-114)) (-4 *5 (-13 (-376) (-859))) + (-5 *2 (-660 (-2 (|:| -1986 (-660 *3)) (|:| -1738 *5)))) + (-5 *1 (-184 *5 *3)) (-4 *3 (-1263 (-171 *5))))) ((*1 *2 *3 *3) - (-12 (-4 *4 (-13 (-376) (-860))) - (-5 *2 (-661 (-2 (|:| -1987 (-661 *3)) (|:| -1739 *4)))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) + (-12 (-4 *4 (-13 (-376) (-859))) + (-5 *2 (-660 (-2 (|:| -1986 (-660 *3)) (|:| -1738 *4)))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) (((*1 *2 *3 *4) - (-12 (-5 *2 (-661 (-171 *4))) (-5 *1 (-157 *3 *4)) - (-4 *3 (-1264 (-171 (-558)))) (-4 *4 (-13 (-376) (-860))))) + (-12 (-5 *2 (-660 (-171 *4))) (-5 *1 (-157 *3 *4)) + (-4 *3 (-1263 (-171 (-558)))) (-4 *4 (-13 (-376) (-859))))) ((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-661 (-171 *4))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4))))) + (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4))))) ((*1 *2 *3 *4) - (-12 (-4 *4 (-13 (-376) (-860))) (-5 *2 (-661 (-171 *4))) - (-5 *1 (-184 *4 *3)) (-4 *3 (-1264 (-171 *4)))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) -(((*1 *2 *3 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) + (-12 (-4 *4 (-13 (-376) (-859))) (-5 *2 (-660 (-171 *4))) + (-5 *1 (-184 *4 *3)) (-4 *3 (-1263 (-171 *4)))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-660 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) +(((*1 *2 *3 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-319)) (-5 *1 (-182 *3))))) (((*1 *2 *3 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *3) - (-12 (-5 *2 (-1 (-962 *3) (-962 *3))) (-5 *1 (-179 *3)) - (-4 *3 (-13 (-376) (-1224) (-1023)))))) + (-12 (-5 *2 (-1 (-961 *3) (-961 *3))) (-5 *1 (-179 *3)) + (-4 *3 (-13 (-376) (-1223) (-1022)))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) (((*1 *2 *2) - (-12 (-5 *2 (-962 *3)) (-4 *3 (-13 (-376) (-1224) (-1023))) + (-12 (-5 *2 (-961 *3)) (-4 *3 (-13 (-376) (-1223) (-1022))) (-5 *1 (-179 *3))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-109))) (-5 *1 (-178))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-109))) (-5 *1 (-178))))) (((*1 *1 *2 *1) (-12 (-5 *2 (-109)) (-5 *1 (-178))))) -(((*1 *1 *2 *3) (-12 (-5 *3 (-1176 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *1 *2 *3) (-12 (-5 *3 (-1175 *2)) (-4 *2 (-319)) (-5 *1 (-177 *2))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *1 *1) (-12 (-5 *1 (-177 *2)) (-4 *2 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) -(((*1 *2 *1) (-12 (-5 *2 (-1176 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 (-419 *3))) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) +(((*1 *2 *1) (-12 (-5 *2 (-1175 *3)) (-5 *1 (-177 *3)) (-4 *3 (-319))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-174))))) (((*1 *2 *1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-174))))) -(((*1 *2 *2 *3) (-12 (-5 *2 (-1156)) (-5 *3 (-303)) (-5 *1 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1156)) (-5 *2 (-711 (-292))) (-5 *1 (-170))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-661 (-711 (-292)))) (-5 *1 (-170))))) +(((*1 *2 *2 *3) (-12 (-5 *2 (-1155)) (-5 *3 (-303)) (-5 *1 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1155)) (-5 *2 (-710 (-292))) (-5 *1 (-170))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-660 (-710 (-292)))) (-5 *1 (-170))))) (((*1 *1) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) (((*1 *1 *2 *2) (-12 (-4 *1 (-168 *2)) (-4 *2 (-175))))) (((*1 *2 *1) - (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1081)) (-4 *3 (-1224)) + (-12 (-4 *1 (-168 *3)) (-4 *3 (-175)) (-4 *3 (-1080)) (-4 *3 (-1223)) (-5 *2 (-2 (|:| |r| *3) (|:| |phi| *3)))))) (((*1 *1 *1 *1) (-5 *1 (-163))) ((*1 *1 *2) (-12 (-5 *2 (-558)) (-5 *1 (-163))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1198)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1197)))) ((*1 *1 *1) (-4 *1 (-162)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)) (-4 *2 (-433 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-1113 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) + (-12 (-5 *3 (-1112 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-160 *4 *2)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1113 *1)) (-4 *1 (-162)))) - ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1198))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1112 *1)) (-4 *1 (-162)))) + ((*1 *1 *1 *2) (-12 (-4 *1 (-162)) (-5 *2 (-1197))))) (((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) (((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) (((*1 *1 *1 *1) (-4 *1 (-145))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) -(((*1 *2 *2 *3) (-12 (-5 *3 (-661 *2)) (-4 *2 (-557)) (-5 *1 (-161 *2))))) +(((*1 *2 *2 *3) (-12 (-5 *3 (-660 *2)) (-4 *2 (-557)) (-5 *1 (-161 *2))))) (((*1 *1 *1) (-4 *1 (-145))) ((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3)))) ((*1 *2 *2) (-12 (-5 *1 (-161 *2)) (-4 *2 (-557))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-433 *4)) (-5 *1 (-160 *4 *2)) (-4 *4 (-569))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-160 *3 *2)) (-4 *2 (-433 *3))))) (((*1 *1) (-5 *1 (-159)))) -(((*1 *2) (-12 (-5 *2 (-938)) (-5 *1 (-159))))) +(((*1 *2) (-12 (-5 *2 (-937)) (-5 *1 (-159))))) (((*1 *2 *3 *4 *4 *4 *4) (-12 (-5 *4 (-229)) (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 *4)))) (|:| |xValues| (-1110 *4)) - (|:| |yValues| (-1110 *4)))) - (-5 *1 (-155)) (-5 *3 (-661 (-661 (-962 *4))))))) + (-2 (|:| |brans| (-660 (-660 (-961 *4)))) (|:| |xValues| (-1109 *4)) + (|:| |yValues| (-1109 *4)))) + (-5 *1 (-155)) (-5 *3 (-660 (-660 (-961 *4))))))) (((*1 *2 *3) - (-12 (-5 *3 (-944)) + (-12 (-5 *3 (-943)) (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) - (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) + (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) + (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155)))) ((*1 *2 *3 *4 *4) - (-12 (-5 *3 (-944)) (-5 *4 (-419 (-558))) + (-12 (-5 *3 (-943)) (-5 *4 (-419 (-558))) (-5 *2 - (-2 (|:| |brans| (-661 (-661 (-962 (-229))))) - (|:| |xValues| (-1110 (-229))) (|:| |yValues| (-1110 (-229))))) + (-2 (|:| |brans| (-660 (-660 (-961 (-229))))) + (|:| |xValues| (-1109 (-229))) (|:| |yValues| (-1109 (-229))))) (-5 *1 (-155))))) (((*1 *1 *2) - (-12 (-5 *2 (-938)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) - (-14 *5 (-1014 *3 *4))))) + (-12 (-5 *2 (-937)) (-5 *1 (-154 *3 *4 *5)) (-14 *3 *2) (-4 *4 (-376)) + (-14 *5 (-1013 *3 *4))))) (((*1 *2 *3 *1) - (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1238))))) + (|partial| -12 (-5 *3 (-1 (-114) *2)) (-4 *1 (-153 *2)) (-4 *2 (-1237))))) (((*1 *1 *1) - (-12 (|has| *1 (-6 -4425)) (-4 *1 (-153 *2)) (-4 *2 (-1238)) - (-4 *2 (-1122))))) + (-12 (|has| *1 (-6 -4424)) (-4 *1 (-153 *2)) (-4 *2 (-1237)) + (-4 *2 (-1121))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) + (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) (-5 *2 (-2 (|:| |func| *3) (|:| |poly| *3) (|:| |c1| (-419 *5)) - (|:| |c2| (-419 *5)) (|:| |deg| (-791)))) - (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) + (|:| |c2| (-419 *5)) (|:| |deg| (-790)))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1264 *2)) (-4 *2 (-1243)) (-5 *1 (-150 *2 *4 *3)) - (-4 *3 (-1264 (-419 *4)))))) -(((*1 *2 *3 *4) - (-12 (-5 *3 (-419 *6)) (-4 *5 (-1243)) (-4 *6 (-1264 *5)) - (-5 *2 (-2 (|:| -2632 (-791)) (|:| -4384 *3) (|:| |radicand| *6))) - (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-791)) (-4 *7 (-1264 *3))))) -(((*1 *2 *3) - (|partial| -12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-791)))) - (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1264 (-419 *5)))))) -(((*1 *2 *3) - (-12 (-4 *4 (-1243)) (-4 *5 (-1264 *4)) - (-5 *2 (-2 (|:| -4384 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) - (-4 *3 (-1264 (-419 *5)))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-146))))) -(((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-146)))) - ((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-146))))) + (-12 (-4 *4 (-1263 *2)) (-4 *2 (-1242)) (-5 *1 (-150 *2 *4 *3)) + (-4 *3 (-1263 (-419 *4)))))) +(((*1 *2 *3 *4) + (-12 (-5 *3 (-419 *6)) (-4 *5 (-1242)) (-4 *6 (-1263 *5)) + (-5 *2 (-2 (|:| -2631 (-790)) (|:| -4383 *3) (|:| |radicand| *6))) + (-5 *1 (-150 *5 *6 *7)) (-5 *4 (-790)) (-4 *7 (-1263 *3))))) +(((*1 *2 *3) + (|partial| -12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) + (-5 *2 (-2 (|:| |radicand| (-419 *5)) (|:| |deg| (-790)))) + (-5 *1 (-150 *4 *5 *3)) (-4 *3 (-1263 (-419 *5)))))) +(((*1 *2 *3) + (-12 (-4 *4 (-1242)) (-4 *5 (-1263 *4)) + (-5 *2 (-2 (|:| -4383 (-419 *5)) (|:| |poly| *3))) (-5 *1 (-150 *4 *5 *3)) + (-4 *3 (-1263 (-419 *5)))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-146))))) +(((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-146)))) + ((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-146))))) (((*1 *1) (-5 *1 (-146)))) (((*1 *1) (-5 *1 (-146)))) (((*1 *1) (-5 *1 (-146)))) @@ -15163,71 +15163,71 @@ (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-146))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 (-146))) (-5 *1 (-143)))) - ((*1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-143))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 (-146))) (-5 *1 (-143)))) + ((*1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-143))))) (((*1 *1) (-5 *1 (-143)))) (((*1 *1) (-5 *1 (-143)))) (((*1 *1) (-5 *1 (-143)))) (((*1 *1) (-5 *1 (-143)))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-851))) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-187 (-141)))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-850))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-187 (-141)))) (-5 *1 (-142))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-187 (-141)))) (-5 *1 (-142))))) (((*1 *1 *1 *2) - (-12 (-5 *2 (-661 (-558))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) - (-14 *4 (-791)) (-4 *5 (-175))))) + (-12 (-5 *2 (-660 (-558))) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-790)) (-4 *5 (-175))))) (((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175))))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175))))) (((*1 *1) - (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-791)) (-4 *4 (-175))))) + (-12 (-5 *1 (-137 *2 *3 *4)) (-14 *2 (-558)) (-14 *3 (-790)) (-4 *4 (-175))))) (((*1 *2 *1) - (-12 (-5 *2 (-661 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) - (-14 *4 (-791)) (-4 *5 (-175))))) + (-12 (-5 *2 (-660 *5)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-790)) (-4 *5 (-175))))) (((*1 *1 *2) - (-12 (-5 *2 (-661 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) - (-14 *4 (-791))))) -(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-136))))) + (-12 (-5 *2 (-660 *5)) (-4 *5 (-175)) (-5 *1 (-137 *3 *4 *5)) (-14 *3 (-558)) + (-14 *4 (-790))))) +(((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-136))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) (((*1 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) (((*1 *2 *2) (-12 (-5 *2 (-114)) (-5 *1 (-136))))) -(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-791)) (-5 *2 (-1294))))) +(((*1 *2 *1 *3) (-12 (-4 *1 (-134)) (-5 *3 (-790)) (-5 *2 (-1293))))) (((*1 *1 *1 *1) (|partial| -4 *1 (-133)))) (((*1 *1) (-5 *1 (-132)))) (((*1 *1) (-5 *1 (-132)))) (((*1 *1) (-5 *1 (-132)))) -(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) -(((*1 *2 *1) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) -(((*1 *2 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-131))))) -(((*1 *1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-130))))) -(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1122)))) - ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1122))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-128 *3))))) -(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-131))))) +(((*1 *2 *1) (-12 (-5 *2 (-790)) (-5 *1 (-131))))) +(((*1 *2 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-131))))) +(((*1 *1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-130))))) +(((*1 *1 *1 *2 *1) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1121)))) + ((*1 *1 *2) (-12 (-5 *1 (-129 *2)) (-4 *2 (-1121))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-128 *3))))) +(((*1 *1 *1 *2 *1) (-12 (-4 *1 (-127 *2)) (-4 *2 (-1121))))) (((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))) (((*1 *1 *1 *1) (-5 *1 (-114))) ((*1 *1 *1 *1) (-4 *1 (-125)))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-861)) (-5 *1 (-123 *3))))) -(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-861))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558))))) - ((*1 *2 *2) (-12 (-5 *2 (-791)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558))))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1264 (-558)))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-121 *2)) (-4 *2 (-1238))))) -(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4426)) (-4 *1 (-121 *2)) (-4 *2 (-1238))))) -(((*1 *2 *3) - (-12 (-4 *4 (-13 (-376) (-1059 (-419 *2)))) (-5 *2 (-558)) - (-5 *1 (-117 *4 *3)) (-4 *3 (-1264 *4))))) -(((*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1122))))) -(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1122))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-860)) (-5 *1 (-123 *3))))) +(((*1 *1 *2 *1) (-12 (-5 *1 (-123 *2)) (-4 *2 (-860))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2) (-12 (-5 *2 (-790)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558))))) + ((*1 *2 *2) (-12 (-5 *2 (-790)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558))))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-114)) (-5 *1 (-122 *3)) (-4 *3 (-1263 (-558)))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-121 *2)) (-4 *2 (-1237))))) +(((*1 *1 *1 *1) (-12 (|has| *1 (-6 -4425)) (-4 *1 (-121 *2)) (-4 *2 (-1237))))) +(((*1 *2 *3) + (-12 (-4 *4 (-13 (-376) (-1058 (-419 *2)))) (-5 *2 (-558)) + (-5 *1 (-117 *4 *3)) (-4 *3 (-1263 *4))))) +(((*1 *2 *3) (|partial| -12 (-5 *3 (-115)) (-5 *1 (-116 *2)) (-4 *2 (-1121))))) +(((*1 *2 *3) (-12 (-5 *2 (-115)) (-5 *1 (-116 *3)) (-4 *3 (-1121))))) (((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-661 (-1 *4 (-661 *4)))) (-4 *4 (-1122)) + (-12 (-5 *2 (-115)) (-5 *3 (-660 (-1 *4 (-660 *4)))) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) ((*1 *2 *2 *3) - (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1122)) (-5 *1 (-116 *4)))) + (-12 (-5 *2 (-115)) (-5 *3 (-1 *4 *4)) (-4 *4 (-1121)) (-5 *1 (-116 *4)))) ((*1 *2 *3) - (|partial| -12 (-5 *3 (-115)) (-5 *2 (-661 (-1 *4 (-661 *4)))) - (-5 *1 (-116 *4)) (-4 *4 (-1122))))) -(((*1 *2 *1) (-12 (-5 *2 (-661 (-984))) (-5 *1 (-109)))) - ((*1 *2 *1) (-12 (-5 *2 (-45 (-1180) (-793))) (-5 *1 (-115))))) + (|partial| -12 (-5 *3 (-115)) (-5 *2 (-660 (-1 *4 (-660 *4)))) + (-5 *1 (-116 *4)) (-4 *4 (-1121))))) +(((*1 *2 *1) (-12 (-5 *2 (-660 (-983))) (-5 *1 (-109)))) + ((*1 *2 *1) (-12 (-5 *2 (-45 (-1179) (-792))) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) (((*1 *2 *1) (-12 (-5 *2 (-114)) (-5 *1 (-115))))) @@ -15235,1013 +15235,1013 @@ (((*1 *1 *1 *2) (-12 (-5 *2 (-1 (-114) (-115) (-115))) (-5 *1 (-115))))) (((*1 *2 *1 *3) (-12 (-5 *3 (-518)) (-5 *2 (-114)) (-5 *1 (-115))))) (((*1 *1 *1 *2) (-12 (-5 *2 (-518)) (-5 *1 (-115)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1180)) (-5 *1 (-115))))) -(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-793)) (-5 *1 (-115)))) - ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1180)) (-5 *3 (-793)) (-5 *1 (-115))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1180) (-793))) (-5 *1 (-115))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-661 (-984))) (-5 *1 (-109))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-4 *1 (-107 *3))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1238))))) -(((*1 *2) (-12 (-5 *2 (-661 (-1198))) (-5 *1 (-105))))) -(((*1 *2 *3) - (-12 (-5 *3 (-1198)) - (-5 *2 - (-2 (|:| |zeros| (-1176 (-229))) (|:| |ones| (-1176 (-229))) - (|:| |singularities| (-1176 (-229))))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1179)) (-5 *1 (-115))))) +(((*1 *1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-792)) (-5 *1 (-115)))) + ((*1 *1 *1 *2 *3) (-12 (-5 *2 (-1179)) (-5 *3 (-792)) (-5 *1 (-115))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-45 (-1179) (-792))) (-5 *1 (-115))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-518)) (-5 *3 (-660 (-983))) (-5 *1 (-109))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-4 *1 (-107 *3))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) +(((*1 *2 *1) (-12 (-4 *1 (-107 *2)) (-4 *2 (-1237))))) +(((*1 *2) (-12 (-5 *2 (-660 (-1197))) (-5 *1 (-105))))) +(((*1 *2 *3) + (-12 (-5 *3 (-1197)) + (-5 *2 + (-2 (|:| |zeros| (-1175 (-229))) (|:| |ones| (-1175 (-229))) + (|:| |singularities| (-1175 (-229))))) (-5 *1 (-105))))) (((*1 *2 *3) - (-12 (|has| *2 (-6 (-4427 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) - (-4 *4 (-706 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4426 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) + (-4 *4 (-705 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (|has| *2 (-6 (-4427 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) - (-4 *2 (-1070)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1264 *2)) - (-4 *4 (-706 *2 *5 *6))))) + (-12 (|has| *2 (-6 (-4426 "*"))) (-4 *5 (-385 *2)) (-4 *6 (-385 *2)) + (-4 *2 (-1069)) (-5 *1 (-104 *2 *3 *4 *5 *6)) (-4 *3 (-1263 *2)) + (-4 *4 (-705 *2 *5 *6))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1264 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) + (-12 (-4 *4 (-1069)) (-4 *2 (-705 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1263 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) (((*1 *2 *3 *3) - (-12 (-4 *4 (-1070)) (-4 *2 (-706 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) - (-4 *3 (-1264 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-103 *3)) (-4 *3 (-1122))))) -(((*1 *1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3))))) + (-12 (-4 *4 (-1069)) (-4 *2 (-705 *4 *5 *6)) (-5 *1 (-104 *4 *3 *2 *5 *6)) + (-4 *3 (-1263 *4)) (-4 *5 (-385 *4)) (-4 *6 (-385 *4))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-103 *3)) (-4 *3 (-1121))))) +(((*1 *1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3))))) (((*1 *1 *1 *1 *2) - (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1122)) (-5 *1 (-103 *3)))) - ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1122))))) + (-12 (-5 *2 (-1 *3 *3 *3 *3 *3)) (-4 *3 (-1121)) (-5 *1 (-103 *3)))) + ((*1 *2 *1 *3) (-12 (-5 *3 (-1 *2 *2 *2)) (-5 *1 (-103 *2)) (-4 *2 (-1121))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 (-661 *2) *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2)))) + (-12 (-5 *3 (-1 (-660 *2) *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2)))) ((*1 *1 *1 *2 *3) - (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1122)) (-5 *1 (-103 *2))))) + (-12 (-5 *3 (-1 *2 *2 *2)) (-4 *2 (-1121)) (-5 *1 (-103 *2))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-102)) (-5 *2 (-114))))) (((*1 *2 *3 *3) (-12 (-4 *4 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *4 *3)) - (-4 *3 (-1264 *4)))) + (-4 *3 (-1263 *4)))) ((*1 *2 *3 *4) - (-12 (-5 *4 (-661 *3)) (-4 *3 (-1264 *5)) (-4 *5 (-13 (-464) (-149))) + (-12 (-5 *4 (-660 *3)) (-4 *3 (-1263 *5)) (-4 *5 (-13 (-464) (-149))) (-5 *2 (-417 *3)) (-5 *1 (-100 *5 *3))))) -(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) - ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3)))) - ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1070)) (-5 *1 (-99 *3))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97)))) - ((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3) (-12 (-5 *3 (-1180)) (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2) (-12 (-5 *2 (-1294)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3 (-558))) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) + ((*1 *1 *2 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3)))) + ((*1 *1 *2) (-12 (-5 *2 (-1 *3 *3)) (-4 *3 (-1069)) (-5 *1 (-99 *3))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97)))) + ((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2 *3 *3) (-12 (-5 *3 (-1179)) (-5 *2 (-391)) (-5 *1 (-97))))) +(((*1 *2) (-12 (-5 *2 (-1293)) (-5 *1 (-97))))) (((*1 *2 *2) (-12 (-5 *2 (-391)) (-5 *1 (-97))))) -(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1180)) (-5 *1 (-97)))) - ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1180)) (-5 *1 (-97))))) -(((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1122)) (-5 *1 (-91 *3))))) +(((*1 *2 *3 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1179)) (-5 *1 (-97)))) + ((*1 *2 *3 *2) (-12 (-5 *2 (-391)) (-5 *3 (-1179)) (-5 *1 (-97))))) +(((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1121)) (-5 *1 (-91 *3))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-376)) (-4 *5 (-569)) (-5 *2 - (-2 (|:| |minor| (-661 (-938))) (|:| -3684 *3) - (|:| |minors| (-661 (-661 (-938)))) (|:| |ops| (-661 *3)))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-678 *5))))) + (-2 (|:| |minor| (-660 (-937))) (|:| -3683 *3) + (|:| |minors| (-660 (-660 (-937)))) (|:| |ops| (-660 *3)))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-677 *5))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-1288 (-709 *4))) (-5 *1 (-90 *4 *5)) - (-5 *3 (-709 *4)) (-4 *5 (-678 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-1287 (-708 *4))) (-5 *1 (-90 *4 *5)) + (-5 *3 (-708 *4)) (-4 *5 (-677 *4))))) (((*1 *2 *3 *4) (-12 (-4 *5 (-569)) - (-5 *2 (-2 (|:| -1783 (-709 *5)) (|:| |vec| (-1288 (-661 (-938)))))) - (-5 *1 (-90 *5 *3)) (-5 *4 (-938)) (-4 *3 (-678 *5))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-791)) (-5 *1 (-58 *3)) (-4 *3 (-1238)))) - ((*1 *1 *2) (-12 (-5 *2 (-661 *3)) (-4 *3 (-1238)) (-5 *1 (-58 *3))))) + (-5 *2 (-2 (|:| -1782 (-708 *5)) (|:| |vec| (-1287 (-660 (-937)))))) + (-5 *1 (-90 *5 *3)) (-5 *4 (-937)) (-4 *3 (-677 *5))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-790)) (-5 *1 (-58 *3)) (-4 *3 (-1237)))) + ((*1 *1 *2) (-12 (-5 *2 (-660 *3)) (-4 *3 (-1237)) (-5 *1 (-58 *3))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1238)) (-4 *3 (-385 *4)) + (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *3 *5)) (-4 *4 (-1237)) (-4 *3 (-385 *4)) (-4 *5 (-385 *4))))) (((*1 *1 *1 *2 *3) - (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1238)) (-4 *5 (-385 *4)) + (-12 (-5 *2 (-558)) (-4 *1 (-57 *4 *5 *3)) (-4 *4 (-1237)) (-4 *5 (-385 *4)) (-4 *3 (-385 *4))))) (((*1 *1) (-5 *1 (-55)))) (((*1 *2 *2 *3) - (-12 (-5 *3 (-661 (-1198))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)) - (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4))))))) + (-12 (-5 *3 (-660 (-1197))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-54 *4 *5 *2)) + (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4))))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-661 (-1096 *4 *5 *2))) (-4 *4 (-1122)) - (-4 *5 (-13 (-1070) (-901 *4) (-631 (-905 *4)))) - (-4 *2 (-13 (-433 *5) (-901 *4) (-631 (-905 *4)))) (-5 *1 (-54 *4 *5 *2)))) + (-12 (-5 *3 (-660 (-1095 *4 *5 *2))) (-4 *4 (-1121)) + (-4 *5 (-13 (-1069) (-900 *4) (-630 (-904 *4)))) + (-4 *2 (-13 (-433 *5) (-900 *4) (-630 (-904 *4)))) (-5 *1 (-54 *4 *5 *2)))) ((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-661 (-1096 *5 *6 *2))) (-5 *4 (-938)) (-4 *5 (-1122)) - (-4 *6 (-13 (-1070) (-901 *5) (-631 (-905 *5)))) - (-4 *2 (-13 (-433 *6) (-901 *5) (-631 (-905 *5)))) (-5 *1 (-54 *5 *6 *2))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1124)) (-5 *3 (-793)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-1124)) (-5 *1 (-51))))) -(((*1 *2 *1) (-12 (-5 *2 (-793)) (-5 *1 (-51))))) + (-12 (-5 *3 (-660 (-1095 *5 *6 *2))) (-5 *4 (-937)) (-4 *5 (-1121)) + (-4 *6 (-13 (-1069) (-900 *5) (-630 (-904 *5)))) + (-4 *2 (-13 (-433 *6) (-900 *5) (-630 (-904 *5)))) (-5 *1 (-54 *5 *6 *2))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1123)) (-5 *3 (-792)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-1123)) (-5 *1 (-51))))) +(((*1 *2 *1) (-12 (-5 *2 (-792)) (-5 *1 (-51))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-569)) (-5 *2 (-660 (-708 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-569)) (-5 *2 (-660 (-708 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 (-709 *3))) (-5 *1 (-43 *3 *4)) + (-12 (-4 *3 (-569)) (-5 *2 (-660 (-708 *3))) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-661 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-660 *3)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2) - (-12 (-4 *3 (-569)) (-5 *2 (-661 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) + (-12 (-4 *3 (-569)) (-5 *2 (-660 *4)) (-5 *1 (-43 *3 *4)) (-4 *4 (-430 *3))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-791)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) + (-12 (-4 *4 (-569)) (-5 *2 (-790)) (-5 *1 (-43 *4 *3)) (-4 *3 (-430 *4))))) (((*1 *2 *3 *2 *4) - (-12 (-5 *3 (-115)) (-5 *4 (-791)) (-4 *5 (-13 (-464) (-1059 (-558)))) + (-12 (-5 *3 (-115)) (-5 *4 (-790)) (-4 *5 (-13 (-464) (-1058 (-558)))) (-4 *5 (-569)) (-5 *1 (-41 *5 *2)) (-4 *2 (-433 *5)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *5 (-628 $)) $)) - (-15 -3398 ((-1146 *5 (-628 $)) $)) - (-15 -4376 ($ (-1146 *5 (-628 $)))))))))) + (-10 -8 (-15 -3398 ((-1145 *5 (-627 $)) $)) + (-15 -3397 ((-1145 *5 (-627 $)) $)) + (-15 -4375 ($ (-1145 *5 (-627 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) - (-15 -3398 ((-1146 *3 (-628 $)) $)) - (-15 -4376 ($ (-1146 *3 (-628 $)))))))))) + (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) + (-15 -3397 ((-1145 *3 (-627 $)) $)) + (-15 -4375 ($ (-1145 *3 (-627 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) - (-15 -3398 ((-1146 *3 (-628 $)) $)) - (-15 -4376 ($ (-1146 *3 (-628 $)))))))))) + (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) + (-15 -3397 ((-1145 *3 (-627 $)) $)) + (-15 -4375 ($ (-1145 *3 (-627 $)))))))))) (((*1 *2 *2) - (-12 (-4 *3 (-13 (-464) (-1059 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) + (-12 (-4 *3 (-13 (-464) (-1058 (-558)))) (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-433 *3)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) - (-15 -3398 ((-1146 *3 (-628 $)) $)) - (-15 -4376 ($ (-1146 *3 (-628 $)))))))))) + (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) + (-15 -3397 ((-1145 *3 (-627 $)) $)) + (-15 -4375 ($ (-1145 *3 (-627 $)))))))))) (((*1 *2 *3) - (-12 (-4 *4 (-569)) (-5 *2 (-1192 *3)) (-5 *1 (-41 *4 *3)) + (-12 (-4 *4 (-569)) (-5 *2 (-1191 *3)) (-5 *1 (-41 *4 *3)) (-4 *3 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *4 (-628 $)) $)) - (-15 -3398 ((-1146 *4 (-628 $)) $)) - (-15 -4376 ($ (-1146 *4 (-628 $)))))))))) + (-10 -8 (-15 -3398 ((-1145 *4 (-627 $)) $)) + (-15 -3397 ((-1145 *4 (-627 $)) $)) + (-15 -4375 ($ (-1145 *4 (-627 $)))))))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) - (-15 -3398 ((-1146 *3 (-628 $)) $)) - (-15 -4376 ($ (-1146 *3 (-628 $))))))))) + (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) + (-15 -3397 ((-1145 *3 (-627 $)) $)) + (-15 -4375 ($ (-1145 *3 (-627 $))))))))) ((*1 *2 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) - (-15 -3398 ((-1146 *3 (-628 $)) $)) - (-15 -4376 ($ (-1146 *3 (-628 $))))))))) + (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) + (-15 -3397 ((-1145 *3 (-627 $)) $)) + (-15 -4375 ($ (-1145 *3 (-627 $))))))))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-661 *2)) + (-12 (-5 *3 (-660 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *4 (-628 $)) $)) - (-15 -3398 ((-1146 *4 (-628 $)) $)) - (-15 -4376 ($ (-1146 *4 (-628 $))))))) + (-10 -8 (-15 -3398 ((-1145 *4 (-627 $)) $)) + (-15 -3397 ((-1145 *4 (-627 $)) $)) + (-15 -4375 ($ (-1145 *4 (-627 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2)))) ((*1 *2 *2 *3) - (-12 (-5 *3 (-661 (-628 *2))) + (-12 (-5 *3 (-660 (-627 *2))) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *4 (-628 $)) $)) - (-15 -3398 ((-1146 *4 (-628 $)) $)) - (-15 -4376 ($ (-1146 *4 (-628 $))))))) + (-10 -8 (-15 -3398 ((-1145 *4 (-627 $)) $)) + (-15 -3397 ((-1145 *4 (-627 $)) $)) + (-15 -4375 ($ (-1145 *4 (-627 $))))))) (-4 *4 (-569)) (-5 *1 (-41 *4 *2))))) (((*1 *2 *2) (-12 (-4 *3 (-569)) (-5 *1 (-41 *3 *2)) (-4 *2 (-13 (-376) (-310) - (-10 -8 (-15 -3399 ((-1146 *3 (-628 $)) $)) - (-15 -3398 ((-1146 *3 (-628 $)) $)) - (-15 -4376 ($ (-1146 *3 (-628 $)))))))))) + (-10 -8 (-15 -3398 ((-1145 *3 (-627 $)) $)) + (-15 -3397 ((-1145 *3 (-627 $)) $)) + (-15 -4375 ($ (-1145 *3 (-627 $)))))))))) (((*1 *2 *3) - (-12 (-5 *3 (-791)) (-4 *4 (-376)) (-4 *5 (-1264 *4)) (-5 *2 (-1294)) - (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1264 (-419 *5))) (-14 *7 *6)))) -(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1264 (-48)))))) + (-12 (-5 *3 (-790)) (-4 *4 (-376)) (-4 *5 (-1263 *4)) (-5 *2 (-1293)) + (-5 *1 (-40 *4 *5 *6 *7)) (-4 *6 (-1263 (-419 *5))) (-14 *7 *6)))) +(((*1 *2 *3) (-12 (-5 *2 (-114)) (-5 *1 (-39 *3)) (-4 *3 (-1263 (-48)))))) (((*1 *2 *3 *1) - (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1122)) (-4 *4 (-1122)) - (-5 *2 (-2 (|:| -4290 *3) (|:| -2286 *4)))))) + (|partial| -12 (-4 *1 (-36 *3 *4)) (-4 *3 (-1121)) (-4 *4 (-1121)) + (-5 *2 (-2 (|:| -4289 *3) (|:| -2285 *4)))))) (((*1 *2 *1 *1) (-12 (-4 *1 (-34)) (-5 *2 (-114))))) (((*1 *2 *3 *4) - (-12 (-5 *4 (-558)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1059 *4)) + (-12 (-5 *4 (-558)) (-4 *2 (-433 *3)) (-5 *1 (-32 *3 *2)) (-4 *3 (-1058 *4)) (-4 *3 (-569))))) (((*1 *2 *3) - (-12 (-5 *3 (-661 *5)) (-4 *5 (-433 *4)) (-4 *4 (-569)) (-5 *2 (-877)) + (-12 (-5 *3 (-660 *5)) (-4 *5 (-433 *4)) (-4 *4 (-569)) (-5 *2 (-876)) (-5 *1 (-32 *4 *5))))) (((*1 *2 *3 *2) - (-12 (-5 *3 (-1192 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) + (-12 (-5 *3 (-1191 *2)) (-4 *2 (-433 *4)) (-4 *4 (-569)) (-5 *1 (-32 *4 *2))))) (((*1 *1 *2 *3 *3 *4 *4) - (-12 (-5 *2 (-965 (-558))) (-5 *3 (-1198)) (-5 *4 (-1110 (-419 (-558)))) + (-12 (-5 *2 (-964 (-558))) (-5 *3 (-1197)) (-5 *4 (-1109 (-419 (-558)))) (-5 *1 (-30))))) (((*1 *2 *3 *4) - (-12 (-5 *3 (-1192 *1)) (-5 *4 (-1198)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-1192 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) - ((*1 *2 *3) (-12 (-5 *3 (-965 *1)) (-4 *1 (-27)) (-5 *2 (-661 *1)))) + (-12 (-5 *3 (-1191 *1)) (-5 *4 (-1197)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-1191 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) + ((*1 *2 *3) (-12 (-5 *3 (-964 *1)) (-4 *1 (-27)) (-5 *2 (-660 *1)))) ((*1 *2 *1 *3) - (-12 (-5 *3 (-1198)) (-4 *4 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *4)))) - ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-661 *1)) (-4 *1 (-29 *3))))) -(((*1 *1 *2 *3) (-12 (-5 *2 (-1192 *1)) (-5 *3 (-1198)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-1192 *1)) (-4 *1 (-27)))) - ((*1 *1 *2) (-12 (-5 *2 (-965 *1)) (-4 *1 (-27)))) - ((*1 *1 *1 *2) (-12 (-5 *2 (-1198)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) + (-12 (-5 *3 (-1197)) (-4 *4 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *4)))) + ((*1 *2 *1) (-12 (-4 *3 (-569)) (-5 *2 (-660 *1)) (-4 *1 (-29 *3))))) +(((*1 *1 *2 *3) (-12 (-5 *2 (-1191 *1)) (-5 *3 (-1197)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-1191 *1)) (-4 *1 (-27)))) + ((*1 *1 *2) (-12 (-5 *2 (-964 *1)) (-4 *1 (-27)))) + ((*1 *1 *1 *2) (-12 (-5 *2 (-1197)) (-4 *1 (-29 *3)) (-4 *3 (-569)))) ((*1 *1 *1) (-12 (-4 *1 (-29 *2)) (-4 *2 (-569))))) -((-1323 . 719166) (-1324 . 718770) (-1325 . 718649) (-1326 . 718547) - (-1327 . 718434) (-1328 . 718317) (-1329 . 718263) (-1330 . 718128) - (-1331 . 718052) (-1332 . 717896) (-1333 . 717668) (-1334 . 716704) - (-1335 . 716457) (-1336 . 716172) (-1337 . 715887) (-1338 . 715602) - (-1339 . 715281) (-1340 . 715189) (-1341 . 715097) (-1342 . 715005) - (-1343 . 714913) (-1344 . 714821) (-1345 . 714729) (-1346 . 714634) - (-1347 . 714539) (-1348 . 714447) (-1349 . 714355) (-1350 . 714263) - (-1351 . 714171) (-1352 . 714079) (-1353 . 713977) (-1354 . 713875) - (-1355 . 713773) (-1356 . 713681) (-1357 . 713630) (-1358 . 713578) - (-1359 . 713508) (-1360 . 713084) (-1361 . 712889) (-1362 . 712862) - (-1363 . 712739) (-1364 . 712616) (-1365 . 712472) (-1366 . 712302) - (-1367 . 712178) (-1368 . 711939) (-1369 . 711866) (-1370 . 711725) - (-1371 . 711674) (-1372 . 711625) (-1373 . 711555) (-1374 . 711420) - (-1375 . 711285) (-1376 . 711057) (-1377 . 710809) (-1378 . 710754) - (-1379 . 710574) (-1380 . 710403) (-1381 . 710326) (-1382 . 710252) - (-1383 . 710097) (-1384 . 709942) (-1385 . 709756) (-1386 . 709573) - (-1387 . 709396) (-1388 . 709339) (-1389 . 709283) (-1390 . 709227) - (-1391 . 709153) (-1392 . 709076) (-1393 . 709007) (-1394 . 708862) - (-1395 . 708753) (-1396 . 708683) (-1397 . 708609) (-1398 . 708535) - (-1399 . 708483) (-1400 . 708431) (-1401 . 708379) (-1402 . 708256) - (-1403 . 707934) (-1404 . 707863) (-1405 . 707782) (-1406 . 707661) - (-1407 . 707580) (-1408 . 707499) (-1409 . 707342) (-1410 . 707191) - (-1411 . 707113) (-1412 . 707055) (-1413 . 706982) (-1414 . 706917) - (-1415 . 706852) (-1416 . 706790) (-1417 . 706717) (-1418 . 706601) - (-1419 . 706549) (-1420 . 706494) (-1421 . 706442) (-1422 . 706390) - (-1423 . 706362) (-1424 . 706334) (-1425 . 706306) (-1426 . 706262) - (-1427 . 706191) (-1428 . 706139) (-1429 . 706090) (-1430 . 706038) - (-1431 . 705986) (-1432 . 705870) (-1433 . 705754) (-1434 . 705662) - (-1435 . 705570) (-1436 . 705447) (-1437 . 705381) (-1438 . 705315) - (-1439 . 705256) (-1440 . 705228) (-1441 . 705200) (-1442 . 705172) - (-1443 . 705144) (-1444 . 705034) (-1445 . 704982) (-1446 . 704930) - (-1447 . 704878) (-1448 . 704826) (-1449 . 704774) (-1450 . 704722) - (-1451 . 704694) (-1452 . 704666) (-1453 . 704638) (-1454 . 704610) - (-1455 . 704582) (-1456 . 704554) (-1457 . 704526) (-1458 . 704498) - (-1459 . 704470) (-1460 . 704367) (-1461 . 704315) (-1462 . 704149) - (-1463 . 703965) (-1464 . 703754) (-1465 . 703639) (-1466 . 703406) - (-1467 . 703307) (-1468 . 703213) (-1469 . 703097) (-1470 . 702699) - (-1471 . 702481) (-1472 . 702432) (-1473 . 702404) (-1474 . 702328) - (-1475 . 702229) (-1476 . 702130) (-1477 . 702031) (-1478 . 701932) - (-1479 . 701833) (-1480 . 701734) (-1481 . 701576) (-1482 . 701500) - (-1483 . 701333) (-1484 . 701275) (-1485 . 701217) (-1486 . 700908) - (-1487 . 700654) (-1488 . 700570) (-1489 . 700437) (-1490 . 700379) - (-1491 . 700327) (-1492 . 700245) (-1493 . 700170) (-1494 . 700099) - (-1495 . 700044) (-1496 . 699992) (-1497 . 699918) (-1498 . 699844) - (-1499 . 699763) (-1500 . 699682) (-1501 . 699627) (-1502 . 699553) - (-1503 . 699479) (-1504 . 699405) (-1505 . 699328) (-1506 . 699273) - (-1507 . 699214) (-1508 . 699114) (-1509 . 699014) (-1510 . 698914) - (-1511 . 698814) (-1512 . 698714) (-1513 . 698614) (-1514 . 698514) - (-1515 . 698399) (-1516 . 698284) (-1517 . 698169) (-1518 . 698054) - (-1519 . 697939) (-1520 . 697824) (-1521 . 697706) (-1522 . 697630) - (-1523 . 697554) (-1524 . 697167) (-1525 . 696821) (-1526 . 696719) - (-1527 . 696457) (-1528 . 696355) (-1529 . 696150) (-1530 . 696037) - (-1531 . 695935) (-1532 . 695778) (-1533 . 695689) (-1534 . 695595) - (-1535 . 695515) (-1536 . 695441) (-1537 . 695363) (-1538 . 695304) - (-1539 . 695245) (-1540 . 695143) (-7 . 695115) (-8 . 695087) (-9 . 695059) - (-1544 . 694940) (-1545 . 694858) (-1546 . 694776) (-1547 . 694694) - (-1548 . 694612) (-1549 . 694530) (-1550 . 694436) (-1551 . 694366) - (-1552 . 694296) (-1553 . 694205) (-1554 . 694111) (-1555 . 694029) - (-1556 . 693947) (-1557 . 693456) (-1558 . 692903) (-1559 . 692693) - (-1560 . 692618) (-1561 . 692364) (-1562 . 692137) (-1563 . 691927) - (-1564 . 691797) (-1565 . 691716) (-1566 . 691567) (-1567 . 691212) - (-1568 . 690920) (-1569 . 690628) (-1570 . 690336) (-1571 . 690044) - (-1572 . 689985) (-1573 . 689878) (-1574 . 689450) (-1575 . 689352) - (-1576 . 689192) (-1577 . 688993) (-1578 . 688857) (-1579 . 688757) - (-1580 . 688657) (-1581 . 688563) (-1582 . 688504) (-1583 . 688169) - (-1584 . 688068) (-1585 . 687949) (-1586 . 687733) (-1587 . 687552) - (-1588 . 687392) (-1589 . 687187) (-1590 . 686765) (-1591 . 686713) - (-1592 . 686604) (-1593 . 686489) (-1594 . 686420) (-1595 . 686351) - (-1596 . 686282) (-1597 . 686216) (-1598 . 686091) (-1599 . 685874) - (-1600 . 685796) (-1601 . 685746) (-1602 . 685675) (-1603 . 685532) - (-1604 . 685391) (-1605 . 685310) (-1606 . 685229) (-1607 . 685173) - (-1608 . 685117) (-1609 . 685044) (-1610 . 684904) (-1611 . 684851) - (-1612 . 684792) (-1613 . 684733) (-1614 . 684578) (-1615 . 684526) - (-1616 . 684408) (-1617 . 684290) (-1618 . 684172) (-1619 . 684039) - (-1620 . 683758) (-1621 . 683622) (-1622 . 683566) (-1623 . 683510) - (-1624 . 683451) (-1625 . 683392) (-1626 . 683336) (-1627 . 683280) - (-1628 . 683083) (-1629 . 680741) (-1630 . 680614) (-1631 . 680468) - (-1632 . 680340) (-1633 . 680288) (-1634 . 680236) (-1635 . 680184) - (-1636 . 676145) (-1637 . 676050) (-1638 . 675911) (-1639 . 675702) - (-1640 . 675600) (-1641 . 675498) (-1642 . 674582) (-1643 . 674505) - (-1644 . 674376) (-1645 . 674249) (-1646 . 674172) (-1647 . 674095) - (-1648 . 673968) (-1649 . 673841) (-1650 . 673675) (-1651 . 673548) - (-1652 . 673421) (-1653 . 673204) (-1654 . 672766) (-1655 . 672400) - (-1656 . 672293) (-1657 . 672074) (-1658 . 672005) (-1659 . 671946) - (-1660 . 671865) (-1661 . 671754) (-1662 . 671688) (-1663 . 671622) - (-1664 . 671548) (-1665 . 671476) (-1666 . 671099) (-1667 . 671047) - (-1668 . 670988) (-1669 . 670899) (-1670 . 670810) (-1671 . 670718) - (-1672 . 670626) (-1673 . 670534) (-1674 . 670442) (-1675 . 670350) - (-1676 . 670258) (-1677 . 670166) (-1678 . 670074) (-1679 . 669982) - (-1680 . 669890) (-1681 . 669798) (-1682 . 669706) (-1683 . 669614) - (-1684 . 669522) (-1685 . 669430) (-1686 . 669338) (-1687 . 669246) - (-1688 . 669154) (-1689 . 669062) (-1690 . 668970) (-1691 . 668878) - (-1692 . 668786) (-1693 . 668694) (-1694 . 668602) (-1695 . 668510) - (-1696 . 668418) (-1697 . 668254) (-1698 . 668144) (-1699 . 667900) - (-1700 . 667611) (-1701 . 667415) (-1702 . 667258) (-1703 . 667097) - (-1704 . 667045) (-1705 . 666983) (-1706 . 666931) (-1707 . 666868) - (-1708 . 666815) (-1709 . 666763) (-1710 . 666711) (-1711 . 666659) - (-1712 . 666569) (-1713 . 666380) (-1714 . 666226) (-1715 . 666146) - (-1716 . 666066) (-1717 . 665986) (-1718 . 665856) (-1719 . 665624) - (-1720 . 665596) (-1721 . 665568) (-1722 . 665540) (-1723 . 665460) - (-1724 . 665383) (-1725 . 665306) (-1726 . 665225) (-1727 . 665165) - (-1728 . 665007) (-1729 . 664814) (-1730 . 664329) (-1731 . 664087) - (-1732 . 663825) (-1733 . 663724) (-1734 . 663643) (-1735 . 663562) - (-1736 . 663492) (-1737 . 663422) (-1738 . 663263) (-1739 . 662959) - (-1740 . 662729) (-1741 . 662605) (-1742 . 662546) (-1743 . 662484) - (-1744 . 662422) (-1745 . 662357) (-1746 . 662295) (-1747 . 662016) - (-1748 . 661806) (-1749 . 661532) (-1750 . 660992) (-1751 . 660478) - (-1752 . 660333) (-1753 . 660266) (-1754 . 660185) (-1755 . 660104) - (-1756 . 660002) (-1757 . 659928) (-1758 . 659847) (-1759 . 659773) - (-1760 . 659564) (-1761 . 659351) (-1762 . 659261) (-1763 . 659194) - (-1764 . 659058) (-1765 . 658991) (-1766 . 658909) (-1767 . 658828) - (-1768 . 658726) (-1769 . 658526) (-1770 . 658458) (-1771 . 658216) - (-1772 . 657965) (-1773 . 657723) (-1774 . 657481) (-1775 . 657413) - (-1776 . 657077) (-1777 . 656076) (-1778 . 655856) (-1779 . 655775) - (-1780 . 655701) (-1781 . 655627) (-1782 . 655553) (-1783 . 655449) - (-1784 . 655376) (-1785 . 655308) (-1786 . 655098) (-1787 . 655046) - (-1788 . 654991) (-1789 . 654900) (-1790 . 654812) (-1791 . 653055) - (-1792 . 652976) (-1793 . 652231) (-1794 . 652114) (-1795 . 651907) - (-1796 . 651745) (-1797 . 651583) (-1798 . 651422) (-1799 . 651283) - (-1800 . 651189) (-1801 . 651091) (-1802 . 650997) (-1803 . 650882) - (-1804 . 650797) (-1805 . 650699) (-1806 . 650503) (-1807 . 650412) - (-1808 . 650318) (-1809 . 650251) (-1810 . 650198) (-1811 . 650145) - (-1812 . 650092) (-1813 . 648954) (-1814 . 648444) (-1815 . 648365) - (-1816 . 648306) (-1817 . 648278) (-1818 . 648250) (-1819 . 648191) - (-1820 . 648078) (-1821 . 647701) (-1822 . 647648) (-1823 . 647537) - (-1824 . 647484) (-1825 . 647431) (-1826 . 647375) (-1827 . 647319) - (-1828 . 647154) (-1829 . 647084) (-1830 . 646989) (-1831 . 646894) - (-1832 . 646799) (-1833 . 646747) (-1834 . 646688) (-1835 . 646614) - (-1836 . 646562) (-1837 . 646405) (-1838 . 646248) (-1839 . 646095) - (-1840 . 645337) (-1841 . 645084) (-1842 . 644773) (-1843 . 644421) - (-1844 . 644204) (-1845 . 643941) (-1846 . 643565) (-1847 . 643381) - (-1848 . 643247) (-1849 . 643081) (-1850 . 642915) (-1851 . 642781) - (-1852 . 642647) (-1853 . 642513) (-1854 . 642379) (-1855 . 642248) - (-1856 . 642117) (-1857 . 641986) (-1858 . 641603) (-1859 . 641476) - (-1860 . 641348) (-1861 . 641096) (-1862 . 640972) (-1863 . 640720) - (-1864 . 640596) (-1865 . 640344) (-1866 . 640220) (-1867 . 639935) - (-1868 . 639662) (-1869 . 639389) (-1870 . 639091) (-1871 . 638989) - (-1872 . 638844) (-1873 . 638703) (-1874 . 638552) (-1875 . 638391) - (-1876 . 638303) (-1877 . 638275) (-1878 . 638193) (-1879 . 638096) - (-1880 . 637628) (-1881 . 637277) (-1882 . 636844) (-1883 . 636703) - (-1884 . 636633) (-1885 . 636563) (-1886 . 636493) (-1887 . 636402) - (-1888 . 636311) (-1889 . 636220) (-1890 . 636129) (-1891 . 636038) - (-1892 . 635952) (-1893 . 635866) (-1894 . 635780) (-1895 . 635694) - (-1896 . 635608) (-1897 . 635534) (-1898 . 635429) (-1899 . 635203) - (-1900 . 635125) (-1901 . 635050) (-1902 . 634957) (-1903 . 634853) - (-1904 . 634757) (-1905 . 634588) (-1906 . 634511) (-1907 . 634434) - (-1908 . 634343) (-1909 . 634252) (-1910 . 634052) (-1911 . 633897) - (-1912 . 633742) (-1913 . 633587) (-1914 . 633432) (-1915 . 633277) - (-1916 . 633122) (-1917 . 633055) (-1918 . 632900) (-1919 . 632745) - (-1920 . 632590) (-1921 . 632435) (-1922 . 632280) (-1923 . 632125) - (-1924 . 631970) (-1925 . 631815) (-1926 . 631741) (-1927 . 631667) - (-1928 . 631612) (-1929 . 631557) (-1930 . 631502) (-1931 . 631447) - (-1932 . 631376) (-1933 . 631171) (-1934 . 631070) (-1935 . 630879) - (-1936 . 630786) (-1937 . 630649) (-1938 . 630512) (-1939 . 630375) - (-1940 . 630307) (-1941 . 630191) (-1942 . 630075) (-1943 . 629959) - (-1944 . 629906) (-1945 . 629709) (-1946 . 629624) (-1947 . 629316) - (-1948 . 629261) (-1949 . 628609) (-1950 . 628294) (-1951 . 628010) - (-1952 . 627891) (-1953 . 627772) (-1954 . 627713) (-1955 . 627654) - (-1956 . 627602) (-1957 . 627550) (-1958 . 627498) (-1959 . 627445) - (-1960 . 627392) (-1961 . 627333) (-1962 . 627220) (-1963 . 627107) - (-1964 . 627049) (-1965 . 626991) (-1966 . 626941) (-1967 . 626806) - (-1968 . 626756) (-1969 . 626159) (-1970 . 626099) (-1971 . 625932) - (-1972 . 625840) (-1973 . 625727) (-1974 . 625643) (-1975 . 625528) - (-1976 . 625437) (-1977 . 625346) (-1978 . 625157) (-1979 . 625102) - (-1980 . 624915) (-1981 . 624792) (-1982 . 624719) (-1983 . 624646) - (-1984 . 624526) (-1985 . 624453) (-1986 . 624380) (-1987 . 624040) - (-1988 . 623967) (-1989 . 623747) (-1990 . 623414) (-1991 . 623229) - (-1992 . 623084) (-1993 . 622721) (-1994 . 622553) (-1995 . 622385) - (-1996 . 622129) (-1997 . 621873) (-1998 . 621678) (-1999 . 621483) - (-2000 . 620889) (-2001 . 620813) (-2002 . 620674) (-2003 . 620267) - (-2004 . 620139) (-2005 . 619979) (-2006 . 619660) (-2007 . 619177) - (-2008 . 618694) (-2009 . 618189) (-2010 . 618121) (-2011 . 618050) - (-2012 . 617979) (-2013 . 617806) (-2014 . 617687) (-2015 . 617568) - (-2016 . 617492) (-2017 . 617416) (-2018 . 617141) (-2019 . 617026) - (-2020 . 616974) (-2021 . 616922) (-2022 . 616870) (-2023 . 616818) - (-2024 . 616766) (-2025 . 616624) (-2026 . 616450) (-2027 . 616217) - (-2028 . 616029) (-2029 . 616001) (-2030 . 615973) (-2031 . 615945) - (-2032 . 615917) (-2033 . 615889) (-2034 . 615861) (-2035 . 615833) - (-2036 . 615781) (-2037 . 615691) (-2038 . 615641) (-2039 . 615572) - (-2040 . 615503) (-2041 . 615398) (-2042 . 615027) (-2043 . 614876) - (-2044 . 614725) (-2045 . 614520) (-2046 . 614398) (-2047 . 614323) - (-2048 . 614245) (-2049 . 614170) (-2050 . 614092) (-2051 . 614014) - (-2052 . 613939) (-2053 . 613861) (-2054 . 613627) (-2055 . 613472) - (-2056 . 613173) (-2057 . 613018) (-2058 . 612692) (-2059 . 612552) - (-2060 . 612412) (-2061 . 612331) (-2062 . 612250) (-2063 . 611985) - (-2064 . 611252) (-2065 . 611115) (-2066 . 611024) (-2067 . 610887) - (-2068 . 610819) (-2069 . 610750) (-2070 . 610662) (-2071 . 610574) - (-2072 . 610403) (-2073 . 610329) (-2074 . 610185) (-2075 . 609725) - (-2076 . 609345) (-2077 . 608581) (-2078 . 608437) (-2079 . 608293) - (-2080 . 608131) (-2081 . 607893) (-2082 . 607752) (-2083 . 607605) - (-2084 . 607366) (-2085 . 607130) (-2086 . 606891) (-2087 . 606699) - (-2088 . 606576) (-2089 . 606372) (-2090 . 606149) (-2091 . 605910) - (-2092 . 605769) (-2093 . 605631) (-2094 . 605492) (-2095 . 605239) - (-2096 . 604983) (-2097 . 604826) (-2098 . 604672) (-2099 . 604431) - (-2100 . 604146) (-2101 . 604008) (-2102 . 603921) (-2103 . 603255) - (-2104 . 603079) (-2105 . 602897) (-2106 . 602721) (-2107 . 602539) - (-2108 . 602360) (-2109 . 602181) (-2110 . 601994) (-2111 . 601612) - (-2112 . 601433) (-2113 . 601254) (-2114 . 601067) (-2115 . 600685) - (-2116 . 599692) (-2117 . 599308) (-2118 . 598924) (-2119 . 598806) - (-2120 . 598649) (-2121 . 598507) (-2122 . 598389) (-2123 . 598207) - (-2124 . 598083) (-2125 . 597793) (-2126 . 597503) (-2127 . 597219) - (-2128 . 596935) (-2129 . 596656) (-2130 . 596568) (-2131 . 596483) - (-2132 . 596384) (-2133 . 596285) (-2134 . 596061) (-2135 . 595961) - (-2136 . 595858) (-2137 . 595780) (-2138 . 595455) (-2139 . 595163) - (-2140 . 595090) (-2141 . 594705) (-2142 . 594677) (-2143 . 594478) - (-2144 . 594304) (-2145 . 594063) (-2146 . 594008) (-2147 . 593932) - (-2148 . 593561) (-2149 . 593446) (-2150 . 593369) (-2151 . 593296) - (-2152 . 593215) (-2153 . 593134) (-2154 . 593053) (-2155 . 592952) - (-2156 . 592893) (-2157 . 592654) (-2158 . 592530) (-2159 . 592406) - (-2160 . 592179) (-2161 . 592126) (-2162 . 592071) (-2163 . 591739) - (-2164 . 591415) (-2165 . 591227) (-2166 . 591036) (-2167 . 590872) - (-2168 . 590537) (-2169 . 590370) (-2170 . 590129) (-2171 . 589801) - (-2172 . 589609) (-2173 . 589392) (-2174 . 589219) (-2175 . 588797) - (-2176 . 588570) (-2177 . 588299) (-2178 . 588161) (-2179 . 588020) - (-2180 . 587541) (-2181 . 587418) (-2182 . 587182) (-2183 . 586928) - (-2184 . 586678) (-2185 . 586383) (-2186 . 586242) (-2187 . 585898) - (-2188 . 585757) (-2189 . 585564) (-2190 . 585371) (-2191 . 585196) - (-2192 . 584922) (-2193 . 584487) (-2194 . 584459) (-2195 . 584386) - (-2196 . 584225) (-2197 . 584062) (-2198 . 583901) (-2199 . 583734) - (-2200 . 583681) (-2201 . 583628) (-2202 . 583499) (-2203 . 583439) - (-2204 . 583386) (-2205 . 583316) (-2206 . 583256) (-2207 . 583197) - (-2208 . 583137) (-2209 . 583078) (-2210 . 583018) (-2211 . 582959) - (-2212 . 582900) (-2213 . 582758) (-2214 . 582663) (-2215 . 582572) - (-2216 . 582456) (-2217 . 582362) (-2218 . 582264) (-2219 . 582170) - (-2220 . 582029) (-2221 . 581764) (-2222 . 580905) (-2223 . 580749) - (-2224 . 580380) (-2225 . 580324) (-2226 . 580272) (-2227 . 580169) - (-2228 . 580084) (-2229 . 579996) (-2230 . 579850) (-2231 . 579701) - (-2232 . 579411) (-2233 . 579333) (-2234 . 579258) (-2235 . 579205) - (-2236 . 579152) (-2237 . 579121) (-2238 . 579058) (-2239 . 578939) - (-2240 . 578850) (-2241 . 578730) (-2242 . 578435) (-2243 . 578241) - (-2244 . 578053) (-2245 . 577908) (-2246 . 577763) (-2247 . 577477) - (-2248 . 577032) (-2249 . 576998) (-2250 . 576961) (-2251 . 576924) - (-2252 . 576887) (-2253 . 576850) (-2254 . 576819) (-2255 . 576788) - (-2256 . 576757) (-2257 . 576723) (-2258 . 576689) (-2259 . 576634) - (-2260 . 576458) (-2261 . 576223) (-2262 . 575988) (-2263 . 575758) - (-2264 . 575706) (-2265 . 575651) (-2266 . 575581) (-2267 . 575492) - (-2268 . 575423) (-2269 . 575351) (-2270 . 575121) (-2271 . 575069) - (-2272 . 575014) (-2273 . 574983) (-2274 . 574877) (-2275 . 574651) - (-2276 . 574340) (-2277 . 574165) (-2278 . 573982) (-2279 . 573710) - (-2280 . 573637) (-2281 . 573572) (-2282 . 573544) (-2283 . 573494) - (-2284 . 572071) (-2285 . 570923) (-2286 . 569785) (-2287 . 569307) - (-2288 . 568743) (-2289 . 568015) (-2290 . 567452) (-2291 . 566822) - (-2292 . 566243) (-2293 . 566169) (-2294 . 566117) (-2295 . 566065) - (-2296 . 565991) (-2297 . 565936) (-2298 . 565884) (-2299 . 565832) - (-2300 . 565780) (-2301 . 565710) (-2302 . 565262) (-2303 . 565055) - (-2304 . 564805) (-2305 . 564470) (-2306 . 564215) (-2307 . 563912) - (-2308 . 563708) (-2309 . 563418) (-2310 . 562868) (-2311 . 562730) - (-2312 . 562527) (-2313 . 562246) (-2314 . 562160) (-2315 . 561825) - (-2316 . 561683) (-2317 . 561391) (-2318 . 561170) (-2319 . 561044) - (-2320 . 560919) (-2321 . 560772) (-2322 . 560628) (-2323 . 560512) - (-2324 . 560381) (-2325 . 560008) (-2326 . 559748) (-2327 . 559473) - (-2328 . 559233) (-2329 . 558903) (-2330 . 558558) (-2331 . 558150) - (-2332 . 557727) (-2333 . 557530) (-2334 . 557255) (-2335 . 557087) - (-2336 . 556886) (-2337 . 556664) (-2338 . 556509) (-2339 . 556323) - (-2340 . 556220) (-2341 . 556192) (-2342 . 556164) (-2343 . 555988) - (-2344 . 555914) (-2345 . 555853) (-2346 . 555800) (-2347 . 555731) - (-2348 . 555661) (-2349 . 555542) (-2350 . 555364) (-2351 . 555309) - (-2352 . 555063) (-2353 . 554990) (-2354 . 554920) (-2355 . 554850) - (-2356 . 554760) (-2357 . 554570) (-2358 . 554497) (-2359 . 554427) - (-2360 . 554362) (-2361 . 554307) (-2362 . 554216) (-2363 . 553923) - (-2364 . 553595) (-2365 . 553521) (-2366 . 553199) (-2367 . 552992) - (-2368 . 552906) (-2369 . 552820) (-2370 . 552734) (-2371 . 552648) - (-2372 . 552562) (-2373 . 552476) (-2374 . 552390) (-2375 . 552304) - (-2376 . 552218) (-2377 . 552132) (-2378 . 552046) (-2379 . 551960) - (-2380 . 551874) (-2381 . 551788) (-2382 . 551702) (-2383 . 551616) - (-2384 . 551530) (-2385 . 551444) (-2386 . 551358) (-2387 . 551272) - (-2388 . 551186) (-2389 . 551100) (-2390 . 551014) (-2391 . 550928) - (-2392 . 550842) (-2393 . 550756) (-2394 . 550653) (-2395 . 550564) - (-2396 . 550354) (-2397 . 550295) (-2398 . 550239) (-2399 . 550150) - (-2400 . 550038) (-2401 . 549950) (-2402 . 549802) (-2403 . 549740) - (-2404 . 549712) (-2405 . 549684) (-2406 . 549656) (-2407 . 549628) - (-2408 . 549457) (-2409 . 549304) (-2410 . 549151) (-2411 . 548977) - (-2412 . 548767) (-2413 . 548643) (-2414 . 548435) (-2415 . 548343) - (-2416 . 548251) (-2417 . 548115) (-2418 . 548020) (-2419 . 547925) - (-2420 . 546409) (-2421 . 546285) (-2422 . 546257) (-2423 . 546229) - (-2424 . 546201) (-2425 . 546173) (-2426 . 546145) (-2427 . 546117) - (-2428 . 546089) (-2429 . 546061) (-2430 . 546033) (-2431 . 546005) - (-2432 . 545977) (-2433 . 545949) (-2434 . 545921) (-2435 . 545893) - (-2436 . 545865) (-2437 . 545837) (-2438 . 545784) (-2439 . 545756) - (-2440 . 545728) (-2441 . 545650) (-2442 . 545597) (-2443 . 545544) - (-2444 . 545491) (-2445 . 545413) (-2446 . 545323) (-2447 . 545228) - (-2448 . 545146) (-2449 . 544837) (-2450 . 544641) (-2451 . 544546) - (-2452 . 544438) (-2453 . 544020) (-2454 . 543992) (-2455 . 543827) - (-2456 . 543750) (-2457 . 543561) (-2458 . 543381) (-2459 . 542957) - (-2460 . 542805) (-2461 . 542625) (-2462 . 542452) (-2463 . 542190) - (-2464 . 541938) (-2465 . 541127) (-2466 . 540958) (-2467 . 540739) - (-2468 . 539897) (-2469 . 539765) (-2470 . 539633) (-2471 . 539501) - (-2472 . 539369) (-2473 . 539237) (-2474 . 539105) (-2475 . 538910) - (-2476 . 538716) (-2477 . 538573) (-2478 . 538258) (-2479 . 538143) - (-2480 . 537803) (-2481 . 537643) (-2482 . 537504) (-2483 . 537365) - (-2484 . 537236) (-2485 . 537151) (-2486 . 537099) (-2487 . 536618) - (-2488 . 535354) (-2489 . 535225) (-2490 . 535082) (-2491 . 534744) - (-2492 . 534639) (-2493 . 534388) (-2494 . 534154) (-2495 . 534049) - (-2496 . 533974) (-2497 . 533899) (-2498 . 533824) (-2499 . 533765) - (-2500 . 533694) (-2501 . 533641) (-2502 . 533579) (-2503 . 533508) - (-2504 . 533145) (-2505 . 532858) (-2506 . 532747) (-2507 . 532654) - (-2508 . 532561) (-2509 . 532474) (-2510 . 532254) (-2511 . 532034) - (-2512 . 531616) (-2513 . 531344) (-2514 . 531201) (-2515 . 531108) - (-2516 . 530965) (-2517 . 530813) (-2518 . 530659) (-2519 . 530588) - (-2520 . 530379) (-2521 . 530201) (-2522 . 529991) (-2523 . 529813) - (-2524 . 529779) (-2525 . 529745) (-2526 . 529714) (-2527 . 529596) - (-2528 . 529281) (-2529 . 529003) (-2530 . 528882) (-2531 . 528755) - (-2532 . 528670) (-2533 . 528597) (-2534 . 528507) (-2535 . 528436) - (-2536 . 528380) (-2537 . 528324) (-2538 . 528268) (-2539 . 528197) - (-2540 . 528126) (-2541 . 528055) (-2542 . 527976) (-2543 . 527898) - (-2544 . 527813) (-2545 . 527553) (-2546 . 527464) (-2547 . 527166) - (-2548 . 527068) (-2549 . 526990) (-2550 . 526912) (-2551 . 526769) - (-2552 . 526690) (-2553 . 526618) (-2554 . 526415) (-2555 . 526359) - (-2556 . 526171) (-2557 . 526072) (-2558 . 525954) (-2559 . 525833) - (-2560 . 525690) (-2561 . 525547) (-2562 . 525407) (-2563 . 525267) - (-2564 . 525124) (-2565 . 524997) (-2566 . 524867) (-2567 . 524743) - (-2568 . 524619) (-2569 . 524513) (-2570 . 524407) (-2571 . 524304) - (-2572 . 524154) (-2573 . 524001) (-2574 . 523848) (-2575 . 523704) - (-2576 . 523550) (-2577 . 523473) (-2578 . 523393) (-2579 . 523238) - (-2580 . 523158) (-2581 . 523078) (-2582 . 522998) (-2583 . 522895) - (-2584 . 522836) (-2585 . 522774) (-2586 . 522599) (-2587 . 522446) - (-2588 . 522293) (-2589 . 522119) (-2590 . 521927) (-2591 . 521628) - (-2592 . 521433) (-2593 . 521318) (-2594 . 521192) (-2595 . 521115) - (-2596 . 520983) (-2597 . 520677) (-2598 . 520494) (-2599 . 519949) - (-2600 . 519729) (-2601 . 519555) (-2602 . 519385) (-2603 . 519286) - (-2604 . 519187) (-2605 . 518969) (-2606 . 518867) (-2607 . 518794) - (-2608 . 518718) (-2609 . 518639) (-2610 . 518342) (-2611 . 518243) - (-2612 . 518081) (-2613 . 517847) (-2614 . 517405) (-2615 . 517275) - (-2616 . 517135) (-2617 . 516826) (-2618 . 516524) (-2619 . 516208) - (-2620 . 515802) (-2621 . 515734) (-2622 . 515666) (-2623 . 515598) - (-2624 . 515503) (-2625 . 515395) (-2626 . 515287) (-2627 . 515185) - (-2628 . 515083) (-2629 . 514981) (-2630 . 514903) (-2631 . 514579) - (-2632 . 514111) (-2633 . 513484) (-2634 . 513420) (-2635 . 513301) - (-2636 . 513182) (-2637 . 513074) (-2638 . 512966) (-2639 . 512810) - (-2640 . 512208) (-2641 . 511921) (-2642 . 511753) (-2643 . 511631) - (-2644 . 511233) (-2645 . 510997) (-2646 . 510796) (-2647 . 510588) - (-2648 . 510395) (-2649 . 510125) (-2650 . 509946) (-2651 . 509877) - (-2652 . 509801) (-2653 . 509660) (-2654 . 509457) (-2655 . 509313) - (-2656 . 509063) (-2657 . 508755) (-2658 . 508399) (-2659 . 508240) - (-2660 . 508034) (-2661 . 507874) (-2662 . 507801) (-2663 . 507682) - (-2664 . 507563) (-2665 . 507403) (-2666 . 507223) (-2667 . 507040) - (-2668 . 506942) (-2669 . 506844) (-2670 . 506743) (-2671 . 506639) - (-2672 . 506513) (-2673 . 506387) (-2674 . 506258) (-2675 . 506126) - (-2676 . 506028) (-2677 . 505930) (-2678 . 505829) (-2679 . 505728) - (-2680 . 505562) (-2681 . 505396) (-2682 . 505202) (-2683 . 505036) - (-2684 . 504868) (-2685 . 504697) (-2686 . 504532) (-2687 . 504367) - (-2688 . 504267) (-2689 . 504075) (-2690 . 503974) (-2691 . 503779) - (-2692 . 503529) (-2693 . 503284) (-2694 . 502962) (-2695 . 502574) - (-2696 . 502373) (-2697 . 502109) (-2698 . 501566) (-2699 . 501272) - (-2700 . 501135) (-2701 . 500889) (-2702 . 500685) (-2703 . 500578) - (-2704 . 500477) (-2705 . 500367) (-2706 . 500257) (-2707 . 500129) - (-2708 . 500022) (-2709 . 499918) (-2710 . 499762) (-2711 . 499628) - (-2712 . 499494) (-2713 . 499384) (-2714 . 499265) (-2715 . 499088) - (-2716 . 498954) (-2717 . 498817) (-2718 . 498686) (-2719 . 498576) - (-2720 . 498454) (-2721 . 498329) (-2722 . 498228) (-2723 . 498044) - (-2724 . 497870) (-2725 . 497671) (-2726 . 497497) (-2727 . 497381) - (-2728 . 497256) (-2729 . 497128) (-2730 . 497009) (-2731 . 496784) - (-2732 . 496613) (-2733 . 496442) (-2734 . 496265) (-2735 . 496113) - (-2736 . 495836) (-2737 . 495444) (-2738 . 495313) (-2739 . 495108) - (-2740 . 494925) (-2741 . 494741) (-2742 . 494612) (-2743 . 494508) - (-2744 . 494367) (-2745 . 494235) (-2746 . 494121) (-2747 . 493973) - (-2748 . 493834) (-2749 . 493733) (-2750 . 493629) (-2751 . 493522) - (-2752 . 493412) (-2753 . 493311) (-2754 . 493204) (-2755 . 493097) - (-2756 . 492984) (-2757 . 492877) (-2758 . 492764) (-2759 . 492633) - (-2760 . 492484) (-2761 . 491946) (-2762 . 491803) (-2763 . 491653) - (-2764 . 491530) (-2765 . 491426) (-2766 . 491322) (-2767 . 491215) - (-2768 . 491077) (-2769 . 490970) (-2770 . 490839) (-2771 . 490683) - (-2772 . 490410) (-2773 . 490263) (-2774 . 490060) (-2775 . 489959) - (-2776 . 489805) (-2777 . 489685) (-2778 . 489556) (-2779 . 489461) - (-2780 . 489373) (-2781 . 489285) (-2782 . 489197) (-2783 . 489109) - (-2784 . 489021) (-2785 . 488927) (-2786 . 488839) (-2787 . 488751) - (-2788 . 488663) (-2789 . 488575) (-2790 . 488487) (-2791 . 488399) - (-2792 . 488311) (-2793 . 488223) (-2794 . 488135) (-2795 . 488047) - (-2796 . 487909) (-2797 . 487771) (-2798 . 487651) (-2799 . 487531) - (-2800 . 487390) (-2801 . 487302) (-2802 . 487214) (-2803 . 487126) - (-2804 . 487038) (-2805 . 486900) (-2806 . 486762) (-2807 . 486674) - (-2808 . 486586) (-2809 . 486498) (-2810 . 486410) (-2811 . 486322) - (-2812 . 486234) (-2813 . 486143) (-2814 . 486049) (-2815 . 485955) - (-2816 . 485858) (-2817 . 485808) (-2818 . 485758) (-2819 . 485705) - (-2820 . 485451) (-2821 . 485402) (-2822 . 485352) (-2823 . 485318) - (-2824 . 485253) (-2825 . 485216) (-2826 . 485079) (-2827 . 484841) - (-2828 . 484770) (-2829 . 484584) (-2830 . 484335) (-2831 . 484177) - (-2832 . 483650) (-2833 . 483451) (-2834 . 483236) (-2835 . 483074) - (-2836 . 482675) (-2837 . 482508) (-2838 . 481433) (-2839 . 481310) - (-2840 . 481093) (-2841 . 480962) (-2842 . 480831) (-2843 . 480673) - (-2844 . 480569) (-2845 . 480510) (-2846 . 480451) (-2847 . 480345) - (-2848 . 480239) (-2849 . 479321) (-2850 . 477192) (-2851 . 476376) - (-2852 . 474571) (-2853 . 474503) (-2854 . 474435) (-2855 . 474367) - (-2856 . 474299) (-2857 . 474231) (-2858 . 474153) (-2859 . 473751) - (-2860 . 473395) (-2861 . 473213) (-2862 . 472674) (-2863 . 472498) - (-2864 . 472276) (-2865 . 472054) (-2866 . 471832) (-2867 . 471613) - (-2868 . 471394) (-2869 . 471175) (-2870 . 470956) (-2871 . 470737) - (-2872 . 470518) (-2873 . 470417) (-2874 . 469684) (-2875 . 469629) - (-2876 . 469574) (-2877 . 469519) (-2878 . 469464) (-2879 . 469313) - (-2880 . 469020) (-2881 . 468771) (-2882 . 468743) (-2883 . 468693) - (-2884 . 468101) (-2885 . 467567) (-2886 . 467118) (-2887 . 466956) - (-2888 . 466775) (-2889 . 466486) (-2890 . 466098) (-2891 . 465222) - (-2892 . 464880) (-2893 . 464711) (-2894 . 464488) (-2895 . 464237) - (-2896 . 463887) (-2897 . 462869) (-2898 . 462554) (-2899 . 462342) - (-2900 . 461775) (-2901 . 461259) (-2902 . 459481) (-2903 . 459009) - (-2904 . 458410) (-2905 . 458160) (-2906 . 458026) (-2907 . 457811) - (-2908 . 457734) (-2909 . 457657) (-2910 . 457550) (-2911 . 457364) - (-2912 . 457195) (-2913 . 457015) (-2914 . 456424) (-2915 . 456261) - (-2916 . 455683) (-2917 . 455613) (-2918 . 455538) (-2919 . 455172) - (-2920 . 454493) (-2921 . 454315) (-2922 . 454243) (-2923 . 454103) - (-2924 . 453913) (-2925 . 453806) (-2926 . 453699) (-2927 . 453583) - (-2928 . 453467) (-2929 . 453351) (-2930 . 453073) (-2931 . 452922) - (-2932 . 452778) (-2933 . 452704) (-2934 . 452618) (-2935 . 452544) - (-2936 . 452470) (-2937 . 452396) (-2938 . 452252) (-2939 . 452101) - (-2940 . 451926) (-2941 . 451775) (-2942 . 451624) (-2943 . 451497) - (-2944 . 451108) (-2945 . 450822) (-2946 . 450536) (-2947 . 450125) - (-2948 . 449839) (-2949 . 449766) (-2950 . 449619) (-2951 . 449513) - (-2952 . 449439) (-2953 . 449369) (-2954 . 449290) (-2955 . 449213) - (-2956 . 449136) (-2957 . 448984) (-2958 . 448881) (-2959 . 448822) - (-2960 . 448757) (-2961 . 448692) (-2962 . 448595) (-2963 . 448498) - (-2964 . 448338) (-2965 . 448251) (-2966 . 448164) (-2967 . 448077) - (-2968 . 448018) (-2969 . 447959) (-2970 . 447826) (-2971 . 447767) - (-2972 . 447597) (-2973 . 447509) (-2974 . 447412) (-2975 . 447378) - (-2976 . 447347) (-2977 . 447263) (-2978 . 447207) (-2979 . 447145) - (-2980 . 447111) (-2981 . 447077) (-2982 . 447043) (-2983 . 447009) - (-2984 . 446975) (-2985 . 444222) (-2986 . 444188) (-2987 . 444154) - (-2988 . 444120) (-2989 . 444008) (-2990 . 443974) (-2991 . 443922) - (-2992 . 443888) (-2993 . 443791) (-2994 . 443729) (-2995 . 443638) - (-2996 . 443547) (-2997 . 443492) (-2998 . 443440) (-2999 . 443388) - (-3000 . 443336) (-3001 . 443284) (-3002 . 442859) (-3003 . 442693) - (-3004 . 442640) (-3005 . 442571) (-3006 . 442518) (-3007 . 442288) - (-3008 . 442132) (-3009 . 441611) (-3010 . 441470) (-3011 . 441436) - (-3012 . 441381) (-3013 . 440670) (-3014 . 440355) (-3015 . 439850) - (-3016 . 439772) (-3017 . 439720) (-3018 . 439668) (-3019 . 439484) - (-3020 . 439432) (-3021 . 439380) (-3022 . 439304) (-3023 . 439242) - (-3024 . 439024) (-3025 . 438957) (-3026 . 438863) (-3027 . 438769) - (-3028 . 438586) (-3029 . 438504) (-3030 . 438382) (-3031 . 438236) - (-3032 . 437576) (-3033 . 436869) (-3034 . 436765) (-3035 . 436664) - (-3036 . 436563) (-3037 . 436452) (-3038 . 436284) (-3039 . 436078) - (-3040 . 435985) (-3041 . 435908) (-3042 . 435852) (-3043 . 435781) - (-3044 . 435661) (-3045 . 435560) (-3046 . 435462) (-3047 . 435382) - (-3048 . 435302) (-3049 . 435225) (-3050 . 435154) (-3051 . 435083) - (-3052 . 435012) (-3053 . 434941) (-3054 . 434870) (-3055 . 434799) - (-3056 . 434706) (-3057 . 434511) (-3058 . 434267) (-3059 . 434097) - (-3060 . 433725) (-3061 . 433556) (-3062 . 433440) (-3063 . 432936) - (-3064 . 432554) (-3065 . 432308) (-3066 . 431879) (-3067 . 431787) - (-3068 . 431690) (-3069 . 428400) (-3070 . 427737) (-3071 . 427624) - (-3072 . 427550) (-3073 . 427458) (-3074 . 427264) (-3075 . 427070) - (-3076 . 426999) (-3077 . 426928) (-3078 . 426847) (-3079 . 426766) - (-3080 . 426641) (-3081 . 426507) (-3082 . 426426) (-3083 . 426352) - (-3084 . 426187) (-3085 . 426028) (-3086 . 425797) (-3087 . 425649) - (-3088 . 425545) (-3089 . 425441) (-3090 . 425356) (-3091 . 424988) - (-3092 . 424907) (-3093 . 424820) (-3094 . 424739) (-3095 . 424493) - (-3096 . 424273) (-3097 . 424086) (-3098 . 423764) (-3099 . 423471) - (-3100 . 423178) (-3101 . 422868) (-3102 . 422551) (-3103 . 422399) - (-3104 . 422211) (-3105 . 421738) (-3106 . 421656) (-3107 . 421440) - (-3108 . 421224) (-3109 . 420965) (-3110 . 420541) (-3111 . 420027) - (-3112 . 419897) (-3113 . 419623) (-3114 . 419444) (-3115 . 419329) - (-3116 . 419225) (-3117 . 419170) (-3118 . 419093) (-3119 . 419023) - (-3120 . 418950) (-3121 . 418895) (-3122 . 418822) (-3123 . 418767) - (-3124 . 418412) (-3125 . 418004) (-3126 . 417851) (-3127 . 417698) - (-3128 . 417617) (-3129 . 417464) (-3130 . 417311) (-3131 . 417176) - (-3132 . 417041) (-3133 . 416906) (-3134 . 416771) (-3135 . 416636) - (-3136 . 416501) (-3137 . 416445) (-3138 . 416292) (-3139 . 416181) - (-3140 . 416070) (-3141 . 415985) (-3142 . 415875) (-3143 . 415772) - (-3144 . 411621) (-3145 . 411173) (-3146 . 410746) (-3147 . 410129) - (-3148 . 409528) (-3149 . 409310) (-3150 . 409132) (-3151 . 408872) - (-3152 . 408461) (-3153 . 408167) (-3154 . 407724) (-3155 . 407546) - (-3156 . 407153) (-3157 . 406760) (-3158 . 406575) (-3159 . 406368) - (-3160 . 406147) (-3161 . 405841) (-3162 . 405642) (-3163 . 405013) - (-3164 . 404856) (-3165 . 404465) (-3166 . 404413) (-3167 . 404364) - (-3168 . 404312) (-3169 . 404263) (-3170 . 404211) (-3171 . 404065) - (-3172 . 404013) (-3173 . 403867) (-3174 . 403815) (-3175 . 403669) - (-3176 . 403617) (-3177 . 403242) (-3178 . 403190) (-3179 . 403141) - (-3180 . 403089) (-3181 . 403040) (-3182 . 402988) (-3183 . 402939) - (-3184 . 402887) (-3185 . 402838) (-3186 . 402786) (-3187 . 402737) - (-3188 . 402671) (-3189 . 402553) (-3190 . 401391) (-3191 . 400974) - (-3192 . 400866) (-3193 . 400623) (-3194 . 400473) (-3195 . 400323) - (-3196 . 400156) (-3197 . 397940) (-3198 . 397676) (-3199 . 397522) - (-3200 . 397376) (-3201 . 397230) (-3202 . 397011) (-3203 . 396879) - (-3204 . 396804) (-3205 . 396729) (-3206 . 396594) (-3207 . 396464) - (-3208 . 396334) (-3209 . 396207) (-3210 . 396080) (-3211 . 395953) - (-3212 . 395826) (-3213 . 395723) (-3214 . 395623) (-3215 . 395529) - (-3216 . 395399) (-3217 . 395248) (-3218 . 394869) (-3219 . 394754) - (-3220 . 394511) (-3221 . 394048) (-3222 . 393735) (-3223 . 393166) - (-3224 . 392595) (-3225 . 391580) (-3226 . 391036) (-3227 . 390723) - (-3228 . 390385) (-3229 . 390054) (-3230 . 389734) (-3231 . 389681) - (-3232 . 389554) (-3233 . 389049) (-3234 . 387906) (-3235 . 387851) - (-3236 . 387796) (-3237 . 387720) (-3238 . 387601) (-3239 . 387526) - (-3240 . 387451) (-3241 . 387373) (-3242 . 387148) (-3243 . 387089) - (-3244 . 387030) (-3245 . 386927) (-3246 . 386824) (-3247 . 386721) - (-3248 . 386618) (-3249 . 386537) (-3250 . 386463) (-3251 . 386248) - (-3252 . 386014) (-3253 . 385980) (-3254 . 385946) (-3255 . 385918) - (-3256 . 385890) (-3257 . 385672) (-3258 . 385394) (-3259 . 385244) - (-3260 . 385114) (-3261 . 384984) (-3262 . 384884) (-3263 . 384707) - (-3264 . 384547) (-3265 . 384447) (-3266 . 384270) (-3267 . 384110) - (-3268 . 383951) (-3269 . 383812) (-3270 . 383662) (-3271 . 383532) - (-3272 . 383402) (-3273 . 383255) (-3274 . 383128) (-3275 . 383025) - (-3276 . 382918) (-3277 . 382821) (-3278 . 382656) (-3279 . 382508) - (-3280 . 382093) (-3281 . 381993) (-3282 . 381890) (-3283 . 381802) - (-3284 . 381722) (-3285 . 381572) (-3286 . 381442) (-3287 . 381390) - (-3288 . 381317) (-3289 . 381242) (-3290 . 380966) (-3291 . 380854) - (-3292 . 380541) (-3293 . 380360) (-3294 . 378749) (-3295 . 378116) - (-3296 . 378056) (-3297 . 377938) (-3298 . 377820) (-3299 . 377676) - (-3300 . 377521) (-3301 . 377360) (-3302 . 377199) (-3303 . 376991) - (-3304 . 376802) (-3305 . 376647) (-3306 . 376489) (-3307 . 376331) - (-3308 . 376176) (-3309 . 376036) (-3310 . 375610) (-3311 . 375482) - (-3312 . 375354) (-3313 . 375226) (-3314 . 375083) (-3315 . 374940) - (-3316 . 374798) (-3317 . 374653) (-3318 . 373900) (-3319 . 373740) - (-3320 . 373552) (-3321 . 373395) (-3322 . 373155) (-3323 . 372908) - (-3324 . 372661) (-3325 . 372450) (-3326 . 372311) (-3327 . 372100) - (-3328 . 371810) (-3329 . 371599) (-3330 . 371460) (-3331 . 371249) - (-3332 . 370943) (-3333 . 370798) (-3334 . 370656) (-3335 . 370432) - (-3336 . 370290) (-3337 . 370065) (-3338 . 369866) (-3339 . 369709) - (-3340 . 369379) (-3341 . 369219) (-3342 . 369059) (-3343 . 368899) - (-3344 . 368727) (-3345 . 368555) (-3346 . 368380) (-3347 . 368028) - (-3348 . 367834) (-3349 . 367672) (-3350 . 367597) (-3351 . 367522) - (-3352 . 367447) (-3353 . 367372) (-3354 . 367297) (-3355 . 367222) - (-3356 . 367097) (-3357 . 366922) (-3358 . 366797) (-3359 . 366710) - (-3360 . 366643) (-3361 . 366576) (-3362 . 366509) (-3363 . 366442) - (-3364 . 366375) (-3365 . 366308) (-3366 . 366241) (-3367 . 366174) - (-3368 . 366107) (-3369 . 366040) (-3370 . 365973) (-3371 . 365906) - (-3372 . 365839) (-3373 . 365772) (-3374 . 365705) (-3375 . 365638) - (-3376 . 365571) (-3377 . 365504) (-3378 . 365437) (-3379 . 365370) - (-3380 . 365303) (-3381 . 365236) (-3382 . 365169) (-3383 . 365102) - (-3384 . 365035) (-3385 . 364968) (-3386 . 364317) (-3387 . 363666) - (-3388 . 363537) (-3389 . 363413) (-3390 . 363289) (-3391 . 363147) - (-3392 . 362991) (-3393 . 362846) (-3394 . 362669) (-3395 . 362058) - (-3396 . 361933) (-3397 . 361807) (-3398 . 361126) (-3399 . 360425) - (-3400 . 360323) (-3401 . 360266) (-3402 . 360209) (-3403 . 360152) - (-3404 . 360095) (-3405 . 360035) (-3406 . 359970) (-3407 . 359861) - (-3408 . 359752) (-3409 . 359643) (-3410 . 359363) (-3411 . 359288) - (-3412 . 359061) (-3413 . 358979) (-3414 . 358900) (-3415 . 358821) - (-3416 . 358742) (-3417 . 358662) (-3418 . 358583) (-3419 . 358489) - (-3420 . 358388) (-3421 . 358319) (-3422 . 358269) (-3423 . 357575) - (-3424 . 356924) (-3425 . 356130) (-3426 . 356048) (-3427 . 355943) - (-3428 . 355850) (-3429 . 355757) (-3430 . 355682) (-3431 . 355607) - (-3432 . 355532) (-3433 . 355476) (-3434 . 355420) (-3435 . 355353) - (-3436 . 355286) (-3437 . 355223) (-3438 . 354831) (-3439 . 354336) - (-3440 . 353876) (-3441 . 353621) (-3442 . 353430) (-3443 . 353086) - (-3444 . 352788) (-3445 . 352618) (-3446 . 352486) (-3447 . 352345) - (-3448 . 352189) (-3449 . 352019) (-3450 . 350625) (-3451 . 350487) - (-3452 . 350341) (-3453 . 350110) (-3454 . 349840) (-3455 . 349780) - (-3456 . 349723) (-3457 . 349666) (-3458 . 349453) (-3459 . 349313) - (-3460 . 349205) (-3461 . 349087) (-3462 . 349020) (-3463 . 348946) - (-3464 . 348831) (-3465 . 348574) (-3466 . 348472) (-3467 . 348274) - (-3468 . 347958) (-3469 . 347484) (-3470 . 347377) (-3471 . 347269) - (-3472 . 347118) (-3473 . 346976) (-3474 . 346557) (-3475 . 346307) - (-3476 . 345630) (-3477 . 345475) (-3478 . 345360) (-3479 . 345249) - (-3480 . 344426) (-3481 . 344373) (-3482 . 344320) (-3483 . 344124) - (-3484 . 342845) (-3485 . 342394) (-3486 . 340998) (-3487 . 340142) - (-3488 . 340092) (-3489 . 340042) (-3490 . 339992) (-3491 . 339924) - (-3492 . 339848) (-3493 . 339657) (-3494 . 339584) (-3495 . 339508) - (-3496 . 339435) (-3497 . 339317) (-3498 . 339265) (-3499 . 339185) - (-3500 . 339105) (-3501 . 339025) (-3502 . 338973) (-3503 . 338726) - (-3504 . 338423) (-3505 . 338338) (-3506 . 338253) (-3507 . 338191) - (-3508 . 337801) (-3509 . 336925) (-3510 . 336349) (-3511 . 335111) - (-3512 . 334300) (-3513 . 334048) (-3514 . 333796) (-3515 . 333369) - (-3516 . 333123) (-3517 . 332877) (-3518 . 332631) (-3519 . 332385) - (-3520 . 332139) (-3521 . 331893) (-3522 . 331646) (-3523 . 331399) - (-3524 . 331152) (-3525 . 330905) (-3526 . 330322) (-3527 . 330204) - (-3528 . 329353) (-3529 . 329321) (-3530 . 328972) (-3531 . 328744) - (-3532 . 328643) (-3533 . 328542) (-3534 . 326769) (-3535 . 326655) - (-3536 . 325600) (-3537 . 325507) (-3538 . 324583) (-3539 . 324248) - (-3540 . 323913) (-3541 . 323808) (-3542 . 323721) (-3543 . 323692) - (-3544 . 323635) (-3545 . 323555) (-3546 . 323483) (-3547 . 323408) - (-3548 . 323333) (-3549 . 323301) (-3550 . 323269) (-3551 . 323237) - (-3552 . 323205) (-3553 . 323173) (-3554 . 323141) (-3555 . 323109) - (-3556 . 323077) (-3557 . 323048) (-3558 . 322935) (-3559 . 322822) - (-3560 . 322709) (-3561 . 322596) (-3562 . 321507) (-3563 . 321385) - (-3564 . 321248) (-3565 . 321114) (-3566 . 320980) (-3567 . 320683) - (-3568 . 320386) (-3569 . 320038) (-3570 . 319808) (-3571 . 319578) - (-3572 . 319465) (-3573 . 319352) (-3574 . 314070) (-3575 . 309696) - (-3576 . 309384) (-3577 . 309229) (-3578 . 308701) (-3579 . 308368) - (-3580 . 308171) (-3581 . 307974) (-3582 . 307777) (-3583 . 307580) - (-3584 . 307464) (-3585 . 307338) (-3586 . 307222) (-3587 . 307106) - (-3588 . 307011) (-3589 . 306916) (-3590 . 306803) (-3591 . 306597) - (-3592 . 305441) (-3593 . 305346) (-3594 . 305230) (-3595 . 305135) - (-3596 . 304886) (-3597 . 304773) (-3598 . 304555) (-3599 . 304436) - (-3600 . 304135) (-3601 . 303404) (-3602 . 302821) (-3603 . 302340) - (-3604 . 302092) (-3605 . 301844) (-3606 . 301496) (-3607 . 300882) - (-3608 . 300434) (-3609 . 300277) (-3610 . 300131) (-3611 . 299805) - (-3612 . 299647) (-3613 . 299504) (-3614 . 299361) (-3615 . 299218) - (-3616 . 298937) (-3617 . 298715) (-3618 . 298188) (-3619 . 297973) - (-3620 . 297758) (-3621 . 297370) (-3622 . 297190) (-3623 . 296978) - (-3624 . 296667) (-3625 . 296473) (-3626 . 296298) (-3627 . 295152) - (-3628 . 294780) (-3629 . 294577) (-3630 . 294371) (-3631 . 293528) - (-3632 . 293499) (-3633 . 293430) (-3634 . 293359) (-3635 . 293192) - (-3636 . 293163) (-3637 . 293134) (-3638 . 293078) (-3639 . 292925) - (-3640 . 292865) (-3641 . 292169) (-3642 . 290783) (-3643 . 290722) - (-3644 . 290396) (-3645 . 290324) (-3646 . 290267) (-3647 . 290210) - (-3648 . 290153) (-3649 . 290096) (-3650 . 290021) (-3651 . 289429) - (-3652 . 289069) (-3653 . 288994) (-3654 . 288934) (-3655 . 288816) - (-3656 . 287865) (-3657 . 287738) (-3658 . 287525) (-3659 . 287450) - (-3660 . 287396) (-3661 . 287342) (-3662 . 287233) (-3663 . 286920) - (-3664 . 286812) (-3665 . 286709) (-3666 . 286548) (-3667 . 286447) - (-3668 . 286349) (-3669 . 286211) (-3670 . 286073) (-3671 . 285935) - (-3672 . 285673) (-3673 . 285463) (-3674 . 285325) (-3675 . 285036) - (-3676 . 284883) (-3677 . 284604) (-3678 . 284382) (-3679 . 284229) - (-3680 . 284076) (-3681 . 283923) (-3682 . 283770) (-3683 . 283617) - (-3684 . 283407) (-3685 . 283287) (-3686 . 282895) (-3687 . 282559) - (-3688 . 282213) (-3689 . 281861) (-3690 . 281515) (-3691 . 281169) - (-3692 . 280781) (-3693 . 280393) (-3694 . 280005) (-3695 . 279633) - (-3696 . 278901) (-3697 . 278549) (-3698 . 278091) (-3699 . 277661) - (-3700 . 277043) (-3701 . 276441) (-3702 . 276049) (-3703 . 275713) - (-3704 . 275321) (-3705 . 274985) (-3706 . 274763) (-3707 . 274236) - (-3708 . 274021) (-3709 . 273806) (-3710 . 273590) (-3711 . 273410) - (-3712 . 273194) (-3713 . 273014) (-3714 . 272626) (-3715 . 272446) - (-3716 . 272234) (-3717 . 272144) (-3718 . 272054) (-3719 . 271963) - (-3720 . 271851) (-3721 . 271761) (-3722 . 271653) (-3723 . 271464) - (-3724 . 271408) (-3725 . 271327) (-3726 . 271246) (-3727 . 271165) - (-3728 . 271030) (-3729 . 270895) (-3730 . 270771) (-3731 . 270650) - (-3732 . 270532) (-3733 . 270396) (-3734 . 270263) (-3735 . 270144) - (-3736 . 269885) (-3737 . 269600) (-3738 . 269528) (-3739 . 269436) - (-3740 . 269344) (-3741 . 269258) (-3742 . 269160) (-3743 . 269019) - (-3744 . 268962) (-3745 . 268905) (-3746 . 268845) (-3747 . 268448) - (-3748 . 267924) (-3749 . 267646) (-3750 . 267225) (-3751 . 267112) - (-3752 . 266670) (-3753 . 266438) (-3754 . 266235) (-3755 . 266053) - (-3756 . 265923) (-3757 . 265717) (-3758 . 265510) (-3759 . 265319) - (-3760 . 264754) (-3761 . 264498) (-3762 . 264207) (-3763 . 263913) - (-3764 . 263616) (-3765 . 263316) (-3766 . 263186) (-3767 . 263053) - (-3768 . 262917) (-3769 . 262778) (-3770 . 261561) (-3771 . 261253) - (-3772 . 260889) (-3773 . 260792) (-3774 . 260551) (-3775 . 260255) - (-3776 . 259959) (-3777 . 259698) (-3778 . 259523) (-3779 . 259444) - (-3780 . 259356) (-3781 . 259255) (-3782 . 259160) (-3783 . 259078) - (-3784 . 259006) (-3785 . 258205) (-3786 . 258133) (-3787 . 257801) - (-3788 . 257729) (-3789 . 257397) (-3790 . 257325) (-3791 . 256876) - (-3792 . 256804) (-3793 . 256699) (-3794 . 256624) (-3795 . 256549) - (-3796 . 256477) (-3797 . 256134) (-3798 . 256004) (-3799 . 255927) - (-3800 . 255378) (-3801 . 255235) (-3802 . 255092) (-3803 . 254637) - (-3804 . 254306) (-3805 . 254093) (-3806 . 253838) (-3807 . 253488) - (-3808 . 253263) (-3809 . 253038) (-3810 . 252813) (-3811 . 252588) - (-3812 . 252375) (-3813 . 252162) (-3814 . 252010) (-3815 . 251826) - (-3816 . 251721) (-3817 . 251598) (-3818 . 251490) (-3819 . 251382) - (-3820 . 251055) (-3821 . 250788) (-3822 . 250475) (-3823 . 250169) - (-3824 . 249859) (-3825 . 249124) (-3826 . 248529) (-3827 . 248352) - (-3828 . 248207) (-3829 . 248052) (-3830 . 247929) (-3831 . 247824) - (-3832 . 247709) (-3833 . 247610) (-3834 . 247126) (-3835 . 247016) - (-3836 . 246906) (-3837 . 246796) (-3838 . 245709) (-3839 . 245194) - (-3840 . 245127) (-3841 . 245053) (-3842 . 244180) (-3843 . 244106) - (-3844 . 244050) (-3845 . 243994) (-3846 . 243962) (-3847 . 243876) - (-3848 . 243844) (-3849 . 243758) (-3850 . 243334) (-3851 . 242910) - (-3852 . 242353) (-3853 . 241241) (-3854 . 239517) (-3855 . 237955) - (-3856 . 237159) (-3857 . 236655) (-3858 . 236163) (-3859 . 235755) - (-3860 . 235095) (-3861 . 235020) (-3862 . 234928) (-3863 . 234856) - (-3864 . 234784) (-3865 . 234728) (-3866 . 234606) (-3867 . 234552) - (-3868 . 234491) (-3869 . 234437) (-3870 . 234334) (-3871 . 233894) - (-3872 . 233454) (-3873 . 233014) (-3874 . 232492) (-3875 . 232327) - (-3876 . 232162) (-3877 . 231851) (-3878 . 231764) (-3879 . 231674) - (-3880 . 231316) (-3881 . 231199) (-3882 . 231118) (-3883 . 230959) - (-3884 . 230845) (-3885 . 230770) (-3886 . 229918) (-3887 . 228731) - (-3888 . 228631) (-3889 . 228531) (-3890 . 228200) (-3891 . 228121) - (-3892 . 228045) (-3893 . 227938) (-3894 . 227780) (-3895 . 227672) - (-3896 . 227536) (-3897 . 227400) (-3898 . 227277) (-3899 . 227181) - (-3900 . 227032) (-3901 . 226936) (-3902 . 226781) (-3903 . 226626) - (-3904 . 225960) (-3905 . 225294) (-3906 . 224565) (-3907 . 224011) - (-3908 . 223457) (-3909 . 222903) (-3910 . 222236) (-3911 . 221569) - (-3912 . 220902) (-3913 . 220347) (-3914 . 219792) (-3915 . 219237) - (-3916 . 218683) (-3917 . 218129) (-3918 . 217575) (-3919 . 217021) - (-3920 . 216467) (-3921 . 215913) (-3922 . 215809) (-3923 . 215220) - (-3924 . 215114) (-3925 . 215038) (-3926 . 214895) (-3927 . 214802) - (-3928 . 214709) (-3929 . 214616) (-3930 . 214517) (-3931 . 214411) - (-3932 . 214287) (-3933 . 214163) (-3934 . 213796) (-3935 . 213673) - (-3936 . 213571) (-3937 . 213207) (-3938 . 212673) (-3939 . 212597) - (-3940 . 212521) (-3941 . 212428) (-3942 . 212245) (-3943 . 212149) - (-3944 . 212073) (-3945 . 211980) (-3946 . 211887) (-3947 . 211724) - (-3948 . 211173) (-3949 . 210622) (-3950 . 207825) (-3951 . 207652) - (-3952 . 206236) (-3953 . 205674) (-3954 . 205475) (-12 . 205303) - (-3956 . 205131) (-3957 . 204959) (-3958 . 204787) (-3959 . 204615) - (-3960 . 204443) (-3961 . 204271) (-3962 . 204156) (-3963 . 203784) - (-3964 . 203721) (-3965 . 203658) (-3966 . 203595) (-3967 . 203317) - (-3968 . 203050) (-3969 . 202997) (-3970 . 202354) (-3971 . 202303) - (-3972 . 202110) (-3973 . 202037) (-3974 . 201957) (-3975 . 201844) - (-3976 . 201654) (-3977 . 201290) (-3978 . 201018) (-3979 . 200967) - (-3980 . 200916) (-3981 . 200846) (-3982 . 200727) (-3983 . 200698) - (-3984 . 200596) (-3985 . 200474) (-3986 . 200420) (-3987 . 200243) - (-3988 . 200182) (-3989 . 200001) (-3990 . 199940) (-3991 . 199868) - (-3992 . 199393) (-3993 . 199017) (-3994 . 195414) (-3995 . 195361) - (-3996 . 195233) (-3997 . 195083) (-3998 . 195030) (-3999 . 194889) - (-4000 . 192828) (-4001 . 183589) (-4002 . 183438) (-4003 . 183368) - (-4004 . 183317) (-4005 . 183267) (-4006 . 183216) (-4007 . 183165) - (-4008 . 182967) (-4009 . 182824) (-4010 . 182710) (-4011 . 182589) - (-4012 . 182471) (-4013 . 182359) (-4014 . 182241) (-4015 . 182136) - (-4016 . 182055) (-4017 . 181951) (-4018 . 181013) (-4019 . 180793) - (-4020 . 180556) (-4021 . 180474) (-4022 . 180127) (-4023 . 178972) - (-4024 . 178898) (-4025 . 178803) (-4026 . 178729) (-4027 . 178527) - (-4028 . 178436) (-4029 . 178320) (-4030 . 178207) (-4031 . 178116) - (-4032 . 178025) (-4033 . 177935) (-4034 . 177845) (-4035 . 177755) - (-4036 . 177667) (-4037 . 175305) (-4038 . 175237) (-4039 . 175183) - (-4040 . 175119) (-4041 . 175055) (-4042 . 174991) (-4043 . 174930) - (-4044 . 174188) (-4045 . 174127) (-4046 . 174066) (-4047 . 173437) - (-4048 . 173384) (-4049 . 173256) (-4050 . 173192) (-4051 . 173138) - (-4052 . 173029) (-4053 . 171727) (-4054 . 171645) (-4055 . 171555) - (-4056 . 171497) (-4057 . 171247) (-4058 . 171162) (-4059 . 171087) - (-4060 . 171002) (-4061 . 170945) (-4062 . 170729) (-4063 . 170587) - (-4064 . 169866) (-4065 . 169310) (-4066 . 168754) (-4067 . 168198) - (-4068 . 167477) (-4069 . 166809) (-4070 . 166245) (-4071 . 165681) - (-4072 . 165417) (-4073 . 164975) (-4074 . 164640) (-4075 . 164296) - (-4076 . 163989) (-4077 . 163856) (-4078 . 163723) (-4079 . 163334) - (-4080 . 163241) (-4081 . 163148) (-4082 . 163055) (-4083 . 162962) - (-4084 . 162869) (-4085 . 162776) (-4086 . 162683) (-4087 . 162590) - (-4088 . 162497) (-4089 . 162404) (-4090 . 162311) (-4091 . 162218) - (-4092 . 162125) (-4093 . 162032) (-4094 . 161939) (-4095 . 161846) - (-4096 . 161753) (-4097 . 161660) (-4098 . 161567) (-4099 . 161474) - (-4100 . 161381) (-4101 . 161288) (-4102 . 161195) (-4103 . 161102) - (-4104 . 161009) (-4105 . 160824) (-4106 . 160509) (-4107 . 158937) - (-4108 . 158782) (-4109 . 158644) (-4110 . 158501) (-4111 . 158298) - (-4112 . 156343) (-4113 . 156215) (-4114 . 156090) (-4115 . 155962) - (-4116 . 155738) (-4117 . 155514) (-4118 . 155386) (-4119 . 155183) - (-4120 . 155004) (-4121 . 154477) (-4122 . 153950) (-4123 . 153669) - (-4124 . 153251) (-4125 . 152724) (-4126 . 152539) (-4127 . 152396) - (-4128 . 151896) (-4129 . 151253) (-4130 . 151197) (-4131 . 151103) - (-4132 . 150982) (-4133 . 150911) (-4134 . 150837) (-4135 . 150606) - (-4136 . 149980) (-4137 . 149548) (-4138 . 149466) (-4139 . 149324) - (-4140 . 148846) (-4141 . 148724) (-4142 . 148602) (-4143 . 148462) - (-4144 . 148275) (-4145 . 148159) (-4146 . 147875) (-4147 . 147806) - (-4148 . 147607) (-4149 . 147425) (-4150 . 147270) (-4151 . 147163) - (-4152 . 147112) (-4153 . 146728) (-4154 . 146200) (-4155 . 145978) - (-4156 . 145756) (-4157 . 145515) (-4158 . 145424) (-4159 . 143672) - (-4160 . 143083) (-4161 . 143004) (-4162 . 137535) (-4163 . 136744) - (-4164 . 136365) (-4165 . 136293) (-4166 . 136027) (-4167 . 135852) - (-4168 . 135362) (-4169 . 134936) (-4170 . 134492) (-4171 . 133624) - (-4172 . 133500) (-4173 . 133373) (-4174 . 133264) (-4175 . 133112) - (-4176 . 132998) (-4177 . 132859) (-4178 . 132777) (-4179 . 132695) - (-4180 . 132587) (-4181 . 132167) (-4182 . 131743) (-4183 . 131668) - (-4184 . 131402) (-4185 . 131135) (-4186 . 130752) (-4187 . 130051) - (-4188 . 129007) (-4189 . 128947) (-4190 . 128872) (-4191 . 128797) - (-4192 . 128674) (-4193 . 128422) (-4194 . 128335) (-4195 . 128259) - (-4196 . 128183) (-4197 . 128087) (-4198 . 124168) (-4199 . 122985) - (-4200 . 122321) (-4201 . 122134) (-4202 . 119918) (-4203 . 119592) - (-4204 . 119107) (-4205 . 118663) (-4206 . 118428) (-4207 . 118180) - (-4208 . 118089) (-4209 . 116642) (-4210 . 116563) (-4211 . 116457) - (-4212 . 114973) (-4213 . 114567) (-4214 . 114164) (-4215 . 114062) - (-4216 . 113980) (-4217 . 113822) (-4218 . 112523) (-4219 . 112441) - (-4220 . 112362) (-4221 . 112007) (-4222 . 111950) (-4223 . 111878) - (-4224 . 111821) (-4225 . 111764) (-4226 . 111634) (-4227 . 111430) - (-4228 . 111061) (-4229 . 110639) (-4230 . 106675) (-4231 . 106072) - (-4232 . 105444) (-4233 . 105229) (-4234 . 105014) (-4235 . 104846) - (-4236 . 104631) (-4237 . 104463) (-4238 . 104295) (-4239 . 104127) - (-4240 . 103959) (-4241 . 103687) (-4242 . 96812) (** . 93845) (-4244 . 93425) - (-4245 . 93177) (-4246 . 93120) (-4247 . 92622) (-4248 . 89797) - (-4249 . 89647) (-4250 . 89483) (-4251 . 89319) (-4252 . 89223) - (-4253 . 89105) (-4254 . 88981) (-4255 . 88838) (-4256 . 88667) - (-4257 . 88540) (-4258 . 88395) (-4259 . 88242) (-4260 . 88082) - (-4261 . 87566) (-4262 . 87475) (-4263 . 86805) (-4264 . 86610) - (-4265 . 86514) (-4266 . 86204) (-4267 . 85028) (-4268 . 84821) - (-4269 . 83644) (-4270 . 83569) (-4271 . 82388) (-4272 . 78795) - (-4273 . 78431) (-4274 . 78154) (-4275 . 78062) (-4276 . 77969) - (-4277 . 77692) (-4278 . 77599) (-4279 . 77506) (-4280 . 77413) - (-4281 . 77029) (-4282 . 76958) (-4283 . 76866) (-4284 . 76708) - (-4285 . 76354) (-4286 . 76196) (-4287 . 76088) (-4288 . 76059) - (-4289 . 75992) (-4290 . 75838) (-4291 . 75679) (-4292 . 75285) - (-4293 . 75210) (-4294 . 75104) (-4295 . 75032) (-4296 . 74954) - (-4297 . 74881) (-4298 . 74808) (-4299 . 74735) (-4300 . 74663) - (-4301 . 74591) (-4302 . 74518) (-4303 . 74277) (-4304 . 73937) - (-4305 . 73789) (-4306 . 73716) (-4307 . 73643) (-4308 . 73570) - (-4309 . 73316) (-4310 . 73172) (-4311 . 71836) (-4312 . 71642) - (-4313 . 71371) (-4314 . 71223) (-4315 . 71075) (-4316 . 70835) - (-4317 . 70640) (-4318 . 70370) (-4319 . 70174) (-4320 . 70145) - (-4321 . 70044) (-4322 . 69943) (-4323 . 69842) (-4324 . 69741) - (-4325 . 69640) (-4326 . 69539) (-4327 . 69438) (-4328 . 69337) - (-4329 . 69236) (-4330 . 69135) (-4331 . 69020) (-4332 . 68905) - (-4333 . 68854) (-4334 . 68737) (-4335 . 68679) (-4336 . 68578) - (-4337 . 68477) (-4338 . 68376) (-4339 . 68260) (-4340 . 68231) - (-4341 . 67498) (-4342 . 67373) (-4343 . 67248) (-4344 . 67108) - (-4345 . 66990) (-4346 . 66865) (-4347 . 66710) (-4348 . 65726) - (-4349 . 64866) (-4350 . 64812) (-4351 . 64758) (-4352 . 64550) - (-4353 . 64176) (-4354 . 63762) (-4355 . 63401) (-4356 . 63040) - (-4357 . 62887) (-4358 . 62585) (-4359 . 62429) (-4360 . 62103) - (-4361 . 62032) (-4362 . 61961) (-4363 . 61749) (-4364 . 60942) - (-4365 . 60736) (-4366 . 60362) (-4367 . 59842) (-4368 . 59574) - (-4369 . 59090) (-4370 . 58606) (-4371 . 58480) (-4372 . 57265) - (-4373 . 56073) (-4374 . 55500) (-4375 . 55282) (-4376 . 36985) - (-4377 . 36799) (-4378 . 34699) (-4379 . 32522) (-4380 . 32374) - (-4381 . 32192) (-4382 . 31783) (-4383 . 31482) (-4384 . 31131) - (-4385 . 30963) (-4386 . 30795) (-4387 . 30381) (-4388 . 16302) - (-4389 . 15183) (* . 11116) (-4391 . 10860) (-4392 . 10674) (-4393 . 9712) - (-4394 . 9659) (-4395 . 9599) (-4396 . 9330) (-4397 . 8695) (-4398 . 7413) - (-4399 . 6154) (-4400 . 5274) (-4401 . 4007) (-4402 . 424) (-4403 . 308) - (-4404 . 174) (-4405 . 30))
\ No newline at end of file +((-1322 . 719165) (-1323 . 718769) (-1324 . 718648) (-1325 . 718546) + (-1326 . 718433) (-1327 . 718316) (-1328 . 718262) (-1329 . 718127) + (-1330 . 718051) (-1331 . 717895) (-1332 . 717667) (-1333 . 716703) + (-1334 . 716456) (-1335 . 716171) (-1336 . 715886) (-1337 . 715601) + (-1338 . 715280) (-1339 . 715188) (-1340 . 715096) (-1341 . 715004) + (-1342 . 714912) (-1343 . 714820) (-1344 . 714728) (-1345 . 714633) + (-1346 . 714538) (-1347 . 714446) (-1348 . 714354) (-1349 . 714262) + (-1350 . 714170) (-1351 . 714078) (-1352 . 713976) (-1353 . 713874) + (-1354 . 713772) (-1355 . 713680) (-1356 . 713629) (-1357 . 713577) + (-1358 . 713507) (-1359 . 713083) (-1360 . 712888) (-1361 . 712861) + (-1362 . 712738) (-1363 . 712615) (-1364 . 712471) (-1365 . 712301) + (-1366 . 712177) (-1367 . 711938) (-1368 . 711865) (-1369 . 711724) + (-1370 . 711673) (-1371 . 711624) (-1372 . 711554) (-1373 . 711419) + (-1374 . 711284) (-1375 . 711056) (-1376 . 710808) (-1377 . 710753) + (-1378 . 710573) (-1379 . 710402) (-1380 . 710325) (-1381 . 710251) + (-1382 . 710096) (-1383 . 709941) (-1384 . 709755) (-1385 . 709572) + (-1386 . 709395) (-1387 . 709338) (-1388 . 709282) (-1389 . 709226) + (-1390 . 709152) (-1391 . 709075) (-1392 . 709006) (-1393 . 708861) + (-1394 . 708752) (-1395 . 708682) (-1396 . 708608) (-1397 . 708534) + (-1398 . 708482) (-1399 . 708430) (-1400 . 708378) (-1401 . 708255) + (-1402 . 707933) (-1403 . 707862) (-1404 . 707781) (-1405 . 707660) + (-1406 . 707579) (-1407 . 707498) (-1408 . 707341) (-1409 . 707190) + (-1410 . 707112) (-1411 . 707054) (-1412 . 706981) (-1413 . 706916) + (-1414 . 706851) (-1415 . 706789) (-1416 . 706716) (-1417 . 706600) + (-1418 . 706548) (-1419 . 706493) (-1420 . 706441) (-1421 . 706389) + (-1422 . 706361) (-1423 . 706333) (-1424 . 706305) (-1425 . 706261) + (-1426 . 706190) (-1427 . 706138) (-1428 . 706089) (-1429 . 706037) + (-1430 . 705985) (-1431 . 705869) (-1432 . 705753) (-1433 . 705661) + (-1434 . 705569) (-1435 . 705446) (-1436 . 705380) (-1437 . 705314) + (-1438 . 705255) (-1439 . 705227) (-1440 . 705199) (-1441 . 705171) + (-1442 . 705143) (-1443 . 705033) (-1444 . 704981) (-1445 . 704929) + (-1446 . 704877) (-1447 . 704825) (-1448 . 704773) (-1449 . 704721) + (-1450 . 704693) (-1451 . 704665) (-1452 . 704637) (-1453 . 704609) + (-1454 . 704581) (-1455 . 704553) (-1456 . 704525) (-1457 . 704497) + (-1458 . 704469) (-1459 . 704366) (-1460 . 704314) (-1461 . 704148) + (-1462 . 703964) (-1463 . 703753) (-1464 . 703638) (-1465 . 703405) + (-1466 . 703306) (-1467 . 703212) (-1468 . 703096) (-1469 . 702698) + (-1470 . 702480) (-1471 . 702431) (-1472 . 702403) (-1473 . 702327) + (-1474 . 702228) (-1475 . 702129) (-1476 . 702030) (-1477 . 701931) + (-1478 . 701832) (-1479 . 701733) (-1480 . 701575) (-1481 . 701499) + (-1482 . 701332) (-1483 . 701274) (-1484 . 701216) (-1485 . 700907) + (-1486 . 700653) (-1487 . 700569) (-1488 . 700436) (-1489 . 700378) + (-1490 . 700326) (-1491 . 700244) (-1492 . 700169) (-1493 . 700098) + (-1494 . 700043) (-1495 . 699991) (-1496 . 699917) (-1497 . 699843) + (-1498 . 699762) (-1499 . 699681) (-1500 . 699626) (-1501 . 699552) + (-1502 . 699478) (-1503 . 699404) (-1504 . 699327) (-1505 . 699272) + (-1506 . 699213) (-1507 . 699113) (-1508 . 699013) (-1509 . 698913) + (-1510 . 698813) (-1511 . 698713) (-1512 . 698613) (-1513 . 698513) + (-1514 . 698398) (-1515 . 698283) (-1516 . 698168) (-1517 . 698053) + (-1518 . 697938) (-1519 . 697823) (-1520 . 697705) (-1521 . 697629) + (-1522 . 697553) (-1523 . 697166) (-1524 . 696820) (-1525 . 696718) + (-1526 . 696456) (-1527 . 696354) (-1528 . 696149) (-1529 . 696036) + (-1530 . 695934) (-1531 . 695777) (-1532 . 695688) (-1533 . 695594) + (-1534 . 695514) (-1535 . 695440) (-1536 . 695362) (-1537 . 695303) + (-1538 . 695244) (-1539 . 695142) (-7 . 695114) (-8 . 695086) (-9 . 695058) + (-1543 . 694939) (-1544 . 694857) (-1545 . 694775) (-1546 . 694693) + (-1547 . 694611) (-1548 . 694529) (-1549 . 694435) (-1550 . 694365) + (-1551 . 694295) (-1552 . 694204) (-1553 . 694110) (-1554 . 694028) + (-1555 . 693946) (-1556 . 693455) (-1557 . 692902) (-1558 . 692692) + (-1559 . 692617) (-1560 . 692363) (-1561 . 692136) (-1562 . 691926) + (-1563 . 691796) (-1564 . 691715) (-1565 . 691566) (-1566 . 691211) + (-1567 . 690919) (-1568 . 690627) (-1569 . 690335) (-1570 . 690043) + (-1571 . 689984) (-1572 . 689877) (-1573 . 689449) (-1574 . 689351) + (-1575 . 689191) (-1576 . 688992) (-1577 . 688856) (-1578 . 688756) + (-1579 . 688656) (-1580 . 688562) (-1581 . 688503) (-1582 . 688168) + (-1583 . 688067) (-1584 . 687948) (-1585 . 687732) (-1586 . 687551) + (-1587 . 687391) (-1588 . 687186) (-1589 . 686764) (-1590 . 686712) + (-1591 . 686603) (-1592 . 686488) (-1593 . 686419) (-1594 . 686350) + (-1595 . 686281) (-1596 . 686215) (-1597 . 686090) (-1598 . 685873) + (-1599 . 685795) (-1600 . 685745) (-1601 . 685674) (-1602 . 685531) + (-1603 . 685390) (-1604 . 685309) (-1605 . 685228) (-1606 . 685172) + (-1607 . 685116) (-1608 . 685043) (-1609 . 684903) (-1610 . 684850) + (-1611 . 684791) (-1612 . 684732) (-1613 . 684577) (-1614 . 684525) + (-1615 . 684407) (-1616 . 684289) (-1617 . 684171) (-1618 . 684038) + (-1619 . 683757) (-1620 . 683621) (-1621 . 683565) (-1622 . 683509) + (-1623 . 683450) (-1624 . 683391) (-1625 . 683335) (-1626 . 683279) + (-1627 . 683082) (-1628 . 680740) (-1629 . 680613) (-1630 . 680467) + (-1631 . 680339) (-1632 . 680287) (-1633 . 680235) (-1634 . 680183) + (-1635 . 676144) (-1636 . 676049) (-1637 . 675910) (-1638 . 675701) + (-1639 . 675599) (-1640 . 675497) (-1641 . 674581) (-1642 . 674504) + (-1643 . 674375) (-1644 . 674248) (-1645 . 674171) (-1646 . 674094) + (-1647 . 673967) (-1648 . 673840) (-1649 . 673674) (-1650 . 673547) + (-1651 . 673420) (-1652 . 673203) (-1653 . 672765) (-1654 . 672399) + (-1655 . 672292) (-1656 . 672073) (-1657 . 672004) (-1658 . 671945) + (-1659 . 671864) (-1660 . 671753) (-1661 . 671687) (-1662 . 671621) + (-1663 . 671547) (-1664 . 671475) (-1665 . 671098) (-1666 . 671046) + (-1667 . 670987) (-1668 . 670898) (-1669 . 670809) (-1670 . 670717) + (-1671 . 670625) (-1672 . 670533) (-1673 . 670441) (-1674 . 670349) + (-1675 . 670257) (-1676 . 670165) (-1677 . 670073) (-1678 . 669981) + (-1679 . 669889) (-1680 . 669797) (-1681 . 669705) (-1682 . 669613) + (-1683 . 669521) (-1684 . 669429) (-1685 . 669337) (-1686 . 669245) + (-1687 . 669153) (-1688 . 669061) (-1689 . 668969) (-1690 . 668877) + (-1691 . 668785) (-1692 . 668693) (-1693 . 668601) (-1694 . 668509) + (-1695 . 668417) (-1696 . 668253) (-1697 . 668143) (-1698 . 667899) + (-1699 . 667610) (-1700 . 667414) (-1701 . 667257) (-1702 . 667096) + (-1703 . 667044) (-1704 . 666982) (-1705 . 666930) (-1706 . 666867) + (-1707 . 666814) (-1708 . 666762) (-1709 . 666710) (-1710 . 666658) + (-1711 . 666568) (-1712 . 666379) (-1713 . 666225) (-1714 . 666145) + (-1715 . 666065) (-1716 . 665985) (-1717 . 665855) (-1718 . 665623) + (-1719 . 665595) (-1720 . 665567) (-1721 . 665539) (-1722 . 665459) + (-1723 . 665382) (-1724 . 665305) (-1725 . 665224) (-1726 . 665164) + (-1727 . 665006) (-1728 . 664813) (-1729 . 664328) (-1730 . 664086) + (-1731 . 663824) (-1732 . 663723) (-1733 . 663642) (-1734 . 663561) + (-1735 . 663491) (-1736 . 663421) (-1737 . 663262) (-1738 . 662958) + (-1739 . 662728) (-1740 . 662604) (-1741 . 662545) (-1742 . 662483) + (-1743 . 662421) (-1744 . 662356) (-1745 . 662294) (-1746 . 662015) + (-1747 . 661805) (-1748 . 661531) (-1749 . 660991) (-1750 . 660477) + (-1751 . 660332) (-1752 . 660265) (-1753 . 660184) (-1754 . 660103) + (-1755 . 660001) (-1756 . 659927) (-1757 . 659846) (-1758 . 659772) + (-1759 . 659563) (-1760 . 659350) (-1761 . 659260) (-1762 . 659193) + (-1763 . 659057) (-1764 . 658990) (-1765 . 658908) (-1766 . 658827) + (-1767 . 658725) (-1768 . 658525) (-1769 . 658457) (-1770 . 658215) + (-1771 . 657964) (-1772 . 657722) (-1773 . 657480) (-1774 . 657412) + (-1775 . 657076) (-1776 . 656075) (-1777 . 655855) (-1778 . 655774) + (-1779 . 655700) (-1780 . 655626) (-1781 . 655552) (-1782 . 655448) + (-1783 . 655375) (-1784 . 655307) (-1785 . 655097) (-1786 . 655045) + (-1787 . 654990) (-1788 . 654899) (-1789 . 654811) (-1790 . 653054) + (-1791 . 652975) (-1792 . 652230) (-1793 . 652113) (-1794 . 651906) + (-1795 . 651744) (-1796 . 651582) (-1797 . 651421) (-1798 . 651282) + (-1799 . 651188) (-1800 . 651090) (-1801 . 650996) (-1802 . 650881) + (-1803 . 650796) (-1804 . 650698) (-1805 . 650502) (-1806 . 650411) + (-1807 . 650317) (-1808 . 650250) (-1809 . 650197) (-1810 . 650144) + (-1811 . 650091) (-1812 . 648953) (-1813 . 648443) (-1814 . 648364) + (-1815 . 648305) (-1816 . 648277) (-1817 . 648249) (-1818 . 648190) + (-1819 . 648077) (-1820 . 647700) (-1821 . 647647) (-1822 . 647536) + (-1823 . 647483) (-1824 . 647430) (-1825 . 647374) (-1826 . 647318) + (-1827 . 647153) (-1828 . 647083) (-1829 . 646988) (-1830 . 646893) + (-1831 . 646798) (-1832 . 646746) (-1833 . 646687) (-1834 . 646613) + (-1835 . 646561) (-1836 . 646404) (-1837 . 646247) (-1838 . 646094) + (-1839 . 645336) (-1840 . 645083) (-1841 . 644772) (-1842 . 644420) + (-1843 . 644203) (-1844 . 643940) (-1845 . 643564) (-1846 . 643380) + (-1847 . 643246) (-1848 . 643080) (-1849 . 642914) (-1850 . 642780) + (-1851 . 642646) (-1852 . 642512) (-1853 . 642378) (-1854 . 642247) + (-1855 . 642116) (-1856 . 641985) (-1857 . 641602) (-1858 . 641475) + (-1859 . 641347) (-1860 . 641095) (-1861 . 640971) (-1862 . 640719) + (-1863 . 640595) (-1864 . 640343) (-1865 . 640219) (-1866 . 639934) + (-1867 . 639661) (-1868 . 639388) (-1869 . 639090) (-1870 . 638988) + (-1871 . 638843) (-1872 . 638702) (-1873 . 638551) (-1874 . 638390) + (-1875 . 638302) (-1876 . 638274) (-1877 . 638192) (-1878 . 638095) + (-1879 . 637627) (-1880 . 637276) (-1881 . 636843) (-1882 . 636702) + (-1883 . 636632) (-1884 . 636562) (-1885 . 636492) (-1886 . 636401) + (-1887 . 636310) (-1888 . 636219) (-1889 . 636128) (-1890 . 636037) + (-1891 . 635951) (-1892 . 635865) (-1893 . 635779) (-1894 . 635693) + (-1895 . 635607) (-1896 . 635533) (-1897 . 635428) (-1898 . 635202) + (-1899 . 635124) (-1900 . 635049) (-1901 . 634956) (-1902 . 634852) + (-1903 . 634756) (-1904 . 634587) (-1905 . 634510) (-1906 . 634433) + (-1907 . 634342) (-1908 . 634251) (-1909 . 634051) (-1910 . 633896) + (-1911 . 633741) (-1912 . 633586) (-1913 . 633431) (-1914 . 633276) + (-1915 . 633121) (-1916 . 633054) (-1917 . 632899) (-1918 . 632744) + (-1919 . 632589) (-1920 . 632434) (-1921 . 632279) (-1922 . 632124) + (-1923 . 631969) (-1924 . 631814) (-1925 . 631740) (-1926 . 631666) + (-1927 . 631611) (-1928 . 631556) (-1929 . 631501) (-1930 . 631446) + (-1931 . 631375) (-1932 . 631170) (-1933 . 631069) (-1934 . 630878) + (-1935 . 630785) (-1936 . 630648) (-1937 . 630511) (-1938 . 630374) + (-1939 . 630306) (-1940 . 630190) (-1941 . 630074) (-1942 . 629958) + (-1943 . 629905) (-1944 . 629708) (-1945 . 629623) (-1946 . 629315) + (-1947 . 629260) (-1948 . 628608) (-1949 . 628293) (-1950 . 628009) + (-1951 . 627890) (-1952 . 627771) (-1953 . 627712) (-1954 . 627653) + (-1955 . 627601) (-1956 . 627549) (-1957 . 627497) (-1958 . 627444) + (-1959 . 627391) (-1960 . 627332) (-1961 . 627219) (-1962 . 627106) + (-1963 . 627048) (-1964 . 626990) (-1965 . 626940) (-1966 . 626805) + (-1967 . 626755) (-1968 . 626158) (-1969 . 626098) (-1970 . 625931) + (-1971 . 625839) (-1972 . 625726) (-1973 . 625642) (-1974 . 625527) + (-1975 . 625436) (-1976 . 625345) (-1977 . 625156) (-1978 . 625101) + (-1979 . 624914) (-1980 . 624791) (-1981 . 624718) (-1982 . 624645) + (-1983 . 624525) (-1984 . 624452) (-1985 . 624379) (-1986 . 624039) + (-1987 . 623966) (-1988 . 623746) (-1989 . 623413) (-1990 . 623228) + (-1991 . 623083) (-1992 . 622720) (-1993 . 622552) (-1994 . 622384) + (-1995 . 622128) (-1996 . 621872) (-1997 . 621677) (-1998 . 621482) + (-1999 . 620888) (-2000 . 620812) (-2001 . 620673) (-2002 . 620266) + (-2003 . 620138) (-2004 . 619978) (-2005 . 619659) (-2006 . 619176) + (-2007 . 618693) (-2008 . 618188) (-2009 . 618120) (-2010 . 618049) + (-2011 . 617978) (-2012 . 617805) (-2013 . 617686) (-2014 . 617567) + (-2015 . 617491) (-2016 . 617415) (-2017 . 617140) (-2018 . 617025) + (-2019 . 616973) (-2020 . 616921) (-2021 . 616869) (-2022 . 616817) + (-2023 . 616765) (-2024 . 616623) (-2025 . 616449) (-2026 . 616216) + (-2027 . 616028) (-2028 . 616000) (-2029 . 615972) (-2030 . 615944) + (-2031 . 615916) (-2032 . 615888) (-2033 . 615860) (-2034 . 615832) + (-2035 . 615780) (-2036 . 615690) (-2037 . 615640) (-2038 . 615571) + (-2039 . 615502) (-2040 . 615397) (-2041 . 615026) (-2042 . 614875) + (-2043 . 614724) (-2044 . 614519) (-2045 . 614397) (-2046 . 614322) + (-2047 . 614244) (-2048 . 614169) (-2049 . 614091) (-2050 . 614013) + (-2051 . 613938) (-2052 . 613860) (-2053 . 613626) (-2054 . 613471) + (-2055 . 613172) (-2056 . 613017) (-2057 . 612691) (-2058 . 612551) + (-2059 . 612411) (-2060 . 612330) (-2061 . 612249) (-2062 . 611984) + (-2063 . 611251) (-2064 . 611114) (-2065 . 611023) (-2066 . 610886) + (-2067 . 610818) (-2068 . 610749) (-2069 . 610661) (-2070 . 610573) + (-2071 . 610402) (-2072 . 610328) (-2073 . 610184) (-2074 . 609724) + (-2075 . 609344) (-2076 . 608580) (-2077 . 608436) (-2078 . 608292) + (-2079 . 608130) (-2080 . 607892) (-2081 . 607751) (-2082 . 607604) + (-2083 . 607365) (-2084 . 607129) (-2085 . 606890) (-2086 . 606698) + (-2087 . 606575) (-2088 . 606371) (-2089 . 606148) (-2090 . 605909) + (-2091 . 605768) (-2092 . 605630) (-2093 . 605491) (-2094 . 605238) + (-2095 . 604982) (-2096 . 604825) (-2097 . 604671) (-2098 . 604430) + (-2099 . 604145) (-2100 . 604007) (-2101 . 603920) (-2102 . 603254) + (-2103 . 603078) (-2104 . 602896) (-2105 . 602720) (-2106 . 602538) + (-2107 . 602359) (-2108 . 602180) (-2109 . 601993) (-2110 . 601611) + (-2111 . 601432) (-2112 . 601253) (-2113 . 601066) (-2114 . 600684) + (-2115 . 599691) (-2116 . 599307) (-2117 . 598923) (-2118 . 598805) + (-2119 . 598648) (-2120 . 598506) (-2121 . 598388) (-2122 . 598206) + (-2123 . 598082) (-2124 . 597792) (-2125 . 597502) (-2126 . 597218) + (-2127 . 596934) (-2128 . 596655) (-2129 . 596567) (-2130 . 596482) + (-2131 . 596383) (-2132 . 596284) (-2133 . 596060) (-2134 . 595960) + (-2135 . 595857) (-2136 . 595779) (-2137 . 595454) (-2138 . 595162) + (-2139 . 595089) (-2140 . 594704) (-2141 . 594676) (-2142 . 594477) + (-2143 . 594303) (-2144 . 594062) (-2145 . 594007) (-2146 . 593931) + (-2147 . 593560) (-2148 . 593445) (-2149 . 593368) (-2150 . 593295) + (-2151 . 593214) (-2152 . 593133) (-2153 . 593052) (-2154 . 592951) + (-2155 . 592892) (-2156 . 592653) (-2157 . 592529) (-2158 . 592405) + (-2159 . 592178) (-2160 . 592125) (-2161 . 592070) (-2162 . 591738) + (-2163 . 591414) (-2164 . 591226) (-2165 . 591035) (-2166 . 590871) + (-2167 . 590536) (-2168 . 590369) (-2169 . 590128) (-2170 . 589800) + (-2171 . 589608) (-2172 . 589391) (-2173 . 589218) (-2174 . 588796) + (-2175 . 588569) (-2176 . 588298) (-2177 . 588160) (-2178 . 588019) + (-2179 . 587540) (-2180 . 587417) (-2181 . 587181) (-2182 . 586927) + (-2183 . 586677) (-2184 . 586382) (-2185 . 586241) (-2186 . 585897) + (-2187 . 585756) (-2188 . 585563) (-2189 . 585370) (-2190 . 585195) + (-2191 . 584921) (-2192 . 584486) (-2193 . 584458) (-2194 . 584385) + (-2195 . 584224) (-2196 . 584061) (-2197 . 583900) (-2198 . 583733) + (-2199 . 583680) (-2200 . 583627) (-2201 . 583498) (-2202 . 583438) + (-2203 . 583385) (-2204 . 583315) (-2205 . 583255) (-2206 . 583196) + (-2207 . 583136) (-2208 . 583077) (-2209 . 583017) (-2210 . 582958) + (-2211 . 582899) (-2212 . 582757) (-2213 . 582662) (-2214 . 582571) + (-2215 . 582455) (-2216 . 582361) (-2217 . 582263) (-2218 . 582169) + (-2219 . 582028) (-2220 . 581763) (-2221 . 580904) (-2222 . 580748) + (-2223 . 580379) (-2224 . 580323) (-2225 . 580271) (-2226 . 580168) + (-2227 . 580083) (-2228 . 579995) (-2229 . 579849) (-2230 . 579700) + (-2231 . 579410) (-2232 . 579332) (-2233 . 579257) (-2234 . 579204) + (-2235 . 579151) (-2236 . 579120) (-2237 . 579057) (-2238 . 578938) + (-2239 . 578849) (-2240 . 578729) (-2241 . 578434) (-2242 . 578240) + (-2243 . 578052) (-2244 . 577907) (-2245 . 577762) (-2246 . 577476) + (-2247 . 577031) (-2248 . 576997) (-2249 . 576960) (-2250 . 576923) + (-2251 . 576886) (-2252 . 576849) (-2253 . 576818) (-2254 . 576787) + (-2255 . 576756) (-2256 . 576722) (-2257 . 576688) (-2258 . 576633) + (-2259 . 576457) (-2260 . 576222) (-2261 . 575987) (-2262 . 575757) + (-2263 . 575705) (-2264 . 575650) (-2265 . 575580) (-2266 . 575491) + (-2267 . 575422) (-2268 . 575350) (-2269 . 575120) (-2270 . 575068) + (-2271 . 575013) (-2272 . 574982) (-2273 . 574876) (-2274 . 574650) + (-2275 . 574339) (-2276 . 574164) (-2277 . 573981) (-2278 . 573709) + (-2279 . 573636) (-2280 . 573571) (-2281 . 573543) (-2282 . 573493) + (-2283 . 572070) (-2284 . 570922) (-2285 . 569784) (-2286 . 569306) + (-2287 . 568742) (-2288 . 568014) (-2289 . 567451) (-2290 . 566821) + (-2291 . 566242) (-2292 . 566168) (-2293 . 566116) (-2294 . 566064) + (-2295 . 565990) (-2296 . 565935) (-2297 . 565883) (-2298 . 565831) + (-2299 . 565779) (-2300 . 565709) (-2301 . 565261) (-2302 . 565054) + (-2303 . 564804) (-2304 . 564469) (-2305 . 564214) (-2306 . 563911) + (-2307 . 563707) (-2308 . 563417) (-2309 . 562867) (-2310 . 562729) + (-2311 . 562526) (-2312 . 562245) (-2313 . 562159) (-2314 . 561824) + (-2315 . 561682) (-2316 . 561390) (-2317 . 561169) (-2318 . 561043) + (-2319 . 560918) (-2320 . 560771) (-2321 . 560627) (-2322 . 560511) + (-2323 . 560380) (-2324 . 560007) (-2325 . 559747) (-2326 . 559472) + (-2327 . 559232) (-2328 . 558902) (-2329 . 558557) (-2330 . 558149) + (-2331 . 557726) (-2332 . 557529) (-2333 . 557254) (-2334 . 557086) + (-2335 . 556885) (-2336 . 556663) (-2337 . 556508) (-2338 . 556322) + (-2339 . 556219) (-2340 . 556191) (-2341 . 556163) (-2342 . 555987) + (-2343 . 555913) (-2344 . 555852) (-2345 . 555799) (-2346 . 555730) + (-2347 . 555660) (-2348 . 555541) (-2349 . 555363) (-2350 . 555308) + (-2351 . 555062) (-2352 . 554989) (-2353 . 554919) (-2354 . 554849) + (-2355 . 554759) (-2356 . 554569) (-2357 . 554496) (-2358 . 554426) + (-2359 . 554361) (-2360 . 554306) (-2361 . 554215) (-2362 . 553922) + (-2363 . 553594) (-2364 . 553520) (-2365 . 553198) (-2366 . 552991) + (-2367 . 552905) (-2368 . 552819) (-2369 . 552733) (-2370 . 552647) + (-2371 . 552561) (-2372 . 552475) (-2373 . 552389) (-2374 . 552303) + (-2375 . 552217) (-2376 . 552131) (-2377 . 552045) (-2378 . 551959) + (-2379 . 551873) (-2380 . 551787) (-2381 . 551701) (-2382 . 551615) + (-2383 . 551529) (-2384 . 551443) (-2385 . 551357) (-2386 . 551271) + (-2387 . 551185) (-2388 . 551099) (-2389 . 551013) (-2390 . 550927) + (-2391 . 550841) (-2392 . 550755) (-2393 . 550652) (-2394 . 550563) + (-2395 . 550353) (-2396 . 550294) (-2397 . 550238) (-2398 . 550149) + (-2399 . 550037) (-2400 . 549949) (-2401 . 549801) (-2402 . 549739) + (-2403 . 549711) (-2404 . 549683) (-2405 . 549655) (-2406 . 549627) + (-2407 . 549456) (-2408 . 549303) (-2409 . 549150) (-2410 . 548976) + (-2411 . 548766) (-2412 . 548642) (-2413 . 548434) (-2414 . 548342) + (-2415 . 548250) (-2416 . 548114) (-2417 . 548019) (-2418 . 547924) + (-2419 . 546408) (-2420 . 546284) (-2421 . 546256) (-2422 . 546228) + (-2423 . 546200) (-2424 . 546172) (-2425 . 546144) (-2426 . 546116) + (-2427 . 546088) (-2428 . 546060) (-2429 . 546032) (-2430 . 546004) + (-2431 . 545976) (-2432 . 545948) (-2433 . 545920) (-2434 . 545892) + (-2435 . 545864) (-2436 . 545836) (-2437 . 545783) (-2438 . 545755) + (-2439 . 545727) (-2440 . 545649) (-2441 . 545596) (-2442 . 545543) + (-2443 . 545490) (-2444 . 545412) (-2445 . 545322) (-2446 . 545227) + (-2447 . 545145) (-2448 . 544836) (-2449 . 544640) (-2450 . 544545) + (-2451 . 544437) (-2452 . 544019) (-2453 . 543991) (-2454 . 543826) + (-2455 . 543749) (-2456 . 543560) (-2457 . 543380) (-2458 . 542956) + (-2459 . 542804) (-2460 . 542624) (-2461 . 542451) (-2462 . 542189) + (-2463 . 541937) (-2464 . 541126) (-2465 . 540957) (-2466 . 540738) + (-2467 . 539896) (-2468 . 539764) (-2469 . 539632) (-2470 . 539500) + (-2471 . 539368) (-2472 . 539236) (-2473 . 539104) (-2474 . 538909) + (-2475 . 538715) (-2476 . 538572) (-2477 . 538257) (-2478 . 538142) + (-2479 . 537802) (-2480 . 537642) (-2481 . 537503) (-2482 . 537364) + (-2483 . 537235) (-2484 . 537150) (-2485 . 537098) (-2486 . 536617) + (-2487 . 535353) (-2488 . 535224) (-2489 . 535081) (-2490 . 534743) + (-2491 . 534638) (-2492 . 534387) (-2493 . 534153) (-2494 . 534048) + (-2495 . 533973) (-2496 . 533898) (-2497 . 533823) (-2498 . 533764) + (-2499 . 533693) (-2500 . 533640) (-2501 . 533578) (-2502 . 533507) + (-2503 . 533144) (-2504 . 532857) (-2505 . 532746) (-2506 . 532653) + (-2507 . 532560) (-2508 . 532473) (-2509 . 532253) (-2510 . 532033) + (-2511 . 531615) (-2512 . 531343) (-2513 . 531200) (-2514 . 531107) + (-2515 . 530964) (-2516 . 530812) (-2517 . 530658) (-2518 . 530587) + (-2519 . 530378) (-2520 . 530200) (-2521 . 529990) (-2522 . 529812) + (-2523 . 529778) (-2524 . 529744) (-2525 . 529713) (-2526 . 529595) + (-2527 . 529280) (-2528 . 529002) (-2529 . 528881) (-2530 . 528754) + (-2531 . 528669) (-2532 . 528596) (-2533 . 528506) (-2534 . 528435) + (-2535 . 528379) (-2536 . 528323) (-2537 . 528267) (-2538 . 528196) + (-2539 . 528125) (-2540 . 528054) (-2541 . 527975) (-2542 . 527897) + (-2543 . 527812) (-2544 . 527552) (-2545 . 527463) (-2546 . 527165) + (-2547 . 527067) (-2548 . 526989) (-2549 . 526911) (-2550 . 526768) + (-2551 . 526689) (-2552 . 526617) (-2553 . 526414) (-2554 . 526358) + (-2555 . 526170) (-2556 . 526071) (-2557 . 525953) (-2558 . 525832) + (-2559 . 525689) (-2560 . 525546) (-2561 . 525406) (-2562 . 525266) + (-2563 . 525123) (-2564 . 524996) (-2565 . 524866) (-2566 . 524742) + (-2567 . 524618) (-2568 . 524512) (-2569 . 524406) (-2570 . 524303) + (-2571 . 524153) (-2572 . 524000) (-2573 . 523847) (-2574 . 523703) + (-2575 . 523549) (-2576 . 523472) (-2577 . 523392) (-2578 . 523237) + (-2579 . 523157) (-2580 . 523077) (-2581 . 522997) (-2582 . 522894) + (-2583 . 522835) (-2584 . 522773) (-2585 . 522598) (-2586 . 522445) + (-2587 . 522292) (-2588 . 522118) (-2589 . 521926) (-2590 . 521627) + (-2591 . 521432) (-2592 . 521317) (-2593 . 521191) (-2594 . 521114) + (-2595 . 520982) (-2596 . 520676) (-2597 . 520493) (-2598 . 519948) + (-2599 . 519728) (-2600 . 519554) (-2601 . 519384) (-2602 . 519285) + (-2603 . 519186) (-2604 . 518968) (-2605 . 518866) (-2606 . 518793) + (-2607 . 518717) (-2608 . 518638) (-2609 . 518341) (-2610 . 518242) + (-2611 . 518080) (-2612 . 517846) (-2613 . 517404) (-2614 . 517274) + (-2615 . 517134) (-2616 . 516825) (-2617 . 516523) (-2618 . 516207) + (-2619 . 515801) (-2620 . 515733) (-2621 . 515665) (-2622 . 515597) + (-2623 . 515502) (-2624 . 515394) (-2625 . 515286) (-2626 . 515184) + (-2627 . 515082) (-2628 . 514980) (-2629 . 514902) (-2630 . 514578) + (-2631 . 514110) (-2632 . 513483) (-2633 . 513419) (-2634 . 513300) + (-2635 . 513181) (-2636 . 513073) (-2637 . 512965) (-2638 . 512809) + (-2639 . 512207) (-2640 . 511920) (-2641 . 511752) (-2642 . 511630) + (-2643 . 511232) (-2644 . 510996) (-2645 . 510795) (-2646 . 510587) + (-2647 . 510394) (-2648 . 510124) (-2649 . 509945) (-2650 . 509876) + (-2651 . 509800) (-2652 . 509659) (-2653 . 509456) (-2654 . 509312) + (-2655 . 509062) (-2656 . 508754) (-2657 . 508398) (-2658 . 508239) + (-2659 . 508033) (-2660 . 507873) (-2661 . 507800) (-2662 . 507681) + (-2663 . 507562) (-2664 . 507402) (-2665 . 507222) (-2666 . 507039) + (-2667 . 506941) (-2668 . 506843) (-2669 . 506742) (-2670 . 506638) + (-2671 . 506512) (-2672 . 506386) (-2673 . 506257) (-2674 . 506125) + (-2675 . 506027) (-2676 . 505929) (-2677 . 505828) (-2678 . 505727) + (-2679 . 505561) (-2680 . 505395) (-2681 . 505201) (-2682 . 505035) + (-2683 . 504867) (-2684 . 504696) (-2685 . 504531) (-2686 . 504366) + (-2687 . 504266) (-2688 . 504074) (-2689 . 503973) (-2690 . 503778) + (-2691 . 503528) (-2692 . 503283) (-2693 . 502961) (-2694 . 502573) + (-2695 . 502372) (-2696 . 502108) (-2697 . 501565) (-2698 . 501271) + (-2699 . 501134) (-2700 . 500888) (-2701 . 500684) (-2702 . 500577) + (-2703 . 500476) (-2704 . 500366) (-2705 . 500256) (-2706 . 500128) + (-2707 . 500021) (-2708 . 499917) (-2709 . 499761) (-2710 . 499627) + (-2711 . 499493) (-2712 . 499383) (-2713 . 499264) (-2714 . 499087) + (-2715 . 498953) (-2716 . 498816) (-2717 . 498685) (-2718 . 498575) + (-2719 . 498453) (-2720 . 498328) (-2721 . 498227) (-2722 . 498043) + (-2723 . 497869) (-2724 . 497670) (-2725 . 497496) (-2726 . 497380) + (-2727 . 497255) (-2728 . 497127) (-2729 . 497008) (-2730 . 496783) + (-2731 . 496612) (-2732 . 496441) (-2733 . 496264) (-2734 . 496112) + (-2735 . 495835) (-2736 . 495443) (-2737 . 495312) (-2738 . 495107) + (-2739 . 494924) (-2740 . 494740) (-2741 . 494611) (-2742 . 494507) + (-2743 . 494366) (-2744 . 494234) (-2745 . 494120) (-2746 . 493972) + (-2747 . 493833) (-2748 . 493732) (-2749 . 493628) (-2750 . 493521) + (-2751 . 493411) (-2752 . 493310) (-2753 . 493203) (-2754 . 493096) + (-2755 . 492983) (-2756 . 492876) (-2757 . 492763) (-2758 . 492632) + (-2759 . 492483) (-2760 . 491945) (-2761 . 491802) (-2762 . 491652) + (-2763 . 491529) (-2764 . 491425) (-2765 . 491321) (-2766 . 491214) + (-2767 . 491076) (-2768 . 490969) (-2769 . 490838) (-2770 . 490682) + (-2771 . 490409) (-2772 . 490262) (-2773 . 490059) (-2774 . 489958) + (-2775 . 489804) (-2776 . 489684) (-2777 . 489555) (-2778 . 489460) + (-2779 . 489372) (-2780 . 489284) (-2781 . 489196) (-2782 . 489108) + (-2783 . 489020) (-2784 . 488926) (-2785 . 488838) (-2786 . 488750) + (-2787 . 488662) (-2788 . 488574) (-2789 . 488486) (-2790 . 488398) + (-2791 . 488310) (-2792 . 488222) (-2793 . 488134) (-2794 . 488046) + (-2795 . 487908) (-2796 . 487770) (-2797 . 487650) (-2798 . 487530) + (-2799 . 487389) (-2800 . 487301) (-2801 . 487213) (-2802 . 487125) + (-2803 . 487037) (-2804 . 486899) (-2805 . 486761) (-2806 . 486673) + (-2807 . 486585) (-2808 . 486497) (-2809 . 486409) (-2810 . 486321) + (-2811 . 486233) (-2812 . 486142) (-2813 . 486048) (-2814 . 485954) + (-2815 . 485857) (-2816 . 485807) (-2817 . 485757) (-2818 . 485704) + (-2819 . 485450) (-2820 . 485401) (-2821 . 485351) (-2822 . 485317) + (-2823 . 485252) (-2824 . 485215) (-2825 . 485078) (-2826 . 484840) + (-2827 . 484769) (-2828 . 484583) (-2829 . 484334) (-2830 . 484176) + (-2831 . 483649) (-2832 . 483450) (-2833 . 483235) (-2834 . 483073) + (-2835 . 482674) (-2836 . 482507) (-2837 . 481432) (-2838 . 481309) + (-2839 . 481092) (-2840 . 480961) (-2841 . 480830) (-2842 . 480672) + (-2843 . 480568) (-2844 . 480509) (-2845 . 480450) (-2846 . 480344) + (-2847 . 480238) (-2848 . 479320) (-2849 . 477191) (-2850 . 476375) + (-2851 . 474570) (-2852 . 474502) (-2853 . 474434) (-2854 . 474366) + (-2855 . 474298) (-2856 . 474230) (-2857 . 474152) (-2858 . 473750) + (-2859 . 473394) (-2860 . 473212) (-2861 . 472673) (-2862 . 472497) + (-2863 . 472275) (-2864 . 472053) (-2865 . 471831) (-2866 . 471612) + (-2867 . 471393) (-2868 . 471174) (-2869 . 470955) (-2870 . 470736) + (-2871 . 470517) (-2872 . 470416) (-2873 . 469683) (-2874 . 469628) + (-2875 . 469573) (-2876 . 469518) (-2877 . 469463) (-2878 . 469312) + (-2879 . 469019) (-2880 . 468770) (-2881 . 468742) (-2882 . 468692) + (-2883 . 468100) (-2884 . 467566) (-2885 . 467117) (-2886 . 466955) + (-2887 . 466774) (-2888 . 466485) (-2889 . 466097) (-2890 . 465221) + (-2891 . 464879) (-2892 . 464710) (-2893 . 464487) (-2894 . 464236) + (-2895 . 463886) (-2896 . 462868) (-2897 . 462553) (-2898 . 462341) + (-2899 . 461774) (-2900 . 461258) (-2901 . 459480) (-2902 . 459008) + (-2903 . 458409) (-2904 . 458159) (-2905 . 458025) (-2906 . 457810) + (-2907 . 457733) (-2908 . 457656) (-2909 . 457549) (-2910 . 457363) + (-2911 . 457194) (-2912 . 457014) (-2913 . 456423) (-2914 . 456260) + (-2915 . 455682) (-2916 . 455612) (-2917 . 455537) (-2918 . 455171) + (-2919 . 454492) (-2920 . 454314) (-2921 . 454242) (-2922 . 454102) + (-2923 . 453912) (-2924 . 453805) (-2925 . 453698) (-2926 . 453582) + (-2927 . 453466) (-2928 . 453350) (-2929 . 453072) (-2930 . 452921) + (-2931 . 452777) (-2932 . 452703) (-2933 . 452617) (-2934 . 452543) + (-2935 . 452469) (-2936 . 452395) (-2937 . 452251) (-2938 . 452100) + (-2939 . 451925) (-2940 . 451774) (-2941 . 451623) (-2942 . 451496) + (-2943 . 451107) (-2944 . 450821) (-2945 . 450535) (-2946 . 450124) + (-2947 . 449838) (-2948 . 449765) (-2949 . 449618) (-2950 . 449512) + (-2951 . 449438) (-2952 . 449368) (-2953 . 449289) (-2954 . 449212) + (-2955 . 449135) (-2956 . 448983) (-2957 . 448880) (-2958 . 448821) + (-2959 . 448756) (-2960 . 448691) (-2961 . 448594) (-2962 . 448497) + (-2963 . 448337) (-2964 . 448250) (-2965 . 448163) (-2966 . 448076) + (-2967 . 448017) (-2968 . 447958) (-2969 . 447825) (-2970 . 447766) + (-2971 . 447596) (-2972 . 447508) (-2973 . 447411) (-2974 . 447377) + (-2975 . 447346) (-2976 . 447262) (-2977 . 447206) (-2978 . 447144) + (-2979 . 447110) (-2980 . 447076) (-2981 . 447042) (-2982 . 447008) + (-2983 . 446974) (-2984 . 444221) (-2985 . 444187) (-2986 . 444153) + (-2987 . 444119) (-2988 . 444007) (-2989 . 443973) (-2990 . 443921) + (-2991 . 443887) (-2992 . 443790) (-2993 . 443728) (-2994 . 443637) + (-2995 . 443546) (-2996 . 443491) (-2997 . 443439) (-2998 . 443387) + (-2999 . 443335) (-3000 . 443283) (-3001 . 442858) (-3002 . 442692) + (-3003 . 442639) (-3004 . 442570) (-3005 . 442517) (-3006 . 442287) + (-3007 . 442131) (-3008 . 441610) (-3009 . 441469) (-3010 . 441435) + (-3011 . 441380) (-3012 . 440669) (-3013 . 440354) (-3014 . 439849) + (-3015 . 439771) (-3016 . 439719) (-3017 . 439667) (-3018 . 439483) + (-3019 . 439431) (-3020 . 439379) (-3021 . 439303) (-3022 . 439241) + (-3023 . 439023) (-3024 . 438956) (-3025 . 438862) (-3026 . 438768) + (-3027 . 438585) (-3028 . 438503) (-3029 . 438381) (-3030 . 438235) + (-3031 . 437575) (-3032 . 436868) (-3033 . 436764) (-3034 . 436663) + (-3035 . 436562) (-3036 . 436451) (-3037 . 436283) (-3038 . 436077) + (-3039 . 435984) (-3040 . 435907) (-3041 . 435851) (-3042 . 435780) + (-3043 . 435660) (-3044 . 435559) (-3045 . 435461) (-3046 . 435381) + (-3047 . 435301) (-3048 . 435224) (-3049 . 435153) (-3050 . 435082) + (-3051 . 435011) (-3052 . 434940) (-3053 . 434869) (-3054 . 434798) + (-3055 . 434705) (-3056 . 434510) (-3057 . 434266) (-3058 . 434096) + (-3059 . 433724) (-3060 . 433555) (-3061 . 433439) (-3062 . 432935) + (-3063 . 432553) (-3064 . 432307) (-3065 . 431878) (-3066 . 431786) + (-3067 . 431689) (-3068 . 428399) (-3069 . 427736) (-3070 . 427623) + (-3071 . 427549) (-3072 . 427457) (-3073 . 427263) (-3074 . 427069) + (-3075 . 426998) (-3076 . 426927) (-3077 . 426846) (-3078 . 426765) + (-3079 . 426640) (-3080 . 426506) (-3081 . 426425) (-3082 . 426351) + (-3083 . 426186) (-3084 . 426027) (-3085 . 425796) (-3086 . 425648) + (-3087 . 425544) (-3088 . 425440) (-3089 . 425355) (-3090 . 424987) + (-3091 . 424906) (-3092 . 424819) (-3093 . 424738) (-3094 . 424492) + (-3095 . 424272) (-3096 . 424085) (-3097 . 423763) (-3098 . 423470) + (-3099 . 423177) (-3100 . 422867) (-3101 . 422550) (-3102 . 422398) + (-3103 . 422210) (-3104 . 421737) (-3105 . 421655) (-3106 . 421439) + (-3107 . 421223) (-3108 . 420964) (-3109 . 420540) (-3110 . 420026) + (-3111 . 419896) (-3112 . 419622) (-3113 . 419443) (-3114 . 419328) + (-3115 . 419224) (-3116 . 419169) (-3117 . 419092) (-3118 . 419022) + (-3119 . 418949) (-3120 . 418894) (-3121 . 418821) (-3122 . 418766) + (-3123 . 418411) (-3124 . 418003) (-3125 . 417850) (-3126 . 417697) + (-3127 . 417616) (-3128 . 417463) (-3129 . 417310) (-3130 . 417175) + (-3131 . 417040) (-3132 . 416905) (-3133 . 416770) (-3134 . 416635) + (-3135 . 416500) (-3136 . 416444) (-3137 . 416291) (-3138 . 416180) + (-3139 . 416069) (-3140 . 415984) (-3141 . 415874) (-3142 . 415771) + (-3143 . 411620) (-3144 . 411172) (-3145 . 410745) (-3146 . 410128) + (-3147 . 409527) (-3148 . 409309) (-3149 . 409131) (-3150 . 408871) + (-3151 . 408460) (-3152 . 408166) (-3153 . 407723) (-3154 . 407545) + (-3155 . 407152) (-3156 . 406759) (-3157 . 406574) (-3158 . 406367) + (-3159 . 406146) (-3160 . 405840) (-3161 . 405641) (-3162 . 405012) + (-3163 . 404855) (-3164 . 404464) (-3165 . 404412) (-3166 . 404363) + (-3167 . 404311) (-3168 . 404262) (-3169 . 404210) (-3170 . 404064) + (-3171 . 404012) (-3172 . 403866) (-3173 . 403814) (-3174 . 403668) + (-3175 . 403616) (-3176 . 403241) (-3177 . 403189) (-3178 . 403140) + (-3179 . 403088) (-3180 . 403039) (-3181 . 402987) (-3182 . 402938) + (-3183 . 402886) (-3184 . 402837) (-3185 . 402785) (-3186 . 402736) + (-3187 . 402670) (-3188 . 402552) (-3189 . 401390) (-3190 . 400973) + (-3191 . 400865) (-3192 . 400622) (-3193 . 400472) (-3194 . 400322) + (-3195 . 400155) (-3196 . 397939) (-3197 . 397675) (-3198 . 397521) + (-3199 . 397375) (-3200 . 397229) (-3201 . 397010) (-3202 . 396878) + (-3203 . 396803) (-3204 . 396728) (-3205 . 396593) (-3206 . 396463) + (-3207 . 396333) (-3208 . 396206) (-3209 . 396079) (-3210 . 395952) + (-3211 . 395825) (-3212 . 395722) (-3213 . 395622) (-3214 . 395528) + (-3215 . 395398) (-3216 . 395247) (-3217 . 394868) (-3218 . 394753) + (-3219 . 394510) (-3220 . 394047) (-3221 . 393734) (-3222 . 393165) + (-3223 . 392594) (-3224 . 391579) (-3225 . 391035) (-3226 . 390722) + (-3227 . 390384) (-3228 . 390053) (-3229 . 389733) (-3230 . 389680) + (-3231 . 389553) (-3232 . 389048) (-3233 . 387905) (-3234 . 387850) + (-3235 . 387795) (-3236 . 387719) (-3237 . 387600) (-3238 . 387525) + (-3239 . 387450) (-3240 . 387372) (-3241 . 387147) (-3242 . 387088) + (-3243 . 387029) (-3244 . 386926) (-3245 . 386823) (-3246 . 386720) + (-3247 . 386617) (-3248 . 386536) (-3249 . 386462) (-3250 . 386247) + (-3251 . 386013) (-3252 . 385979) (-3253 . 385945) (-3254 . 385917) + (-3255 . 385889) (-3256 . 385671) (-3257 . 385393) (-3258 . 385243) + (-3259 . 385113) (-3260 . 384983) (-3261 . 384883) (-3262 . 384706) + (-3263 . 384546) (-3264 . 384446) (-3265 . 384269) (-3266 . 384109) + (-3267 . 383950) (-3268 . 383811) (-3269 . 383661) (-3270 . 383531) + (-3271 . 383401) (-3272 . 383254) (-3273 . 383127) (-3274 . 383024) + (-3275 . 382917) (-3276 . 382820) (-3277 . 382655) (-3278 . 382507) + (-3279 . 382092) (-3280 . 381992) (-3281 . 381889) (-3282 . 381801) + (-3283 . 381721) (-3284 . 381571) (-3285 . 381441) (-3286 . 381389) + (-3287 . 381316) (-3288 . 381241) (-3289 . 380965) (-3290 . 380853) + (-3291 . 380540) (-3292 . 380359) (-3293 . 378748) (-3294 . 378115) + (-3295 . 378055) (-3296 . 377937) (-3297 . 377819) (-3298 . 377675) + (-3299 . 377520) (-3300 . 377359) (-3301 . 377198) (-3302 . 376990) + (-3303 . 376801) (-3304 . 376646) (-3305 . 376488) (-3306 . 376330) + (-3307 . 376175) (-3308 . 376035) (-3309 . 375609) (-3310 . 375481) + (-3311 . 375353) (-3312 . 375225) (-3313 . 375082) (-3314 . 374939) + (-3315 . 374797) (-3316 . 374652) (-3317 . 373899) (-3318 . 373739) + (-3319 . 373551) (-3320 . 373394) (-3321 . 373154) (-3322 . 372907) + (-3323 . 372660) (-3324 . 372449) (-3325 . 372310) (-3326 . 372099) + (-3327 . 371809) (-3328 . 371598) (-3329 . 371459) (-3330 . 371248) + (-3331 . 370942) (-3332 . 370797) (-3333 . 370655) (-3334 . 370431) + (-3335 . 370289) (-3336 . 370064) (-3337 . 369865) (-3338 . 369708) + (-3339 . 369378) (-3340 . 369218) (-3341 . 369058) (-3342 . 368898) + (-3343 . 368726) (-3344 . 368554) (-3345 . 368379) (-3346 . 368027) + (-3347 . 367833) (-3348 . 367671) (-3349 . 367596) (-3350 . 367521) + (-3351 . 367446) (-3352 . 367371) (-3353 . 367296) (-3354 . 367221) + (-3355 . 367096) (-3356 . 366921) (-3357 . 366796) (-3358 . 366709) + (-3359 . 366642) (-3360 . 366575) (-3361 . 366508) (-3362 . 366441) + (-3363 . 366374) (-3364 . 366307) (-3365 . 366240) (-3366 . 366173) + (-3367 . 366106) (-3368 . 366039) (-3369 . 365972) (-3370 . 365905) + (-3371 . 365838) (-3372 . 365771) (-3373 . 365704) (-3374 . 365637) + (-3375 . 365570) (-3376 . 365503) (-3377 . 365436) (-3378 . 365369) + (-3379 . 365302) (-3380 . 365235) (-3381 . 365168) (-3382 . 365101) + (-3383 . 365034) (-3384 . 364967) (-3385 . 364316) (-3386 . 363665) + (-3387 . 363536) (-3388 . 363412) (-3389 . 363288) (-3390 . 363146) + (-3391 . 362990) (-3392 . 362845) (-3393 . 362668) (-3394 . 362057) + (-3395 . 361932) (-3396 . 361806) (-3397 . 361125) (-3398 . 360424) + (-3399 . 360322) (-3400 . 360265) (-3401 . 360208) (-3402 . 360151) + (-3403 . 360094) (-3404 . 360034) (-3405 . 359969) (-3406 . 359860) + (-3407 . 359751) (-3408 . 359642) (-3409 . 359362) (-3410 . 359287) + (-3411 . 359060) (-3412 . 358978) (-3413 . 358899) (-3414 . 358820) + (-3415 . 358741) (-3416 . 358661) (-3417 . 358582) (-3418 . 358488) + (-3419 . 358387) (-3420 . 358318) (-3421 . 358268) (-3422 . 357574) + (-3423 . 356923) (-3424 . 356129) (-3425 . 356047) (-3426 . 355942) + (-3427 . 355849) (-3428 . 355756) (-3429 . 355681) (-3430 . 355606) + (-3431 . 355531) (-3432 . 355475) (-3433 . 355419) (-3434 . 355352) + (-3435 . 355285) (-3436 . 355222) (-3437 . 354830) (-3438 . 354335) + (-3439 . 353875) (-3440 . 353620) (-3441 . 353429) (-3442 . 353085) + (-3443 . 352787) (-3444 . 352617) (-3445 . 352485) (-3446 . 352344) + (-3447 . 352188) (-3448 . 352018) (-3449 . 350624) (-3450 . 350486) + (-3451 . 350340) (-3452 . 350109) (-3453 . 349839) (-3454 . 349779) + (-3455 . 349722) (-3456 . 349665) (-3457 . 349452) (-3458 . 349312) + (-3459 . 349204) (-3460 . 349086) (-3461 . 349019) (-3462 . 348945) + (-3463 . 348830) (-3464 . 348573) (-3465 . 348471) (-3466 . 348273) + (-3467 . 347957) (-3468 . 347483) (-3469 . 347376) (-3470 . 347268) + (-3471 . 347117) (-3472 . 346975) (-3473 . 346556) (-3474 . 346306) + (-3475 . 345629) (-3476 . 345474) (-3477 . 345359) (-3478 . 345248) + (-3479 . 344425) (-3480 . 344372) (-3481 . 344319) (-3482 . 344123) + (-3483 . 342844) (-3484 . 342393) (-3485 . 340997) (-3486 . 340141) + (-3487 . 340091) (-3488 . 340041) (-3489 . 339991) (-3490 . 339923) + (-3491 . 339847) (-3492 . 339656) (-3493 . 339583) (-3494 . 339507) + (-3495 . 339434) (-3496 . 339316) (-3497 . 339264) (-3498 . 339184) + (-3499 . 339104) (-3500 . 339024) (-3501 . 338972) (-3502 . 338725) + (-3503 . 338422) (-3504 . 338337) (-3505 . 338252) (-3506 . 338190) + (-3507 . 337800) (-3508 . 336924) (-3509 . 336348) (-3510 . 335110) + (-3511 . 334299) (-3512 . 334047) (-3513 . 333795) (-3514 . 333368) + (-3515 . 333122) (-3516 . 332876) (-3517 . 332630) (-3518 . 332384) + (-3519 . 332138) (-3520 . 331892) (-3521 . 331645) (-3522 . 331398) + (-3523 . 331151) (-3524 . 330904) (-3525 . 330321) (-3526 . 330203) + (-3527 . 329352) (-3528 . 329320) (-3529 . 328971) (-3530 . 328743) + (-3531 . 328642) (-3532 . 328541) (-3533 . 326768) (-3534 . 326654) + (-3535 . 325599) (-3536 . 325506) (-3537 . 324582) (-3538 . 324247) + (-3539 . 323912) (-3540 . 323807) (-3541 . 323720) (-3542 . 323691) + (-3543 . 323634) (-3544 . 323554) (-3545 . 323482) (-3546 . 323407) + (-3547 . 323332) (-3548 . 323300) (-3549 . 323268) (-3550 . 323236) + (-3551 . 323204) (-3552 . 323172) (-3553 . 323140) (-3554 . 323108) + (-3555 . 323076) (-3556 . 323047) (-3557 . 322934) (-3558 . 322821) + (-3559 . 322708) (-3560 . 322595) (-3561 . 321506) (-3562 . 321384) + (-3563 . 321247) (-3564 . 321113) (-3565 . 320979) (-3566 . 320682) + (-3567 . 320385) (-3568 . 320037) (-3569 . 319807) (-3570 . 319577) + (-3571 . 319464) (-3572 . 319351) (-3573 . 314069) (-3574 . 309695) + (-3575 . 309383) (-3576 . 309228) (-3577 . 308700) (-3578 . 308367) + (-3579 . 308170) (-3580 . 307973) (-3581 . 307776) (-3582 . 307579) + (-3583 . 307463) (-3584 . 307337) (-3585 . 307221) (-3586 . 307105) + (-3587 . 307010) (-3588 . 306915) (-3589 . 306802) (-3590 . 306596) + (-3591 . 305440) (-3592 . 305345) (-3593 . 305229) (-3594 . 305134) + (-3595 . 304885) (-3596 . 304772) (-3597 . 304554) (-3598 . 304435) + (-3599 . 304134) (-3600 . 303403) (-3601 . 302820) (-3602 . 302339) + (-3603 . 302091) (-3604 . 301843) (-3605 . 301495) (-3606 . 300881) + (-3607 . 300433) (-3608 . 300276) (-3609 . 300130) (-3610 . 299804) + (-3611 . 299646) (-3612 . 299503) (-3613 . 299360) (-3614 . 299217) + (-3615 . 298936) (-3616 . 298714) (-3617 . 298187) (-3618 . 297972) + (-3619 . 297757) (-3620 . 297369) (-3621 . 297189) (-3622 . 296977) + (-3623 . 296666) (-3624 . 296472) (-3625 . 296297) (-3626 . 295151) + (-3627 . 294779) (-3628 . 294576) (-3629 . 294370) (-3630 . 293527) + (-3631 . 293498) (-3632 . 293429) (-3633 . 293358) (-3634 . 293191) + (-3635 . 293162) (-3636 . 293133) (-3637 . 293077) (-3638 . 292924) + (-3639 . 292864) (-3640 . 292168) (-3641 . 290782) (-3642 . 290721) + (-3643 . 290395) (-3644 . 290323) (-3645 . 290266) (-3646 . 290209) + (-3647 . 290152) (-3648 . 290095) (-3649 . 290020) (-3650 . 289428) + (-3651 . 289068) (-3652 . 288993) (-3653 . 288933) (-3654 . 288815) + (-3655 . 287864) (-3656 . 287737) (-3657 . 287524) (-3658 . 287449) + (-3659 . 287395) (-3660 . 287341) (-3661 . 287232) (-3662 . 286919) + (-3663 . 286811) (-3664 . 286708) (-3665 . 286547) (-3666 . 286446) + (-3667 . 286348) (-3668 . 286210) (-3669 . 286072) (-3670 . 285934) + (-3671 . 285672) (-3672 . 285462) (-3673 . 285324) (-3674 . 285035) + (-3675 . 284882) (-3676 . 284603) (-3677 . 284381) (-3678 . 284228) + (-3679 . 284075) (-3680 . 283922) (-3681 . 283769) (-3682 . 283616) + (-3683 . 283406) (-3684 . 283286) (-3685 . 282894) (-3686 . 282558) + (-3687 . 282212) (-3688 . 281860) (-3689 . 281514) (-3690 . 281168) + (-3691 . 280780) (-3692 . 280392) (-3693 . 280004) (-3694 . 279632) + (-3695 . 278900) (-3696 . 278548) (-3697 . 278090) (-3698 . 277660) + (-3699 . 277042) (-3700 . 276440) (-3701 . 276048) (-3702 . 275712) + (-3703 . 275320) (-3704 . 274984) (-3705 . 274762) (-3706 . 274235) + (-3707 . 274020) (-3708 . 273805) (-3709 . 273589) (-3710 . 273409) + (-3711 . 273193) (-3712 . 273013) (-3713 . 272625) (-3714 . 272445) + (-3715 . 272233) (-3716 . 272143) (-3717 . 272053) (-3718 . 271962) + (-3719 . 271850) (-3720 . 271760) (-3721 . 271652) (-3722 . 271463) + (-3723 . 271407) (-3724 . 271326) (-3725 . 271245) (-3726 . 271164) + (-3727 . 271029) (-3728 . 270894) (-3729 . 270770) (-3730 . 270649) + (-3731 . 270531) (-3732 . 270395) (-3733 . 270262) (-3734 . 270143) + (-3735 . 269884) (-3736 . 269599) (-3737 . 269527) (-3738 . 269435) + (-3739 . 269343) (-3740 . 269257) (-3741 . 269159) (-3742 . 269018) + (-3743 . 268961) (-3744 . 268904) (-3745 . 268844) (-3746 . 268447) + (-3747 . 267923) (-3748 . 267645) (-3749 . 267224) (-3750 . 267111) + (-3751 . 266669) (-3752 . 266437) (-3753 . 266234) (-3754 . 266052) + (-3755 . 265922) (-3756 . 265716) (-3757 . 265509) (-3758 . 265318) + (-3759 . 264753) (-3760 . 264497) (-3761 . 264206) (-3762 . 263912) + (-3763 . 263615) (-3764 . 263315) (-3765 . 263185) (-3766 . 263052) + (-3767 . 262916) (-3768 . 262777) (-3769 . 261560) (-3770 . 261252) + (-3771 . 260888) (-3772 . 260791) (-3773 . 260550) (-3774 . 260254) + (-3775 . 259958) (-3776 . 259697) (-3777 . 259522) (-3778 . 259443) + (-3779 . 259355) (-3780 . 259254) (-3781 . 259159) (-3782 . 259077) + (-3783 . 259005) (-3784 . 258204) (-3785 . 258132) (-3786 . 257800) + (-3787 . 257728) (-3788 . 257396) (-3789 . 257324) (-3790 . 256875) + (-3791 . 256803) (-3792 . 256698) (-3793 . 256623) (-3794 . 256548) + (-3795 . 256476) (-3796 . 256133) (-3797 . 256003) (-3798 . 255926) + (-3799 . 255377) (-3800 . 255234) (-3801 . 255091) (-3802 . 254636) + (-3803 . 254305) (-3804 . 254092) (-3805 . 253837) (-3806 . 253487) + (-3807 . 253262) (-3808 . 253037) (-3809 . 252812) (-3810 . 252587) + (-3811 . 252374) (-3812 . 252161) (-3813 . 252009) (-3814 . 251825) + (-3815 . 251720) (-3816 . 251597) (-3817 . 251489) (-3818 . 251381) + (-3819 . 251054) (-3820 . 250787) (-3821 . 250474) (-3822 . 250168) + (-3823 . 249858) (-3824 . 249123) (-3825 . 248528) (-3826 . 248351) + (-3827 . 248206) (-3828 . 248051) (-3829 . 247928) (-3830 . 247823) + (-3831 . 247708) (-3832 . 247609) (-3833 . 247125) (-3834 . 247015) + (-3835 . 246905) (-3836 . 246795) (-3837 . 245708) (-3838 . 245193) + (-3839 . 245126) (-3840 . 245052) (-3841 . 244179) (-3842 . 244105) + (-3843 . 244049) (-3844 . 243993) (-3845 . 243961) (-3846 . 243875) + (-3847 . 243843) (-3848 . 243757) (-3849 . 243333) (-3850 . 242909) + (-3851 . 242352) (-3852 . 241240) (-3853 . 239516) (-3854 . 237954) + (-3855 . 237158) (-3856 . 236654) (-3857 . 236162) (-3858 . 235754) + (-3859 . 235094) (-3860 . 235019) (-3861 . 234927) (-3862 . 234855) + (-3863 . 234783) (-3864 . 234727) (-3865 . 234605) (-3866 . 234551) + (-3867 . 234490) (-3868 . 234436) (-3869 . 234333) (-3870 . 233893) + (-3871 . 233453) (-3872 . 233013) (-3873 . 232491) (-3874 . 232326) + (-3875 . 232161) (-3876 . 231850) (-3877 . 231763) (-3878 . 231673) + (-3879 . 231315) (-3880 . 231198) (-3881 . 231117) (-3882 . 230958) + (-3883 . 230844) (-3884 . 230769) (-3885 . 229917) (-3886 . 228730) + (-3887 . 228630) (-3888 . 228530) (-3889 . 228199) (-3890 . 228120) + (-3891 . 228044) (-3892 . 227937) (-3893 . 227779) (-3894 . 227671) + (-3895 . 227535) (-3896 . 227399) (-3897 . 227276) (-3898 . 227180) + (-3899 . 227031) (-3900 . 226935) (-3901 . 226780) (-3902 . 226625) + (-3903 . 225959) (-3904 . 225293) (-3905 . 224564) (-3906 . 224010) + (-3907 . 223456) (-3908 . 222902) (-3909 . 222235) (-3910 . 221568) + (-3911 . 220901) (-3912 . 220346) (-3913 . 219791) (-3914 . 219236) + (-3915 . 218682) (-3916 . 218128) (-3917 . 217574) (-3918 . 217020) + (-3919 . 216466) (-3920 . 215912) (-3921 . 215808) (-3922 . 215219) + (-3923 . 215113) (-3924 . 215037) (-3925 . 214894) (-3926 . 214801) + (-3927 . 214708) (-3928 . 214615) (-3929 . 214516) (-3930 . 214410) + (-3931 . 214286) (-3932 . 214162) (-3933 . 213795) (-3934 . 213672) + (-3935 . 213570) (-3936 . 213206) (-3937 . 212672) (-3938 . 212596) + (-3939 . 212520) (-3940 . 212427) (-3941 . 212244) (-3942 . 212148) + (-3943 . 212072) (-3944 . 211979) (-3945 . 211886) (-3946 . 211723) + (-3947 . 211172) (-3948 . 210621) (-3949 . 207824) (-3950 . 207651) + (-3951 . 206235) (-3952 . 205673) (-3953 . 205474) (-12 . 205302) + (-3955 . 205130) (-3956 . 204958) (-3957 . 204786) (-3958 . 204614) + (-3959 . 204442) (-3960 . 204270) (-3961 . 204155) (-3962 . 203783) + (-3963 . 203720) (-3964 . 203657) (-3965 . 203594) (-3966 . 203316) + (-3967 . 203049) (-3968 . 202996) (-3969 . 202353) (-3970 . 202302) + (-3971 . 202109) (-3972 . 202036) (-3973 . 201956) (-3974 . 201843) + (-3975 . 201653) (-3976 . 201289) (-3977 . 201017) (-3978 . 200966) + (-3979 . 200915) (-3980 . 200845) (-3981 . 200726) (-3982 . 200697) + (-3983 . 200595) (-3984 . 200473) (-3985 . 200419) (-3986 . 200242) + (-3987 . 200181) (-3988 . 200000) (-3989 . 199939) (-3990 . 199867) + (-3991 . 199392) (-3992 . 199016) (-3993 . 195413) (-3994 . 195360) + (-3995 . 195232) (-3996 . 195082) (-3997 . 195029) (-3998 . 194888) + (-3999 . 192827) (-4000 . 183588) (-4001 . 183437) (-4002 . 183367) + (-4003 . 183316) (-4004 . 183266) (-4005 . 183215) (-4006 . 183164) + (-4007 . 182966) (-4008 . 182823) (-4009 . 182709) (-4010 . 182588) + (-4011 . 182470) (-4012 . 182358) (-4013 . 182240) (-4014 . 182135) + (-4015 . 182054) (-4016 . 181950) (-4017 . 181012) (-4018 . 180792) + (-4019 . 180555) (-4020 . 180473) (-4021 . 180126) (-4022 . 178971) + (-4023 . 178897) (-4024 . 178802) (-4025 . 178728) (-4026 . 178526) + (-4027 . 178435) (-4028 . 178319) (-4029 . 178206) (-4030 . 178115) + (-4031 . 178024) (-4032 . 177934) (-4033 . 177844) (-4034 . 177754) + (-4035 . 177666) (-4036 . 175304) (-4037 . 175236) (-4038 . 175182) + (-4039 . 175118) (-4040 . 175054) (-4041 . 174990) (-4042 . 174929) + (-4043 . 174187) (-4044 . 174126) (-4045 . 174065) (-4046 . 173436) + (-4047 . 173383) (-4048 . 173255) (-4049 . 173191) (-4050 . 173137) + (-4051 . 173028) (-4052 . 171726) (-4053 . 171644) (-4054 . 171554) + (-4055 . 171496) (-4056 . 171246) (-4057 . 171161) (-4058 . 171086) + (-4059 . 171001) (-4060 . 170944) (-4061 . 170728) (-4062 . 170586) + (-4063 . 169865) (-4064 . 169309) (-4065 . 168753) (-4066 . 168197) + (-4067 . 167476) (-4068 . 166808) (-4069 . 166244) (-4070 . 165680) + (-4071 . 165416) (-4072 . 164974) (-4073 . 164639) (-4074 . 164295) + (-4075 . 163988) (-4076 . 163855) (-4077 . 163722) (-4078 . 163333) + (-4079 . 163240) (-4080 . 163147) (-4081 . 163054) (-4082 . 162961) + (-4083 . 162868) (-4084 . 162775) (-4085 . 162682) (-4086 . 162589) + (-4087 . 162496) (-4088 . 162403) (-4089 . 162310) (-4090 . 162217) + (-4091 . 162124) (-4092 . 162031) (-4093 . 161938) (-4094 . 161845) + (-4095 . 161752) (-4096 . 161659) (-4097 . 161566) (-4098 . 161473) + (-4099 . 161380) (-4100 . 161287) (-4101 . 161194) (-4102 . 161101) + (-4103 . 161008) (-4104 . 160823) (-4105 . 160508) (-4106 . 158936) + (-4107 . 158781) (-4108 . 158643) (-4109 . 158500) (-4110 . 158297) + (-4111 . 156342) (-4112 . 156214) (-4113 . 156089) (-4114 . 155961) + (-4115 . 155737) (-4116 . 155513) (-4117 . 155385) (-4118 . 155182) + (-4119 . 155003) (-4120 . 154476) (-4121 . 153949) (-4122 . 153668) + (-4123 . 153250) (-4124 . 152723) (-4125 . 152538) (-4126 . 152395) + (-4127 . 151895) (-4128 . 151252) (-4129 . 151196) (-4130 . 151102) + (-4131 . 150981) (-4132 . 150910) (-4133 . 150836) (-4134 . 150605) + (-4135 . 149979) (-4136 . 149547) (-4137 . 149465) (-4138 . 149323) + (-4139 . 148845) (-4140 . 148723) (-4141 . 148601) (-4142 . 148461) + (-4143 . 148274) (-4144 . 148158) (-4145 . 147874) (-4146 . 147805) + (-4147 . 147606) (-4148 . 147424) (-4149 . 147269) (-4150 . 147162) + (-4151 . 147111) (-4152 . 146727) (-4153 . 146199) (-4154 . 145977) + (-4155 . 145755) (-4156 . 145514) (-4157 . 145423) (-4158 . 143671) + (-4159 . 143082) (-4160 . 143003) (-4161 . 137534) (-4162 . 136743) + (-4163 . 136364) (-4164 . 136292) (-4165 . 136026) (-4166 . 135851) + (-4167 . 135361) (-4168 . 134935) (-4169 . 134491) (-4170 . 133623) + (-4171 . 133499) (-4172 . 133372) (-4173 . 133263) (-4174 . 133111) + (-4175 . 132997) (-4176 . 132858) (-4177 . 132776) (-4178 . 132694) + (-4179 . 132586) (-4180 . 132166) (-4181 . 131742) (-4182 . 131667) + (-4183 . 131401) (-4184 . 131134) (-4185 . 130751) (-4186 . 130050) + (-4187 . 129006) (-4188 . 128946) (-4189 . 128871) (-4190 . 128796) + (-4191 . 128673) (-4192 . 128421) (-4193 . 128334) (-4194 . 128258) + (-4195 . 128182) (-4196 . 128086) (-4197 . 124167) (-4198 . 122984) + (-4199 . 122320) (-4200 . 122133) (-4201 . 119917) (-4202 . 119591) + (-4203 . 119106) (-4204 . 118662) (-4205 . 118427) (-4206 . 118179) + (-4207 . 118088) (-4208 . 116641) (-4209 . 116562) (-4210 . 116456) + (-4211 . 114972) (-4212 . 114566) (-4213 . 114163) (-4214 . 114061) + (-4215 . 113979) (-4216 . 113821) (-4217 . 112522) (-4218 . 112440) + (-4219 . 112361) (-4220 . 112006) (-4221 . 111949) (-4222 . 111877) + (-4223 . 111820) (-4224 . 111763) (-4225 . 111633) (-4226 . 111429) + (-4227 . 111060) (-4228 . 110638) (-4229 . 106674) (-4230 . 106071) + (-4231 . 105443) (-4232 . 105228) (-4233 . 105013) (-4234 . 104845) + (-4235 . 104630) (-4236 . 104462) (-4237 . 104294) (-4238 . 104126) + (-4239 . 103958) (-4240 . 103686) (-4241 . 96811) (** . 93844) (-4243 . 93424) + (-4244 . 93176) (-4245 . 93119) (-4246 . 92621) (-4247 . 89796) + (-4248 . 89646) (-4249 . 89482) (-4250 . 89318) (-4251 . 89222) + (-4252 . 89104) (-4253 . 88980) (-4254 . 88837) (-4255 . 88666) + (-4256 . 88539) (-4257 . 88394) (-4258 . 88241) (-4259 . 88081) + (-4260 . 87565) (-4261 . 87474) (-4262 . 86804) (-4263 . 86609) + (-4264 . 86513) (-4265 . 86203) (-4266 . 85027) (-4267 . 84820) + (-4268 . 83643) (-4269 . 83568) (-4270 . 82387) (-4271 . 78794) + (-4272 . 78430) (-4273 . 78153) (-4274 . 78061) (-4275 . 77968) + (-4276 . 77691) (-4277 . 77598) (-4278 . 77505) (-4279 . 77412) + (-4280 . 77028) (-4281 . 76957) (-4282 . 76865) (-4283 . 76707) + (-4284 . 76353) (-4285 . 76195) (-4286 . 76087) (-4287 . 76058) + (-4288 . 75991) (-4289 . 75837) (-4290 . 75678) (-4291 . 75284) + (-4292 . 75209) (-4293 . 75103) (-4294 . 75031) (-4295 . 74953) + (-4296 . 74880) (-4297 . 74807) (-4298 . 74734) (-4299 . 74662) + (-4300 . 74590) (-4301 . 74517) (-4302 . 74276) (-4303 . 73936) + (-4304 . 73788) (-4305 . 73715) (-4306 . 73642) (-4307 . 73569) + (-4308 . 73315) (-4309 . 73171) (-4310 . 71835) (-4311 . 71641) + (-4312 . 71370) (-4313 . 71222) (-4314 . 71074) (-4315 . 70834) + (-4316 . 70639) (-4317 . 70369) (-4318 . 70173) (-4319 . 70144) + (-4320 . 70043) (-4321 . 69942) (-4322 . 69841) (-4323 . 69740) + (-4324 . 69639) (-4325 . 69538) (-4326 . 69437) (-4327 . 69336) + (-4328 . 69235) (-4329 . 69134) (-4330 . 69019) (-4331 . 68904) + (-4332 . 68853) (-4333 . 68736) (-4334 . 68678) (-4335 . 68577) + (-4336 . 68476) (-4337 . 68375) (-4338 . 68259) (-4339 . 68230) + (-4340 . 67497) (-4341 . 67372) (-4342 . 67247) (-4343 . 67107) + (-4344 . 66989) (-4345 . 66864) (-4346 . 66709) (-4347 . 65725) + (-4348 . 64865) (-4349 . 64811) (-4350 . 64757) (-4351 . 64549) + (-4352 . 64175) (-4353 . 63761) (-4354 . 63400) (-4355 . 63039) + (-4356 . 62886) (-4357 . 62584) (-4358 . 62428) (-4359 . 62102) + (-4360 . 62031) (-4361 . 61960) (-4362 . 61748) (-4363 . 60941) + (-4364 . 60735) (-4365 . 60361) (-4366 . 59841) (-4367 . 59573) + (-4368 . 59089) (-4369 . 58605) (-4370 . 58479) (-4371 . 57264) + (-4372 . 56072) (-4373 . 55499) (-4374 . 55281) (-4375 . 36984) + (-4376 . 36798) (-4377 . 34698) (-4378 . 32521) (-4379 . 32373) + (-4380 . 32191) (-4381 . 31782) (-4382 . 31481) (-4383 . 31130) + (-4384 . 30962) (-4385 . 30794) (-4386 . 30380) (-4387 . 16301) + (-4388 . 15182) (* . 11115) (-4390 . 10859) (-4391 . 10673) (-4392 . 9711) + (-4393 . 9658) (-4394 . 9598) (-4395 . 9329) (-4396 . 8694) (-4397 . 7412) + (-4398 . 6153) (-4399 . 5273) (-4400 . 4007) (-4401 . 424) (-4402 . 308) + (-4403 . 174) (-4404 . 30))
\ No newline at end of file |